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CHAPTER 1
INTRODUCTION

PURPOSE OF MANUAL.

This manual provides 6502 assembly language instructions
addressed directly to APPLE Il computer applications. The infor-
matian contained herein is intended for use by beginning, inter-
mediate and advanced programmers.

SCOPE OF MANUAL.

This manual contains explanations of basic symbols and
terminology used by programmers and engineers. Included is an
introduction to computer concepts, simple assembly language
instruction examples, and detailed 6502 assembly language
instructions as related to APPLE |l computer requirements.

GENERAL.

Why another book on 6502 assembly language? Well, there
are several reasons. First, there were only two books available
on the subject when | began writing this book. Second, none of
the available books address themselves directly to the APPLE I
computer. While assembly language theory can be iearned from
books, examples that run on other computers using 6502 assem-
bly language are of little use to the APPLE |l computer owner.

This book is the product of my experiences as a 6502
assembly language instructor. The material chosen for this book
is easily learned by the beginner. No promises can be made con-
cerning your individual levels of expertise achieved after reading
this book, but the material presented here should raise you 10 the
level of an intermediate 6502 assembly language programmer.
The “expert” status is achieved only through years of experience.

This book is intended for the beginner. Intermediate and
advanced programmers may find several items of interest in this
book, but it was written with the beginner in mind. If you have had

1
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Programming 6502 Assembly Language

prior 6502 experience, the first few chapters may contain infor-
mation which you have seen previously. AVOID THE TEMPTA-
TION TO SKIP ANY MATERIAL! If one important detail is not
understood, the remainder of the book may prove impossible to
understand. So take the time to review alf of the available material
and make sure that you understand the reviewed section before
going on. Obviously, if you are a beginner it is very important that
you understand each section before continuing.

Since there are so many excellent books on computer the-
ory, microcomputers, etc., | will try to keep the discussion of these
subjects to a minimum. There are several books you should own
if you are interested in learning 6502 assembly language. Books
| highly recommmend include:

HOW TO PROGRAM MICROCOMPUTERS
by William Barden Jr.

PROGRAMMING THE 6502
by Rodney Zaks

PROGRAMMING & MICROCOMPUTER
by Caxton C. Foster

6502 ASSEMBLY LANGUAGE PROGRAMMING
by Lance Leventhal

6502 SCFTWARE GOURMET GUIDE & CQOKBOOK
by Robert Findley

While all of the previously mentioned text books are excel-
lent, they were not written with the APPLE Il computer in mind.
This text presents practical applications instead of just the theory.
Since each of the above books present 6502 assembly language
in a different manner you may refer to them should you encounter
any difficulties understanding the material presented here. If you
are serious about learning assembly language you should have
access 1o the previously mentioned text books as well as this
manual.

Before getting into assembly language, it would be very wise
to aquaint you with some of the ‘jargon’ that will be used through-
out this manual.

1-2
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RAM .

ROM

MONITOR:

BASIC:

MEMORY :

SIGNED:

NUMBER

UNSIGNED:

NUMBER

BYTE:

WORD:

SYNTAX:

ADDRESS:

PACGE:

ZERQ:

PAGE

Chapter 1. Introduction
User memory. FPrograms and data are stored in
the HAM.
{RAM is an acronym for Random Access Memory)

Used to hold the Apple moniter and BASIC. You
cannot store data or programs in the ROM.
(ROM is an acronym for Read-0Only Memory.)

A set of subroutines in ROM which allow you
to read the keyboard, write characters to the
video screen, etc,

When the word "BASIC" is used, it means Integer
BASIC. Applesoft BASIC is referred to as
"Applesoft. "

. When "K" is encountered, you simply substitute

vy, 1024" {i.e, multiplied by 1024]).
Generally used to denots a memory size tsuch
as 48K .

Combination of all RAM and ROM locations.

Any legal positive or negative integer ("legal"
as defined by the current operation).

Any legal positive (only) number.
numbers are not allowed.

Negative

One unit of memory. A byte can represent up
to 256 different quantities {(such as the numbers
0-255) .

Two bytes stuck back to back. With a word

you can represent up to 65,536 different quantities
{such as the numbers (1-85,535 or the signed

numbers (-3276B} to {32767)).

The rules governing sentence structure in a
language, or statement structure in a
language such as that of a compiler program.

Two bytes used to point to one of the B4K available
mewory locations in the APPLE I1 computer.

An Address is also a Word but a Word is not
necessarily an Address.

The 65.535 bytes in the address range of the
APPLE II computer are broken into 256 blocks
blocks of 256 bytes sach. These blocks are

numbered D to 255 and are called pages.

The first 256 bytes in the memory space {page number
0) of the APPLE II computer are often referred to

as the "zero page" or "page zero." Naturally

there is a "page one,” a "page two," etc., but

the use of the first 256 bytes in the machine

1-3
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Programming 6502 Assembly Language

occurs so often that the term, "zero pags,"
has ceme into common use.

SLOT: One of the peripheral connectors (0-7)
on the AFPPLE II computer.

I/0: an acronym for input/output.

LIZSA: An acronym for Lazer Systems Interactive
fymbolic Assembler, proncunced LI ZA,
not LE S4.

PERIPHERAL:An I/0 device (such as a disk or printer} connected
externally to the computer.

It is assumed, in this manual, that the reader is familar with
Apple BASIC. BASIC will only be used in a few examples, but
familiarity with BASIC means that you have mastered at least the
elementary programming technigues. Assembly language is not
the place for an absolute beginner to start. You should be some-
what familar with programming concepts before attacking assem-
bly language. Assembly language is a very detailed programming
language and it is easy to get lost in the details if you are trying
to learn elementary programming at the same time.

Learning any program language, especially assembly lan-
guage, requires “hands-on” experience. All of the examples pre-
sented in this book use LISA (a disk-based 6502 assembler for
the APPLE Il computer). LISA is excellent for beginners because
Itis interactive, meaning it catches syntax errors immediately after
the line is entered into the system. This is very much like Integer
BASIC in the APPLE 1l computer. Since LISA catches syntax errors,
learning assembly language will be easy. it is doubtful that you
will ever “outgrow” it. This is not true for many other assemblers
available for the APPLE Il computer. If you decide to purchase
an assembler now, keep in mind that, for the most part, you are
stuck with it for life, since none of the assemblers available are
compatible with one another. So software which you create on
one assembler cannot be loaded into another assembler, even
though they are both for the APPLE Il computer! Even if LISA

1-4
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Chapter 1: Infroduction

were not interactive, | would still recommend it, since it is very
powerful and will suit your needs for quite a while to come.

WHY USE ASSEMBLY LANGUAGE?

The fact that you have read the text this far shows that you
have an interest in the subject. Nevertheless, some of you are
certain to have some misconceptions about the language.
Assembly language should be used when speed is the foremost
requirement in a program, or possibly when you need to control
a peripheral device, or maybe you have a specialized application
that cannot be executed easily (or cleanly) in one of the high-
level languages on the APPLE | computer.

You should not use assembly language for business or sci-
entific purposes. Pascal, FORTRAN, or Applesoft are better
suited for these applications. Floating point arithmetic, although
not impossible or even especially hard, is not something a begin-
ner, or even an intermediate programmer wouid want to tackle.

Ancther advantage provided by assembly language pro-
grams is the possibility of interfacing them to existing BASIC,
Applesoft, and Pascal programs. You can program the time crit-
ical sections of code in assembly language; the rest of the code
can be written in BASIC.

Once you become experienced in assembly language pro-
gramming you will discover that you can write and debug assem-
bly language programs as fast as BASIC programs!

Good luck. Hopefully, you will find machine language pro-
gramming as easy as BASIC!

LISA is available from your local computer store, or directly
from:

DATAMOST, INC.

8943 Fullbright Avenue
Chatsworth, CA. 91311
(213) 709-1202
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CHAPTER 2
SYMBOLISM

GENERAL.

When you see the number 4, what do you think? The number
4 is simply a symbol connected with the concept of four items.
When humans communicate, they use several symbois to relay
their ideas. As such, humans are very adaptive. If | told you that

from now on we'll use the symbol *— —" 1o represent four, you
could make the change. It might not be easy, but the change is
possible.

LOMPOTERS AREL DWI,"‘

Computers, on the other hand, are very stupid. They are not
adaptive and understand only a very low-level ianguage which
humans have considerable trouble understanding. This language
is not “assembly” or “machine” {anguage. Assembly, or machine
language, is actually a hurmnan convention that makes an even
lower-level language acceptable! The actual low-level language
understood by a computer consisis of different voltage levels on
different wires within the machine. Although, with lots of educa-
tion, humans can understand what each of these voltage levels
mean (and in fact your friendly neighborhood computer repair
man should), it certainly isn't very convenient. As such, we usually

2-1
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Programming 6502 Assembly Language

rename the voltage levels something else (bits, true, false, 0, 1,
etc.). We do the same thing in spoken languages all the time. For
instance, “deux” (French) usually gets translated to "two"
(English). Renaming voltage levels "bits” and groups of bits
“words” performs this same function.We're merely taking one
symbol, which is hard to understand, and translating this symbol
to one easier to understand.

The translation occurs in several distinct steps. These steps

include:
VOLTAGE => BINARY =>  CHARACTERS
LEVELS => DIGITS => NUMBERS
{+5v,0v) => {O,1} = ETC.

Note that this translation is not performed by the computer.
It is performed by humans. Remember, computers are dumb.

Once we realize that computers only represent “things” with
voltage levels, a natural question is: 'How do we represent
“things” with voltage levels? Well, as it turns out, representing
binary digits (or bits) is really quite simple. We have two voltages
(+5v and Ov) and two binary digits (0 and 1) to work with. Since
we have a one-to-one correspondence, we'll just arbitrarily assign
“17 10 +5v and “0” to 0 volts. The assignment is perfectly arbi-
trary. We could have defined the binary digit “0” to be +5v and
the binary digit “1” o be 0 volts. By convention (which means
everyone has more or less agreed upon it), however, we’ll stick
to the former definition.

With one bit, we can represent two different values or
“states.” Examples in¢clude the so-called Boolean values (true or

I WO H_.l-

W O oex '¢-‘)
PN
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Chapter 2: Symbolism

false), signs (+ or —), yes or no, on or off, and any other user-
defined binary quantities (husband/wife, boygirl, ... you get the
idea).

Now that we have a bit to play around with, would you like
to play around a bit? Let's define some operations on this bit.
First, we need to define an ordinality for our binary values. This
is necessary because often we need to compare one value to
another to determine which is the greater. “0” and “1” are easy,
one is always greater than zero. For the other binary values we
need fo use our intuition to decide on the ordinality. “True” should
be greater than “false,” so let's assign true the value “1” (or +5v)
and false the value “0" (or Ov). Yes/no, on/off, etc., should be
assigned in a similar manner. When it comes 10 data types, such
as male/female, the choice is arbitrary. If you're a male you'll
probably pick the “male” data type as being larger; if you're a
female you'li probably pick “female” as being the greater value.

Keep in mind that our usage of +3v and Ov becomes very
context-dependent. Sometimes + 5v will be used to denote the
number “1,” other times it will be used to denote the “true” value
and in other instances it will be used as “on," etc. Try not to get
confused about the type of data you are trying to represent as
this can cause all kinds of problems. From this point on | will
universally use “1” to denote +5v and “0” to denote Ov. For
example, when | say that “true” is defined as the value 1 . lreally
mean that true is defined as +5v.

BIT STRINGS.

Up to this point we have limited ourselves to one binary digit,
or “bit." Although there are several applications where one bit
provides enough information for our needs, there are other times
when we need to represent more than two different values. A
good example would be the base ten digits (0 thru 9). In this
example we need to represent ten different values but our bit can
only supply us with two. Well, why not use more than one bit to
represent the different values? Specifically, let's use 10 bits and
label them O thru 9. Now, to represent the digit "5,” for example,
we can set the sixth bit to “1” (leaving all others zero). To repre-
sent the value “0” we would set the first bitto “1,” leaving the rest
“0.” To represent the digit 9 we would set the tenth bit to “1,”
leaving all others at “0.”
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Programming 6502 Assembly Language

Each decimal digit would require 10 bits and would be laid
out as follows:
DECIMAL BIT NUMBER

DIGIT
0 1 2 3 4 5 6 T B 9

0 1 0 0 0 0 0 0 0 0 O
1 01 0 0 0 0 0 0 0 8
2 O 01 ¢ 0 ¢ 0 ¢ 0 O
& g ¢ 01 0 0 0 0 0 0
4 O 00 Q0 L 0 0 D0 GO0 O
B 0O 00 ¢ 0 1 0 0 0 0
5 C oo 0 00O 1 0 00
7 0 0 00 G 0O 0 1 0 0
8 0 00 0o 00 0 0 1O
9 o ¢ 0 g 0 0 0 0 0 1

Note that the bits are numbered 0 thru 9. When numbering
bits within a bit string, we will always start at bit number 0. Bit
number 0 is the first bit, bit number 1 is the second bit, ..., bit
number 9 is the tenth bit, etc. It is possible to have only a single
bit “set” (set means equal to one} in our bit string. A value of
100100100 is not defined. This scheme would probably work just
fine, except it is not very efficient. We have a unique string of bits
for each valus, but as we have defined it here there are several
combinations that are unique but undefined. Since each bit we
use will cost us money (since it takes one of those 16K RAM
chips to equal one bit) we would like to define a bit string which

T,
AND THIS APPLE, FOR ONLY
$10.000 COMES COMPLETE

WITH 3,000 MEMORY CHIPS.
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uses memory efficiently, thereby lowering the cost of our com-
puter.

To make our discussion easier to understand, let’s just con-
sider two bits. As per the previous discussion we can represent
two different values with the two bits, zero and one. Wait a minute!
Previously We discovered that we could represent two different
values with only one bitl This means, that right off the bat, we are
wasting at least half of our memory! So why don't we define the
numbers zero and one as having the following two-bit values:

value bit string

0 00
1 0l

Note that we are using the value and simply tacking on a
leading zero. Now consider the following bit strings:
value bit string

? 10
? 11

Notice that the value is undefined. We can’t use zero or one
because these two bit strings are quite obviously two different
values from zero and one as previously defined.

Since we now have two additional values, why not use them
to represent the values two and three? If we do this, we wind up

with the following:
value bit stiring

¥ 00
1 01
2 10
3 11

So now we can represent four different values with only two
bits! We save two bits over the previous method by defining our
data this way!

Now suppose we use a bit string of length three to represent
our values. As before, if the left-most bit is zero, we can simply
ignore it (the left-most bit is often called the “high-order” bit). This

leads to: value bit siring
] 000
1 ool
2 010
3 011
9 100
7 101
? 110
7 111
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Notice that we now have FOUR undefined values. Conti-
nuing as expected, we will define these next four values o be the
values 4 thru 7. Now we are saving quite a bit of memory. Remem-
ber, previously it took eight bits to represent the values 0 thru 7,
now it only takes three! We have cut our memory usage down to
almost one third of that previously required! Since we want to be
able to represent the decimal digits 0 thru 9, it looks like we will
need to add another bit to our bit string since three bits can only
represent the values 0 thru 7. Upon appending this extra bit we
obtain the folfowing:

value bhit string
0 0cQ0
0001
0010
0oll
0100
0101
0llo
0111
1000
1001
1010
1011
1100
1101
1110
1111

- BEE- BT RS BRSSPSR s I Y N N

By adding the extra bit we have added EIGHT new values
to our number system. We only needed two more values however!
Since we now have 16 different values on our hands, we can
represent the values 0 thru 15. But, since we only needed to
represent the values 0 thru 9, we will leave the bit combinations
1010 thru 1111 undefined. Yes, we are wasting some memory,
but remember, we only wanted to represent the values 0 thru 9
so the wasle can be considered undesirable, but required in this
case. Notice the final memory savings - only four bits are required
as opposed to ten! In general, each time we add a bit to our bit
string we DOUBLE the number of possible combinations. For
instance, with eight bits we can represent 256 different values,
with ten bits we can represent 1024 different values, and with 16
bits we can represent 65,536 different values.

We have just invented the binary numbering system which
is used by computers! Each bit in our bit string represents a power
of two.
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7 & 5 4 3 2 1 0
pr @8 g5 g+ ¢ 22 2 2

The first bit represents 2° (any number raised to the power
“0" is one), the second bit represents two raised to the first power
{i.e, 2"), the third bit represents two raised to the second power

(2%), etc. For example, binary 1100101 represents 1 x2% + 1x2°
L Ox2' + 0x2 + 1x22 + 0x2' + 1x2°o0r 101 in decimal.

Wwith eight bits we can represent up to (128} + {64)
+{32)+ (16) + (8) + (4) + (2) + (1) plus one (since we can also
represent zero which is distinct from all the other values) or 256
different values. In general, to represent 2" -1 distinct values
(such as the numbers 0 to 2" - 1) we will need n bits. For instance,
to represent the ten decimal digits 0 — 9, three bits are not enough
as (2%} — 1 equals 7, we still need two more values. In order to get
these two extra values we must add another bit even if it means
some of the available combinations must be wasted. Converse
to all of this, if we are limited to n bits we can only represent 2°
different values (such as the numbers 0 to (27) —1).

Remember, we can represent quantities other than numbers
with our bit strings. For instance the colors RED, BLUE, YELLOW,
and GREEN as follows:

COLOR BINARY CODE
RED [¢]¢]
BLUE 0l
YELLOW 10
GREEN 11

Or possibly the alphabetic characters:
Character Binary Code

A Goooo
B 0oool
c 00010
D 00011
E 00100
F 00101
X 10111
Y 11000
zZ 11001
[ UNUSED) 11010
{UNUSED) 11011
{UNUSED) 11100
{UNUSED} 11101
{ UNUSED } 11110
{UNUSED) 11111
2-7
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Since there are 26 characters, we'll need 5 bits (2°=32).
Four bits simply aren’t enough (2* = 16).

BINARY ARITHMETIC.

Now that we know how to represent data, let'’s see how to
manipulate this data.

BASIC ADDITION RULES:

First let's review what happens when we add two numbers
in the decimal (base ten) system. If we were to add 95 and 67,
we would perform the following steps:

-First we add 6 and 7

95
+87 add 5 to ¥

2 result is 2, carry is 1.
Next, we add 9 and 6, plus one since there was a carry.

95
+8% add & to 6 plus cne [from the carry}.

62 result is 6, carry is 1.

After the carry is added in, we get the final result of 162.

Binary additiocn works the same way, but is even easier. It's
based on seven rules.

1) 0+0 = 0O;carry = 0

2) 1+0 = t;carry =0

3) 0+1 =1;carry =0

4) 1+1 = 0;camry = 1

5) 0+0+carry = 1;carry =0

6) 1+0+carry = Q;carry = 1

7) 1+1+4carry = 1;carry = 1

S0, now we can add any n-bit binary quantity as follows:
STEP 1) Add 0 to 1 in the first column, which generates 1, carry
= 0.

gl10
0111

1 C=0
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STEP 2) Add 1 to 1 in the second column, giving Zero and carry

0110
0l1l

0l C=1

STEP 3) Add 1 and 1 plus 1 (from the carry). This gives us
1 and the carry remains set {equal to one).

€110
0111

101 C=1

STEP 4) Add 0 to 0 plus 1 (from the carry). The result is one,
and the addition is complete.

0110
Glll

1101 C=0

This procedure can be carried on for any number of bits.
Examples of binary addition:

011011C0 1101101

11101011 1111011

lololo1l1 11101000
UNSIGNED INTEGERS.

Up to this point we've made the assumption that we have as
many bits as we need at our disposal. In the ‘real’ world, this is
simply not the case. Usually we are limited to a fixed number of
bits (usually 8 or 16). Due to this restriction, the size of our num-
bers is limited. With 16 bits we can represent numbers in the
range O to 65,535 (2'° —1=65,535). With eight bits we can rep-
resent values in the range 0 to 265. Since the 6502 is an B-bit
machine (we are limited to using 8 bits at a time), it would seem
that we can only handle numbers in the range 0—255. Luckily
this is not entirely true, multiple precision routines will be studied
later on. An unsigned integer will be defined as any value between
0 and 65,535, 50 an unsigned integer will need 16 bits.
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NIBBLES (NYBBLES?), BYTES, and WORDS.

In our discussions, we will often use bit strings of length 4,
8, and 16. These lengths are not arbitrary, but rather they are
dependant upon the hardware being used. The 6502 likes its data
in chunks of 4, 8, and 16 bits.

Since we use these lengths all the time, we have special
names for them. A “NIBBLE” is a bit string of length four. As you
may recall from the previous discussion, it takes at least four bits
to represent a single decimal digit. Sometimes dec¢imal numbers
are represented by strings of nibbles (i.e, groups of four bits) in
a form known as binary coded decimal. Binary coded decimal
arithmetic is possible on the 6502 and will be discussed later.
Often, binary coded decimal is abbreviated to BCD.

A "BYTE" is a bit string of length eight. The byte is the most
common data type used by the 6502 because the data width of
the 6502 is eight bits (that is, the 6502 is an eight bit processor).

A "WORD™ is a bit string of length 16. Words are used
primarily to hold addresses and integer values. With a word it is
possible to represent up to 65,536 different values (64K). This is
the reason the 6502 can directly address up to 64K of memory.

Note that there are two nibbles in a byte and two bylesin a
word. This generates some additional terminology. Each bit string
has a low-order bit and a high-order bit. The low-order bit is
always bit number 0, and the high-order bit is equal to (n—1)
where n is the number of bits in the bit string. For a nibble, n is
four so the high-order bit is bit number three (remember, we start
with zerol). For a byte (n=8) the high-order bit is bit number 7
and for a word (n = 16} the high-order bhit is bit number 15.

EXAMPLES:

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0©

NIB

1 010

BYTE
g o1 10011

WORD
o461 0111011 1100011

2-10
“A2B-RH-UBAL-2ND-02-10.PICT” 154 KB 2001-06-20 dpi: 300h x 300v pix: 1346h x 2368v

| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0023 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Chapter 2: Symbolism

Additional terminology results from the symmetry ot nibbles,
bytes, and words. Since there are two nibbles in every byte, we
can speak of a “high-order nibble” and a “low-order nibble.” The
low-order nibble is comprised of bits 0 thru 3 and the high-order
nibble is comprised of bits 4 thru 7 in any given byte. Likewise,
the low-order byte in a word consists of bits 0 thru 7 and the high-
order byte consists of bits 8 thru 15. These definitions come in
handy when we have to work with data in groups of eight bits, and
it's nice to be able to relate words and nibbles to bytes.

SIGNED INTEGERS.

On many occasions a range of zero to (2" — 1) is simply not
enough. To represent values larger than (2" —1) all we need to
do is add additional bits to our bit string and the range of our
numbers is increased proportionately. But sometimes we need to
be able to represent numbers less than zero. Unfortunately, this
cannot be accomplished with the number system we have
described 0 far. In order to represent negative numbers we must
abandon the binary numbering system we have created and
devise a new numbering system that includes negative numbers.

While many numbering systems exist that allow negative
numbers, we are forced to use the so-called two's complement
numbering system. This choice has to be made because of the
6502 arithmetic hardware, The two's complement system uses
the following conventions:

1) The standard binary format is used

2] The high-order bit of a given binary number is assumed
to be the sign bit. If this bit is set, the number is
negative. If this bit is clear, the number 1s positive.

3) If the number is positive, its form is identical to the
standard binary format.

4) If the number is negative, it is stored in the two's
complement format.

The two's complement format is achieved by taking a posi-
tive number, inverting all the bits (that is, if a bit is zero change
it to one; if a bit is one change it to zero), and then adding one to
the inverted result. For example, given that the positive 16-bit
representation for two is:

0000000000000010

211
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then the two’s complement of two (i.e, minus two) is computed by
inverting all the bits:
M1 11111111110

and adding one to the inverted result:
1111111111110

Therefore, 1111111111111110 is the two's complement repre-
sentation for minus two. The two's complement operation, also
called negation, can be thought of as a multiplication by minus
one. In fact, if you take the two's complement of a negative num-
ber, you wind up with its positive counterpart. Consider minus
two:!

1111111111111110

To take the two's complement of minus two, we first invert all the
bits:
£000000000000001

Next, one is added 10 the result so that we obtain:
0000000000000010

which is the binary representation for two!

Why even bother with such a weird format? After all, it's
probably much simpler to just use the high-order standard binary
format. Well, a simple addition problem may help clear things up.
Consider the addition of two plus minus two.

GOGR0O0GO0QQ0010
1111111111111110

000000000Q000000 ocarry=1

Note that if we ignore the carry out of bit #15, we wind up
with a zero result, exactly what we expect. |t is easy to prove to
one's self by the use of examples that if the carry is ignored, the
result is always what one would expect.

If the carry out of the sixteenth bit is meaningless, how does
one detect an overflow? If the sign bit is treated as a separate
entity from the rest of the number, bit #14 is technically the high-
order bit. A carry out of this bit will be what we test for to determine
two's complement overflow.
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HEXADECIMAL NUMBERS.

Binary numbers are fine for examples. But when used for
conveying information to people, they tend to be too bulky. Can
you imagine having to write out one hundred 18-bit numbers in
binary? Or having to read them? Several years ago programmers
began using the octal {base eight) numbering system to compact
the large binary numbers. With the octal system it is possible to
cram 16 bits of information into six digits. The octal numbering
system is still popular on several minicomputers today. When
microcomputers came along, manufacturers switched to the hex-
adecimal numbering system which made it possible to get 16 bits
of information into only four digits! The only drawback 1o the hex-
adecimal numbering system is that most people are not familiar
with it. The hexadecimal system (base 16} contains 16 distinct
digits. The first ten digits are the familar numeric characters 0 thru
9 and the last six digits are the alphabetic characters A thru F.
Hexadecimal numbers have the values:

BINARY DECIMAL IEXADECIMAL

0000 g 0
0001 1 H
0010 2 2
0011 3 3
Glo0 4 4
glel 5 5
0110 & 3]
Q111 T ¥
1000 8 8
1001 =] 8
1010 10 A
1011 11 B
1100 12 C
1101 i3 D
1119 14 E
liii is F

Why all the fuss over hexadecimal numbers (or hex numbers
as they are usually referred to)? They are easy to convert to
binary and vice versa. Decimal numbers, unfortunately, are not
as easy 1o use. For example, 11111100 is not easily converted
to 252 decimal, but it is a trival matter to convert it to the hex-
adecimai number FC. Clear as mud, right? It's actually quite sim-
ple once you learn one little trick. In order to convert a binary
number to a hexadecimal number you must first adjust the binary
number so that it contains the number of bits which are a multiple
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of four (four, eight, twelve, sixteen, et¢.). You accomplish this by
adding leading zeros to the left of the binary number. Next, you
start from the right and divide the hit string into groups of four bits
each. Look up each of these “quadruples” in the chart above and
replace them with the corresponding hexadecimal value. In the
previous example, 11111100 is split up into two groups of four
bits yielding 1111 1100. Looking up 1111 in the chart yields the
hexadecimal digit “F”. The binary number 1100 corresponds to
the hexadecimal digit “C".

Going in the other direction, converting hexadecimal to binary,
i just as easy. Simply look up the binary equivalent of each hex-
adecimal character in a hex string and substitute the binary value,
Don't forget to include leading zeros in the middle of a hex string.
For example, EFC4 converts to 1110 1111 1110 0100.
Although hexadecimal numbers may seem cumbersome to the
new programmer, they are in fact a great convenience.

RADIX AND OTHER NASTY DISEASES.

Now we have decimal, binary, and hexadecimal numbers.
If you were to find “100” printed somewhers, how would you be
able to tell which base, or “radix,” the number is represented in?
Does “100" mean 100 base two (ie., decimal four), 100 base 10
(i.e., one hundred), or “100" hex (i.e., 256 decimal)?

To avoid confusion the radix is usually specified by some
leading character. If a number is prefaced by a percent sign the
number will be considered to be a binary number. If the number
is preceded by a dollar sign the number will be assumed to be
hexadecimal. A exclaimation point is used to denote a decimal
number. Decimal numbers may also appear without a radix prefix,
so if a string of digits appears without a leading radix character
the decimal number system is assumed. The use of the radix
prefix prevents ambiguity.

ASCIHl CHARACTER SET.
As has been continually pointed out, binary vaiues may be
used to represent values other than numeric guantities. A com-
puter is required to handle text consisting of alphabetic charac-
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ters, numeric characters, and several punctuation symbols as
often as it must perform numeric manipuiation. Since character
manipulation is very important, we must define a character set,
that is, a set of unique binary values for each of the valid char-
acters we wish to represent.

As you may remember, it requires a minimum of five bits (or
32 distinct values) to represent the characters of the alphabet.
When you add to that the numeric characters 0 thru 9, it becomes
apparent that six bits are going to be required. When you add the
lowercase letters and several punctuation characters, the number
of required characters jumps to 96. Finally, by adding several
“device-control” characters such as return, cursor control, tab,
the total jumps to 128 characters. To represent 128 different
values requires seven bits. To allow other special characters
(such as inverted or blinking characters) another bit wili be used
to bring the bit total to eight bits, yielding a maximum of 256
distinct characters.

Now the only problem that remains is to assign these 256
different characters a unique 8-bit code. Rather than create our
own character code, we will use the American Standard Code for
Information Interchange (ASCII) character set. The ASCII char-
acter set is used by almost all computer manufacturers. Even
IBM, which has used its own character set since the early sixties,
has finally started using ASCII characters in some of its equip-
ment. The first 32 values in the ASCII character set are the so-
called control codes. These include carriage return, line feed,
backspace, tab, and several other non-printing characters reserved
for device control use. The next 32 characters are reserved for
the often used punctuation characters (such as period, comma,
space) and the numeric characters. The following 32 characters
are reserved for the uppercase letters and some infrequently
used punctuation characters. The final 32 values in the ASCII
character set are reserved for the lowercase letters and some
little-used punctuation characters.

ASCI does not define the final 128 characters in the char-
acter set. These are user-definable characters. On the Apple Il
the remaining characters comprise the inverted and blinking char-
acter set. For a fuli description of the Apple/ASCII character set,
see Appendix A.
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USING BIT STRINGS TO REPRESENT
INSTRUCTIONS.

Until now we have assumed that bit strings are used only to
represent data of some type. This is not always the case. A bit
string can also be used to represent a command.

Imagine, if you will, a small subset of the commands humans
obey every day. One command might be the alarm clock ringing
in the morning, causing you to get out of bed. A second command
might be, “Get dressed.” A third command could be, “Drive to
work.” A fourth command could be, “Perform all actions required
at work.” Another command could be, "Drive home from work.”
And a last command could be, “Go to bed.” To represent these
six commands we need three bits. The commands could be
assigned as follows:

bit string command
Q00 Get cut of bed.
ool Get ready for work.
010 Drive to work.
011 Perform required dutiss.
100 Drive home from work.
101 Go to bed.

With these simple commands the apparent actions of a
human being can be performed. Each command will be assumed
t0 be given sequentially. This does not mean numerically (i.e, in
the order given above), but rather it means that the human exe-
cutes one instruction at a time. Although it may not make much
sense, it is perfectly valid to give the commands out of numerical
order, For example, suppose the person drove to work and then
realized that he left something at home which was required to
perform his job-related duties. Thig situation would require the
instruction sequence:

000 Get out of bed.

aol Get ready for work.

010 Drive to work.

1040 Drive home and pick up forgotten items.
010 Drive back to work.

0l1l Perform required duties.

100 Drive home from work.

101 Go to bed.

Obviously, several other schemes are possible with some
yielding weird results. Commanding objects other than human
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beings is also possible. Examples include automated machinery,
programmable toys, and, of course, the computer. The fact that
commands can be represented as bit strings is the whole basis
for the computer programming to be studied in the following chap-
ters.
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CHAPTER 3
REGISTERS, INSTRUCTION
FORMATS, AND
ADDRESSING

GENERAL.

Up until now, our discussion of data types has been, for the
most part, unrestricted. Unfortunately, in the “real” world of com-
puters several restrictions apply which limit the size and feasibility
of the operation we wish to perform. In order 10 be able to write
good programs the user must first learn the limitations, and
advantages, of the APPLE Il computer.

The APPLE |l computer consists of three major parts:

1} Central Processing Unit (6502 Microprocessor)
2) Input/Output (Keyboard, Video Display, Disk, Etc.)

3) Memory

Memory in the APPLE il computer is arranged as 65,536 8-
bit bytes. Each byte is individually addressable; that is, if we want
to, we can perform our data operation on any of the 65,536 loca-
tions available to us.

Several of these locations (5120 in fact) are specifically
reserved for Input’Output (1/O) purposes 1024 of these locations
comprise the screen memory, and storing data in any of them
{located from $400 thru $7FF in memory) Is likely to affect the
video display. Another 4K (4096) of these memory locations is
reserved for use by the peripheral cards which plug into your
Apple. The remaining 59K bytes (ie, 60,416 bytes) are used to
hold variables, your program, BASIC, Pascal, etc. Typically, the
user has 48K at his disposal for program storage (minus any
language requirements such as DOS, etc.).

The Central Processing Unit (CPU) is where all the action
takes place. The CPU is the “brains” behind the computer. Data
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is transferred to and from memory and /O devices, arithmetic is
performed, comparisons are made, etc., within the CPU. So, the
CPU will function as a “middleman” in most of our operations.
Let's define the 6502 microprocessor. Internally the 6502
microprocessor censists of an Arithmetic/Logical Unit (ALU)
where additions, subtractions, etc., take place, a control unit

"MEMORY BND REAL WORLD PEOPLE HAVETO
G0 THROUGH AFPPLE TO TALK TO ONE ANDTHER
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which moves data to and from memory, decodes the instructions,
and accesses six special memory locations called, registers. Five
of these registers are 8 bits wide (just like our memory) and one
of them is 16 bits wide (the same as the 6502 address bus).

These six registers each serve a special purpose, therefore
they have been given special names as follows:

1) Accumulator (A or ACC)

2) X-register (X)

3) Y-register (Y)

4) Stack Pointer (SP)

5) Program Status Word (P or PSW)

8) Program Counter (PC)
A separate descripticn of each register is given in the fol-
lowing paragraphs:

ACCUMULATOR (A or ACC).

The accumulator is where most of the data transactions
occur. Numbers are added and subtracted here. Data transfer
from memory location to memory location usually goes through
the accumulator. All logical operations occur in the accumulator.
For most of our purposes, the accumulator will be the general
purpose register that we utilize.

X-REGISTER (X).

The X-register in the 6502 is a special purpose register. We
cannot add or subtract numbers with it, however the X-register is
used for accessing elements of simple arrays, strings, pointers,
etc. Using the X-register to access elements of an array is called
“indexing.” Often, the X-register is called the X-index register. We
will discuss indexing later in the text.

Y-REGISTER (Y).

The Y-register, identical to the X-register, is reserved for
indexing purposes. Two different index registers allow us to per-
form such functions as substring, concatenation, and other array
functions.

3-3
“A2B-RH-UBAL-2ND-03-03.PICT” 135 KB 2001-06-20 dpi: 300h x 300v pix: 1355h x 2373v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0033 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Prograrmming 6502 Assembly Language

STACK POINTER (SP).

The Stack Pointer is another special purpose register in the
6502. i is used when calling subroutines and returning from sub-
routines, as well as when saving temporary data. Since it is 8 bits
wide, the stack pointer can only be used to address 256 different
locations in the 6502 address space. These 256 locations occur
from location $100 to location $1FF.

NOTE

Since locations $100 thru $1FF are reserved for the Stack Pointer
register, NEVER use these locations for data or program storage.

PROGRAM STATUS WORD (P or PSW).

The program status word (also called the processor status
register) is not a register in the true sense of the word. It is simply
a convenient collection of seven status bits which will be used by
such things as conditional branches (to be described later).

PROGRAM COUNTER (PC).

The program counter is a register used by the computer to
point to the instruction currently being executed. This register is
unique in that it is the only 16-hit register on the 6502. It is 16 hits
wide since 16 bits are required to access the 65,536 different
locations (the address space) on the 6502.

INSTRUCTION FORMAT (6502).

Thus far we have discussed the ways computers store data
and where the data is manipulated (i.e., the registers). We have
not discussed how we tell the computer what to do with this data.
A computer instruction is used to tell the 6502 which operation to
perform. What is an instruction? An instruction is simply another
8-bit code stored in memory. Since each instruction is 8 bits wide
there is a maximum of 256 possible instructions. In the 6502,
however, there are only about 120 actual instructions. The instruc-
tion codes corresponding to these 110 to 120 instructions are
called valid instruction codes, or valid opcodes. The remaining
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]

MEMORY LOCATIO

136 to 146 invalid instructor codes are referred to as the invalid
instruction codes, or invalid/illegal opcodes.

The opcodes (computer instructions) are stored in memory
in a manner identical to date. How then does the computer dif-
ferentiate between data and instructions? Clearly, the meaning
of a byte in memory is very context-dependant. A byte in memory
is assumed to be a computer instruction if the program counter
is ever allowed to “point” at (i.e., contain the address of) that
particular byte in memory. Also, programs are assumed to be
stored sequentially in memory (with some exceptions). That is,
the second instruction immediately follows the first instruction,
the third instruction follows the second, etc.

EXAMPLE:

MEMORY

1st INSTRUCTION <~ PROGRAM COUNTER
Znd INSTRUCTION
3rd INSTRUCTION
4th INSTRUCTION
Sth INSTRUCTION

The program counter is loaded with the address of the first
instruction. The processor loads and then executes this instruc-
3-5
“A2B-RH-UBAL-2ND-03-05.PICT” 131 KB 2001-06-20 dpi: 300h x 300v pix: 1347h x 2363v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0035 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

tion. The program counter is then incremented by one so that it
points to the second instruction. This instruction is fetched and
the cycle is repeated.

Always remember that the computer cannot tell the differ-
ence between data and instructions. Whatever the program
pointer points to will be interpreted as an instruction.

TWO AND 3-BYTE INSTRUCTIONS.

Many instructions require more than one byte. For instance,
suppose we want to load the accumulator with the 8-bit constant
$FF. The 6502 has an instruction which will load the accumulator
with an 8-bit constant. The only problem is how do you specify
the constant? Why not immediately follow the instruction with the
constant! Well, this is exactly what's done. The hex code $A9,
when executed, tells the 6502 to load the accumulator with the
8-bit constant located in the next byte, 50 the two bytes ($A9,
$FF) instruct the 6502 to load the accumulater with the constant
$FF. Loading the accumulator with a constant (or load the accu-
mulator immediate, as it's often called) is an example of a 2-byte
instruction. Rather than using just one byte to perform the oper-
ation, we need two. Naturally, the program counter is incremented
by two instead ot one so that the constant does not get executed
as the next 6502 instruction.

*PROGRAM COUNTER GETS TO SKIP DRATA
AFTER A TWD BYTE INSTRUCTION"
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In addition to the 2-byte instructions, there are also 3-byte
instructions. One good example is the “store the accumulator in
an absolute memory location” instruction. This instruction (which
consists of $8D followed by a 16-bit address) will store the con-
tents of the accumulator at any of the 65,536 different memory
locations available in the 6502 memory space. For example,
($8D, $00, $10) will store the accumulator at location $1000, and
($8D, $C3, $48) will store the accumulator at location $48C3.

Remember, whenever a multibyte instruction is encoun-
tered, the program counter is automatically incremented past the
additional data.

EXAMPLE:

A9 INSTRUCTION #1 LOAD ACC WIUH 8FF
FF

8D INSTRUCTION #2 STORE ACC AT LOCATION $1234
34
12

— ETC.

WARNING

Remember, there is nothing sacred about the location of your
program instructions. The computer cannot differentiate between
data and valid instructions. In the previous example, it the pro-
gram began at location $1234 we would have loaded the accu-

T
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mulator with $FF and then proceeded to destroy the first instruc-
tion ($A9 stored at location $1234) by storing a $FF over the top
of the $A9, leaving you with the following code:

LoC DATA/CODE
1234 —  FF
1235 FF
1238 BD
1237 34
1238 12
1239 —_—
ETC. ETC .

With this in mind, be very careful where you store data since
you can easily wipe out your program if you are not careful.

6502 ADDRESSING MODES.

The 6502 microprocessor utilizes 56 distinct instructions.
Previously it was said that there are about 120 different instruction
codes. Why the difference? Well some operations can be carried
out in one of several ways. For instance, one type of operation
on the 6502 is that of loading the accumulator with an 8-bit value.
The operation is called, “the load the accumulator operation” and
is often abbreviated LDA. There are several LDA instructions. You
can load the accumulator with a constant, load the accumulator
with the value contained in one of the 65,536 memory locations,
load the accumulator with an element of an array or string, etc.
All of these operations have one thing in common- the end result
is that the 6502 accumulator is loaded with a new value. Although
the operation is the same (loading the accumulator) the method
used to load it is different. Since it is a different operation (so to
speak) on a very low level, the 6502 uses a different opcode for
each variance of the LDA instruction. These variances on the LDA
instruction are often called, “addressing modes.” Whereas an
instruction tefls the computer what to do, the addressing mode
tells the computer where to get the data {or operand).

IMMEDIATE ADDRESSING MODE.

The immediate addressing mode tells the computer that the
data to be used is an 8-bit constant, which immediately follows
the instruction code. Remember, the $A9 in one of the previous
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examples, $A9 says, “Load the accumulator with the value con-
tained in the following byte.” This is an example of the immediate
addressing mode. The instruction could be worded as, “Load the
accumulator with the byte immediately following the instruction
byte.” With this wording the term “immediate addressing mode”
makes a little more sense. Instructions using the immediate
addressing mode are always two bytes long: one byte for the
instruction and one byte for the immediate data.

ABSOLUTE ADDRESSING MODE.

Sometimes, rather than loading the accumulator with a con-
stant, we need 1o be able to load the accumulator with a variable
that is stored in memory. As with the immediate addressing mode
we need one byte to specify the instruction (LDA or load the
accumulator). Next, to be able to uniquely specify one of the
65,536 different locations in the 6502 address space, we need a
2-byte address. This type of addressing mode is called, “absolute
addressing mode” (since we are loading the accumulator from an
absolute memory location). Obviously this instruction must be
three bytes long: one byte for the instruction and two bytes for the
address. The actual instruction code for the LDA absolute instruc-
tion is $AD. This instruction code is always followed by a 2-byte
address; the low-order byte comes first followed by the high-order
byte. If we wanted to instruct the 6502 to load the accumulator
from memory location $1234, the code sequence to do this would
be: ($AD, $34, $12 or AD3412). Yes, it does look funny seeing
the 34 before the 12, hut get used to it. You will see this (byte-
reversed order) used all the time on the 6502.

ZERO PAGE ADDRESSING MODE.

The 6502 incorporates a special form of the absolute
addressing mode known as the “zero page addressing mode.” In
this addressing mode the 6502 loads the accumulator from the
specified memory location, just like the absolute addressing
mode. The only difference is that the instruction is only two bytes
long: one byte for the instruction and one byte for the address.

3-9
“A2B-RH-UBAL-2ND-03-09.PICT” 175 KB 2001-06-20 dpi: 300h x 300v pix: 1346h x 2355v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0039 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

Since eight bits only allow 256 different values you are limited to
256 different addresses. In the 6502 address space this corre-
sponds to the first 256 locations in the machine (location $00 to
location $FF, also known as ‘page zero'). Since the zero page
addressing mode strongly restricts its usage (you're only allowed
to access 1/256th the amount of data possible with the absolute
addressing mode), why should you even bother using it? The first
part of the answer should be obvious. The absolute addressing
mode results in 3-byte instructions whereas the zero page
addressing mode uses only two bytes. You save memory by using
the zero page addressing mode. The second, and less obvious,
reason is that instructions using the zero page addressing mode
execute faster than instructions using the absolute addressing
mode. Page zero is often used for variable storage, and the other
memory locations are often used for program, array, and string
storage.

INDEXED ADDRESSING MODE.

As mentioned previously, the X- and Y-registers are used as
index registers. An index register is used to access elements of
a small array or a string. Remember, in integer BASIC, when you
use an array you specify the element of the array by placing an
“index” within parentheses after the variable name (e.g., M{l): |
is the index). The X- and Y-registers are used in place of the
variable | {or whatever you happen o be using}. For instance, the
instruction code $BD tells the 6502 to load the accumulator from
the absolute memory location specified in the next two bytes
AFTER the contents of the X-register are added to this value. If
the computer executes the instruction sequence BD 34 12, and
the X-register contains 5, then the accumulator will not be loaded
from location 1234, but rather from location 1239 (1234 +5). In
general, if you have an array (containing less than 256 elements)
you can access any element of this array by loading the X-register
with the desired value and then loading the accumulator from the
first element of the array indexed by X.

NOTE

The Y-register can be used in an identical manner. Naturally, the
instruction code is changed, but the effect is the same.
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INDIRECT ADDRESSING.

The indirect addressing mode is rather tricky. Rather than
using the 2-byte address which follows the instruction, we go to
the address specified and use the data contained in that location
as the low-order byte of the actual address. To get the high-order
byte of the actual address we must add one to the 16-bit value
following the instruction and go to that address which will contain
the high-order byte of the actual address. Now that a low- and
high-order byte are obtained, the address is fully specified, and
we can continue on our merry way. Yes, this description is worth-
less and you do need several examples to demonstrate how
indirect addressing is used. Rather than give these examples
now, their presentation will be deferred until the addressing mede
is actually used in a program.

INDIRECT INDEXED BY' Y.

As with the indirect addressing mode, the indirect indexed
by Y mode is mentioned solely for completeness. A full discussion
will be presented later in the text.

INDEXED BY X, INDIRECT.
Again, this discussion must be deferred.

IMPLIED ADDRESSING MODE.

The implied addressing mode means exactly that—the
instruction itself implies what type of data is to be operated on.
Instructions that use the implied addressing mode are always one
byte long.

ACCUMULATOR ADDRESSING MODE.

The accumulator addressing mode specifies an operation
upon the accumulator. The instructions in this class are all one
byte long.
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NOTE

It may seem that many of the operations in the 6502 should be
considered in the class of accumulator addressing mode instruc-
tions. The difference between the true accumulator addressing
mode instructions and the other instructions is that the accumu-
lator addressing mode instructions reference only the accumu-
lator. They do not require any operands in memory.

RELATIVE ADDRESSING MODE.

The relative addressing mode is used by a group of instruc-
tions known as the branch instructions. The description of the
relative addressing mode is beyond the scope of this chapter and
will be considered in a later chapter. Once again it is mentioned
solely for sake of completeness.

ADDRESSING MODE WRAP-UP.

If this discussion of addressing modes doesn't make much
sense, don't worry about it. This section was intended only as a
crude introduction to make you aware of the fact that addressing
modes do indeed exist. The use of a particular addressing mode
will become obvious in the next few chapters.
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“A2B-RH-UBAL-2ND-03-12.PICT” 95 KB 2001-06-20 dpi: 300h x 300v pix: 1355h x 2368v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0042 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

CHAPTER 4
SOME SIMPLE
INSTRUCTIONS

NEW INSTRUCTIONS:

EQU EPZ DFS5
LDA LDX LDY STA STX 5TY INC DEC
TAX TAY TXA TYA INX INY DEX DEY

GENERAL.

Until now, everytime we wanted the computer to perform
some action, we pulled a magic little number out of the hat and
used it as an instruction code. Unfortunately, there are about 120
different instruction codes. Trying to memorize all of these would
be mind boggling. |t would certainly be quite a bit nicer if we could
use phrases like, “load the accumulator with the constant $FF”
or “store the contents of the accumulator at location $1234.” This
idea was so good that several people have indeed done this. LISA
is an example of a computer program that takes phrases (such
as LDA for load the accumulator) and converts them to one of the
120 or so valid instruction codes. Programs which do this for you
are called, “assemblers.” Rather than using long phrases, such
as “load the accumulator”, short mnemonics were chosen
instead. Mnemonics are three-character representations of the
desired phrases. For instance, LDA replaces “load the accumu-
lator,” and STA replaces “store the accumulator.” Although you
must take the time to learn these mnemonics, the payoff is rather
good. When entering a program, you will only have to type three
letters instead of an entire phrase!

ASSEMBLY LANGUAGE SOURCE FORMAT.

The actual machine language code that the 6502 under-
stands is often called, “object code.” The mnemonics that
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humans understand are often called, the text file, or source code.

Unlike BASIC, which has few restrictions concerning the
arrangement of statements on a line, assembly language has a
very rigid format. An assembly language source statement is
divided into four sections known as “fields.” There is a labet fieid,
a mnemonic field, an operand field, and a comment field. Fields
in an assembler are usually separated by at [east one blank; often
two or three of these fields are optional.

SOURCE FORMAT:

LABEL MNEMONIC OPERAND ;COMMENTS

The label field contains a label that is associated with the
particular source line. This is very similar to the line number in
BASIC. All branches and jumps (a GOTO in BASIC) will refer to
this fabel. Unlike BASIC, this fabel is not a number, but rather a
string, usually one to eight characters long beginning with an
uppercase alphabetic character. Labels should only contain
uppercase characters and digits.

EXAMPLES OF VALID LABELS:

LABEL
Leol

A
MONKEY

EXAMFLES OF INVALID LABELS:

LHCLD {BEGINS WITH *1")
HELLOTHERE (LONGER THAN & CHARS}
LBL.X {CONTAINS ","}

Labels are not required on every line [ike line humbers in
BASIC. Labels are only required when you need to access a
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particular statement. Labels must begin in column one of the
source line, and there must be a blank between the label and the
following mnemonic.

As previously mentioned, labels are optional. If you do not
wish to enter a label on the current line you must be sure that
column one of the source line contains a blank (see the LISA
documentation for furthur details on labels).

MNEMONIC FIELD.

The mnemonic field follows the label field. A three-character
LISA mnemonic is expected in this field. These include instruc-
tions such as LDA, LDX, LDY, STA, ...

OPERAND FIELD.

The operand field follows the mnemonics field. The operand
field contains the address and the addressing mode, if required.
f an address appears all by itself the absolute (or zero page, if
possible) addressing mode will be used. This address can be an
“address expression.” An address expression is similar to an
arithmetic expression one would find in Integer BASIC except that
only addition and subtraction are allowed. (Some versions of LISA
allow other operators as well.) For instance, $1000 + &1 will return
the value $1001. If you had an instruction of the form “LDA
$1000+$1" (LDA stands for load the accumulator), the accu-
mulator would be loaded from the contents of memory location
$1001. The discussion of address expressions will be considered
in greater detail later in the text.

To specify a constant (the immediate addressing mode), you
must preceed a 16-bit address expression with either a “#" or a
“ If you use the “#”, the low-order byte of the address expression
will be used. If you use the “/*, the high-order byte of the address
expression will be used as the 8-bit immediate data.

