
-·-

Beneath Apple DOS

BEilEalll APPlE DOS
FOR USERS OF APPLE II, APPLE II PLUS, AND APPLE lie COMPUTERS

By Don Worth and Pieter Lechner
~QUJIUTY
~SOFTWJIRE

)

BE1xall1 APPlE DOS
Fifth Printing , March 1983

By Don Worth and Pieter Lechner

A product of

QUJIUTY SOFTWJIRE
6660 Reseda Blvd., Su ite 105

Reseda, CA 91335

DISCLAIMER
Quality Software shall have no liability or responsibility to the

purchaser or any other person or entity with respect to any liability,
loss or damage caused or alleged to be caused directly or indirectly
by this manual or its use, including but not limited to any interrup­
tion in service, loss of business and anticipatory profits or
consequential damages resulting from the use of this product.

COPYRIGHT ©1981 BY QUALITY SOFTWARE
This manual is published and copyrighted by Quality Software.

All rights are reserved by Quality Software. Copying , duplicating,
selling or otherwise distributing this product is hereby expressly
forbidden except by prior written consent of Quality Software.

The word APPLE and the App le logo are registered trademarks
of APPLE COMPUTER , INC.

APPLE COMPUTER , INC . was not in any way involved in the
writing or other preparation of this manual, nor were the facts
presented here reviewed for accuracy by that company. Use of the
term APPLE should not be construed to represent any endorse­
ment , official or otherwise, by APPLE COMPUTER , INC.

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 THE EVOLUTION OF DOS
DOS 3
DOS 3.1

DOS 3.2

DOS 3.2 .1

DOS 3.3

Chapter 3 DISKETTE FORMATTING
TRACKS AND SECTORS
TRACK FORMATTING
DATA FIELD ENCODING

SECTOR INTERLEAVING

Chapter 4 DISKETTE ORGANIZATION
DISKETTE SPACE ALLOCATION
THE VTOC

THE CATALOG

THE TRACK/ SECTOR LIST

TEXT FILES

BINARY FILES

APPLESOFT AND INTEGER FILES
OTHER FILE TYPES
EMERGENCY REPAIRS

Chapter s THE STRUCTURE OF DOS
DOS MEMORY USE

THE DOS VECTORS IN PAGE 3

WHAT HAPPENS DURING BOOTING

Chapters USING DOS FROM ASSEMBLY LANGUAGE
DIRECT USE OF THE DISK DRIVE

CALLING READ/WRITE TRACK/ SECTOR (RWTS)

RWTS lOB BY CALL TYPE

CALLING THE DOS FILE MANAGER
FILE MANAGER PARAMETER LIST BY CALL TYPE

THE FILE MANAGER WORK AREA
COMMON ALGORITHMS

TABLE OF CONTENTS

chapter 1 CUSTOMIZING DOS
SLAVE VS. MASTER PATCHING
AVOIDING RELOAD OF LANGUAGE CARD
INSERTING A PROGRAM BETWEEN DOS AND ITS BUFFERS

BRUN OR EXEC A HELLO FILE
REMOVING THE PAUSE DURING A LONG CATALOG

CHANGING THE HELLO FILE NAME

PUT CURSOR ON COMMAND THAT CAUSED DOS ERROR
ALLOW THE VALUE OF THE L KEYWORD OF A BSAVE TO EXCEED 32K

UPDATING PRE-1983 DOS 3.3

Chapters DOS PROGRAM LOGIC
CONTROLLER CARD ROM - BOOT 0
FIRST RAM BOOTSTRAP LOADER - BOOT 1

DOS 3.3 MAIN ROUTINES

DOS FILE MANAGER
READ/WRITE TRACK/ SECTOR

DOS ZERO PAGE USE

Appendix A EXAMPLE PROGRAMS
TRACK DUMP PROGRAM

DISK UPDATE PROGRAM
REFORMAT A SINGLE TRACK PROGRAM
FIND TRACK/SECTOR LISTS PROGRAM

BINARY TO TEXT FILE CONVERT PROGRAM

Appendix e DISK PROTECTION SCHEMES

Appendix C GLOSSARY

3 Index

~ 3

ACKNOWLEDGEMENTS

. Thanks go to Vic Tolomei for his assistance in dissecting DOS 3.1 and to Lou Rivas for his
pat rent proofreadrng . Thanks also to my wrfe Carley for putting up with the clackety 1 k 1
my Diablo long into the night. c ac o

Don D . Worth

Thanks to the people at Computerland of South Bay (California) who lent me support
both of !herr trme and equrpment, and special thanks to John Gattuso, whose encouragement
helped me to complete the task.

Pieter M. Lechner

BAG OF TRICKS
A Super Disk Utility by the Authors of Beneath Apple DOS
$39.95

If you find BENEATH APPLE DOS useful, you should also lind BAG OF TRICKS an important
help m exammrng and patchrng up your diskettes.

BAG OF TRICKS is a package of four machine language subroutines which go far beyond the
exa.mple programs m Appendrx A of this book. User friendly and well documented, this disk
utrlrty packagers undoubtedly the best one available for the Apple II , especially at the low price
of $39.95

The four programs and their functions are:
1. TRAX dumps and examines a raw track , either 13-sector or 16-sector. displays the internal

Apple . drskette formattrng rnformatron , and flags exceptions to standard formats .
2. I NIT wrll reformat one or more tracks on diskette, while attempting to preserve any data on

them . Both 13-sector and 16-sector formats are supported .
3. ZAP provrdes the basic capability to read , display, and update diskette sectors. More than

50 commands are available to assist the user in locating , comparing , and changi.ng the data
on the drskette. Prrnter support , too. You won 't believe how many useful options ZAP has.

4. FIXCAT automates the process of recovering a damaged catalog track . The diskette can bP
searched for track sector lrsts, then the user can assign a name to files found by FIXCA
and restore them to the catalog . Entire catalogs may be restored in this way.

If you have ever had a disk crash, you know what a good disk utility is worth . Beginners will
apprecrate the ."hand-holding'' tutorials that will assist him in repairing his damaged diskettes,
and the experrenced user will apprecrate how fast and easily he can perform analysis and
reparrs.

BAG OF TRICKS requires a 48K Apple II or Apple II Plus.

CHAPTER 1
INTRODUCTION

Beneath Apple DOS is intended to serve as a companion to
Apple's DOS Manual, providing additional information for the
advanced programmer or the novice Apple user who wants to
know more about the structure of diskettes. It is not the
intent of this manual to replace the documentation provided
by Apple Computer Inc. Although, for the sake of
continuity, some of the material covered in the Apple manual
is also covered here , it will be assumed that the reader is
reasonably familiar with the contents of the DOS Manual.
Since all chapters presented here may not be of use to each
Apple owner, each has been written to stand on its own.

The information presented here is a result of intensive
disassembly and annotation of various versions of DOS by the
authors and by other experienced systems programmers. It
also draws from application notes , articles, and discussions
with knowledgeable people . This manual was not prepared
with the assistance of Apple Computer Inc. Although no
guarantee can be made concerning the accuracy of the
information presented here , all of the material included in
Beneath Apple DOS has been thoroughly researched and
tested.

There were several reasons for writing Beneath Apple DOS:

To show direct assembly language access to DOS.
To help you to fix clobbered diskettes.
To correct errors and omissions in the Apple documentation.
To allow you to customize DOS to fit your needs.
To provide complete information on diskette formatting.

THERE WERE SEVEPAL REASONS FOR WRITING •BENEATH APPLE DOS~
1-1

When Apple Computer Inc. introduced its Disk Operating
System (DOS) version 3 in 1978 to support the new DISK II
drive, very little documentation was provided. Later, when
DOS 3.2 was released, a 178 page instructional and reference
manual became available covering the use of DOS from BASIC
in depth and even touched upon some of the internal workings
of DOS. With the advent of DOS 3.3, the old 3.2 manual was
updated but the body of information in it remained
essentially intact. Beyond these Apple manuals, there have
been no significant additions to the documentation on DOS,
apart from a few articles in APPLE user group magazines and
newsletters. This manual takes up where the Disk Operating
System Manual leaves off.

Throughout this manual, discussion centers primarily on DOS
version 3.3. The reasons for this are that 3.3 was the most
recent release of DOS at the time of this writing and that
it differs less from DOS 3.2 than one would imagine.
Wherever there is a major difference betwe en the various DOS
releases in a given topic, each release will be covered.

In addition to the DOS dependent information provided, many
of the discussions also apply to other operating systems on
the Apple II and Apple III. For example, disk formatting at
the track and sector level is, for the most part, the same.

1-2

CHAPTER 2
THE EVOLUTION OF DOS

Since its introduction, Apple DOS has gone through three
major versions. All of these versions look very much the
same on the surface. All commands supported by ~0~ 3.3 are
also supported in 3.2 and 3.1. The need for add1t1onal
versions has been more to fix errors in DOS and to make
minor enhancements than to provide additional .
functionality. Only DOS 3.3 has offered any maJor
improvement in function; an increase in the number of
sectors that will fit on a track from 13 to 16.

DOS 3- 29 June 1978
DOS 3.1 - 20 July 1978

The first release of DOS was apparently a vi~tim of a rush
at Apple to introduce the DISK II. As such, 1t had a number
of bugs. With the movement towards the APPLE II PLUS and the
introduction of the AUTOSTART ROM, a new release was
needed.

DOS 3.2 - 16 February 1979

Although DOS 3.2 embodied more changes from its predecessor
than any other release of DOS, 90% of the basic structure of
DOS 3.1 was retained. The major differences between DOS 3.1
and 3.2 and later versions of DOS are listed below:

- NOMON C I 0 is the initial default under DOS 3.2. MON
C,I,O w~s'the default under DOS 3.1.

- Input prompts (> ,] ,*) are echoed when MON 0 is in effect,
not under MON I as was the case under 3.1.

- When a DOS command was entered from the keyboard, DOS .
executed it and then passed a blank followed by ~ carr1age
return to BASIC under 3.1. Under 3.2 only a carr1age
return is passed.

- Under 3.2, certain commands may not be entered from the
keyboard but may only be used within a BASIC program
(READ, WRITE, POSITION, OPEN, APPEND).

- Under 3.2, when LOADing an APPLESOFT program, DOS
automatically converts from APPLESOFT ROM format ~o
APPLESOFT RAM format if the RAM version of BASIC lS in use
and vice versa.

- DOS 3.1 could not read lower case characters from a text
file; DOS 3.2 can.

2-1

..

DOS ~.2. DC6 3.3
1978 (q79 ~~~0

THE EVOLUTION OF APPLE DOS.
- Some DOS commands are allowed to create a new file, others

will not. Under DOS 3.1, any reference to a file that
didn't exist, caused it to be created. This forced DOS 3.1
to then delete it if a new file was not desired. (LOAD XYZ
under 3.1 if XYZ did not exist, created XYZ, deleted XYZ,
and then printed the file not found error message.) Under
3 . 2, OPEN is allowed to create a file if one does not
exist, but LOAD may not.

- Under 3.1, exiting to the monitor required that the
monitor status register location ($48) be set to zero
before reentering DOS. Under DOS 3.2 this is no longer
necessary.
The Read/Write-Track/Sector (RWTS) section of DOS disables
interrupts while it is executing. Under 3.1, RWTS could be
interrupted by a peripheral while writing to a disk,
destroying the disk .

- The default for the B (byte offset) keyword is 0 under
3 . 2.

- DOS was reassembled for 3 . 2 causing most of its
interesting locations and routines to move slightly. This
played havoc with user programs and utilities which had
DOS addresses built into them .

- Additional file types (beyond T , I , A, and B) are defined
within DOS 3.2 , although no commands yet support them . The
new types are S , R , a new A, and a new B. R has
subsequently been used by the DOS TOOLKIT for relocatable
object module assembler files. At present, no other use
is made of these extra file types .

- Support was added under 3.2 for the AUTOSTART ROM .
- All files open when a disk full condition occurs are

closed by DOS 3.2 .
- As with each new release of DOS , several new programs were

added to the master diskette for 3.2 . Among these was
UPDATE 3 . 2 , a replacement for MASTER CREATE, the utility
for crea ting mas t er diskettes . UPDATE 3.2 converts a slave

.into a mas t er a nd allows the HELLO file to be renamed .

DOS 3.2.1 - 31 July 1979

DOS 3 . 2 . 1 was essen t ially a "maintenance release" of DOS
3 . 2 . Minor patches were made to RWTS a nd the COPY program
to correc t a timing problem when a dual drive copy was done.
Additional de l ays were added following a · switch between
drives .

2-2

DOS 3.3 - 25 August 1980

Introduced in mid 1980 as a hardware/software upgrade from
DOS 3.2.1, the DOS 3.3 package includes new bootstrap and
state ROM chips for the disk controller card which provide
the capability to format, read, and write a diskette with 16
sectors. (These ROMs are the same ones used with the
LANGUAGE SYSTEM.) This improvement represents almost a 25%
increase in available disk space over the old 13 sector
format. Also included in the 3.3 package is an updated
version of the DOS manual, a BASICS diskette (for 13 sector
boots), and a master diskette. Although the RWTS portion of
DOS was almost totally rewritten, the rest of DOS was not
reassembled and only received a few patches:

- The initial DOS bootstrap loader was moved to $800 under
3.3. It was at $300 under 3.2. In addition, as stored on
the diskette (track 0 sector 0) it is nibbilized in the
same way as all other sectors under 3.3.

- A bug in APPEND which caused it to position improperly if
the file was a multiple of 256 bytes long was fixed under
3.3.

- A VERIFY command is internally executed after every SAVE
or BSAVE under 3.3.
All 4 bytes are used in the Volume Table Of Contents
(VTOC) free sector bit map when keeping track of free
sectors. This allows DOS to handle up to 32 sectors per
track. Of course, RWTS will only handle 16 sectors due to
hardware limitations.
If a LANGUAGE CARD is present, DOS stores a zero on it at
$EOOO during bootstrap to force the HELLO program on the
master diskette to reload BASIC.

- DOS is read into memory from the top down (backwards)
under 3.3 rather than the bottom up. Its image is still
stored in the same order on the diskette (tracks 0, 1, and
2) , however.

- Additional programs added to the master diskette under 3.3
include FID, a generalized file utility which allows
individual files or groups of files to be copied, MUFFIN,
a conversion copy routine to allow 3.2 files to be moved
to 16 sector 3.3 diskettes, BOOT 13, a program which will
boot a 13 sector diskette, and a new COPY program which
will also support single drive copies.

- Under 3.2, speed differences in some drives prevented
their use together with the DOS COPY program. Because the
COPY program was rewritten under 3 . 3, that restriction no
longer applies .

2-3

DOS 3.3 - 1 January 1983

This "maintenance release" of DOS was introduced with the
Apple IIe ·computer. It contains a few minor patches and no
additional function.

- A patch was introduced in DOS 3.3 to fix a bug in APPEND
processing. This patch also had bugs. Additional patches
were added to (hopefully) correct this problem.

- An error in the POSITION calculation for large files is
corrected in this release.

- A few in~tructions were added to properly support the 80
column d1splay on the Apple IIe.

- The system master diskette contains some different files.
Notably, a fast loader for the language card and all of
the example programs have been moved to a separate
diskette.

2-4

CHAPTER 3
DISKETTE FORMATTING

Apple Computer's excellent manual on the Disk Operating
System (DOS) provides only very basic information about how
diskettes are formatted. This chapter will explain in detail
how information is structured on a diskette. The first
section will contain a brief introduction to the hardware,
and may be skipped by those already familiar with the DOS
manual.

TRACKS AND SECTORS

For system housekeeping, DOS divides diskettes into tracks
and sectors. This is done during the initialization
process. A track is a physically defined circular path
which is concentric with the hole in the center of the
diskette. Each track is identified by its distance from the
center of the disk. Similar to a phonograph stylus, the
read/write head of the disk drive may be pos i tioned over any
given track. The tracks are similar to the grooves in a
record, but they are not connected in a spiral. Much like
playing a record, -the diskette is spun at a constant speed
while the data is read from or written to its surface with
the read/write head. Apple formats its diskettes into 35
tracks. They are numbered from 0 to 34, track 0 being the
outermost track and track 34 the innermost. Figure 3.1
illustrates the concept of tracks, although they are
invisible to the eye on a real diskette.

TRACK 0

TRACK 17

TRACK 34

ONE TRACK

FIGURE 3.1

3-1

It should be pointed out, for the sake of accuracy, that the
disk arm can position itself over 70 "phases". To move the
arm past one track to the next, two phases of the stepper
motor, which moves the arm, must be cycled. This implies
that data might be stored on 70 tracks, rather than 35.
Unfortunately, the resolution of the read/ write head and the
accuracy of the stepper motor are such, that attempts to use
these phantom "half" tracks create so much cross-talk that
data is lost or overwritten. Although the standard DOS uses
only even phases, some protected disks use odd phases or
combinations of the two, provided that no two tracks are
closer than two phases from one another. See APPENDIX B for
more information on protection schemes.

A sector is a subdivision of a track. It is the smallest
unit of "updatable" data on the diskette. DOS generally
reads or writes data a sector at a time. This is to avoid
using a large chunk of memory as a buffer to read or write
an entire track. Apple DOS has used two different track
formats--one divides the track into 13 sectors, the other
into 16 sectors. The sectoring does not use the index hole,
provided on most diskettes, to locate the first sector of
the track~ The implication is that the software must be
able to locate any given track and sector with no help from
the hardware. This scheme, known as "soft sectoring", takes
a little more space for storage but allows flexibility, as
evidenced by the change from 13 sectors to the present 16
sectors per track. Figure 3.2 categorizes the amount of
data stored on a diskette under both 13 and 16 sector
formats.

DISK ORGANIZATION

TRACKS
All DOS versions•...•••. 35

SECTORS PER TRACK
DOS 3.2.1 and earlier ••..•.•.... l3
DOS 3. 3••••••.•. 16

SECTORS PER DISKETTE
DOS 3.2.1 and earlier •..••••••• 455
DOS 3.3 •••.••••••...•.•.•••.••. 560

BYTES PER SECTOR
All DOS versions •.•..••.••••••. 256

BYTES PER DISKETTE
DOS 3.2.1 and earlier .••.••. ll6480
DOS 3.3 ..••.••...••..•.•.••• 143360

USABLE* SECTORS FOR DATA STORAGE
DOS 3.2.1 and earlier •.•.•.•.•. 403
DOS 3. 3•••••••.•.••••.••.•. 496

USABLE* BYTES PER DISKETTE
DOS 3.2.1 and earlier •.•••.• l03168
DOS 3.3 ..•••••••••...••••••• 126976

* Excludes DOS, VTOC, and CATALOG

FIGURE 3.2

3~2

•

TRACK FORMATTING

up to this point we have broken down the structure of data
to the track and sector level. To better understand how
data is stored and retrieved, we will start at the bottom
and work up.