The indexed addressing modes are specified by following
an address expression with “.X” or “,Y” depending on whether
you wish to use indexed by X or indexed by Y addressing. If
possible, the zero page form will be used.

To specify the implied addressing mode, or the accumulator
addressing mode, you must leave the operand field blank. Any-
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thing but a comment (see the next section) will produce an error.
The syntax for the indirect, indirect indexed by Y, and indexed
by X indirect will be considered later.

COMMENT FIELD.

Following the operand field you can optionally place a
remark on the same line as the instruction. Just make sure that
the operand field and the comment field are separated by at least
one blank, and also make sure that your comment begins with
the special character ;" (semicolon).

INTRODUCTION TO REAL INSTRUCTIONS.

So far, we've only discussed assembly language in a very
general way, making use of relatively few concrete examples.
Now, let's focus our attention on some of the real commands at
our disposal.

LOAD GROUP.

There are three distinct instructions in the load group cate-
gory. They are: LDA (load accumulator), LDX (load the X-regis-
ter), and LDY (load the Y-register). These instructions go to the
location specified in the operand fieild, make a copy of the data’
stored there, and then enter this data into the specified register.

To load the accumulator with the data (contained in one of
the 6502's 65,536 different memory locations) simply foliow the
LDA instruction with the address of the desired memory cell.

LDA $1FA0 — LOADS ACC FROM LOCATION $1FAQ.

Note that the content of the specified memory location is not
altered. A copy is made and placed in the accumulator; the mem-
ory location's data is not altered. In general, LDA $nnnn (where
nnnn is a one to four digit hex number) will load the accumulator
from location $nnnn.

Examples:

LEBA $11F0 - LOADS THE ACC FROM LOCATION $11FQ

LDA Bl27F - LOADS THE ACC FROM LOCATION $l27F
LDA $0 ~ LOADS THE ACC FROM LOCATIQN $0000
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Loading a constant into the accumulator is just as easy.
Simply preceed the constant with the “#” or the /" depending on
whether you wish to load the low-order eight 8 bits or the high-
order eight bits of the 16-bit expression given in the operand fieid.

Examples:

LDA #§l000 — Loads the ACC with the value $00
{$00 is the low-order byts of
#1000, the high—order hytse,
$10, is ignored}.

LDA #8$FF - Loads the ACC with the value §FF.
$FF is really $00FF. The high—order
byte in this case is $00, once
apain, it is ignored.

LDA #%0 — Loads the ACC with the value $0.
$0 is really $0000, whose low-
order {as well as high-order
byte) is zsro.

LDA /$1000 — Leads the ACC with $10. $10 is
the high-order byte of the value
$1000. The low-order byte ($00)
is ignored.

LDA /&FF —~ Loads the ACC with $00. §FF is
really $00FF whose high-order
byte is $00. The low-—order
byte ($FF} is ignored.

LDA /80 — Loads the ACC with $00. Both the
low— and high—ordaer bytes of 80
{same as $0000) are $00.

In all of the previous examples, the operation performed was
that of loading the accumulator. You can load the X-register or
the Y-register in a similar manner simply by substituting the LDX
(Load the X-register) or the LDY (Load the Y-register) instruction
in place of the LDA instruction. There are several other methods
used in loading registers (i.e, different addressing modes) other
than the ABSOLUTE and IMMEDIATE addressing modes described
here. These methods will be considered in later chapters.

STORE INSTRUCTIONS.

Now that we can move data into the accumulator, let's dis-
cuss how to store data from the accumulator, X- or Y-register into
external memory. The 6502 store instructions provide us with this
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capability. There are three store instructions: STA (store the
accumuiator), STX (store the X-register), and STY (store the Y-
register). To store the register information at some memory loca-
tion simply follow the store instruction with the address of the
desired storage location.

Examples:

STA $1000 - Stores a copy of the contents of
the accumulator at location $1000.
The contents of the ACC are not
disturbed.

STA §2563 — Stores the contents of the accumulator
at location $2563.

STa §FF — Stores the contents of the accumulator
at location %FF.

By using the STX and STY instructions, we can store data
from the X- and Y-registers in a similar manner.

STX $1500 — Stores & copy the contents
of the X-register at location
$1500 in memory.

STY $220 - Stores the contents of the
Y-register at location
$220 in memory.

Rermember, the store instructions do not alter the contents
of the register being stored; only the memory location where the
data is being stored.

Now that we know a few basic commands, let's write a simple
assembly language program. This program will simply transfer
the data contained in locations $1000 and $1001 to locations
$2000 and $2001 respectively. After this program is executed,
location $2000 and $1000 will contain the same value and loca-
tions $1001 and $2001 will contain the same value. The (seem-
ingly) easiest way to do this is to execute an instruction sequence
“LET $2000 EQUAL $1000, and LET $2001 EQUAL $1001”
Unfortunately, there is no memory transfer function which will
perform this task for us. What we can do, however, is to perform
this action in an indirect manner. Instead of a straight memory
transfer, we can load the accumulator with the data contained in
location $1000 and then store the accumulator at location $2000.
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This process can then be repeated for locations $1001 and
$2001. The final assembly ianguage program is:

LBa $1000
STA $2000
LDA $1001
STA $2001

All data transters must be routed through one of the 6502
registers, and generally we will use the accumulator since it is the
general purpose register on the 6502.

DATA TRANSFER INSTRUCTIONS.

Now that we know how to exchange data between a register
and memory, what about transfering data between registers? The
6502 has the capability to transfer data from the accumulator to
the X- or Y-registers and likewise from the X- or Y-register to the
accumulator. There are also two instructions which allow the 6502
to transfer data from the X-register to the Stack Pointer and to
transfer data from the Stack Pointer 10 the X-register. The mne-
monics for these instructions are:

TXA - Transfers data from the X-register to ACC.

TYA - Transfers data from the Y-register to ACC.

TAX - Transfers data from the ACC to the X-register.
TAY - Transfers data from the ACC t{¢ the Y-register.
TS -~ Trapnsfers data from the X-register to SP.

TSX - Transfers data from SP ito the X-register.

You will notice that there are no explicit instructions for trans-
fering data from the X-register directly 1o the Y-register and vice
versa. Should this need arise two instruction sequences can be

used:
Transfer X to Y Tranzsfer ¥ to X
TXA TY4A
TAY Tax
- QR - - 0OR -
STX $rnnnn STY §nnnn
LDY &nnnn LDX §nnaon
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The register transfer instructions require no operands. In
fact, if an attempt is made to place an operand after the transfer
mnemonic, an error message will be displayed. This is an exam-
ple of the implied’ addressing mode. The instruction itself implic-
itly defines the location of the data being operated upon (the
registers).

REGISTER INCREMENTS AND DECREMENTS.

Being able to load and store data is not particularly inter-
esting by itself, so now we are going to discuss some instructions
which operate on the data in a register. The first four instructions
we will study in this category are the X- and Y-register increment
and decrement instructions (increment means to add one; dec-
rement means to subtract one).

INX - Takes the value contained in the X-register,
adds cone, and leaves the result
in the X-register.

INY - Takes the valus in the Y-repister. adds one,
and leaves the result in the Y-register.

DEX — Takes the value contained in the X-register,
subtracts one, and leaves the result
in the X-register.

DEY -~ Takes the value in the ¥Y-register, subtracts
one, angd leaves the result in
the Y-register.

The above instructions are handy for simple register arith-
metic. Since (as you will soon find out) most of the time we are
adding one to or subtracting one from these registers, the incre-
ment and decrement instructions are very useful.

There is one slight problem with the increment and decre-
ment register instructions. What happens when you try to incre-
ment a register which contains $FF (the maximum value possible
for an 8-bit register) or decrement $00 (the smallest value pos-
sible for an 8-bit register)? When a register containing $FF is
incremented, the computer will “wrap-around” and end up with
the value $00. Likewise, whenever you decrement the value $00
you will end up with $FF,
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Like the transfer instructions, INX, INY, DEX, and DEY are
implied addressing mode instructions and require no operands.

INCREMENT AND DECREMENT
INSTRUCTIONS.

The increment (INC) and decrement (DEC) instructions are
special. They operate directly on memory without the need to go
through the accumulator, X-, or Y-registers as an intermediate
step. These two instructions increment and decrement values at
specified memory locations.

EXAMPLES:

INC $2255 — Takes the value at location $2255,
adds one, and then leaves the
result at location $2255

DEC $15 — Takes the value contained at location
%15, subtracts one, and then
leaves the result in lacation §15.

The INC and DEC instructions are not implied addressing
mode instructions. They require an absolute or zero page
address, like the load and store instructions. Keep in mind, you
are limited to eight bits; as such, “wrap-around” will occur if you
attempt to increment $FF or decrement $00.

LABELS AND VARIABLES.

Until now, everytime we wanted to use a variable, the actual
memory address of that variable had to be specified. This is
inconvenient (This situation is similar to using all POKE instruc-
tions instead of variable names in BASIC). For instance, suppose
we have a value giving the X-coordinate of a point we wish to plot
on the screen. XCOQORD would be much more meaningful than
$800. It would be nice to be able to write LDA XCOORD instead
of ‘LDA $800. Labels allow us to do exactly this! Somewhere in
our program we define a label to be equal to some value (an
address). Thereafter, whenever that label is referenced, the
address is used instead. In the previous example you would
equate the value $800 with the label XCOORD, then you could
write LDA XCOORD, and the assembler would automatically sub-
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stitute $800 for you! A label may be used in place of an address.
Remember, the assembler simply substitutes the assigned value
upon encountering a label. LDA XCOORD does not mean load
the accumulator with the value XCOORD, but rather, load the
accumulator with the value contained in the memory location
$800. Labels allow you to assign more meaningful names to
memory locations.

There is one catch however. Somewhere within the program
you must equate the value with the label. How is this accom-
plished? Very simply. To equate a label with an address you use
the EQU pseudo opcode. First, what is a pseudo-opcode? A
pseudo opcode is simply an instruction to LISA embedded within
your assembly language source file. When encountered, a
pseudo opcode tells LISA to do something special with the fol-
lowing data. A pseudo opcode generally does not emit any
instruction code for use by the 6502 microprocessor.

The EQU pseudo opcode has the form:

LABEL EQU <wvalue>

Both the label and the value (an address expression to be
described later) are required. The EQU pseudo opcode tells LISA
to take the labei and store it with its corresponding address value
in the assembler symbol table. Later, when you use the fabel in
your program, LISA looks up the fabel in the symbol table and
substitutes the address for the label. The assembler remembers
ugly things like addresses for you, and all you have to do is
remember which variable name (or label) you used.

EXAMPLES OF LABELS:

XCOORD  EQU $8200
LABEL EQU $100¢

XCOORD is assigned the value $800
LABEL is assigned the value $1000

1

LDA XCOORD - Same as LDA §800
STA LABEL Same as STA §1000

CONST  EQU $FF22

CONST is assigned the value $FF22

LOA #CONST — The walue $22 is loaded into
the ace [($22 is the low order

byte of CONST).

“continued next page"
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LDA /CONST - The walue $FF is loaded into
the acc ($FF is the high order
byte of CONST).

INC XCOOQRD — Increments the wvalue at location
$800.

DEC LABEL - Decrements the value at location
$£1000

When a label is defined using the “EQU" pseudo opcode,
absolute addressing will always be used (even if the value is less
than $FF). In order to use zero page addressing another pseudo
opcode (equate to page zero) must be used. This pseudo opcode
is EPZ and it has the same syntax as EQU.

EXAMPLE:

LABEL EPZ <value>

<value> must be less than or egual to §FF,

Sometimes, when defining a variable, even worrying about
where the data should be stored in memory is too much of a
bother. It would be nice if one could say, “Hey, | need a one-byte
variable, but let LISA worry about its actual location in memory.”
The DFS (or define storage) pseudo opcode will do exactly that
for you. The DFS pseudo opcode uses the syntax:

LABEL DF5 <wvalue>

Unlike EQU the value does not specify where the data is to
be stored, but rather how many bytes you wish to reserve for your
variable. Usually this value will be one or two.

DFS simply uses the current code location as the address
for the variable. Because of this you must be careful to place the
DFS pseudo opcode in your program where it will not be executed
as an instruction. We'll discuss how you do this later on.

EXPRESSIONS IN THE OPERAND FIELD.

Suppose in our previous example that XCOORD was a 16-
bit vaiue located in bytes $800 and $801. How can we access
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these locations using our label scheme? LISA allows simple arith-
metics to be used in the operand field. The operators “+" and

" —" are allowed.
EXAMPLE:
XCCOORD EQU $800
LDA #§0 ~CLEAR THE ACCUMULATCR
S5TA XCOORD ~CLEAR LOCAUICGN $800

STA XCOORD+$1 -CLEAR LOCATION $801

Some versions of LISA also allow multiplication, division, and
some logical operations in address expressions. For more details
consult the LISA reference manual.
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ASSEMBLY LANGUAGE

NEW INSTRUCTIONS:

BRK JMP BCC BCS BEQ BNE BMI CLD
BPL BVC BVS BLT BGE BFL BTR SED
CMF CPX CPY CLC CLV SEC CLI 3EI
END

"THE ASSEMBLER”

GENERAL.

The load and store instructions discussed in the previous
chapter are examples of sequentially executing instructions. After
a load or store is executed, the computer proceeds to the next
instruction and continues processing there. As in BASIC, we often
need to interrupt this sequential program flow and continue
execution elsewhere. Unlike BASIC, we do not have a GOTO,
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FOR/NEXT, or IF/THEN instruction at our disposal. in their place
the 6502 microprocessor has a group of jump and branch instruc-
tions.

Finally, we need to be able to tell the computer to stop and
return control to the user. There are several methods of achieving
this goal. The easiest and most straight-forward method is prob-
ably the BRK, or break instruction. When executed, the BRK
instruction wili beep the bell and relinquish control o the Apple
monitor. A nice feature of the BRK instruction is that it prints the
contents of the 6502 registers before returning to the monitor.
This is a very simple form of output which we will make use of
until more sophisticated I/O routines are possible.

EXAMPLE PROGRAM.

Let’s try writing & program using loads and the BRK instruc-
tion. First, access LISA (see its accompanying documentation for
details) and proceed as follows:

1) When the prompt (!) is displayed, type INS and depress
return (CR) key.
2} Response-LISA will display a 1 on the next line.
3} Enter a space, type LDA #3%0 and depress CR.
4) Response-LISA will dispiay a 2 on the next line.
5) Enter a space, type LDX #8%1 and depress CR.
6) Response-LISA will display a 3 on the next line.
7) Enter a space, type LDY #$2 and depress CR.
8) Response-LISA will display a 4 on the next line.
9) Enter a space, type BRK and depress CR.
10) Response-LISA will display a 5 on the next line.
11) Enter a space, type END and depress CR.

The execution of step 11 informs LISA that the end of the program
has been reached.

12) Response-LISA will display a 6 on the next line.
Since you have completed source code entry:

13) Type a control-E as the first character of line six and
depress the return key.

14) Response—The ! prompt will be displayed on the next
line.
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It all has gone well the display will appear as indicated below:

1 LDA #$0
2 LDX #§1
3 LEY #82
4 BRK

5 END

&

LISA is now waiting for your next command. Before any
program can be run it must be assembied. To assemble your
program, simply type ASM when you get the 1" prompt hack.
LISA will flash an assembly listing on the screen while the pro-
gram is being assembled. Ignore this for now. When you get the
“I” prompt back, type BRK (this is a LISA command as well as a
6502 instruction) which will place you in the Apple monitor. To run
your program type 800G when you get the monitor ** prompt
character. Immediately after pressing return, the speaker should
beep and the screen should ook like:

(808 A-00 X=01 Y=08 P=30 5=FC

(The value after “S=" may be different.} The 0808 is the
address in memory of the BRK instruction PLUS TWQ. This means
that the BRK instruction is really located at memory location $806.
The reason for having two added to the true value will be dis-
cussed in the section on debugging your programs.

The next five entries on the fine are the values comained in
the accumulator, X-register, Y-register, PSW, and stack painter
when the BRK occurred. As mentioned previously, we will use
the fact that the BRK instruction prints these registers to perform
simple /0. In essence, the BRK instruction is very similar to the
END and STOP instructions in BASIC.

JMP INSTRUCTION.

The 6502 JMP (jump) instruction is an unconditional branch.
It is used in a manner identical 1o the GOTQ instruction in BASIC.
The difference is that you specify an absolute memory address
instead of a BASIC line number. The following infinite Joop con-
tinually copies location “J” into location “1” and then sets location
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;@ LOCHTION  $406E

A

2 4 T
YES

PROGRAM COUNTER JMP $I10FE

J 10 zero (obviously, after the first time through, location | will also
contain zero).
EXAMPLE:

PROGRAM LOC. STATEMENT

§800 I EQU $0
§800 J EQU $1

$800 LDa J
$803 STA I
§806 LDA #8%0
$808 3TA J
$80B JMF 8800
$80B END

{Note that the EQU and END statements do not take up a program
location.)

The JMP instruction is always three bytes long: the JMP
instruction code, followed by the low-order and then high-order
byte of the jump to address.

Obviously, using absolute addresses, as in the previous
example, presents a problem. First, at the time the text file is
created, the actual destination address of the JMP instruction is
not usually known. To overcome this difficulty we use labels as
the destination address of the JMP instruction, much like we used
jabels in the load and store instructions. Unfortunately, using
labels seems to be a matter of simply delaying the inevitable.
After all, if a label is used it must be declared using the EQU,
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EPZ, or DFS pseudo opcodes, right? Not always. If a label
appears on the same line as an instruction, and it begins in col-
umn one of the source line, then the address of that instruction
will be used as the value equated to the label. The code sequence
presented previously can be replaced by:

I EQU $0
J EQU %1
LABEL. LDa J
STA T
LDA #80
5TA J
JMP LABEL
END

and the assembler will worry about where LABEL is supposed to
be.

You will note that this is even easier to use than the GOTO
in BASIC because you don't have to worry about using sequential
line numbers, especially when you are branching forward. The
assembler detects a label on the current line by checking column
one. If column one contains an uppercase alphabetic character,
the following characters (up to a space or "} are assumed to be
part of the label. You must separate the label and the mnemonic
field by at least one space. Also (as mentioned in a previous
chapter), if a label does not appear on the current line, there must
be a blank in column one. If you do not place a blank in column
one, the assembler will treat the mnemoenic as a label and attempt
to use the operand (if any) as your mnemonic. The result? An
illegal mnemonic error most likely, so always remember to place
a space in column one if a label does not appear on the current
line of text. One final remark: since LISA detects a label by check-
ing column one of the current source line, labels such as LDA,
LDX, INC, or any other 6502 mnemonic are perfectly valid. For
clarity's sake however, you should avoid mnemonic names as
staternent labels.

PROCESSOR STATUS REGISTER (P or PSW).
The 6502 instruction set does not include an “IF/THEN" or
“FOR/NEXT" instruction. Conditional testing is accomplished by
testing bits in the processor status register.
The processor status register is unlike the other registers in
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the 6502 processor. Rather than being an 8- or 16-bit register
whose data is treated as eight or 16 bits of information, the pro-
cessor status register is simply a collection of eight bits where
each bit is treated separately (actually only seven bits are used,;
one of the bits is ignored).

Four of these bits are set by the result of the previous instruc-
tion. For instance, there is a zero flag in the P-register which is
set if the last result was a zero and reset otherwise. Two of the
remaining flags are explicitly set or cleared by 6502 instructions,
and one of the flags is set if the last interrupt serviced was due
to the execution of the BRK instruction.

BREAK FLAG (B).

The break flag (bit number four in the processor status reg-
ister) is set only if the last interrupt detected was due to the
execution of the BRK instruction. You will notice that whenever
you execute a break instruction, the P-register is usually dis-
pltayed as P=30 {sometimes other values will creep in). If you
convert this hex number to binary, you will find that bit number
four is always set, because the last instruction executed was a
BRK instruction.

DECIMAL FLAG (D).

The decimal flag {(bit number three in the PSW) is set only
by the SED (set decimal) instruction. It can be cleared by the CLD
(clear decimal flag) instruction. The decimal flag is used to deter-
mine what type of arithmetic will be used by the 6502 micropro-
cessor. More information will be given on the dscimal flag in the
next chapter.

INTERRUPT DISABLE FLAG (i).

Interrupts are beyond the scope of this book. For complete-
ness however, it should be mentioned that one of the flags in the
processor status register is used to prevent interrupts from occur-
ring. This flag (bit number two in the PSW) can be set by the SEI
instruction, and it can be cleared with the CLI instruction. The
6502 IRQ line is disabled when the interrupt disable flag is set.
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CONDITION CODE FLAGS (N V.Z,C).

The condition code flags are the flags affected by the normal
operation of the 6502 microprocessor. The Z {or zero) flag is set
when the last operation executed produced a zero result. For
instance, loading the accumulator with zero sets the zero flag;
decrementing a register when that register previously contained
one gives a zero result and, as such, sets the zero flag; incre-
menting $FF results in a wrap-around to zero giving a zero result.
There are no explicit instructions for setting or clearing the zero
flag. If you want to set it, simply load a register with zero. If you
want to clear it, simply load & register with a value other than
zero. Sneaky trick: If you can't afford to bother the contents of
any of the 6502 registers, simply increment a memory location
known toc contain $FF. Location $FFC3 in the Apple monitor is
such a location {both for the old monitor and the new Auto-start
ROM). If you issue the instruction “INC $FFC3,” the zero flag will
be set. Likewise, to reset the zero flag without affecting any of the
6502 registers, simply increment a location which does not con-
tain $FF. Location $F800 is a good choice. The Z flag resides in
bit number one of the PSW.

The 6502 N flag is set if the last result was a negative value.
Wait a second! All along we've been saying that there are no
negative values in the 6502 registers. Well, if you remember the
section on two's complement, we used the high-order bit as a sign
flag. If it was set, the number was negative. If it was reset, the
number was positive. We will discuss signed arithmetic later. Here
it is useful to note that the negative (N) flag will contain whatever
was in bit number seven of the previous result. This is sometimes
useful in itself, just to be abie to check the status of one of the
bits in a memory location. The N flag resides in bit number seven
of the PSW,

As with the zero flag, there are no explicit set or clear instruc-
tions associated with the N flag. To set the N flag simply increment
any location which contains a value in the range $7F to $FE. The
result of such an increment will always be negative i.e., bit number
seven of the result will always be one. Location $F804 in the
Apple monitor is a good choice. To reset the negative flag simply
increment a memory location which contains a value in the range
$00 to $7E, or $FF. The result of such an increment is always
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positive i.e., bit seven of the result will always be zero (memory
location $F800 in the Apple monitor is a good choice).

The carry (C) flag in the 6502 microprocessor is affected by
additions, subtractions, comparisons, and logicat operations. It
can also be explicitly set or cleared with the SEC (set carry) and
CLG (clear carry) instructions. The carry flag resides in bit number
zero of the processor status register. We will return to the discus-
sion of the carry flag when the discussion of the aforementioned
operations is taken up.

The last flag in the processor status register is the overflow
(V) flag. This flag is used for signed arithmelic and is affected
only by the addition, subtraction, and bit test operators. It can be
explicitly cleared with the CLV instruction but there is no “set
overflow flag” instruction. This flag resides in bit number six of the
processor status word. We will discuss its use when signed arith-
metic is considered.

The unused bit in the processor status word is bit number
five. Usually it contains a one (i.g, it's set), but you are not guar-
anteed this. None of the 6502 instructions access this flag.

You might try running the following programs noticing their
affects on the P-register:

PGM1:

LDA #80

BRK

END
PGM2 :

LDA #§1

BRE

END
PGM3

CLC

BRK

END
PGM4 .

SEC

BRE

END
PGMS -

LDA #$80

EBRK

END
PGMS :

LDA #%7F

BRK

END

5-8
“A2B-RH-UBAL-2ND-05-08.PICT” 111 KB 2001-06-20 dpi: 300h x 300v pix: 1341h x 2386v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0062 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Chapter 5. Assembly Language

BRANCH INSTRUCTIONS (6502).

Now you know that certain operations affect the flags in the
processor status register. Big deal! How does this help us simu-
late the “IF/THEN” statement in BASIC? By themselves the status
flags are not very useful in this capacity. Fortunately, the 6502
allows us to test each of the condition code flags with some
branch instructions.

A branch instruction is very similar to a JMP instruction.
Under certain circumstances it causes program flow to continue
at a different location. Unlike the JMP instruction, which is an
unconditional branch, the branch instructions do not always jump
to the specified location. Betore a branch is made, one of the
flags in the processor status word is tested and, if the test is met,
then {(and only then) will the branch be taken. Should the test fail,
the program continues executing at the next instruction, just like
the IF/THEN in BASIC.

Using the branch instructions we can test any of the condi-
tion code flags to see if they are set or cleared. The allowable
branches are:

BCC - Branch if the carry flag is clear.
BCS - Branch if the carry flag is set.
BEQ - Branch if the zero flag is set.
BNE - Branch if the zero flag is clear.
BMI - Branch if minus (N=1}.

BPL - Branch if plus {N=0).

BYS — Branch il overflew is set {(V=1}.
BYC — Branch if overflow is clear.

Just as with the JMP instruction you must specify an address (or
label) in the operand field.
EXAMPLE:

LEA #$0
BEQ LEL1
LBLZ2 LDA #8FF
LBL1 BEQ LELZ

In this example the accumulator is loaded with the value
zero. This sets the zero flag which causes the following branch
to be taken. At LBL1 there is another branch if equal to zero
instruction. Since we have not modified any registers or memory
locations, the zero flag has not had a chance to be affected so
the branch will be taken. This leads us to LBL2 where we load
the accumulator with the value $FF. The next instruction (at loca-
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tion LBL1) tests the zero flag. Since the last result obtained was
$FF (from the LDA instruction), this branch will not be taken and
the program will fall through to the next instruction after LBL1.

It you would tike to test a memory location o see if it is zero,
and increment it if it is zero, you could use the following code:

LD4 $1F :GET THE VALUE CONTAINED IN LOCATION $1F
BHE LBL :IF IT IS NOT ZERO BRANCH TO "LBL".
INC $1F :ADD ONE TG THE VALUE AT LOCATION §1F
LBL —— :NEXT INSTRUCTION
ETC.
LOOPS.

One of the more powerfui features of a computer is it's ability
to repeat a section of code over and over for a specified number
of times. This technique is called looping. In BASIC you might
use the “FOR/NEXT” loop to accomplish this task. In assembly

TRACK }
......... My

Flis.

“PROGRANM LOOPS”

language there is no “FOR/NEXT" loop so this function has to be
synthesized.

Possibly the easiest way to synthesize a loop is to load a
memory location with an initial value and then decrement the
memory location until it becomes zero. By using the BNE instruc-
tion you can cause the body of the loop to be executed until the
memory location becomes zero.
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As an example, suppose you wanted to add 10 to the vari-
able J. Since we have not yet discussed addition on the 6502 we
will have to use the increment instruction. Since INC only adds
one to & memory location, we will have to repeat this instruction
10 times. We could simply type ten INC J instructions in a row,
but this would be somewhat inefficient. Instead, let’s store 10 in
some memory location {e.g. 1} and then set up a loop whereby
we increment J ten times. The actual program te do this could be:

I EQU O
J EQU 1
LDA #'10 ;INITIALIZE I TO 10
STA 1
LDA #80 ;INITIALIZE J T ©
ST4 J
LP  INC J :NOW, INCREMENT J 10 TIMES
DEC 1
BENE LP
LDA J ;LOAD J SO WE CAN DISPLAY IT
BRK ;BREAK AND DISPLAY J {IN THE ACC)

END

A “step size" of minus one is not always convenient, not to
mention that we c¢an only end our loop when | becomes zero. To
learn how to alleviate this problem, read on...

COMPARISONS.

Unfortunately, in the real world we need to be able to test
other things besides just our condition code flags. For instance,
sometimes it would be nice if we could determine whether or not
{=5,0r possibly if {X =86) AND (J<=(I1x5+2}) OR {L=M). Other
times we might want to have a loop with an indexing variable
which is initialized to one and is incremented until it becomes
some other non-zero value such as 10. In order to perform these
types of operations, we will have to use the 6502 compare instruc-
tions.

The CMP (compare to accumulator) instruction compares
the memory operand specified against the accumulator. How is
the comparison made? The data in the operand field is subtracted
from the accumulator. The PSW flags are set according to the
result obtained and then the difference obtained from the sub-
traction is discarded. After the compare instruction, both the
accumulator and the memory operand contain their original
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values. So what good is the CMP instruction if the results are
lost? Even though the result of the subtraction is not kept around,
the condition code flags are set, depending upon the status of the
subtraction. If the contents of the accumulator equals the contents
of the specitied memory location, the result of the subtraction will
be zero. You can then use the BEQ branch instruction immedi-
ately after a compare to test for equality (doesn’'t BEQ, branch if
equal, make a little more sense now?). Likewise, if the contents
of the accumulator do not equal the data contained in the spec-
ified mermory location, the zero flag will be reset, and you can use
the BNE {branch if not equal) to test for this condition.

The N and C flags are affected in a reverse fashion. If the
C flag is set or the N flag is clear, the value in the accumulator is
greater or equal to the contents of the specified memory locations.
If the N flag is set or the C flag is clear, the value in the accu-
mulator is less than the contents of the specified memory location.

MEMORY LocaTion §io0g,
YOU ARE GREATER TH
MEMORY LOCATION $2000.

DIFFERENCE BETWEEN
RIGHT SND WEONG ]

These tests are so useful that two instructions have been added
to LISA's repertoire: BGE (for branch if greater than or equal to)
and BLT (for branch if less than). These two instructions generate
the same machine code as BCS or BCC respectively. Why have
two mnemoenics which mean the same thing? For the same rea-
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son you program in assembly language instead of machine lan-
guage: these extra mnemonics are easier to remember when
testing for the greater than or equal to and the less than conditions.

The overflow flag (V) is not affected by the compare instruc-
tion, so the use of the BVC or BVS instructions after a compare
is futile.

You can also compare the X- and Y-registers against some
memory operand by using the CPX and CPY instructions respec-
tively. The same condition code flags are set, and you can use
the branch instructions to test for the same conditions as with the
CMP instruction.

One thing you have probably noticed is the lack of BGT
(branch if greater than) and BLE (branch if less than or equal)
instructions. These instructions are simply not available on the
6502 microprocessor. Even though they are not available as dis-
crete instructions, they may be synthesized by using the BEQ,
BNE, BLT, and BGE instructions. Suppose you wanted to com-
pare | with J and jump to LBL if 1 is less than or equal to J. This
could be accomplished with the following code:

LDA 1
CMP J
BLT LBL
BEQ LBL

If | is less than J, the first branch encountered will be taken;
if | is equal to J, the first branch will not be taken, but the second
branch will be taken . If | greater than J, then neither branch will
be taken, and the program will simply fall through.

Testing for the greater than function is only slightly more
difficult. To compare 1 with J and branch to LBL if | is greater than
J, you could use the code:

LDA 1
CMP J
BEZ EQL
BGE LBL

EQL ——-
ETC.

In this example | is compared with J. If they are equal, |
cannot be greater than J so a branch around the following BGE
instruction is made. If | does not equal J, then it can only be less
than or greater than J. If | is greater than J, the branch to location
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LBL will be taken; if | is less than J, the program will simply fail
through to the instruction at location EQL.

More efficient methods of simulating the BGT and BLE
instructions will be considered later.

IFITHEN STATEMENT SIMULATION.
The IF/THEN statement in BASIC (or Pascal for that matter)
has the form:

IF <LOGICAL EXPRESSION> THEN <STATEMENT>>
where <STATEMENT> gets executed if and only if the logical
expression is TRUE. For instance, the BASIC statement IF X> =7
THEN Y = 0 would set Y to zero if and only if X is currently greater
than or equal to seven. To simulate the |F statement in assembly
language you would use the opposite type branch to jump around
the statement to be executed. As an example, if you wanted to
convert the previous BASIC statement 10 assembly language, you
would use the code sequence:

LD&s X
CMP #%7
BLT LEL
LDA #%0
STA Y
LBL —
ETC.

In this example, if X is greater than or equal to seven, the
pregram simply drops through the branch instruction and sets Y
to zero. If X is less than seven, the branch if less than instruction
causes the code which sets Y to zero 1o be skipped.

Naturally, a block of instructions ¢an be executed by placing
these instructions between the branch instruction and the target
{abel of that particular branch.

FOR/NEXT LOOP REVISITED.

As mentioned previously, it would be nice if we could end
our loops at scme value other than zero, Now that we have the
CMP instruction under our belts we can do just that! If you wish
to start your loop index variable with the value $1 and increment
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it until 10 is reached you could use the foliowing code:

LDA #§1

STA I
LCCF LDA I

CHP #!10

BEQ LBL1

BGE LOFX
LBL1:

:NQTE: The normal code within your loop body goes here.

INC I

JMP LOOP
LOPX ERK

ETC.

If you would like a step size of two, simply increment | twice
before jumping to LOOP. One last improvement which can be
made is in the testing process. Since we want to test | to see if
it is greater than 10, we must synthesize the BGT branch using
the BEQ and BGE branches. One other method of doing this is
to test to see if | is greater than or equal to 11. Since we have a
BGE branch, this will save us some code. The resulting program
would be:

LDA #§1
STA I
LOOP  LDA I

CMP #8B [ $E = 11 DECIMAL
BGE LOOPX

:NORMAL LOOF BODY GOES HERE

INC T

JNP LQOP
LOOPX  EEK

ETC.

This small simplification makes life much easier for us.

- TWO FINAL WARNINGS -

Up to this point our discussion has concerned itself with
unsigned values. Signed comparisons, which will be considered
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later, follow a completely different set of rules. BE AWARE OF
THIS.

Also, in the discussion of the branch instructions, it was
implied that you could branch anywhere in memory. This is not
the case. Branches use a special addressing mode called, “rel-
ative addressing.” Unlike the JMP instruction which is followed by
a 16-bit absclute address, the branch instructions are followed by
a one-byte displacement. This displacement is added to the
address of the instruction which follows the branch instruction to
give an address which is in the range — 126 to + 129 bytes from
the beginning of the branch instruction.

What does this mean to your program? Usually nothing,
since most branches fall within this range. Once in a great while
a branch will be out of this range and the assembler will give you
a “branch out of range” error message. Since we cannotincrease
the range of the branch instruction, another method must be used
to correct this problem. Simply replace the branch instruction with
the opposite type branch (e.qg., if a BEQ is out of range, use a
BNE branch) and use the strange looking address of “* + $5" for
your operand. Immediately after the branch instruction, enter a
JMP instruction using the address of the original branch.

First, what does “* +$5” mean? Whenever a 6502 assem-
bler encounters the asterisk in the operand field it will substitute
the address of the beginning of the current instruction for the .
The "** + $5” means add five to the address of the branch instruc-
tion and go there if the condition is satisfied. Since the branch
instruction is two bytes long and the following JMP instruction is
three bytes long the branch to “* +$5” will branch to the instruc-
tion following the JMP instruction.

EXAMPLE: BEQ LBL is out of range, fix it.

Simply substitute:

BNE *+$5
JMP LBL

If the last operation set the zero flag, the program will drop
through to the JMP instruction and then jump to location LBL. [f
the zero flag was not set after the last operation, a branch wil!
occur to the next instruction after the JMP instruction. This effec-
tively simulates a "LONG BRANCH IF EQUAL’ to location LBL.
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IF THIS BRANCH

ommended.

IS5 QUT OF RANGE USE THIS

BEQ LBL BNE * +$5
JMP LBL

BNE LBL BEQ *+85
JMP LBL

BCC LBL BCS *+§5
JMP LBL

BCS LBL BCC *+$5
JMP LBL

BV( LBL BVS *+$5
JMP LEL

BVS LBL BVC #+485
JMP LBL

BMI LEL BPL *+$5
JMP LBL

BPL LBL BMI *+$5
JMP LBL

BGE LEL BLT *+%5
JMP LBL

BLT LBL BGE *+85
JMP LBL

BTR LBL BFL *+%5
JMP LBL

BFL LBL BTR *+8%5
JMP LBL

517

A Table of Branches and the Long Branch Form

(SEE THE NEXT SECTION]

The asterisk can be used in other address expressions as
well as the branch instructions, however its use is not really rec-
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TESTING BOOLEAN VALUES.

Remember the values true and false? Often within a pro-
gram you will use certain variables to hold flags for use in other
parts of the program. Since the use of such Boolean variables
occurs often, it would be nice to define the Boolean values TRUE
and FALSE. As per the discussion in Chapter 2, we will let FALSE
be represented by the value $00 and TRUE by the value $01.
Now we can use the BEQ and BNE instructions to test for true or
false. The only problem with this scheme is that we use the branch
if not equal instruction, to test for true and the branch if equal to
test for false. This may seem incongruent. Rather than leaving

MEMORY $1000, you
ARE TRUE.

WMEMORY $ 2000, YOU
ARE FALSE

you feeling strange about using these tests, LISA incorporates
two additional branch instructions, BTR and BFL (branch if true
and branch if false, respectively}, which generate the same code
as BEQ and BNE. The former instructions are simply easier to

remember.
While on the discussion of true and false, it should be men-

tioned that you shouid include the statements:

FALSE EQU %0
TRUE EQU $1
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at the beginning of your program. True and false will not be used
as memory locations, but rather as symbolic constants. Now your
programs will read:

LDA #FALSE
STA I

LDA #TRUE
STA FLAG

instead of;

LDA #BC
STA 1

LDA #§1
STA FLAG

Obviously, the first version is much more readable. Inci-
dently, the use of symbelic constants is not limited to true. arjd
faise. Anytime you use some hex value which has special signif-
icance (for instance the ASCII code for carriage return}, it should
be declared as a symbolic constant. Symbolic constants make
your programs much easier to read and modify.
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NEW INSTRUCTIONS:

ADC SBC

GENERAL.

The art of assembly language programming is actually the
art of learning to do things a piece at a time. Arithmetics cannot
be performed with a single statement as in BASIC. Rather, 10,
20, or even 50 lines of machine language code may be required
to perform a specific operation.

There are three basic types of arithmetic operations per-
formed by the 6502 microprocessor: (1)unsigned binary, (2)signed
binary, and (3)unsigned decimal arithmetic. DO NOT CONFUSE
THESE! Each type of arithmetic follows its own set of rules; inter-
mixing these operations and/or rules may cause invalid results.

UNSIGNED INTEGER (BINARY) ARITHMETIC.

When working with unsigned values, the 6502 processor
can handle numbers in the range of 0 thru 255. Although the
range is not very good, eight bits are suitable for many appli-
cations. As with the decrement instructions, wrap around occurs
if you try to add two numbers whose sum exceeds the range of
0 thru 255, likewise, wrap around occurs if you try to subtract a
large number from a smaller one.

Do not worry about the range limitation at this time. Mufti-
precision operations which allow numbers to greatly exceed the
0 thru 255 limitation will be discussed later.

Unlike your handy pocket calculator, the 6502 cannot per-
form functions such as SIN, COS, 1/X, LOG, or TAN. In fact, the

61
“A2B-RH-UBAL-2ND-06-01.PICT” 131 KB 2001-06-20 dpi: 300h x 300v pix: 1355h x 2125v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0074 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

6502 cannot even multiply or divide two numbers. The only arith-
metic operations the 6502 microprocesscr can perform are
addition and subtraction. All of the other fancy operations can be
simulated by using addition and subtraction.

The 6502 instruction mnemonic for addition is ADC (add
with carry). This instruction takes a memory operand and adds
it to the accumuiator. Once this is accomplished, the value con-
tained in the carry flag (zero or one) is also added to the accu-
mulator. The reason behind this will become clear when we dis-
cuss muilti-precision arithmetic. In any case, your first unsigned
arithmetic rule is: ALWAYS CLEAR THE CARRY FLAG BEFORE
PERFORMING AN ADC. Obvicusly, if you do not explicitly clear
the carry flag betore performing an addition, you stand a 50/50
chance of ending up with the intended sum PLUS ONE.

EXAMPLES:

CLC i ALWAYS!
LDA #35
ADC #83
BRK ;PRINTS RESULT OF ADDITION
END
cLC
LD& #7
ADC #83
BRK
END
CLC
LA #§FC
ADC #§20
BRK
EXD
62
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In the last example overflow will occur and you will end up with
the result $1C.

What happens if an overflow occurs? Unlike BASIC, a
machine language program will not abort with a e >255" error.
In some repects this is friendly; no more nasty error messages.
Unfortunately, instead of being nice and informing you of a prob-
lem, the 6502 will go on about its business as though nothing had
happened. This can lead to very unpredictable results! Luckily,
the 6502 does provide us with a flexible error checking facility. If
an overflow occurs during an addition instruction, the carry flag
will be set. By using the BCC and BCS instructions you can test
for overflow immediately after an addition.

EXAMPLE:

CLC

LDA I

ADC J

BCS ERROR ;G0 TO ERROR IF OVERFLOW

ETC... -OTHERWISE CONTINUE PROCESSING.

The use of the carry flag to inform us of an overflow is very useful.
Now, if we want to, we can elect to ignore an overflow condition.
Or, if we're absolutely positive that an overtiow will not occur (e.g,
| and J are always in the range $0-8F) we don't have to waste
time or memory checking for the overflow.

When an overflow does occur, you will be guaranteed one
thing: the true sum will fall somewhere in the range of $100 to
$1FE. This is verified quite easily by adding the two largest values
representable in eight bits (namely $FF + $FF) together and
examining the results. $FF plus $FF is $1FE. Any other addition
using any other values will always produce a result less than
$1FE. [f you don't belive me try it out for yourself. When an
overflow does occur, the value will be in the range $100 to $1FE
and the low-order eight bits of this value (i.e. $00-$FE) will be left
in the accumulator.

EXAMPLES OF OVERFLOW.
CLC CLC
LDA #§FF LDA #§FO
ADC #§1 ADC #§20
BERK BRK
END END
“continued next page”
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CcLC CLC

LDA #§B0 LDA #§80
ADC #§80 ADC #$FF
BRK BRK
END END

RULES FOR UNSIGNED ADDITION.

1) Do not confuse these rules with the rules which follow for
subtraction, signed and decimal arithmetic,

2) Always clear the carry before performing an addition.

3) Test for overflow with the BCS instruction. The carry flag
will be set if overflow occurs.

SUBTRACTION.

Subtraction is performed in a similar manner to addition with
three differences: (1) the SBC (subtract with carry) instruction is
used; (2) THE CARRY FLAG MUST BE SET BEFORE PER-
FORMING A SUBTRACTION; and (3) if the carry flag is clear
after a subtraction, an underflow has occurred.

In practice, points (2) and (3) are totally opposite that of the
ADC instruction. Be aware of this! Many beginners consistently
forget that the carry must be SET before performing a subtraction,
and end up with invalid results.

EXAMPLE: SUBTRACT | FROM J AND STORE THE
RESULT iN L

SEC ;ALWAYS BEFORE A SUBTRACTIORN!
LD4 J
SBC I
STA L
BCC ERROR
LDX #80
BRK
ERROR LDX #$FF
BRK
END

In this example, the X-register will be displayed as $00 if things
proceeded smoothly. If an underflow occurred the X-register will
be displayed with the value $FF. You can experiment with this
code sequence by initializing | and J with some LDAs and STA's
prior to the execution of the subtraction. Naturally you must define
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the locations where | and J are supposed to be with the EQU or
EPZ pseudo opcodes.

The SBC instruction affects the processor status register in
a manner identical to the CMP instruction. Because of this you
can use the branch instructions after a subtraction in a manner
identical to that of the CMP instruction. Afthough this is of little
value here (after all, the CMP instruction is easier 10 use); the
generalization to multi-precision operations becomes very impor-
tant later on.

The N and V flags have no meaning in an unsigned arith-
metlic operation.

RULES FOR UNSIGNED SUBTRACTION.

1) Don't confuse thase rules with those for addition, signed,
or decimal arithmetic.

2) Always set the carry before performing a subtraction.

3) After the subtraction operation, the carry will be clear if
an underflow occured. The carry will be set otherwise.

SIGNED ARITHMETIC.

What happens when you subtract $10 (16} from $8? You
would normally expect to get —$8. The computer, however, will
give you an underflow (i.e., the carry will be cleared) since neg-
ative numbers are not allowed in the unsigned number system.
Negative numbers, despite the fact that they are not defined in
our number system, are useful on several occasions. Because of
this, a method for defining signed binary numbers had to be
developed.

If you remember the section on two’s complement in Chapter
2, you're probably thinking,"Why not use the high-order bit as a
sign bit?” (If you don't remember this, review Chapter 2). The
6502 processor has implemented the two's complement number
system for dealing with signed numbers. In this numbering sys-
tem the 6502 can represent values in the range of —128t¢ +127
(using eight bits). Signed arithmetic is performed in a manner
identical to unsigned arithmetic. You use the ADC and SBC
instructions, and you must clear the carry flag before an addition
and set the carry flag before a subtraction.

The only difference between a signed arithmetic operation
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and an unsigned arithmetic operation is that the carry flag is no
longer significant. The carry flag is used to flag a carry out of bit
7. Since bit 7 is our sign bit, overflow {when using signed arith-
metic) occurs when there is a carry out of bit 6. Since a carry out
of bit 6 does not affect the carry flag you cannot test the carry flag
to check for overflow or underflow. Instead, you use the overflow
(V) flag in the 6502 microprocessor. This flag is set whenever
there is a carry out of bit 6 into bit 7.

When an overflow/undertlow occurs, the overflow flag is set;
if the allowable range is not exceeded, the overfiow flag will
remain clear. Unlike the unsigned tests which are opposite for
addition and subtraction, the BVS test is used for both overflow
(in the case of addition) and underflow (in the case of subtraction).
If the overflow flag is clear (testable by using BVC), the previous
operation was performed correctly.

EXAMPLE PROGRAMS:

OVERFLOW OCCURS OVERFLOW DOES NOT OCCUR
LDA #§7F ;127 DECIMAL LDa #§1
ADC #§1 ;1 DECIMAL ADC #82
BRK JRESULT = -128 BRK iRESULT = 3
END END
CLC CLC
LDA #$80 ; -128 DECIMAL LDA #§FF; -1 DECIMAL
ADC #$80 ; - 128 DECIMAL ADC #82 ; 2 DECIMAL
BRXK JRESULT = 0 BRK ;RESULT = 1
END END
SEC SEC
LDA #%80 ;-128 DECIMAL LDA #8FF: -1 DECIMAL
SBC #%1 ;1 DECIMAL SBC #%1 ;. 1 DECIMAL
BRK ;RESULT = +127 BRK yRESULT= -2 ($§FE)
END END

TESTING FOR UNDERFLOW/OVERFLOW:

CLC SEC
LDA #§FF LD4a #%23
ADC #§25 SBC #843
BV ERROR <«- GO IF OVERFLOW -> BVS ERROR
BRK <— 3TOP OTHERWISE —> BRK
END END
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SIGNED ARITHMETIC RULES.

1) Don't confuse these rules with the rules for unsigned or
decimal arithmetic operations.

2) Always ciear the carry bit before an addition operation
and set the carry bit before a subtraction operation.

3) Test for overflow/underflow using the BVS/BVC instruc-
tions (overflow/underflow occurred if V=1).

SIGNED COMPARISONS.

Signed comparisons are made by testing the overtlow (V)
flag, the sign (N) flag, and the zero (Z) flag. As usual, if the two
operands are equal when they are compared the zero flag will be
set. This allows you to use the BEQ/BNE instructions to test for
equality. inequalities are a little more difficult. The signed value
in the accumulator will be greater than or equal to the value in
the memory operand if and only if the overflow flag equals the
negative {sign} flag. Likewise, the contents of the accumulator
are less than the memory operand if and conly if the overflow flag
(after the comparisen, of course) does not equal the negative
(sign} flag.

There are only two problems which surface. First, there is
no explicit instruction (such as, the BGE or BLT for unsigned
comparisons) which tests the sign and overflow flags. Secondly,
the 6502 CMP instruction does not modify the overflow flag.

The second of these two problems is the easiest to handle.
Although the CMP instruction does not modify the overflow flag,
the SBC instruction does; the SBC instruction affects the flags
(with the noted exception of the overflow flag) in a manner iden-
tical to that of the CMP instruction. Therefore, a signed compare
instruction can be simumated by setting the carry (always before
a subtraction) and then using the SBC instruction in place of the
CMP instruction.

The former problem is a little bit more sticky to handle. The
following code will simulate a signed BGE and a signed BLT
instruction:

3EC
LDA A “continued next page”
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SBC B

BMI LBL

BVC GE
LT: <~ BRANCH TO HERE IF 4 < B
LBL BVC LT
GE: <— BRANCH TO HERE IF A >= B

BINARY CODED DECIMAL ARITHMETIC.

In Chapter 2 both unsigned and signed arithmetic were dis-
cussed. In this section, a third numbering system will be dis-
cussed. Binary Coded Decimal, or BCD, is a numbering system
that is convenient mostly for input/output purposes, instrumen-
tation purposes, and a few other special cases. BCD is simply a
convenient method of representing decimal digits in a binary for-

mat, and is represented in the fellowing form:

DECIMAL DIGIT

O -1 dy AR D

So far, BCD and binary representations look exactly alike, but
watch what happens when numbers beyond 9 are used.

DECIMAL DIGIT
ic
il
iz
13
14
15
16

In BCD the low-order nibble is used to represent the low
order decimal digit and the high-order nibble is used t¢ hold the

BINARY REP.

0000
0001
0010
g0l1
Q100
010l
110
0111
1000
1001

BINARY REP.
1610
ipll
1100
1101
1119
1111

0001 Q000
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high-order decimal digit. The bit patierns 1010 thru 1111 are not
allowed in either nibble of a BCD number. With eight bits you can
represent numbers in the range of 0 thru 99. BCD digits are spec-
ified in your assembly language programs in a manner identical
to hex constants. Always preceed your BCD constanis with a
dollar sign.

UNSIGNED BCD ARITHMETIC.

As with signed and unsigned binary arithmetic, all additions
and subtractions are performed using the ADC and SBC instruc-
tions. Likewise you must clear the carry before an addition and
set the carry before a subtraction. Upon completion of the decimal
addition, the carry flag is set if an overflow occurred. For the same
reason, the carry flag will be clear after a decimal subtraction if
underflow occurred.

Since an unsigned decimal arithmetic operation looks
exactly like an unsigned binary arithmetic operation, there has to
be some way of determining whether the processor is to perform
a decimal or binary operation. This is accomplished through the
use of a programmable flag (the D, or decimal flag) in the 6502
processor status register. If the decimal flag is set, all arithmetic
operations will be carried out in the decimal mode. If the decimal
flag is reset, all arithmetic operations will be carried out in the
binary mode. As mentioned in the last chapter, the decimal flag
is set with the SED instruction and is cleared with the CLD instruc-
tion. Other types of microprocessors have special decimal-
adjust instructions which must be executed after every BCD ad -
dition or subtraction.

The decimal flag is very flexible. You can set it once and not
worry about decimal arithmetic until you manually reset the dec-
imal flag using CLD. This flexibility has one disadvantage. If you
set the decimal flag and forget to reset it, any further binary arith-
metic operations you attempt will become invalid. Although the
decimal fiag can be used with great flexibility, care should be
exercised when using it. For this very reason, the first instruction
in your program should be a CLD instruction, unless, of course,
you plan to perform decimal arithmetic right away (Use SED if
s0). This will initialize the decimal flag to a known state (and only
God knows what it is before your program is run), thus preventing
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a 'surprise’ when your program does not work propetly.

There are two other considerations one must make when
using decimal arithmetic on the 6502 microprocessor. First, the
result of a decimal operation is invalid if any of the nibbles in
either operand contain & value in the range of 1010 thru 1111.
Second, due to a bug in the 6502 itself, you must explicitly com-
pare the accumulator with zero to check for a zero result after an
addition. The SBC instruction (alias CMP} works as expected.

DECIMAL ARITHMETIC EXAMPLES:

SED ;SET DECIMAL MODE

CLC ;ALWAYS BEFORE AN ADDITION

LDA #8250 INITIALIZE ACC TO 25 (DECIMAL/BCD]
ADC #8100 ;ACD 10 (DECIMAL/BCD)

BRK JRESULT IS 35

END

SED

SEC ;ALWAYS BEFORE A SUBTRACTION

LDA #§52 INIT TO DECIMAL 52
SBC #8222 SUBTRACT 22 (DECIMAL/BCD)

BRX ;REBULT IS 30

END

SED

CLC ;ALWAYS BEFORE AN ADDITION

LDA #%99 LOAD WITH 98 (DECIMAL/BCD)
ADC #31 :ADD 1 (DECIMAL/BCL)

ERK ;RESULT IS5 €, CARRY = 1
END

SED

SEC

LDA #8000

SBC #%1

BRK ;RESULT IS 99, CARRY = 0
END

UNSIGNED ARITHMETIC RULES.

1) Use the SED instruction to set the decimal mode.
2) Clear carry before an addition; set carry before a sub-
traction.

3) Make sure operands contain valid BCD digits, or an
invalid result will be obtained.
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4} If the operation is addition and the Z fiag is to be tested
after the addition, you must explicitly test for zero with
'‘CMP #$00.

5) Overflow, after a decimal addition, is indicated by the
presence of the carry flag. In this case a value greater
than 99 occurred.

8) Underflow, after a decimal subtraction, is indicated by the
absence of the carry flag (i.e., C = 0). In this case you
are trying to represent a number less than 00.

SIGNED BCD ARITHMETIC.

The 6502 does not support signed decimal arithmetic. If you
need signed arithmetic, stick to binary numbers.

ARITHMETIC REVIEW.

in this chapter we have discussed three types of number
systems: unsigned binary, signed binary, and unsigned decimat
(BCD). Why should we bother with three difterent number sys-
tems when, by initial observation, it [ooks like signed binary inte-
gers will meet most of our needs?

BCD is very useful when you are performing /O operations
and very few computation operations. Several instruments, such
as voltmeters, frequency counters, and cliocks output BCD data.
It you are going to interface the APPLE Il computer with such a
device, you will probably have to use BCD.

Unsigned binary arithmetic is used when processing posi-
tive-only numbers. This is approximately 95% of the time (at least
in most assembly language applications}. If you are not going to
use negative numbers, why not double your range and use
unsigned integers only? Signed arithmetic should be used ONLY
where negative numbers are actually expected. Unsigned binary
arithmetic is faster, easier to perform, and generaily more useful
than signed or BCD arithmetic.

RULES FOR 8-BIT ARITHMETIC.

1} Maxipum value:

a) Signed 127

p)} Unsigned = 255
¢) Decimal = 99 .
"continued next page"”
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2) Minimum value:

a) Signed = —-128
b} Unsigned = 0
¢) Decimal = 0

3) User must supply routine to handle overflow and
underflow by testing C or V bits, if desired.

4) Always clear the carry before an addition and
set the carry before a subtraction

5} Remember, all arithmetic goes through the accumulator.

8-bit arithmetic has several serious restrictions, the most
prominent being the range limitation. Handling larger numbers
will be considered in the chapter on multiple-precision arithmetic.
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SUBROUTINES AND STACK
PROCESSING

NEW INSTRUCTIONS:

PHA PLA JSR
PHP PLE RT3

GENERAL.

As in BASIC, assembly language programmers often need
to be able to branch to a section of code, execute it, and then
return back to the next available instruction.

This mechanism is the subroutine. In BASIC you would use
the GOSUB statement (go to subroutine) to branch to a subrou-
tine. When the desired task had been accomplished, you would
use the RETURN statement to return from the subroutine.

Assembly language subroutines are handled in an identical
manner, except you use the JSR instruction (Jump to Subroutine)
to call (or “invoke”) a subroutine, and you use the RTS (Return
from Subroutine) instruction to return from the subroutine. The
JSR instruction is syntactically identical to the JMP instruction: a
1-byte instruction code followed by a 2-byte absolute address.
The RTS instruction is a 1-byte (implied addressing mode)
instruction,

The need for subroutines in assembly language is much
greater than the need for subroutines in BASIC. Subroutines in
BASIC are often used for initialization purposes, or perhaps to
prevent code repetition. Subroutines are required in assembly
language for these same reasons of course, but an even more
important use of the subroutine is that it can be used to break up
a complex task into small (and easier to handle) sub-tasks. As
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RUN TO LOCATION §2000
FOR ME, DO THIS EREOHD
AND COME RIGHT BACK.

3 w
— | =
[ e 0

WE DE_u;ch ’
GRocERIES

PROGRAM
COUNTER

mentioned in the chapter on arithmetic, the 6502 can only add or
subtract. What happens when you wish to perform a multiplication
or division? A subroutine would be used. In BASIC you certainly
wouldn't use a subroutine to perform a multiplication because
multiplication is built into that language. However, in assembly
language it is necessary to use a subroutine since there is no
multiply instruction. As you ¢an see, places you would not have
dreamed of using a subroutine before will require a subroutine in
assembly language. 1/0 is another area where subroutines are
required. The 6502 itself does not support a “PRINT” or INPUT'
statement, these have to be synthesized using subroutines.
The most important use of the subroutine may be that it
allows you to break a task into smaller modules, each of which
are easy to code compared to coding the whole problem all at
once. This type of approach is called the “TOP-DOWN" program
development method. If you have read any of the computer mag-
azines available, you are probably sick and tired of the phrases
“structured programming” and “top-down program design.”
Admittedly, everyone and his brother who wanted to see their
name in print has written an article for BY TE magazine about the
joys of structured programming. Some articles have been good,
some have been poor, and, in fact, some have been downright
misleading. There have even been some articles about “struc-
tured programming in assembly language.” Structured program-
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ming and top-down program design are often confused in these
articles. Structured programming entails the use of “program
structures” such as the FOR loop, the REPEAT/UNTIL loop, the
WHILE loop, the IF/THEN/ELSE statement, and BEGIN/END

(or equivalent) block structures. Obviously, structured program-
ming is not possible in assembly language because the afore-
mentioned program statements are not available in assembly lan-
guage. Sure, you can simulate those instructions using JMPs and
CMPs, but then you can simulate these statements in BASIC or
FORTRAN by using GOTO's and IF statements. The idea of
structured programming disallows the use of the GOTO (or JMP)
instruction, however, so by definition, structured programming is
not possible in assembly language. Nevertheless, it is a good
idea to simulate these programming constructs (the IF/THEN/
ELSE, REPEAT/UNTIL, etc.). This topic will be discussed later in
the chapter.

Top-down program design is another fancy buzz word mak-
ing the rounds these days. The concept behind top-down program
design is as follows: First, define the problem in very gross terms.
Do not fill in any of the details. Next, break each of these gross
terms down (one at a time, of course) into litle pieces, each a
little more detailed and refined than the previous generalization,
Now take each of these little pieces and continue breaking them
down until the assembly language code to implement that partic-
ular detail is obvious.

Each step in the definition of the problem should correspond
to an assembly language subroutine. The main program should
simply be a few initialization statements, a few tests, and then a
number of JSR instructions to the various detail-handling subrou-
tines. Likewise, each of these subroutines should simply be a
collection of initializations, tests, maybe a little data manipulation,
and a lot of JSR instructions.

Eventually the task will be broken down to a point where, at
the lowest level, the subroutine simply consists of some assembly
language statements without any JSR instructions. Naturally, the
depth of subroutine nesting is dependent upon the application.
Simple programs may have only one or two levels of subroutines,
while compliex programs may have 10 or 20 levels of subroutines.
The actual level to which you should nest your subroutines
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depends on several factors, the most important of which is how
detailed you as the programmer wish o get.

Programs written in this manner are immeasurably easier
to debug, and, as you can probably tell, assembly language pro-
grams are very hard to debug. You may save two days by not
using a top-down approach when writing your code, but be pre-
pared to spend a week, instead of another two days, debugging
your code.

VARIABLE PROBLEMS.

Subroutines in assembly language suffer from many of the
same problems as subroutines in BASIC. For example, consider
the following BASIC program:

10 FOR I=1 TO 10
20 GOSUB 50

30 NEXT I

40 END

50 I=1
60 RETURN

In this example, the FOR/NEXT loop is slated to execute 10
times. Unfortunately the subroutine at line number 50 resets | to
1 each time it is called. This means that an infinite loop is formed
since | will never be allowed to advance beyond two.

The same thing can happen in assembly language pro-
grams. “So what?” you're probably asking. Just make sure that
you don't use loop index variables in your subroutines (i.e., use
a different name). In assembly language programs you can use
different names for variables, just as in BASIC, BUT WHAT
ABOUT THE REGISTERS? Consider the following code:

LDX #%F
LBL JSR SETX

DEX

BNE LBL

BRX

SETX LDX #$10
RTS

In this example, the X-index register is used as the indexing
variable for the loop. The subroutine SETX loads the X-register
with the value $10 (16) and returns. Upcn returning, the X-register
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will be decremented (and will become $F or 15}, and will contain
a non-zero result. Because of this, the loop will be repeated, once
again loading the X-register with $10 and decrementing, stc. A
good example of an infinite [oop.

Obviously, you cannot “rename” the X-register. Yet not allow-
ing a program to use the X-register {or accumulator or Y-register
for that matter} is asking too much. Rather than disallow the use
of the 6502 registers in a subroutine, you can save the affected
6502 registers upon entry into the subroutine {and before they
are used) and then restore the registers with their original values
prior to returning from the subroutine. The previous example
could be safely coded as:

XSAVE EPZ $0 ;SAVE LOCATION FOR THE X REGISTER
LDX #§F
LEL JSR SETX
DEX
BNE LBL
BRX

SETX STX XSAVE
LDX #$10
LDX XSAVE
RTS
END

Although this example does not accomplish much, at [east the
main program does what is expected of it, namely calling SETX
15 times and then stopping.

This does not completealy sclve all of the problems with sub-
routines and register usage. Consider the following code:

XSAVE EFZ %0
LDX #%F
LBL J3R SETX
DEX
BNE LBL
BRK

SETX STX XSAVE
LDX #810
JSR SETXR
LDX XSAVE
RTS
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SETX2 STX XSAVE
IRX
LDX XSAVE
RTS
END

This program staris out by setting up a loop, as before. Within
the loop the subroutine SETX is called. To prevent an infinite loop,
the value contained in the X-register is stored at location XSAVE.
Afterwards the X-register is loaded with the value $10, and then
a call to SETX2 is made. As per the preceeding discussion, the
X-register is saved because SETX2 modifies its contents. One
problem develops here though. The current value of the X-register
($10 obtained from loading the X-register with $10 in subroutine
SETX) wipes out the previous value of XSAVE used to hold the
value of the X-register in the main pregram. So when you return
to S8ETX, things are okay; the X-register is loaded with $10, just
as before, the call to SETX2 was made. Now, however, when the
program attempts to restore the X-register to its original value (in
the main program,) it will load the X-register with $10 instead of
the actual original contents of $F. Once again the program is in
an infinite loop.

The solution to this problem? Simply use a new (and unique)
variable name (with a corresponding unique address) for the reg-

T 1'm nLEEnDY
usmcp 17- You cant/

I wWANHA USE TWE
®- REGISTER f

SUBROUTINE ONE SUBROUTINE TWO
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ister save locations in each subroutine.
EXAMPLE:

XSAVEL EPZ $0
X3AVEZ EPZ §1
LDX #$F
LBL JSR 3SETX
DEX
BNE LBL
BRK

SETX STX XSAVE]l
LDX #§10
JSR SETXZ
LDX XSAVEL
RTS

SETX2 STX XSAVEZ
INX
LDX XSAVEZ
RTS
END

This program will work as intended without getting itself into an
infinite loop. When using different variable names for each sub-
routine, it is probably better to use the DFS (define storage)
pseudo opcode and reserve one byte (for each register) imme-

HEEHEE—! il USE THE
% WEGISTER AND PUT |T BACK
BEFORE HE MOTICES /

SUBROUTINE ONE SUVBROUTINE TWO
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diately before the subroutine.

EXAMPLE:
LDX #§F
LBL JSR SETX
DEX
BNE LBL
BRK

kSAVEl DFS 1 ;RESERVE ONE BYTE FCR THE X REGISTER.

SETX STX X5AVEL
LDX #810
JSE SETX2
LDX XSAVEL
RTS

XSAVEZ DFS 1

SETX2  STX XSAVEZ
INX
LDX XSAVE2
RTS
END

Variables that are referenced only by one subroutine are
said to be LOCAL to that routine. Local variables should always
be defined immediately before the subroutine in which they are
used. This will help avoid confusion when reading the program
later on. By contrast, variables that are used by several subrou-
tines (and possibly the main program) are said to be GLOBAL
variables. For most applications of assembly language on the
APPLE Il computer using local variables to save the registers is
fine.

There are two types of subroutines which cannot use local
variables. The so-called, “REENTRANT” subroutine {which can
be an interrupt driven subroutine or a recursive subroutine) and
the “ROMABLE” subroutine. it is possible for a reentrant subrou-
tine to call itself (hence the name reentrant). If local storage is
used for these types of subroutines, the registers will surely be
“clobbered.”

Romable subroutines, on the other hand, represent a dif-
ferent problem. Since the program is to be stored in ROM you
cannot use the DFS statement to reserve memory because the
location reserved for storage would be in ROM! The EQU psuedo
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opcode could be used to define a location which is in RAM, but
this may be inconvenient at times.

It would be very nice if there were some magic memory
location where you could store a value, and then be able to store
another value on top of it, but rather than destroying the original
contents of that memory location, the original contents would
magically be saved somewhere else for us. Then, whenever one
of the registers is loaded from the magic location, it would give
us the last value that was stored there. Immediately after that
value is loaded into the register, the previous contents would be
loaded back into our magic memory location. With this magic
memory location we could have the code:

LDX #&F
LBL JSR SETX

DEX

BNE LBL

BRK

SETX STX "MAGICY
LDX #$10
JSR SETX2
LDX "MAGIC"
RT3

SETXZ STX "MAGICY
INX
LDX "MAGIC"
RTS
END

In this example we load the X-register with the value $F and then
call SETX. At SETX we save the X-register into our magic memory
location. We then load the X-register with $10. Next the program
calls SETX2. Upon entry into SETX2 the X-register is once again
saved into our magic memory location. This causes the previous
contents to be saved somewhere else (and it's all automatic).
Next, the X-register is incremented by one, giving us $11. The
next instruction loads the X-register from our magic memory
location thus restoring $10 in the X-register. Also, this causes the
original value stored in the magic memory location ($F) to be
reloaded into the magic memory location. SETX2 then returns to
its calling procedure, namely SETX. SETX then loads the X-reg-
ister from the magic memory location (which now contains $F)
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and then returns to the calling procedure with the contents of the
X-register being the same as when SETX the call invoked.

Our magic memory location is an example of a LIFO (Last
In, First Qut) data structure, which is usually called a stack. The
classical analogy is that of a dish well in a restaurant. As the bus
boy brings more dishes out, the first dishes placed in the dish well
are ‘pushed’ down into the well. Then, as the waitress picks dishes
out of the dishwell, the |last ones placed in the dish well are the
first ones she can get her hands on. Eventually (assuming the
bus boy is slow), the waitress will take the last plate out of the
well, which was the first plate stored there.

The 6502 microprocessor supports a LIFC stack. You can
push data in the accumulator onto the stack with the PHA (push
accumulator) instruction. Likewise data can be “pulled” from the
6502 stack and placed in the accumulator with the PLA {pull
accumulator) instruction. The PHA instruction becomes our
method of storing the accumulator at the “magic” memory loca-
tion, and likewise the PLA instruction becomes our method of
loading the accumulator from the “magic” memory location.

If you push the contents of the accumulator onto the stack
and never pull it off, then that result is simply left of the top of the
stack. What happens if you pull a value off the stack without first
pushing data onto the stack? To answer this question, the actions
of push and pull must be further explained. The 6502 stack
revolves around an 8-bit register within the CPU called the stack
pointer. $100 is added to the contents of the stack pointer to get
a value in the range of $100 thru $1FF. Whenever data is pushed
onto the stack, the data is stored in the memory location pointed
to by the stack pointer in page one of memory. Immediately after
the data is pushed onto the stack, the stack pointer is decre-
mented by one. The next time data is pushed onto the stack, it
will be stored on the memory location immediately below the pre-
vious entry. The stack pointer always points to the next available
memory location. When data is pulled off of the stack, the stack
pointer is first incremented by one, and then the accumulator is
loaded from the memory location pointed at by the stack pointer.
So each time you use the PHA instruction, you will be guaranteed
that the accumulator will be stored in a new and unique loca-
tion...with one exception. Since the stack peinter is only eight bits
wide you can push a maximum of 256 byles onto the stack before
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the wrap-around function causes the first byte you pushed onto
the stack to be overwritten. In general, 256 is plenty. A typical
program usually requires, at most, 64 bytes for temporary stor-
age.

There are no explicit instructions for pushing and pulling the
X- or Y- registers. To push these registers onto the stack you
should transfer the desired register to the accumulator {with the
TXA or TYA instruction) and then push the accumulator.

EXAMPLES:
PUSH THE Y REG FUSH THE X REG
TYA TXA
PHA PHA

Be aware that this will destroy the contents of the 6502 accu-
mulator.

Now we can use the PHA and PLA instructions to save the
registers for us in a subroutine. This is accomplished as follows:

LDX #§F ;INIT INDEX COUNT

LBL JSR SETX
DEX ;DECREMENT COUNT
BNE LBL ;LOOP IF WOT THROUGH
BRK ;STOP

éETX FHA ;SAVE THE ACCUMULATOR
TXA :SAVE THE X REGISTER
FHA
TYA ;SAVE THE Y REGISTER
PHA
LDX #§10
JSR SETX2
THA ;NOW RESTORE THE ¥ REGISTER
TAY
PLA ;RESTORE THE X REGISTER
TaX
PLA ;RESTORE THE ACCUMULATOR
RTS

éETXE FHA JSAVE ACC
TXA :SAVE X REG
FHA
TYA :SAVE Y REG
FHA
INX

“continued next page”
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PCA

TAY RESTORE THE Y REG
PLA

TAX RESTORE X REG

PLA RESTORE aACC

RT3

You will notice that the registers were pulled off of the stack in the
reverse order that they were pushed onto the stack. Remember,
the stack is a LIFO (last in, first out) data structure.

Have you ever wondered how the 6502 remembered what
address to return to after a subroutine execution? The retum
address is pushed onto the stack when the JSR instruction is
executed, and is popped off of the stack when a RTS instruction
is executed. This feature allows nested, and reentrant subrou-
tines. There is one problem however. If you push data onto the
stack, and forget to pull it off before executing a RTS instruction,
the data pushed onto the stack will be used as part of the return
address. This brings up one very simple, yet often viclated rule:
always remove data pushed onto the stack before executing a
RTS instruction. Likewise, don’t pull too much data off the stack
or you will lose part of the return address (and whatever garbage
is located just above the true return address will be considered
part of it).

This helps enforce one very strong point of top-down pro-
gram design: subroutines should have one entry point and one
exit point ONLY! if you place muitiple return points within & sub-
routine, chances are you will forget to pull all the data off the stack
in at least one of these locations. The solution is simple. Rather
than placing several RTS instructions within a subroutine, simply
JMP to the single return from subroutine sequence (i.e., PLA and
RTS instructions) within the subroutine.

EXAMPLE:
SUBRT PHA

LDa LOC1
CMP #§50
BLT SUBL

LDA #80
S5TA LOCL
JMP SUBX

SUB1 INC LOC1
SUBX PLA
RTS
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Since the X- and Y-registers were not used within this subroutine,
there was no need to save them onto the stack.

Since subroutines are useful in instances where code is
replicated, why not write a subroutine which pushes the registers
onto the stack, and its corresponding inverse function, which
the data off of the stack? These routines could be called SAVE
and RESTR and are often coded by inexperienced programmers
as:

SUBRT JSR SAVE

—SUBROUTINE—
—CODE GOES-
- HERE -

JSR RESTOR
RTS

SAVE PHA
TYA
PHA
TXA
PHA
RT3

RESTR PLA
TAX
FLA
TAY
PLA
RTS
END

Avoid the temptation to do this! When you push the accumulator,
X-register, and Y-register onto the stack, then execute a RTS
instruction, the 6502 attempts to use the last two bytes pushed
onto the stack as a return address. The previous contents of the
X- and Y-registers will probably not make a very good return
address.

PASSING PARAMETERS.

A parameter is simply a variable used to pass data to a
subroutine. For example, in SIN(X}, X is a paramster of the func-
tion SIN. This function, when called, returns the value of the tri-
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gonometric sine of X (in Applesoft, not assembly language).
POKE is also a procedure that has parameters. POKE, in fact,
has two parameters: a memory address where the data, specified
in the second parameter, is to be stored. Some procedures only
require that data be passed to them. POKE is a good example of
such a procedure. Other procedures and functions return data as
well. SIN(X) and PEEK are two good examples of functions that
return data.

There are several useful methods for passing data to a 6502
subroutine. Possibly the easiest method is to pass the data in the
6502 registers. Although this method is simple to use {and in fact
it is used all the time), it has one major drawback. You're limited
to only three bytes for your parameters. For some applications
(such as printing a single character to the video screen, or reading
a key from the keyhoard) this is sufficient. As an example, the
Apple moniter ROM contains two routines, one which prints the
character in the accumulator onto the screen as an ASCII char-
acter, and another routine which reads the keyboard and returns
the ASCII code of the key pressed in the accumulator. These
routines are located at addresses $FDED and $FDOC respec-
tively. You can turn your APPLE Il computer into an “electronic
typewriter” by running the following program:

COUT EQU $FDED ;USE A SYMBOLIC LABEL FOR
; CHARACTER OQUTFUT

RODKEY EQU $FDOC ;SAME FOR KEYIN ROUTINE

LOQFP JSR RDKEY
JSR COUT
JEP LOOF
END

Incidently, to stop this program, hit the reset key.

When you need to pass more than three byles to a subrou-
tine, a different method must be used to pass the parameters.
One method is to store the parameters in some known locations
and then access these known locations from within the subrou-
tine. Likewise, after returning from a subroutine the calling pro-
cedure can lock at some known location to retrieve returned data.
As an example, consider the following program (SUM) which
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sums four bytes together and returns the sum of these four bytes:

Lba I

SThA PARML

Lba J

STA PARMZ

LDA K

STA PARM3

LDA L

STA PARM4

JSR SUM

LDA RESULT

BRK
PARM1 DFS
PARMZ  DFS
PARMI  DFS
PARM4  DFS
RESULT DFS
SUM cLC

LDA PARMI!

ADC PARM2

cLc

ADC PARM3

cLc

ADC PARM4

STA RESULT

RTS

END

[ Y =l

Suitable checks could be made, if desired, for overflow after any
of the additions. As with the register storage scheme, parameters
should be local variables, not accessed by any other subroutines
(other than for data transfer between the two).
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ARRAYS, ZERO PAGE,
INDEXED, AND INDIRECT
ADDRESSING

HEX ORG OBJ ODFS ASC

GENERAL.

So far, the only addressing modes we have used are the
absolute (16-bit address), immediate (8-bit data), and relative (8-
bit displacement) addressing modes. Although these are the most
commonly used, they are not the only addressing technigues
available.

ZERO PAGE ADDRESSING.

THE 84K address space of the 6502 is broken up into 256
blocks of 256 bytes. These blocks are called, “pages.” These
pages are numbered sequentially starting with 0 and ending with
$FF. Page one, of course, is reserved for the 6502 stack. Page
zero (the first 2566 locations in the machine) is usually used for
variable and pointer storage. As such, page zero is somewhat
special. Page zero locations are used extensively by the Apple
monitor, DOS, and most languages such as BASIC and Pascal.
If you are going to be caliing a machine language program from
one of these languages (or using DOS from an assembly lan-
guage program), you have to be very careful about using zero
page locations. If you attempt to use a zero page location that is
being used by the host language (or subsystem such as Apple
DOS), then a “zero page conflict” may arise, and your program
may not behave propetly. To help you avoid using zero page

8—1
“A2B-RH-UBAL-2ND-08-01.PICT” 133 KB 2001-06-20 dpi: 300h x 300v pix: 1343h x 2160v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0101 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

locations that may be utilized by one of the high-level languages,
you should check out the zero page memory map in the new
Apple reference manual (The White Book) on pages 74 thru 75.

Since a conflict may arise, why even use zero page loca-
tions? After all, there are 48,496 other RAM locations which can
be used for variable storage; what's the big deal with zero page?
Well, the designers of the 6502, realizing that page zero would
be used quite often for variable storage, implemented a “zero
page addressing mode.” A zero page addressing mode instruc-
tion consists of a 1-byte instruction code followed by a 1-byte
address. Since one byte can only uniquely specify 256 different
memory locations, this type of instruction can only reference one
page of memory. You got it: page zero. Thus, a zero page instruc-
tion, since it only requires two bytes, saves you some memory
{remember, absolute addressing mode instructions require three
bytes). Another advantage to using zero page instructions is that
zero page instructions execute faster than absolute addressing
mode instructions (in fact a zero page addressing mode instruc-
tion executes in three-fourths the time required by an absolute
addressing mode instruction).

An instruction automatically uses zero page address when:

1) The address reference 1s non-symbolic
{i.e., a label is NOT used} and the value
is less than $100.

EXAMPLE:

LDA $1
STA §FF
LDX $1
aADC §25

2) The address reference is symbelic and
the symbol was declared using the "EPZ"
(Equate to Page Zero)} pseudo opcode.

EXAMPLE:

LBL EPZ $0
LBLA EQU %0

LDa LBL i ZERD PAGE ADDRESSING USED
LDA LBLA ; ABSQLUTE ADDRESSING USED
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Remember, the zero page addressing mode will only be used
when the labe! is defined with the EPZ pseudc opcode. In all
other cases (except non-symbolic mentioned above) the absolute
addressing mode will be used,

ARRAYS IN ASSEMBLY LANGUAGE.

Single variables are nice, but often strings and arrays are
required to accomplish a desired task. An array is a collection of
data, each element of the array being of identical length (i.e., the
same data type) to every other element. Arrays are stored in
consecutive memory locations and any element of an array can
be accessed by adding a displacement o the address of the first
element.

First, how are arrays defined in an assembly language pro-
gram? There are several methods. Basically, to reserve a block
of memory you simply have to decide where in memory the array
is going 10 be located, and then not utilize that memory for any-
thing else. Using this criterion, an array can be declared using
the EQU pseudo opcode. For instance, let's assume you want to
reserve 40 bytes (possibly to hold up to 40 characters for use in
a display driver). Next, decide where in memory you want the
array stored. Make sure, of course, that you do not define your
array such that it will be sitting on top of your code or some other
code such as DOS. Page three is a good place to store small
arrays {unless, of course, you have some sort of driver already
down there!). To define an array beginning at location $300 simply
use the statement:

ARRAY EQU $300 ;ARRAY IS $28 (40) BYTES LONG.
This statement says the array ARRAY begins at location $300;
that's all this statement says. You, as the programmer, must make
a mental note that the locations from $300 to $327 are being
utilized by the array (hence the comment to the right}. If you were
to declare another array, say 10 bytes long, you would include:

ARRAY EQU $300 ;ARRAY S $28 (40) BYTES LONG

ARRAY2 EQU $328 ;ARRAY IS $A (10) BYTES LONG.
This ensures that the memory space for ARRAY2 does not con-
flict with the memory space for ARRAYA

Obviously, performing the arithmetic yourself (especially if
you don't have a Tl Programmer} is quite tedious and error prone.
A better way to declare arrays is:
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ARRAY  EQU $300
ARRAY2 EQU ARRAY +§28

;ARRAYZ'S LENGTH IS $a

This statement says that ARRAY2 begins 40 locations ($28)
beyond the start of ARRAY. The comment after ARRAY2 simply
states how long ARRAY2 is supposed to be, so you can add more
data onto this list later on, should you so desire.

Lising the EQU statement has two disadvantages. The first
disadvantage is that you must know, as you are writing the pro-
gram, where the array will be stored in memory. Generally, this
leads to inefficient coding, especially when declaring large arrays,
because you are never sure where the end of your program is
(the end is generally a good place to put an array so that the
program consists of one big chunk). The second drawback is the
fact that you must always remember the length of the last
declared array in the event you wish to add more arrays later on.
It would be nice if one could say, “Hey! Reserve me 10 bytes here
(wherever “here” is) for my array, and then continue with the code
after these 10 bytes.

The ORG pseudo opcode allows you to do exactly that. The
ORG pseudo opcode (program ORIiGin) simply sets the value of
the location counter to the address specified in the address
expression in the operand field. The location ¢ounter is a pointer
that determines where the current assembly language code is
supposed 10 be stored. Generally, when you assemble a program
(without an explicit ORG) the program is automatically stored
beginning at location $800. During assembly, as each byte of
code is created, it is stored at the location pointed to by the loca-
tion counter, and then the location counter is incremented by one.
Each time a label is encountered within the assembly language
program, the symbol is stored in the symbol table along with the
contents of the location counter when the symbol was defined
(with the obvious exception of EQU and EPZ which store the
address in the operand field in the symbol table along with the
label). Consider the foliowing assembly language program:

ORG $800 ;DEFAULT VALUE
JMP LABEL ,THREE BYTE INSTRUCTIOM
ARRAY ORG $903
LABEL ——— ;THE REST OF YOUR PGM GQES HERE
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In this exampie the assembler is instructed 1o begin the program
at location $800 (the default value). Immediately following the
ORG statement is a JMP instruction. Since JMP’s are always
three bytes long, the next code generated will be stored at loca-
tion $803. The next instruction contains a label { ARRAY"), so this
label is stored in the symbol table along with the current value of
the program counter. Note that, with the exception of EQU and
EPZ, the label is stored in the symbol table before the code for
the instruction on that line is emitted (or, if you have a pseudo
opcode such as ORG, before the instruction is executed). As a
result of this, ARRAY is stored in the symbol table with the value
$803 (the current value of the location counter). Next, the ORG
pseudo opcode gets executed and the location counter is forced
io contain the value $903. Notice that LISA has just made room
for a 256-byte array within the program itself. The only drawback
to this method of reserving memory is that you must know the
current value of the program counter in order to use it. Often this
is impossible, so it seems to exclude the use of the ORG state-
ment as a means of reserving memory.

But wait! Whenever the assembler sees an asterisk (™) in
the operand field, it will substitute the current value of the location
counter in its place. Rather than guessing (educated or otherwise)
about the current value of the location counter, you can use the
* and be assured of getting the correct value. Now you can
reserve 256 bytes as follows;

ORG §8C0

JMP START
ARRAY  ORG *+3100 :RESERVE 256 LOCATIONS
START —— :CODE GOES HERE

Another problem which surfaces is the age old problem
known as “separation of program and data.” If you place an array
inside your program, you must insure that the code will not get
executed as data. Otherwise, unexpected results may be obtained.
In the previous example you will note that a JMP instruction
caused program execution to jump over the array. In general,
arrays and other data stored within your program should only
follow instructions which unconditionally alter the flow of the pro-
gram. Such instructions include JMP, RTS, and BRK.

Another problem when using the ORG pseudo opcode sur-
faces when using the OBJ pseudo opcode. First, since it is a new
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instruction, what is the OBJ pseudo opcode? LISA, during assem-
bly, uses every memory lecation in the APPLE Il computer except
memory in the range $0800 to $1800. (This may vary depending
upon how you have initialized the system, but the above are the
default values.) What happens if you want to be able to run your
assembly language program at lccation $4000? You cannot
assemble your program at location $800 (the default location),
and then simply move your code to location $4000 and execute
it. Most 6502 assembly language programs are not RELOCAT-
ABLE. (Relocatable means that a program can be executed
anywhere in memory without any problems.) Unfortunately, all
those JMP's, JSR’s, etc. reference absclute memory locations.
If you assembled the program:

GRG %800

JKP LBL
ARRAY  ORG *+$100
LBL LDA ARRAY

STA ARRAY+%1
BRK
END

and then moved it to location $4000 before running it, the program
would not execute as planned. Since the program was ORG'd for
location $800, all absolute addresses (such as the addrass of
LBL and ARRAY) will simply be offsets from this initial address.
In this case ARRAY will be assigned the address $803 and LBL
will be assigned the address $903. Now, when the code is gen-
erated for this program, $903 will be substituted for LBL, which
means the first JMP instruction will be converted to JMP $3803.
If you move the code to location $4000 and try to execute it with
the 4000G monitor command, the first instruction (JMP $903) will
simply continue execution of the program at the location at which
the program was originally assembled.

Does this mean that all assembly language programs you
write must reside in the locations $800 to $20007? Definitely not!
it simply means that while you are assembling your code, the
object code (the machine language instructions produced by
LISA) has to be stored in this range. Now, whenever the ORG
pseudo opcede is encountered, the code counter (a pointer that
determines where the code will be stored in memory) is changed
to the value in the operand field as is the location counter. This
means that if your program contains an ORG $4000 instruction,
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not only will the code be assembled to run at location $4000, but
it will also be stored there. Since this is a no-no location for object
code (LISA normally stores the textfile in this region and storing
object code here may “clobber” part of your textfile) some means
must be used to make ensure that the object code gets stored in
the range $800-$1800.

The OBJ pseudo opcede does this for you. The OBJ pseudo
opcode simply changes the value in the code counter (the pointer
to where the object code is being stored) to whatever address
appears in the operand field. If you want to assemble your pro-
gram to run at location $4000, you should use the code:

ORG $4000
0BJ $8C0
LDA #%0
5TA LBL
BRK

LBL EQU %0
END

What does all this have to do with declaring arrays? Let's
consider the following program:

ORG $4000

OBJ $800

JWP LBL
ARRAY ORG *+$100
LBL LDA AREAY

STA ARRAY +§1

BRK

END

The ORG $4000 pseudo opcode insures us that the correct code
will be generated. The OBJ $800 pseudo opcode ensures that
the code will be stored in the memory range $800 - $1800. The
JMP instruction ensures that the data will not get interpreted as
instruction code. BUT, the ORG * + $100, used to reserve memory
for the array, causes a slight problem. Remember, the ORG
pseudo opcade resets the location counter as well as the code
counter. This means that when “ORG *+ $100” is encountered,
The location counter will be set to $4103 (which we want), but the
code counter will also be set to $4103 (which we don't want},
thereby clobbering the textfile. Including the instruction “OBJ
* +$100” does not complete solve the problem either. Since the
location counter is already $4103 by the time the OBJ *-+$100
would get executed, the inclusion of such an instruction would be
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futile. There are ways of handling this problem, but fortunately
LISA offers a better alternative.

LISA provides the programmer with another instruction, DFS
(define storage), to handle this problem for you. When a DFS
pseudo opcode is encountered, LISA will increment both the pro-
gram counter and the code counter by the number of bytes spec-
ified in the operand field. To reserve 256 bytes as in the last
example, you would write:

ORG %4000
OBJ $800
JMP LBL
ARRAY DFS $100
LBL LDA ARRAY
STA ARRAY+§1
BRK
END

and the DFS statement would automatically reserve the memory
bytes for you. When using the DFS pseudo opcode, you must still
place the array where it will not get executed as code, and like-
wise, since the data will be stored within your program, programs
which use the DFS statement are not ROMable. DFS, incidently,
can be used 1o define single variables as well as arrays. Simply
use DFS $1.

INITIALIZING ARRAYS AT ASSEMBLY TIME.

Sometimes it is necessary to initialize an array at assembly
time. For instance, you may need to store a data table in memoty,
or initialize some string, or define some one time initialization
data. None of the methods discussed so far aliow for this. The
memory space was allocated but no particular values were stored
in the array. Typically, you will need to store two types of data in
an array. Either numeric data (be it binary, decimal, or hex) or
string data (ASCII| characters). Memory can be initialized with
hexadecimal data by using the HEX pseudo opcode. This pseudo
opcode is particularly useful in setting up tables. The HEX pseudo
opcode is used in your program as follows:

JMP LBL
ARRAY HEX 00010203
LBL LDA ARRAY
STA &0

BRK
END
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In this example, the accumulator is loaded with the value con-
tained at location ARRAY, which is zero. The next instruction
stores the accumulator at location $0 in memory. The HEX
pseudo opcode expects two hex digits for each entry, otherwise
you will get an error. You will note that two digits had to be typed
for each hexadecimal value (complete with leading zeros) in the
previous example. Each value (starting at the first value in the
hex string, naturally) is stored in successive memory locations.
To initialize some memory locations with ASCIl data you
should use the ASC pseudo opcode. It is used as follows:

JMP LBL
ARRAY ASC "HI THERE"
LBL LDA ARRaY
JSR $FDED
LDA ARRAY+1
JSR $FDED
LDA ARRAY +2
JSR $FDED
LDA ARRAY +3
JSR $FDED
LDA ARRAY +4
JSR $FDED
LDA ARRAY +5
JSR $FDED
LDA ARRAY+6
JSR $FDED
LDA ARRAY +7
JSR $FDED
BRK
END

In case you are wondering, this program prints the message “HI
THERE” on the video screen (without the quotes). The ASCII
string following the ASC pseudo opcode must be enclosed in
quotes or apostrophes. For now, always use the quotes. The use
of the apostrophe will be discussed later.

What happens if you want to include a quote within the
quoted string? Simply double up the quotes to get a single quote
character stored in memory.

EXAMPLE:

ASC "HOWIS llllTHISIHMl

The first occurrence of the quote establishes the quote as the
“delimiter” character. Since the gquote is the delimiter, apos-
trophes can freely appear in the string. To include a quote within
a quoted string use two quotation marks in succession. This is a
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signal to LISA that the quote is not actually a delimiter, but the
quote character. The above example would generate the following
charters in memory:

HOW'S "THIS"

Now that you can reserve memory for array storage, how
are array elements accessed? Accessing individual elements is
very easy. You use the address of the first element of an array
and add in a displacement to this address. For example, if you
want to access the tenth element of the array ARRAY, you would
use ARRAY + $9 as your address (remember, arrays in assembly
language start with an index of 0). Several of the previous exam-
ples have used this method for accessing array elements. This,
however, is a static displacement, meaning that the address
remains constant at run time, and is calculated only at assembly
time. Thus, if you try a statement of the form;

LDA ARRAY +1I

your program will not add the contents of memory location | to
the address of ARRAY and load the accumulator from that loca-
tion. Rather, LISA will immediately add the address of ! to the
address of ARRAY and use that as the location from which the
accumulator will be loaded. If the value contained in | was stored
at location $1000 and the array ARRAY began at location $2000,
the LDA ARRAY + | statement would load the accumulator from
location $3000 which is the address formed by the computation
of ARRAY + |. So how does one simulate the variable index
feature of arrays found in high-level languages? To get that ques-
tion answered, read on. . .

USING INDEX REGISTERS TO ACCESS ARRAY
ELEMENTS.

The 6502 X- and Y-index registers can be used to dynami-
cally access elements of an array. This type of operation is known
as indexing, hence the name index register. When you use the
indexed by X or indexed by Y addressing modes, the following
procedure is carried out:

1) Add the contents of the desired index register to the
address that follows the instruction.
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GET ME THE
' TH ELEMENT
N ARRAY 1

* B1IcK UP 11TH ELEMENT TO GIVE TO APPLE ©

2) Use this address as the actual address when referencing
memory. To specity the indexed by X addressing mode,

you use the syntax:

<mnemonic> <address expression>,.X

EXAMPLES:
LDA LBL.X
STA ARRAY.X
ADC $1.X
SBC $FFFF,X

To specify the indexed by Y addressing mode, you use the syntax:

<mnemonic> <address expression>, Y

EXAMPLES:
LpA LBL.Y
STA ARRAY.Y
ADC $1.Y
SBC $FFFF.Y

Now consider the following examples:
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LDX #$1
LDA ARRAY, X ;LOADS ACC FROM LOCATION ARRAY +$1

LY #§FF
STA STRING,Y STORES ACC AT LOCATION STRING+$§FF

Nothing really special happened here. The program loaded
the accumulator from location ARRAY +$1 and then stored it at
location STRING + $FF. We could have done this without using
the index registers.

The beauty of the indexed addressing modes is that the X-
and Y-registers can be changed under program control. As an
exampie, suppose you want to clear the 256 bytes starting at
location ARRAY (clearing an array means each element gets set
to zero). To perform this operation, you could use the code:

LDX #$0 ;INIT FOR 256 BYTES
TX4 (SET ACC = 0O

LOOF STA ARRAY.X ;STORE ZERO INTO MEMORY LOC
INX 'MOVE TO NEXT LOCATION
BNE LOCQP :DONE YET®
BRK ;IF 30, QUIT

ARRAY DFS $100 : ARRAY STORAGE BEGINS HERE
END

In this example, the X-register and the accumulator are loaded
with $0. The accumulator is then stored at location ARRAY + X,
Since the X-register contains zero, the accumulator is simply
stored at location ARRAY. After this is accomplished the X-reg-
ister is incremented by one, and now it contains the value one.
Since the last result obtained was one, not zero, the BNE instruc-
tion causes a branch to iocation LOOP where once again the
accumulator is stored at location ARRAY + X. The difference is
that the X-register now contains one so the accumulator is stored
at location ARRAY +$1. This loop is repeated over and over
again until the X-register contains the value $FF. At that point
incrementing the X-register will give you zero which will cause
the loop to terminate.

Since the X- and Y-registers are only eight bits long, you are
limited to a range of 256 bytes when using the indexed addressing
modes. For most applications this is sufficient (and, in fact, for

8-12
“A2B-RH-UBAL-2ND-08-12.PICT” 145 KB 2001-06-20 dpi: 300h x 300v pix: 1347h x 2368v

| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0112 of 0289 |




Apple 2 Technical Book

Using 6502 Assembly Language

Chapter 8: Arrays / Zero Page { indirect Processing

strings it is ideal). if you need to access more than 256 bytes in
an array, read on: the next couple of sections will describe how.

INDIRECT ADDRESSING MODE.

The indirect addressing mode is a special addressing mode
used only by the JMP instruction. it is presented here only
because the discussion of the indirect indexed by Y and the
indexed by X indirect addressing modes build on the concept of
indirect addressing.

An indirect address is the address of the address of the
desired location. Sound confusing? The following examples may
help.

- JUMPS TC LOCATION $800

-JUMPS TO THE ADDRESS CONTAINED
:IN BYTES $800 AND $801.
:LOCATION $800 CONTAINS THE
:LLOW ORDER BYTE OF THE ADDRESS
AND $801 CONTAINS THE HIGH
:ORDER BYTE OF THE ADDRESS.

JMP $800
JMP (§800)

For instance, if location $800 contained $4 and location $801
contained $09, then a jump would be made to location $904. This
addressing mode allows you to simulate the CASE statement
which appears in many languages (the ON...GOTO is the equiv-
alent of the CASE statement in BASIC). In the following program,
a jump will be made to location $800 if the X-register contains
$0, to location $900 if the X-register contains $2, and to location
$1000 if the X-register contains $4.

LDA
STA
INX
LDA
STA
JMP
DFS
BEX
HEX
HEX
END

LOCADR . X
JMPADR

LOCADR, X
JMPADR + $1
(JHPADR)
2

o008

0009

0010

:RESERVE TWO BYTES FOR JMFPALDR
- ADDRESS TABLE IN BYTE
;REVERSEE ORDER

JMPADR
LOCADR

8-13
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The result of this program, if X contains 1, 3, or 5, is usually
garbage. Why on earth would anyone want to make such a simple
problem so complex when the following code accomplishes the

same thing?
CPX #0

BNE LBLG
JMP $800
LBLO CPX #2
BNE LBELl
JHE $900
LEL1 JHFP $1000

After all, the latter method takes less memory and seems much
simpler to program. For this simple example, yes, the latter
method is probably better, but keep in mind, for every additional
jump you wish to handle, you need to add seven bytes to the
latier version (a compare, a branch, and a jump instruction) and
only two bytes to the former program segment {an address). The
break-even point (in terms of code) is between four and five
jumps.

Indirect jumps are useful for controlling the flow of a program
in ways other than simulating a CASE statement. For example,
suppose you want to write a character output routine for the
APPLE 1| computer that will output the character in the accumu-
lator to the Apple video screen. Once this task is accomplished,
suppose you wish to expand your routine a little to allow output
1o a printer, modem, plotter, etc. Yet, you wish to keep the same
entry point, so that a program that outputs data to the screen can
just as readily output it to the printer. This can be accomplished
readily by setting up a flag byte somewhere that outputs data to
the screen if the flag byte is zero, to the printer if the flag byte is
one, to the modem if the flag byte is two, etc. The routine to
handie all this might be:

PUTCHR PHA i SAVE CHARACTER TO BE OUTFUT
LDA FLAG :SEE WHERE THE QUTPUT GOES
BEQ SCROUT ;OUTPUT TQ THE SCREEN IF ©
CMF #1
BEQ PRTOUT ;OUTPUT TO PRINTER IF 1
CMP #2
BEQ MODEM ;OUTPUT TO MODEM IF 2
ETC...

As before, this method works quite well if there are only a few
types of output devices. However, there are two problems with
this method. First, you cannot anticipate all the devices which will
8-15
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be attached to a computer when writing this type of program. The
second problem with this approach is that peripheral initialization
has not been taken into account. With some peripherals you must
jump to an initialization address the first time the peripheral is
accessed and then to a “normal” entry address thereafter.

The indirect addressing mode can solve all of these prob-
lems. Instead of reserving a memory location for a flag register,
let’s reserve two memory locations to contain the address of the
device handler we wish to access. Let's just arbitrarily choose
locations $36 and $37 in zero page to hold the low and high order
bytes (respectively) of the address of the routine we wish to
access. Normally, these two locations will contain the address of
our video output routine. When we wish to direct the output to the
printer, we simply place the low-order byte of the address of the
printer routine in location $36 and the high-order byte of the
address of the printer routine in location $37. Our character output
routine will now consist of exactly one instruction, a “JMP ($36)"
instruction. Jumping to this instruction will cause the pregram to
transfer control to the currently active device.

How does using the indirect jump solve the two aforemen-
tioned prohlems? The first problem (not knowing which devices
will eventually be used with the computer) is not a problern at all.
The indirect jump |I/C handler takes all devices into account. If
you wish to output data to some new type of device, all you need
to do is load the address of the device handler into locations $36
and $37.

The second problem (device initialization) is also easy to
handle. When a device is turned, on the address of its initialization
routing is loaded into locations $36 and $37. The initialization
routine initializes the device and then loads the address of the
normal driver into locations $36 and $37. This causes subsequent
accesses to jump directly to the normal entry point of the device
handler.

More details on this type of operation will be considered
later. For now, the concept of indirect addressing is all that is
important.

INDIRECT INDEXED ADDRESSING.

Indirect addressing is only available for the JMP instruction
and is not available for the loads, stores, compares, etc. For these
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types of instructions, fwo composite forms of indirect addressing
are available; indirect indexed by Y addressing and indexed by
X indirect addressing.

The indirect indexed addressing mode is actually two
addressing modes in one. It combines the indirect addressing
mode with the indexed by Y addressing mode. The effective
address is computed by going to the address specified after the
opcode, and getting the indirect address stored there and in the
succeeding location. Once this indirect address is obtained, the
value contained in the Y-register is added in to give the final,
effective address. Note that if the Y-register contains zero, true
indirect addressing is performed.

The indirect indexed by Y addressing mode has one further
restriction. The address at which the indirect address is stored
must be a zero page location. Accordingly, all instructions which
use the indirect indexed by Y addressing mode are two bytes long
(one byte for the opcode and one byte for the zero page address).
Also, should you use a symbolic reference, it must be declared
using the EPZ pseudo cpcode or you will get an efror.

EXAMPLE OF INDIRECT INDEXED BY Y ADDRESSING

MODE.

LDA #80 ;INIT FOR LOCATION $300
STA $FE ;L.0. BYTE IN LOCATION §FE
LDA #§9 ;
S5T4 §FF ;H.0 BYTE IN LOCATION $FF
LDY #80 ;INIT TO START AT LOCATION $900
TY4 ;INIT ACC TO ZERO

LOOF STA ($FE).Y :STORE AT LOCATION POINTED AT
INY :BY {$FE,$FF) + CONTENTS OF Y
BNE LOOP :G0 TO NEXT, DONE YET?
BRK :IF 50, QUIT

END

This program should lock familar; it's the memory clear routine
which we used earlier with the straight indexed by X and Y
addressing modes.

So far, we haven't really done much other than make the
solution more complex {by adding indirection), and we still can't
access more than 256 bytes at a time. To give a preview of things
to come, itis possible to increment the two memory locations $FE
and $FF (a sixteen-bit memory increment). With this in mind we
can leave the Y-register at zero and simply perform an extended
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increment on the memory locations $FE and $FF. Since this is a
sixteen-bit address, you can access any memory location in
memory by using this technique. Incrementing sixteen bits will be
described in later chapters, so file this knowledge away for a while.

INDEXED INDIRECT ADDRESSING MODE.

[n the indirect addressing mode, the indirect address was
determined and then the Y-register was added to this address to
give an effective address. As the name implies, the indexing (by
the Y-register) is performed after the indirect address calculation.

Indexed indirect addressing, as its name implies, performs
the indexing operation first. This addressing mode uses the X-
index register and has the following syntax:

<mnemonic> {<address> X} The contents of the X-reg-
ister are added to whatever value the address expression may
have. The resulting zerc page address {wrapping around if nec-
essary) and the foilowing byte contain the address of the location
to be used.