As this manual is primarily concerned with software, no
attempt will be made to deal with the specifics of the
hardware. For example, while in fact data is stored as a
continuous stream of analog signals, we will deal with
discrete digital data, i.e. a 0 or a 1. We recognize that
the hardware converts analog data to digital data but how
this is accomplished is beyond the scope of this manual.

Data bits are recorded on the diskette in precise intervals.
The hardware recognizes each of these intervals as either a
0 or a 1. we will define these intervals to be "bit cells".
A bit cell can be thought of as the distance the diskette
moves in four machine cycles, which is about four
microseconds. Using this representation, data written to
and read back from the diskette takes the form shown in
Figure 3.2. The data pattern shown represents a binary
value of 101.

BITS ON DISK

I _ _ BIT CELL_I
4 lJSec

• 10 • 0 • Gl •
DATA BITS

FIGURE 3.3

A byte as recorded on the disk consists of eight (8)
consecutive bit cells. The most significant bit cell is
usually referred to as bit cell 7 and the least significant
bit cell as bit cell 0. ~~en reference is made to a
specific data bit (i.e. data bit 5), it is with respect to
the corresponding bit cell (bit cell 5). Data is written
and read serially, one bit at a time. Thus, during a write
operation, bit cell 7 of each byte is written first, with
bit .cell 0 written last. Correspondingly, when data is
being read back from the diskette, bit cell 7 is read first
and bit cell 0 is read last. Figure 3.4 illustrates the
relationship of the bits within a byte.

3~3

ONE BYTE ON DISK

--+--'o"-'~''-<>----'(ol 0 D=O e lol e o-o • lol •

l I J J J J I
BIT ;SE~l 1 I BIT CELL 6 I BIT CELL 5 - ~ - BIT CELL • "I BIT CElL 3 I 81T CELL 2 .I BIT CELL 1 "I lllT Cs~ll O

~------------BVTE-------------+ 1

•• ••

FIGURE 3.4

To graphically show how bits are stored and retrieved, we
must take certain liberties. The diagrams are a
representation of what functionally occurs within the disk
drive . For the purposes of our presentation , the hardware
interface to the diskette will be represented as an eight
bit "data latch ". While the hardware involves considerably
more complication , from a software standpoint it is
reasonable to use the data latch , as it accurately embodies
the function of data flow to and from the diskette .

Figure 3 . 5 shows the three bits, 101 , being read from the
diskette data stream into the data latch . Of course another
five bits would be read to fill the latch.

Writing data can be depicted in much the same way (see
Figure 3 . 6). It should be noted that, while in write mode,
zeros are being brought into the data latch to replace the
data being wr itten . I t is the task of the software to make
sure that the latch is loaded and instructed to write in 32
cycle intervals . If not, zero bits will continue to be
written every four cycles, which is , in fact , exactly how
self-sync bytes are created. Self sync bytes will be
covered in detail shor tly .

3-4

•

•

READING DATA FROM DISKETTE

DATA LATCH

I I I I I

"' ..-------ee--_JbJ'L __ ~ .. ~--~o~~o~--~ • .--BIT STREAM o - · · - -

I I I , I o I

" Ia] • 0 -=0 • Ia] •

0 0 • ~L---ee---------

FI GURE 3.5

3-5

WRITING DATA TO DISKETTE

DATA LATCH

I o l1 I o l1 I o l1 1 o 1 o I+- o
/

+-----~•._--~!oJ~--~ • ._--~o~~o ____________________________ __

Jol1loi1Jolo JoloJ+- o

--~e.---~roJL--~ • ._--~o~~~o ----4•~--~~
JoJ1J oJ1JojojojoJ

/
___foJ __ ~ • .---~o~~o--~·~~bJ, ~---ee--------------------------

FIGURE 3.6

3-6

A "field" is made up of a group of consecutive bytes. The
number of by tes varies, depending upon the nature of the
field. The two t ypes of fields present on a diskette are
the Address Field and the· Data Field. They are similar in
that they both contain a prologue, a data area, a checksum,
and an epilogue. Each field on a track is separated from
adjacent fields by a number of bytes. These areas of
separation are called "gaps" and ~re provided for two
reasons. One, they allow the updating of one field without
affecting adjacent fields (on the Apple, only data fields
are updated). Secondly , they allow the computer time to
decode the address field before the corresponding data field
can pass beneath the read / write head.

All gaps are primarily alike in content, consisting of
self-sync hexadecimal FF's, and var y only in the number of
bytes they contain. Figure 3.7 is a diagram of a portion of
a t ypical track, broken into its major components.

TRACK FORMAT

FIGURE 3.7

Self-sync or auto-sync bytes are special bytes that make up
the three different types of gaps on a track. They are so
named because of their ability to automatically bring the
hardware into synchronization with data bytes on the disk.
The difficulty in doing this lies in the fact that the
hardware reads bits and the data must be stored as eight bit
bytes. It has been mentioned that a track is literally a
continuous stream of data bits. In fact, at the bit level,
there is no way to determine where a byte starts or ends,
because each bit cell is exactly the same, written in
precise intervals with its neighbors. When the drive is
instructed to read data, it will start wherever it happens
to be on a particular track. That could be anywhere among
the 50,000 or so bits on a track. Distinguishing clock bits
from data bits, ~he hardware finds the first bit cell with
data in it and proceeds to read the following seven data
bits into the eight bit latch. In effect, it assumes that
it had started at the beginning of a data byte. Of course,

3-7

in reality, the odds of its having started at the beginning
of a byte are only one in eight. Pictured in Figure 3.8 is
a small portion of a track.

AN EXAMPLE BIT STREAM ON THE DISK

0110101110101100111101101110101

FIGURE 3.8

There is no way from looking at the data to tell what bytes
are represented, because we don't know where · to start. This
is exactly the problem that self-sync bytes overcome.

A self-sync byte is defined to be a hexadecimal FF with a
special difference. It is, in fact, a 10 bit byte rather
than an eight bit byte. Its two extra bits are zeros.
Figure 3.9 shows the difference between a normal data hex FF
that might be found elsewhere on the disk and a self-sync
hex FF byte.

NORMAL BYTE HEX FF SELF-SYNC BYTE HEX FF

FIGURE 3.9

A self-sync is generated by using a 40 cycle (microsecond)
loop while writing an FF. A bit is written every four
cycles, so two of the zero bits brought into the data latch
while the FF was being written are also written to the disk,
making the 10 bit byte. (DOS 3.2.1 and earlier versions use
a nine bit byte due to the hardware's inability to always
detect two consecutive zero bits.) It can be shown, using
Figure 3.10, that four self-sync bytes are sufficient to
guarantee that the hardware is reading valid data. The
reason for this is that the hardware requires the first bit
of a byte to be a 1. Pictured at the top of the figure is a
stream of five FFs, four self-sync FFs followed by a normal
FF. Each . row below that demonstrates what the hardware will
read should it start reading at any given bit in the first
byte. In each case, by the time the four self-sync bytes
have passed beneath the read/write nead, the hardware will
be "synced" to read the bytes that follow. As long as. the
disk is left in read mode, it will continue to correctly
interpret the data unless there is an error on the track.

3-8

AUTOSYNC BYTES

111111110011111111001111111100111111110011111111

11 1 1 1 1 1 1 1jool1 1 1 1 1 1 1 1JO 0 11 1 1 1 1 1 1 1lo 011 1 1 1 1 1 1 1JO 011 1 1 1 1 1 1 11

111 1 1 1 1 1 1 ala 11 1 1 1 1 1 1 1jo 0 b 1 1 1 1 1 1 1lo 011 1 1 1 1 1 1 110 011 1 1 1 1 1 1 11

1 111 1 1 1 1 1 0 0~1 1 1 1 1 1 1 1jo 0 b 1 1 1 1 1 1 1lo 011 1 1 1 1 1 1 1lo o 11 1 1 1 1 1 1 11

1 1 111 1 1 1 1 0 0 1JI1 1 1 1 1 1 1 ala b 1 1 1 1 1 1 1lo 011 1 1 1 1 1 1 1lo o !1 1 1 1 1 1 1 11

1 1 1 1J1 1 1 1 0 0 1 1111 1 1 1 1 1 0 ow 1 1 1 1 1 1 1jo 011 1 1 1 1 1 1 1jo 0 l1 1 1 1 1 1 1 11

1 1 1 1 111 1 1 0 0 1 1 1JI1 1 1 1 1 0 0 1111 1 1 1 1 1 1 ala 11 1 1 1 1 1 1 110 011 1 1 1 1 1 1 11

1 1 1 1 1 1J1 1 0 0 1 1 1 1111 1 1 1 0 0 1 1111 1 1 1 1 1 0 ~11 1 1 1 1 1 1 110 0 J1 1 1 1 1 1 1 11

1 1 1 1 1 1 1)1 0 0 1 1 1 1 1JJ1 1 1 0 0 1 1 1 ~ 1 1 1 1 1 0 0 1111 1 1 1 1 1 1 ala 11 1 1 1 1 1 1 11

1 1 1 1 1 1 1 1 0 011 1 1 1 1 1 1 110 011 1 1 1 1 1 1 1lo 011 1 1 1 1 1 1 1JO 0 J1 1 1 1 1 1 1 11

FIGURE 3.10

We can now discuss the particular portions of a track in
detail. The three gaps will be covered first. Unlike some
other disk formats, the size of the three gap types will
vary from drive to drive and even from track to track.
During the initialization process, DOS will start with large
gaps and keep making them smaller until an entire track can
be written without overlapping itself. DOS makes sure that
each gap type (see Figure 3.7) contains a minimum of four
self-sync bytes. The result is fairly uniform gap sizes
within each particular track.

3-9

Gap 1 is the first data written to a track during
initialization . Its purpose is twofold. The gap originally
consists of 128 bytes of self-sync, a large enough area to
insure that all portions of a track will contain data.
Since the speed of a particular drive may vary, the total
length of the track in bytes is uncertain~ and the
percentage occupied by data is unknown. The initialization
process is set up , however, so that even on drives of
differing speeds , the last data field written will overlap
Gap 1 , providing continuity over the entire physical track .
Care is taken to make sure the remaining portion of Gap 1 is
at least as long as a typical Gap 3 (in practice its length
is usually more than 40 sync bytes), enabling it to serve as
a Gap 3 type for Address Field number 0 (See Figure 3.7 for
clarity) .

Gap 2 appears after each Address Field and before each Data
Field. Its length varies from five to ten bytes on a normal
drive . The primary purpose of Gap 2 is to provide time for
the information in an Address Field to be decoded by the
computer before a read or write takes place . If the gap were
too short , the beginning of the Data Field might spin past
while DOS was still determining if this was the sector to be
read . The 240 odd cycles that six self-sync bytes provide
seems ample time to decode an address field . When a Data
Field is written there is no guarantee that the write will
occur in exactly the same spot each time . This is due to
the fact that the drive which is rewriting the Data Field
may not be the one which originally INITed or wrote it.
Since the speed of the drives can vary, it is possible that
the write could start in mid-byte . (See Figure 3 .11) This is
not a problem as long as the difference in positioning is
not great. To insure the integrity of Gap 2, when writing a
data field , five self-sync bytes are written prior to
writing the Data F~eld itself . This serves two purposes.
Since relatively little time is spent decoding an address
field, the five bytes help place the Data Field near its

3-10

ADDRESS
FIELD

GAP2

-
NEW
DATA
FIELD

I I I I
l j _C:URRENT : I GAP 3

I .DATA : , il
: I FIELD

NEW
DATA
FIELD

FIGURE 3.11

original position. Secondly, and mor e importantly, the five
s e lf-sync bytes guarantee read synchronization. It is
probable that, in writing a data field , at least one sync
byte will be destroyed. This is because , just as in reading
bits on the track , the write may not begin on a byte
boundar y, thus altering an existing byte. Figure 3.12
illustrates this .

WRITING OUT OF SYNC

Before

(• n • n . n • • n • L wri te starts here

After

(• n • • n • n • n • •
FIGURE 3.12

Gap 3 appears after each Data Field and before each Address
Field . It is longer than Gap 2 and generally ranges from 14
to 24 bytes in length. It is quite similar in purpose to
Gap 2 . Gap 3 allows the additional time needed to
manipulate the data that has been read before the next
sector is to be read . The length of Gap 3 is not as
critical as that of Gap 2 . If the following Address Field
is missed, DOS can always wait for the next time it spins
around under the read/write head, at most one revolution of
the disk . Since Address Fields are never rewritten , there
is no problem with this gap providing synchronization, since
only the first part of the gap can be overwritten or
damaged. (See Figure 3 . 11 for clarity)

An examinatio~ of the contents of the two types of fields is
in order. The Address Field contains the "address" or
identifying information about the Data Field which follows
it . The volume , track, and sector number of any given
sector can be thought of as its " address" , much like a
country , city , and street number might identify a house. As
shown previously in Figure 3 . 7, there are a number of
c o mponents which make up the Address Field. A more detailed
illustration is given in Figure 3 . 13 .

3-11

ADDRESS FIELD

PROLOGUE VOLUME TRACK SECTOR CHECKSUM EPILOGUE

I os AA gsl xx YYI xx YYixx YYixx YY loE AA Eal

ODD·EVEN ENCODED

DATA BYTE -D1DsDsD<DJD, D,Do
XX- 1 'D' 1 Ds 1 .03 1 D1
YY - 1 Ds 1 D• 1 D2 1 Do

FIGURE 3.13

The prologue consists of three bytes which form a unique
sequence, found in no other component of the track. This
fact enables DOS to locate an Address Field with almost no
possibility of error. The three bytes are $D5, $AA, and
$96. The $D5 and $AA are reserved (never written as data)
thus insuring the uniquen~ss of the prologue. The $96,
following this unique string, indicates that the data
following constitutes an Address Field (as opposed to a Data
Field). The address information follows next, consisting of
the volume, track, and sector number and a checksum. This
information is absolutely essential for DOS to know where it
is positioned on a particular diskette. The checksum is
computed by exclusive-ORing the first three pieces of
information, and is used to verify its integrity. Lastly
follows the epilogue, which contains the three bytes $DE,
$AA and .$EB. Oddly, the $EB is always written during
initialization but is never verified when an Address Field
is read. The epilogue bytes are sometimes referred to as
"bit-slip marks", which provide added assurance that the
drive is still in sync with the bytes on the disk. These
bytes are probably unnecessary, but do provide a means of
double checking.

DATA FIE L D
3-12

_r

The other field type is the Data Field. Much like the
Address Field, it consists of a prologue, data, checksum,
~nd an epilogue. (Refer to Figure 3.14) The prologue is
different only in the third byte. The bytes are $D5, $AA,
and $AD, which again form a unique sequence, enabling DOS to
locate the beginning of the sector data. The data consists
of 342 bytes of encoded data. The encoding scheme used will
be discussed in the next section. The data is followed by a
checksum byte, used to verify the integrity of the data just
read. The epilogue portion of the Data Field is absolutely
identical to the epilogue in the Address Field and it serves
the same function.

DATA FIELD

PROLOGUE USER DATA

los AA ADI 342 BYTES DATA

DATA FIELD ENCODING

~
SIX AND TWO

ENCODED

FIGURE 3.14

CHECKSUM EPILOGUE

xx loE AA Eal

Due to Apple's hardware, it is not possible to read all 256
possible byte values from a diskette. This is not a great
problem, but it does require that the data written to the
disk be encoded. Three different techniques have been
used. The first one, which is currently used in Address
Fields, involves writing a data byte as two disk bytes, one
containing the odd bits, and the other containing the even
bits. It would thus require 512 "disk" bytes for each 256
byte sector of data. Had this technique been used for
sector data, no more than 10 sectors would have fit on a
track. This amounts to about BBK of data per diskette, or
roughly 72K of space available to the user; typical for
5 1/4 single density drives.

E~CODlNG
3-13

Fortunately, a second technique for writing data to diskette
was devised that allows 13 sectors per track. This new
method involved a "5 and 3" split of the data bits, versus
the "4 and 4" mentioned earlier. Each byte written to the
disk contains five valid bits rather than four. This
requires 410 "disk" bytes to store a 256 byte sector. This
latter density allows the now well known 13 sectors per
track format used by DOS 3 through DOS 3.2.1. The "5 and 3"
scheme represented a hefty 33% increase over comparable
drives of the day.

Currently, of course, DOS 3.3 features 16 sectors per track
and provides a 23% increase in disk storage over the 13
sector format. This was made possible by a hardware
modification (the P6 PROM on the disk controller card) which
allowed a "6 and 2" split of the data. The change was to
the logic of the "state machine" in the P6 PROM, now
allowing two consecutive zero bits in data bytes.

These three different encoding techniques will now be
covered in some detail. The hardware for DOS 3.2.1 (and
earlier versions of DOS) imposed a number of restrictions
upon how data could be stored and retrieved. It required
that a disk byte have the high bit set and, in addition, no
two consecutive bits could be zero. The odd-even "4 and 4"
technique meets these requirements. Each data byte is
represented as two bytes, one containing the even data bits
and the other the odd data bits. Figure 3.15 illustrates
this transformation . It should be noted that the unused
bits are all se~ to one to guarantee meeting the two
requirements.

FIGURE 3.15

No matter what value the original data data byte has, this
technique insures that the high bit is set and that there
can not be two consecutive zero bits . The " 4 and 4"
technique is used to store the information (volume, track,
sector, checksum) contained in the Address Field. It is
quite easy to decode the data, since the byte with the odd
bits is simply shifted left and logically ANDed with the
byte containing the even bits. This is illustrated in Figure
3.16 .

D1 1 Ds 1 D, 1 D, 1 (shifted left)
AND 1 Ds 1 D• 1 D2 1 Do

D' Ds DsD• DJD2D•Do

FIGURE 3.16

3-14

It is important that the least significant bit contain a 1
when the odd-bits byte is left shifted. The entire
operation is carried out in the RDADR subroutine at $B944 in
DOS (48K).