The indexed by X, indirect addressing mode would probably
be useful when you have a tablte of pointers in page zero and
need to access different sections of memory depending upon
some value in the X-register. Zero page, however, is a limited
resource and using it to hold large tables is not a good idea. This
author, after programming the 6502 for three years, has needed
to use the indexed by X, indirect addressing mode only once ot
twice. Further uses of the indexed by X, indirect addressing mode
will be left to the discovery of the reader.

Since indexed indirect addressing is not used nearly as often
as indirect indexed addressing, a lengthy discussion of this
addressing mode will not follow.

Whenever you want to perform an indirect load, store, or
other operation, you can use the indirect indexed by Y addressing
mode or the indexed by X, indirect addressing mode with the
respective register set to zero.

Indirect addressing techniques are very useful and give the
6502 microprocessor quite an advantage over other processors
which do not have this addressing mode available. Since this
concept will be used throughout the rest of this book, make sure
that you understand this addressing mode betore proceeding.

8-18
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LOGICAL, MASKING, AND
BIT OPERATIONS

NEW INSTRUCTIONS:

AND QRA XOR/EOR BIT
ASL LSR ROL ROR

GENERAL.

In the wonderful world of computers, data is not always
treated as characters and numbers. As such, arithmetic and com-
parisons (the operations required for operation on numbers and
characters) do not prove sufficient for all computer applications.
One important data type, which has not yet been discussed much,
is the Boolean data type. Arithmetic has ne meaning for the Boo-
lean data type, and, therefore, some new operations have to be
included in our basic instruction set.

There are four basic Boolean operations. They are comple-
ment, AND, OR, and exclusive-OR. The AND and OR operations
should already be familar to BASIC programmers, as these
operations are included in the BASIC instruction set. The com-
plement and exclusive-OR operations will probably prove com-
pletely foreign. Even the AND and OR operations, which sound
familar to the BASIC programmer, are actually a litfle different
from their BASIC counterparts.

In order to help make Boolean functions easier to under-
stand, this book will use “truth tables” to help demonstrate the
actions of the various functions. A truth table is no more than a
listing of the possible output values for all possible inputs. A func-
tien may only have one output value (by definition), but it may
have as many input values as desired. In our Boolean functions,
all functions will be restricted to one or two input values and only
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one output value. Since Boolean values are either false or true
{represented by zero or one respectively), single input functions
can produce only one of two outputs. Likewise, two input Boolean
functions can produce one of four output values (not necessarily
different).

COMPLEMENT FUNCTION.

The complement function is a one-input function. If you input
a bit, the complemented (i.e., opposite) value is returned. If you
pass the complement function the true value {(one), then the false
value {zero) is returned. If you pass the complement function the
false value (zero), then the true value (one) is returned. The com-
plement function truth table is shown in table 2-1.

Table 9—1. Complement Function Truth Table

Input bit Output bit

A X
0 1
1 0

Table 9-1(above) simply states that if you give the comple-
ment function a value “A’ of 0, you will be returned a value “X”
of 1. Conversely, if you pass the complement function a value “A”
of 1 then you will be returned a value “X" of 0. The complement
function is sometimes called the ‘NOT’ function (i.e., NOT TRUE
is false and NOT FALSE is true), and sometimes it is called the
“one’s complement.”

AND FUNCTION.

The AND operation requires two input values; it returns one
result value. The resuit returned is TRUE if and only if the two
input values are true. The result is FALSE otherwise. The AND
function truth table is shown in table 8-2.

9-2
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Table 9-2. AND Function Truth Table

Input bits Cutput bits
A B X
0 0 ¢
0 1 o
1 0 0
1 1 1

Table 9-2(above) states that if A and B are 1 (true), then X
is 1; if A or B is 0 (false), then X is 0.

Obviously, the AND function has uses in extended compar-
isons (8.9., simulating IF({A=B) AND (C <= D})). What is prob-
ably not so clear is the AND function’s masking abilities. The AND
function allows you to force a bit off, should this action be
required. Assuming the input A to be variable, you can always
force the output to become zero by setting the input B to zero. By
setting input B to one, you will pass A unchanged. By studying
the truth table, you will notice that whenever B is zero, the output
is also zero. Also, whenever B is one, the output corresponds
exactly to the A input. This feature is known as “masking” and
will be used considerably later on.

OR FUNCTION.

Like the AND function, the QR function requires two inputs
and produces a single bit output. The OR function returns true if
A or B {or both) is true, and retums false otherwise (i.e., if A and
B are both false). The OR function truth table is shown in table
9-3.

Table 9-3. OR Function Truth Table

Input bits Output bit
A B X
D o 0
0 1 1 “continued next page"”
9--3
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1 1 1

The OR function has the obvicus use of simulating the “IF
{A = B) OR (C <= D)” statement, but, just like the AND function,
the OR function has an additional masking use. If A is a variable,
then OR’ing A with B, when B is zero, always returns A. OR’ing
A with B, when B is one, always returns one. This function allows
you to force a bit on. This masking function will prove to be very
useful later on.

EXCLUSIVE-OR FUNCTION.

The exclusive-OR function is another two-input, single-out-
put type function. It returns true it A or B, but not both, is true. it
returns false if A and B are both true or A and B are both false.
The exclusive-OR (often abbreviated XOR}) function truth table is
shown in table 9-4.

Table 9—4. Exclusive—-OR Function Truth Table

Input bits Output bit
A B X
o 0 0
o 1 1
1 Q 1
1 1 G

The XOR function has two interesting features. First, in
masking operations, it can be used to invert (i.e., complement}
the desired input. In this mode, if B is zero, A is passed
unchanged. If B is one, the result of the XOR function is the
complement of A. This can be verified by studying the XOR truth
table.

The XOR function is also a “not equals” function. XOR
returns false if A equals B, and XOR returns true if A does not
equal B. Although the 6502 CMP instruction can be used for this
type of testing, the XOR function is necessary when the contents
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of the carry flag cannot be modified. The CMP instruction modifies
the carry flag whereas the XOR function does not.

BIT STRING OPERATIONS.

So far, all logical functions have been defined in terms of
one or two input bits and one output bit. Unfortunately, the 6502
(being an eight-bit microcomputer) works with eight bits at a shot.
As such, the logical operations have to be defined in terms of
eight bits.

The process used to logically operate on eight bits is known
as the “bit-by-bit” operation. To perform a “bit-by-bit” logical
operation, you must take two bytes, perform the operation on bit
zero of each byte, and store the result in bit zero of the result
byte. You then perform the operation on bit one of each byte and
store the result in bit one of the result byte. This process is
repeated for bits two, three, four, five, six, and seven.

{1001111C}) AND (11000111} = {100Q0L10)
{11110000) OR (0Q000111ll} = (11111111}
(11001100} XOR (11110000} = ({0011110Q)

NOT {11011011} = {00100100})

INSTRUCTIONS FOR LOGICAL OPERATIONS.
AND INSTRUCTION.

The 6502 allows you to AND the value in the accumulator
with a value in memory or a constant. The resuilt is left in the
accumulator and the Z and N flags are set accordingly. The 6502
instruction mnemonic is AND.

EXAMPLES:

LDA #8FF - LOAD ACC WIUH BFF 1111 1111

AND #$0F — "AND" ACC WITH $F 0000 111

— RESULT LEFT IN ACC _—

15 §F 00C0 1111

LDA #32F - LOAD ACC WIUH $2F 0010 1111

AND #$01 — AND WITH $1 Qco0 0001

~ RESULT LEFT IN ACC  ———————

I3 8§l 0000 0001
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The N flag is set if bit seven of the result is one. The zero
flag is set if the result of the AND operation is zero. One inter-
esting use of the AND instruction is to test to see if a bit is set or
not. For instance, if you want to see if bil zero of the accumnulator
is set, simply AND the accumulator with the value $1. If bit zero
is set (i.e. one), the accumulator will contain one after the AND
operation, and likewise the Z fiag will be reset, so you can use
the BNE instruction to test for this. If bit zero of the accumulator
is not set, the accumulator will contain zero after the AND oper-
ation and the BNE test will fail. To test whether or not a memory
location contains a zero or one in bit zero, load the accumumator
with the constant $1 and then AND the accumulator with that
memory location.

The bit test feature of the AND instruction is very useful,
except that the contents of the accumulator are modified. When
performing simple bit tests, it is sometimes convenient to leave
the contents of the accumulator alone. This can be accomplished
by the use of the BIT (BIt Test) instruction. The BIT instruction
AND’s the accumulator with an absolute or zero page memory
location (only!) and the results of this AND operation are used to
set the N, Z, and V flags. The flags are set according to the
following rules:

1) Bit seven of the memory location is loaded into the N flag

(not the result of memory bit seven AND ACC bit seven})

2) Bit six of the memory location is loaded into the V flag.

3) The result of ACC AND memory is used to set the Z flag

(identical to the AND instruction).

The BIT instruction is especially useful for input/output hand-
shaking and control. This instruction will be discussed in more
detail in later chapters.

ORA INSTRUCTION.

To perform the logical OR function, the 6502 ORA instruction
{OR Accumulator) is used.

EXAMPLES:
LDA #%00 -LOAD ACC WITH %0 00G0 0000
ORA #§FF —OR ACC WITH $FF 1111 1111
-RESULT OF §FF I3 e ———
—~LEFT IN THE ACC 1111 1111
“continued next page”
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LDA #$04 ~LCAD ACC WITH $4 0000 0loo
ORA #$30 —CR ACC WITH $30 0011 0000
—THE RESULT QF &34  ————"
-IS LEFT IN THE ACC 0011 0100

XOR/EOR INSTRUCTION.

The standard 6502 exclusive-CR mnemonicis “EOR.” Since
XOR is frequently used in the world of digital computers, LISA
supports the use of both XOR and EOR as mnemonics for the
exclusive-OR function. Both generate identical code; the choice
of which mnemonic to use is strictly up to you.

EXAMPLES:
LDA #8AA —LOAD ACC WITH $aA 1010 1010
X0OR #§01 -XOR WITH %01 0000 0001
—~RESULT IS $AB WHICH ——-—————
-IS LEFT IN THE ACC 10610 1011
LDA #8AA -LOAD ACC WITH $AA 1010 1010
EOR #§01 -XCOR WITH $01 0ooo 0001
—~RESULT ($AB) IS ————————
—-LEFT IN THE ACC 1010 1011

COMPLEMENTING THE ACCUMULATOR.

The 6502 does not have a complement instruction in its
basic instruction set. Since the XOR function can be used to invert
selected bits, the XOR instruction will be used to invert the accu-
mulator. This is accomplished by exclusive-OR’ing the accumu-
lator with the constant $FF.

EXAMPLES:
LDA #$00 -~LOAD ACC WITH 800 Q000 0000
XOR #$FF -INVERT ACC 1111 1111
—-RESULT ($FF) IS —_———————
-LEFT IN ACC 1111 1111
LDA #8AA -LOAD ACC WITH %11 1010 1010
XOR #&FF —INVERT ACC 1111 1111
~RESULT ($B5) IS = - ——-— —
—LEFT IN ACC 0lol Qlol
LDA #§55 —-LOAD ACC WITH $55 ¢101 0l0l
XOR #§FF —-INVERT ACC 1111 1111
—-RESULT ($a4} IS —_——————
~-LEFT IN ACC 1010 1010
9-7
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MASKING OPERATIONS.

Up to this point, the discussion of AND, OR, and XOR/EOR
has been rather academic. Why you would want to use these
instructions, as well as when you should use them, has not really
been addressed. Setting specific bits (using the ORA instruction},
clearing specific bits (using the AND instruction}, and inverting
specific bits (using EOR/XOR) seem “neat,” but of what practical
value are they?

MASKING OUT.

Suppose memory location VAR contains two distinct values,
one value in the high-order nibble and another vaiue in the low-
order nibble. In a particular application, we may be interested
only in the value contained in the low-order four bits. The high-
order four bits shouid be set to zero. Solving this problem does
not prove to be too difficult. By loading the accumulator from
location VAR; then AND'ing the accumulator with the constant
$OF, the high-order nibble is “masked out” leaving zero in the

YOU FOUR GUYS CAH MOVE OH-
THE OTHERS MUST SToPRf

*MASKING OUT”
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high-order (H.0.) four bits and the low-order (L.Q.) nibble in the
low-order four bits.
EXAMPLE:

LDA VAR —GET VAR INTO ACC
AND #$0F -MASK QUT H.0. NIBBLE LEAVING L.0O. NIBBLE

Another problem frequently encountered is that of packed
data. Suppose, in order to save memory, you have packed eight
Boolean values (each requiring one bit) into cne byte. Some-
where within the program you wish to test a Boolean flag to see
if it is true or false. Loading the accumulator with that particular
byte and then using the BTR and BFL instructions is not sufficient.
The BTR branch would be taken if any of the bits are set (remem-
ber, BTR is the same as BNE). Likewise, BFL will only be taken
if all of the bits are false (because the BFL instruction is really the
BEQ instruction). Some means of testing only one bit is highly
desirable. This can be accomplished using the AND instruction.
If you want to fest a particular bit, simply mask out all the other
bits. If the desired bit is false (i.e. zero), the zero flag will be set
and the BFL instruction can be used to test this condition. If the
desired bit is true (i.e. one), the AND'ing operation will leave a
one bit set somewhere within the byte and the BTR instruction
can be used to test this condition. EXAMPLE:

T} TEST BIT #0
LDA BITS
AND #%1
BTR THERE

TG TEST BIT #1
LDA BRITS
AND #%10
BTR THERE

TO TEST BIT #2
LDA BITS
AND #%100
BTR THERE

TO TEST BIT #3
LDA BITS
AND #%1000
BTR THERE

“continued next page”
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TO TEST
LDA
AND
BTR

T0 TEST
LCA
AND
BTR

TO TEST
LDA
AND
BTR

TO TEST
LDA
AND
BTR

BIT #4
BITS
#%10000
THERE

BIT #5
BITS
#%100000
THERE

BIT #6
BITS
#£1000000
THERE

BIT #7
BITS
#%10000000
THERE

Another use of the AND instruction is that of the MOD func-
tion. (The MOD function is the remainder function; that is, X MOD
Y returns the remainder after the division of X and Y.) AND’ing
with $1 returns the value in the accumulator MCD two. AND’ing
the accumulator with $3 returns the value in the accumulator
MOUD four. AND'ing with $7 returns the value in the accumulator
MOD 8. AND'ing with $F returns the value in the accumulator
MOD 16. AND’ing with $1F returns the value in the accumulator
MOD 32. AND'ing with $3F returns the value in the accumulator
MOD 64. AND’ing with $7F returns the value in the accumulator
MOD 128. AND'ing with $FF simply returns the value in the
accumulator.

This feature ¢an be utilized in several instances. In the pre-
vious example, testing a particuiar bit, the programmer had to
know which bit needed testing. Sometimes it would be nice if the
program itselt could decide which bit to test. In this capacity, a
subroutine could be made of the bit testing procedure, and some
dynamic value could be passed to the subroutine specifying
which bit is to be tested. If the value is passed in the X-register,
then the data at location 'BITS' can be tested against a value
contained in a table. The indexed by X addressing mode could
be used to specify which data byte is to be used as a mask.
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EXAMPLE:
TSTBIT LDA BITS
AND TBL,X
RTS
TBL BYT %00000001

BYT 400000010
BYT %00000100
BYT %00001000
BYT £00010000
BYT $00100C00
BYT 201000000
BYT %10000000

Now, 1o test a particular bit, simply load the X-register with
the bit number of the desired bit (0-7) and JSR TSTBIT. Upon
return, the zero fiag will be set if the particular bit is one, and the
zero flag will be reset if the particular bit is zero. There is one
slight problem with this scheme. What happens if the X-register
contains a value outside the range 0-7? Obviously, the memory
locations past the eighth byte in the table will be used as the
mask. This usually gives you junk as a result. What is required
is some means of insuring that the value in the X-register never
exceeds $7. There are two simple ways of accomplishing this
task. The first is to explicitly compare the X-register to eight, and
abort if the X-register is greater or equal to eight. The other
method is to AND the value in the X-register with #37 which will
return the original contents MOD eight. The AND’ing version is
a little cleaner and should be used if you can tolerate testing bit
zero when the X-register contains eight. It should be noted that
the AND instruction can be used to force ‘wrap around’ during
increments, decrements, additions, etc., long before $FF is
reached.

Since the X-register cannot be directly AND’ed with a mem-
ory location, we will have to transter the X-register to the accu-
mulator, AND the accumulator with a value in the table, and then
transfer the value back to the X-register. Some of this work can
be eliminated by passing the index to the subroutine in the accu-
mulator to begin with. The completed subroutine would look
something like:
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EXAMPLE:

TSTBIT AND #3011l

TBL

The AND instruction can also be used to set one of the
particular Boolean values to false, since the AND instruction can
be used to force a particular bit to zero. The following is a program
which is used to set the desired bit to false within the byte 'BITS.
As before, the accumulator contains the index of the element that

is to be set to false.
EXAMPLE:

SETFLS AND #§7

TELS

Note that there are

and the last. First, the value is stored back into BITS after the
AND operation. This assures us that the value will be around
when we need it later on. Second, the data in the table is inverted.
The data is inverted (as compared to the previous tabie) because
we do not want to mask out the undesired vaiues, only the value

we wish set to false.

TAX
LDA BITS
AND TBL.X
RTS

BYT §00000001
BYT 00000010
BYT F0Q000100
BYT Z00001000
BYT F00010000
BYT F00100C00
BYT 01000000
BYT #10000000

TAX

LDA BITS
AND TBLS.X
STA BITS
RT3

BYT $11111110
BYT $11111101
BYT $11111011
BYT 11110111
BYT 11101111
BYT 11011111
BYT 10111111
BYT 01111111

two differences between this program
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MASKING IN.

The 6502 ORA instruction can be used to force bits on. This
feature allows us to set a particular value in our bit array to true.
The code to perform this operation is:

SETRUE AND #8§7
TAX
LDA BITS
ORA TBL.X
STA EBITS
RT3

TEL BYT %00000001
BYT Z00000C10
BYT 00000100
BYT $000G1000
BYT %00C10000
BYT Z00100000
BYT 01000000
BYT Z10000000

Once again, the index is passed in the accumulator and the
resultant value is stored in BITS.

The ORA instruction has several other uses besides setting
Boolean variables to true. It can be used, for instance, to see if
two or more bytes in memory are all equal to zero. To perform this
function simply load the accumulator with the first byte, and then
OR the accumulator with each of the successive bytes. Upon
termination, the Z flag will be set if all the bytes contained a zero
result. If any of the bytes in question did not contain zero, the z
flag will be reset.

EXAMPLE:
LDA BYTEl

ORA BYTEZ2
ORA BYTE3
ORA BYTE4

ORA BYTEn
BEQ ALLZER

SHIFT AND ROTATE INSTRUCTIONS.

The 6502 supports four shift and rotate instructions. They
are: arithmetic shift left, logical shift right, rotate left, and rotate
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right. These instructions, in their simplest form, operate directly
upon the accumulator contents. This is the 6502 accumulator
addressing mode.

ARITHMETIC SHIFT LEFT (ASL) INSTRUCTION.

The arithmetic shift left instruction shifts all the bits in the
accumulator one position to the left. Bit zero is shifted into bit
one, bit one is shifted into bit two, bit two is shifted into bit three,
etc. A zero is shifted into bit zero, and bit seven is shifted into the
carry flag. The 8502 mnemonic for arithmetic shift left is 'ASL.

1» F-*“II jl}@ﬂ”l

-]

™7, YOU CAN LEDVE THE
CLASSROOM, THE REST
GF o) Cam #40VWE TO THE
LEFT OHWE DESK.

@, YOU CoN GO YO pesk g

" ASL INSTRUCTION”

When shifting the contents of the 6502 accumulator, this instruc-
tion does not have an operand.

EXAMPLE OF ASL.:

MOVE THE LOW ORDER NIBELE
INTO THE HIGH ORDER NIEBBLE

LDA VALUE

ASL

ASL ;FOUR SHIFTS MOVE THE L. Q.
ASL ;FOUR BITS INTO THE H.O.
ASL :FGUR BITS (L.G. FOUR BITS
STA VALUE ; BECOME ZERO)

Since the carry out of bit seven ends up in the carry flag, you can
use the BCC and BCS instructions to test for a ‘shift overflow.
Note (as demonstrated in the exampie) that the ASL insfruction
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ASL

s [ -] 4 3 2 1
C - L]——ﬁ

only shifts one bit. If you need to shift more than one bit position,
you must execute several ASL instructions.

LOGICAL SHIFT RIGHT (LSR) INSTRUCTION.
The logical shift right instruction shifts data to the right
{obviously). Zero is shifted into bit seven, bit seven is shifted into
hit six, bit six is shifted into bit five, stc. Bit zero is shifted into the
carry flag. Suppose you have two BCD digits which you want to
separate into two bytes. (i.e., the low-order nibble goes into the
first byte, and the high-order nibble goes into the low-order nibble
of the second byle, in both cases the high-crder nibble of the
resulting bytes should be zero.} It's very easy to get the low-order

LSR
1 [ 5 ry 3 2 A &

P —l-—-c

nibble into the first byte. Just load the accumulator from the mem-
ory location containing the BCD value, then AND the accumulator
with $F and store the result in the first byte.

EXAMPLE:

LDA VALUE
AND #8F
STA LOCI

AND'ing the value with $F0 to get the high-order byte is not
entirely satisfactory, because the value we desire will still be in
the high-order nibble of the accumulator. By using the LSR
instruction, this data can be moved down into the low-order four
bits of the accumulator, at which point the data can be stored in
the second byte of the destination address.

EXAMPLE: LDA VALUE

AND #BFO
LSR

LS8R

LSR

LSR

STA LOCl+§l1
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Since zeros are automatically shifted into bit number seven, after
the four LSR instructions are executed, the accumulator would
have all zeros in the high-order nibble anyway, so there is no need
for the extra AND #SF instruction. BETTER CODE:

LDA VALUE
L3R

LSR

LSR

L3R

STA LOC1+$1

The final code segment might be:

LDA VALUE
AND #§F

STA LOCL
LDA VALUE
LSR

L3R

LSR

LSR

STA LOC1+§1

ROTATE LEFT (ROL) INSTRUCTION.

The rotate left instruction is very similar to the arithmetic
shift left instruction, with one difference. Instead of shifting zero
into bit number zero, the previous contents of the carry flag are
shifted into bit number zero; so for a rotate left, bit zero is shifted
to bit one, bit one is shifted to bit two, bit two is shifted to bit three,
..., bit seven is shifted into the carry, and the carry is shifted into
bit zerc. Note that if you execute nine rotate left instructions in a

ROL
b & 5 4 2 2 ]

row, you end up with the value you started with in the accumulator.
The 6502 mnemanic for the rotate left instruction is ROL.
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ROTATE RIGHT (ROR) INSTRUCTION.

This instruction rotates the accumulator right with the carry
flag going into bit seven and the carry out of bit zero ending up
in the carry flag. The mnemonic for this instruction is ROR. As

ROR
7 £ z < 2 L -]

with the ROL instruction, after nine rotates you end up with the
value you started with in the accumulator.

SHIFTING AND ROTATING MEMORY
LOCATIONS.

Until now, all shifts and rotates have only been used with the
6502 accumulator. The 6502 shift and rotate instructions can also
be used to shift or rotate data in memory locations, effectively
bypassing the accumulator (this is similar in operation to the INC
and DEC instructions). If the operand field is not blank (which is
required for the accumulator addressing mode), the operand field
will be assumed to contain an absolute {or zero page) memory
address. The contents of this memory location will be shifted or
rotated with the same results as would be obtained if the accu-
mulator had been operated upon. The indexed by X addressing
mode is aiso available.

EXAMPLES:

ASL LOCI —SHIFTS MEMORY LOCATION LOCl LEFT
LSR TEMP —SHIFTS MEMORY LOCATION TEMF RIGHT
ROL LBL+%1 —-ROTATES MEM LOC. LBL LEFT

ROR X+81 —ROTATES MEM LOC. X+§1 RIGHT

ASL -SHIFTS THE ACCUMULATOR LEFT

LSR —SHIFTS THE ACCUMULATOR RIGHT

ROL ~-ROTATES ACC TOQ THE LEFT

ROR —ROTATES ACC TO THE RIGHT
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USING ASL TO PERFORM MULTIPLICATION.

Shifting any number o the left one position is identical to
multiplying that number by its particular radix (i.e., base) For
example, if you shift the decimal number 93 to the left one
position you get 930 which is definitely ten times 93. In the
same way, shifting a binary value to the left one position is the
same as multiplying it by two. A double shift to the left is identical
to a multiplicauion by four; three shifts to the left, to a muitipli-
cation by eight; four shifis to the the left, a multiplication by six-
teen; etc. In general, multiplication by powers of two is very easy,
simply using one to seven ASL instructions to multiply by two,
four, eight, 16, 32, 64, or 128.

EXAMPLES:

1) MULTIPLY AGC BY EIGHT
ASL :TIMES 2
ASL ; TIMES 4
ASL : TIMES 8

2) MULTIPLY ACC BY 32
ASL . TIMES 2
ASL TIMES 4
ASL ;TIMES 8
ASL ; TIMES 16
ASL ;TIMES 32

You can test for overflow by sandwiching a BCS instruction
between each ASL instruction. Should overflow occur (i.e., a carry
out of bit number seven), the carry flag will not necessarily be set
at the end of the shift left sequence, since the following ASL may
clear the carry flag.

EXAMPLE:

MULTIPLICATION BY 16, TESTING FOR OVERFLOW

ASL
BCS ERROR
ASL
BCS ERRQR
ASL
BCS ERROR
ASL
BCS ERROR

Often, the need arises to multiply by a constant other than
a power of two. This is accomplished by breaking the multiplica-
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tion problem down into several distinct steps and adding the
results of these intermediate steps together. For example, mukti-
plying the accumulator by three could be broken down into a
multiplication by two and a multiplication by one (which is the
original value itself).

EXAMPLE:

MULTIPLICATION BY THREE

STA TEMP :MAKE A TEMPORARY COPY

ASL JMULTIPLY ACC BY TWO

cLC ;ADD IN THE ORIGINAL VALUE
ADC TEMP :TO GET 2xACC + ACC = 3xACC

To muiltiply by some other constant is just as easy. For instance,
multiplication by six breaks down to a multiplication by four plus
a multiplication by two.

EXAMPLE:

MULTIPLICATION BY SIX

ASL :GET ACCx2

STa TEMP ;AND SAVE

ASL ;MULTIFLY ACC BY FQOUR
CLC ;ADD IN TEMP VALUE

ADC TEMP :TO GET 2xACC + 4xACC = 6xACC

One very important multipication is mufltiplication by ten. This
particular multiplication will be used quite a bit when converting
between the binary and decimal bases. A multiplication by ten
breaks down into a multiplication by two plus a multiplication by
eight.

EXAMPLE:

MULTIPLICATION BY TENM

ASL ;MULTIPLY BY TWO
STh TEMP ;SAVE

ASL ;MULTIPLY BY FOUR
ASL ;MULTIPLY BY EIGHT
CLC :ADD IN TEMP VALUE

ADC TEMP ;TO GET 1OxACC
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USING SHIFTS TO UNPACK DATA.

In Chapter 2, a discussion of packed data was briefly pre-
sented. Two BCD digits can be packed into one byte; eight Boo-
lean values can be packed into a single byte; etc. Packing tech-
niques save you memory at the expense of execution time and
code complexity.

Data is “unpacked” by masking out all of the unwanted bits
in a particular byte, and then shifting the data so that it is right-
justified in the byte. A BCD number, for example, contains two
fields: the high-order decimal digit and the low-order decimal digit.
If you are interested in only the low-order decimal digit, all you
have to do is AND the value with $F. This masks out all the
unwanted bits (the high-order nibble) leaving the desired data
right-justified. Getting at the high-order digit is not quite as simple.
In this case, the data must be shifted to the left four times so that
it is right justified. Zeros are automatically shifted into the high-
order nibble (refer to the discussion on shifts).

But BCD is not the only case where data packing is per-
formed. Some situations may require three data fields within a
single byte. For example, you may have a Boolean value in bit
seven, an Apple slot number in bits four, five, and six; and a hex
value in the range $0-$F in the low-order nibble. Getting at the 4-
bit value is easy, just AND the accumulator with $F. Getting at the
three bits in the middle of the data structure is a little more com-
plicated. First, you must shift the accumulator to the left four bits
to right-justify the data field and to eliminate the low-order four
bits. Next, the accumulator has to be AND'ed with $7 to eliminate
the Boolean value and preserve the low-order three bits.

EXAMPLE:

UNPACKING THE MIDDLE FIELD

LDA VALUE

LSR ;SHIFT RIGHT FOUR TIMES
LSR :TO RIGHT JUSTIFY FIELD
LSR :AND ELIMINATE L.O.

L3R :NIBBLE

AND #%0111 ;MASK QUT BOOLEAN VALUE

To unpack the Boolean field, you could perform seven LSR
instructions. There is, however, a better way. First, AND the
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accumulator with $80 to eliminate everything except the Boolean
value. Next, shift the accumulator LEFT. Whatever value is con-
tained in the Boolean variable will end up in the carry flag. Now,
rotate the accumulator left to move the carry flag {i.e., the Boolean
value) into the low-order bit of the accumulator.

EXAMPLE:
UNPACKING THE BOOLEAN FIELD

LDA VALUE
AND #88B0O
ASL

ROL

Obviously, if you just want to test the boolean value, you do not
need to right-justify it. You need only to use the BTR/BFL. instruc-
tions after the AND #$80 (or even the BMI/BPL instructions after
the LDA value).

USING SHIFTS AND ROTATES TO PACK DATA.
Having the capability to unpack data isn't particularly useful

it you cannot pack data as well. Packing data is a little more

complicated than unpacking it, and can be accomplished in two

X PAGKING DATA®

g-21
“A2B-RH-UBAL-2ND-09-21.PICT” 113 KB 2001-06-20 dpi: 300h x 300v pix: 1348h x 2363v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0139 of 0289
J




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

steps. First, the bits where the data is to be stored have to be
forced to zero. This is accomplisied using the AND instruction.
Next, the data to be placed in the desired field has to be shifted
$0 that it is aligned properly. The data is then OR'ed into the
zeroed field, resulting in a packed data record.

EXAMPLE:

FACKING THE SLOT # FIELD
FROM THE PREVIOUS EXAMPLE

PHA ;BAVE DATA TQ BE PACKED
LDA VALUE

AND #F10001111 ;MASK QUT SLOT # FIELD
3TA VALUE 1 SAVE

FLA :RESTORE ACC

ASL ;ALIGN FIELDS

ASL

ASL

ASL

ORA VALUE ;PUT INTQ VALUE

STA VALUE

Additional packing techniques will be discussed as the need
arises.
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MULTIPLE-PRECISION
OPERATIONS

GENERAL.

Until now, all operations utilized have worked with only eight
bits. For some operations this is fine. For others, being limited to
eight bits is intolerable. Nevertheless, the 6502 is limited to work-
ing with eight bits at a time. In order to handie data types of larger
sizes, such as 16-bit integers and 32-bit floating point numbers,
we must break them up into several 8-bit cperations. For example,
a 16-bit addition is handled as two 8-bit additions.

MULTIPLE-PRECISION LOGICAL OPERATIONS.

The muitiple-precision logical operations (AND, OR, and
XOR) are the easiest to handle. Assuming you have two 16-bit
operands at locations A, A1, B, and B1, the logical AND of A and
B is (A AND B), (A1 AND B1). This simply means that you take
the data at location A and then AND it with the data at location
B. The result is the low-order byte of the logical AND. Next, the
data at location A1 is AND’ed with the data at location B1, which
gives the high-order byte of the result,

EXAMPLE: ‘AND’ A WITH B AND STORE THE RESULT AT
C.

LDA A
AND B
STA C
LDA A+$l
AND B+$1
STA C+$l
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The CRA and EOR (XOR) instructions are handled in a
similar manner.
EXAMPLES:

LDA A
ORA B
STA ©
LDA A+l
ORA B+EL
STA C+81

LDA A
X0R B
STA C
LDA A+%1
i0R B+%1
5TA C+§1

*TWO BYTE ASL”

[ rom onotn yra | [_Mue-oRoth YT |

FINET, YO0 g T
surr g om ceert

vagwe v st ROTHTE i
o THE EF1 S
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MULTIPLE-PRECISION SHIFTS AND ROTATES

Shifts and rotates are not extended beyond one byte in a
manner similar to the simple logical instructions. Consider the
ASL instruction. If you were to shift the low-order byte one position
to the left, zero would end up in bit zero and the carry out of bit
seven would end up in the carry flag. Now, if you were 1o perform
an ASL on the high-order byte, the carry out of the previous bit
seven (which would be in the carry) would not be shifted into bit
zero, as should happen with a 16-bit ASL. Instead, zero would
once again be shifted into bit zero and the carry out of the low-
order byte would be ignored.

This problem can be rectified by using a ROL instruction for
the high-order byte, instead of the ASL instruction:

ASL LOBYTE
ROL HOBYTE

In this case, the carry out of the low-order byte ends up in the
carry flag, and then the second instruction (ROL) shifts the carry
flag into the low-order bit of the high-order byte (just as we
expect). Naturally, the high-order bit ends up in the carry flag. A
three-byte ASL can be manufactured by tacking another ROL
instruction onto the end of this sequence:

ASL BYTE
ROL BYTE+§1
ROL BYTE+ %2

Similarly, an “n”-byte ASL can be manufactured by tacking on
additional ROL instructions to the sequence.

MULTIPLE-PRECISION
SHIFTS anD ROTATES

TWQ-8YTE ASL
¥ 1
— &
™
L)
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MULTIPLE-PRECISION LOGICAL SHIFT-RIGHT
SEQUENCES.

The multiple-precision logical shift right operation is handled
in a similar manner, except you must begin the process with the
high- order byte. Remember, with a LSR instruction, zero gets

TWO-DYTE L3R

v+ [Sad ‘
L=

shifted into the high- order bit and then the low-order bit gets
shifted into the carry flag. A 2-byte LSR would be coded as:

LSR BYTE+$1
ROR BYTE

Similarly, a three-byte LSR would be coded as:

LSR BYTE+$2
ROR BYTE+§1
ROR BYTE

N-byte LSR's can be simulated by using the LSR instruction on
the high-order byte and then ROR all successive bytes.

MULTIPLE-PRECISION
ROTATE-LEFT SEQUENCES.

The multipie-precision rotate-left operation is easily handled.
First, rotate the low-order byte, then the high-order byte (s). A 16-
bit ROL could be written:

ROL BYTE
ROL BYTE+§1

10-4
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MULTIPLE- PRECISION
SHIFTS AND ROTATES

TWA-8YTE ROL
PW‘&I’L
[
IIOI.? - 1 [y 3 i 1 - § J

I BYT

The carry is shifted into bit zero, as we expect; bit seven is shifted
into the carry, and then into bit eight because of the second ROL
instruction. Finally, bit fifteen is shifted into the carry flag thereby
performing a 16-bit ROL. A 3-byte ROL instruction is written:

ROL BYTE
ROL BYTE+#§1
ROL BYTE+8§2

MULTIPLE-PRECISION ROTATE-RIGHT
SEQUENCES.

As with the LSR instruction, multiple-precision ROR
sequences must work on the high-order bytes first, and the low-
order bytes last. A 16-bit ROR is written as:

ROR BYTE+$1
ROR BYTE

T - | ] - 3 z | a
[
Higr- OEDERE BYTH —1
[
LI
& 2 4 2 3 . &
&R avTe ’
=3
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And a 3-byte ROR is written as:

ROR BYTE+$%2
RCR BYTE+$1
ROR BYTE

MULTIPLE-PRECISION UNSIGNED
ARITHMETIC.

Being limited to one byte when performing arithmetic is
unthinkable. Most of the time we need to represent values greater
than 255. If 16-bit arithmetic were available, we could represent
values in the range 0-65,535; with 24 bits we could represent
values in the range 0-16,777,215; by using four bytes (32 bits),
numbers in excess of four billion could be represented. Multiple-
precision arithmetic is handled in a manner similar to multiple-
precision logical operations. You must perform the operations a
byte at a time.

in order to perform extended precision arithmetic we must
have some mechanism for “capturing” all the lost data when an
arithmetic overflow (or underflow) occurs. First, let's determine
how much data must be saved when an overflow occurs.
Obviously, the largest number obtainable when adding two 8-bit
numbers together is the value obtained by adding $FF and $FF.
Since the result of this sum, $1FE, or 510 decimal, reguires nine
bits to represent it, we will need a 1-bit extension to perform
extended arithmetic operations.

As you may recall, you can check the carry flag after an
addition: it will be set if an overflow {into the “ninth” bit) occurred
and reset ctherwise. As such, we can use the carry flag as our
ninth bit when performing arithmetic. Fine, but how is this going
to allow us to perform arithmetic on 16, 24, or 32 bits? Remember
our rules for unsigned addition? One rule states that the carry
must be cleared before the addition takes place, because the
carry flag gets added in as part of the operand. This means that
if the carry flag is set, then you do not end up with the sum of the
accumumator and the operand, but rather you get the sum of the
accumulator and the operand plus one. Naturally, if the carry is
clear, you get the sum of the accumulator and the operand plus
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the carry flag {which is zerc}, thus giving you the true sum.

In this manner, the carry flag becomes the ‘carry out’ of an
8-bit addition and will contain the vaiue which must be added to
the addition of the high-order bytes in order to obtain the final
“adjusted” value. |n reality, the 6502 adds numbers the same way
you and t do, except it works with bytes instead of digits. The
addition of the 16-bit quantities OP1 & OP2 with the sum being
stored in RESULT, would be written as:

CLC :ALWAYS BEFORE AN ADDITION
LDA OF1

ADC OP2

3TA RESULT

LDA OP1+§1
ADC QP2 +§l
STA RESULT+§1

Note that the carry flag is not cleared between the additions here!
Remember, the carry flag contains vital information for successiul
multiple-precision addition. A 3-byte addition operation would be

coded:
CLC
LDA OP1
ADC OP2
STA RESULT
LDA OPiI4 8l
ADC OP2+$1
STA RESULT+§1
LDA OP1+82
ADC QP2+ 82
STA RESULT +$2

and so forth for an 'n’-byte addition.

RULES FOR UNSIGNED N-BYTE ADDITION.

1} Do not confuse these rules with any of the other arithmetic
rules.

2) Always clear the carry before performing the addition.

3) Add the first bytes together and store the results.

4} Add the second, third, ..., nth pairs of bytes together and

store the results. Do not clear the carry flag before these
additions.
5) After the nth addition, the carry flag will be set if an over-
flow occurred, otherwise the carry flag will be cleared.
10-7
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MULTIPLE-PRECISION UNSIGNED
SUBTRACTION.

Multiple-precision subtraction is handied in much the same
way as muitiple-precision addition. It is a logical extension of the
single-precision subtraction, and as such, you must set the carry
before the multiple precision subtraction takes place. Once this
is accomplished, you subtract the low order bytes (storing the
results} and then the high order bytes (also storing the results).
Once the subtraction is complete, the absence of carry (i.e,
carry=0) means an underflow occurred, and the presence of
carry means thing went just fine.

EXAMPLE OF TWO-BYTE SUBTRACTION:

SEC s ALHAYS!

LDA OPRNDI ;GET L.0. BYTE QF OFERAND #1

SBC OPRND2 i SUBTRACT L.0. BYTE OF OPERAND #2
3TA RESULT ;SAVE IN L.O. BYTE OF RESULT

LA OFRND1 +§1 ;GET H.O. BYTE OF OPERAND #1

SEC OPRNDZ2+%1 ;SUBTRACT H.O. BYTE OF OPERAND #2
STA RESULT+$1 ;SAVE IN H.O0. BYTE OF RESULT

BCC ERROR ; TEST FOR OVERFLOW

To generalize to n bytes simply stick more SBC instructions on
the end of the sequence. Remember not to set the carry flag
between the multipie-precision subtraction sequences.

RULES FOR UNSIGNED MULTIPLE-PRECISION
SUBTRACTION.

1} Do not confuse these rules with any of the other arithmetic
rules.

2) Always set the carry flag before a subtraction.
3) Subtract the low-order bytes and store the results.

4) Subtract the second, third, ..., nth bytes and store the
results.

5) After the nth bytes are subtracted, the carry will be clear
if underflow occurred. If the carry flag is set, then no
overflow occurred.

10-8
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MULTIPLE-PRECISION SIGNED ARITHMETIC,

Multiple-precision signed arithmetic is handled in a manner
identical to multiple-precision unsigned arithmetic. When pre-
forming an addition, you must first clear the carry and then per-
form a byte-by-byte addition. With subtraction, you first set the
carry and then perform a byte-by-byle subtraction.

The difference lies in testing for overflow/underflow. As with
the single-precision signed arithmetic, you must test the overflow
flag instead of the carry flag (remember, carry detects a carry out
of bit 7, overflow detects a carry out of bit €). The overflow (V) flag
will be set if overflow or underflow occurred. The overflow flag
will be reset if overflow did not occur. Note that the overflow flag
is set if an underflow occurred during a subtraction. This is oppo-
site in practice to the use of the carry flag in unsigned arithmetic.

MULTIPLE-PRECISION DECIMAL ARITHMETIC.

The 6502 can perform multiple-precision BCD arithmetic by
first setting the decimal flag. After setting the decimal flag, follow
the conventions for unsigned addition or subtraction. Don’t forget
to clear the decimal mode after the operation is complete. As with
the single-precision decimal arithmetic, you cannot perform
signed BCD arithmetic; only unsigned decimal arithmetic is
allowed.

MULTIPLE-PRECISION INCREMENTS.

Sometimes it would be nice to be able to use the INC instruc-
tion to increment two 8-bit memory locations which are being
treated as a 16-bit value. In conjunction with the indirect indexed
by Y addressing mode, this capability is highly useful.

Unfortunately, the INC instruction does not affect the carry
flag, so we can’t use the carry flag to detect an 8-bit overflow. The
INC instruction will alter only the ‘Z’" and ‘N’ flags. Fortunately, we
will be able to use the ‘Z' flag as though it were a carry flag. Why?
Because the increment instruction will cause an overflow only
when the prior result was $FF, and, when you increment $FF by
one, you wind up with $0. Voila! The zero flag will be set whenever
an overflow occurs while using the increment instruction. Thus,
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the zero flag can be tesled (using the BNE/BEQ instructions) to
determine whether or not the high-order byte(s) should be incre-
mented.

EXAMPLE OF 16-BIT INCREMENT:

INC LOC

BNE LBL

INC LOC+$1
LBL:

Likewise, a 3-byte increment could be synthesized as;

INC LOC

BNE LBL

INC 1LOC+81

BNE LBL

INC LOC +$2
LBL:

Higher precision increments ¢an be handled in a similar manner.
Note that these increments are for unsigned quantities only.
Signed increments are possible, but it's simpler just to add one
to the memory locations using the ADC instruction.

MULTIPLE-PRECISION DECREMENTS.

Just as useful as the multiple-precision increment is the
multiple-precision decrement. The multiple-precision decrement
is handled in a manner similar to the multipie-precision increment
(what did you expect!). There is one problem, however: overflow
occurs when the operand is decremented from $0 to $FF. Since
the zero flag is not set on this transition, we must test the Z flag
before the decrement instruction is used. Unfortunately, there is
no safe way to test a memory location to see if it contains zero
without explicitly loading that memory location into one of the
registers. A 16-bit decrement must be handled as follows:

LDA OPEND ;set Z flag if QPRND is zero
BENE LBL
DEC OPRND+81

LBL DEC OPRND

10-10
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A 3-byte decrement could be handled as:

LDA OPRND

BNE LBL1

LDA OPRND+$1

BNE LBL2

DEC OFRND +$2
LBLZ DEC OFRND+§1
LBL1 DEC OPRND

Beyond three bytes the SBC sequence becomes more econom-
ical than the DEC instruction sequence. As with the INC instruc-
tion, this multiple-precision DEC sequence is for unsigned values
only. Signed decrements are much easier to perform using the
SBC sequence.

MULTIPLE-PRECISION UNSIGNED
COMPARISONS.

Once you know how to add and subtract multiple-precision
values the next step is to learn how to compare them. Sadly, the
generalization from one byte to n bytes we have enjoyed for arith-
metic no longer applies to muitiple-precision comparisons. For
each type of comparison there is a completely different algorithm
which must be followed. These, untortunately, must be committed
to memory as ali of them are special cases. We'll start with the
easy ones first.

TESTING A 16-BIT VALUE FOR ZERO.

To test an 8-bit variable against zero you simply load the
accumulator with the contents of the variable and then test the
zero flag. When performing this same operation on a 16-bit value,
you must load the accumulator with the low-order byte, then OR
the accumulator with the high-order byte. If any of the 16 bits are
set (which means the value is non-zero), the zero flag will be
reset. If all of the sixteen bits are zero, the zero flag will be set
(hence the value is zero).

EXAMPLE:

LDA TSTZER
ORA TSTZER +$1
BEQ ISZERO
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TESTING A 16-BIT VALUE TO SEE IF IT IS
NEGATIVE.

To test a 16-bit value to see if it is negative is easy. The sign
bit is bit 15 (the sixteenth bit) which is bit seven of the high-order
byte. By loading the high-order byte into the accumulator, the ‘N’
flag will be set to reflect the sign of the entire 16-bit number. The
BIT instruction could also be used to test the high-order byte and
set the "N” flag accordingly.

TESTING FOR EQUALITY AND INEQUALITY.

The test for equality is not quite as simple. This test must
be handled in two parts. First, the low-order bytes are compared.
It they are not equal, then a branch should be taken to some
location further on in the code stream. [f they are equal, you
should drop down and compare the high-order bytes. If the high-
order bytes are not equal a branch should be taken to the same
location as in the previous branch. If the second test for inequality
fails you know that the two operands are equal. The following
code will jump to EQUALS if the two operands specified are equal,
or it will jump to NOTEQL if the operands specified are not equal.

LDA OPRND1
CMF OPRND2
BNE NE
LbA OPRND1+%1
CMF OFRND2+%1
BNE NE
JMP EQUALS

NE JMP NOTEQL

This sequence can be used to test for equality or inequality.
By removing the JMP NOTEQL instruction, this becomes a 16-
bit BEQ instructicn, with the program dropping through to the next
location (at location NE) should the operand prove to be not equal.
The same test can be manufactured for NOT EQUALS by using
the following code:

LDA GPRNDI
CMF CPRNDZ
BHE NE

LDA OPRNDI +%1
CMP QPRNDZ +$1

BEQ EQL
NE JMP NOTEQL
EQL:
10-12
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The extension to three or more bytes is simply a generalization
of this technique.
EXAMPLE OF A THREE-BYTE TEST FOR NOT EQUALS:

LDA OPRND1
CMP OPRND2
BNE NE
DA OPRND1+$§1
CMP OPRND2+§1
BNE NE
LDA OPRND1+$2
CMP OPRNDZ2+$2
BEQ EQL
NE JMP NOTEQL.
EQL:

The inequalities (<, <=, >, & > =) turn out to be easier to
program than the test for equals/not equals. If you will remember
the discussion of the CMP instruction, it was mentioned that this
instruction is really nothing more than a subtraction. The only
ditference is that the result is not kept around. Since a straight
subtraction is performed (as opposed to a subtract with carry), a
mutiple-precision CMP instruction is not technically possible. It
can be simulated, however, by the combined use of the CMP and
SBC instructions. The CMP instruction is used to compare the
low-order bytes (this instruction is used so that the carry does not
have to be explicitly set), and then the SBC instructon is used to
compare successive bytes. After the last bytes are compared
(using SBC) the BGE (or BCS) and BLT (or BCC) instructions
may be used to test the result.

EXAMPLES:

==Y
LDA X
CMF Y
LDA X+1
SBC Y+1
BGE GE

I <y

LpA X
CMP Y
LDAa X+1
SBC Y+1
BLT LT
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To test for greater than, or less than or equal to, we could
employ the methods described previously (in the chapter on sin-
gle-byte compares). The only problem with this approach is the
fact that too much code is required 1o perform two 16-bit tests. A
better method, which also works for 8-bit comparisons but
requires some knowledge of mathematics, is to alter the sequence
by which the operands are compared. First, consider the test for
X>=Y. It could be coded as:

X =Y

LDA X
CMP ¥
LDA X+%1
SBC Y+%1
BGE THERE

When you say that X is greater than or equal to Y, you are also
stating that Y is less than or equal to X, so the above comparison
is also testing to see if Y is less than or equal to X. To perform
the comparison X< =Y, use the code:

CMP X

LDA ¥Y+$1
SBC X+§l
BGE THERE

Which uses X as the value being compared to and the BGE
branch. The test for greater than is exactly the same except you
use the BLT branch instead of the BGE branch.

Comparisons of more than two bytes can be achieved by
tacking on more SBC instructions for each succeeding byte.

Keep in mind that these comparisons are for unsigned
values only (both in binary and decimal mode). For a description
of how to compare signed values read on....

SIGNED COMPARISONS.

First, to test for equals, not equals, zero, or minus, you use
the same tests as you would for an unsigned value. Testing for
the inequalities ‘< =", '<’, > = not as straight forward. Without a
lengthy discussion of the 6502 hardware and two's complement
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X>= Y

SEC

LDA X

SBC Y

LDA X+31

SBC Y+ 5Bl

BVS LBL1

BMI LT
LBLZ JMP GTREQL
LLBL1 BFL LELZ2
LT:

¥ <= Y

5EC

LDA Y

SBC X

LDA Y+§1

SBG X+§1

BVS LBL1

BMI GT
LBL2 JMP LESEQL
LELl BFPFL LBL2
GT:

X<y

SEC
LpA X
SBC Y
LDA 1+81
SBC Y+§1
BVS LBL1
BPL GE
LBLZ JMF LESS
LBL1 BMI LBL2
GE:

10-15
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idiosyncrasies, you'll have to accept, on faith, that a comparison
is greater than or equal if the XOR of the overflow and sign flag
is one and the comparison is less than if the XOR of the overflow
and sign flag is zero. One final note: the CMP instruction does
not affect the overflow flag, so a full subtract with carry must be
used. The following sequences test for the annotated condition:
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X <= Y

SEC
LDA Y
SBC X
LDA Y+§1
SBC X+81
BVS LBL1
EPL
LBL2 JMP LESEQL
LBL1 BMI LBLZ
LT:

Of course, there are many variations on the comparisons
and branches presented here. These examples are definitely not
the most efficient or the only possible way of coding. By experi-
menting and ‘adjusting,’ you can probably come up with the com-
bination you need.
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BASIC I/O

GENERAL.

The remaining chapters of this book will present program-
ming examples with brief explanations. Shouid a particular piece
of code be unclear, the reader is urged to review previous chap-
ters in this book.