The major difficulty with the above technique is that it
takes up a lot of room on the track. To overcome this
deficiency the "5 and 3" encoding technique was developed.
It is so named because, instead of splitting the bytes in
half as in the odd-even technique, they are split five and
thre~. A byte would have the form OOOXXXXX, where X is a
valid data bit. The above byte could range in value from
$00 to $1F, a total of 32 different values. It so happens
that there are 34 valid "disk" bytes, ranging from $AA up to
$FF, which meet the two requirements (high bit set, no
consecutive zero bits). Two bytes, $D5 and $AA, were chosen
as reserved bytes, thus leaving an exact mapping between
five bit data bytes and eight bit "disk" bytes. The process
of converting eight bit data bytes to eight bit "disk"
bytes, then, is twofold. An overview is diagrammed in Figure
3.17.

USER
DATA f----+
PAGE

PRIMARY
DATA

BUFFER

SECONDARY
DATA

BUFFER

FIGURE 3.17

DISK SECTOR

WRITE
TRANSLATE

TABLE

First, the 256 bytes that will make up a sector must be
translated to five bit bytes . This is done by the
"prenibble" routine at $B800. It is a fairly involved
process, involving a good deal of bit rearrangement. Figure
3 . 18 shows the before and after of prenibbilizing. On the
left is a buffer of eight bit data bytes, as passed to the
RWTS subroutine package by DOS. Each byte in this buffer is
represented by a letter (A, B , C, etc .) and each bit by a
number (7 through 0) . On the right side are the results of
the transformation . The primary buffer contains five
distinct areas of five bit bytes (the top three bits of the
e.ight bit bytes zero-filled) and the secondary buffer
contains three areas, graphically illustrating the name "5
and 3" .

3-15

"5 and 3" PRENIBBILIZING

8800

SECTOR
DATA

BUFFER 8833 0 0 0 A1AsA5A4A3

A1AsA"' A"AJA<> A1Ao
8 78 68 584838 28 180
C7CsC5C4CJC2C,Co
0 70 60 50 40 30 20 10 0

~ E1 Es E5 E• EJ E2 e, Eo w 8866 0 0 0 818 68 58 <83

t-
C/)

>-
C/)

~
c:o
:::.. 8899 0 0 0 c ,c . c , c . c ,
C/)
a:
w
u..
u..
::J
CD
C/) 88CC 0 0 0 o,o.o,o.o,
t-
3:
a:
z
I
t- 8COO

~
0 0 0 E' E' E' E' E'

C/)
C/)
w
a:
0
0 8 C33
<t:

0 0 0 A2A •AoD2E2

8 C66 0 0 0 8 28 •8 oD•E•

8 C99 0 0 0 c , c ,CoDnEo

FIGURE 3.18

A total of 410 bytes are needed to store the ~riginal 256.
This can be calculated by finding the total b1ts of d~ta
(256 x 8 = 2048) and dividing that by the number of b1ts . per
byte (2048 1 5 = 409 . 6). (two bits are not used) Once th1s
process is completed, the data is further transformed to
make it valid "disk" bytes, meeting the disk's
requirements. This is _ much.eas~er, involving a one to one
look-up in the table g1ven 1n F1gure 3.19.

3-16

"5 and 3"
WRITE TRANSLATE TABLE

00 AB 10 DO
01 AD 11 DE
02 AE 12 OF
03 AF 13 EA
04 85 14 EB
05 B6 15 ED
06 B7 16 EE
07 BA 17 EF
08 BB 18 F5
09 BD 19 F6
OA BE 1A F7
DB BF 1B = FA
DC 06 1C = FB
00 07 10 FD
DE DA 1E FE
OF DB 1F FF

AA}
05 Reserved Bytes

FIGURE 3.19

The Data Field has a checksum much like the one in the
Address Field, used to verify the integrity of the data . It
also involves exclusive-ORing the information , but, due to
time constraints during reading bytes , it is implemented
differently. The data is exclusive - ORed in pair s before
being transformed by the look-up table in Figur~ 3 . 19. This
can best be illustrated by Figure 3 . 20 on the following
page.*

The reason for this transformation can be better under s tood
by examining how the information is retri e ved £rom the
disk. The read routine must read a byte , transform it, and
store it -- all in under 32 cycles (the time tak e n to write
a byte) or the information will be lost . By using the
checksum computation to decode data , the transformation
shown in Figure 3 . 20 greatly facilitates the time
constraint. As the data is being read from a sector the
accumulator contains the cumulative result of all previous
bytes , exclusive-ORed together. The value of the
accumulator after any exclusive-OR operation is the actual
data byte for that point in the series . This process i s
diagrammed in Figure 3 . 21 .*

*Figures 3.20 and 3 . 21 pr esent the nibblizing pr o c e s s us ed
by the "6 and 2" e ncoding t echnique . Howeve r, the concept
is the same for the " 5 and 3" technique .

3-17

..1

Primary &
Secondary
Buffers
Nlbbllzed
Data

0

BC55

BC55

BC54

BC54

BC53

BC01 }

BCOO

BCOO

BBOO

BBOO

BB01

BB01

BB02

}

}

}

BBFD }

BBFE

BBFE }

BBFF

EOR

EOR

EOR

EOR

EOR

EOR

BBFF "checksum"

3-18

WRITING TO DISKETTE, DOS 3.3

WRITE
TRANSLATE

TABLE

FIGURE 3.20

DISK
DATA

Byte 0

Byte

Byte 2

Byte 85

Byte 86

Byte 87

Byte 88

Byte 340

Byte 341

Byte 342

READING. FROM DISKETTE, DOS 3.3

Disk Byte

Byte 0 -

Byte --+

Byte 2 -

Byte 85 -

Byte 86 -

Byte 87 --+

Byte 88 --+

READ
TRANSLATE

TABLE

PRIMARY &
EFFECTIVE SECONDARY
ACTION BUFFERS

----+ EOR 0 - SBC55

--+ EOR $BC55 - $BC54

----+ EOR $BC54 --+ $BC53

----+ EOR $BC01 - $BCOO

----+ EOR $BCOO - SBBOO

- EOR SBBOO - $BB01

- EOR $BB01 - $BB02

Byte 340 ----+ ----+ EOR $BBFD - $BBFE

Byte 341 - --+ EOR SBBFE - $BBFF

Byte 342 --+ ----. EOR SBBFF - 0 If data Is valid ..._ _____ .J

FIGURE 3.21

3-19

l

The third encoding technique , currently used by DOS 3.3, is
similar to the " 5 and 3". It was made possible by a change
in the hardware which eased the requirements for valid data
somewhat . The high bit must still be set, but now the byte
may contain one (and only one) pair of consecutive zero
bits . This allows a greater number of valid bytes and
permits the use of a " 6 and 2" encoding technique . A six
bit byte would have the form OOXXXXXX and has values from
$00 to $3F for a total of 64 different values . With the
new, relaxed requirements for valid "disk" bytes there are
70 different bytes ranging in value from $95 up to $FF.
After removing the two reserved bytes , $AA and $05 , there
are still 68 "disk" bytes with only 64 needed. So an
additional requirement was introduced to force the mapping
to be one to one, namely, that there must be at least two
adjacent bits set , excluding bit 7. This eliminates four
more bytes and produces exactly 64 valid "disk" values. The
initial transformation is done by the prenibble routine
(still located at $B800) and its results are shown in Figure
3.22.

"6 and 2" PRENIBBILIZING

BBOO

SECTOR
DATA ~

BUFFER w
f-
(fJ

A7AnA A4AJA AtA >-
(fJ

8 , Bs B ~ 84 8 J8 18 ' Bo ~

C"C6C-. C4C1C;C,Co CXl
::!.

0 Or, Q ... Q40 JD:> D, Do
(fJ

E E6 E E~ EJ E ~ E, E a:
F F' F f , F F.• F, F w

IJ..
IJ..
::J
[I)

(fJ
f-
~
a:
z
I
f-

~
(fJ
(fJ
w
a:
0
0 BCOO
<(

BC56

FIGURE 3.22

3-20

0 0 A7A6A$A• AJA?
0 0 8 78 s BsB• BJ8 <>
0 0 c,c.csc.c,c,
0 0 D7DoDsD•DJD7

0 0 E1EoEs E• E' E'
0 0 F1Fs Fs F• FJF2

0 0
0 0

0 0
0 0
0 0

0 0

r ('·t
: Fo f ,

; EoEt

•

• J ~ DoD• : CoCt
; BoB,

· ... : AoAt

IT :S QUIT E. SIMPlE, - "6AAP2/' IS LESS THAN "5At'1>3 ~
A total of 342 bytes are needed, shown by finding the total
number of bits (256 x 8 = 2048) and dividing by the number
of bits per by te (2048 I 6 = 341.33). The transformation
from the six bit by tes to valid data bytes is again
performed by a one to one mapping shown in Figure 3.23.
Once again, the stream of data bytes written to the diskette
are a product of exclusive-ORs, exactly as with the "5 and
3" technique discussed earlier.

"6 and 2"
WRITE TRANSLATE TABLE

00 96 10 B4 20 D6 30 ED
01 97 11 B5 21 D7 31 EE
02 9A 12 B6 22 D9 32 EF
03 9B 13 B7 23 DA 33 F2
04 9D 14 B9 24 DB 34 F3
05 9E 15 BA 25 DC 35 F4
06 9F 16 BB 26 DD 36 F5
07 A6 17 BC 27 DE 37 F6
08 A7 18 BD 28 DF 38 F7
09 AB 19 BE 29 E5 39 F9
OA AC 1A BF 2A E6 3A FA
OB AD 1B CB 28 E7 38 FB
oc AE 1C CD 2C E9 3C FC
OD AF 1D CE 2D EA 3D FD
OE 82 1E CF 2E EB 3E FE
OF 83 1F D3 2F EC 3F FF

AA} D5 Reserved Bytes

FIGURE 3.23

3-21

SECTOR 'INTERLEAVING

Sector interleaving , or skewing , is the staggering of
sectors on a track to maximize access speed. There is
usually a delay between the time DOS reads or writes a
sector and t he time it is ready to read or write another.
This delay depends upon the application program using the
disk and can vary greatly . If sectors were stored on the
track in sequential order, it would usually be necessary to
wait a full revolution of the diskette before the next
sector could be accessed. Ordering the sectors non­
sequentially (skewing them) can provide improved access
speeds .

On DOS 3 . 2 . 1 and earlier versions , the 13 sectors are
physically skewed on the diskette . During the boot
operation , sectors are loaded from the diskette in ascending
sequential order . However , files generally are loaded in
descending sequential order . As a result , no single skewing
scheme works well for both booting and sequentially
accessing a file .

A different approach has been used in DOS 3 . 3 in an attempt
to maximize performance . The skewing is now done in
software . The 16 physical sectors are numbered in ascending
order (0 , 1 , 2 , 15) and are not physically skewed at
all . ~look-up table is used to translate a logical or soft
sector number used by RWTS into the physical sector number
found on the diskette . For example , if the logical sector
number were a 2 , this would be translated into the physical
sector number 11 ($0B) . Thus , RWTS treats physical sector
11 ($0B) as sector 2 for all intents and purposes. This
presents no problem if RWTS is used for disk access , but
would become a consider ation if access were made without
RWTS. DOS 3 . 3 uses what we refer to as a " 2 descending"
skew .

In an attempt to eliminate the access differences between
booting and reading files , another change was made to DOS
3 . 3 . During the boot p r ocess , DOS is loaded backwards in
descending sequential order into memo r y , just as files are
accessed . However , due to differences in the delays for
booting and reading fi l es , no single skewing scheme is
optimal . For a detai l ed discu s sion of this subject refer to
HOW SECTOR SKEWING CAN AFFECT DISK PERFORMANCE in the
documentation fo r BAG OF TRICKS* .

It is inter est ing to poi nt out that Pascal, For tran , and
CP/M diskettes a l l use software skewing also . Howeve r , each
uses a different sector order . Pascal and Fortran use a 2
ascending skew and CP/M diskettes use a 3 ascending skew. A
comparison of these differences i s p r esented in Fi gure 3 . 24 .

* see the page opposite page 1- 1 for a descr i ption of BAG OF
TRICKS .

3-22

··-

PHYSICAL
SECTOR

0

2

3

4

5

6

7

8

9

A

B

c
0

E

F

COMPARISON OF SECTOR SKEWING

LOGICAL SECTOR

DOS 3.3 PASCAL CP/M

0 0 0

7 8 B

E 6

6 9

0 2 c
5 A 7

c 3 2

4 B 0

B 4 8

3 c 3

A 5 E

2 0 9

9 6 4

E F

8 7 A

F F 5

FIGURE 3.24

3-23

•
1.
I

I
J

I CHAPTER 4
DISKETTE ORGANIZATION

As was described in CHAPTER 3, a 16 sector diskette consists
of 560 data areas of 256 bytes each, called sectors. These
sectors are arranged on the diskette in 35 concentric rings
or tracks of 16 sectors each. The way DOS allocates these
tracks of sectors is the subject of this chapter.

A file (be it APPLESOFT, INTEGER, BINARY, or TEXT type)
consists of one or more sectors containing data. Since the
sector is the smallest unit of allocatable space on a
diskette, a file will use up at least one sector even if it
is less than 256 bytes long; the remainder of the sector is
wasted. Thus, a file containing 400 characters (or bytes)
of data will occupy one entire sector and 144 bytes of
another with 112 bytes wasted. Knowing these facts, one
would expect to be able to use up to 16 times 35 times 256
or 143,360 bytes of space on a diskette for files. Actually,
the largest file that can be stored is about 126,000 bytes
long. The reason for this is that some of the sectors on the
diskette must be used for what is called "overhead".

SECTOR 0

10

11

12

13

14

15

CATALOG

DISK VOLUME OOl.

•I 002 HELLO

A 002 APPLESOPT PROGRAM
T 002 TEXT PILE

B 002 BINARY PILE
TRACK

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

FREE

SECTORS

FREE
SECTORS

H-;L~O-------,

APPLESOFT PROGRAM

TEXT FILE

BINARY FILE

I

________ J

~~L-------------------~ill=~~----------------_J

A TYPICAL 16 SECTOR DISKETTE MAP

FIGURE 4.1

4-1

Overhead sectors contain the image of DOS which is loaded
when booting the diskette, a list of the names and locations
of the files on the diskette, and an accounting of the
sectors which are free for use with new files or expansions
of existing files. An example of the way DOS uses sectors is
given in Figure 4.1.

DISKETTE SPACE ALLOCATION·

The map in Figure 4.1 shows that the first three tracks of
each diskette are always reserved for the bootstrap image of
DOS. In the exact center track (track 17) is the VTOC and
catalog. The reason for placing the catalog here is simple.
Since the greatest delay when using the disk is waiting for
the arm to move from track to track, it is advantageous to
minimize this arm movement whenever possible. By placing
the catalog in the exact center track of the disk, the arm
need never travel more than 17 tracks to get to the catalog
track. As files are allocated on a diskette, they occupy
the tracks just above the catalog track first. When the
last track, track 34, has been used, track 16, the track
adjacent and below the catalog, is used next, then 15, 14,
13, and so on, moving away from the catalog again, toward
the DOS image tracks. If there are very few files on the
diskette, they will all be clustered, hopefully, near the
catalog and arm movement will be minimized. Additional space
for a file, if it is needed, is first allocated in the same
track occupied by the file. When that track is full,
another track is allocated elsewhere on the disk in the
manner described above.

THE VTOC

The Volume Table Of Contents is the "anchor" of the entire
diskette. On any diskette accessible by any version of DOS,
the VTOC sector is always in the same place; track 17,
sector 0. (Some protected disks have the VTOC at another
location and provide a special DOS which can find it.) Since
files can end up anywhere on the diskette, it is through the
VTOC anchor that DOS is able to find them. The VTOC of a
diskette has the following focmat (all byte offsets are
given in base 16, hexadecimal):

BYTE
00
01
02
03
04-05
06
07-26
27

4-2"

VOLUME TABLE OF CONTENTS (VTOC) FORMAT

DESCRIPTION
Not used
Track number of first catalog sector
Sector number of first catalog sector
Release number of DOS used to !NIT this diskette
Not used
Diskette volume number (1-254)
Not used
Maximum number of track/sector pairs which will fit
in one file track/sector list sector (122 for 256
byte sectors)

28-2F Not used
30 Last track where sectors were allocated
31 Direction of track allocation (+1 or -1)
32-33 Not used
34 Number of tracks per diskette (normally 35)
35 Number of sectors per track (13 or 16)
36-37 Number of bytes per sector (LO/HI format)
38-3B Bit map of free sectors in track 0
3C-3F Bit map of free sectors in track 1
40-43 Bit map of free sectors in track 2

BC-BF Bit map of free sectors in track 33
CO-C3 Bit map of free sectors in track 34
C4-FF Bit maps for additional tracks if there are more

than 35 tracks per diskette

BIT MAPS OF FREE SECTORS ON A GIVEN TRACK

A four byte binary string of ones and zeros
represe~ting free and allocated sectors res~ectively.
Hex~d:c1mal sector numbers are assigned to bit
pos1t1ons as follows:

BYTE
+0
+1
+2
+3

SECTORS
FEDC BA98
7654 3210

(not used)
(not used)

Thus, if only sectors E and 8 are free and all
others are allocated, the bit map will be:

41000000

If all sectors are free:

FFFFOOOO

An example of a VTOC sector is given in Figure 4.2. This
VTOC corresponds to the map of the diskette given in Figure
4.1.

4-3

122 T/S pairs
in a T/S list

Last track
allocated
was 15 (hex).
Next will be
15+1 =16 (hex).
(22 decimal)

4-4

First CATALOG-sector Is on track 11 (hex),
sector OF (hex)

DOS 3.3

23 (hex) tracks/disk
10 (hex) sectors/track

0100 (hex) bytes/sector

54 PPPPOOOOPPFFOOOOPPPPOOOO -· ·-· ·-· · Track 12 is
60 PPPPOOOOPPPPOOOaP!f:fP:fP:i':PQOQOO~QQ--=:::-o-c=~-=:-;-;--- free
6C PPPPOOOOPPFFOOOOPPPPOOOO _ .. _ .. _ ..