CHARACTER OUTPUT.

In BASIC all output is handled by the PRINT statement. In
the not-so-wonderful world of assembly language there is no
“PRINT” statement. {n fact, input/output (I/O) is not provided for
in the 6502 instruction set at all. Since the 6502 does not provide
a scheme for I/Q, the question naturally arises, “How does one
output data, anyway?" To make a long story short, all /0O devices
are treated as though they were memory locations. As such, input
and output is performed using load and store instructions. The
Apple video screen, in fact, resides in memory (but more on that
later).

Since the 6502 is capable of working with only one byte at
a time (i.e. one character), all I/O will have 10 be on a character-
by-character basis. Typically, a user program will load the accu-
mulator with a character and jump to a subroutine that outputs
the character. Strings are output by repeatedly loading the accu-
mulator and jumping to this subroutine. Integers and floating point
numbers are output by converting each number to a string of
characters and outputting the converted string.

The standard output device on the APPLE Il computer is the
video screen. The Apple video screen is an example of the so-
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o BEPORT TO /
THE SCREEN/

ARCOREEG

* cHARACTER  1/o ”

called “memory-mapped video display.” A memory-mapped
video dispiay uses one byte of memory for each character posi-
tion on the video screen. By storing data into the video memory
you c¢an put characters onto the Apple video screen. Luckily, you
need not concern yourself with the actual addresses in memory
used by the Apple’s video screen. A subroutine within the Apple
monitor has been provided which allows you to output a character
{in the accumulator, of course) onto the video screen. Where
does it output the character on the screen? Right after the pre-
vious character that was output. The subroutine is located at
$FDFO in the Apple monitor ROM and may be used as follows:

LDA #"a"
JSR $FDFO
LDA #FFBII
JER $FDFO
LDA #"C"
JSR $FDFQ
RTS

END

This program outputs ABC (without the quotes) to the video
screen and then returns to the monitor (or other calling routine).
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Obviously, this form of output is very crude. It would be insane to
expect anyone to output a string such as “I WON! CARE TO
PLAY AGAIN?” to the video screen using this method.

A much better method of outputting chararacters requires
the use of the 6502 index registers. To perform this type of /0O
function the string is stored somewhere in memory (where it will
not be executed as code) using LISA's ‘STR’ pseudo opcode. The
index register is set equal to one (lo skip over the length byte
emitted by the STR pseudo opcode) and then all characters are
output untit the index register contains a value greater than the
length of the string.

LDX #§0Q

LDOP INX
LDA STRING, X
JSR $FDFO
CPX STRING
BLT LOOFP
RTS

éTRING STR "I WON! GARE TO FLAY AGAIN?™
END

In this example the X-register is initialized to zero, then
incremented 1o one, before fetching the first character to output
(remember, the length byte has to be skipped over). After the
character is output to the video display, the X-register is compared
with the length byte; if it is less than the length byte, another
character is output.

The previous example has only one problem. What happens
if the length of the string is zero? At least one character is output
anyway. Sometimes it's possible for a string to have a length of
zero, which means that the above procedure will not work in an
entirely pleasant manner. In order to allow strings of length zero
to be output (or actually NOT output in this case), the following
code should be used:

LDX #8§0
LOOP CPX STRING
BGE EXIT
LDA STRING+$1.X
JSR $FDFO
INX
JMP LOOP
EXIT RTS

STRING STR "I WON! CARE TO PLAY AGAIN?"
END
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This routine attacks the problem in a slightly different man-
ner. Rather than increment the X-register to compensate for the
length byte, an offset is added 1o the address of the STRING
when loading the A-register. By using this offset method, the X-
index register will be equal to the length of the string MINUS one
when the last character of the string is loaded into the accumu-
lator. Whenever the X-register becomes equal to the length byte,
the routine is finished. The BGE instruction is used rather than
the BEQ instruction “just in case.” True, under almost all circum-
stances, the BEQ instruction would have worked fine, but an
ounce of prevention...

Although this method is considerably better than outputting
the string a character at a time, it still leaves a lot to be desired.
What happens if you wish to output several lines? In BASIC you
would simply use additional print statements. In assembly lan-
guage you have to repeat the above sequence over and over
again. Not a nice thought.

To avoid this, a second method of outputting characters must
be used. Rather than using a length byte to inform the print routine
about the length of the string, a trailing end-of-text byie is used
to terminate the string. Now, the print routine simply prints all
characters until this end-of-text character is encountered, which
means control characters such as RETURN and LINE FEED may
be imbedded directly in the string.

The ASCII character set does include a special ‘ETX' (for
‘end-of-text’) character ($83, or control-C}, but sometimes you
may need to output this character to some device. As a result, it
is better to select a character code that will almost never be ocutput
to a peripheral device. Such a character is the inverted at sign
(‘@) which has a character code (on the APPLE [l compter) of
$00. The choice of the character code is arbitrary, but it is very
easy to test for zero, so that’s what will be used in the following

examples:
LDX #%0 :INIT FOINTER TO CHARACTERS
LOOP LDA STRING,X :GET NEXT CHARACTER
BEQ EXIT IF ZERO, QUIT
JSR SFDFO . OTHERWISE OUTPUT
INK
JMP LOOF
EXIT RTS
STRING ASC "I WON! CARE TO PLAY AGAIN?"
BYT $0
END
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Note that the ASC pseudo opcode was used rather than the
STR pseudo opcode. Remember, the STR pseudo opcode out-
puts a length byte before it outputs the string. This feature is not
desirable here.

Qutputting several lines at once is simply a matter of imbed-
ding carriage returns within the text:

LDX #8$0

LOOP LDA STRING X
BEQ EXIT
JSR $FDFO
INX
JKP LOCP

EXIT RTS
STRING ASC "I WON! CARE TO PLAY AGAIN?"
BYT $8D
ASC "(Y/N):"
EYT $0
END

The previous exampie outputs two separate lines before
termination. Any number of lines (almost!) may be output by
embedding a return character ($8D} within the text string.

The procedures thus far presenting this point suffer from
one drawback. Since the X-register is used to access elements
of the strings being output, you are limited to a maximum of 255
characters in your strings. Although this may seem like a lot for
just one string, remember that when outputting several lines the
255 character limitation (i.e. six lines) becomes critical. In fact,
the last example had a small “bug” in it. Should you try to output
more than 255 characters, the X-register will wrap around to zero
and then the routine will begin printing the string from the begin-
ning again. The end result is that you will wind up in a infinite loop
with a lot of redundant material ending up on the screen. To pre-
vent the infinite loop from occurring, you should use the following

code:
LDX #$0
LAAR LDA STRING. X
BEQ EXIT
JSR $FDFO
INX
BNE LGOP

EXIT RTS

STRING ASC "» 255 CHARACTERS HERE"
BYT $0
END

11-b
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In this example the JMP LOOP instruction was replaced with
the BNE LOOCP instruction. Should the X-register overflow and
wrap around to zero, the routine will exit rather than continuing
on its merry way. It should be noted that this “fix” does not allow
you to output more than 255 characters, it simply terminates out-
put once 255 characters have been output. As a result, part of
your string may not be displayed, but then your program will not
cause an infinite amount of 'garbage’ to be written to the screen
either.
To output strings whose length is greater than 255, a 16-bit
pointer must be used. This means that the indirect, indexed by
Y addressing mode must be used. The following routine allows
you to output strings of any length {less than 65,535 characters,
of course): LDA #STRING :MOVE ADDRESS OF STRING
3TA 80 ;INTO LOCATIONS 80 AND
LDA /STRING ‘81
5TA 81
LDY # 0O ;INIT Y REGISTER
LOOP  LD& {(80}.Y
BEQ EXIT
JSR $FDFO
INY
BNE LOOP ;IF NO OVERFLOW, KEEP IT UP
INC §1 ; INCREMENT BEYOND 8 BITS
BNE LOOP

EXIT RIS

STRING ASC "STRING OF ANY LENGTH"

HEX 00
END

This routine has a ¢ouple of interesting features. First, note
that the Y-register, rather than location $0 was incremented. This
saves a byte of code and lets the routine run a little faster. Also
note that locations $0 and $1 had to be set up before the routine
was executed. Althcugh considerably more code was required to
write this outine, in the end it pays off because the routine can be
turned into a generalized subroutine. Consider:

PRTSTR STA 80
STY $1
LDY #80
LOOP LDA (80).Y
BEQ EXIT
JSR &FDFG
INY
BNE LOOP
INC %1
BNE LOGP

EXIT RT3 11-6
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With this subroutine all you need to do is load the accu-
mulator and Y-register with the address of the string to be output
(low-order byte into ACC, high-order byte into Y-register) and then
JSR PRTSTR.

Example: LDA #STRING

LDY /STRING
JSR PRTSTR
RTS
STRING ASC "STRING OF ANY LENGTH"
BYT $0
END

Now only three lines of code {plus the string) are required
to output a string of characters. That's quite a bit better than the
seven to ten lines required by the other methods. Nevertheless,
this method has two drawbacks. First, three lines are still two
lines more than one. Second, this method requires that data be
passed to the subroutine in the accumulator and Y-register. Typ-
ically, one likes to avoid the use of the registers for parameter
passing as much as possible (since the registers are much more
useful for indexing and counter purposes).

The final method presented here is based on the previous
example. That is, the address of a string is passed to a subroutine
which outputs all data from that address forward until a zero is
encountered. The approach used by this method is different
because the 6502 stack will be used to pass the address to the
routine. Consider the following assembly language sequence:

JSR PRINT

ASC "HELLQ THERE"
HEX Q0

RTS

END

This section of code would jump to the ‘PRINT’ subroutine
and then return to the next instruction- which is the character ‘H.
Wait a minute, this won't work as planned! The string has to be
placed where it won't be executed as code. Or does it? As you
may recall, when a subrouting is called, the return address minus
one is pushed onto the stack. If the address is popped off the
stack and incremented by one, the address will point to the "H" in
“HELLQ.” By using this pointer, it is possible to output all the data
untit a $00 is encountered. When the zero is encountered, the

11-7
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tine might be:
PRINT

FLOOF

EXIT

INCZ

INCZ0

EXAMPLES:

STA
STY
FLA
STA
PLA
STA
JSR
LDY
LDA
BEQ
JSR
J3R
JMFP

JSR
LDA
LDY
JMP

INC
ENE
INC
RTS
END

JSR
ASC
BYT
ASC
BYT

JSR
ASC
BYT
JER
BYT
A3C
BYT

Programming 6502 Assembly Language

next byte will (hopefully) contain a valid instruction so the address
can be pushed back on the stack and a normal RTS instruction
can be executed. Upon return, the 6502 will continue program
execution at the point just beyond the $00. Another alternative is
to increment the address by one (upon encountering $0) and then
jump indirect through that address. This simulates the RTS
instruction with a small space savings. The final PRINT subrou-

ASAVE
TSAVE

i SAVE ACC
;SAVE Y REG

ZFAGE

ZPAGE +$1
INCZ

#80
{ZPAGE) , Y
EXIT
$FDFO
INCZ
PLOOP

INCZ
ASAVE
YSAVE
{ZPAGE)

ZPAGE
INCZ0
ZPAGE +§1

This routine is called with the string immediately following
the JSR instruction, terminated of course by a hex 00.

PRINT

"I WON!
$8D
"{‘I'/{N]i"
$0

CARE TO PLAY AGAIN?T!

PRINT

“"HELLO THERE, HOW ARE YoU!"
$0

FRINT

18D

"I AM A SMART COMPUTER!'"

$0

ETC. .

11-8
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STANDARD OUTPUT AND PERIPHERAL
DEVICES.

Until now all output was assumed to be directed to the
Apple's video display. To output a character to the video display
you simply load a character into the accumulator and JSR to
$FDFO. Since it is not a good idea to use absolute addresses
within your assembly language programs, you should define a
symbolic label (using the EQU pseudo opcode) that is equal to
$FDFOC. A good label to use is COUT1, because that's the label
used in the Apple monitor listings, and if someone else reads
your code, they will probably associate the video output routine
with the COUT1 label.

Sometime you will want to output data to some peripheral
device other than the video display. Output is handled in 2 manner
identical (in most cases) to the video display. That is, you load
the accumulator with the character you wish to output and JSR
to the routine that handles the output for you. The address of this
routine is typically $Cn00 where n is the slot number of the periph-
eral deviceland is in the range of 0 thru 7. Note that this scheme
only works for the so-called, “intelligent” peripherals which have
an on-board ROM. “Dumb” peripherals, such as those purchased
from Electronic Systems and Microproducts, use a totally different
scheme for “driver software” storage. You should also be aware
that this scheme does not work for the Disk 1i or the Tape i
devices as they use the ROM area for a bootstrap loader. Let's
assume you have a printer interface in slot #1. All you have to do
to output a character to the printer is load the accumulator with
that character and JSR $C100.

But it is even easier to use Apple’s “Standard Output.”
Rather than jumping to the subroutine at $Cn00, simply JSAR to
location $FDED (label = COUT) in the Apple monitor. This
causes the output to be directed to the currently active peripheral.
Peripherals are made active by simulating the PR#n and IN#n
commands from assembly language. To simulate a PR#n com-
mand, first load the accumulator with the slot number, and then
JSR to location $FE9S in the Apple monitor (routine ‘OUTPORT').
To simulate an IN#n command, load the accumulator with the
slot number and JSR to location $FE8B (routine INPORT’). To
reset the /O vectors 10 the video screen or keyboard (the equiv-
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STRvG L, GO TO THE
YIOED DISPLAY -
STRING 2, GO TQ THE

PRINTER —
STRING 3, GO TO THE
PLOTTER |

STRING | STRWNG 2 STRING 3

"HELLO " PRIMTED "PLOTTER

THERE vALUES™ DATA”
\

e Uy EE)

" PERIPHERAL 1/0"

alent of a PR#0 or IN#0 command), just load the accumulator
with zero before jumping to the desired routines. Alternately, you
may simutate a PR#0 command by JSR'ing to $FE93 you may
simulate an IN#0 command by JSR'ing to $FE89.

When you execute the routine at location $FDED, the first
instruction to be executed is a JMP ($36). Normally, locations
$36 and $37 contain $F0 and $FD, which means that whenever
you JSR $FDED (or JSR COUT), the COUT1 routine gets exe-
cuted. If & PR#n command (or equivalent) is executed prior to
the output of a character, $00 will be stuffed into location $36 and
$Cn will be stuffed into location $37. Now the character is routed
to the routine stored at location $Cn00... automatically. Naturally
you can ‘poke’ the address into locations $36 and yourself:

~-SIMULATION OF A PR#3
LDA #8800
5T4 $36
LDa #$C3
STA 8§37
“continued next page”
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-SIMULATION OF A PR#0
LDA #$FDFO
STA $36
LDA /$FDFC
STA $37

_CAUSE OUTEUT TO BE ROUTED TO USER ROUTINE
AT LOCATION $300
LDA #$300
STA $36
LDA /%300
STA $37

The last example is important because it demonstrates how
one acilivates a user-defined output routine. An example of such
a user routine is:

ORG $300
LD& #DBLVSN
STa $36
LDA /DBLVSN

STA ¥37
RTS

DBLYSN JSR $FDFO
JMP §FDFO
END

Assemble this routine, then execute the Apple monitor 300G
command and watch what happens. The fact that the standard
output can be “directed” is one of the more powerful features of
the Apple monitor, and is the primary reason that the Apple Ilis
easily expandable.

CHARACTER INPUT.

Just as with character output, character input is handled a
character at a time. The Apple 1l keyboard appears as two mem-
ory locations to the user program. Location $C000 in memory will
contain the ASCII code of the last key pressed. If bit seven is set
{i.e., the high-order bit is one), a valid key has been pressed. [f
bit seven is clear, then a key has not yet been pressed and the
data at location $C000 is invalid. Accessing location $C010 clears
bit seven to allow additional keys to be pressed and acknowi-
edged.

11-11
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ABCREF

“ CHARACTER INPUT”

Therefore, to read a key from the Apple keyboard you would
perform the following steps:

1) Read location $C000 and loop until bit seven is set.

2) Load the accumulator from location $C000 to enter the
keycode into the accumulator.

3) Store the accumulator into location $C010 to clear the
keyboard strobe, which makes location $C000 ready for
the next input,

A suitable program for accomplishing this task might be:

KEYIN LDA $C0Q0C
BPL KEYIN
STA $CO10
RTS

You will notice that any key read in this manner will not be
‘echoed’ onto the Apple screen. To perform this function (that of
an ‘electronic typewriter’), use the following code:

TPRRTR JSR KEYIN
JSR COUT
JMP TPWRTR

KEYIN LDA $C000
BPL KEYIN
STA $CO10
RTS

COUT  EQU $FDFQ
END

1112
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To exit this program, depress the RESET key on the Apple Il
keyboard.

When using the Apple keyboard and the video display, the
Apple monitor provides a very handy character input subroutine.
It is located at $FDOC and it sets the current cursor location to
the flashing mode. Upon keyboard entry the flashing cursor is
replaced with the data originally under the cursor. A better ‘elec-
tronic typewriter’ might be:

LOOP JSR RDKEY
JSR COUT
JMF LOOP
RDKEY EQU §FDOC

COUT EQU $FDED
END

The routine at location $FDOC does not ‘echo’ the character back
to the display, hence the JSR COUT.

Just as the routine at location $FDED handles 1/O param-
eters through the standard output (allowing you to output data to
several different peripherals), the routine at location $FDOC gets
its input from the ‘standard input. By JSR'ing through location
$FDOC it is possible to read data from peripherals such as the
Disk II, Mountain Computer’s Apple Clock, external terminals, etc.

There are two differences between the way standard output
is handled and the way the standard input is handled. First, loca-
tions $38 and $39 are used to hold the address of the routine
from which the input is coming. Second, the input data is returned
in the accumulator.

An IN# command can be simulated by loading the accu-
mulator with the desired slot number and JSR'ing to the routine
at location $FESB. An IN#0 command can be simulated by
JSR'ing to the routine at focation $FE89. Input must be handled
a little more cautiously than output; the reader is advised to study
the input routines in the Apple monitor ROM's from location
$FDOC to $FD2E.

INPUTTING A LINE OF CHARACTERS.

Obviously, to input a line of characters- all one needs to do
is continually read a single character and store the data in suc-
cessive memory locations until a carriage return (ASCII CODE
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= $8D) is received. Although, on the surface the routine seems
trival to write, there are several littte “gotcha’s” which sneak up
on you. For instance, when you press the backspace key, the
ASCII code $88 is returned. If you print a backspacs, the cursor
will indeed back up; however, typically you do not want tc enter
the backspace character into the line of text, but rather you wish
to delete the previously entered character. Also, the right arrow
key {which is the same as control-U) will not copy the data under
the cursor, but rather return the ASCH code $95. Furthermore,
the ESC editing functions are not supported, unless of course,
you write the handler routines yourself. As you can see, the trival
routine turns out to be not-quite-so-trival!

Luckily, a line input routine has already been written for us.
The address of this routine is $FD67 and it is called, “GETLNZ.”
When called, it outputs a carriage return, prints a ‘prompt’ char-
acter (more on that fater), and then reads a line of text from the
current input device. Whatever character resides in location $33
is used as a prompt character, so, if you wish to use a new and
unique prompt (perhaps “:" or “ —" or “="), simply store the char-
acter at location $33 before calling GETLNZ.

GETLNZ has two alternate entry points. GETLN (at location
$FD6A) does not output a carriage return before outputting the
prompt character. GETLN1 (at location $FD6F) outputs neither
the prompt character nor the carriage return. Both of these entry
points will be useful on occasion.

So where does the text end up when you call GETLNZ,
GETLN, or GETLN1? All text is stored sequentially in memory
beginning at location $200. A maximum of 256 characters are
allowed to be entered without having the line rejected. Because
of this, page two should never be used for program code or data.
Upon return from the GETLNZ, GETLN, or GETLN1 routine the
X-register contains the number of characters actually input (not
including the carriage return). The GETLN routines echo all input
s0 the user can see what's going on. Furthermore, all Apple
screen editing features are supported. Just exactly how one
would use the line input routines will be discussed in following
chapters.
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GENERAL.

Inputting and outputting characters is fine for many pur-
poses. However, sometimes the need arises to input or output
numetic data. This chapter will cover four types of numeric 1/O:

1) Hexadecimal IO

2) Byte/numeric /O

3) Integer (16-bit or more) VO

4) Signed integer (16-bit two's complement) I/O

HEXADECIMAL OUTPUT.

The easiest type of data to output numerically is a hexade-
cimal number. Aithough we could write a routine to do this (and
in fact one is presented for your education), there is no need. The
Apple monitor provides us with a very good routine. The address
of the routine is $FDDA and this routine prints the contents of the
accumulator as two hex digits. The contents of the accumulator
are destroyed, but no other registers are affected. The Apple
monitor name for this routine is PRBYTE, but HEXOUT is usually
used in user programs. It should be noted that the hexadecimal
output and BCD output routines are one and the same, so if you
wish to output a BCD number, use the routine at location $FDDA.

To output a number (BCD or HEX) that is greater than one
byte, load the accumulator with the most-significant byte and JSR
HEXOUT. Repeat this for all the other bytes (the next most-sig-
nificant byte down to the least-significant byte) until the entire
number is output.
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YHEX-ING Y THE BINARY DATA

The PRBYTE routine in the monitor is reproduced here (with
some minor changes) for illustrative purposes:

PREYTE PHA
LSR
LSR
LSR
L3R
JSR
PLA
FRHEX  AND
PRHEXZ OQRA
CMF
BLT
ADC
PRTIT JMP
couT EQU
END

The CMP #3$BA is required because the letter A does not imme-
diately foliow the digit 9 in the ASCII character set. Since BLT is
the same as BCC, the processor is guaranteed to have the carry
flag set if the ADC #8$6 is encountered. In effect, we are adding
seven to the contents of the accumulator. $BA plus $7 is $C1
which is the ASCII code for the letter A, exactly what we want.

PRHEXZ

#BF
#EBO
#8BA
PRTIT
#86
COUT
$FDED

:SAVE ACC FOR USE LATER ON
;SHIFT H.0. NIBBLE

.DOWN TO THE L.0. NIBBLE

' CLEARING THE H.Q. NIBBLE

:PRINT L.0. NIBBLE AS A DIGIT
;GET ORIGINAL VALUE BACK

"MASK H.0. NIBBLE

; CONVERT TO ASCII

:IF IT IS A DIGIT FINE, OTHER-
;WISE IT MUST BE CONVERTED TQ A
;LETTER IN THE RANGE A-F
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OUTPUTTING BYTE DATA AS A DECIMAL
VALUE.

Hex numbers are fine for computer type people, but when
trying to present information to others;, the decimal number sys-
tem should be used. The monitor does not contain a tacility for
outputting decimal numbers (except BCD) so we will have to write
one ourselves. In this section, a method for outputting a single
byte as an unsigned integer in the range 0 to 255 will be explored.

The algorithm for outputting a byte as a decimal integer is
actually quite simple. The binary number is compared with 100;
if greater or equal, then 100 is continually subtracted until the
desired value is less than zero. After each subtraction, a memory
location is incremented so that when the number is less than one
hundred, the hundreds digit is saved in this memory location. This
data may then be output to the videc screen. This process is
repeated, only 10 is subtracted this time instead of 100. Once the
number is less than 10, the corresponding digit counter is output.
Since the remaining number is less than 10, its output is accom-
plished rather easily.

" CONVERTING BINARY TO DECIMAL"

In addition to these steps, a flag must be used to suppress
the output of leading zeros. This is accomplished by initializing
a memory location to a positive value, which is set negative (i.e.,
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high-order bit=1 Before outputting a digit, this flag is checked to
make sure that a zero (should the digit be a zero) can be output.
The program is written as follows:

PRTBYT

PRTBL

PRTB2

PRTB3

PRTB4

PRTES
PRTBE

TBLI1C

COouT

LEADO
DIGIT
VALUE

PHA
TXA
PHA

LDX
STX
LDA
3TA

SEC
LDA
SBC
BLT

STA
INC
JMP

LDA
CPX
BEQ
CMP
BEQ
STA

BIT
BPL
JSR
DEX
BPL
PLA
TAX
PLA
RT3
BYT
BYT
BYT

EQU
EPZ
EPZ
EPZ
END

;SAVE REGISTERS

#42 (MAX OF 3 DIGITS (0-255)
LEADO ;INIT LEADD TO NON-NEG VALUE
#1on JINITIALIZE DIGIT COUNTER
DIGIT
VALUE ;GET VALUE TO BE QUTPUT
TBL1G, X ; COMPARE WITH POWERS OF 10
PRTB3 :IF LE3SS THAN, OUTPUT DIGIT
VALUE ;DECREMENT VALUE
DIGIT ; INCREMENT DIGIT COUOTER
PRTE2 ;AND TRY AGAIN
DIGIT i GET CHARACTER TO QUTPUT
#80 ;CHECK TCO SEE IF THE LAST DIGIT
PRTBG ;IS BEING OUTPUT
#"o" :TEST FOR LEADING ZEROS
PRTE4
LEADQ .FORCE LEADO NEG IF NON-ZERO
LEADG i IF ALL LEADING ZEROS, DON'T
PRTB6& i GUTPUT THIS ONE
COUT y QUTPUT DIGIT

'MOVE TO NEXT DIGIT
PRTB1 ;QUIT IF THREE DIGITS HAVE

; BEEN HANDLED
11
110
1100
$FDED
$0
LEADO + 81
DIGIT+§1

To use this routine, load into the location VALUE the byte to
be printed; then JSR PRTBYT. The decimal number correspond-
ing o the byte stored in location VALUE will be output to the
screen {or other output device).
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éRTIl

PRTIZ

ERTIS

PRTI4

PRTIS
PRTI&

T10L

PRTINT FPHA

TXA
PHA
LDX
STX

LDA
STA

SEC
LD
SBC
PHA
LDA
5BC
BLT

STA
PLA
STa
INC
JMP

FLA
LDA
CPX
BEQ
CMP
BEQ
STA

BIT
BPL
J5R
DEX
BPL
PLA
TAX
PLA
RTS

BYT
BYT
BYT
BYT
BYT

Chapter 12: Numeric 11O

OUTPUTTING 16-BIT UNSIGNED INTEGERS.

Obviously we have to work with quantities which cannot be
contained in only eight bits. With two bytes, unsigned values in
the 0—65,535 range can be represented. Output of integers in
this range is accomplished quite easily by extending the previous
routine to test for values in the 1000 to 10,000 range. The final
routine appears similar to the following list:

i SAVE REGISTERS
#$4 :QUTPUT UP TO § DIGITS
LEADQ :INIT LEADO TO NON-NEG
#110" ;INIT DIGIT COUNTER
DIGIT
:BEGIN SUBTRACTION PROCESS
VALUE
TIOL. X ; SUBTRACT LOW ORDER BYTE
s AND SAVE
VALUE+§1 :GET H.O BYTE
TiOH. X +4ND SUBTEACT H.C TEL OF 10
PRTI3 ;IF LESS THAN, BRANCH
VALUE+$1 ;IF NOT LESS THAN, SAVE IN
; VALUR
VALVE
DIGIT : INCREMENT DIGIT COUNTER
PRTIZ2
;FIX THE STACK
DIGIT :CET CHARACTER TQ QUUPUT
#80 ;LAST DIGIT TO QUTPUT?
PRTIS ;IF S0, QUTPUT REGARDLESS
#"o" ;A ZERO?
PRTI4 :IF S0, SEE IF A LEADING ZERO
LEADD :FORCE LEADO TO NEG.
LEADO :SEE IF NON-ZERQ VALUES QUTPUT
PRTIS (YET.
CouT
; THROUGH YET?
PRTI1
11
110
1100
11000 “continued next page"
110000
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T10H HBY !1
HBY |10
HBY 1100
HBY !1000
HBY !10000

couT EQU $FDED

LEADO EPZ %0

DIGIT EPZ LEADO+$1

VALUE  EPZ DIGIT+$1
END

To use this routine, load VALUE and VALUE + $1 with the
binary integer you wish output. Then JSR PRTINT and let the
routine do the rest of the work for you. This routine is fairly general
and can be expanded to output numbers greater than two bytes
in length. All that is required is one additional subtraction between
the PRTI2 and PRTI3 labels to handle the most-significant byte,
and the inclusion of another table of bytes giving the most-sig-
nificant byte values for the data you wish output. Finally, the LDX
#%4 instruction has to be changed to reflect the maximum number
of digits to be output, MINUS ONE. Beyond that, this routine can
be used to output unsigned integers of any size.

OUTPUTTING SIGNED 16-BIT INTEGERS.

Outputting a two's complement signed value turns cut to be
quite simple. Check the high-order bit of the number. If it is clear,
jump to the PRTINT routine just described. If the high-order hit is
set then you must output a *-", take the two's complement of the
number; then jump to the PRTINT routine. The code is written as
follows:

PRTSGN BIT VALUE+$1 ; TEST SIGN BIT
BPFL PRTINT ;IF POSITIVE, GO TO PRTINT
FHA ;SAVE ACC
LDA #"-" ;OUTPUT & -
J3R COUT
SEC ;TAKE TRO'S COMFLIMENT QF
LDA #80 :VALUE.
SBC VALUE
3TA VALUE
LDA #8$0

SBC VALUE+$1
STA VALUE+§1
PLA
PRTINT — : INSERT PRTINT ROUTINE HERE.
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AN EASY METHOD OF OUTPUTTING INTEGERS.

Aithough these decimal printing routines are fairly easy to
use, they do require a substantial amount of setup code. VALUE
and VALUE +$1 must be loaded with the integer to be output
before the JSR is executed. This setup code requires 8 to 10
bytes and four lines of code. The following routine (that works in
a manner similar to the print routine developed in the last chapter)
allows you to specify the address of the integer which you wish
output immediately after the JSR statement. This only requires
one extra line and two bytes of code, which makes it almost as
easy to use as the PRINT | command. The routine works in the
following manner:

1) The return address is popped off the stack and stored in
VALUE.

2) VALUE is incremented by two and pushed back onto the
stack. This fixes the return address so that the 6502 will
return to the point immediately following the 2-byte
address.

3) VALUE is decremented by one. It now points to the 2-byte
address that follows the JSR instruction.

4) The two bytes pointed to by (VALUE) and (VALUE)-+$1
(which is the address of the integer we wish to print) are
loaded into VALUE.

5) The data bits pointed to by VALUE (i.e., the data to be
output) are then loaded into VALUE.

6) PRTINT or PRTSGN is called to output the number. The
code used to achieve all of this is:

STA ASAVE ;SAVE ACC

STY YSAVE ;SAVE Y REGISTER

PLA :GET RETURN ADDRESS

STA VALUE

FLA

STA VALUE+§1

JSR INCV : INCREMENT VALUE BY TWO
JSR INCV

LDA VALUE+$1 :PUSH RETURN ADDRESS
PHA

LDA VALUE

FHA

JSR DECY ;MAKE VALUE POINT TQ DATA
JSR LVIV ;GET DATA POINTED AT BY

;DATA FOLLOWING JSR
"comtinued next page”
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LDA ASAVE ;RESTORE ACC

LDY YSAVE ;RESTORE Y REGISTER

JMP PRTINT ;CHANGE T0 PRTSGN IF SIGNED
: ;0UTPUT IS DESIRED
LVIV:

JSR LAIA

JSR LAIA

LATA LDY #%0
LDA (VALUE).Y ;GET L.0. BYTE
PHA
INY
LDA (VALUE),Y ;GET H.0. BYTE
STA VALUE+§1 ; AND REPLACE VALUE
FLA
STA VALUE
RTS
ASAVE EPZ §4 ;ACC SAVE AREA
YSAVE  EPZ ASAVE+Bl ;Y REG!SAVE AREA
END

NUMERIC INPUT.
HEXADECIMAL and BCD.

Numeric input is just as important as numeric output. In this
section we will explore the various methods of inputting numeric
data.

BCD input is by far the easiest to accomplish. The only
operations required here are some masking and shifting opera-
tions. BCD input uses the following algorithm:

1) Initialize some location (VALUE) to zero. In these exam-
ples a 2-byte input will be used, but the generalization to
more {or fewer) byles should be apparent.

2) All input will be assumed to be stored in page two (so that
it is compatible with the GETLN routines) and the Y-reg-
ister will point to the first character to be input.

3) The end of the BCD string will be considered to be the
first non-decimal digit encountered.

4) Each digit is read in and the high-order nibble (which
always $B) is shifted out with four successive ASL instruc-
tions. The low-order nibble of the original number is left
in the high-order nibble of the accumulator.

5) This value is shifted into VALUE using the ROL instruc-
tion. First, some routines which will prove 10 be useful:
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TSTDEC: TEST THE CHARACTER IN THE ACCUMULATCR.

IF A VALID DECIMAL DIGIT. THEN THIS ROUTINE RETURNS

; WITH THE CARRY FLAG SET. IF THE CHARACTER IN THE

; ACCUMULATOR IS NOT A DECIMAL DIGIT, THEN THIS RQUTINE
; RETURNS WITH THE CARRY FLAG CLEAR.

TSTDEC CMP #"0Q"

BLT NOTDEC
CMP #"9" +§1
BGE NOTDEC

NOTDEC

SEC
RTS

CLC
RTS

; SHFTIN: SHIFTS THE
;. INTO "VALUE".

SHFTIN

SHFTZ2
SHFT1

The code for SHFTIN should be studied carefully. You should
manually trace the code beginning at the JSR SHFT2 instruction
and convince yourself that four shifts are performed by this code
sequence. With these two routines, BCD input becomes very
easy. The BCD input routine is coded as follows:

:BCDINK: CONVERTS ASCII STRING IN PAGE TWQ (FOINTED
;AT BY THE Y REGISTER) INTO & BCD VALUE. ALL DIGITS
;ARE CONVERTED UNTIL A NON-DIGIT IS ENCOUNTERED.

BCDIN:

BCDLP

ASL
ASL
ASL
ASL

JSR SHFT2
JSR SHFT1

ASL

ROL VALUE
ROL VALUE+$1

RTS

LDA
STA
STA

LA
JSR
BeC
JSR
INY
BNE

#§0
YALUE
VALUE+§1

PAGZ, Y
TSTDEC
BCDONE
SHFTIN

BCDLP
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; BRACKET TEST FOR A DIGIT
;IS IT GREATER THAN NINE?

;IT IS A DECIMAL DIGIT
;50 SET THE CARRY AND RETURN

;NON-DIGIT WAS FOUND

L.0. NIBBLE OF THE ACCUMULATOR

;MOVE LOW ORDER NIBBLE
; INTG HIGH ORDER NIBBLE
:OF THE ACCUMULATOR

:SHIFT ACC INTO VALUE
;NOTE: FOUR SHIFT3 ARE
; PERFORMED HERE!

; INITIALIZE VALUE TO ZERO

;GET NEXT CHARACTER

IS IT A DECIMAL DIGIT?

;IF NOT, QUIT

IR IT IS, SHIFT INTO VALUE
; INDEX TO NEXT CHARACTER

; AND REPEAT
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BCDONE RTS
PAG2  EQU $200 .GETLN INFUT BUFFER
VALUE EPZ §2

END

The following short program demonstrates the use of the BCD
input routine from within a program.

BCDTST JSR PRINT :PRINT RQUTINE (SEE LAST CH)
ASC "ENTER A NUMBER:"
HEX 00

JSR GETLN1 :GET & LINE OF TEXT (NO PROMPT)
LDY #$0

JSR BCDIN

JSR PRINT

ASC "YOU ENTERED:"

HEX Q0

LBA VALUE+§1
JSR HEXOUT
LDA VALUE
JSR HEXOUT
RTS

GETLN1 EQU §FD&F
HEXOUT EQU §FDDA
END

Inputting a hexadecimal number is handled in an identical
manner, except “TSTDEC" is replaced by “TSTHEX” which tests
the character in the accumulator to see if it is a valid hexadecimal
digit. In addition to testing for a valid hex digit, TSTHEX also
converts the letters “A” to “F" to the hex vaiues $BA-$BF so that
the 16 hexadecimal values are contiguous.

CMP #"Q" ;BRACKET TEST FOR DECIMAL D

BLT NOTHEX

CMP #"9"+§1

BLT ISHEX

CMFP #"a" ;BRACKET TEST FOR "A" t

BLT NOTHEX

CMpP #"G"

BGE NOTHEX :SAME AS BCS (SEE NEXT INSTR)

SBEC #§6 ;CONVERT FROM $C1 TO $BA ...
ISHEX  SEC ;SIGNAL VALID HEX DIGIT

RTS
NOTHEX CLC :SIGHAL INVALID HEX DIGIT

RT3
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To input a hexadecimal number, use this routine in place of
TSTDEC and replace the JSR TSTDEC with JSR TSTHEX in
BCDIN. Obviously, the name should be changed to HEXIN so
that it makes a little more sense.

UNSIGNED DECIMAL INPUT.

Decimal input of numeric data (with conversion to binary) is
only slightly more difficult than BCD or hexadecimal input. The
algorithm to accomplish decimal input is roughly as follows:

1) Input a character and test for validity (i.e., is it in the range
0-97).

2) Strip the high-order four bits to give the numeric repre-
sentation of the digit.

3) Multiply a 16-bit memory location by ten and add the
stripped digit to this 16-bit location.

4) When all the digits have been shifted in, the 16-bit val-
contained in the two memory locations is the binary con-
tained in the two memory locations is the binary repre-
sentation of the decimal value,

NMBER 55, YOU'VE JUST
BECOME " OONGIt, GO
THRY THE DOOR TO
LoCATION $IFFF.

" DECIMAL INPUT"
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Parts one and two are accomplished in the same manner
as for BCD numbers. As such, they will not be discussed further
here. The third part of this algorithm (multiplying a 16-bit value
by ten) is easily accomplished using the multiply routines in the
next chapter. However, a more specialized multiplication routine
(a simple mulitplication by ten) is much faster and requires less
code. A routine which multiplies the 16-bit value held in locations
VALUE and VALUE + $1 by ten is:

MUL 100
PHP
PHA
ASL VALUE ;MULTIFLY VALUE BY 2
ROL VALUE+§1
LDA VALUE+$1 ;SAVE A COPY OF VALUE
PHA 'MULTIPLIED BY 2
LDA VALUE
ASL VALUE :NOW MULTIPLY VALUE BY 8
ROL VALUE+$1 :SINCE VALUE HAS ALREADY
ASL VALUE ;BEEN MULTIPLIED BY 2
ROL VALUE+§1 :A SIMPLE MULTIPLY EY 4 GIVES
CLC
ADC VALUE ;ADD IN 2xVALUE TO 8xVALUE
STA VALUE ;' TO OBTAIN 10xVALUE
PLA

ADG VALUE+¥1
STA VALUE+§1
FLA
FPLFP
RTS

Each time this routine is called, it muttiplies the contents of VALUE
by ten, leaving ali registers unchanged.

The final step in the algorithm (adding in the digit to the 16-
bit number) is trival at this point. The final decimal input routine

could be:
; DECIMAL INPUT ROUTINE

: NQTE: THIS ROUTINE ASSUMES THAT GETLN H4S BEEN
: CALLED AND THAT THE X-REGISTER POINTS TO
' THE FIRST VALID DECIMAL DIGIT IN FAGE 2.
; UPON EXIT, THE X-REGISTER POINTS TC THE
; FIRST NON-DIGIT ENCOQUNTERED.

DECINP:

PHF ;SAVE STATUS

PHA ;AND ACC

LDA #%0 INITIALIZE VALUE
STA VALUE ;TO ZEROD

STA VALUE+$1
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DECLP

ALDONE

e e e e w

STDEC:

NOTDEC
RTS

¥

; MULT 100 MULTIFLIES VALUE BY TEN

MULT100

LDA
JSR
BCC
AND
JER
CLC
ADC
STA
BCC
INC
JMP

PLA
PLP
RT3

Chapter 12: Numeric KO

INPUT, X
TSTDEC
ALDONE
#§F
MULT10

VALUE
VALUE
CECLP
VALUE + B1
DECLP

TSTDEC: TEST ACC TO SEE IF IT IS A VALID DECIMAL

DIGIT. 1IF

CTHERWISE THE CARRY FLAG IS CLEAR.

CMF
BLT
CMP
BGE
SEC
RTS

CLC

#IIOH
NOTDEC
#II 9!1 + $l
NOTDEC

{SEE ABOYE}

PHP
PHA
ASL
ROL
LDA
PHA
LDA
ASL
ROL
ASL
ROL
CLC
abc
STA
PLA
ADC
STA
PLA
PLP
RTS

VALUE
VALUE+§1
VALUE+§1

VALUE
VALUE
VALUE+§1
VALUE
VALUE + §1

VALUE
VALUE

VALUE + §1
VALUE +§1

; THAT'S ALL FOLKS. ..

;GET THE NEXT DIGIT

;IS IT REALLY A DIGIT?

;IF NOT, QUIT

; OTHERWISE CONVERT TO A NUMBER
;MULTIFLY VALUE BY 10

;AND ADD IN CURRENT DIGIT
; IF NOT CARRY, LOOP BACK
;IF A CARRY EXISTS, ADD ONE
;TO VALUE+$#1 AND LOOP BACK

;RESTORE REGISTERS

S0, THE CARRY FLAG IS 3ET.
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This routine does sufier from a few drawbacks. First, it does not
check for overfiow. Second, it terminates entry upon the first non-
digit encountered, which means that bad data entries will go
undetected. Finally, if the first character encountered is not a dec-
imal digit, the routine immediately returns and zero is returned in
value.

Luckily, these three problems are easily handled. To check
for overflow, check the carry flag to see if it is set after each ROL
instruction in the MULT10 routine, and check the carry flag after
the addition in the DECINP routine. If the carry flag is ever set at
any of these points overflow has occurred.

The second problem (termination on the first non-digit) is a
problem because it allows illegal data entries to go unchecked.
Typically, numeric input should be terminated by either a space,
a return, or a comma (or any other special character you might
think of). If one of these special characters is not encountered,
an input error should result. This problem is easily handled by
checking the first non-digit character o make sure it is one of the
allowable delimiters.

The last problem (invalid first character) is simply an exten-
sion of the second problem. Handling this problem is likewise an
easy one to solve. First, delete all leading blanks (since leading
blanks should be allowable in a number). Next, test the first non-
blank to insure that it is a valid decimal digit. If not, report an error.
The following routine takes all of these factors into account and
more or less simulates the integer input in Apple’s Integer BASIC:

DECINP:
PHP
PHA
DOIT:
LDA #%0 ;INIT VALUE
STA VALUE
STA VALUE+§1
JSR BLKDEL ;DELETE LEADING BLANKS
J3R TSTDEC ;I3 FIRST NON-BLANK A DIGIT?
BCC BADDIG ;IF NOT, INFORM THE USER
DECLP  LDA INPUT,X :GET NEXT (OR FIRST) DIGIT
INX ;MOVE TO NEXT CHARACTER
JSR TSTDEC ;I8 IT A DIGIT?
BCC ALDONE ;IF NOT, QUIT
AND #§F ; CONVERT TO & NUMBER
JSR MULT1D ;MULTIPLY VALUE BY 10
BVY3 OVRFLW ;IF QVERFLOW, INFCRM USER
CLC
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ADC VALUE ;ADD CURRENT DIGIT

STA VALUE ;TO VALUE

BCC DECLP

INC VALUE +§1 ;IF CARRY, INCREMENT VALUE+
ENE DECLP ; IF NO OVERFLOW, LOOF BACK
JMF OVRFLW :IF QVRFLOW, INFORM USER

ALDONE CHP #-." ;TEST FOR VALID DIGIT
BEQ QUIT : DELIMITERS
CMP # "
BEQ QUIT
CMP #$8D :RETURN IS VALID
BEQ QUIT
JSR PRINT ; PRINT ROUTINE FROM A PREVIOUS
HEX 8D : CHAPTER
ASC "RETYPE NUMBER"
HEX 8D00
JSR GETLN READ A LINE OF TEXT
LDX #$0
JMP DOIT

QVRFLW J3SR PRINT
HEX 8D
ASC "=>65535"
HEX 8DJ0
J3R GETLN ;GET A NEW LINE OF TEXT
LDX #$0
JMP DOIT

QUIT:
PLA
PLF
RTS

; BLANK DELETION ROUTINE

BLKDEL LDA INPUT,X
CMP #'IF n
ENE BLKDL
INX
ENE BLKDEL

BLKD1  RTS

; MULTIFLY BY 10 RQUTINE

MULT1C FPHA ;CAN'T SAVE CARRY, v IS OVRFLW
ASL VALUE
ROL VALUE +§1
BCS MOVRFL
LDA VALUE+81
FHA
LD4 VALUE
ASL VaLUE
ROL VALUE+§1

“continued next page”
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BCS MOVRFL
ASL VALUE
ROL VALUE+§1
BCS MOVRFL
CLC

ADC VALUE
SThA VALUE
PLA

ADC VALUE+§1
STA VALUE+$1
BCS MOVRFL
PLA

BIT NOVRFL :SET V FLAG TO ZERO
RTS

ﬁOVRFL BIT OVERFL ;SET ¥ FLAG TC ONE
RT3

NOVRFL HEX 00
OVERFL HEX 40

; TSTDEC: TESTS CHARACTER IN ACC TO SEE IF IT IS
: & VALID DECIMAL DIGIT
CARRY I5 SET IF IT IS

TSTDEC:
CMP #"0"
BLT NOTDEC
CMP #7"9" + %1
BGE NOTDEC
SEC
RTS

NOTDEC CLC
RTE

INPUT  EQU $200
VALUE EPP $0

GETLN  EQU $FD&7

. NOTE: THE PRINT ROUTINE PROVIDED IN THE PREVIOUS
: CHAPTER MUST BE INCLUDED HERE

To use this routine, read a line of data using GETLN. Set up the
X-register so that it points to the desired decimal digits tc be input
(leading blanks allowed) and then JSR DECINP. Upon returning
from DECINP the desired number (in binary form) will be stored
in VALUE and VALUE + $1. There are some improvements you
may want to make to this basic routine, such as:
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1) Modification to handle three, four (or more) byte integers

2) The ability to specify an address after the JSR DECINP
with the resulting input integer being stored at that

address (sort of the inverse of the decimal output routine
presented earlier in this chapter).

SIGNED DECIMAL INPUT.

Once we have the unsigned decimal input routine, the signed
decimal input routine becomes very easy. Al we have to do is
check to see if the first non-blank character is a minus sign. If it
is, increment to the next character and call the unsigned decimal
input routine. Upon return from the unsigned decimal input rou-
tine, check the high-order bit of VALUE + $1. Hitis set, an overflow
has occured. If it is not set, then take the twe’s complement of
the VALUE and VALUE + $1 if a minus sign was used, otherwise,
leave the number alone. The actual routine is:

: SIGNED DECIMAL INPUT

SNGDEC
PHP
PHA

DOSGN:
JSR BLKDEL
CMP #"-"
BNE SGN1
LDA #$1 ;SET A FLAG SIGNIFYING
S5TA SIGN ;A MINUS VALUE
INX
JMP SGH2

SGN1  LDA #80 .SET A FLAG SIGNIFYING
STA SIGN A POSITIVE NUMBER

SGN2 JSR DECINP ;GET THE UNSIGNED NUMBER
LDA VALUE+§1 ; TEST FOR OVERFLOW
BMI SGNCGVR
LDA SIGN ;TEST TC SEE IF 2'S COMP
BFL DONE ;IS REQUIRED
SEC ;PERFORM 2'S COMP
LDA #§0 ; OPERATION
SBC VALUE
STA VALUE
LDA #§0
SBC VALUE+$§1

DOHE PLA
FLF . i
RT3 “continued next page
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SGNOYR JSR PRINT
HEX 8D
ASC "=32787 REENTER"
HEX 2D00
JSR GETLN
LDX #%0
JHMP DOSGH

SIGN  EPZ VALUE+§2

That completes the general numeri¢c I/Q routines required
for normal “"BASIC-LIKE"” operations. These routines present the
basis for almost all other types of numeric I¥O. By modifying these
routines you can perform multi-byte inputs, single-byte inputs,
etc. Other types of numeric input, such as octal or binary, are
accomplished by simply modifying the MULT10 and TSTDEC rou-
tines to reflect the new radix, (e.g., you would use MULTS, and
TSTOCT for octal input). In fact, you could write a general routing
that could input data using any radix, but see the multiply routines
in the next chapter first.
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CHAPTER 13
MULTIPLICATION AND
DIVISION

GENERAL.

As we've mentioned before, the 6502 microprocessor does
not have a multiply or divide instruction. Obviously, a multiply or
divide instruction would be very handy to have. Since the 6502
does not support these functions, we are forced to write subrou-
tines to provide this capability for us.

MULTIPLICATION.

Multiplication in binary is very, very simple. In fact, it is iden-
tical to decimal multiplication. Consider the following DECIMAL
multiplication problem:

10110
x 110

Just add (0 X 10110) plus (10 x 10110) pius (100 x 10110)
and you've got the result. Multiplication by 10 is very easy; just
shift the number one place to the left of the decimal point. Inci-
dentally, the answer to the above problem is 1112100 (decimal).

The same procedure is used in multiplying two binary num-
bers. Just add (0 x 10110) plus (10 x 10111) plus (100 X
10110) get the final resutt. For multiplication by powers of two,
just use the ASL or ROL instructions to perform the multiplication
by the desired power of two. The answer to the above problem
{in binary) is 10000100.
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It should be noted at this point that an n-bit by m-bit multi-
plication can result in a maximum of an (m + n) bit result. There-
fore, an 8-bit by 8-bit multiplication can produce results up to 16-
bits in length, Likewise a 16-bit by 16-bit multiplication can result
in values up to 32 bits in length. With this in mind we must make
sure that there are enough memory locations reserved to hold
the results produced by our multiplication routine.

The tollowing multiplication routine uses six zero page mem-
ory locations. They are used to hold the multiplicand, multiplier,
and partial result. These locations (all 16-bits for this example)
will be labeled MULCND, MULPLR, and PARTIAL. After the mul-
tiplication is complete, the low-order 16 bits of the result will be
left in locations (MULPLR, MULPLR + $1) and the high-order 16
bits of the product (if not zero) will be left in locations (PARTIAL,
PARTIAL + $1). This routine will compute the value:

(MULPLR, PARTIAL) = MULPLR x MULCND + PARTIAL.
You will note that PARTIAL is added into the result of the multi-
plication. This is useful in several mathmatical calculations,
including extended-precision multiplication. For our purposes,
however, just remember to set locations PARTIAL and PAR-
TIAL + $1 to zero before calling the multiply routine.

HMA ool -0,
THE WIO'S GETTiNG
SrmaeTER {

LEARNING MULTIPLICATION AHD IVISION.