78 PPPPOOOOOOOOOOO~ Only sectors
84 3PPP00003PPP00003PPPOOOO ?_ •• ?_ •• ?_. · 14 and 15 are
90 -FPPPOOOOPPPFOOOOPPPPOOOO _ .. _ .. _. . allocated
9C PPPPOOOOPFFPOOOOFPPPOOOO _ .. _ .. _.. on track 18
AS PPPPOOOOPFPPOOOOPPPPOOOO - ·· - ··-·.
B4 PPPPOOOOPPPPOOOOPPPPOOOO -··-··-··
co IPPFFoooopoooooooeeaaoooo
cc 000000000000000000000000 .•..........
08 000000000000000000000000
E4 000000000000000000000000
PO 000000000000000000000000
FC 00000000

FIGURE 4.2 - EXAMPLE VTOC

Track 34
is free

First 7
Filenames

Sector 0

Sector 1

Sector 2

Sector 3

Sectors 4-B

S.ector C

Sector·D

Sector E

. Sector F

THE CATALOG

In order for DOS to find a
given file, it must first read
the VTOC to find out where the
first catalog sector is
located. Typically, the
catalog sectors for a diskette
are the remaining sectors on
track 17, following the VTOC
sector. Of course, as long as
a track/sector pointer exists
in the VTOC and the VTOC is
located at track 17, sector 0,
DOS does not really care where
the catalog · resides. Figure
4.3 diagrams the catalog
track . The figure shows the
track/sector pointer in the
VTOC at bytes 01 and 02 as an
arrow pointing to track 17 (11
in hexadecimal) sector F. The
last sector in the track is
the first catalog sector and
describes the first seven
files on the diskette. Each
catalog sector has a
track/sector pointer in the
same position (bytes 01 and
02) which points to the next
catalog sector. The last
catalog sector (sector 1) has
a zero pointer to indicate
that there are no more catalog
sectors in the chain.

In ·each catalog sector up to
seven files may be listed and
described. Thus, on a typical
DOS 3.3 diskette, the catalog
can hold up to 15 times 7 , or
105 files. A· catalog sector is
formatted as described on the
following page .

·· FIGURE -4.3- TRACK ·17; THE CA TALOG TRA CK

4-5

BYTE
00
01
02
03-0A

.OB-2D
2E-50
51-73
74-96
97-B9
BA-DC
DD-FF

RELATIVE

CATALOG SECTOR FORMAT

DESCRIPTION
Not used
Track number of next catalog sector (usually 11 hex)
Sector number of next catalog sector
Not used
First file descriptive entry
Second ~ile descriptive entry
Third f1le descr1pt1ve entry
Fourth .file descriptive entry
Fifth file descriptive entry
Sixth file descriptive entry
Seventh file descriptive entry

FILE DESCRIPTIVE ENTRY FORMAT

BYTE DESCRIPTION
00 Track of first track / sector list sector.

01
02

03-20
21-22

If this is a deleted file, this byte contains a hex
FF and the original track number is copied to the
last byte of the file name field (BYTE 20) .
If this byte contains a hex 00, the entry is assumed
to never have been used and is available for use.
(This means track 0 can never be used for data even
if the DOS image is "wiped" from the diskette.)
Sector of first track / sector list sector
File type and flags:

Hex 80+file type - file is locked
OO+file · type - file is not locked
00 - TEXT file
01 - INTEGER BASIC file
02 - APPLESOFT BASIC file
04 - BINARY file
08 - S type file
10 - RELOCATABLE object module file
20 - A type file
40 - B type file

(thus, 84 is a locked BINARY file, and 90 is a
locked R type file)

F.ile name (30 characters)
Length of file in sectors (LO/ HI format).
The CATALOG command will only format the LO byte of
this length giving 1-255 but a full 65,535 may be
stored here.

Figure 4.4 is an example of a typical catalog sector. In
this example there are only four files on the entire
diskette, so only one catalog sector was needed to describe
them. There are four entries in use and three entries which
have never been used and contain zeros.

4-6

Next CATALOG sector Is track 11 (hex),
sector OE (hex)

First track/sector list for this file
Is at track 12 (hex), sector OF (hex)

81 = locked, integer BASIC type file

File name Is "HELLO"

~~~-,-CCCCCFAOAOAOAOAO 

18 AOAOAOAOAOAOAOAOAOAOAOAO 
~p~l~~~ft ~ AOAOAOAOAOAOAOA~;,;:;2~0:;;.:_::30:;,F:__-------
yp 30~1DODOCCC5D3CFC6D4AODO .APPLESOFT P 

3C D2CFC7D2C1CDAOAOAOAOAOAO ROGRAM 
48 AOAOAOAOAOAOA00200140~~------~-----
54 D4C5D8D4AOC6C9CCC5AOAOAO TEXT FILE 
60 AOAOAOAOAOAOAOAOAOAOAOAO 
6C AOAOAOAOAOA00200150~~2----. -. -.. -.~B~-
78 C9CEC1D2D9AOC6C9CCC5AOAO INARY FILE 
84 . AOAOAOAOAOAOAOAOAOA0AOAO 
90 AOAOAOAOA002000000000000 
9C 000000000000000000000000 
A8 000000000000000000000000 
B4 000000000000000000000000 
co 000000000000000000000000 
cc 000000000000000000000000 
08 000000000000000000000000 
E4 000000000000000000000000 
FO 000000000000000000000000 
FC 00000000 

FIGURE 4.4- EXAMPLE CATALOG SECTOR 

File length 
Is 2 sectors 

Text type 
file 

Binary type 
file 



THE TRACK/SECTOR LIST 

Each file has associated with it a "Track/Sector List " 
sector. This sector contains a list of track/sector pointer 
pairs which sequentially list the data sectors which make up 
the file. The file descriptive entry in the catalog sector 
points to this T/S List sector which, in turn, points to 
each sector in the file. This concept is diagramed in Figure 
4. 5. 

TRACK 17 
SECTOR 0 

CATALOG SECTORS 

FIRST 
SECTOR OF 

" HELLO" 

FIGURE 4.5 - PATH DOS MUST FOLLOW TO FIND A FILE 

The format of a Track/Sector List sector is given below. 
Note that since even a minimal file requires one T/ S List 
sector and one data sector, the least number of sectors a 
non-empty file can have is 2. Also , note that a very large 
file, having more than 122 data ·sectors, will need mo~e than 
one Track / Sector List to hold all the Track / Sector po~nter 
pairs. 

BYTE 
00 
01 

02 
03-04 

4-8 

TRACK/SECTOR LIST FORMAT 

DESCRIPTION 
Not used 
Track number of next T/ S List sector if one was 
needed or zero if no more T/ S List sectors. 
Sector number of next T/S List sector (if present) 
Not used 

05-06 
~ 

1 07-0B 
I OC-OD 

l OE-OF 
10-FF 

Sector offset in file of the first sector descr.lbed 
by this list. 
Not used 
Track and sector of first data sector or zeros 
Track 
Up to 

and 
120 

sector of second data sector 
more Track/Sector pairs 

There are no additional T/S list 
sectors for this file 

The first sector listed here 
Is sector 0 of the file 

or 

.--t----t---The first data sector Is on 
track 12 (hex), sector OE (hex) 

00 ••• 0 •• • 0 •••• 

oc ............ 
~8 ••• 0 •••••••• 

24 000000000000000000000000 ............ 
30 000000000000000000000000 ••••••• 0 •••• 

3C 000000000000000000000000 • 0 •••••••••• 

48 000000000000000000000000 ••••••• 0 •••• 

54 000000000000000000000000 • 0 •• 0 ••••••• 

60 000000000000000000000000 ••• ••• 0 ••• 0. 

6C 000000000000000000000000 •••• 0 ••••••• 

78 000000000000000000000000 ............ 
84 000000000000000000000000 ••••• 0 ••••• 0 

90 000000000000000000000000 •••• 0 ••••••• 

9C 000000000000000000000000 •• 0 •••• 0 0 0 •• 

AB 000000000000000000000000 0 0 0 0. 0 0 •••• • 

B4 000000000000000000000000 ••• 0 0. 0. 0 ••• 

co 000000000000000000000000 ••••••••• 0 •• 

cc 000000000000000000000000 ............ 
DB 000000000000000000000000 • 0 • ••••• ••• 0 

E4 000000000000000000000000 •• 0 0 •••••••• 

FO 000000000000000000000000 ............ 
FC 00000000 

FIGURE 4.6- EXAMPLE TRACK/SECTOR LIST 

zeros 

4-9 



A sequential file will end when the first zero T/S List 
entry is encountered. A random file, however, can have 
spaces within it which were never allocated and therefore 
have no data sectors allocated in the T/S List. This 
distinction is not always handled correctly by DOS. The 
VERIFY command, for instance, stops when it gets to the 
first zero T/S List entry and can not be used to verify some 
random organization text files. 

An example T/S List sector is given in Figure 4.6. The 
example file (HELLO, from our previous examples) has only 
one data sector, since it is less than 256 bytes in length. 
Counting this data sector and the T/S List sector, HELLO is 
2 sectors long, 9nd this will be the value shown when a 
CATALOG command is done. 

Following the Track/Sector pointer in the T/S List sector, 
we come to the first data sector of the file. As we examine 
the data sectors, the differences between the file types 
become apparent. All files (except, perhaps, a random TEXT 
file) are considered to be continuous streams of data, even 
though they must be broken up into 256 byte chunks to fit in 
sectors on the diskette. Although these sectors are not 
necessarily contiguous (or next to each other on the 
diskette), by using the Track/Sector List, DOS can read each 
sector of the file in the correct order so that the 
programmer need never know that the data was broken up into 
sectors at all. 

TEXT FILES 

The TEXT data type is the least complicated file data 
structure. It consists of one or more records, separated 
from each other by carriage return characters (hex BD's). 
This structure is diagrammed and an example file is given in 
Figure 4.7. Usually, the end of a TEXT file is signaled by 
the presence of a hex 00 or the lack of any more data 
sectors in the T/S List for the file. As mentioned earlier, 
if the file has random organization, there may be hex OO's 
imbedded in the data and even missing data sectors in areas 
where nothing was ever written. In this case, the only way 
to find the end of the file is to scan the Track/Sector List 
for the last non-zero Track/Sector pair. Since carriage 
return characters and hex OO's have special meaning in a 
TEXT type file, they can not be part of the data itself. For 
this reason, and to make the data accessible to BASIC, the 
data can only contain printable or ASCII characters 
(alphabetics, numerics or special characters, see p. 8 in 
the APPLE II REFERENCE MANUAL) This restriction makes 
processing of a TEXT file slower and less efficient in the 
use of disk space than with a BINARY type file, since each 
digit must occupy a full byte in the file. 

4-10 

I 
• 

RECORD 1 1@1 RECORD 2 1@1 RECORD 3 I@~ 
A Sequential Text Type File 

Record 1 @ End of file 

00 >ACB>'CB'ACB~OO ,,,,,,4 ..... 
oc 000000000000000000000000 •••••••.•.•• 

18 000000000000000000000000 •·••••••·••• 
24 000000000000000000000000 
30 000000000000000000000000 
3C 000000000000000000000000 
48 oooooooooooooooooooooooo 
54 000000000000000000000000 
60 000000000000000000000000 
6C 000000000000000000000000 
78 000000000000000000000000 
84 000000000000000000000000 
90 000000000000000000000000 
9C 000000000000000000000000 
A8 000000000000000000000000 
B4 000000000000000000000000 
co 000000000000000000000000 
cc 000000000000000000000000 
08 000000000000000000000000 
E4 000000000000000000000000 
FO 000000000000000000000000 
FC 00000000 

Example Text File Sector 

FIGURE 4.7- TEXT FILE DATA TYPE 

4-11 



BINARY FILES 

The structure of a BINARY type file is shown in Figure 4.8. 
An exact copy of the memory involved is written to the disk 
sector(s), preceded by the memory address where it was found 
and the length (a total of four bytes) • The address and 
length (in low order, high order format) are those given in 
the A and L keywords from the BSAVE command which created 
the file. Notice that DOS writes one extra byte to the 
file. This does not matter too much since BLOAD and BRUN 
will only read the number of bytes given in the length 
field . (Of course , if you BSAVE a multiple of 256 bytes, a 
sector will be wasted because of this error) DOS could be 
made to BLOAD or BRUN the binary image at a different 
address either by providing the A (address) keyword when the 
command is entered, or by changing the address in the first 
two bytes of the file on the diskette. 

APPLESOFT AND INTEGER FILES 

A BASIC program, be it APPLESOFT or INTEGER, is saved to the 
diskette in a way that is similar to BSAVE. The format of an 
APPLESOFT file type is given in Figure 4.9 and that of 
INTEGER BASIC in 4.10. When the SAVE command is typed, DOS 
determines the location of the BASIC program image in memory 
and its length. Since a BASIC program is always loaded at a 
location known to the BASIC interpreter, it is not necessary 
to store the address in the file as with a BINARY file. The 
length is stored, however, as the first two bytes, and is 
followed by the image from memory . Notice that, again, DOS 
incorrectly writes an additional byte, even though it will 
be ignored by LOAD. The memory image of the program consists 
of program lines in an internal format which is made up of 
what are called "tokens". A treatment of the structure of a 
BASIC program as it appears in memory is outside the scope 
of this manual, but a breakdown of the example INTEGER BASIC 
program is given in Figure 4.10. 

OTHER FILE TYPES (S,R, new A, new B) 

Additional file types have been defined within DOS as can be 
seen in the file descriptive entry format, shown earlier. No 
DOS commands at present use these additional types so their 
eventual meaning is anybody's guess. The R file type, 
however, has been used with the DOS TOOLKIT assembler for 
its output file, a relocatable object module. This file type 
is used with a special form of BINARY file which can contain 
the memory image of a machine language program which may be 
relocated anywhere in the machine based on additional 
information stored with the image itself. The format for 
this type of file is given in the documentation accompanying 
the DOS TOOLKIT . It is recommended that if the reader 
requires more information about R files he should refer to 
that documentation . 

4-12 

0 0 MEMORY IMAGE ... 

Address Length 

A Binary Type ·File 

Start address = 0300 (hex) 

File length = 0030 (hex) 

/ "'""Y momo'Y lmogo 

00 0003 00 F904C84904CFD P.O.L? . L .• L] 
OC AA4CB5B7ADOF9DACOE9060AD *L57- .. , . • '-
18 C2AAACC1AA604C51ABEAEA4C B*, A* '"LQ( JJL 
24 59FABF90384C58FF4C65FF4C YZ?.BLX_Le_L 
30 65FF65~EOOOOOOOOOOOOOO e_e_> ••..... 
3C 000000000000000000000000 .. ••....•... 
48 000000000000000000000000 •••• ••• 0 •••• 

54 000000000000000000000000 0 •• 0 • • • ••• • • 

60 000000000000000000000000 ••• 0 •••• •••• 

6C 000000000000000000000000 • 0 ••••• •• 0 0 0 

78 000000000000000000000000 • • 0 0 •••••••• 

84 000000000000000000000000 •• • ••• •• 0 •• 0 

90 000000000000000000000000 •••• 0 0 •••••• 

9C 000000000000000000000000 ••••••••• 0. 0 

AB 000000000000000000000000 . ••••• •• •• 0 0 . 

B4 000000000000000000000000 ••••• 0. 0 •••• 

co 000000000000000000000000 ••• 0 0 0 0. 0 •• 0 

cc 000006000000000000000000 • 0 ••••• ••••• 

DB 000000000000000000000000 • •• 0 0 . 0 0 0 ••• 

E4 000000000000000000000000 ............ 
FO 000000000000000000000000 0. 0 •••••••• 0 

FC 00000000 

Example Binary File Sector 

FIGURE 4.8- BINARY FILE DATA TYPE 

4-13 



4-14 

B 
Length 

10 PRINT 
20 PRINT 
30 PRINT 
40 PR1NT 
50 END 

PROGRAM MEMORY IMAGE 

An Applesoft Type File 

"[CTRL-D] OPEN TEXT FILE" 
"[CTRL-D] WRITE TEXT FILE" 
"1,2,3,4" 
"[CTRL-D] CLOSE TEXT FILE" 

L
Program Is 5E (hex) bytes long r Applesoft program 

00 BOBOAOOBA22044F5045 A ••••• :".OPE 
OC 4E2054455B542046494C4522 N TEXT FILE" 
1B 00300B1400BA220457524954 .o ... :".WRIT 
24 452054455B542046494C4522 E TEXT FILE" 
30 003FOB1EOOBA22312C322C33 .? . .. :"1 , 2,3 
3C 2C342200570B2BOOBA220443 ,4".W.( . : ".C 
4B 4C4F53452054455B54204649 LOSE TEXT FI 
54 4C4522005DOB3200BOOOOOO::Qj LE".) . 2 ... • • 
60 640000000000000000000000 d ..•.... • ..• 
6C 000000000000000000000000 
7B 000000000000000000000000 
B4 000000000000000000000000 
90 000000000000000000000000 
9C 000000000000000000000000 
AB 000000000000000000000000 
B4 000000000000000000000000 
co 000000000000000000000000 
cc 000000000000000000000000 
DB 000000000000000000000000 
E4 000000000000000000000000 
FO 000000000000000000000000 
FC 00000000 

Example Applesoft File Sector 

FIGURE 4.9 - APPLESOFT BASIC FILE TYPE 

0 
Length 

00 
oc 
1B 
30 
3C 
4B 
54 
60 
6C 
7B 
B4 
90 
9C 
AB 
B4 
co 
cc 
DB 
E4 
FO 
FC 

PROGRAM MEMORY IMAGE 

An Integer Type File 

Program Is 5 bytes long 

Length of line (5 bytes) 

[I Line number (hex OA = 1~ decimal) 

"Tokens" ( 51 - END r 01 = end of line 

050 050A0051~500000000 •••• • Q •••••• 
000000000000000000000000 ••• 0. 0 •••• 0 0 

000000000000000000000000 • • ••••• 0 0 0 •• 

000000000000000000000000 ............ 
000000000000000000000000 • • • • 0 0 0 •• •• • 

000000000000000000000000 ... .... ..... 
000000000000000000000000 ••• ••••• ••• 0 

000000000000000000000000 0 •• 0 0 ••• •• 0 0 

000000000000000000000000 0 • • ••• • 0 0 0 0. 

000000000000000000000000 • 0 0 • •••• •••• 

000000000000000000000000 • 0 0 0 ••••• • • • 

000000000000000000000000 0 0 •••• • • • • • • 

000000000000000000000000 •• ••• • • 0 • ••• 

000000000000000000000000 •• 0 • • •• 0 0 •• • 

000000000000000000000000 •• 0 • •••• • 0 • • 

000000000000000000000000 ••• • • •••• •• 0 

000000000000000000000000 • • • • 0 ••••••• 

000000000000000000000000 •••• • 0. 0 • •• • 

000000000000000000000000 • 0 ••••• 0. 0 •• 

000000000000000000000000 •• •••••• •• 0 0 

00000000 

Example· Integer File Sector 

FIGURE 4.10- INTEGER BASIC FILE TYPE 

4-15 



EMERGENCY REPAIRS 

From time to time the information on a diskette can become 
damaged or lost. This can create various symptoms, ranging 
from mild side effects, such as the disk not booting, to 
major problems, such as an input/output (I/0) error in the 
catalog. A good understanding of the format of a diskette, 
as described previously, and a few program tools can allow 
any reasonably sharp APPLE II user to patch up most errors 
on his diskettes. 

A first question would be, "how do errors occur". The most 
common cause of an error is a worn or physically damaged 
diskette. Usually, a diskette will warn you that it is 
wearing out by producing "soft errors". Soft errors are I/0 
errors which occur only randomly. You may get an I/0 error 
message when you catalog a disk one time and have it catalog 
correctly if you try again. When this happens, the smart 
programmer. immediately copies the files on the aged diskette 
to a brand new one and discards the old one or keeps it as a 
backup. 

EMERGENCY REPAIRS .ARE EASlEP..tF YOU HAVE A BAGk'UP. 

Another cause of damaged diskettes is the practice of 
hitting the RESET key to . abort the execution of a program 
which is accessing the diskette. Damage will usually occur 
when the RESET signal comes just as data is being written 
onto the disk . Powering the machine off just as data is 
being written to the disk is also a sure way to clobber a 
diskette . Of course, real hardware problems in the disk 
drive or controller card and ribbon cable can cause damage 
as well. 

4-16 

• 
If the damaged diskette can be cataloged, recovery is much 
easier. A damaged DOS image in the first three tracks can 
usually be corrected by runr.ing the MASTER CREATE program 
against the diskette or by copying all the files to another 
diskette. If only one file produces an I/0 error when it is 
VERIFYed, it may be possible to copy most of the sectors of 
the file to another diskette by skipping over the bad sector 
with an assembler program which calls RWTS in DOS or with a 
BASIC program (if the file is a TEXT file). Indeed, if the 
problem is a bad checksum (see CHAPTER 3) it may be possible 
to read the bad sector and ignore the error and get most of 
the data. 

An I/0 error usually means that one of two conditions has 
occurred. Either a bad checksum was detected on the data in a 
sector, meaning that one or more bytes is bad; or the 
sectoring is clobbered such that the sector no longer even 
exists on the diskette. If the latter is the case, the 
diskette (or at the very least, the track) must be 
reformatted, resulting in a massive loss of data. Although 
DOS can be patched to format a single track, it is usually 
easier to copy all readable sectors from the damaged 
diskette to another formatted diskette and then reconstruct 
the lost data there. 

Disk u t i l ities , s uch as Quality So f t ware ' s BAG OF TRICKS , 
all ow t he user to read a n d display t he conten ts of sec t o r s . 
BAG OF TR ICKS wi ll also a ll ow you t o modify the sector data 
a nd r ewrite it to the same or anothe r diskette . I f you do 
n o t ha v e BAG OF TRICKS or another commercial disk utility , 
you can use t he ZAP program in AP PENDIX A of t h is book . The 
ZAP prog r am wi ll read a ny track/sec t or on a n un protected 
di s ke tt e i nt o memory , al l owi n g the user to examine i t or 
modif y t he da ta and t hen , op t iona l ly , rewrite it t o a 
disk e t te . Using such a program is very important when 
l ea r ning abou t diskette formats and when fixing clobbered 
da t a. 

Using ZAP, a bad sector within a file can be localized by 
reading each track / sector listed in the T/ S List sector for 
the file. If the bad sector is a catalog sector, the 
pointers of up to seven files may be lost. When this occurs, 
a search of the diskette can be made to find T/ S List 
sectors which do not correspond to any files listed in the 
remaining "good" catalog sectors. As these sectors are 
found, new file descriptive entries can be made in the 
damaged sector which point to these T/ S Lists. When the 
entire catalog is lost, this process can take hours, even 
with a good understanding of the format of DOS diskettes. 
Such an endeavor should only be undertaken if there is no 
other way to recover the data. Of course the best policy is 
to create backup copies of important files periodically to 
simplify recovery. More information on the above procedures 
is given in APPENDIX A. 

4-17 



A less significant form of diskette clobber, but very 
annoying, is the loss of free sectors. Since DOS allocates 
an entire track of sectors at a time while a file is open, 
hitting RESET can cause these sectors to be marked in use in 
the VTOC even though they have not yet been added to any T/S 
List. These lost sectors can never be recovered by normal 
means, even when the file is deleted, since they are not in 
its T/S List. The result is a DISK FULL message before the 
diskette is actually full. To reclaim the lost sectors it 
is necessary to compare every sector listed in every T/S 
List against the VTOC bit map to see if there are any 
discrepancies. There are utility programs which will do 
this automatically but the best way to solve this problem is 
to copy all the files on the diskette to another diskette 
(note that FID must be used, not COPY, . since COPY copies an 
image of the diskette, bad VTOC and all). 

If a file is deleted it can usually be recovered, providing 
that additional sector allocations have not occured since it 
was deleted. If another file was created after the DELETE 
command, DOS might have reused some or all of the sectors of 
the old file. The catalog can be quickly ZAPped to move the 
track number of the T/S List from byte 20 of the file 
descriptive entry to byte 0. The file should then be copied 
to another disk and then the original deleted so that the 
VTOC freespace bit map will be updated. 

4-18 

DOS MEMORY USE 

CHAPTER 5 
THE STRUCTURE OF DOS 

DOS is an assembly language program which is loaded into RAM 
memory when the user boots his disk. If the diskette booted 
is a master diskette, the DOS image is loaded into the last 
possible part of RAM memory, dependent upon the size of the 
actual machine on which it is run. By doing this, DOS fools 
the active BASIC into believing that there is actually less 
RAM memory on the machine than there is. On a 48K APPLE II 
with DOS active, for instance, BASIC believes that there is 
only about 38K of RAM. DOS does this by adjusting HIMEM 
after it is loaded to prevent BASIC from using the memory 
DOS is occupying. If a slave diskette is booted, DOS is 
loaded into whatever RAM it occupied when the slave diskette 
was INITialized. If the slave was created on a 16K APPLE, 
DOS will be loaded in the 6 to 16K range of RAM, even if the 
machine now has 48K. In this case, the APPLE will appear, 
for all intents an purposes, to have only 6K of RAM. If the 
slave was created on a 48K system, it will not boot on less 
than 48K since the RAM DOS occupied does not exist on a 
smaller machine. 

5-1 



A diagram of DOS's memory for a 48K APPLE II is given in 
Figure 5.1. As can be seen, there are four major divisions 
to the memory occupied by DOS. The first 1.75K is used for 
file buffers. With the default of MAXFILES 3, there are 
three file buffers set aside here. Each buffer occupies 595 
bytes and corresponds to one potentially open file. File 
buffers are also used by DOS to LOAD and SAVE files, etc. If 
MAXFILES is changed from 3, the space occupied by the file 
buffers also changes. This affects the placement of HIMEM, 
moving it up or down with fewer or more buffers 
respectively. 

The 3.5K above the file buffers is occupied by the main DOS 
routines . It is here that DOS's executable machine language 
code begins. The main routines are responsible for 