13-2
“A2B-RH-UBAL-2ND-13-02.PICT” 153 KB 2001-06-20 dpi: 300h x 300v pix: 1343h x 2359v

| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0190 of 0289 |




Apple 2 Technical Book -

Using 6502 Assembly Language

monitor.)

USMUL:
PHA
TYA
FHA

USMULL LDY
USMULZ LDA
L3R
BCC

LG
LDA
ADC
STA
LDA
ADC
STA

; MULPLR

USMUL4 ROR
ROR
ROR
ROR

DEY
BNE
PLA
TAY
PLA
RTS

MULFLR EPZ
PARTIAL EFZ
MULCND EFZ

tion:

#8510
MULFPLR

USMUL4

PARTIAL
MULCND
PARTIAL
PARTIAL+$§1
MULCND +$1
PARTIAL+§1

PARTIAL +§1
PARTIAL
MULPLR +$1
MULFLR

3EE IF DONE YET

MUL2

$50
MULFLR +$2
PARTIAL + 82

Chapler 13; Multiplication and Division

: USMUL-~ UNSIGNED 16~BIT MULTIFLICATION.
32 BIT RESULT 15 RETURNED IN LOCATIONS
(MULPLR, PARTIAL}.

;SET UP FOR 16-BIT MULTIPLY
;TEST L.O. BIT TO SEE IF SET

;L.0. BIT SET, ADD MULCND TO
i PARTIAL FRODUCT

; SHIFT RESULT INTO MULPLR AND GET THE NEXT BIT
; OF THE MULTIFLIER INTC THE LOW!ORDER BIT OF

13-3
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; COMPUTE 25 x 66 AKD LEAVE RESULT IN
; "RESULT*"

EXMFL.:
LDA #!25 ;29 DECIMAL
STA MULPLR
LDA /125 ;H.0. BYTE QF 25
STA MULPLR+$1
LDA #!66
STA MULCND
LDA /'66
STA MULCHD+§1
LDA #$0 ;MUST SET PARTIAL TO ZERC
STA FARTIAL
STA PARTIAL+§1

JSR USMUL ;PERFORM THE MULTIPLICATION
LDA MULFPLR ;MOVE FRODUCT TO RESULT
3TA RESULT

LDA MULPLR+$1
STA RESULT+§1

ETC. .

If you are performing a 16-by-16-bit multiplication and the result
is going to be stored in a 16-bit memory location, you may check
for overflow by OR'ing PARTIAL and PARTIAL + $1 together. If
the result is not zero, then overflow has occurred into the high-
order 16 bits.

As mentioned previously, PARTIAL can be used to gener-
alize this routine so that 24-, 32-, 48-, 64-, etc. bit multiplications
can be performed. It is easier, though, just to modify the existing
routine for the higher precision routines. To do this, simply load
the Y-register with the number of bits you wish to multiply together
and then medify the multiprecision ROR sequence and the mul-
tiprecision ADC sequence to reflect the precision you choose. Oh
yes, don't forget to reserve more room for MULCND, PARTIAL,
and MULPLR! An example of a 24 by 24-bit muitiplication giving
a 48-hit result might be:

; USMUL— UNSIGMNED 24-BIT MULTIPLICATION
; 48 BIT RESULT IS5 RETURNED IN LOCATIONS
{MULPLR, PARTIAL]

USMUL :
PHA
TYA
PHA

13-4
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USMULL LDY
USMULZ LDA
LSR
BCC

CLC
LDA
ADC
5TA
LDA
ADC
STA
LDA
ADC
3TA

; SHIFT RESULT INTO MULPLR AND GET THE NEXT BIT
; OF THE MULTIPLIER INTO THE LOW ORDER BIT OF

; MULPLR

USMUL4 RCR
ROR
ROR
ROR
ROR
ROR

#$18
MULPLR

USMULA4

PARTTAL
MULCND
PARTIAL
PARTIAL +$1
MULCND +$1
PARTIAL +§1
FARTIAL+§2
MULCND + 82
PARTTAL +$2

PARTIAL + 82
PARTIAL+$1
PARTIAL
MULPLR +§2
MULPLR +$1
MULPLR

: SEE IF DONE YET

DEY
BNE
FLA
TAY
PLA
RTS

MULPLR EPZ
PARTIAL EFZ
MULCND EPZ

It should be stressed that the above routines are for UNSIGNED
mulitiplication only. Signed multiplication is accomplished by first
noting the signs of the multiplier and multiplicand and setting a
sign flag if the sign bits do not equal each other. The absolute
value of the multiplier and multiplicand is then taken, and the
unsigned mulitplication routine is used. After the unsigned mul-
tiplication takes piace, the sign flag is tested. If it indicates that
the original sign bits were not equal to one ancther, the product

must be negated.

MULZ2

$50
MULFLR +§3
PARTIAL +$3
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; SIGNED 18-BIT MULTIPLICATION

SMUL.:

PHA
TYA
FHA
LDA MULCND+$1 ;TEST SIGN BITS
XOR MULFLR+$1 ;TO SEE IF H.0 BITS ARE UNEQU
AND #$80
ETA SIGN :SAVE SIGN STATUS
JSR ABS1 :TAKE ABSOLUTE VALUE OF MULPLR
JSR ABS2 ;TAKE ABSCLUTE VALUE!QOF MULCND
JSR USMUL :UNSIGNED MULTIPLY
LDA SIGN ;TEST SIGN FLAG
BPL SMUL1 :IF NOT SET, RESULT 1S CORRECT
JSR NEGATE ;NEGATE RESULT
SMULL PLA
TAY
PLA
RTS

+

ABS1  LDA MULPLR+$1 :SEE IF NEGATIVE
BPL ABS12

NEGATE:
SEC {NEGATE MULPLR
LDA #$0
SBC MULPLR
STA MULFLR
LDA #80
SBC MULPLR +%1
STA MULPLR+%1

ABSl2 RIS

ABS2 LDA MULCND+$1  ;SEE IF NEGATIVE
BPL ABS22
SEC :NEGATE MULCND
LDA #$0
SBC MULCND
STA MULCND
LDA »$0
SBC MULCND+§1
STA MULCND+§1

ABSZZ  RTS

As with the unsigned multiply routine, you can check for overflow
by OR'ing PARTIAL with PARTIAL +$1 and checking for zero. A
signed multiply routine is provided in the older Apple monitor at
location $FB60. You should study the technique used in the Apple
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monitor for multiplication, as it is somewhat different than the
technique employed here. It is ¢ertainly more complex and like-
wise more difficult to understand, but it is a good exercise in how
to reduce code at the expense of clarity and speed.

DIVISION ALGORITHMS.

As with multiplication, the algorithm used for binary division
is identical to the algorithm most people use when performing
long division. First, you take the high-order bit of the divisor, if
set, and then you see if the dividend is divisibie. If it is, you note
this in the running quotient and subtract the current divisor value
from the dividend. When these steps have been complsted for all
digits {or bits), the division is complete. The division routine is
coded as follows:

; UNSIGNED 16-BIT DIVISION
; COMPUTES {DIVEND,PARTIAL} / DIVSOR
; {I.E., 32 BITS DIVIDED BY 16 BITS)

USDRIV:
PHA
TYA
PHA
TX4
PHA
LDY #8110 :8ET UP FOR 16 BITS
USDIVZ2 ASL DIVEND
RCL, DIVEND + §1
ROL. PARTIAL
ROL PARTIAL+§12

SEC ;LEAVE DIVEND MOD DIVSOR
LDA PARTIAL ;IN PARTIAL

SBC DIVSOR

TAX

LDA PARTIAL+§1
SBC DIVSOR+§1
BCC USDIV3

STX PARTIAL
STA PARTIAL+$1
INC DIVEND

Usplvad DEY
BKE UsSDIVZ

PLA
TAX
PLA
TAY
PLA “cortinued next page”

RIS 13-7

“A2B-RH-UBAL-2ND-13-07.PICT” 96 KB 2001-06-20 dpi: 300h x 300v pix: 1338h x 2363v

| Randy Hyde « DataMost « 2nd Printing « December 1982

Page 0195 of 0289 |



Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

DIVEND EPZ $50
PARTIAL EPZ DIVEND+$§2
DIVSOR EPZ PARTIAL+$2

It should be mentioned that this routine also computes DIVEND
MOD DIVSOR, and this result is left in PARTIAL. Should division
by zero be attempted, $FFFF will be returned in DIVEND. Your
program can check for this problem by AND’ing DIVEND and
DIVEND + $1 together, and then compare the result with the value
$FF. Because of the method used to check for zero division, an
ambiguity arises since $FFFF divided by one is also $FFFF. This
problem can be remedied by explicitly checking for division of
$FFFF by one before calling USDIV. This division routine ¢an be
expanded to any number of byles of precision by loading the Y-
register with the number of bits of precision required, extending
the precision on the ROL instruction sequence, and extending
the precision on the SBC sequence.

To use this routine, load a 32-bit dividend into locations
DIVEND, DIVEND + $1, PARTIAL, and PARTIAL + $1 (low-order
byte intc DIVEND, the most-significant byte into PARTIAL + $1)
and the 16-bit divisor into DIVSOR. Once this is accomplished,
simply JSR to USDIV. If you only need to perform a 16-bit by 16-
bit division, just store zeros into PARTIAL and PARTIAL + $1.

. EXAMPLE: DIVIDE 1985 BY 24 AND PUT THE QUOTIENT
; INTO "RESULT"
STORE THE MODULO OF 195/24 IN LOCATION
TMODULO™

EXMPL :
LDA #1185 ;DECIMAL 195
STA DIVEND
LDA /1195
STA DIVEND +§1
LDA #!24 ;DECIMAL 24
STA DIVSOR
LDA /124
STA DIVSOR+$1
LDA #8$0 : PERFORMING 4 16 BY 16 DIVISION
STA PARTIAL
STA PARTIAL
JSR USDIV
LDA DIVEND
STA RESULT
LDA DIVEND+$1
STA RESULT+§1
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LDA PARTIAL
5TA WODULO

LDA PARTIAL+§1
STA MODULO +%1

ETC ...

Signed division turns out to be only somewhat more com-
plicated than unsigned division. As with the signed muitiply rou-
tine, a sign flag is set up to determine the final sign of the result.
Likewise, the absolute value of the dividend and divisor is taken,
and then the unsigned division routine is called. Finally, the quo-
tient is negated if the sign flag is set.

But there is one little “gotcha” which didn’t occur with the
multiply routine. If a division by zero occurs (within the unsigned
muliiply routine) $FFFF is returned. The only way {using the
unsigned routine) that $FFFF can be returned is if you divide
$FFFF by one. With the signed routines, however, you get a result
of $FFFF {which is — 1 in decimal) by dividing $FFFF by one, one
by $FFFF, or in fact any division where both the positive and
negative versions of a number end up in the divisor and dividend.
Zero division causes the result of $FFFF to be returned. Since
these cases are not all that rare, some steps have 10 be taken to
correct the possible ambiguity. In the signed division routine
which foliows, the overflow flag is set or cleared depending on
whether or not a zero division has occurred. if a division by zero
occurred, the overflow flag will be set. If a division by zero did not
oceur, then the overflow flag will be cleared. Your programs can
check the overflow flag upon return from the divsion routine and
then take the appropriate action. You can also use this technique
with the unsigned divsion routine to handle the case of $FFFF
divided by one, if desired,

. SIGNED 16-BIT DIVISION ROUTINE
.V FLAG 1S RETURNED SET IF ZERO DIVIDE OCCURS

. THIS ROUTINE COMPUTES {DIVEND, PARTIAL ) /DIVEND
. AS WELL AS {DIVEND,PARTIAL) MOD DIVEND

éDIV:
FHA

LDA DIVEKD+§1 ;CHECK SIGN BITS

XOR DIVSOR+$1 “continued next page’
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SDIV1
GVRFLA

SETOVR

DABS1

DABS12

DABS2

DABS22

DIVNEG:

Programming 6502 Assembly Language

AND
STA
JSR
JSR
JSR
LDA
AND
CMP
BEQ
LDA
BPFL
JSR

CLV
PLA
RTS

BIT
PLA
RTS

HEX

LDA
BPL

SEC
LDA
5BC
STA
LDA
3BC
STA

RT3

LDA
BPL
SEC
LDA
SBC
STA
LD4
SBC
STA

RT3

#8880
SIGN
DABS1
DABSZ
UsDIv
DIVEND
DIVEND+$1
#BFF
OVRFLW
SIGN
SDIVL
DIVNEG

SETOVR

40

DIVSOR+§1
DABS12

#80
DIVSOR
DIVSOR
#§0
DIVSOR+$1
DIVSOR+§1

DIVEND+$1
DABS22

#$0
DIVEND
DIVEND
#%0
DIVEND+$1
DIVEND+§1

r ABSOLUTE VALUE OF DIVSOR
VABSOLUTE VALUE OF DIVEND
; COMPUTE UNSIGNED DIVISION
:CHECK FOR ZERO DIVIDE

;SIGN IF RESULT MUST EBE

s NEGATIVE

;N0 ZERO DIVISION

(SET OVERFLGW FLAG

:5EE IF NEGATIVE

; NEGATE DIVSOR

;SEE IF NEGATIVE

:NEGATE DIVEND

13-10
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and ease of understanding in mind. Obviously, quite a bit of code
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can be saved by using loops in several places, especially when
expanding beyond 16 bits, but generally speed is much more
important than four or five bytes.

13-1
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OPERATIONS

STRING HANDLING.

Numbers are okay, but string handling, as in BASIC, is the
part that is fun. Character strings are represented in computer
memory in a multitude of ways, but despite how a string is imple-
mented in computer memory, it always has at least three attri-
butes: (1) a maximum length, i.e., the number of bytes allocated
to it; (2) a dynamic “run-time"” length giving the current number
of bytes currently being used in the string and (3) a starting
address in memory.

Without going into the gory details of how any particular
language stores its strings, certain conventions will be adopted
due 1o the structure of LISA. Strings, for the remainder of this
book, will take one of three forms:

1) A string will consist of a group of characters starting at a
specified address and terminated by a special byte value,
such as $00, (used in the PRINT routine several chapters
ago).

2) A string may consist of a group of characters starting at
a known location and terminated by a character whose
high-order bit is opposite the rest of the string.

3) A string will consist of a length byte followed by the num-
ber of characters specified in the length byte.

The first two versions of a string presented here are useful
mainly for input/output purposes. $00 is usually used as a delim-
iter for outputting characters, since it allows the entire 128 normal
ASCII characters to be output. For input, $8D (carriage return) is

141
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usually used, since carriage return is used to terminate input in
most cases. The second version of strings presented here is a
specialized version of Type 1. By specifying that the last byte in
the string contains an inverted high-order bit, there is no need for
a trailing byte. It should be noted that this method restricts you to
a maximum of 128 characters, as opposed to a maximum of 255
characters, possible with Type 1 strings, but you save a byte for
each declared string. LISA has a special pseudo opcode that
stores strings in this manner. The pseudo opcode is called, “OCI,"
and it stores strings in memory with the last character containing
an inverted high-order bit. Refer to the LISA documentation for
further details.

The third type of string (a length byte followed by the string
itself) is the most common type of string used, because it is the
most convenient to use. With it, string functions such as conca-
tenation, length, and substring become trivial. For most of the
string handling routines presented in this chapter, this type of
string will be used. Since it is possible to have Type 1, 2, and 3
strings within a program, it seems we will need conversion rou-
tines o be able to convert Type 1 and Type 2 strings to Type 3
strings. These routines are very easy to write, so let’s tackle them
first.

To convert Type 1 strings to Type 3 strings we must have
three pieces of information. First, we need to know the beginning
address of the Type 1 string. Second, we need to know the
beginning address of the Type 3 string, where the converted Type
1 string is to be stored. Finally, we need to know the value of the
delimiting character used in the Type 1 string. For our routine, we
will assume that these three pieces of information are passed in
locations Typet, Type3, DLMTR. Both Type1 and Type3 will be
16-bit addresses and will require two zero page locations each.
DLMTR, obviously, will require only one byte in page zero. These
locations must be set up with the appropriate data before our
subroutine is called.

The routine will pick a character out of the string pointed to
by Type1 and store it in the corresponding location in the string
pointed to by Type 3, with one slight change. Since the first byte
of the string pointed to by Type3 must be reserved for the length
of the string, it becomes necessary 10 increment the value in
Type3 by one before storing the string in the designated area.
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Finally, when the string has been transterred, the length of the
string must be stored in the first location. The routine which dces
all of these mystical and magical things follows:

: TYPEl TO TYPE3 STRING CONVERSIONS

: POINTERS TQ THE RESPECTIVE DATA AREAS
- ARE PASSED IN "TYPEl1" AND "TYPE2"
: WDLMTR" CONTAINS THE STRING DELIMITER BEING USED

TYPEL EPZ $0
TYPEZ EPZ TYPEL+$2
OLMTR  EPZ TYPE3Z+$2

TITO3:

FPHP ;SAVE ALL THE REGISTERS

PHA

TYA

PHA

ING TYPE3 +ADD ONE TO TYPE3Z POINTER

BNE T1TO3A 50 THAT IT POINTS TO THE FIRST

INC TYPE3+%1 :AVAILABLE CHAR PAST THE LENGTH
T1TO3A:

LDY #80 ;SET UP INDEX TQ ZERO
TITO3E LDA {TYPEl}.Y :FETCH TYPE1l CHARACTER

CMF DLMTR ;I5 1T THE DELIMITER?

BEQ T1TOQ3C :IF S0, PREPARE TO QUIT

STA (TYPE3).Y ;OTHERWISE TRANSFER

INY ;MOVE TO NEXT CHARACTER

BNE T1TO3B ;DON'T ALLOW STRINGS > 255

DEY :IF OVERFLOW OCCURS, TRUNCATE
T1T0O3C LDA TYPES3 ;:DECREMEQT TYPE3 FOINTER 30

BNE TL1TO3D :IT POINTS TGO LENGTH BYTE AGAIN

DEC TYPE3 +§1
T1TO3D DEC TYPE3

TYA . TRANFER LENGTH OF STRING TO A
LDY #8C :SET UP INDEX TO LENGTH BYTE
STA (TYPE3).Y ;STORE LENGTH IN FIRST BYTE
PLA :RESTORE THE REGISTERS

TAY

FLA

PLP

RT3

It you read a line of text from the Apple keyboard, using the
monitor GETLNZ routine, you could convert it to a Type 3 string
using the fellowing code sequence:
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LDA #3200 ;INIT TYPE1 TO $200

STA TYPEL

LDA /8200

STA TYPEl+%1

LDA #STRING ;PUT ADDRESS OF DESTINATION
STA TYPE3 ; STRING INTO "TYPE3"

LDA /STRING
STA TYFPE3+$§1

LDA #§8D i INITILIZE THE DELIMITER
STA DLMTR :CHARACTER TC RETURN

JSR TLITC3 ; PERFORM THE CONVERSION
ETC.

Type 2 strings are converted in a similar manner. The routine
to perform the conversion is listed below:

.TYPE 2 TO TYPE 3 STRING CONVERSION

TYPE 2 STRING I3 ASSUMED TO BE A STRING WHOSE HIGH
:ORDER BITS ARE ALL SET EXCEPT FOR THE LAST CHARACTER
; WHOSE HIGH ORDER BIT IS CLEAR

:THIS CAN BE MODIFIED BY REPLACING THE "BFL"

; INSTRUCTION WITH A "BMI" IF DESIRED

TYPER EPZ $0
TYPE3 EPZ TYPEZ +$2

T2T03:

PHF :SAVE THE REGISTERS

PHA

TYA

PHA

INC TYFES3 :MOVE PAST THE LENGTH BYTE

BNE T2T03A

INC TYPE3I +81
T2TO34A:

LDY #80 ; INITIALIZE STRING INDEX
T2TO3B LDA (TYPEZ2).Y

BPL T2T03C

STA [TYFE3).Y

INY

BNE T2T03B  PREVENT OVERFLOW

DEY :TRUCATE TO 255 CHARS
T2ZTO3C ORA #4280 ;STORE LAST CHARACTER

STa (TYPE3),Y

INY i ADJUST LENGTH

BHNE T2TQ3D i TEST FOR OVERFLOW

DEY ; TRUCATE IF > 255 CHARS
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T2T0O3D LDA TYPE3Z :MOVE TYPE3 POINTER BACK
BNE T2TO3D :LENGTH BYTE
DEC TYPE3+$l

T2TOZE DEC TYFES

PLA :RESTORE THE REGISTERS
TAY
PLA
PLP
RT3

Going in the other direction (from Type 3 strings to Type 1 or Type
2 strings) is rarely used, but just as simple to perform. Since this
type of conversion is not used that much its design will be left to
the reader as an exercise, should this type of conversion be
required.

DECLARING LITERAL STRINGS.

Not all strings used within a program are likely to be input
from the keyboard. Some ability must be provided to enter literal
strings within a program.

You could count up all the characters in a string and manually
preface the string with a length byte, but that would be very tedi-
ous. You could enter the string as a Type 1 or Type 2 string; and
then use the conversion routines presented earlier to convert
them to a Type 3 string, but that's still quite a bit of work. Luckily,
LISA provides a pseudo opcode that does all the work for you.
The pseudo opcode is “STR” and it outputs a string of ASCII
characters prefaced automatically with a length byte. STR is very
useful for declaring string constants. Since the APPLE 1l com-
puter likes to have the high-order bit on for most applications,
strings declared when using the STR pseudo opcode shouid
always be enclosed by quotes (as opposed to apostrophes).

STRING ASSIGNMENTS.

Probably the most basic and useful operation that can be
perfomed on a string is a string assignment. in its simplist form
a string assignment is nothing more than a small in-line coded
loop that transfers data from one lecation to ancther. Assuming
you want to transfer the string in “STR1,” to the string at “STR2,”
you might use the following:
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srmm;_/
=0 TO Jal,,

DG NOT PASS GO,
DO MOT COLLECT $zoo.«'

STRINGT

B

"STRING ASSIGNMENTS"

LDY STR1 ; GET THE LENGTH BYTE
LOOP LDA 3TR1.Y i TRANSFER STRING
STA 3TR2.Y
DEY
BNE LOCP
LDA STR1 ; TRANSFER THE LENGTH QVER
STA 3TR2

As you can see, data bytes 1 through n (where n is the length of
the string) are transferred and then the length of STR1 is stored
in the length byte of STR2.

This, of course, is a very simple string assignment loop, yet
itis small enocugh to be coded in-line in most cases. If you perform
quite a few string assignments within a pregram, it might be worth
your while to write a routine that allows you to specify the
addresses of the two strings after a JSR, as an example:

JSR SASIGN i STRING ASSIGNMENT
ADR DEST :DEST = SQURCE
ADR SOURCE
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which only requires 7 bytes per assignment. Another version of
this special string assignment might take the form:

JSR SASGMI ; IMMEDIATE STRING ASSIGNMENT
ADR DEST ; ADDRESS OF STRING
STR "“HELLO" :STRING TQ BE ASSIGNED

This form allows you to assign string constants to a desired string
with a minimum of complexity. These two methods will be left for
the reader to write as an exercise. You should look at the print
routines presented in an earlier chapter and use them as a tem-
plate for the string assignment subroutines.

STRING FUNCTIONS.

One of the most basic string functions is the length function.
It will be the basis of many other string functions which follow. Its
implementation is trivial. Since the length of a string is always
stored in the first byte of a string, the length function is simply a
load instruction. For example, if we have the following string dec-
laration:

STRING STR "HELLC THERE"

then a simple LDA STRING will load the length of the string into
the accumulator.

With the length function out of the way, string output is next
on the list, String output is very easy. The following routine will
output the string stored at location ‘STRING’

LDA STRING :CHECK LENGTH TO INSURE

BEQ XIT ;IT IS NOT ZERO

LDY #80 ;SET UP INDEX TO FIRST CHAR
LOOF LDA STRING+$l,Y :GET THE NEXT CHARACTER

JSR COUT :OUTPUT IT

INY

CPY STRING ‘DONE YET?

BLT LOQP

Note that the Y-register is loaded with zero, and then the accu-
mulator is loaded from location STRING plus one. This insures
us that the Y-register will be equal to the length of the string when
it is pointing to one character beyond the end of the string, so that
the Y-register will always be less than the length of the string
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while it contains a valid index. This allows us to use the BLT
instruction to terminate the loop.

A much better string output routine would be a subroutine
that causes the address of the string to be output immediately
after the JSR, much like the print routines presented earlier in the
book. This routing would be coded as follows:

PRTSTR:
S5TA ASAVE
S5TY YSAVE
PLA ; GET RETURN ADDRESS FROM
STA RTNADR ; THE 6502 STACK
PLA
STA RTNADR+§1

JSR INCRTN ; INCREMEQT THE RETURN ADDRESS
LDY #50

LDA (RTNADR}.Y ;GET L.0Q. ADDRESS 0OF STRING
STA ZPAGE

INY

LDA (RTNADR).Y GET H.0.ADDRESS OF STRINC
STA ZPAGE+$1

JSR INCRTN ;MOVE RTNADR PAST THE ADDRESS
JSR INCRTN ;BYTES

AT THIS POINT, ZPAGE POINTS TQ THE STRING WHICH
IS SUPPOGSED TO BE QUTPUT

DEY ;RESET Y REG TO ZERD

LDA {ZPAGE},Y ;GET THE LENGTH OF THE STRING

STA LENGTH ;AND STORE IT IN "LENGTH"
PRTS1 INY ;MOVE TO THE NEXT CHARACTER

CPY LENGTH +ARE WE THROUGH YET?

BEQ PRTSZ

LDA (ZPAGE)}.Y ;GET THIS CHARACTER

JSR COUT ;AND OUTPUT

JMF PRTS1 ;MOVE T(Q NEXT CHAR AND REFEAT
#RTSZ LDA ASAVE ;RESTORE THE REGISTERS

LDY YSAVE

JMP (RTNADR] ;SIMULATE AN RTS
ASAVE EFZ $0 ; ZERQ PAGE WORKSPACE

YSAVE EPZ ASAVE+§1
ZPAGE  EPZ YSAVE+§1
RTNADR EPZ ZPAGE +§2

éOUT EQU $FDED :COUT ROUTIRE
END
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This routine is used by JSR'ing to PRTSTR and following
the JSR with the address of the string to be output.
EXAMPLE:

JMP START
STRING STR “HELLC THERE®

éTART JSR PRTSTR
ADR STRING

ETC.

prints “HELLO THERE” onto the current output device. Naturally,
any string may be output using PRTSTR, not just strings declared
using the STR pseudo opcode.

STRING CONCATENATION.

String concatenation is the operation of taking two strings
and joining them together to make a single long string. Typically,
two strings are combined and their concatenated result is stored
in a third string.

String concatenation is accomplished in the following man-
ner. First, the lengths of the two source strings are added together.
If this result is less than the maximum length of the destination
string, then things are fine. If the length is greater than the max-
imum length of the string, then an error must be reported. If the

STRING 2,/
PULL UP BEUIND
STRING 1/

“STRING CONCATENATION”
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sum of the two source string lengths is less than the maximum
number of characters possible for the destination string, the sum
of the two lengths is stored in the first byte of the destination
string. This will be the length of the new string. Next, the first
string is transferred to the destination string. Finally, the second
source string is transferred to the destination string immediately
after the first string. A short routine which concatenates STR1
and STR2 storing the result at STR3, is:

; STRING CONCATENATIQN EXAMPLE

; FIRST, CHECK LENGTHS

CLC

LDA STR1

ADC STRZ

BCS ERROR ;> 255 CHARS IS ALWAYS BAD
5TA STR3 ;STORE LENGTH IN STR3

LDA MAXLEN ;GET MAXIMUM LENGTH OF STR3
CMP STR3 ;AND COMPARE TO DESIRED LENGTH
BLT ERRQOR ;IF LESS THAN, AN ERROR MUST

;BE FLAGGED

; THINGS ARE FINE HERE, S50 MOVE STR1 TQ STR3

LDY #%0

CONCT1 LDA STRI+§1.Y ; GET CHAR FROM 3TRI
STA STR3+$1.Y ;AND MOVE TOQ STR3
INY
CPY STRI ;DONE YET?
BLT CONCTI

I NOW, TRANSFER STRZ2 TO THE TAIL END OF STR3

LDX #%0

CONCT2 LDA STR2+%1.X ;GET CHAR FROM STRZ
STA STR3+$1,Y ; TRANSFER TO STR3
INY
INX
CPX STRZ ;DONE YET?
BLT CONCT2

ETC. ..

SUBSTRING OPERATIONS.
One very important string function is the substring function,
which allows the programmer to extract a portion of a string and
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assign the extracted portion to another string.

To extract a substring, we need four pieces of information:
the address of the source string, the address of the destination
string, a value specifying the start of the substring, and a length
of the substring. The specified length is checked 1o make sure it
is not greater than the maximum permissible string length for the
destination string. If it is, an error must be reported. If the length
of the substring is less than the maximum length allowable by the
destination string, then the length byte is stored in the first location
of the destination string. One final check must be made. We must
insure that there are at least “length” characters the source string
beginning at the index specified. Otherwise, unfortunately, an
error must be reported. The following routine extracts the substr-
ing beginning at location "START" in string “STR1" and of length
“LENGTH.” The resulting substring is stored into “STR2."

; SUBSTRING EXAMFLE

STR1 EFPZ $0

5TRZ EFZ STR1+$2
START EPZ STR2+§2
LEN1 EPZ START+%1
MAXSTE EPZ LEN1+¥1
INDEX EPZ MAXSTR+$1
LENGTH EPZ INDEX+§1

SUBSTR:
PHP
FHA
TYA
PHA

; CHECK TO SEE IF LENGTH OF SUBSTRING 1S GREATER
; THAN THE LENGTH OF STRZ {PASSED IN MAXSTR)
LDA MAXSTR

CMP LENGTH
BLT ERROR

. CHECK TO SEE IF ENOUGH CHARS IN STR1

CLC

LDA INDEX

BEQ ERROR :INDEX OF ZERC NOT ALLOWED

ADC LENGTH

BCS ERROR ;IF > 255 THEN ALWAYS AN ERROR

"continued next page”
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LDY #3%0

LD4 (STR1).,Y ;GET LENGTH OF SOURCE STRING
CMP LEN2 ;SEE IF GREATER OR EQUAL

BLT ERROR ; ERROR OTHERWISE

; NOW, TRANSFER THE SUBSTRING

LDA LENGTH

STA (STR2),Y : INIT LENGTH

CLC ;SET UF POINTER T0O BEGINNING
LDA STRI ,OF SUBSTRING

ADC INDEX

STA 5TR1

BCC SUBSTIL

INC STR1+%1

SUBST1 INC STRZ . INCREMENT PAST LENGTH BYTE
BNE SUBST2
INC STR2+$1

SUBST2 CPY LENGTH
BGE SUBST3
LDA {STR1},Y
STA (STR2).Y
INY
JHP SUBSTZ

SUBSTI PLA
TAY
PLA
PLF
RTS

STRING COMPARISONS.

Probably the most important string handling tool is the ability
to compare two strings to see if they are equal or not equal. The
ability to see if one string is less than or greater than another
string is also quite useful for such functions as aiphabetizing lists
and so on. These string relations are defined as follows:

1) Two strings are equal if and only if their lengths are equal
and each character in the first string equals the corre-
sponding character in the second string.

2) Two strings are not equal if either their length bytes do
not match up or one of the characters in the first string
does not match the corresponding character in the sec-
ond string.

3} A string is less than a second string if, while traversing
the string from the first character to the length of the smal!-
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est string, a character is encountered in one string which
is less than the corresponding character in the second
string. If the lengths are not equal, and all the characters
match up to the length of the shorter string, then the
shorter string is considered to be less than the longer
string. These requirements allow “ABC” to be less than
“SUN” and to be less than "ABCD.” This type of ordering
is called, “lexicographical ordering,” which is used in dic-
tionaries and the like.

4) The requirements for a string to be greater than a second
string are identical to the less than requirements, except
you must substitute “greater than™ for all the occurrences
of “less than” in the preceeding paragraph.

In the subroutines which follow, tests are made for equality/
inequality, less than/greater or equal, and greater than/less than
or equal. In each case, the accumulator is returned with the value
TRUE (i.e. $1} if the first condition is true (i.e. EQUAL / LESS
THAN / GREATER THAN), or it is returned with FALSE ($0) if the
second condition is true {i.e. NOT EQUAL / GREATER OR
EQUAL / LESS THAN OR EQUAL). In each case, a pointer to the
first string is passed in (STR1, STR1+$1) and a pointer to the
second string is passed (STR2, STR2+$1). These locations
must be set up before the routine is called.

; STRING COMPARE #1
; TEST FOR EQUALITY

: THIS ROUTINE COMPUTES THE COMPARISON
; (STR1) = (STR2)
: AND RETURNS TRUE OR FALSE IN THE ACCUMULATOR

STREQU:

PHP ;PRESERVE C & V FLAGS
TYA

PHA SAVE THE Y REGISTER
LDY #80

LDA (STR1).Y

CMP (STR2).Y . COMPARE LENGTHS

BNE NOTEQL ;AND QUIT IF NOT EQUAL

; IF LENGTHS ARE EQUAL, SET UP INDICIES
. TO THE BEGINNING OF THE STRINGS

3TA LENGTH ; SAVE LENGTH OF 3TRINGS
INC STR1

BNE SEQU1 .
“continued next page
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INC STR1+81

SEQUL INC 3STR2
BNE 3EQUZ
INC STRZ+§1

SEQUZ  LDA (STR1},Y ; PERFORM COMPARISONS
CMP (STR2},Y
BNE SEQU3
INY
CPY LENGTH
BLT SEQUZ

i THE STRINGS ARE EQUAL HERE

JSR DECSTR ;RESTORE STR1,STRR

PLA ;RESTORE Y & PSW REGISTERS
TAY

FLP

LDA #TRUE ; RETURN TRUE

RTS

. STRINGS ARE NOT EQUAL HERR
SEQU3  JSR DECSTR

NOTEQL PLA ;RESTORE Y & PSW
TAY
PLP
LDA #FALSE ;RETURN FALSE IF NOT EQUAL
RTS

DECSTR- RESETS STR POINTERS TO THEIR ORIGINAL
: VALUES
DECSTR:
566 LDA STRi 'RESTORE STRn POINTERS
BNE SEQU4
DEC STR1+$1
SEQU4 DEC STRL
LDA STR2
BNE SEQUS
DEC STR2+$1
SEQUS  DEC STR2
RTS

; STRING COMPARE #2
; TEST FOR LESS THAN “continued next page”
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STRLES:

STRLS1 INY : TEST LOOF

r
’
»
¥

»

»
’

»

NOTLES FLA

L L

; THIS ROUTINE COMPUTES

. RETURNED WITH TRUE. IF STR1 >»= STREZ THEN THE
; ACCUMULATOR IS RETURNED WITH THE VALUE FALSE

; ALL CHARACTERS UP TO THE MINIMUM LENGTH ARE EQUAL

; LENGTH OF STRZ

; NOW STR1 < STR2

Chapter 14: String Handling Operations

3TR1 < STRZ2

ON RETURN, IF STR1 < STRZ THEN THE ACCUMULATOR IS

PHP ;PRESERVE C & V FLAGS
TYA ;SAVE Y REGISTER
PHA

LDY #§0
LDA (STR2),Y : COMPUTE THE MINIMUM LENGTH
STA MINLEN

CMP (STR1}.Y

BGE STRLS1

LDA {STR1},Y

STA MINLEN

LDA {STR1).Y
CMP (STR2).Y
BGE NOTLES
CPY MINLEN
BLT STRLS1
BEG STRLS1

NOw SEE IF THE LENGTH OF STRl IS LESS THAN THE

LDY #80

LDA (STR1),Y
CMP (STRZ),Y
BGE NOTLES

PLA ;RESTCRE THE Y REGLSTER
TAY

FLP ;RESTORE PSW

LDA #TRUE . TRUE BECAUSE STR1 < BTRZ
RTS

TAY
FLP
LDA #FALSE
RTS

STRING COMPARE #3

TEST TQ SEE IF STR1 > STR2 . "
ES 0S5 5 “continuved next page
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; THIS ROUTINE COMPUTES THE RELATICN:
; STR1 » STR2Z

E THE ACCUMULATOR IS RETURNED WITH THE VALUE TRUE ($1)
; IF THE RELATION HOLDS, FALSE (#0) IS RETURNED
; OTHERWISE.

STRGTR:
PHF
TYA
PHA

LDY #§0 ;GET THE MINIMUM LENGTH
LDA {STR2).Y

STA MIKNLEN

CHP {(STR1).Y

BGE SGTR1

LDA {STRi).Y

STA MINLEN

SGTRL  INY
LDA (STR2).,Y
CMP (STR1},Y
BGE NOTGTR
CPY MINLEN
BLT SGTR1
BEQ SGTRI

; STRINGS ARE EQUAL UP TO THE MINIMUM LENGTH

LDY #%0

LDA {(STKl),Y
CMF NINLEN
BEQ NOTGTR

FLA
TAY
FLF
LDA #TRUE
RTS

NOTGTR PLA
TAY
PLP
LDA #FALSE
RTS

TRUE EQU $1

FALSE EQU 0

STR1 EPZ 80

STR2 EPZ STR1 +§2
END

Once again, it will be left to the reader to implement better

parameter passing techniques. These routines are presented
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following manners:

HANDLING ARRAYS OF CHARACTERS.

Sometimes the character strings being compared do not
have variable lengths. As such, the extra code and time required
to test for the lengths of the two strings being compared is not
necessary. For example, all the mnemonics used by LISA are
three characters long. This means that all that has to be done is
insure that the mnemonic typed in by the user is three characters
in length and then compare those three characters to the char-
acter triplets in the mnemonic table. The following routine takes
"NUMCHR" characters from the in buffer and compares them
against characters within the table beginning atlocation “TABLE:"

NUMCHR
PTRSAV
TBLADR
INFUT

i THIS

JSR STREQU
ADR 3TR1
ADR STR2

— O0R —

J3R STRLES
ADR STRI1
ADR STRZ

- OR -

JSR STRGTR
ADR STRI1
ADR STRZ

ETC. ..

EQU 83
EPZ $0

EPZ PRTSAV+%1

EQU 8200

: BUFFER {PAGE TWO)

“A2B-RH-UBAL-2ND-14-17.PICT” 110 KB 2001-06-20 dpi: 300h x 300v pix: 1330h x 2359v
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.I3 3TRI

; IS STR1

;INIT FOR THREE-CHAR LOOK-UP
yPOINTER SAVE AREA
:USED TO HOLD TABLE ADDRESS
; GETLN INPUT BUFFER

14-17
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here solely as examples. It is probably more practical to pass the
string addresses atfter the JSR as we did with the print subroutine.
The string compare subroutines might be called in one of the

STR2Y

STR2*%

STRET

ROUTINE IS ENTERED WITH THE X-REGISTER POINTING
i TO THE FIRST CHARACTER TO BE CCOMPARED IN THE INPUT
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3
'
'

3

)

»

LOCF

. RESTORE X

NXTEL

Programming 6502 Assembly Language

ON RETURN, THE X REGISTER POINTS TO THE FIRST CHAR

: PAST THE ARRAY OF LENGTH "NUMCHR" (DEFINED ABOVE)

LOOKUP:

PHF
TYA
PHA

5TX
LDA
STA
LDA
STA

PRTSAY
#TABLE
TBLADR
/TABLE
TBLADR+$1

;:SAVE INDEX TO CHAR ARRAY
;SET UP POINTER TO TAELE

LDY
LDA
CMP
BNE
INX
INY
crPY
BLT

#80
INPUT, X
(TBLADR) , ¥
NXTENT

#NUMCHR
LOOP
GOOD MATCH HERE, RETURN TRUE
FLA

TAY

PLP

LD4A #TRUE

RTS

CURRENT CHARACTER ARRAY DOES NOT MATCH, SET UP INDEX

; TD THE NEAT ELEMENT IN THE TABLE (IF ONE EXISTS)

NXTENT -

CLC
LDA
ADC
STA
BCC
INC

TBLADR
#NUMCHR
TBLADR
NXTEl
TBLADR +$1

REGISTER

LDX
LDY

PTRSAY

#80 iRE-INIT ¥ REGISTER

; CHECK T0 SEE IF AT END OF TABLE

LDA TBLADR
CMP #TBLEND
LDA TBLADR +§1
SBC /TBLEND
BLT LOOP
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: NO MORE ENTRIES, RETURN FALSE AND LEAVE X REGISTER
; POINTING TO THE BEGINNING OF THE TABLE

PLA
TAY
PLP
LDA #FALSE
RTS

SAMPLE TABLE, EACH ENTRY MUST CONTAIN "NUMCHR" NUM
; OF CHARACTERS (IN THIS CASE, THREE}
; OF CHARACTERS (IN THIS CASE, THREE]

TABLE  ASC "ABC"
ASC "DEPF"
ASC "GHI"
ASC "JKL"
ASC “MNO"
ASC "PQR"
ASC "STU"
ASC "VYWX"
ASC "¥YZ "
ASC "ETG"

TBLEND EQU *
END

Note that TBLEND is defined as the next available location after
the fable.

Table operations on the 6502 microprocessor can be han-
dled very efficiently. Especially when the table is less than 256
bytes in length. The previous routine was written as a general
purpose table look-up routine. It will work for tables of any length
(representable in the 6502 memory space). For tables less than
256 bytes in length (such as the alphabet table used in the pre-
vious routine), lots of code and time can be saved by incrementing
the Y-index register instead of a 16-bit memory location. Addi-
tional time can be saved by using the indexed by Y addressing
mode instead of the indirect indexed by Y addressing mode. The
former routine, rewritten for small tables, is:

NUMCHR EQU $3 ; INIT FOR THREE-CHAR LOOK-UP
PTRSAV EPZ §0 :POINTER SAVE AREA

PYSAV  EPZ PRTSAV+§1 ;Y REG SAVE AREA

INPUT  EQU $200 ;GETLN INPUT BUFFER

BUFFER EQU $300 ;BUFFER SAVE AREA

; THIS ROUTINE IS ENTERED WITH THE X-REGISTER POINTING
14—19 “continued next page"”
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. TQ THE FIRST CHARACTER TC BE COMPARED IN THE INPUT
. BUFFER (PAGE TWO)

. ON RETURN, THE X REGISTER POINTS TO THE FIRST CHAR
; PAST THE ARRAY OF LENGTH "NUMCHR" (DEFINED ABOVE)

»

LOOKUF:
PHF
TXA
PHA
TY4
FHA
. TRANSFER INPUT TO BUFFER SAYE AREA

k

LDY #%0

LOoP LDA IKPUT X
STA BUFFER,Y
INX
INY
CPY #NUMCHR
BLT LOOP

; NOW, COMPARE BUFFER SAVE AREA TO DATA IN TABLE

LDX #8§0

LDY #§0
LOOPO  LDA BUFFER, X

CMP TABLE,Y

BNE NXTENT

INY

INX

CPX #NUMCHR

BLT LOOPO

; A MATCH IS FOUND HERE

PLA

TAY

FLA

TAX

INX

INX

INX ;LEAVE POINTING AT NEXT CHAR
PLF

LDA #TRUE

RT3

; INCREMENT TOQ THE NEXT ENTRY (IF IT EXISTS)

NXTENT CPX #§2
BGE NXT1
CPX #§1
BGE NXT2

Iny "continued next page"
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NXTZ INY

NXT1 INY
LDX #§0
CPX TBLENG
BLT LDOFO

; END OF TABLE HAS BEEN REACHED

FLA
TAX ;LEAVE X REG POINTING TO CHARS

PLA
TAY
PLF
LDA #FALSE ; STRING NOT FOUND
RTS

; SAMPLE TABLE, EACH ENTRY MUST CONTAIN "NUMCHR" NUM
. OF CHARACTERS {IN THIS CASE, THREE}

TABLE  ASC "ABC"
ASC "DEF"
ASC "GHI"
Asc IIJKLII
ASC '"MNO"
ASC "PQR"
ASC "STU"
ASC "VWX"
ASC TTYZ n
ASC "ETC"

TBLENG EQU *-TABLE
END

Note that a table length “TBLENG” is used instead of the end of
table pointer. Remember the Y-register is only eight bits long.

Obviously, there are many different ways to compare strings
against other strings, be they in tables or whatever. This book is
not attempting to cover all possible cases (an impossible task),
but rather, to cover a few cases which may be of general interest.
The techniques used in the preceeding examples can be applied
to other methods of comparing string data. Hopefully, these
examples have been somewhat of an awakening so that you can
go out and write your own string handling functions.
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CHAPTER 15
SPECIALIZED I/0

APPLE 1/0 STRUCTURE.

One of the reasons the APPLE 1l computer is so popular is
its powerful /O structure. The APPLE |l computer was the first
personal computer to feature the “"Game |/O" connector with
analog inputs and digital input and output lines. Although intended
primarily for games and entertainment purposes, the game /O
lines have been utilized for such things as printer interfaces, RS-
232 lines, and even industrial controllers. A myriad of peripherals,
including paddles, joysticks, light pens, and color guns, have

HEAR NO EVIL /
SEE NO EVIL/
spEaK NO EVIL/

HEAR EvIL/
SEE EvVIL/
sPeAK EVIL /

-

* geeciaLizEn 1/0”
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been interfaced to the game /O connector. In all, the game /O
connector makes the APPLE Il computer one of the most flexible
computers around.

To understand the flexiblity of the game I/O connector, it is
necessary to first describe what types of IVQ are available at the
game /O connector. First, there are three “flag” (or pushbutton)
inputs. There are four “annunciator” outputs. There are four 8-bit
analog-to-digital inputs which can measure a resistance between
150 ohms and 150K chms. And finally, there is a utility strobe line
available on the game |/O connector.

in addition to the I/O on the game I/O connector, there are
some other specialized /0O devices availabie on the APPLE |
computer. These include the built-in speaker, the cassette input
and output, and the Apple keyboard. There are also several video
display modes available to the user including LORES and HIRES
graphics, with or without four lines of text at the bottom of the
page. Controlling these display modes, as well as the /O on the
game IO connector, is a simple matter of accessing memory
locations within the APPLE Il computer's memory space.

These memory locations all fall within the 128 bytes in the
$C000 to $CO7F range. For instance, we've already encountered
the Apple keyboard whose input can be obtained at location
$C000. If bit seven of location $C000 is set, then a key has been
pressed on the Apple keyboard. If bit seven is clear, then no key
has been pressed and the program must wait for a key to be
pressed if the program requires input. In order to clear bit seven
of the keyboard location after the desired data has been retrieved
(so that the next time $C000 is accessed you won't read the same
key code again), location $3C010 must be accessed. Accessing
location $C010 clears bit seven of location $C000 so that another
key can be read from the Apple keyboard. The following routine
works fine as a keyboard input routine:

KEYIN LA $COCO

BPL KEYIN ;IF NG KEY PRESSED, LOOP BACK
STA $C010 :CLEAR BIT #7 OF THE KEYBOARD
RTS

KEYIN, when called, waits until a key is pressed and then returns
with the ASCH code of the key pressed in the accumulator. The
accumulator is stored into location $C010 to clear bit seven of the
keyboard for reasons previously mentioned.
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Sometimes, it is useful to access the keyboard just to see
if a key has been pressed. The BIT instruction comes in very
handy here. By BIT'ing location $CQ00, the N flag will be set if a
valid key has been pressed. The BMI/BPL instructions may then
be used to test to see if a key has been pressed. Another inter-
esting subroutine which is useful on occassion is “KEYPRS."
KEYPRS returns the value TRUE if a key has been pressed, and
it returns the value FALSE if a key has not been pressed. It is
coded in the following cbscure fashion:

: FUNCTION KEYPRS. RETURNS TRUE IF A KEY HAS BEEN
. PRESSED, FALSE OTHERWISE. THIS VALUE IS RETURNED
: IN THE ACCUMULATOR.

KEYPRS:

LDA $COO00

ROL ;SHIFT SIGN BIT (#7Y) INTO
ROL ;THE L.Q. BIT OF THE ACC.
AND #%$1 ;MASK OUT ALL BUT BIT #0.
RT3

In this routine, bit seven is shifted into the carry and then back
into bit zero of the accumulator. The accumulator is then AND’ed
with $1 so that only bit zero is left in the accumulator. If a key has
been pressed, the result of the AND #81 is one. If a key has not
been pressed, the resuit of the AND #8$1 is zero.

Location $C020 is the cassette output toggle. Normally this
output is used as an interface to the audio cassette mass storage
unit connected to diskless Apples. This output can, however, be
connected to the high-level input of any stereo or sound system,
and you can use the cassette output toggle in the same manner
as you would the built-in Apple speaker. Location $C030 is the
Apple speaker. Since the cassette output and the Apple built-in
speaker are treated in a similar manner, the discussion which
follows will apply to both.

Sound is generated by causing the Apple speaker to move
outward and then back inward. Each time the speaker goes in
and out, one cycle is produced. Humans can hear sound from
approximately 20 cycles per second (also called, “heriz” in the
engineering field) to about 20,000 cycles per second. Theoreti-
cally, if you were to set up a time delay loop that caused the
speaker to move outward and then back inward at some rate
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between 20 Hz {(Hz is an abbreviation for Hertz) and 20,000 Hz
(or 20KHz), you shouid be able to produce an audible tone.
Unfortunately, since the 2-inch speaker supplied with the APPLE
Il computer is not exactly a high fidelity unit, the theoretical max-
imum is unobtainable. Typically, tones in the range 60 Hz to about
10,000 Hz can be reproduced satisfactorily on the built-in 2-inch
speaker. It should be noted that, if you connect your cassette
output jack to a good stereo sysiem, this problem is alleviated.
One last thing. To cause the speaker (or cassette output) to toggle
between the outward and the inward position, simply use a load
instruction to access location $C030 or location $C020 (for the
cassette output). The load instruction can be LDA, LDX, LDY, BIT,
ADC, AND, CMP, CPX, CPY, or ORA. Store instructions abso-
lutely will not work. This is due to the way in which the 6502 writes
data to a memory location. First, while writing to a memory loca-
tion, the 6502 READS the memory location, then it writes to it
These two operations cccur about 92 nanoseconds apart. If you
try to store to the speaker or cassette outputs, the following will
happen. During the write operation the 6502 will read the memory
location. This causes the speaker or cassette output to toggle
outward (for instance). 92 nanoseconds later the 6502 writes to
the same memory location accessing it again. This causes the
speaker or cassette output to toggle back to the position it was
in before the store type instruction was executed. Even the finest
stereo gear in the world (and especially not the “massive” 2-inch
speaker provided with the APPLE Il computer) can respond to a
pulse 92 nanoseconds wide. As a result, absolutely nothing will
happen. Long before the speaker ever gets a chance to move
outward, the 6502 tells it to move back inward. As a result, the
speaker does not move at all and no sound is produced.