initializing DOS, interfacing to BASIC, interpreting 
commands, and managing the file buffers. All disk functions 
are passed .on via subroutine calls to the file manager. 

The file manager, occupying about 2.8K, is a collection of 
subroutines which perform almost any function needed to 
access a disk file. Functions include: OPEN, CLOSE, READ, 
WRITE, POSITION , DELETE, CATALOG, LOCK, UNLOCK, RENAME, 
!NIT, and VERIFY. Although the file manager is a subroutine 
of DOS it may also be called by a user written assembly 
lanaguage program which is not part of DOS. This interface 
is generalized through a group of vectors in page 3 of RAM 
and is documented in the next chapter. 

The last 2.5K of DOS is the Read/Write Track/Sector (RWTS) 
package. RWTS is the next step lower in protocol from the 
file manager - in fact it is called as a subroutine by the 
file manager. Where the file manager deals with files, RWTS 
deals with tracks and sectors on the diskette. A typical 
call to RWTS would be to read track 17 sector 0 or to write 
256 bytes of data in memory onto track 5 sector E. An 
external interface is also provided for access to RWTS from 
a user written assembly language program and is described in 
the next chapter. 

5-2 

$COOO "TOP" OF RAM 

RWTS 

$8600 ~--------------------------------------------~ 

FILE MANAGER 

$AAC9 

MAIN DOS ROUTINES 

$9DOO 

DOS FILE BUFFERS (MAXF.ILES 3) 

$9600 
HIM EM' 

FIGURE 5.1 - DOS MEMORY USE (48K APPLE) 

5-3 



THE DOS VECTORS IN PAGE 3 

In addition to the 
approximately lOK of RAM 
occupied by DOS in high 
memory, DOS maintains a group 
of what are called "vectors " 
in page 3 of low memory ($300 
through $3FF) . These vectors 
allow access to certain places 
within the DOS collection of 
routines via a fixed location 
($3DO for instance) . Because 

DOS may be loaded in various 
locations, depending upon the 
size of the machine and 
whether a slave or master 
diskette is booted, the 
addresses of the externally 
callable subroutines within 
DOS will change. By putting 
the addresses of these 
routines in a vector at a 
fixed location, dependencies 
on DOS's location in memory 
are eliminated . The page 3 
vector table is also useful in 
locating subroutines within 
DOS which may not be in the 
same memory location for 
different versions of DOS. 
Locations $300 through $3CF 
were used by earlier versions 
of DOS during the boot process 
to load the Boot 1 program but 
are used by DOS 3.3 as a data 
buffer and disk code translate 
table . Presumably, this 
change was made to provide 
more memory for the first 
bootstrap loader (more on this 
later) . The vector table 
itself starts at $3DO. 

5-4 

DOS 
VECTORS 

ADDR 
380 

3D3 

3D6 

3D9 

3DC 

3E3 

3EA 

3EF 

3F2 

3F4 

3FS 

3F8 

3FB 

3FE 

DOS VECTOR TABLE ($3D0-$3FF) 

USAGE 
A JMP (jump or GOTO) instruction to the DOS warmstart 
routine. This routine reenters DOS but does not 
discard the current BASIC program and does not reset 
MAXFILES or other DOS environmental variables . 
A JMP to the DOS coldstart routine. This routine 
reinitializes DOS as if it was rebooted, clearing the 

· current BASIC file and resetting HIMEM . 
A JMP to the DOS file manager subroutine to allow a 
user written assembly language program to call it. 
A JMP to the DOS Read / Write Track / Sector (RWTS) 
routine to allow user written assembly language 
programs to call it. 
A short subroutine Mhich locates the input parameter 
list for the file manager to allow a user written 
program to set up input parameters before calling the 
file manager. 
A short subroutine which locates the input parameter 
list for RWTS to allow a user written program to set 
up input parameters before calling RWTS. 
A JMP to the DOS subroutine which "reconnects" the DOS 
intercepts to the keyboard and screen data streams. 
A JMP to the routine which will handle a BRK machine 
language instruction. This vector is only supported by 
the AUTOSTART ROM. Normally the vector contains the 
address of the monitor ROM subroutine which displays 
the registers. 
LO/HI address of routine which will handle RESET for 
the AUTOSTART ROM. Normally the DOS restart address is 
stored here but the user may change it if he wishes to 
handle RESET himself . 
Power-up byte. Contains a "funny complement" of the 
RESET address with a $AS. This scheme is used to 
determine if the machine was just powered up or if 
RESET was pressed . If a power-up occured, the 
AUTOSTART ROM ignores the address at 3F2 (since it has 
never been initialized) and attempts to boot a 
diskette . To prevent this from happening when you 
change $3F2 to handle your own RESETs , EOR (exclusive 
OR) the new value at $3F3 with a $AS and store the 
result in the power-up byte. 
A JMP to a machine language routine which is to be 
called when the '&' feature is used in APPLESOFT. 
A JMP to a machine language routine which is to be 
called when a control-Y is entered from the monitor . 
A JMP to a machine language routine which is to be 
called when a non-maskable interrupt occurs. 
LO/HI address of a routine which is to be called when 
a maskable interrupt occurs . 

5-5 



WHAT HAPPENS DURING BOOTING 

When an APPLE is powered on its memory is essentially devoid 
of any programs. In order to get DOS running, a diskette is 
"booted". The term "boot" refers to the process of bootstrap 
loading DOS into RAM. Bootstrap loading involves a series 
of steps which load successively bigger pieces of a program 
until all of the program is in memory and is running. In the 
case of DOS, bootstrapping occurs in four stages. The 
location of these stages on the diskette and a memory map 
are given in Figure 5.2 and a description of the bootstrap 
process follows. 

The first boot stage (let's call it Boot 0) is the execution 
of the ROM on the disk controller card. When the user types 
PR#6 or C600G or 6(ctrl)P, for instance, control is 

s 
E 
c 
T 
0 
R 

~ 

I NOT 
USED 

TRACK 2 

1: 
l 

TRACK 1 

~ 
Oo.r 

TRACK 0 

DISKETTE MEMORY 

FIGURE 5.2- BOOTSTRAP PROCESS 

5-6 

~ 

~ 

~ 

~ 

r 

.I 
- I 3 

transfered to the disk 
controller ROM on the card in 
slot 6. This ROM is a machine 
language program of about 256 
bytes in length. When 
executed, it "recalibrates" 
the disk arm by pulling it 
back to track 0 (the 
"clacketty-clack" noise that 
is heard) and then reads 
sector 0 from track 0 into RAM 
memory at location $800 (DOS 
3.3. Earlier versions used 
$300). Once this sector is 
read, the first stage boot 
jumps (GOTO's) $800 which is 
the second stage boot (Boot 
1). 

Boot 1, also about 256 bytes 
long, uses part of the Boot 0 
ROM as a subroutine and, in a 
loop, reads the next nine 
sectors on track 0 (sectors 1 
through 9) into RAM. Taken 
together, these sectors 
contain the next stage of the 
bootstrap process, Boot 2. 
Boot 2 is loaded in one of two 
positions in memory, depending 
upon whether a slave or a 
master diskette is being 
booted. If the diskette is a 
slave diskette, Boot 2 will be 
loaded 9 pages (256 bytes per 
page) below the end of the DOS 
under which the slave was 
INITed. Thus, if the slave was 
created on a 32K DOS, Boot 2 
will be loaded in the RAM from 
$7700 to $8000. If a master 
diskette is being booted, Boot 
2 will be loaded in the same 
place as for a 16K slave 
($3700 to $4000). In the 
process of loading Boot 2, 
Boot 1 is loaded a second time 
in the page in memory right 
below Boot 2 ($3600 for a 
master ~iskette). This is so 
that, should a new diskette be 
INITed, a copy of Boot 1 will 
be available in memory to be 
written to its track 0 sector 
0. When Boot 1 is finished 
loading Boot 2, it jumps there 
to begin execution of the next 
stage of the bootstrap. 

5-7 



Boot 2 consists of two parts: a loader "main program"; and 
the RWTS subroutine package. Up to this point there has been 
no need to move the disk arm since all of the necessary 
sectors have been on track 0. Now , however, more sectors 
must be loaded, requiring arm movement to access additional 
tracks. Since this complicates the disk access, RWTS is 
called by the Boot 2 loader to move the arm and read the 
sectors it needs to load the last part of the bootstrap, DOS 
itself. Boot 2 now locates track 2 sector 4 and reads its 
contents into RAM just below the image of Boot 1 (this would 
be at $3500 for a master diskette). In a loop, Boot 2 reads 
26 more sectors into memory, each one 256 bytes before the 
last. The last sector (track 0 sector A) is read into $1BOO 
for a master diskette. The 27 sectors which were read are 
the image of the DOS main routines and the file manager. 
With the loading of these routines , all of DOS has been 
loaded into memory . At this point, the bootstrap process for 
a slave diskette is complete and a jump is taken to the DOS 
coldstart address . If the diskette is a master, the image 
of DOS is only valid if the machine is a 16K APPLE II. If 
more memory is present, the DOS image must be relocated into 
the highest possible RAM present in the machine. To do 
this, the master version of Boot 2 jumps to a special 
relocation program at $1B03. This relocator is 512 bytes in 
length and was automatically loaded as the two lowest pages 
of the DOS image . (In the case of a slave diskette, these 
pages contain binary zeros.) The relocator determines the 
size of the machine by systematically storing and loading on 
high RAM memory pages until it finds the last valid page. It 
then moves the DOS image from $1000 to its final location 
($9000 for 48K) and, using tables built into the program, it 
modifies the machine language code so that it will execute 
properly at its new home. The relocator then jumps to the 
high memory copy of DOS and the old image is forgotten. 

The DOS boot is completed by the DOS coldstart routine. This 
code initializes DOS, making space for the file buffers, 
setting HIMEM , building the page 3 vector table, and running 
the HELLO program. 

Previous versions of DOS were somewhat more complicated in 
the implementation of the bootstrap. In these versions, Boot 
1 was loaded at $300 and it, in turn, loaded Boot 2 at 
$3600, as does version 3.3. Unlike 3.3 , however, 27 sectors 
of DOS were not always loaded. If the diskette was a slave 
diskette, only 25 sectors were loaded, and, on 13 sector 
diskettes this meant the DOS image ended either with sector 
8 or sect~r A of track 2 depending upon whether the diskette 
was a slave or master. In addition, Boot 1 had a different 
form of nibbilization (see chapter 3) than any other sector 
on the diskette, making its raw appearance in memory at 
$3600 non-executable. 

The various stages of the bootstrap process will be covered 
again in greater detail in Chapter 8, DOS PROGRAM LOGIC. 

5-8 

CHAPTER 6 
USING DOS FROM ASSEMBLY LANGUAGE 

CAVEAT 

This chapter is aimed at the advanced . asse~bly language . 
programmer who wishes to access the d~sk w~thout resort~ng 
to the PRINT statement scheme used with BASIC. Acco:dingly, 
the topics covered here may be beyond the comprehens~on (at 
least for the present) of a programmer who has never used 
assembly language. 

DIRECT USE OF DISK DRIVE 

It is often desirable or necessary to access the Apple's 
disk drives directly from assembly language, without the use 
of DOS . This is done using a section of 16 addresses that 
are latched toggles, interfacing directly to the hardware. 
There are eight two byte toggles that essentially represent 
pulling a TTL line high or low . Applicatio~s which cou~d 
use direct disk access range from a user wr~tten operat~ng 
system to DOS-independent utility programs. The device 
address assignments are given in Figure 6.1 . 

THlS CHAPTER IS FOR A SELECT GROUP OF PROGRAMMERS. 
6-1 



ADDRESS LABEL DESCRIPTION 
-------------------------------------------------------------' 

$COSO PHASE OFF Stepper motor phase 0 off. 
$C081 PHASE ON Stepper motor phase 0 on . 
$C082 PHASElOFF Stepper motor phase 1 off. 
$C083 PHASElON Stepper motor phase 1 on. 
$C084 PHASE20FF Stepper motor phase 2 off. 
$C085 PHASE20N Stepper motor phase 2 on. 
$C086 PHASE30FF Stepper motor phase 3 off. 
$C087 PHASE30N Stepper motor phase 3 on. 
$C088 MOTOROFF Turn motor off. 
$C089 MOTORON Turn motor on. 
$C08A DRVOEN Engage drive 1. 
$C08B DRVlEN Engage drive 2 . 
$C08C Q6L Strobe Data La t ch for I/0. 
$C08D Q6H Load Data Latch. 
$C08E Q7L Prepare latch for input. 
$C08F Q7H Prepare latch for output . 

Q7L with Q6L Read 
Q7L with Q6H Sense Write Protect 
Q7H with Q6L Write 
Q7H with Q6H Load Write Latch 

FIGURE 6.1 - DOS HARDWARE ADDRESSES 

The addresses are slot dependent and the offsets are 
computed by multiplying the slot number by 16. In 
hexadecimal this works out nicely and we can add the value 
$sO (where s is the slot number) to the base address. If we 
wanted to engage disk drive number 1 in slot number 6, for 
example , we would add $60 to $C08A (device address 
assignment for engaging drive 1) for a result of $COEA. 
However, since it is generally desirable to write code that 
is not slot dependent , one would normally use $C08A,X (where 
the X register contains the value $sO) . 

In general , the above addresses need only be accessed with 
any valid 6502 instruc t ion. However , i n the case of reading 
and writing bytes , ca r e must be taken to insure that the 
data will be in an appropriate regis t er . All of the 
following wou l d e ng age drive number 1 . (Assume slot number 
6) 

LOA $COEA 
BI T $C08A , X (where X-reg contai n s $60) 
CMP $C 08A , X (where X- r eg con tai ns $6 0 ) 

Below are typ ica l examp les demonstrati ng the use of the 
device add r ess assignments . Fo r more examples , see APPENDIX 
A. Slot 6 i s assumed and t he X-register con tains $60 . 

6-2 

STEPPER- PHASE OFF/ON: 

Basically , each of the fou ~ pha s e s ~0-3) must be . turned on 
and then off again. Done ~n ascend~ng orde r, th~s mov e s the 
arm inward. In descending order, t h is mov e s the ar~ . 
outward. The timing between ac~e~ses to t~e se loca~~ons ~s 
critical making this a non-tr~v~al exerc~se . It ~s 
recommended that the SEEK command in RWTS be used to move 
the arm. See the sect i on on using RWTS immedi a t e l y 
following. 

MOTOR OFF/ON: 

LOA $C088,X 

LOA $C089,X 

Turn motor off. 

Turn motor on. 

~NOTE: A sufficient delay should be provided to allow the 
=-motor time to come up t o speed. Shugart recommends one 

second, but DOS is a b l e to r e duce this delay by watching t he 
read latch until data s tarts to change. 

ENGAGE DRtVE 1/2: 

LOA $C08A,X 

LOA $C08B,X 

READ A B.YTE: 

READ LOA $C08C,X 
BPL READ 

Engage drive 1. 

Engage drive 2. 

NOTE: $C08E,X must already have been accessed to assure Read 
mode. The loop is necessar y to assure that the accumulator 
will contain valid data. If the data latch does not yet 
contain valid data the high bit will be zero. 

SENSE WRITE PROTECT: 

LOA $C08D,X 
LOA $C08E,X 
BMI ERROR 

Sense write· protect. 
If high bit set, protected. 

WRITE LOAD·AND WRITE A BYTE: . 

LOA DATA 
STA $C08D,X 
ORA $C08C,X 

Write load. 
Write byte. 

NOTE: $C08F,X must already have been accessed to insure 
Write mode and a 100 microsecond delay should be invoked 
before writing. 

6-3 



Due to hardware constraints, data bytes must be written in 
32 cycle loops. Below is an example for an immediate load 
of the accumulator, followed by a write. Timing is so 
critical that different routines may be nece ssary , depending 
on how the data is to be accessed, and code can not cross 
memory page boundaries without an adjustment. 

Read/Write Track/Sector (RWTS) exists in every version of 
DOS as a collection of subroutines , occupying roughly the 
top third of the DOS program . The interface to RWTS is 
standardized and thoroughly documented by Apple and may be 
called by a program running outside of DOS . 

There are two subroutines which must be called or whose 
function must be performed . 

JSR $3E3 - When this subroutine is called, the Y and A 
registers are loaded with the address of the Input/Output 
control Block (IOB) used by DOS when accessing RWTS. The 
low order part of the address is in Y and the high order 
part in A. This subroutine should be called to locate the 
IOB and the results may be stored in two zero page locations 
to allow storing values in the IOB and retrieving output 
values after a call to RWTS. Of course, you may set up your 
own IOB as long as the Y and A registers point to your IOB 
upon calling RWTS. 

JSR $3D9 - This is the main entry to the RWTS routine. 
Prior to making this call, the Y and A registers must be 
loaded with the address of an IOB describing the operation 
to be performed. This may be done by first calling $3E3 as 
described above. The IOB must contain appropriate 
information as defined in the list on the facing page 
(offsets are given in hexadecimal) : 

6-4 

. I 

,_ 

DE 
OF 
10 

BYTE 
00 
01 
02- 03 

INPUT/OUTPUT CONTROL BLOCK- GENERAL FORMAT 

DESCRIPTION 
Table type, must be $01 
Slot number times 16 (sO : s=slot . Example: $60) 
Drive number ($01 or $02) 
Volume number expected ($00 matches any volume) 
Track number ($00 through $22) 
Sector number ($00 through $OF) 
Address (LO/HI) of the Device Characteristics Table 
Address (LO/ HI) of the 256 byte buffer for 
READ/WRITE 
Not used 
Byte count for 
Command code 

Return code -

partial sector ($00 for 256 bytes) 
$00 SEEK 
$01 READ 
$02 WRITE 
$04 FORMAT 

The processor CARRY flag is set upon 
return from RWTS if there is a 
non-zero return code: 

$00 No errors 
$08 Error during initialization 
$10 Write protect error 
$20 Volume mismatch error 
$40 Drive error 
$80 Read error (obsolete) 

Volume number of last access (must be initialized) 
Sl~t number of last access*l6 (must be initialized) 
Dr1ve number of last access (must be initialized) 

DEVICE CHARACTERISTICS TABLE 

DESCRIPTION 
Device type (should be $00 for DISK II) 
Phases per track (should be $01 for DISK II) 
Motor on time count (should be $EFD8 for DISK II) 

NOTE : RWTS uses ~era-page location $48, which is also used 
by the APPLE mon1tor to hold the P-register value . Location 
$48 should be set to zero after each call to RWTS . 

6-5 



RWTS lOB BY CALL TYPE 

SEEK Move disk arm to desired track 

Input: Byte 00 
01 
02 
04 
06/07 
oc 
OF 
10 

Output: Byte OD 
OF 
10 

- Table type ($01) 
- Slot number * 16 (sO: s=slot) 
- Drive number ($01 or $02) 
- Track number ($00 through $22) 
- Pointer to the OCT 
- Command code for SEEK ($00) 
- Slot number of last access * 16 
- Drive number of last access 

- Return code (See previous definition) 
- Current Slot number * 16 
- Current Drive number 

READ Read a sector into a specified buffer 

Input: Byte 00 
01 
02 
03 
04 
05 
06/07 
08/09 
OB 
oc 
OE 
OF 
10 

Output: Byte OD 
DE 
OF 
10 

- Table type ($01) 
Slot number * 16 (sO: s=slot) 

- Drive number ($01 or $02) 
- Volume number ($00 matches any volume) 
- Track number ($00 through $22) 
- Sector number ($00 through $OF) 
- Pointer to the OCT 
- Pointer to 256 byte user data buffer 
- Byte count per sector ($00) 
- Command code for READ ($01) 
- Volume number of last access 
- Slot number of last access * 16 
- Drive number of last access 

- Return code (See previous definition) 
- Current Volume number 
- Current Slot number * 16 
- Current Drive number 

WRITE Write a sector from a specified buffer 

Input: Byte 00 
01 
02 
03 
04 
05 
06/07 
08/09 
OB 
oc 
OE 
OF 
10 

Output: Byte OD 
DE 
OF 
10 

6-6 

- Table type ($01) 
- Slot number * 16 (sO: s=slot) 
- Drive number ($01 or $02) 
- Volume number ($00 matches any volume) 
- Track number ($00 through $22) 
- Sector number ($00 through $OF) 
- Pointer to the OCT 
- Pointer to 256 byte user data buffer 
- Byte count per sector ($00) 
- Command code for WRITE ($02) 
- Volume number of last access 

Slot number of last access * 16 
Drive number of last access 

- Return code (See previous definition) 
- Current Volume number 
- Current Slot number * 16 
- Current Drive number 

FORMAT 

Input: 

Initialize the diskette (does not put DOS on disk, 
create a VTOC/CATALOG, or store HELLO program) 

Byte 00 - Table type ($01) 
01 - Slot number * 16 (sO: s=slot) 
02 
03 
06/07 
oc 

Drive number ($01 or $02) 
Volume number ($00 will default 
Pointer to the OCT 

to 254) 

OE 
OF 
10 

Output: Byte OD 
OE 
OF 
10 

Command code for FORMAT ($04) 
Volume number of last access 
Slot number of last access * 16 
Drive number of last access 

- Return code (See previous definition) 
Current Volume number 

- Current Slot number * 16 
Current Drive number 

CALLING THE DOS FILE MANAGER 

The DOS file manager exists in every version of DOS as a 
collection of subroutines occupying approximately the 
central third of the DOS program. The interface to these 
routines is generalized in such a way that they may be 
called by a program running outside of DOS. The definition 
of this interface has never been published by APPLE (or 
anyone else, for that manner) but since the calls can be 