Location $C040 accesses the utility strobe on the game /O
connector. Loading from this location causes a single puise on
pin 5 of the game /O connector. Storing to this address causes
two pulses to be generated (see the discussion above). Unfor-
tunately, the discussion of hardware interfacing is beyond the
scope of this book, and since the use the $C040 strobe requires
some hardware interfacing, an in-depth description of the $C040
strobe is not possible.

Locations $C050 to $C057 are used to switch among the
various display modes. Location $C050, when accessed, sets the

15-4

“A2B-RH-UBAL-2ND-15-04.PICT” 205 KB 2001-06-20 dpi: 300h x 300v pix: 1326h x 2341v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0224 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Chapter 15: Specialized ({0

graphics mode. Location $C051 does just the inverse, it sets the
text mode. The text mode is available in two forms: primary page
and secondary page text. The primary text page resides in mem-
ory from location $400 through location $7FF. The secondary text
page resides in memory from location $800 through location
$BFF. Location $C052 sets the no mix (or full graphics) mode.
Accessing this location produces visible results only if the APPLE
Il computer is currently in the graphics mods. In the text mode,
accessing location $C052 produces no visible effect. Location
$C053 is used to set the mixed graphics mode. In this mode, four
lines of text are displayed at the bottom of the screen. Obviously,
this mode is valid only when graphics are in effect. Location
$C054 selects the primary display page. For the text page and
LORES graphics, the memory area which wil! be utilized is $400
thru $7FF. For HIRES graphics, locations $2000 thru $4000 will
be used. Accessing location $C055 selects the secondary display
page. This is $800 thru $BFF for text and LORES graphics, $4000
through $7FFF for HIRES graphics. Accessing location $C056
sets up the APPLE Il computer for LORES GRAPHICS. The
graphics mode must also be set for this to take effect. Accessing
location $C057 sets up the APPLE |l computer HIRES graphics.
Once again, the graphics mode must be set (location $C050)
before HIRES graphics will be displayed.

Locations $C058 through $CO5F are used to control the
annunciator outputs. These are TTL cutputs and will require buff-
ers if they are to be used to drive current requiring devices such
as L.E.D.’s. Annunciator zero {ANQ) is set to the off position by
accessing location $C058. ANO is set to the on position by acces-
siog location $C059. AN1 is set to the off position by accessing
location $C051 and is set to the on position by accessing location
$C05B. AN2 is set to the off position by accessing location $C05C
and is set to the on position by accessing location $C05D. AN3
is turned off by accessing location $CO5E and turned on by
accessing location $CO5F. Sadly, there is no way to determine
the status of the annunciator outputs. Either always be sure of
yourself, or store the current value in some memory location for
future reference.

Location $C060 is a very interesting input port. It is the input
bit for the cassette I/O port. You're probably wondering why the
cassette input port is so useful. After all, isn't the disk much better
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than the audio cassette for mass storage? Well the disk is cer-
tainly much better for mass storage (yes, you can sleep easy on
that tonight), but the audio cassette input allows you to perform
something which the disk could never do. It allows you to input
and digitize speech and other natural sounds. The following rou-
tine can be considered something of a “teaser.” If you connect a
crystal microphone (or other high-output microphones) to the cas-
sette input jack and run the following routine—lo and behold, what
goes into the microphone comes out of the speaker. Try it!

LOOP LDA $C0O80 ;TEST CASSETTE INFUT PORT
BFL LOOP
LDA $CO30 ;TOGGLE SPEAKER
LOOP2 LDA $C060
BMI LOOF2
LDA $C030
JMFP LOOP
END

Beyond this basic loop it is possible to get the data from the
cassette input, pack it, and store it into successive memory loca-
tions so that it can be saved to disk and output at a later date.
Several experiments in speech synthesis and speech recognition
can be performed without spending an extra nickel for additional
hardware (except, of course, for a cheap microphone to plug into
the back of the APPLE Il computer).

Locations $C061, $C062, and $C063 are used to detect the
pushbutton inputs (PB1=3$C061, PB2=$C062, PB3 =$C063).
If a pushbutton is pressed then bit seven of its corresponding
location is set {i.e. “17). If the pushbutton is not pressed then bit
seven will be reset (i.e. “07). The following coede tests the push-
buttons and beeps the speaker (by printing the bell character) if
the pushbutton is pressed.

LOOF BIT FBl

BPL LOQF
LDA #BELL ;LOAD BELL CHARACTER INTO ACC
JSR COUTL ;OUTPUT BELL CHARACTER
JMP LOOP
éBl EQU $co61

COUT1 EQU SFDFO
BELL EQU 87
END
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Locations $C064 through $C067 correspond to the game
controller (analog) inputs. The analog inputs work in the following
manner. First, you must initialize the hardware by accessing
location $C070. This causes a little timing device to start running.
This timing device (a 558 timer, in case you're wondering) is
connected to bit seven of location $C064, $C065, $CO686, or
$C067 (depending upon which game controller you're interested
in). While this 558 timer is running, bit seven of the corresponding
controller ocation is set, so that by forming a little counter loop
it is possible to determine the setting of the desired analog input.
The following routine (straight out of the Apple monitor) reads
game paddle #x where x is passed in the X-register. Upon return,
the Y-register contains a value in the range $0 to $FF dspending
upon the setting of the game controller.

PREAD LDA $COTO ; TRIGGER PADDLES
LDY #$0 ; INIT COUNT
NQP ; DELAY REQUIRED FOR HARDWARE
NOP ; PURFOSES
PREADZ LDA $C0864,X . TEST DESIRED PALDDLE
BFL RTSZD
INY
BNE PREADZ .QUIT IF > $FF
DEY ;SET TO §FF
RTSZD  RTS
END

There are two things to keep in mind when using the analog
inputs. First, you cannot read two paddle inputs immediately after
one another. Due to the hardware used, you must delay a little
while before reading another input. The loop:

LDX #$0
LOOP DEX
BNE LOOP

works just fine.

The second thing to keep in mind is that reading the paddle
inputs does take some time. You should be aware of this if you
are writing time critical code and are using the paddles.

Apple’s built-in /O is very useful for games and measure-
ment purposes. Many programs, games or not, can be improved
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greatly by accepting input from the paddles or input switches.
Programs such as “SLOW LIST,” “CURSOR EDITING," are all
enhanced by the use of the game controller inputs.
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AN INTRODUCTION TO
SWEET-16

SWEET-16

Deep inside the Integer BASIC ROMs lives a mysterious
program known as “Sweet-16." Sweet-16 is a meta processor
which is implemented interpreter style. lts virtues include a bunch
of 16-bit instructions, mast of which are implemented with one-
byte opcodes. Since performing 16-bit operations with normal
6502 code requires several two- and three-byte instructions,
Sweet-16 code is very compact. In this chapier we will explore

" BWEET - 16 "
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the possibilities of the Sweet-16 interpreter, its advantages and
disadvantages.

First, just exactly what is a “meta processor” and what does
an interpreted implementation imply? A meta processor is simply
a fantasy machine, one which does not exist as a physical
machine, but simply as a design tool. A meta processor has the
capability of taking on almost any instruction set. Since there are
only a few pieces of hareware actually capable of performing this
task {and the 6502 is not such a piece of hardware), a meta
processor implementation must be handled in a somewhat dif-
ferent way on the 6502. An interpreter must be written, with a
single subroutine for each instruction code to be implemented. A
small control program picks up the Sweet-16 opcodes from mem-
ory, decodes the instruction, and then passes control to the
appropriate subroutine. Once the desired subroutine is finished
execution, the code control is returned to the control program
which accesses the n byte of Sweet-16 code and continues the
process.

So far everything sounds wonderful. But what are the dis-
advantages of Sweet-16 code? First, and probably most impor-
tant, Sweet-16 programs run much slower than the same algo-
rithm coded entirely in 6502 assembly language, five to seven
times slower in fact. Another mark against Sweet-16 code is that
the Sweet-16 interpreter exists only in the Integer BASIC ROMs
(which is no big deal if you have an APPLE II computer, a lan-
guage card, or an Integer BASIC card), but, if you only have an
APPLE Il Plus computer without Integer BASIC, or you wish to
sell your programs to others who may not have the Integer BASIC
language, you will either have to forget about Sweet-16 altogether
or inject the code for the Sweet-16 interpreter into your program.
Since the Sweet-16 interpreter is about 400 bytes long, you would
have to write more than one kilobyte of code in Sweet-16 before
it would pay to include the interpreter within your programs.
Because of this problem, Sweet-16 should only be used where
the Integer BASIC language is available. The interpreter is
already provided there for you (free-of-charge evenl).

What does Sweet-16 ook like? Sweet-16 is a 16-bit com-
puter complete with sixteen 18-bit registers. These registers are
used to hold addresses and intermediate values for use in
address calculations. These registers are numbered RO to RF
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(hex) for reference purposes. Several of these registers are spe-
cial purpose. They include RO, RC, RE, and RF. RO is the Sweet-
16 accumulator. Sweet-16 can only perform the addition, sub-
traction, and comparison operations, and these must all be routed
through the Sweet-16 accumulator. RC is the Sweet-16 stack
pointer used when Sweet-16 subroutines are called. RE is used
io hold the Sweet-16 processor status data and RF is the Sweet-
16 program counter. Except for these four registers which are for
special use only, all the Sweet-16 registers are general purpose
address registers.

Before discussing how the Sweet-16 instruction set is used,
entering and exiting the Sweet-16 mode must be covered. A pro-
gram toggles back and forth between Sweet-16 code and 6502
code in much the same manner as you would toggle between the
decimal mode and binary mode. A program enters the Sweet-16
mode with a JSR SW16 instruction. SW16 is located at address
$F689. Once this is accomplished, all further code is assumed to
be Sweet-16 code. To terminate the Sweet-16 mode of operation,
the Sweet-16 instruction “RTN"” {for ReTurN to 6502 mode) must
be execute immediately after the RTN instruction, valid 6502
instructions are expected. A quick excursion into Sweet-16 with
an immediate return to 6502 mode would consist of the code
sequence:

SW16 EQU §Feg82

JSR SW16
RTN

RTS
END

If this short program were executed, the JSR SW16 instruction
would cause a transfer to the Sweet-16 mode to take place. All
further instructions are assumed to be Sweet-16 instructions. The
next instruction is the Sweet-16 RTN instruction which causes a
transter back to the 6502 moade. All instructions following the RTN
instruction are assumed to be valid 6502 instructions. The next
instruction is the familar 6502 RTS instruction which causes a
return to the Apple monitor. This simple sequence of instructions,
although trivial and producing no noticeable results, demon-
strates how to enter and terminate the Sweet-16 mode. Normally,
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several Sweet-16 instructions would be sandwiched between the
JSR SW16 and the RTN instructions.

The Sweel-16 processor status word holds several condi-
tions. A carry flag, zero flag, and negative flag are implemented.
A test for minus cne ($FFFF) is also implemented.

The Sweet-16 SET instruction allows the programmer to set
the contents of any Sweet-16 register to a desired value. Its 6502
equivatent is the load immediate instruction. The SET instruction
has the syntax:

SET Rn,<16-BIT VALUE>

The 16-bit value can be any valid LISA address expression. ‘n’
is simply & hex value in the range $0-$F and denotes which reg-
ister is to be loaded with the declared value. Examples of the SET

instruction:
LABEL SET RO,LABEL :LOADS THE CURRENT ADDRESS
;INTQ RO
SET R1,$25 :LOADS $0025 INTO Rl
SET R5,$800 ;LOADS 80800 INTD R5

The SET instruction is three bytes long: one byte for the SET
opcode and two bytes for the 16-bit value that is to be loaded into
the specified register. SET RF, <VALUE>> is a very special case.
Since RF is the Sweet-16 program counter, loading immediate
data into register $F is the same as performing an absolute jump
instruction. RC and RE must be treated carefully as well since
they are used to hold the Sweet-16 stack pointer and status reg-
ister. If zero is loaded into the specified register, the Sweet-16
zero flag is set; otherwise it is cleared. If minus one ($FFFF) is
loaded into the specified Sweet-16 register, the minus one flag is
set; otherwise the minus one flag is cieared. The Sweet-16 carry
flag is always cleared after a SET instruction is executed.

The next instruction in the Sweet-16 instruction set is the
load register or LDR instruction. This instruction loads the Sweet-
16 accumulator (R0) from the register specified in the operand
field. The term ‘load’ is somewhat misleading as this instruction
really a register transter instruction not unlike the 6502 TYA and
TXA instructions. The LDR instruction has the syntax:

LDE FEn
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Where n is the Sweet-16 register number in the range $0-$F Note
that LDR RO is perfectly allowable and performs the operation of
making a copy of RO into RO, a somewhat useless instruction
(except, possibly, for comparison purposes) but nevertheless
valid. The LDR instruction is a one-byte instruction and will cause
16 bits to be transferred to the Sweet-16 accumumator. If zero is
transferred between the registers, then the Sweet-16 zero flag is
set; otherwise the zero flag is cleared. If minus one is transferred
to the accumulator, the minus one flag is set; otherwise the minus
one fiag is cleared. The negative flag is set according to the data
transferred to the Sweet-16 accumulator. The negative flag
always reflects the contents of the sixteenth bit, not the eighth bit
as in the 6502 status register. The Sweet-16 carry flag is always
cleared.

STO (store register) is the inverse operation to LDR. STO
stores the contents of the Sweet-16 accumulator into the specified
Sweet-16 register. This is similar to the 6502 instructions TAY &
TAX. The Sweet-16 status bits are affected in the same manner
as with the LDR instruction, and the STO instruction is one byte
long, just like the LDR instruction.

You will note that there is no direct way to transfer the data
from one register to another without going through the Sweet-16
accumulator. For example, to transfer the data from RS to R6 you
must execute the code sequence:

LDR RS
STO R6

As you can see, the Sweet-16 accumulator is destroyed during
such transfers. For this very reason, the Sweet-16 accumulator
should not be used to hold important data. it should be used
totally as a transient register used only for calculations.

The Sweet-16 interpreter allows two types of arithmetic. 16-
bit addition and subtraction. Addition is performed with the Sweet-
16 ADD instruction. It takes a single register as its operand. This
register is added to the Sweet-16 accumulator and the result is
left in the accumulator. The syntax for the ADD instruction is:

ADD En

Where n is a hex value in the range $0-3$F. Note that the instruc-
tion ‘ADD RO’ is very useful; it doubles the value in the Sweet-16
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accumulator. If there is a carry out of the 17th bit during the
addition, the carry is noted in the Sweet-16 carry flag. An add
with carry instruction is not possible, so the carry flag is useful
only for detecting overflow. All the other condition codes are set
according to the outcome of the addition operation. The Sweet-
16 ADD instruction is a one-byte instruction.

Subtraction is performed using the Sweet-16 SUB instruc-
tion. The register specified in the operand field is subtracted from
the accumulator with the results being left in the accumulator. The
SUB instruction can be used as a compare instructionin a manner
similar to the SBC instruction on the 6502. If the vaiue in the
accumulator (prior to the SUB instruction) is greater than or equai
to the value in the specified register, the carry flag will be set after
the SUB instruction occurs. If the value in the accumulator is less
than the value in the specified register, the carry flag will be clear
after the SUB instruction is executed. If the two registers are
equal, then the zero flag is set; if they are not equal, the zero flag
is reset. Note that the SUB RO instruction can be used as a one-
byte clear accumulator instruction. It performs the same function
as SET RO0,0 yet requires only one third the memory.

Comparisons can alsc be performed using the CPR (com-
pare register) instruction. CPR performs the same function as the
SUB instruction, except that the results are placed in RD instead
of the ACC. Any tests following the CPR instruction will test the
value in RD instead of the accumulator. Register RD can be
thought of as an auxillary processor status register. As such, its
use shouid also be avoided.

Conditions in the Sweet-16 processor status register are
tested in a manner very similar to the 6502 microprocessor. That
is, branch instructions are used to test conditions. Branches on
the Sweet-16 processor use relative addressing, just like their
6502 counterparts. The branch instructions include: BRA (branch
always, an unconditional branch), BNC (branch if no carry), BIC
(branch if carry), BIP {branch if positive), BIM (branch if minus),
BIZ (branch if zerc or branch if equal), BNZ (branch if not zero or
not equal), BM1 (branch if minus one), BNM (branch if not minus
one), and BSB (branch to Sweet-16 subrouuine). All Sweet-16
branches are two bytes long.

The branch to subroutine (BSB) instruction really needs
some additional explanation. When a Sweet-16 subroutine is
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called, the return address is pushed onto the Sweet-16 return
address stack. The stack pointer is RC. Wherever RC happens
to be pointing when the BSB instruction is executed, the return
address will be stored. If you have not initialized the Sweet-16
stack pointer (RC), it could be pointing anywhere in memory,
which means that a BSB instruction could potentially wipe out
valuable program and data storage.

The cure for these ailments is always to initialize the Sweet-
18 stack pointer prior to using Sweet-16 subroutines. This is
accomplished quite easily by using the SET instruction and load-
ing RC with an intial stack pointer value (this is similar to using
the 6502 sequence; LDX #VALUE , TXS). Unlike the 6502 stack
pointer which is an 8-bit register that wraps around, the Sweet-
16 stack pointer is a 16-bit register which can take on any 16-bit
value. This means that if you're not very careful, it is possible to
have the stack go wild and wipe out everything in memory. Typi-
cally, you will not have to even use Sweet-16 subroutines, but
should the need arise, be very careful.

To return from a Sweet-16 subroutine you must use the RSB
(return from subroutine) instruction. The RSB instruction is a sin-
gle byte instruction.

Register increments and decrements are performed by the
INR and DCR instructions. INR increments the register specified
in the operand field by one; DCR decrements the specified reg-
ister by one. All branch conditions are set to reflect the final results
in the specified register. The INR and DCR instructions are both
one bylte long.

So far, only a discussion of the arithmetic and conditional
testing capabilities of the Sweet-16 processor have been pre-
sented. Although these instructions are useful, they do not really
present anything new that was not already available in the 6502
microprocessor instruction set. Sweet-16's real power comes
from its pointer and data movement capabilities. Several powerful
ioad and store instructions are available which allow the program-
mer to perform certain actions in one byte that would take eight
1o sixteen bytes on the 6502. These instructions revolve around
the idea of loading the Sweet-16 accumulator indirectly through
a specified register.

The first instruction in this family of instructions is the load
indirect instruction. It uses the syntax:
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LDR @Rn

Note that the mnemonic is the same as the normal load register
instruction, but that the ‘@’ character appears in the operand field
immediately before the register specifier. This instruction is an 8-
bit load instruction. it loads the low-order bits of the Sweet-16
accumulator from the memory location pointed to by the specified
register. The high-order byte of the Sweet-16 accumulator is cleared.
After the accumulator is loaded with the data from the address
pointed to by RBn, Bn is incremented by one. This causes the
pointer register 1o point to the next available byte immediately
after the LDR instruction is executed. This type of instruction
(where the register is automatically incremented for you) is called
an “auto-increment” instruction. The LDR indirect instruction is
very useful for memory movements and searches. Consider the
following code:

START  JSR SW1é
SET RI, $8000
SET R3,§FF

LOOP  LDR @Rn

CPR R3 :CHECK FOR $FF
BNZ LOOF yLOOP IF NOT FOUND
RTN ;QUIT SWEET-15, DATA FOUND

i ADDRESS LEFT IN Rl

This routine starts at location $8000 and searches diligently until
a $FF is encountered.

To load two bytes into the accumulator one would use the
LDD (load double indirect) instruction. It uses the syntax:

LDD @Rn

It loads the low order accumulator byte from the location pointed
at by Rn; then Rn is incremented by one. After the increment is
performed, the high order accumulator byte is loaded indirectly
through the new value in Rn. Once this is accomplished, Rn is
again incremented. The net result is that the Sweet-16 accumu-
lator is loaded indirectly from the locations pointed at by Rn and
Rn+ 1. Afterwards Rn is incremented twice. The branch condi-
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tions will reflect the final accumulator contents and the carry will
be cleared.

Data can also be stored indirectly through one of the reg-
isters. The store indirect instruction is the inverse of the load
indirect instruction. It has the syntax:

STO @Rn

This instruction stores the contents of the low-order byte of the
Sweet-16 accumulator at the location in memory pointed to by
the Rn register. After the store operation is performed, Rn is
incremented by one. The branch conditions reflect the Sweet-16
accumulator contents. The store indirect instruction can be used
rather well with the load indirect instruction for memory movement
routines. The following routine moves data from $8000 through
$9000 to the area $3000 through $4000:

START JSR 5§16

MOVE  SET R1,$8000  ;SET UF POINTER REG #1
SET R2.$9000  :SET UP FINAL VALUE REG
SET R3.$3000  :SET UP POINTER REG #2
LOOP  LDR @Rl _GET DATA @RI
STD @R3 :STORE @R3
LDR R1
CPR R2 .DONE YET?
ENC LOGCP "IF NO CARRY (I.E. LESS THAN)
BIZ LOOP . IF EGUAM
RTN
BRK
END

Compare this to the amount of code required to perform the same
operation in 6502 machine code!

To store both halves of the Sweet-16 accumuiator into mem-
ory, you must use the STD (store double indirect) instruction. This
instruction stores the low-order byte of the Sweet-16 accumulator
at the location pointed to by Rn. Rn is then incremented by one,
and the high-order byte of the accumulator is then stored at the
new location pointed to by Rn, after which Rn is again incre-
mented by ohe.
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The last three Sweet-16 instructions are POP (pop indirect),
STP (store pop indirect), and PPD {pop double indirect). POP
loads the low-order accumulator byte from the location pointed
to by Rn AFTER Rn is decremented by one. POP has the syntax:

POP (@Rn

User-defined stacks may be implemented using the POP Rn and
STO Rn instructions (where Rn is the stack pointer). POP is also
useful in implementing the “move right” routine presented else-
where in this book.

STP is the inverse of POP. This operation causes the low-
order byte of the Sweset-16 accumulator to be stored at the
address pointed to by Rn after Rn is decremented by one. Single
byte user-defined stacks may also be implemented using the STP
Rn and LDR Rn instructions (where Rn is the user-defined stack
pointer).

PPD (pop double indirect) is the 2-byte equivalent of POP.
PPD performs the following action: Rn is decremented by one
and the high-order accumulator byte is loaded from the location
pointed to by Rn. Rn is then again decremented by one and the
low-order accumulator byte is loaded from the address pointed
to by BRn. PPD has the syntax:

FFD @Rn

Double byte stacks may be implemented using the PPD and STD
instructions. The POP, STP, and PPD instructions are all one byte
long. The carry is always cleared after one of these operations is
performed. POP always results in g positive vatue which is never
minus one. PPD and STP affect the status bits depending upon
the final accumulator contents.

SWEET-16 HARDWARE REQUIREMENTS.

All of the Sweet-16 registers are implemented as zero page
memory locations (in fact, the first 32 bytes of zero page are used
for the Sweet-16 registers). For this reason, care must be exer-
cised when using zero page memory in a program in which
Sweet-16 is also used. RO corresponds to memory locations $0
and $1; R1 corresponds to memory locations $2 and $3; and so
on for the other registers. Since they are implemented in zoro
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page memory, it is a simple matter for 6502 programs to pass
data to a Sweet-16 routine simply by shoving data into the respec-
tive registers. Likewise, Sweet-16 can return data to the 6502
program in the Sweet-16 registers. A Sweet-16 call is transparent
to the 6502 program. All registers, including the processor status
register, are preserved and then restored before returning to the
6502 mode. Another important fact to remember is that the 6502
must be in the binary {(as opposed to decimal) mode before enter-
ing the Sweet-16 mode. Strange things happen if this is not the
case. Obviously, another book the size of this one could be written
on programming in Sweet-16. The purpose of this chapter is only
to acquaint the user with the Sweet-16 interpreter. It is left to the
reader to discover its myriad of uses.
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DEBUGGING 6502
MACHINE LANGUAGE
PROGRAMS.

GENERAL.

Except for the most trivial of programs, very few programs
run correctly the first time. Fortunately, LISA is an interactive
assembler, so the amount of time required to correct syntax errors
is reduced tremendously. Correcting the remaining program/syn-
tax/addressing mode errors is usually quite trivial. That is, if you
run across a duplicate label, or discover that you have used an
absolute label where a zero page variable is required, the cor-
rection is usually quite straight forward and easy to accomplish.
The real problem, as with any programming language, occurs
when logical errors creep into a program. Common examples of
logical errors might include forgetting to reset the decimal flag
after a series of decimal operations, executing data as a program,
wiping out a program with data, and forgetting to save the reg-
isters upon entering a subroutine. Unlike BASIC the 6502 is not
nice enough 1o stop and print an offending error message. It goes
along on its merry way producing incorrect results, destroying the
program in memory and possibly even data in memory and on
diskette.

Fortunately, the APPLE I computer is blessed with some
very good assembly language debugging tools. Foremost is the
Apple monitor. You've probably never even thought about the
monitor as a debugging tool, but it is a very, very good one.
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* DEBUGGING

Packed into only two kilobytes of ROM is a disassembler, a soft-
ware emulator, register and memory display and modify routines,
memory move and verify commands, and a whole host of addi-
tional commands. {f you have an APPLE Hl computer with Integer
BASIC you also get a mini-assembler which allows you to create
“quickie” programs and to patch existing ones with ease. In
addition to the Apple monitor, there are several LISA support
packages available from On-Line Systems which assist in the
debugging of 6502 machine language programs. Their use will
be described later.

GO COMMAND (G).

The Apple monitor GO command (‘G’) probably does not
seem like a debugging command. After all, the go command is
used to start a program executing and that's about all its good
for, right? WRONG! The GO command acts just like a JSR state-
ment within a program. It causes a jump to a subroutine at the
address specified by the user. For example, 800G causes a jump
to the subroutine at location $800 in memory. Just like a JSR
statement, the return address is pushed onto the stack and a
jump is made to the specified address. Wait a second! What return
address is pushed onto the stack? The return address back to
the Apple monitor, of course. This means that if you execute a
program terminated with a RTS instruction, your program wilt
return to the Apple monitor command level when the program
terminates. Ok, that’s probably old news too. You've been sticking
RTS instructions at the end of your programs for ages now and
you're quite aware of the fact that such programs return back to
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the monitor. Of what use is this feature when debugging pro-
grams?

If you stick a RTS instruction at the end of your program,
then your program can be called as a subroutine from an outside
program, so that, in reality, what your program consists of is one
large subroutine. Since you can call this large subroutine from
the Apple monitor and execute it, what is there to stop you from
calling smaller subroutines within your program using the GO
command? Nothing at all. And that is how the GO command
becomes a very powerful debugging command: it allows you to
test individual subroutines under isolated conditions. For exam-
ple, suppose you have a main program that calls subroutines at
locations $980, $ACO, and $1000. When you run the program the
machine disappears on you and nothing happens. You can call
the three subroutines using the 900G, AC0G, and 1000G com-
mands to see which subroutine is ending up in some sort of loop.
If the subroutine returns control to the monitor, chances are it
works fine, If it does not come back, you know where part of your
troubles may lie. Note that this technique assumes that absolutely
no data is passed to the subroutine. If your subroutines require
data (and most do), read on...

INITIALIZING REGISTERS AND MEMORY.

Except for the simplest of subroutines, most routines require
data of some sort. Routines which require small amounts of data
usually pass this data in one of the 6502 registers. Routines
requiring more data can pass the data in a known location, on the
stack, or can pass a pointer to the data. No matter how the data
is passed, this data must be correctly set up before the subroutine
is called, if the subroutine is expected to perform correctly. If you
call a subroutine requiring data using the monitor GO command,
chances are problems will develop unless you have taken the
time to set up the parameters correctly.

The simplest method for passing parameters consists of
passing the data in one or more of the 6502 registers. For exam-
ple, the videc output routine at location $FDFO expects the char-
acter to be printed on the screen to be passed to the routine in
the 6502 accumulator. How can you specify from the monitor what
data is passed to a routine in the registers when the GO command
is issued?
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The control-E command in the Apple monitor allows you to
display the contents of the 6502 registers. If you type control-E
followed by return the APPLE Il computer will display something
like:

A=0A X=FF Y-DB P=B0 5=G8

This tells you that when the GO command is issued, the 6502
registers will contain their respective displayed value. Great, so
we know how to find out what data will be passed to a routine.
But how can we change it? As it turns out, whenever you type
control-E followed by return the monitor is set up so that if you
type a colon (:) followed by some byte data, you can modify the
registers.
EXAMPLE:

¥ocontrol-E

A=0A X=FF Y=D8 P=B0 5=F8
*:Cl

*conirol-E

A=Cl X=FF Y-D8 P=B0O 5=F8

You can easily specify the data, which is to be passed to the
program in the accumulater, by simply typing a colon followed by
the data you wish to store in the accumulator.

If you wish to change the X- and Y-registers as well, simply
type three successive bytes separated by spaces. The first byte
will be placed in the accumulater, the second byte will be placed
in the X-register, and the third byte will be placed in the Y-register.
if you wish to change only one register, the data contained in
previous registers must be retyped into the monitor.

EXAMPLE:

*oontrol-E

A=Cl X=FF Y=DB P=B0 S=F8
“continued next page”
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*:Cl FF D8 BO FF
*control-E
A=C1 X=FF Y=DB F=B0 S=FF

To use this as a feature when debugging your programs
consider once again the Apple monitor video output routine at
location $FDFO. It requires that data be passed to it in the 6502
accumulator. If we had just written the video output routine and
we wanted to check it out without running the whole Apple mon-
itor, we could accomplish this by using the following steps:

*control-E
A=CA X=FF Y=D8 P=BD S5=F8
*- 1

*TDFOG
A
*sonirol-E

A=Cl X=FF ¥Y=D8 P=B0 5=F8
*:C2

*FDFOG
B
*sontrol-E etc. ..

so it is possible to “spoon feed” subroutines which require data
to be passed to them through one of the 6502 registers.

If data must be passed to a subroutine in one of the memory
locations in the 6502 address space, the setup is only a littie
different than if the data is passed in a 6502 register. Rather than
typing control-E <return>> and then a colon followed by the reg-
ister data, all you need type is the address of the parameter
followed by a colon and the data you wish placed in that memory
location.
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EXAMPLE:

*FO:00 B0 CO

*80GG

This example assumes that there is some subroutine at location
$800 which uses the data in locations $F0, $F1, and $F2. If you
have a subroutine that needs data passed to it in memory, you
can handle its testing in a similar manner.

If your routine requires special parameter handling (such as
the PRINT routine presented in an earlier chapter, where the data
is passed as part of the code stream), it is usually easier to write
a small driver routine to set up the parameters and call the routine
for you. For example, to write a short driver routine for the PRINT
subroutine {assuming that the PRINT routine is located at $900),
you would pick a spot in memory that is not being used and enter
the following:

*1000:20 00 09 Cl C2 €3 00 60

*1000G
ABC
x

If you've been learning your machine code all along (or if you're
like me, you cheat and look up the opcodes on a 6502 reference
card), you'll notice that the above sequence represents the code:

JER $8900
ASC "ABC"
HEX 00
RTS

By typing 1000G and executing this short routine, you can test
the PRINT routine to see if it works properly. For additional infor-
mation on modifying memory locations, consult Chapter 3 of the
new Apple Reference Guide (the ‘White’ book).

MODIFYING INSTRUCTION CODE (PATCHING).

Before LISA came along, most assemblers were quite slow
and required a considerable amount of setup in order to assemble
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code. As a result, the user found it easier {o replace instruction
code by stuffing hexadecimal data into memory rather than reas-
sembling the program with the proper modifications. This required
considerable knowledge on the user’s part (since he had to mem-
orize a good number of the 6502 opcodes); and he had to exer-
cise the utmost care to prevent his patches from destroying valid
instruction code. LISA is so0 fast and easy to use, however, that
extensive patching should never be attempted. It is almost always
easier to reenter LISA, correct the problem, reassemble the pro-
gram and try again.

In some instances a manual patch may still be faster. Exam-
ples include: replacing an implied addressing mode instruction
with another implied addressing mode instructicn (i.e., you meant
DEX instead of DEY), replacing an n-byte instruction sequence
with NOP’s (deleting the existing instruction), and installing BRK's
within your program. These last two examples are especially
important and will be considered in more detail.

The NOP’s main use in the 6502 instruction set lies in timing
delays and its ability to replace existing instructions without alter-
ing any registers or memory locations. The opcode for the NOP
instruction is $EA; memorize it! When debugging programs, you
will often need to replace an instruction with one or more NOP's.
The only easy way to enter a NOP into your instruction stream is

" PATCHING "
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to use the monitor memory modify command (<addr>:<data>)
to replace the instruction at the specified address. For example,
suppose you have an extra PLA instruction at location $890 in
your code and you wish to delete it. You could reenter LISA and
delete this instruction, but that operation would take about one
minute before you would be able to test the results of removing
the PLA instruction. A better approach, which gives you the ability
to immediately test the results of removing the PLA, is to replace
it with a NOP instruction. This is accomplished by typing ‘809:EA'
from the Apple monitor command level. After that, rerun your
program and see if it works. If you replace a two- or three-byte
instruction make sure that the entire instruction is replaced, not
just the opcode. Also, don't forget to go back and modify the
source of your program after you are through testing it.

As you may recall, the 6502 BRK instruction stops the pro-
gram and prints out the contents of the 6502 registers. This fea-
ture will prove to be extremely useful for debugging programs. By
replacing an instruction within your program with the BRK instruc-
tion, you can stop the program before {or after) some critical
section of code and examine the registers or some specific mem-
ory locations. The opcode for the BRK instruction is easy to
remember: it's zero.

Using the BRK instruction to stop program flow at some
point is known as ‘setting a breakpoint.’ Breakpoints are useful
when you need to test a section of code that is not a subroutine.
A breakpoint lets you execute a program up to a certain point and
then stop program execution. At this point the registers and any
particular memory location may be inspected. The single draw-
back to the BRK instruction is that it is very difficult to resume
program execution at the point the BRK instruction was encoun-
tered. The reasons for this are: (1) normally you have replaced
an instruction with the BRK instruction, and (2) the stack is
messed up when the monitor is entered. While a program could
be written to allow breakpoint management, it would not work on
all APPLE li computers (in particular it would not work on APPLE
Il computers without the Autostart ROM), and such a program is
beyond the scope of this book.

Lazer Systems (the folks who brought you LISA) have
another program to assist you in debugging your 6502 programs.
This program is called “TRACE/65." It is an interactive debugging
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tool for the APPLE Il computer similar io debuggers available for
CP/M systems. This program allows the machine language pro-
grammer the ability to single step through a program displaying
all the registers. TRACE/65 also lets the programmer set non-
destructive breakpoints, and gives the user the ability to display
the instructions with symbolic display of memory locations on the
video screen as they are being executed. In all, TRACE/65 can
help cut debugging time in half.

To use TRACE/65 you must assemble a program, using
LISA, in the $800 to $47FF area of memory. These are the only
locations allowed for storing the object code by the TRACE/65
program. Once the code is correctly positioned in memory, BRUN
the TRACE/65 program. When you are greeted with a *)” prompt,
type T followed by return. TRACE/65 will prompt you to enter a
starting address. Enter the starting address of your program. The
TRACE/65 program will immediately begin executing and dis-
playing your program. You can stop the rapid display of the
execution of your program by depressing the space har. This will
stop the execution of your program until you depress the space
bar again. This feature gives you the ability to slowly watch the
execution of your program a step at a time.

TRACE/65 incorporates two modes of operation: the exe-
cution mode and the ‘parameter’ mode. The execution mode is
the mode whereby programs are executed and displayed on the
screen. The parameter mode is the mode in which you set break-
points, toggle the display mode, modify memory locations and
registers, and exit the parameter mode.

To enter the parameter mode, type “P” from the command
level or stop your program from running (by depressing the space
bar) and type “P” At this point you will be greeted by a menu
describing the possible options. if you press “A,” you will toggle
the display mode. The display mode controls the printing of the
traceout. If the display mode is set, then all instructions executed
will be printed on the Apple CRT screen. If the display mode is
turned off, this listing will be supressed. The display oft mode wilt
typically execute a section of code 100 times faster than the dis-
play on mode. This allows you to quickly skip over sections of
code that do not need debugging (such as loops to zero out
memory} and then turn the listing back on when a section of
questionable code is encountered. The breakpoints {described
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next) are used to terminate a section of code that is being exe-
cuted in the non-display mode.

The ‘B option in the parameter menu is breakpoint selection.
A breakpoint is simply a command to the TRACE/65 program to
halt execution whenever an instruction at a certain address is
encountered. The breakpoint option in the parameter mode lets
you set a breakpoint address. TRACE/65 provides you with up to
four user-definable breakpoints. When you press ‘B, TRACE/65
will ask you which breakpoint you wish to set, and then it will
prompt you to enter the breakpoint address.

The ‘C* option lets you return to the executing program (or
TRACE/65 command level) without executing any of the param-
eter mode commands. This is useful in the event ‘P’ is accidentally
pressed.

The ‘D’ option is used to quit the trace mede. This option
lets you ferminate program interpretation after a desired section
of code is checked out.

The ‘$' option lets you enter a monitor command during
program execution. This could be used to change a memory
location or 6502 register, or possibly to disassemble the next
section of code that is to be executed before actually executing
it. To change a memory location, simply type ‘$<loc>:<data>.’
To change a 6502 register, you must modify one of the zero page
locations $DA through $E9. The registers affected are:

PC  :$DA, $DB
ACC (§ES
¥REG: $E6
YREG: $E7
PSW :$E8
SP :3EQ

Incidently, these are the only zero page locations in the range
$D6-$FF you or your program should modify. Should any of these
memory locations be modified, unpredictable things may happen.

PROGRAM DEBUGGING SESSION.

Consider the following program:

START:
LDX #30
LOOP LDA MSG, X
BEQ QUIT
JSR S$FDED ‘continued next page”
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DEX
BNE LOOF

P:ISG ASC "THIS IS A TEST"
HEX 00

QUIT BRK

END

This program has one very obvious problem, DEX is used in
place of INX. This program will probably print iots of garbage
instead of the desired message. To trace this program using
TRACE/65, you would BRUN TRACE from BASIC. Once you
were into the TRACE/65 program, you would load the program
in using the DOS command “BLOAD PROGRAM," Before exe-
cuting the program, a breakpoint should be set. The breakpoint
will be set for location $FDED. We set a breakpoint here because
we already know that the Apple monitor COUT routine works and
there’s no sense in wasting time to debug it. A breakpeint is set
by typing “P" (1o get into the parameter mode) and then “B.” Any
of the four breakpoints may be used, let's select breakpoint #1.
This is accomplished by typing “1.” TRACE/65 will now ask for
a breakpoint address. Enter FDED. Once FDED is entered, you
will be returned to the TRACE/65 command level. Now program
execution may begin.

To begin the trace mode, type “T.” TRACE/65 will prompt you
for a beginning address. Once this is entered, the trace mode
begins. Since a breakpoint was set at location $FDED, the trace
will quickly stop with the message '‘BREAK POINT ENCOUN-
TERED AT LOCATION $nnnn. Notice right below the ast instruc-
tion displayed, that the accumulator's contents are displayed.
Currently the accumulator will contain $D4 (T), which is the first
character in our string. Fine, things are working out okay so far.
To continue execution (without executing the COUT routine), the
parameter mode must be entered (by typing “P”). Now type
$DA:58FF. This will point the program counter at a RTS instruction
which will cause an immediate return to your program. Finally,
type “C” to continue the execution of your program. Another batch
of instructions will be executed, and once again the program will
encounter a breakpoint. This time, however, there is probably
garbage in the accumulator, and the X-index register will contain
$FF. By tracing back a few instructicns on the screen, you will
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notice that the X-index register was decremented instead of
incremented. Voila, the problem is solved.

While this is a very simple example, it demonstrates how
breakpoints are used to skip over certain sections of code. Break-
points can also be used to allow speedy execution (in the display
off mode) until a questionable section of code is encountered, or
to automatically stop program execution at any point.

Debugging code is learned mostly through experience. The
more you do it, the better you get at it. As the saying goes, prac-
tice makes perfect.
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APPENDIX A
APPLE Il COMPUTER
TABLES, CHARTS,
AND GRAPHS

INTRODUCTION.
This appendix contains reference tables, charts, and graphs

applicable to the Apple |l computer. These items are included as
programming aids and were lifted from Apple || computer docu-

ments,
Table 2: Keys and Their Associated ASCII Codes

Key t Alone (CTRL SHIFT Both Key | Alone CTRL SHIFT Both
space SAD SAD $A0 fA8 | RETURN 58D 8D $83D $8D
] SB@ $Ba $Bd $Ba G $C7 $87 SC7 387
1! 3B1 3Bl $Al FAl H SC8 $88 3C8 $88
2" $B2 $B2 $A2 A2 | $C9 589 5C9 $89
I# B3 $B3 JA3 A3 J $CA $8A SCA S8A
4% $B4 $B4 $A4 $A4 K SCB %8B $CB $8B
5% $B3 SRS FAS £A5 L 5CC £8C $CC 38C
6& SB6 $B6 $A6 A6 M $CD $8D SDD $9D
T $B7 $B7 $A7 £A7 N~ $CE $3E $DE $9E
8¢ 3B8 $B3 $AR $AR O CF $8F $CF $8F
9) $BY 3BO $AS A9 P@ fD9 599 SCa L840
x $BA FBA SAA BAA Q $D1 $91 $D1 591
ot BB $BB SAB $AB R $D2 392 $D2 $92
'o.< | SAC  BAC SBC  SBC S| $D3 $93 $D3 $93
—= $AD SAD $BD $BD | T $D4 $94 tD4 $94
-3 SAE SAE $BE $BE | U 5D5 595 $Ds £95
i /? SAF SAF $BF $BF A% $De £94 $D6 £96
! A £C1 £81 SCl $81 | W 507 £97 sD? 397
i B $C?2 82 $C2 £82 X SDS8 $98 $D3 598
C $C3 $83 3C3 383 Y £D9 $99 SD9 399
D 3C4 384 3C4 $84 Z | SDA S9A SDA 19A
E £Cs 585 8C5 585 — $88 588 $88 $88
F 5Co JRa 3Co 386 — $95 $95 %95 395
ESC $9B $9B $9B $9B8

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.

A—1

“A2B-RH-UBAL-2ND-A-01.PICT” 208 KB 2001-06-20 dpi: 400h x 400v pix: 1937h x 2822v

| Randy Hyde « DataMost « 2nd Printing « December 1982

Page 0252 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Programming 6502 Assembly Language

Table 3: The ASCII Character Set

Decimal: 128 144 168 176 192 288 224 248

Hex: $8¢ $99 S$ap S$B® 3Cd 3D# SER 3F@
8 3] nul dle ] @ P p
1 $1 soh  dcl ! 1 A Q a q
2 52 stx  dec2 " 2 B R b r
3 33 etx  dc3 # 3 C S c s
4 $4 et ded 5 4 D T d 1
5 85 eng nak Y 3 E U ] u
b %4 ack  syn & 6 F v f v
7 37 bzl etb ’ 1 G W g w
8 38 bs  can { 3 H X h x
9 %9 ht em ) 9 I Y i ¥
18 3A If  sub . : ] Z j z
11 $B ¥l esc + ; K [ k {
12 $C ff fs . < L y i |
13 $D cr gs - = M ] m H
14 $E S0 15 . > N - n B
15 $F si us / i 0 _ 0 rub

Groups of two and three lower case letters are abbreviations for standard ASCII control charac-
ters.

Not all the characters listed in this table can be generated by 1he keyboard. Specifically, the char-
aclers in the two rightmost columns {the lower case letters), the symbols [ (left square bracket), %

{backslash), _ (underscore), and the control characters **fs’, **us”, and “*rub”’, are not available
on the Apple keyboard.

The decimal or hexadecimal vaiue for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the ¢column and the left side of the row in which
the character appears.

A-2
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THE APPLE VIDEO DISPLAY

The Apple Video Display

Display type:

Display modes:

Text capacity:
Character type:
Character set:
Character modes:

Graphics capacity;

Number of colors:

Memory mapped into system RAM

Text, Low-Resolution Graphics,
High-Resolution Graphics

960 characters (24 lines, 40 columns)
5 » 7 dot matrix
Upper case ASCII, 64 characters
Normal, [nverse, Flashing
1,920 blocks {Low-Resalution}

in a 40 by 48 arcay
53,760 dots {High-Resolution)

in a 280 by 192 array

16 (Low-Resclution Graphics)
6 (High-Resolution Graphics)

Table 8: Low-Resolution Graphics Colors
Decimal  Hex  Color [ Decimal Hex  Color
a 5@ Black 8 58 Brown
1 51 Magenta 9 59 Orange
2 52 Dark Blue 16 $A  Grey 2
3 %3 Purple 11 $SB  Pink
4 54 Dark Green 12 SC  Light Green
5 85 Grey 1 13 D Yellow
6 %6 Medium Blue 14 SE  Aquamarine
7 57 L.ight Blue 15 $F White
A-3

Figure 1 is a map of the Apple's display in Text mode, with the memory locaion addresses for
each character position on the screen.
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1624
1152
128@
1488
1536
1664
1792
1920
1964
1192
1320
1448
1576
1704
1832
1968
1164
1232
1368
1488
1616
1744
1872
2000

$400
$480
$500
$589
3600
3680
3700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
345¢
$4D80
355¢
35D9
3650
$6D9
$750
$7D9
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SUMMARY OF MONITOR COMMANDS

Summary of Monitor Commands,

Examining Memory.
{adrs) Examines the value comained in one location.

{adrs!].ladrs2} Displays the values contained in all localions
between {adrsl) and {adrs2}.

[RETLRN Displays the values in up to eight locations fol-
lowing the last opened location.

Changing the Contents of Memory,

ladrs|:{val] |wval} ... Stores the values in consecutive memory loca-
tions starting at {adrs).

{wval} {val] ... Stores values in memory starting at the next
changeable location.

Moving and Comparing.

Idest) < [start}.[end)M Copies the values in the range {start}.{end] into
the range beginning at {dest}.

ldest) < {starl).jend}V Compares Lhe values in the range {siart).{end}
to those in the range beginning at {dest}.

Saving and Loading via Tape.

{start] fend|W Wriles the wvalues in the memory range
{start}.lend} onto 1ape. preceded by a ten-
second leader.

[start}.{lend}R Reads values [rom lape, storing them in
memory beginning at {start] and stopping at
lend). Prints “ERR" if an error occurs.

Running and Listing Programs.

{adrs|G Transfers control to the machine language pro-
gram beginning at {adrs).

{adrs]L Disassembles and displays 20 instructions, start-
ing at {adrs]. Subscquent L's will display 20
maore insiructions cach.
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Summary of Monitor Commands.

The Mini-Assembler

F666G

$lcommand)

Invoke the Mini-Assembler.”

Execute a Monilor command from the Mini-
Assembler.

SFFO9G Leave the Mini- Assembler,

{adrs} S Disassemble, display, and execute the instruc-
tion at {adrs}, and display the contents of the
6302"s internal registers, Subsequent §'s will
display and execule successive instructions.**

fadrs} T Step infinitely. The TRACE command stops
only when it executes a BRK instruction or
when you press [RESET|.**

CTRL E Display the contents of the 65825 registers.

Miscellaneous.

I Set Inverse display mode.

N Set Normal display mode.

CTRL B Enter the language currently installed in the
Apple’s ROM.

CTRL C Reenter the language currently installed in the
Apple’s ROM.

{vall+{val} Add the two values and print the result.

{vall —{val} Subtract the second value from the frst and
print the result.

{slo1} [CTRL P Divert output 1o the device whose interface
card is in slol number {slot}. If {slot}=2, then
route output to the Apple's screen.

{slot} [CTRL K Accept inputl from the device whose interface
card is in slot number {slot). If |slot)=@. then
accept input from Lhe Apple’s keyboard.

CTRL Y Jump to the machine language subroutine at

location $3F8.

* Mot available in the Apple 1T Mus
** Not available in the Aumostart ROM.
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SOME USEFUL MONITOR SUBROUTINES

Here is a list of some useful subroutines in the Apple’s Monitor and Autostart ROMs. To use
these subroutines from machine language programs, load the proper memory locations or 6582
registers as required by the subroutine and execute a JSR 1o the subroutine's starting address. It
will perform the funclion and return with the 65825 registers sel as described.

SFDED CouUT Cutput a character

COUT is the standard characler output subroutine. The characier to be output should be in the
accumulator. COUT calls the current character output subroutine whose address is stored in
CSW (locations $36 and $37), usually COUT] {see¢ below),

SFDF# COLT1 Cutput 1o screen

COUT! displays the characler in the accumulator on the Apple's screen at the current output cur-
sor position and advances the cutput curser. 1l places the character using the setting of the
Normal/Inverse location. 1t handles the control characters RETURMN, linefeed, and bell. Tt
ratirns with all registers intact.

SFES4 SETINY Set Inverse mode

Sels lnverse video mode for COUTI. All outpul characters will be displayed as black dots on a
white background. The Y register is set 1o $3F, all others are unchanged.

SFE84 SETNORM  Set Normal mode

Sets Normal video mode for COUTIL. All output characters wwill be displayed as white dots on a
black background. The Y register is set to $FF, all olhers are unchanged.

SFDRE CROUT Generate a RETURN

CROUT sends a RETURN character to the current output device.

$FDSB CROUT1 RETURN with clear

CROUT] ¢lears the screen from the current cursor position to the edge of the text window, then
calls CROUT,

SFDDA PRBYTE Print a hexadecimal byte

This subroutine outpuls the contents of the accumulator in hexadecimal on the current outlput
device. The conients of the accumulator are scrambled.

SFDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimat digit. The
contenis of the accumulator are scrambled.

$Foa1 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value. The accu-
mulztor contains the first byie output, the X register contains the second. The contents of the

A-10
“A2B-RH-UBAL-2ND-A-10.PICT” 361 KB 2001-06-20 dpi: 600h x 600v pix: 2849h x 4690v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0261 of 0289 |




Apple 2 Technical Book « Using 6502 Assembly Language

Appendix A

accumulator are usually scrambled.
SF%48 PRBLNK Print 3 spaces

Cutputs three blank spaces to the siandard output device. Upon exit, the accumulaior usually
contains $A®, the X regisier contains &

SF3da PRBL2 Print many blank spaces

This subroutine oulputs from 1 to 256 blanks 10 the standard output device, Upon entry, the X
ragister should conlain the number of blanks to be output, [f X =588, then PRBL2 will cutpui
256 blanks.

SFF3A BELL Output a “bell’” character

This subroutine sends a bell {(CTRL G) character 1o the curreni output device, 1 leaves the
accumulator hiolding 387.

SFBDD BELL1 Beep the Apple’s speaker

This subroutine beeps Lhe Apple’s speaker for |1 second al 1KHz. It scrambles the A and X
regislers,

SFDEC RDKEY Get an input character

This is the standard character input sebrouting. It places a flashing input cursor on ihe screen al
the position of the outpul cursor and jumps to the current input subroutine whose address is
stored in KSW (locations 338 and $39), usually KEYIN {sce below).

SFI35 RDCHAR Get gn input character or ESC code

RECHAR is an alternate input subrouline which gets characiers from the standard input, bul also
imerprets Lhe eleven escape codes (see page 34).

SFDIB KEYIN Read the Apple's keyhoard

This is the keyboard mmput subroutine, 1t reads the Apple’'s keyboard, wails for a Keypress, and
randomizes the random number seed (see page 32). When il gets a keypress, it removes the
flashing cursor and returns with the keycode in the accumnulator,

SFDSA GETLN Get an input line with prempt

GETLN i3 Lhe subroutine which galhers inpul lings (see page 33}, Your programs ¢an call
GETLN with the proper prompl character in location $33. GETLN will reiurn with the input line
in the input buffer {beginning 2t location $208) and the X register holding the length of the input
line.

SFD67 GETLNZ Get an input line

GETLNZ is an aliernate eniry peint for GETLN which issues a carriage return to the standard
output before falling into GETLN (see abovel,
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SFD&F GETLNI Get an input line, no prompt

GETLNI is an alternate entry poinl for GETLN which does not issue 4 ptompt before it gathers
the input line. If. however. the user cancels the inpul line, either with too many backspaces or
with a [CTRL X|. then GETLN] will issue the contents of location 333 as a prompt when it gels
another line.

SFCAR WAIT Delay

This subroutine delays for a specific amount of 1ime. then returns to the program which called it.
The amount ol delay is specified by the contents of the accurnulator. With A the conltents of the
gocumulator, the delay is '2{264+27A +5A%) wseconds. WAIT returns with the A regisier zeroed
and the X and ¥ registers undisturbed.

$F364 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen o the color passed in the
accumulator. See page 17 for a table of Low-Res colors.

SFRSF NEXTCOL Increment color hy 3
This adds 3 1o the current color used for Low-Res Graphics.
SFRgW PLOT Plot a black on the Low-Res screen

This subrouline plols a single block on the Low-Res screen of the prespecified color. The block’s
verlical position is passed in the accumulator, its horizontal posilion in the Y register. PLOT
returns with the accumulator scrambled, but X and Y unmolested.

$F81% HLINE Draw a horizontal line of blocks

This subrouline draws a herizontal line of blocks of the predetermined celor on the Low-Res
screen. You should call HLINE with the vertical coordinale of the line in the sccumulator, the
leftmost hotizontal coordinate in the Y register. and the rightmost horizontal coordinate in loca-
tion $2C. HLINE retwurns with A and Y scrambled, X intacl,

SF828 ¥LINE Draw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the 1op verti-
cat coordinate in the accumulator, and the bouom verlical coordinate in location 32D, VLINE
will return with the accumulator scrambled.

§F8a2 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics sereen. I you call CLRSCR while the video
display is in Text mode, it will fill the screen with inverse-mode @ characters. CLRSCR des-
troys the contents of A and Y.

$FB35 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR {above), except that it clears only the top 40 rows ol the
screen,
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$F871 SCRN Read the Low-Res screen

This subroutine returns the celor of a single block on the Low-Res screen. Call it as you would
call PLOT (above). The color of the Bock will be returned in the accumulator. No other regis-
1ers are changed.

SFBIE PREAD Read a GGame Controller

PREAD will return a number which represents the position of 4 game coniroller. You should
pass the number of the game controller 1@ 10 31 n the X register. If this number is not valid,
strange things may happen. PREAD returns with a aumber from S8@ 10 SFF in the Y register.
The accumulator is scramblad.

SFFID PRERR Print "ERR"™

Sends the word ““ERR". followed by a bell character, to the standard outpul davice. The accu-
mulator is scrambled.

SFFdA I10SAVE Save all registers

The contents of the 65@82°s internal registers are saved in locations 345 through 349 in the order
A-X-Y-P-S. The conlents of A and X are changed; the decimal mode is cleared.

SFF3F IOREST Restore all registers

The contents of the 6582's internal registers are loaded from locations $45 through $49,

A-13
“A2B-RH-UBAL-2ND-A-13.PICT” 179 KB 2001-06-20 dpi: 600h x 600v pix: 2859h x 4699v
| Randy Hyde « DataMost « 2nd Printing « December 1982 Page 0264 of 0289 |




Apple 2 Technical Book -

Using 6502 Assembly Language

Programming 6502 Assembly Language

MONITOR SPECIAL LOCATIONS

N Table 14: Page Three Monitor l.ocations
Address: [ lser
Deeimal Hex Monitor ROM  Aunstart ROM
1908 S3Fg Holds the address
1089 S3FI ol the subroutine
. which handles
Neone, .
machine language
“BRK™  requests
i (normally SFAS9).
e P AT
ig:? 2‘2}3 None. : Solt Entry Veclor.
1912 S1K4 None. Power-up Byle,
1813 $3F5  Holds a “‘TuMP™ instruction to the
1814 53F6 | subroutine which handles Applesoft 1l
1815 SIFT | & commands® Normally $4C $58
SFF. o
1816 $3F8 | Holds a —FuMPB™ instruction to the
1817 S$3F9 | subroutine which handles “USER™
1818 $3FA | {[CERL Y|} commands.
819 S3FB | Helds a “"JuMP™ inslruclion to lhe
1920 SIFC | subrouting  which  handles  INon-
1321 S3IFD | Maskable Interrupts,
1822 S3FE | Holds the address of the subroutine
1923 S3PT | which bundles Interrupt Re_Q_u"eats_

* Sec puge 123 he Applesoft 11 BASIC Reference Manual
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MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 36 mnemonics and 13 addressing formats used in 6592
Assembly language programming. The mnemonics are standard. as used in the MOS
Technology/Synertek 6500 Programming Manual (Apple parl nhumber AZLOD0O3), but the
addressing formals are different. Here are the Apple standard address mode formats [or 6582

Assembly Language:

Table 15: Mini-Assembler Address Formats

Mode: Format:

Accumulator None,

Immediate #5[value] I
“Absolule ) “S{addlressi
| Zero Page s{address) mi

Indexed Zero Pufge

Sfaddresst.X
Sluddress},Y

Indexed Absolutc

Sladdress}. X

_ Sladdresst.Y
Implied Mone.
Relative Sladdress]

Indexed Indi_rccl

(${address] X)

Indirect [ndexed

(S[address]).Y

Absolute _I__rj_dirf:cl

(Sladdress)

An [address) consists of one or more hexadecimal digits. The Mini-Assembler interprels
addresses in the same manoer that the Monitor does: iF an address has fewer than four digits, it
adds leading zerocs; if 1t has more than four digits. then it uses only the Jast foar.

All dollar signs (S}, signilying that the addresses are in hexadecimal notation, are ignored by the
Mini- Assembler and may be omitted.

There is no syntactical distinclion between the Absolute and Zero Pupe addressing modes. Il you
give an instruclion lo the Mini-Assembler which can be uscd in both Absolute and Zero-Page
mode, then the Mini-Assembler will assemble that instruction in Absotute mode if the operand
for that instruction is greater thun SFF. and it will assemble thal instruction in Zero Page mode if
the operand for that instruction is less than $8108.

instructions with the Accumulsior and Implied addressing modes need ne operand.

Brunch instructions, which use the Relalive addressing mode. require the iarmger gddress of 1he
branch. The Mini-Asscmbler will awomalically figure out the relative distance 1o use in the
instruction. If the target address is more than 127 locations distant from the instruction, then the
Mini- Assembler wil sound a “boep™'. place a circumfex (7)) under the target address, and ignore
the line.

If vou give the Mini-Asscmbler 1the mnemonic lor an instruction and an operand, and the
addressing mode of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the ling.

A—15
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_ System Memory Map
i Page Number:
fDecimal Hex
] 308
1 $a1
2 5a2
RAM {(48K)
199 SBE
191 SBF
192 SCi
193 SC1
[/0 (2K)
198 3C6
199 3C7
I 208 iC8
fE 281 SC9
N ‘ [/0 ROM (2K)
266 $CE :
07 SCF
208 $Do
299 $D1
ROM (12K}
254 $FE
255 SFF |

Figure 5. System Memory Map

A-16
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Table 16: RAM Organization and Usage
Page Number:
Degcima! Hex Used For:
@ SP@ | System Programs
1 501 | System Siack B
2 $82 | GETLN Input Bufier B
3 $83 | Monitor Vector Locations
4 304
5 385 | Text and Lo-Res Graphics
] %86 | Primary Page Siorage
7 $a7
8 $ag
9 389 | Text and Lo-Res Graphics
19 SPA | Sccondary Page Storage
11 S@B
FREE
|12 $0C
| through
31 $1F
1 RAM
32 320 | Hi-Res Graphics _
through Primary Page |
63 $3F | Storage
64 %46 | Hi-Rcs Graphics
through Secondary Page
95 SSF | Storage
96 S68
through
191 SBF

A-17

Following is a breakdown of which ranges are assigned (o which functions:
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Table 17: ROM Organization and Usage

L'scd By:

[ Page Number:
Decimal  Hex
288 SDY
212 5D4
216 D8
220 SDC
224 SE@
228 SE4
232 $ESR
236 SEC
240 sF@
244 4
248 5F8
252 SFC

Programmer’s Aid #1

[nleger BASIC

Utility Subroutines

Applesolt
11
BASIC

i Monitor ROM

Autostart ROM
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Appendix A

ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage

@
16
32
48
64
2@
96
112
128
144
168
176
192
208
224
249

Decimal

Hex

Sae
sie
320
$30
$49
£50
S68
s78
BL1Y
398
3AD
iB2
3Cco
iDg
$EB
ire

¢
$@

1
51

2
52

3
83

4

$4 S5 %5 §7 %8 %9 $A 3B ¥ 8D SE §F

s 6 7 8 9 1@ 11 12 13 14 15

* b »

Table

19:

Applesoft 1T BASIC Zero Page Usage

)]
16
32
48
64
20
96
112
128
144
168
176
192
208
224
240

Dacimal

Hex

308
$18
$20
330
$49
$50
368
$7e
$30
190
$Aap
Y1
$co
$Do
$EM
$F@

81

32

3
34

5 6 7 8 9 i@ Il 12 13 14 13
S5 $6 $7 38 %9 $A $B SC SD SE SF

2 08 8 0 0P & S b

* & & & 4 4880 00

S & 5 & &8 " 002

& & & 0 8BS

* 4 8 %0

[ N I B R R BN N BN RN
.8 & > 8 000 as
& & 0 & & & 0 BB
* & & & 0 0 880
> & &0 0 & 800
a & & & 8 8 8

L K B B BN BN BN

L I B B B BE NN BN BN BN N
»
-

a8 o8 s e e ae

A-19
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Table 20: Apple DOS 3.2 Zero Page Usage

)

16
32
48
64
1)
96
112
128
144
160
176
192
208
224
249

Decimal ] 1 2 3 4 5 ) 7 g 9 1@ 17 12 13 14 {5

Hex 38 8] 82 83 %4 §5 %6 87 58 $9 3A $B 3C $D SE S3F

500
e

520 . @ . [ . . s =

sig . »
S49 - ] - L] [ . - ] [ ] ] [ ) [ .

850
SHQ » [ ] » [ ] [ ]
7@ .

5&é
590
SAQ .
B8 L

SCH . . » .

$De L]

SE®
$F@

Table 21: Integer BASIC Zero Page Usage

2
16
1
48

| 64
‘30
96
1112
128
144
168
176
192
208
224
249

Decimal g 1 2 3 4 5 & 7T & 9 10 11 12 13 14 15

Hex 3B &1 S2 53 %4 535 %6 3§87 $8 39 S5A SB SC SD SE &F

$oe
sle
320
LX)
b40
550
$od
sTe
sg@
594
SAad
$Bd
3Co
3Dd
SE@
ire

LN BN DR BN BN B B

. 8 85 80 P

L 2N BN BE BN BN BN BE ]

. & 8 % 0 & 0 a

d & " & 8 8 0 H

2 & & & 4 A
4 & & 89 000 a
2 & & & 8 BB aa
4 & 8 88 0 b P
L N BN BN BN BE BN BN N
LI B BN BN OB BN N AN N
LI BN B BN BN BE BN BN NN
LB N B BN BN BE BN BN NN
-8 8 ¢ 00 s e
8 808 &0 4 a0
L BN BN BE BN BN BN BE BN

A-20
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ADC

AMD
ASL

BLC
BLE
BEQ
BIr

BMI
BNE
BPL

BYC
avs
CLC
cLp
CL
CLY
cMpP
CPX
cPY

OEX
DEY

EOR

INC
X
INY
JMP
J5R

{ =BT x>

>

H
L
OFER

33t

Add Memory 10 ACCumulalor with
Carry

ANDT Memary wilh Accumulator
ShiH Leh Ona Bil IMemony ot
Accumulglor

Branch on Carry Claar
Branch on Carry Set
Branch on Rasult Zero
Tast Bris i Memory with
Asturmulalor

Branch on Assull Minus
Branch on Aeeull nol Zero
Branch on Rasul Plus
Foroca Bresk

Brancn on Overllow Chear
Branch on Overtiow Sat

Clear Carry Flag

Cieer Decimal Moo=

Clear Inerrup! Dusable B
Clear Overllow Flag

Compare Memary and Accurulalar
Compare Memory and Tndex X
Comppre Memary and Indés ¥
Decrement Memary by Gna
Cacremant Ingex X by One
Decramant ladax ¥ by Dne
"Exgiudive-CHT Mamary with
Actumulator

Incremanl Memary By One
Incrwmen Indes X by Ok
incremant [ngdex ¥ by One
Jump tg Mew Locabon

Jump 10 Mew Lacathon Saving
Relurn Address

Appendix A

6502 MICROPROCESSOR INSTRUCTIONS

LOA  vLoad Accumulalgr with Mamary

LDX Laad Indea X wilh Memgry

Loy Long 1ndex ¥ will Mempry

LSR Srult Righl one Bl iMemory or
AcCumu sl

NQP  No Operathgn

CGRA  “OR" Mamary wilh ACcu MUIAIr

PHA  Push Accumulator on Siech

PHP Fush Proceasar Status on Stack

PLA  Pull Accumulatar kgm Siack

PLF Pull Processar Siaius fram SIRgi

ADL  Aote Ong Bl Lelt ddamory o
Accumutabar

ROR  Fotgte One Bu Aight IMemory or
ALSurnulgton

RrTI Amlurs trom Imertupl

RTS  Raiurn from Subroutine

SBC Subteact Memory fromn ACCumalRtar
Wit Bort ow

SEC  Se' Carry Flag

SED Se4l Decimal Wode

sEI St Intarrupl Cisabie Staus

STh Store Asuntulalor s Memory

£TA Siore Index X tn himmory

5TY Staré [Adex Y an Memory

TAX  Transter Accumulalor |0 Index X

TAY Transler Accomulater 10 Indea T

TEX Tewnsier Sipck Pontar o Indéx X

THA Transier Indes X (0 Sccomylator

TXS Transler Indew X ta S1ack Pointer

TYA Trangler Ingew 7 to ActumMuldtar

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

ALtumu el

noes Registars
hemaory

Boirow

Processor Siatus Aegesier
Slach Pointer

Change

Ng Changs

Add

Logical AND

Subiract

Lagial Exglusivs OF
Transiar Fram Siack
Transier To Sinch
Transiar Ta

Transier To

Logical OR

Frogram Counter
Program Cauntar Hrgh
Program Counter Law
Operand

Immedinle Addressing Mode

FIGUAE + ABL-SHIFT LEFT ONE BIT GRERATION
f T
?.s!s|4|3|2|1lo}—-ﬁ

FIGUAE 2 ROUTATE OMNE BET LEFT {MEMORY
DR ACCUMLIATOR)

LT BTk o

FIGURE 3

¥ nnnnnnG,

BIT = TEST BITS

MOTE 1

Bl G eng T are tranaiarred to the stalus regesien |1
syl ol A A M3 zero than 171, otharwee Z=0

A-21
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PROGRAMMING MODEL

ACCUMULATOR

INDEX REGISTER ¥

X INJEX REGISTER X

]
) @

PEH PCL ] FROGAAM COUNTER
]

SETACK POINTER

T
Miw|B|D I|Z < FROCESSOR STATUS REGISTER. "F”

E 1 [—- CARRY
| - -

e ZERD
INTERAUPT DISABLE

BEC/MAL MCLE

|___._.._ BREAK COMMAMND
OVERFLOW
- —————— NEGATIVE
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Appendix A

INSTRUCTION CODES

! Sarembly ! HEX i
: Name Dptratlon Addreysing Language | or No | “F" Btalus Reg
Dugerigiton Mede Farm { Uode Bytw| NZCIDVW
|
AGE | P :
Add memory 1o AMA[ AL | Immediate ADC wiper ) e vy e
atcwmylalgr wilh carry - Zeia Page ADC Qper . B ? 1
v Zerg Page | AODC OQperX 75 2 H
© Absalute I AOC Oper + B 3
| Absolute X ¢ ADC QperX 0 3,
: Absolte ¥ ADC Qoeey 78 3
LOndirect X1 ADC (OperX) | ) 2,
e ¢ Ondirect ¥ - ARC {Open).¥ n 2 i
AND ;
“ANQT memary with AAM =B Immediate ANL alper 2 24 W
aceumulatar lerp Pape AND Oper h 2
Zeto Page X | AND OperX kL] 2
Absolute AMD  Oper 20 k]
Absglue X AND Qper X 30 k]
Absolue ¥ AND Qper Y k.| 3
{Indieact, ¥) AND  10per X) A 2
{Indirectl ¥ AND  10per). ¥ k| ?
ASL !
Shift |edt one bt - {See Fiqure 1 | Adcumplatar | ASL A 0A 1 V'
{Memory or Accumulator} § Jero Page ASL Oper o 2
Zero Page X | ASL OperX 15 2
- Absolute ASL Qper oE 3
Absgirle X ASL Operx 1 3
acg
Branch on Cany clear Branch on G-0 | Pelalwe BEC Dnj Wzl -
BCS
_Branch on darry el Branch on C:1 | Pelaive BCS Oper 80 2 oo
BE(
Branch gn result zero Branch on Z-1 | Relalive BED Oper | FQ 2 o=
BT
Test bits in memoty ARM. M; =MN_| Zero Page 817" Oper 2 2 [ mps - Mg
with accumulator Mg =~V Abgolute BIT" Oper x k]
Ml
Brarch an resuit minus Branch o M-t | Relahve BMI Dpes 30 2 o
BNE
@ranch gn resull not zero | Branch on Z2-0 | Aelalive BNE Opar m| 2 -
BPL
Branch on resull plhes Branch on N=0 | Aelative @M, nper 0 2 |
BRK
Forge Break Forced Implied BRK* 1] 1 R T
Interrupl
PL24 Py
Bvc
Branch on everllow clear | Branch on ¥-0 | Rélaloe BYC Dper 50 2 e
:un g S MR T e TR IRl gy W IR A h:- W BAR TG g P sk B e
T B 1 OiFn et § - 0
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A 1 “hewmoly wex
| Namy o Bpunion . Addresslng Language OF . Me | P Siws Rag
! (lescriplien . i Mode 1 Ferm Code i!rml NICIDV
_____ e . . e AT TR T
L BUS - o
i Bramch on puerllew set  Biareh on V-1 Relahwve ! BvS dper o2 |
Lo ! T e e ]
P LG ! ! '
! Clear carrytlag ¢ 0 =C | Imgalizg | £LE 14 1 -
I CLD : :
{lear decymal mode o -0 Imghes (€L I v a
tu ; !
0 - Imphied gL 8 . 1 0 !
e e e L T —
CLy | : R :
LClear owerttaw !lag PRl B ! ltpled - CLW o 8 1 0 )
CMP : ; i
Comparg mempry and . A — M Immedeale | CM® aDper (8] 2 PN
aceumulator ! et Page D CMP Dper s 2
i Zero Pags. X | CMP Oper X 05 1 2
| #bsalute CMP per €0 3
Aboaluie X CMF  Dper X po ¢ 1
| Abtolute ¥ CMP Dper¥ L T I
| (Ingwrect Xy | CMP Qper X C1 o
| lndwecs.Y | CMP fQperl¥ | 01 @ 2
| A TN
LPX ! i i
Campare mamory and X—M Immediake | CPY elper B! | [V
index X Zero Page | CPX Dper B 2
Abenlule i CFX  Dper EC i 3
; .
CPY ! |
Campare mempsry and ¥ —M Immediate | CPY wlper CO i 2 1 v
ingen ¥ Zerp Page CPY  Dper C4 2
Absolule _i_CPI Dper ce k|
DEC 1
Decremenl memary MW—1+M Zero Page QEC Qper Cé ? LA i
by ome Zerp Page X DEC Oper X 1] 2
Absalute DEC Dper e | 3]
AbsoluleX ! DEC Oper.X DE | 3
.- - i (e U R
DEX . !
Pecrement indec X X—1—=X Imphed DEX ' Cca 1 Vom0
by ore H .
DEY : 1
Decrement index ¥ ¥—1—=Y Impliad DEY T | S
by ane - J
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T ! Thussntly | HER
i Kime o Dparslimn Addreceing Language or My | “F Stalun Rug
iL Deacriplian . Medt Form Code |Bytws| WZCIDW
i EOR i
“Exclusrer-Or  memary AV K =h lmmediate EOR wDper 49 2 WVyo-
wilh accumulagr | Zero Page 7 EOR Cper 45 2
| Zerg Page X : EOR  Oper.® &8 2
Absalute £0R  Oper 10 3
Absoluie X EOR OperX 50 3
| Abalute ¥ £0R Oper¥ ] 3
: v (ngeedt X} EQR |QperXi 41 2
: _ i DndwectyY | EOR iOpeni¥ § 51 | 2 o
ING !
Ingzement memory M-1~M Zero Page IRC Opei €6 2 W= ==
by Dne 2era Page X | ING Oper X ] 2
Absolute ING Oper EE k]
Absoluie X INC Oper X FE kl o
(KX |
Ingrament ngex X by gng |X -+ wX | Implied INX Ed , 1 W
iNY
lagrament index ¥ by one (Y « 1 =Y Implsg INT o ca i Wl == -
JWP ]
Jump 10 new Ipcativn [PC+1) =PLL | Bbsaluie | JWP Qper 4 3 il
o [PC+2) +~PCH ¢ Indirect JMP D) &G _1‘
JBR
Jurng 10 new Jocalion PC+2 4 Absolute JER Cper Full 3 Rl
saving return addrass (PCe1) —=FLL
HIPC.2) —PCH
LDA
Load accumulator Wk Immed ate LDA = Dper Aol o2 | M-
wilh memagry 2erg Page DA Oper A 2
Zero Page X | LOA QpeiX BS 2
Absolule 04 Qper AD k|
Absolple X LA Oper X ;] 3
Absolule Y LOA Oper¥ B9 k]
{Ingirdcl X) LA [Oper.X] Al 2
[Indirect). ¥ L& [Qper).¥ =l F
LDX
Load ingex X X Immedrate LDX wdper A2 2| v
with memory Tero Fage LDX  Oper AR 2
Zeip Page¥ | LDX Oper¥ B& H
Absolule LDX Qper AE 3
Absolule. ¥ LOX Qpery 13 3
Loy
Loag wdes ¥ M Immedialy LAY wQper L 2 W T
wilth memgry Zero Page LDY Qper Ad 2
2arg Page ¥ | LDY DperX [:F] Fd
Absolute LoY Oper Al 3
Absplute X LOY Do X BC 3
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- - Aseembly | MEX
Name ¢ Opavalion Adgresaing Language oF No. | “F Statun ey
Oter pion ' Mot Form 1 com TGy WZCIGW
LS8R t :
SPaM bt G bl i (Ses Frgqure 1) | Actumulabpr | LSRR A L 1 O
(MEMOry ar accumulatary ; Tera Fage L5R Oper a5 2
: ! Zern Page X | LSR Cper.x 5% | 2
! 1 Absolute LER Oper 4E k]
_ | ! Apsolute ¥ | LSR Operx s | 3|
. MOP l
| Mo epeiation .[ Mo Qperalion Implied NOF 4] 1 -—-
0RA [
“OR” memary with AV M =h Immediate ORA rlper i.2] 2 W -
arcomulatsr | Zeto Page ORA  Oper 1] 2
! Zero Page X | QA& Oper.X 15 ?
. Bosgkule ORR  Dper [+ 1] 3
i Apsolule X ORA  Dper X 10 3
t Absafute ¥ ORA  DOper.¥ % 3
; (Ingrect Xt ORA - (Oper, X1 o 2
! (Indirect} ¥ ORA  (Doeri ¥ Ik 2
PHA :
Fush accumulator LY implied PHA L] 1 e
on slach |
PHP |
Fush professor stalug P ] implied PHP | 1 Ce———
on slack _
PLA
Pull accumylalar A triplved FLA ] 1 PR
| fomstack L 4.
PLP
Pull processor slatus ] Impled BLP 28 1 Fram Stack
fram $tack
ROL
Rolate ang b lel i5ee Fagure 21 | Accumalaior | ADL A 24 1 O
[memory of accumudator) Zera Page RO Oper Fy] 2
Zero Page X | ROL Oper X x 2
absolute ROL Oger 2E k]
I Absalute X ROL Qper X ¥ A
ROA
Rolate one it Fignl (See Fugure | Accumuolalpr o ROR A GA 1 V= -
1 IMEMOTY OF @LLumlatar) tero Page ROR (per 66 2
i Zero Fage ¥ | ROR Oper X 76 2
Ahsolule ROR Qper 3 k]
Absolule. X ROR Oper.X 7t k]

A-26
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f i ; ’ Auembly T HEX T'
g Nyma © Daedatin ,  hddressing Lanpuage GF ' g | P Statut Rap
1 Oescriplion ’ | Mede Form { Ceds pym: NZCIDYW
oot s R SR L - = N
i ATl | ;
Retwrn f1om mErrupt PAPCY  [impeeg ] RTI 40 | 1 | From Stace
| RT§ : | 0
I Return teom subrouting | PCY PL-1 =50 Impled RTS ) 1 O
| s8¢ i :
D Subtract memgry trom G A-M -G A [Immediate SBC wOper , E8 2 IR
i accumulator with Barrow "Zerg Page SBC Qper E5 2
i i Zere Page X p SBL OperX F5 3
i Absalute SBC dper 41] 1
! Bosalute x| SBC OperX | o3
! D apselute ¥ SBC Dper Y F3 i,
i ngrect ¥ SBC  (Oper Xp E1 bl
| Shindwech ¥ SBC (OperyY _F‘I z
" SEC , i ! =
Setcarryflag ! .1__c o _mpled seC | 1& 1 .-
. G0
}» Sef gemal mode |1 =0 _{Impted SED _FB 3 AL
SEI
Sel mteriopt disable 1 ==l “tmphed SEI mot R
slatus - I N .
| STA
. Siore acoumalatar A =M Zero Fage STA Dper 85 F .-
1™ mgmgry Zeto Page ™ | 574 Oper X B 2!
. Absolgte ETA Oper 8D q
Absphme X 3TA Oper X 50 1
: Ahsolale. ¥ STA Qper ¥ ) 1
Aindirech. X STA 0o X) Al ]
} Aingireet; ¥ STA {Oper)¥ 9 7
| §TX 1 i
Y Sfore moes X in memgry | K M Zero Page ST¥ Oper B o2 -
i Fero Page. ¥ | 5Tx Oper ¥ % o2
l !Absolute 5T Oper A 1
5TY
Sigre wgex ¥ memory | ¥ —wM Tern Page 5TY Qper B4 2 -
Tero Page X | BTY Qper X LT ] 3
. Abgolyte STY Oper B 3 |
. [ — - . . ]
| TAX
. Transler accumulalor A X tmp!ted TAX BA 1 R
C loandex X o R . o
TAY : .
Transier accumulatar LY impligd TAY AR 1 NN e
lomoesy L
I T8X
¢ Transher stack peinter S =X Imgied 1134 Ba 1 i
o loindex X ) R i
L2 R | Thpembly | oMx ] —
Hame Bperalion 1 Adresiing | Language i No P Slabys Rep.
: Oeaceigin. | L hete | Fem | e lnyws mzCIOW |
| TXA - | ]
i Trangler ngex X X -4 tmalied " TxA T
oawureiter ] o] — ] ]
TX§ i i
I'_ 1ransler indées X to X -5 !llelﬂl xS 34 1
, Stack pointer SV — ) S _
i TYA |
i Transter index ¥ ¥ b Il iedd Y4 98 1 v
| wacomloor | b Ll I
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m—
-
o —
0 —
oa —
o5 -
o6 —
oF —
08—
09—
oA —

0ot —
oD —
0 —
of —
10—
11—
12 -
13 —
14—
15 ==
16 —
17—
18 =
19—
14 -
18 —
1C—
10—
1E —
1F —
w0 —
21—
27 o
23—
24 —
B —
25—
27 -
»—
29_
FL
2B —
2K -
2D —
2E —

Programming 6502 Assembly Language

HEX OPERATION CODES

BRAK

ORA — iindirect X1
NOF

MNOP

HOF

OAA — Inro Page
ASL — Zarp Paga
HOF

PHFP

ORA — 1mmagiale
ASL — Accumulalar
HOFP

NOF

ORA — Abaolute
ASL — Abaoiute
NOP

BPL

ORA — ibngiregcty, Y
NOP

NOP

HOF

ORA — 2are Paga, X
ASL — Faro Fage, X
NOP

cL g

ORA — Absaiute, ¥
NOP

HOP

NQP

ORA = Abaalula, X
ASL — Abspluta, X
ROP

JER

AND — (Ingwrect, Xt
NOP

HNODP

BIT — Zeio Page
AND = Fura Page
ROL — Zero Page
NOP

]

AND — Immediate
AGL = Accumutator
NOP

BIT — Ab3ciute
AMD — Abzoluls
AOL — Abaclula

ZF ~ NOP

M - Bm

31— AND — 'Incvect ¥
37 — mOP

33 — NOF

34 — NOP

35 — AND — Zero Page. X
36 — ROL = Zero Page X
37 — NOP

38 — SEC

38 — AND — Apsalute, v
1A — NOP

B — NOF

3C -- NOFP

a0 — AMD — Absclule, X
3E — RQL — Absolute X
IF — NOF

40 — AT

41 — EQR — lindiragt. X1
42 — NP

43 — NOP

44— KOF

458 — EDR — Zern Fage
46 — LSRR — Z=ro Page
47 — HOFP

4 — PHA

49 — ECR — Immediats
4A — LSR — accumulaior
4B — NOP

AC — JMP — Absoluts
40 — EOR — Absniute

4E — LSA — Absoluie

#F — NOP

) — BWC

51 — ECR iindirach ¥

52 - NOP

53 — NOFP

34— NOF

55 — ECQA — Zerp Fage =
56 — LSA —= Z&r0 Paga. X
57 — MOP

o — CL

58 — EOQR — absolute. ¥
54 == NOF

5B — NOF

ST — NOP

S0 — EQR — Absqlute, X

A-28

5E — L5R — Apsplute. X
S5F — NOP

&0 — RTS

61 — ADC — iIndirect X
62 - MGOP

63 — MOF

64 — NOP

65 — AQDC — Zero Page
B — ROR — Zero Page
& — WOP

68 — PLA

85 — ADC — Immeduaie
84 — ROA — Accumulzlor
&8 — NOP

EC — JMP — [ndisect

60 — ADLC — Absalule
GE — RORA — Abaglule

&F — MOF
0 - BWS
1 — ADC — nndirects, ¥
72 — NOP
13— NOR
T4 - NOF

75 — ADC — Zero Page. X

76 — ROR — Zero Page, X

T7 — MNOP

Ta — SEI

9 — ADC — Apsolute. ¥

TA — NGP

TR = NOF

TC — MOP

0 — ADL — Apsolule. 2 NOP
TE — ROR — Absoiute, ¥ NOP
TF — NOP

BO — MOP

A1 — S5TA — lindiract, XI

B2 — HOP

83 — NOP

B4 =5TY « Zora Page

BS — STA — Zero Page

BS — STH — Zerg Pape

Y — NOP

B8 — DEY
8% — NOP
e — Txa
5B — NOF

BE = 5TY — Abwolute
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AD - 5TA — Abzalute

BE = STX — Absolute

BF = NOP

50 = BLC

21— STA — iingwect: ¥

4 — HOP

43 - MOP

84 — STY — Zero Page X
95 — STA = Faro Page. ¥
9 ~ STH — Zero Page. ¥

97 — HOP
98 — Tva
9% — BTA — Absohule Y
g — TN
58 — HOP
49C — NOP
40 — STA — Absofute, X
GE — NOP
BF — NOP

ADQ ~ LOY — immedizle

Al — LDA — lIndrrgct, XI
A2 — LOY ~ Immagale

AY — NOP

Ad — LDY — Faro Fape

A5 — L[tA — Zera Paga

AE - LOX — Zero Page

AT — NOP
Al — TAY
A% = LDA — immadista
Ak — Thx
AR — NOF

AC — LOY — Absolute
AD — Apspiute
AE = LDX — Absoluia

AF = NOF
B — BCS
B1 — LA = IInchract) ¥
B2 — NOP
BY — NOP

Appeandix A

84 - DY — Zero Page X
A5 — LDA — Zerp Page. X
B& — LDX — Zero Page, ¥
BT — NOP

B8 — CLv

B3 — LOA — Absolute ¥

BA — T5¥

BE — nOP

B8C — LOY — Absatuie
BO == LOA — Absglute,
BE — LDX — Abapiule
BF — NOF

CO — CPY — Immeduyie

C1 — GMP — ndireet, X2
22 — NOP

C3 - NOP

Cd — CPY — Zeip Page

5 — CMP — Zoto Page

Ch — DEC — Zmro Page

CF — NDP

o

Ch = INY
CH — CMF — Immegiate
CA — DEX
R —MOF

CC = CFY — Absclule

CD —CMPF — absolule

CE — DEC ~ Absoiule

CF — HOP

Do — BiNE

D1 — CMF — dndirect!, ¥

D2 = NOP

O — NOF

Ca — NOP

D5 — CMP — Zoro Page. X
D6 — DEC — Zare Paga, X
07 = NOF

08 = CLD

D8 — CWMP — Absotute,

DA = NOF

A-29

DB - NOF

DG — NOF

0D — CWP — Abjaiute %
DE — DEC — Apsalute X
DF — MOP

EQ ~ CPY — immedrle
E1 — SBC — :Imgirggy X:
E? — NP

E3 — NOP

E4 - CPX — Zerp Page
ES — SBLC — Zerp Page
ES — INC - 2ern Page
ET — NOF

EA — INX

EJ — SBL — wmmediatle
EA - NOP

EB ~ NO#

EC — CFX -~ Absalula
ED — SBC — Abadiote
EE — ING — Abagiute
EF - NOP

Fi — BEQ
F1 — SBC — tndwest! ¥
F2 — NOP
F3 - MNOP
F4 — NOP

F5 — SBC — Zero Page. X
F& — INLC — Zaro Page. X
F? — HOP

Fh— SE0

o — S84 — Absolute T
FA — NOF

FE — NDF

FC — NOF

FO — SBC — Absolule, X

FE — INC — Absolute, X

FF — NOP
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Table 1; Kevbhoard Special Locations

“A2B-RH-UBAL-2ND-A-30.PICT” 81 KB 2001-06-20 dpi: 300h x 300v pix: 1087h x 2359v

Location: ; Drescription:
Hex Decimal
SCeBDd 49152 -16384  Keyboard Data
SColP 49168 -16368  Clear Keyboard Strobe
Table 4: Video Display Memory Ranges
ing at; nds at:
| Screen Page ?lzgx ‘ Decimal Eeis ‘ Decimal
Text/Lo-Res  Primary 5400 1924 STEF 2847
Sccondary  S30@ 2048 $BFF 3871
Hi-Res Primary S2088 8192 S3FFF 16383
Secondary 34960 16384 $5FFF 24575
Tabie 5: Screen Soft Switches
| LI?I‘::-:UOHI Decimal Description:
SCP58 49232  -163@4  Displtay a GRAPHICS mode.
SCAS1 49233 -16383  Display TEXT mode.
$CB52 49234 16382  Display sll TEXT or GRAPHICS.
SC@53 45235 168381 Mix TEXT and s GRAPHICS mode.
SC@54 49236 -16388  Display the Primary page (Page 1),
$CB55 49237 -16299  Display the Secondary page (Page 2). '
$CO56 49238 .1629%  Display LO-RES GRAPHICS mode.
$CO57 49239 16297 Display HI-RES GRAPHICS mode.
| Table 9: Annunciator Special Locations
' Address:
Amn. - State [Decimatl Hex
¢ ol 49240  -16296 SCPASE |
on 49241 -16295  SCP59
1 off 49242  -16294  $CB5A
_ on 49243 -16293  $C@3B
2 off 49244  .16292 SC@SC
on 49245 16291  $C@sD
3 off 49246 -16298 SCOSE
| on 49247 -1628%  SCO5F
A-30
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Appendix A

Table 10: Input/Qutput Special Locations
Function Addr%ﬁcimal Hex Read/Write
Speaker 4920¢ -16336 $Ca3e R

Cassette Out | 49184 -16352  SCezd R
Cassette In 49235 -16288 $Ca60 R
Annunciators | 49248 -16296 SCa58 R/W
through  through  through
49247 -16289 $CB5F
Flag inpuls 49249 -16287 $CA61
49253 -16286 $Ca62
49251 -16285 $Cho63
Analog Inputs | 49252 -16284  SC@64
49353 -16283 $C063
49354 -16282 $CA66
49255 -16281 $Coe7
Analog Clear | 49264 -16272 SCa7e R/W

Utility Strobe | 49216 -16326 C@49 R

=lmR =

Table 11: Text Window Special Locations

Eunction Locgtion: Min?mumiNormal/’Maximum Valug
Decimal Hex | Decimal Hex
Lef1 Edge 32 $20 | A/@/39 sa/3e/817
Width 33 $21 | 8/48/40  5@/328/328
Top Edge 34 $22 | 8/0/24 S8/58/818
Boitom Edge 35 $23 | €/24/24 3B/$18/818 ]

Table 12: Normal/Inverse Centrol ¥Yalues

Value: .
Decimal Hex Effect:
253 $FF | COUT wil display characters in Normal mode.
63 S3F { COQUT will display characters in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
L other characiers in Inverse mode.
Table 13: Autostart ROM Special Locations
ation:
1818 $3F2 Soft Entry Vector. These 1wo locations cantain
1911 $3F3 the zddress of the reentry point for whatever
language is in use, Normally contains SEAA3,
1812 $3F4 Power-Up Byte. Normally contains $45.
64367 SFB4F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.
A-31
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Table 14: Page Three Monitor Locations
Address: Use:
Decimal  Hex Monilor ROM  Autostart ROM
[ 1998 $ire Holds the address
199 $3F1 of the subrouling
N which handles
one. .
machine language
“BRK"™  requests
(normaly $FAS9),
}g:? g;ll:g None. Seft Entey Vector,
.o 1é1z $3F4 | None. Power-up byle,
1813 $3F5 | Holds a *'JuMP" instruction (o the
1814 33F5 | subroutine which handles Applesoft [l
1815 S3F7 | & commands. Normaly $4C $58
SFF.
1816 $3F8 | Holds a “‘JuMP" instruction to the
1917 %3F9 | subroutine which handles “User™
1018 $3FA | (CTRL Y]} commands.
19219 S3FB | Heolds a ““JuMP' instruction to the
1920 $3FC | subrouting  which  handles Non-
1421 S3FD | Maskable Interrupts.
;1822 33FE | Holds the address of the subroutine
} 1923 SIFE | which handles Interrupt ReQueslts.
__Table 22: Built-In 1/0 Lecations ,'
'sg S1 %2 33 S84 S5 S6 ST S8 %9 SA SB SC SD SE SF
"SCPA  Keybourd Data [ﬁput ’ o -
.SCB18 | Clear Keyboard Strobe
3CE28 | Cassene OuLpuLTog:gTe - o
gt‘:ﬁiﬁ Speaker Tugg-l-é i
SC@48 | Crility Strobe ] B o N
_SL@SB Pwr o 1| momix II s ‘ i | see | tores | hires I and! .I i anl an? l-m'.m-}_
(SCO6R [ cn [ pbl | pb2 P pnd ! aok [ el | w2 | ger  cepeal SCROR-SCHAT
$C87 | Game Controller Strobe o
Key to ahbreviations:
gr  Set GRAPHICS mode tx  Set TEXT mode
nomix  Set ali text or graphics tnix  Mix text and graphics
pri Display primary page sec Display secondary page
lores  Display Low-Res Graphics  hires  Display Hi-Res Graphics
an  Annunclilor ouiputs ph  Pushbutton inputs
ge  Game Controller inputs cin  Cassette Input

A-32
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Table 23; Peripheral Card [/O Locatiens

3¢ 51

32 83

S48

S5 $7 38 9 SA SB SC SD SE SF

$CaRG |
SCO9%9 |
ICeAD
SCeBo
scece
$CHDE
$COLe
ICPr8

Input/Qutput for slot number

B R

|
|
|
|

Table 2d: Peripheral Card PROM Locations ] !
TS06_Sip 520 53¢ 340 $50 560 S70 S8@ S0 SAD SB SCA SD@ SED Sre
$C188 1
$C298 2
$C308 3 |
LCa8a PROM space for siot number 4
3C500 . 5 \
SC600 6
$C 700 7 |
Table 25: [/0 Location Base Addresses _ L
Base | Siot T
Address a 1 2 3 4 5 & 7
SCO8G | SCA’D  SCES8  SCPAB  SCEBE  SCAC@  3CRDE  SCAEQ  SCOrd
SCO81 | SCARL SCBO1  SCBAL  SCHBI 3CRC1  $SCeDI  SCEE1  SCOF!
scgs? | ICPsz  SC892 SCeA?  $C@B2  SCPC2  SCAD2  SCEE2  SCRFR2
3CPR3 | $CES3  SCP93  SCBA3 SCEB3  $COC3 3CeD3  SCOE3 SCRF}
ICPR4 | SCPS4  SCAS4  $CBA4  $CPBE  SCOCH SCBD4  $COE4 SCOF4
SCESS | $CB85  SCBSS  SCAAS  SCEBS  SCRCS  SCeDSs  $CeES  SCeRS
SCE%6 | SCBE6  SCP96  SCBA6  SC8B6  SCBCe  SC@De  SCRES  SCEKG
sCgs7 | sCes7  3C897  SCBAT  $CEB?  SCHCT  SCADT  SCeEY  SCOFT
$CO%8 | 3Ce8s  SCH98  SCHA8  SC@BS  SCECSs  3CeD8  SCOE8  SCHFE
SCER9 | SCBSY  SCB9Y  $C8AS  SCEBY  SCBCS  SCEDY  SCOEY  SCeF9
SCBRA | $CO8A  $CE9A  SCOAA  SCEBA  3CACA  SCEDA  SCBEA  SCEFA
SCPsB | SCBEB  $C898  3CeAB  $CeBB  SCRCB  SCADB  $CREB  SCOr3
scosc | scB8C  sC@9C  SCBAC  SCEBC  SCACC  3C@DC  SCEEC  SCBEFC
scasD | SCOSD  SCRYD  $CRAD  SC@BD SCECD  $C8DD  SCED SCEFD
SCPRE | $CBSE  SCO9E $CBAE  SCEBE  SC8CE  $CEDE  SCBEE  ICRFE
SCESF | $CBSF SCE9F SCHAF  SCHBF  SCOCF  SCeDF  SCEF  SCOFF
[/0 Locations

A-33
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| Table 26: 1/0 Scratchpad RAM Addresses
Base o Slot Number 7

Address | | 2 3 4 5 6 7
8478 30479  3@47A  SB847B  S@47C SPATD SP4ATE SB4TF
$04F8 $04F9  3@4FA  SB4FB  SMFC  S84FD  SO4FE  SP4FF
0578 3579 S@sSTA 0 $B57B S@STC $857D SPASTE $857F
M RT ] S85F9  $85FA  S@5FB  SOSFC  S@5FD S@SFE  S@5FF

- S@p7H S@a79  SEeTA  SBSTB SBOTC  SB6TD SPSTE SPAIF
SPBFR SHoFe  S@86FA  SBOFB  S86FC S@6FD  SP6FE SBAFF
SBTTE ! SBTVS ZQVTA S@VTB SMYTC SBTTD O SWITE S@TIF
SBTFE | SBTFY  $97FA  S@TFE  $BTFC  SATFD  SRTFF Sﬂ?FFJ

A-34
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A
Accumulator (A or ACC) .......... e 33
AND Function .. N 4
An Easy Method c-f 0utputtlng
Integers .. ceerirnnrereeenresntnrnnnas 1208
Appendix A ....................................... A-1
Apple VO Struciure ..., 15-1
Arithmetic Review ....................... 6-10
Arrays in Assembly Language ......... 8-3
ASCIl Character Set .. - Y-
Assembly Language Source
Format . [FFTUUTUURURR. S |
B
Binary Arithmetic ........ooiinninnnn. 2-8
Binary Coded Decimal Arithmetic ... 8-8
Bit String Operations ...ooeiveeeieeinns, g-4
Bit Strings .. corranren 203
Branch Instruct:ons (6502) ............... 5-9
Break Flag (B) ..o 5-6
C
Character Input .............cooomiviinne, 11-11
Character Qutput _......ccceeevreeninns 111
Compatisons ..o 511
Complement Function . 9-2
Condition Code Flags (N V Z C}
D
Decimal Flag (D) ...ccoccovimmminnnniannnns 56
Declaring Literal Strings ................ 14-5
Division Algorithms ....................... 13-7
E
Example Program .........ccccceeeorein 922
EXECLUSIVE-QOR Function ............. 9-4
Exprassions in the Operand Figld .. 4-11
F
FOR/NEXT Loop Revisited ............ 5-14
G

GO Command (G) ......covevmrrivinnenn, 172

H
Handling Arrays of Characters ... 14-17
Hexadecimal Numbers ................ 2-13
Hexadecimal Output ......ccc i 12-1

“A2B-RH-UBAL-2ND-INDEX-1.PICT” 110 KB 2001-06-20 dpi: 300h x 300v pix: 1365h x 2262v

IFTHEN Statement Simulation ...... 5-14
Indexed Indirect Addressing Mode 8-185

Indirect Addressing Mode .............. 8-13
Indirect Indexed Addressing ........... 8-16
Initializing Arrays at Assembly

Timg .. . 88

Imtlaluzmg Heglslers and Memon,f 17 3
Inputting a Line of Characters ...... 11-13

instruction Format (6502) .....cu..cc...... 3-4
Instructions for Logical Operations .. 9-5
Interrupt Disable Flag ([} .....cocoeviivns 5-6
Introduction to Real Instructions ...... 4-4
J
JMP Instructions ..o, 5-3
L
Labels and Variables ... 429
LOOPS .o s 5 10
M
Masking Operations ....................... 9-7
Medifying Instruction Code
{Patching) .. e 17-6
Mullmle-Frecnsmn Demmal
Arithmetic ..o 10-9
Multiple-Precision Decrements ... 10-10
Mulliple-Precision Increments ........ 10-9
Multiple-Precision Logical
Operations .........cocveeeevecee i, 10-1
Multiple-Precision Logical
Shift-Right Sequences ............. 10-4
Muitiple-Precision Rotate-Left
Sequences .. e, 10-4
Multiple- Precision Rotate- thht
SeqUENGES .....occoiicinmiimmin o 10-5
Multiple-Precision Shifts
and Rotates ........eccnnininin, 10-3
Multiple-Precision Signed
ANthmetic e, 10-9
Multiple-Precision Unsigned
Arithmetic ..o 10-6
Multiple-Precision Unsigned
Comparnsons ........cocoeeveeeiernnnn. 10-11
Multiple-Pragision Unsigned
Substraction ..o 101-8
Multiplication .......cc... e 13-1
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N
T
Nibbles (NYBBLES?) By195.
and Words ..., 2410 Testing Boolsan Values ................. 5-18
Numeric Input ..o eenerens 12-8 Two and 3-Byte Instructions ............. 3-6
0 U
. Unsigned BCD Arithmetic ................ 6-8
QR FURCHON ovvvevvnsninsisir e, 9-3 Unsigned Dacimaf Input ............... 12-11
Outputting Byte Data as a Decimal Unsigned Integer (Binary) Arithmetic 6-1
VaIUE .o 12-2 UNSIOGNEA INLEGEY —.r.oerererecererrr 28
Outputt!ng Signgd 16-_Bit integers .. 12-6 Using ASL to Perform
Outputting 16-Bit Unsigned Muitiplication ............. e 817
IMBgErS ... 12-4 Using Bit Strings m Represant
Instructions ..........cooooeiiieiinis 2-16
-] Using Index Registers to
Access Array Elements ............ 8-10
Passing Parameters ... 7-13 Using Shifts and Rotates to
Processor Status (P) Register ......... 5-5 Pack Data . ... 9-20
Program Counter (PC) .oveverrreeeeen. 34 Using Shifts to Unpack Data .. 89-19
Program Debugging Session 7 1 0
Program Status Word (P or PWS) ... v
Purpose of Manual ... 1-1 ‘
Variable Problems ......ccco e . 74
R X
Radix and Other Nasty Diseases ... 2-14 _Bani g
Register Increments and X-Beqgister (X) ... 373
Decrements .......cccoceeeeeenecencernnnn. 4B Y
] Y-RHegister (Y) .o 373
Scope of Manual . R B | z
Shift and Rotate Instructlons 9 13
Shifting and Rotating Mernory Zero Page Addressing .........ccco e B-1
Locations . rrriressareeesenseenenees 316
Signed ATAMEHC voverovrevevoeerernn. B85 6
Signed BCD ARMEtIE oo 6-10
Signed Comparisons .. . B-7,10- 14 6502 Addressing Modes ... 3-8
Signed Decimal Input
Signed Integers ............occcevvvrnennns 2-1 1
Stack Pointer (SP) .. JUPURRIR -
Standarg Output and Penpheral
DevIEas ... . 119
String A33|gnments wrerrrereeeers 14-5
String Comparisons ... 14-12
String Concatenation ...................... 14-9
String FUnctions ......c.o.coeevieemnen. 14-7
String Handling ..ooceevvvniinieinnen 14-1
Substraction ... s 6-4
Substring Operations ... 14-11
SWEBE-1B . i e 16-10
Sweet-16 Hardware
Requirements .............cccccrveinee 16-10
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