made through fixed vectors, and, the format of the parameter 
lists passed have not changed in all the versions of DOS, 
these routines may be relied upon as "safe". Indeed, the new 
FID utility program uses these routines to process files on 
the diskette. 

There are two subroutines which must be called in order to 
access the file manager. 

JSR $3DC - When this subroutine is called, the Y and A 
registers are loaded with the address of the file manager 
parameter list. The low order part of the address is in Y 
and the high order part in A. This subroutine must be called 
at least once to locate this parameter list and the results 
may be stored in two zero page locations to allow the 
programmer to set input values in the parameter list and to 
locate output values there after file manager calls. 

JSR $306 -This is the main entry to the file manager. Prior 
to making this call the parameter list, located using the 
call described above, must be completed appropriately, 
depending upon the type of call, and the X register must be 
set to either zero or non-zero as follows: 

X 0 - If file is not found, allocate it 
X # 0 - If file is not found, do not allocate one 

Normally, X should be zero on an OPEN call for a new file 
and non-zero for all other call types. 

6-7 



Three buffers must be provided to the file manager by the 
programmer, allocated by him in his memory. These buffers, 
together, occupy 557 bytes of RAM, and must be passed to the 
file manager each time their associated file is used. A 
separate set of these buffers must be maintained for each 
open file. DOS maintains buffers for this purpose, as 
described in earlier chapters, in high RAM. These buffers 
may be "borrowed" from DOS if care is taken to let DOS know 
about it. A method for doing this will be outlined later. 

A chart giving the required inputs for each call type to the 
file manager is given in Figure 6.2. The general format of 
the file manager parameter list is as follows: 

BYTE 
00 

01 

02.-09 

OA 

OB 
OC-OD 

OE-OF 

10-11 

6-8 

FILE MANAGER PARAMETER LIST- GENERAL FORMAT 

DESCRIPTION 
Call type: Ol=OPEN 05=DELETE 09=RENAME 

OA=POSITION 
OB=INIT 
OC=VERIFY 

02=CLOSE 06=CATALOG 
03=READ 07=LOCK 
04=WRITE 08=UNLOCK 

Sub-call type for READ or WRITE: 
OO=No operation (ignore call entirely) 
Ol=READ or WRITE one byte 
02=READ or WRITE· a range of bytes 
03=POSITION then READ or WRITE one byte 
04=POSITION then READ/WRITE a range 

Parameters specific to the call type used. See 
FILE MANAGER PARAMETER LIST BY · CALL TYPE below. 
Return code (noter not all return codes can occur 

Not used 

for any call type). The processor CARRY 
flag is set upon return from the file 
manager if there is a non-zero return code: 
OO=No errors 
Ol=Not used ("LANGUAGE NOT AVAILABLE") 
02=Bad call type 
03=Bad sub-call type (greater than four) 
04=WRITE PROTECTED 
05=ElND OF DATA 
06=FILE NOT FOUND (wa.s allocated if X=O) 
07=VOLUME MISMATCH 
08=DISK I / 0 ERROR 
09=DISK FULL 
OA=FILE LOCKED 

Address of a 45 byte buffer which will be used by the 
file manager to save its status between calls. This 
area is called the file manager workarea and need not 
be initialized by the caller but the space must be 
provided and this two byte address field initialized. 
(addresses are in low/high order format) 
Address of a 256 byte buffer which will be used by the 
file manager to maintain the curr ~ nt Track/Sector List 
sector for the open file. Buffer itself need not be 
initialized by the caller. 
Address of a 256 byte buffer which will be used by the 
file manager to maintain the data sector buffer. 
Buffer need not be initialized by the caller. 

.. 01 

O .. N 01 

CLOSE 02 
• .. u READ • c 
0 

WRtn .. D 
E 

DELETE .. 
CATAlOG .. 
LOCK 07 

UNLOCK .. 
REfrtAME .. 
POSITION OA 

DOS 
I NIT .. PAGE 

NO. 

VERIFY DC 

I 

021 .. .. .. .. 07 ooloo OA .. DC l OD ool• .. l, 
AECOAD FILE 

FILE 
NAME LENGTH y D I TVP£ ADDRESS OR- r--

r-- ADOR. Of DATA 

Til UIT UCTOR 
OUFnR 

RECORD OYTI! RANGE ~AN~O .., ..... ADDRESI 
NUHER OFFSET LENGTH ADDR. r--

FILE 
;:: r--

y D • NANE ~ ADDR. OF 
ADDRESS ,!; FILO 

2. t-- MAHAOEII 

D • !l WORK 
0 AREA u t--
z BUFFER 

y D • c 

" FILE s t-- TIS 

D 
NAME LIST y • ADDRESS ADDRI!SS 

t--
NEW NAME y D • ADDRESS 

r--
RECORD OYTO 
NUMBER OFFSET 

r--
y D • 

r--FILE TIS liST DATAIIUFF. y D s NAME ADDRESS ADDftEIS ADDRESS 

FIGURE 6.2- FILE MANAGER PARAMETER LIST 
REQUIRED INPUT 

CAlliNG THE FILE MANAGER 

6-9 



FILE MANAGER PARAMETER LIST BY CALL TYPE 

OPEN 

Input : 

Locates or creates a file. A call to POSITION should 
follow every OPEN. 

Byte 00 
02/03 
04 
05 
06 
07 

08/09 

OC/OD 
OE/OF 
10/11 

- 01 
- Fixed record length or 0000 if variable 
- Volume number or 00 for any volume 
- Drive number to be used (01 or 02) 
- Slot number to be used (01-07) 
- File type (used only for new files) 

$00 TEXT 
$01 INTEGER BASIC 
$02 APPLESOFT BASIC 
$04 BINARY 
$08 RELOCATABLE 
$10 S TYPE FILE 
$20 A TYPE FILE 
$40 B TYPE FILE 

- Address of file name (30 characters) 
(Low/high format) 

- Address of file manager workarea buffer 
- Address of T/S List sector buffer 
- Address of data sector buffer 

Output: Byte 07 
OA 

- File type of file which was OPENed 
- Return code (see previous definitions) 

CLOSE 

Input: 

Output: 

READ 
WRITE 

Input: 

6-10 

Write out final sectors , update the Catalog . 
A ·cLOSE call is required eventually for every OPEN. 

Byte 00 - 02 
OC/OD - Address of file manager workarea buffer 
OE/OF - Address of T/S List sector buffer 
10/11 - Address of data sector buffer 

Byte OA - Return code 

Read one or a range of bytes from the file to memory. 
Write one or a range of bytes from memory to the file. 

Byte 00 - 03 (READ) 04 (WRITE) 
01 - Subcode: 

00 No operation 
01 READ or WRITE one byte only 
02 READ or WRITE a range of bytes 
03 POSITION then READ/WRITE one byte 
04 POSITION then READ/WRITE range 

02/03 - (Subcodes 03 or 04) Record number 
04/05 - (Subcodes 03 or 04) Byte offset 
06/07 - (Subcodes 02 or 04) Number of bytes in 

range to be read or written. (Note: for 
WRITE, this length must be one less 
than the actual length to be written) 

U8/09- (Subcodes 02 ·or 04) Address of range of 
bytes to be written or address of 

08 

OC/OD 
OE/OF 
10/11 

buffer to which bytes are to be read. 
- (WRITE, Subcodes 01 or 03) Single byte 

to be writ ten. 
- Address of file manager workarea buffer 

Address of T/S List sector buffer 
Address of data sector buffer 

Output: Byte 02/03 
04/05 
08 

Record number of current file position 
Byte offset of current file position* 
(READ, Subcodes 01 or 03) Byte read 
Return code OA 

*The current file position is updated to point to the byte 
following the data read or written. 

DELETE Locate and delete a file, freeing its sectors. 

Input: Byte 00 - 05 
(remainder are the same as with OPEN call type) 

Output: Byte OA - Return code 

CATALOG Produce a catalog listing on the output device. 

Input: Byte 00 
05 
06 
OC/OD 

- 06 
- Drive 
- Slot 
- Address of file manager workarea buffer 

Output: Byte OA - Return code 

LOCK 

Input: 

Output: 

UNLOCK 

Input: 

Output: 

RENAME 

Input: 

Lock a file. 

Byte 00 - 07 
(remainder are the same as with OPEN call type) 

Byte OA - Return code 

Unlock a file. 

Byte 00 - 08 
(remainder are the same as with OPEN call type) 

Byte OA - Return code 

Rename a file. 

Byte 00 - 09 
02/03 - Address of new file name (30 bytes) 
(remainder are the same as with OPEN call type) 

Output: Byte OA - Return code 

6-11 



POSITION Calculate the location of a record and/or byte 
offset in the file. Position such that next READ or 
WRITE will be at that location in the file. A call 
to POSITION (either explicitly or implictly using 
subcodes of READ or WRITE) is required prior to the 
first READ or WRITE. Bytes 02 through 05 should be 
set to zeros for a normal position to the beginning 
of the file. 

Input: Byte 00 - OA 
02/03 - Relative record number for files with a 

fixed length record size or zero. First 
record of file is record 0000. 

04/05 - Relative byte offset into record or of 
entire file if record number is zero. 

OC/OD -Address of file manager workarea buffer. 

Output: Byte OA - Return code 

!NIT 

Input: 

Initialize a slave diskette. This function formats a 
diskette and writes a copy of DOS onto tracks 0-2. 
A VTOC and Catalog are also created. A HELLO program 
is not stored, however. 

Byte 00 
01 

04 
05 
06 
OC/OD 

- OB 
- First page of DOS image to be copied to 

the diskette. Normally $9D for a 48K 
machine. 

- Volume number of new diskette. 
- Drive number (01 or 02) 
- Slot number (01-07) 
-Address of file manager workarea buffer. 

Output: Byte OA - Return code 

VERIFY Verify that there are no bad sectors in a file by 
reading every sector. 

Input: Byte 00 - oc 
(remainder are the same as the OPEN call type) 

Output: Byte OA - Return code 

6-12 

DOS BUFF.ERS 

usually it is desirable to use one of DOS's buffers when 
calling the file manager to save memory. DOS buffers consist 
of each of the three buffers used by the file manager (file 
manager workarea, T/S List sector, and data sector) as well 
as a 30 byte file name buffer and some link pointers. All 
together a DOS buffer occupies 595 bytes of memory. The 
address of the first DOS buffer is stored in the first two 
bytes of DOS ($9DOO on a 48K APPLE II). The address of the 
next buffer is stored in the first and so on in a chain of 
linked elements. The link address to the next buffer in the 
last buffer is zeros . If the buffer is not being used by 
DOS, the first byte of the file name field is a hex 00. 
Otherwise, it contains the first character of the name of 
the open file. The assembly language programmer should 
follow these conventions to avoid having DOS reuse the 

.buffer while he is using it. This means that the name of the 
file should be stored in the buffer to reserve it for 
exclusive use (or at least a non-zero byte stored on the 
first character) and later, when the user is through with 
the buffer, aDD should be stored on the file name to return 
it to DOS's use. If the later is not done, DOS will 
eventually run out of available buffers and will refuse even 
to do a CATALOG command . A diagram of the DOS buffers for 
MAXFILES 3 is given in Figure 6.3 and the format of a DOS 
buffer is given below . 

DOS BUFFER FORMAT 

BYTE DESCRIPTION 
000/0FF Data sector buffer (256 bytes in length) 
100/lFF T/S List sector buffer (256 bytes in length) 
200/22C File manager workarea buffer (45 bytes in length) 
22D/24A File name buffer (30 bytes in length) 

First byte indicates whether this DOS buffer is 
being used. If hex 00, buffer is free for use. 

24B/24C Address (Lo/Hiqh) of file manager workarea buffer 
24D/24E Address of T/S List sector buffer 
24F/250 Address of data sector buffer 
251/252 Address of the file name field of the next buffer on 

the chain of buffers. If this is the last buffer on 
the chain then this field ~ontains zeros . 

6-13 



BUFFER 
#3 

6-14 

DOS 

BUFFER 
#1 

BUFFER 
#2 

CHAIN POINTERS 

FILE NAME BUFFER 

FILE MANAGER WORKAREA BUFFER 

TIS LIST SECTOR BUFFER 

DATA SECTOR BUFFER 

0 

c_--.lt------------------4- HIMEM 

FIGURE 6.3- DOS FILE BUFFERS 

THE FILE MANAGER WORKAREA 

The file manager workarea contains the variables which, 
taken together, constitute all of the information the file 
manager needs to deal with an open f .ile. Each time the file 
manager finishes processing a call, it copies all of its 
important variables into the file manager workarea buffer 
provided by the caller. Each subsequent time the file 
manager is called, the first thing it does is to copy the 
contents of the file manager workarea buffer back into its 
variables so that it may resume processing for the file 
where it left off on the previous call. Ordinarily, the 
programmer will have no need to worry about the contents of 
this workarea, since most of the useful information is 
present in the parameter list anyway. Occasionally, it is 
handy to know more about the open file. For these cases, the 
format of the file manager workarea is given below: 

BYTE 
00/01 
02/03 
04 

05/06 
07 
08 
09/0A 
OB/OC 
OD/OE 
OF/10 
11/12 
13/14 
15 
16 
17/18 
19/lA 
lB/lC 
lD/lE 
lF 
20 
21/24 
25 
26 
27 
28 
29 
2A/2C 

FILE MANAGER WORKAREA FORMAT 

DESCRIPTION 
Track/Sector of first T/S List for file 
Track/Sector of current T/S List for file 
Flags: 

80=T/S List buffer changed and needs writing 
40=Data buffer has been changed and needs writing 
02=Volume freespace map changed and nee ds writing 

Track/Sector of current data sector 
Sector offset into catalog to entry for this file 
Byte offset into catalog sector to entry for file 
Maximum data sectors represented by one T/ S List 
Offset of first sector in current T/ S List 
Offset of last sector in current T/ S List 
Relative sector number last read 
Sector size in bytes ( 256) 
Current position in sectors (relative) 
Current byte offset in this sector 
Not used 
Fixed record length 
Current record number 
Byte offset into current record 
Length of file in sectors 
Next sector to allocate on this track 
Current track being allocated 
Bit map of available sectors on this track (rotated) 
File type (80=locked) 0,1,2,4=T,I,A,B 
Slot number times 16 (example: $60=slot 6) 
Drive number (01 or 02) 
Volume number (complemented) 
Track 
Not used 

6-15 



COMMON ALGORITHMS 

Given below are several pieces of code which are used when 
working with DOS: 

LOCATE A FREE DOS BUFFER 

The following subroutine may be used to locate an 
unallocated DOS buffer for use with the DOS file manager. 

FBUFF LDA $3D2 LOCATE DOS LOAD POINT 
STA $1 
LDY 110 
STY $0 

* 
GBUFO LDA ($0) ,Y LOCATE NEXT DOS BUFFER 

PHA 
INY 
LDA ($0), y 
STA $1 
PLA 
STA $0 
BNE GBUF GOT ONE 
LDA $1 
BEQ NBUF NO BUFFERS FREE 

* 
GBUF LDY 110 GET FILENAME 

LDA ($0) ,Y 
BEQ GOTBUF ITS FREE 
LDY 1136 ITS NOT FREE 
BNE GBUFO GO GET NEXT BUFFER 

* 
GOTBUF CLC INDICATE-GOT A FREE BUFFER 

RTS RETURN TO CALLER 
NBUF SEC INDICATE-NO FREE BUFFERS 

RTS RETURN TO CALLER 

WHICH VERSION OF DOS IS ACTIVE? 

In case the program has version dependent code, a check of 
the DOS version may be required: 

6-16 

CLC 
LDA 
ADC 
STA 
LDA 
ADC 
STA 
LDY 
LDA 

110 
#.$BE 
$0 
$3D2 
11$16 
$1 
#0 
($0), y 

ADD $16BE TO DOS LOAD POINT 

GET DOS VERSION NUMBER (2 OR 3) 

IS DOS IN THE MACHINE? 

The foLlowing series of instructions should be used prior to 
attempting to call RWTS or the file manager to insure that 
DOS is preserrt on this machine. 

LDA 
CMP 
BNE 

$3DO 
#$4C 
NO DOS 

GET VECTOR JMP 
IS IT A JUMP? 
NO, DOS NOT LOADED 

WHICH BASIC IS SELECTED? 

Some programs depend upon either the INTEGER BASIC ROM or 
the APPLESOFT ROM. To find out which is active and select 
the one desired, the following subroutine can be called. 
First the A register is loaded with a code to indicate which 
BASIC is desired. $20 is used for INTEGER BASIC and $4C is 
used for APPLESOFT. To set up for APPLESOFT, for example: 

LDA #$4C CODE FOR APPLESOFT 
JSR SETBSC. CALL SUBROUTINE 
BNE ERROR LANGUAGE NOT AVAILABLE 

SETBSC CMP $EOOO CORRECT BASIC ALREADY THERE? 
BEQ RTS YES 
STA $COSO NO, SELECT ROM CARD 
CMP $EOOO NOW DO WE HAVE IT? 
BEQ RTS YES 
STA $C081 NO, TRY ROM CARD OUT 
CMP $EOOO GOT IT NOW? 

RTS RTS IN ANY CASE, EXIT TO CALLER 

SEE IF A BASIC PROGRAM IS IN EXECUTION 

To determine if there is a BASIC program running or if BASIC 
is in immediate command mode, use the following statements: 

•. IF 

•• IF 

INTEGER 
LDA 
BMI 
BPL 

BASIC IS 
$D9 
EXEC 
NO EXEC 

ACTIVE .•. 

PROGRAM EXECUTING 
PROGRAM NOT EXECUTING 

APPLES OFT 
LDX 

BASIC IS ACTIVE ••. 
$76 GET LINE NUMBER 

INX 
BEQ 
LDX 
CPX 
BEQ 
BNE 

NO EXEC 
$33 
#$DD 
NOEXEC 
EXEC 

PROGRAM NOT EXECUTING 
GET PROMPT CHARACTER 
PROMPT IS A"]"? 
YES, NOT EXECUTING 
ELSE, PROGRAM IS EXECUTING 

6-17 



CHAPTER 7 
CUSTOMIZING DOS 

Although DOS usually provides most of the functionality 
needed by the BASIC or assembly language programmer, at 
times a custom change is required. Making changes to your 
copy of DOS should only be undertaken when absolutely 
necessary, since new versions of DOS are released from time 
to time, and the job of moving several patches to a new 
version of DOS every few months can become a burden. In 
addition , wholesale modification of DOS without a clear 
understanding of the full implications of each change can 
result in an unreliable system. 

SLAVE VS MASTER PATCHING 

The usual procedure for making changes to DOS involves 
"patching" the object or machine language code in DOS. Once 
a desired change· is identified, a few instructions are 
stored over other instructions within DOS to modify the 
program. There are three levels at which changes to DOS may 
be applied. 

1 - A patch can be made to the DOS in memory. If this is 
done, a later reboot will cause the change to "fall out" or 
be removed. 

2 - A patch of the first type can be made permanent by 
initializing a diskette while running the patched DOS. This 
procedure creates a slave diskette with a copy of DOS on 
tracks 0, 1, and 2 which contains the patch. Each time this 
newly created diskette is booted the patched version of DOS 
will be loaded. Also, any slave diskettes created by that 
diskette wilL also contain the patched version of DOS. 

3 - The patch is applied directly to a master diskette. This 
is somewhat more complicated . Either the patch may be made 
to the image of DOS on the first three tracks of a master 
diskette using a zap program, or MASTER CREATE may be used 
to write the changed copy of DOS to a new diskette. The 
following procedure may be followed to do this: 

BLOAD MASTER CREATE 
Get into the monitor (CALL -151) 
Store a $4C at location $80D (80D:4C) 
Execute MASTER CREATE (800G) 

7-1 



This 
DOS. 

When MASTER CREATE finishes loading the DOS image 
it will exit. You may use the monitor to make 
changes in the image. MASTER CREATE loads DOS 
into memory at $1200 such that Boot 2 (RWTS) is 
loaded first, followed by the main part of DOS 
starting at $1COO. 

When all patches have been made, reenter MASTER CREATE 
at location $82D (82DG) . 

Complete the MASTER CREATE update normally. The 
resulting diskette will have the patches applied. 

procedure will work for versions 3.2, 3.2.1, and 3.3 

CUSTOMIZING 

DOS 

AVOIDING RELOAD OF LANGUAGE CARD 

of 

A rather annoying addition to DOS 3.3 was a patch to the 
Boot 2 code to store a binary zero in the first byte of the 
language card, forcing DOS to reload BASIC (either INTEGER 
or APPLESOFT) for every boot, whether or not the machine was 
just powered up. When the machine is first powered up this 
patch is not necessary, because the first byte of the 
language card does not appear to DOS to be either BASIC, and 
the card will always be loaded. On subsequent reb0ots, more 
often than not a good copy of BASIC already resides in the 
language card and this patch results in a LANGUAGE NOT 
AVAILABLE error message after booting a slave diskette. 
Presumably the patch was added to version 3.3 to allow for 
the possibility that a future language might have a first 
byte of code that matched one of the BASICs, thus confusing 
DOS and causing unknown results. If the user always powers 
the machine off and on when switching from DOS to some other 
operating system (i.e., PASCAL or CP/M), the patch may be 
removed as follows. 

At $BFD3 (48K) is a STA instruction which stores a zero on 
the language card. This instruction must be changed to 
three no-operation instructions: 

BFD3: EA EA EA 
7-2 

A slave diskette may then be INITed using this modified 
version of DOS and that diskette will not reload BASIC when 
booted. A master diskette may be patched in this manner and 
will create the desired result on an original Apple or an 
Apple lie. In the case of an Apple II Plus, however, the 
HELLO file on a master diskette will always reload the 
language card anyway. 

INSERTING A PROGRAM BETWEEN DOS AND ITS BUFFERS 

Once in a while it is useful to find a "safe" place to load 
a machine language program (a printer driver, perhaps) where 
BASIC and DOS can never walk over it, even if DOS is 
colds~arted. If th7 program is less than 200 bytes long, 
$300 ~s a good cho~ce. For larger programs, it is usually 
better to "tuck" the program in between DOS and its buffers 
(assuming the program is relocatable and will run at that 
~ocatio~). To do_ this, load the program into low RAM, copy 
~t to h~gh RAM r~ght below $9DOO (for a 48K machine) over 
the top of DOS's buffers, change the first buffer address at 
$9DOO to point below your program, (remember to allow 38 
extra bytes for the filename and link fields) and JMP to 
$3D3 (DOS COLDSTART). This will cause DOS to rebuild its 
buffers below your program and "forget" about the memory 
your program occupies until the next time DOS is booted. Of 
course, BASIC can not get at that memory either since its 
HIMEM is below the DOS buffers. ' 

BRUN OR EXEC THE HELLO FILE 

Ordinarily, when DOS finishes booting into memory, it 
performs a RUN command on the HELLO file in its file name 
buffer (left there by the !NIT command which wrote DOS to 
the diskette). To change the RUN command to a BRUN or an 
EXEC, apply the following patch to DOS (48K): 

9E42: 34 (for BRUN) .. or. . 9E24: 14 (for EXEC) 

REMOVING THE PAUSE DURING A LONG CATALOG 

Normally, when a CATALOG command is done on a disk with many 
files, DOS will pause every time the screen fills with names 
to allow the user time to see them all. By pressing any key 
the CATALOG continues. If this pause is undesirable, apply 
the following patch to DOS· (48K): 

AE34:60 

CHANGING THE HELLO FILE NAME 

You can change the name of the HELLO file by changing the 
contents of DOS's primary file name buffer. For example, to 
change the primary file name from HELLO to HI THERE, the 
oatch is (48K): 

AA75:C8 C9 AO D4 C8 C5 D2 C5 

7-3 



PUT CURSOR ON COMMAND THAT CAUSED DOS ERROR 

When you get a DOS e rror message such as " FILE NOT FOUND" 
"FI L~ TYPE MIS~ATCH'.' becau s~ you t yped t he wrong f il e name or 
o r misspel l ed It s lightly , It would be n i ce if DOS would 
return t he c ursor to the line wi th your fau l ty command so 
you could mor e easi l y r etype i t . To make DOS do this fr om 
now on , apply the fo llowing pat ches (48K ). 

A6FF : 4C DF BC (was 6C SE 90 ) 
and 

BCDF: C6 2S C6 2S C6 2S C6 2S 20 

This patch caus e s a jump to some new 
un used area of RWTS . 

ALLOW THE VALUE OF THE L KEYWORD 
OF A BSAVE TO EXCEED 32K 

22 FC 6C SE 90 

l og i c at $BCDF , an 

This patch allows you to save mor e t han 32K with the BSAVE 
command . It simply involves changing one byte f r om 7F to 
FF . Apply the fo l lowing patch (48K) : 

A964 : FF 

UPDATING PRE-1983 DOS 3.3 

Minor rev~s~ons to DOS 3 . 3 we r e made in early January, 1983 . 
These revisi?ns a r e ~xplained on pages 2- 4 and 8 - 41 . If you 
have an ea r lier ve r sion of DOS 3 . 3 and wish to update it to 
the latest version , poke in these changes and then save DOS 
using method 2 or 3 on page 7- 1 . The following changes are 
for a 48K system . 

A6BB : 20 69 BA 

B33E : l8 AD BF BS 80 EC BS 60 E6 BS 80 E6 BS AD co BS 
: 80 ED BS 60 E4 BS 80 E4 BS 90 03 EE ES BS 60 00 00 

B684 : 84 BA 

B6AA : BB 

BA69:AE SF AA EO lC FO OS A2 00 8E so B6 60 A9 FF 80 
: FB 04 80 oc co 80 OE co 4C 2F FB AD BD BS 80 E6 
: BS 80 EA BS BA 8E 9B B3 4C 7F 00 00 

BFD6 : 20 76 BA 4C 44 B7 

7-4 

CHAPTER 8 
DOS PROGRAM LOGIC 

This chapter will take a detailed look at the operation of 
the DOS program itself to aid the APPLE user in 
understanding it and to help him to make intelligent use of 
i t s facilities . Each subroutine and group of variables or 
constants will be covered separately by storage address. The 
enterprising programmer may wish to create a disassembly of 
DOS on his printer and transfer the annotations given here 
directly to such a listing . Addresses used will be for DOS 
3 . 3 and for a 48K master diskette version of DOS . Slot 6 is 
assumed. Unless specifically indicated by a$ character, 
lengths are given in decimal, addresses in hexadecimal (base 
16). 

DISK II CONTROLLER CARD ROM - BOOT 0 

ADDRESS 

C600 - C6SB This routine is the first code executed when a disk 
is to be booted . It receives control via PR#6 or 
C600G or 6 control-P. 

C6SC- C6FA 

Dynamically build a translate table for converting 
disk codes to six bit hex at location $3S6-$3FF . 
Call an RTS instruction in the monitor ROM and 
extract the return address from the stack to find out 
the address of this controller card ROM. 
Use this address to determine the slot number of this 
drive by shifting $Csxx . 
Save the slot number times 16 ($sO) 
Clear disk I/0 latches, set read mode, select drive 
1 , turn disk drive o n . 
Pull disk arm back over 80 tracks to recalibrate the 
arm to track zero . 
Set up parms to read sector zero on track zero to 
location $800. 
Execution falls through into a general sector read 
subroutine at C6SC . 

This subroutine reads the sector number stored at 
$3D on the track indicated by $41 to the address 
stored at $26 , $27 . 
Look for DS/AA/96 sector address header on the disk . 
If DS/AA/AD is found and sector data was wanted,· go 
to C6A6 . 

8-1 



8-2 

A DETAlLED LOOK AT DOS 

C683 Handle a sector address block. 
Read three double bytes from the disk and combine 
them to obtain the volume, track, and sector number 
of the sector being read from the disk at this time. 
Store the track at ~40. 
Compare the sector found to the sector wanted and the 
track found to the track wanted. 
If no match, go back to C65C. 
Otherwise, if sector is correct, go to C65D to find 
the sector data itself. 

C6A6 Handle sector data block. 
Read the 85 by tes of secondary data to $300-$355. 
Read 256 bytes of primary data to the address stored 
at $26,$27. 
Verify that the data checksum is valid. 
If not, start over at C65C. 
"Nibbilize" the primary and secondar y data together 
into the primary data buffer ($26,$27). 
Increment $27 (address page of read data) and $3D 
(sector number to be read) and check against $800 
to see if additional sectors need to be read. 
If so, reload slot*l6 and go back to C65C to read 
next sector. (This feature is not used wh~n loading 
DOS but is used when loading from a BASICS diskette.) 
Otherwise, go to $801 to begin executing the second 
stage of the bootstrap. 

FIRST RAM BOOTSTRAP LOADER - BOOT 1 

ADDRESS 

0801-084C 

081F 

0839 

This routine loads the second RAM loader, Boot 2, 
including RWTS, into memory and jumps to it. 
If this is not the first entry to Boot 1, go to $81F. 
Get slot*l6 and shift down to slot number. 
Create the address of the ROM sector read subroutine 
(C65C in our case) and store i~ at ~3E,$3F. 
Pick up the first memory page 1n wh1ch to rea~ Boot 2 
from location $8FE, add the length of Boot 2 1n 
sectors from $8FF, and set that value as the first 
address to which to read (read last page first) . 
Get sector to read, if zero, go to $839. 
Translate theoretical sector number into physical 
sector number by indexing into skewing table at $84D. 
Decrement theoretical sector number (8FF) for next 
iteration through. 
Set up parameters for ROM subroutine (C65C) and 
jump to it. It will return to $801 when the sector 
has been read. 
Adjust page number at 8FE to locate entry point of 
Boot 2. 
Perform a PR#O and IN#O by calling the monitor. 
Initialize the monitor (TEXT mode, standard window, 
etc.) 
Get slot*l6 again and go to Boot 2 {$3700 for a 
master disk, $B700 in its final relocated location). 

DOS 3.3 MAIN ROUTINES 

ADDRESS 

9D00-9DOF 
9DOO 
9D02 
9D04 
9D06 
9D08 
9DOA 
9DOC 
9DOE 

9Dl0-9DlC 

Relocatable address constants 
Address of first DOS buffer at its file name field. 
Address of the DOS keyboard intercept routine. 
Address of the DOS video intercept routine. 
Address of the primary file name buffer. 
Address of the secondary (RENAME) file name buffer. 
Address of the range length parameter used for LOAD. 
Address of the DOS load address ($9DOO). 
Address of the file manager parameter list. 

DOS video (CSWL) intercept's state handler address 
table. States are used to drive the handling of DOS 
commands as they appear as output of PRINT stat7ments 
and this table contains the address of the rout1ne 
which handles each state from state 0 to state 6. 

8-3 

A 



9DlE-9D55 Command handler entry point table. This table 
contains the address of a command handler subroutine 
for each DOS command in the following standard order: 

INIT A54F 
LOAD A413 
SAVE A397 
RUN A4Dl 
CHAIN A4FO 
DELETE A263 
LOCK A271 
UNLOCK A275 
CLOSE A2EA 
READ A51B 
EXEC A5C6 
WRITE A510 
POSITION A5DD 
OPEN A2A3 
APPEND A29S 
RENAME A2Sl 
CATALOG A56E 
MON A233 
NOMON A23D 
PR# A229 
IN# A22E 
MAXFILES A251 
FP A57A 
INT A59E 
BSAVE A331 
BLOAD A35D 
BRl:JN A3SE 
VERIFY A27D 

9D56-9D61 Active BASIC entry point vector table. The addresses 
stored here are maintained by DOS such that they 
apply to the current version of BASIC running. 

9D56 Address of CHAIN entry point to BASIC. 
9D5S Address of RUN. 
9D5A Address of error handler. 
9D5C Address of BASIC coldstart. 
9D5E Address of BASIC warmstart. 
9D60 Address of BASIC relocate (APPLESOFT only). 

9D62-9D6B Image of the entry point vector for INTEGER BASIC. 
This image is copied to 9D56 if INTEGER BASIC is made 
active. 

9D6C-9D77 Ima.ge of the entry point vector for the ROM version 
of APPLESOFT. 

9D7S-9DS3 Image of the entry point vector for the RAM version 
of APPLESOFT. 

9DS4-9DBE DOS coldstart entry routine. 

8-4 

Get the slot and drive numbers and store as default 
values for command keywords. 
Copy APPLESOFT ROM or INTEGER BASIC entry point 
vector into current BASIC entry point vector. 
Remember which BASIC is active. 
Go to 9DD1. 

9DBF-9DE9 DOS warmstart entry routine. 
Get the remembered BASIC type and set the ROM card 
as necessary (calls A5B2) . 

9DD1 Remember whether entry is coldstart or warmstart 
Call AS51 to replace DOS keyboard and video 
intercepts. 
Set NOMON C,I,O. 
Set video intercept handler state to 0. 
Coldstart or warmstart the current BASIC (exit DOS). 
(DOS will next gain control when BASIC prints its 
input prompt character) 

9DEA79E50 First entry processing for DOS. This routine is 
called by the keyboard intercept handler when the 
first keyboard input request is made by BASIC after 
a DOS coldstart. 
If RAM APPLESOFT is active, copy its entry point 
vector to the active BASIC entry· point vector and 
blank out the primary file name buffer so that no 

' HELLO file will be run. 
Set MAXFILES to 3 by default. 
Call A7D4 to build the DOS file buffers. 
If an EXEC was active, close the EXEC file 
Set the video intercept state to 0 and indicate 
warmstart status by calling A75B. 
If the last command executed was not INIT (this DOS 
was not just booted), go to 9E45. 
Otherwise, copy an image of the DOS jump vector to 
$3D0-$3FF. 
Point $3F2,$3F3 to DOS warmstart routine. 
Set the AUTOSTART ROM power-up byte since the RESET 
handler address was changed. 
Set the command index for RUN (to run the HELLO file) 
and go to AlSO to execute it. 

9E45 See if there is a pending command. 
If so, go to AlSO to execute it. Otherwise, return 
to caller. 

9E51-9E7F An image of the DOS page 3 jump vector which the 
above routine copies to $3D0-$3FF. See Chapter 5 for 
a description of its contents. 

9ES1-9EB9 

9E9E 

DOS keyboard intercept routine. 
Call 9ED1 to save the registers at entry to DOS. 
If not coldstarting or reading a disk file, 
go to 9E9E. 
Get value in A register at entry and echo it on the 
screen (erases flashing cursor). 
If in read state (reading a file) go to A626 to get 
next byte from disk file. 
Otherwise, call 9DEA to do first entry processing. 
Put cursor on sc~een in next position. 
If EXECing, call A682 to get the next byte from the 
EXEC file. 
Set the video intercept state to 3 (input echo) . 
Call 9FBA to restore the registers at entry to DOS. 
Call the true keyboard input routine. 
Save the input character so that it will be restored 
with the registers in the A register. 
Do the same with the new X register value. 
Exit DOS via 9FB3. 

8-5 



9EBA-9EBC A jump to the true KSWL handler routine. 

9EBD-9EDO DOS video intercept routine. 
Call 9ED1 to save the registers at entry to DOS. 
Get the video intercept state and, using it as an 
index into the state handler table (9Dl0) , go to 
the proper handler routine, passing it the character 
being printed. 

9ED1-9EEA Common intercept save registers routine. 
Save the A, X, Y, and S registers at AA59-AA5C. 
While in DOS, restore the true I/0 handlers (KSWL and 
CSWL) to $36-$39. 
Return to caller. 

9EEB-9Fll State 0 output handler. --start of line--
If a RUN command .was interrupted (by loading RAM 
APPLESOFT) go to 9F78 to complete it. 
If read flag is on (file being read) and output is a 
"?" character (BASIC INPUT), go to state 6 to skip 
it. 
If read flag is on and output is prompt character 
($33) go to state 2 to ignore the . line. 
Set state to 2 (ignore non-DOS command) just in case. 
If output character is not a control-D, go to 
state 2. 
Otherwise, set state to 1 (collect possible DOS 
command), set line index to zero, and fall through 
to state 1. 

9Fl2-9F22 State 1 output handler. --collect DOS command-­
Using line index, store character in input buffer at 
$200. 
Increment line index. 
If character is not a carriage return, exit DOS 
via 9F95 (echo character on screen if MON I). 
Otherwise, go to command scanner at 9FCD. 

9F23-9F2E State 2 output handler. --non-DOS command ignore-­
If the character is not a carriage return, exit DOS 
via 9FA4 (echo character on screen) . 
Otherwise, set state back to 0 and exit DOS via 
9FA4. 

9F2F-9F51 State 3 output handler. --INPUT statement handler-­
Set state to 0 in case INPUT ends. 

9F52-9F60 

8-6 

If character is not a carriage return, echo it on 
screen as long as EXEC is not in effect with NOMON I 
but exit DOS in any case. (KSWL will set state=3) 
Otherwise, call A65E to see if BASIC is executing a 
program or is in immediate mode. If EXEC is running 
or if BASIC is in immediate mode, go to state 1 to 
collect the possible DOS command. 
Otherwise, exit DOS, echoing the character as 
appropriate. 

State 4 output handler. --WRITE data to a file--
If the character is a carriage return, set state to 
5 (start of write data line). 
Call A60E to write the byte to the disk file. 
Exit DOS with echo on screen if MON O. 

J 

1 
I 

I 
9F61-9F70 state 5 output handler. -~start of WRITE data line-­

If the character is a control-D, go to state 0 to 
immediately exit write mode. 
If the character is a line feed, write it and exit, 
staying in .state 5. 
otherwise, set the state to 4 and go to state 4. 

9F71-9F77 State 6 output handler. --Skip prompt character-­
Bet state to 0. 
Exit DOS via 9F9D (echo if MON I). 

9F78-9F82 Finish RUN command, interrupted by APPLESOFT RAM LOAD 
Reset the "RUN interrupted" flag. 
Call A851 to replace the DOS CSWL/KSWL intercepts. 
Go to A4DC to complete the RUN command. 

9F83-9F94 DOS command scanner exit to BASIC routine. 
If first character of command line is control-D, 
go to echo exit (9F95). 
Otherwise, set things up so BASIC won't see the DOS 
command by passing a zero length line (only a 
carriage return). Fall through to echo exit. 

9F95-9FBO Echo character on screen (conditionally) and exit DOS 
9F95 Echo only if MON C set, otherwise, go to 9FB3. 
9F99 Echo only if MON 0 set, otherwise, go to 9FB3. 
9F9D Echo only if MON I set, otherwise, go to 9FB3. 
9FA4 Always echo character. 

Call 9FBA to restore registers at entry to DOS. 
Call 9FC5 to echo character on screen. 
Save contents of the registers after echoing. 
Fall through to DOS exit routine. 

9FB3-9FC4 DOS exit routine and register restore. 
Call A85l to put back DOS KSWL/ CSWL intercepts. 
Restore S (stack) register from entry to DOS. 

9FBA DOS register restore subroutine. 
Restore re.gisters fr0m first entry to DOS and return 
to caller. 

9FC5-9FC7 A jump to the true CSWL routine. 

9FC8-9FCC Skip a line on the screen. 
Load a carriage return into the A register and 
call 9FC5 to print it. 

9FCD-Al79 DOS command parse routine. 
Set the command index to -1 (none). 
Reset the pending command flag (none pending) . 

9FD6 Add one to command index. 
If first charcater is a control-D, skip it. 
Flush to a non-blank (call AlA4) . 
Compare command to command name in command name table 
at A884 for the current command index. 
If it doesn't match and if . there are more entries 
left to check, go back to 9FD6. 
If it does match, go to AOlB. 

8-7 



AOlB 

A095 
AOAO 

AODl 
AOEB 

AlOC 

8-8 

Otherwise, _ if command was .not found in ·.the table 
check to see if the first character was a control-D 
If so, go to A6C4 to print "SYNTAX ERROR". . 
Otherwise, call A75B to reset the .state and warmstart 
flag and go to 9F95 to echo the command and exit. 
(the command must be for BASIC, not DOS) 
Compute an index into the operand table for the 
command which was entered. 
Call A65E to see if a BASIC program is executing. 
If not, and the command is not a direct type command 
(according to the operand table) go to A6D2 to print' 
"NOT DIRECT COMMAND". 
Otherwise , if the command is RUN make the prompt 
character ($33) non-printing. ' 
Check the operand table to see if a first filename 
is a legal operand for this command. 
If not, go to AOAO. 
Otherwise, clear the filename buffer (call A095). 
Flush. to the next non-blank (call AlA4) and copy 
the f1lename operand to the first filename buffer 
Skip forward ~o a com~a if one was not found yet.· 
If a second f1lename 1s legal for this command, use 
the code above to copy it into the second filename 
buffer. 
Check both filenames to see if they are blank. 
I~ one was required by the command but not given, 
g1ve . a syntax error or pass it through to BASIC. 
(As 1n the case of LOAD with no operands) 
If all is well, go to AODl to continue. 
A subroutine to blank both filename buffers. 
Indicate no filename parsed. 
Check operand table to see if a positional operand 
is expected. 
If not, go to AODl to continue. 
Otherwise, call AlB9 to convert the numeric operand. 
If omitted, give syntax error. 
If number converted exceeds 16, give "RANGE ERROR" 
If number is supposed to be a slot number give 
"RANGE ERROR" if it exceeds 7. ' 
~f ~umber is not a slot number, give "RANGE ERROR" if 
1t 1s zero. (MAXFILES 0 is a no-no) 
Set defaults for the keyword operands (V=O,L=O B=O) 
Get the line offset index and flush to the next 
non-blank, skipping any commas found. 
If we are not . yet to the end of the line, go to AlOC. 
Check to see 1f any keywords were given which were 
not allowed for this command. 
If not, go to Al7A to process the command. 
Lookup the keyword found on the command line in the 
table of valid keywords (A941). 
If n<;>t in. table~ ~ive."SYNTAX ERROR" message. 
Get 1ts b1t pos1t1on 1n the keywords-given flag. 
If the keyword does not have an operand value go to 
Al64. ' 
Otherwise, indicate keyword found in flag. 
Convert the numeric value associated with keyword. 
Give "SYNTAX ERROR" message if invalid. 
Check to s7e if.the number is within the acceptable 
range as g1ven 1n the keyword valid range table at 
A955. 

Save the value of the keyword in the keyword values 
table starting at AA66. 
Go parse the next keyword. go to AOEB. 

Al64 Indicate C, I, or 0 keywords were parsed. 
Update the MON value in the keyword value table 
appropriately. 
Go parse the next keyword. go to AOEB. 

Al7A-Al7F Call AlSO to process the command, then exit via echo 
at 9F83. 

Al80-Al92 Do command. 
Reset the video intercept state to zero. 
Clear the file manager parameter list. 
Using the command index, get the address of the 
command handling routine from the command handler 
routine table at 9DlE and go to it. 
Command handler will exit to caller of this routine. 

Al93-AlA3 Get next character on command line and check to see 
if it is a carriage return or a comma. 

AlA4-AlAD Flush command line characters until a non-blank is 
found. 

AlAE - AlBB Clear the file manager parameter list at BSBB to 
zeros. 

AlB9-AlD5 Convert numeric operand from command line. Call 
either AlD6 (decimal convert) or A203 (hex convert) 
depending upon the presence or lack thereof of a 
dollar sign ($) . 

AlD6-A202 Decimal convert subroutine. 

A203-A228 Hexadecimal convert subroutine. 

A229-A22D PR#n command handler. 
Load the parsed numeric value and exit via FE95 in 
the monitor ROM. 

A22E-A232 IN#n command handler. 
Load the parsed numeric value and exit via FEBB in 
the monitor ROM. 

A233-A23C MON command handler. 
Add new MON flags to old in AASE and exit. 

A23D-A250 NOMON command handler. 
If C was given, put out a carriage return since this 
line was echoed but its CR was not. 
Turn off the proper bits in AASE and exit. 

A251-A262 MAXFILES command handler . 
Turn off any EXEC file which is active. 
Close all open files (call A316) . 
Set the new MAXFILES number at AA57. 
Go to A7D4 to rebuild the DOS file buffers and exit. 

8-9 

.. 



A263-A270 DELETE command handler. 
Load the delete file manager opcode (05) . 
Call the file manager open driver (A2AA) to perform 
the delete. 
Find the file buffer used to do the delete and free 
it (call A764). 
Exit to caller. 

A271-A274 LOCK command handler. 
Load the lock file manager opcode (07) and go to 
A277. 

A275-A27C UNLOCK command handler. 
Load the unlock file manager opcode (08) . 

A277 Call the file manager open driver (A2AA) to perform 
the desired function. 
Exit to the caller via close (A2EA). 

A27D-A280 VERIFY command handler. 
Load the verify file manager opcode (OC) and go to 
A277 to perform function. 

A281-A297 RENAME command handler. 
store address of second file name in file manager 
parameter list. 
Load the rename file manager opcode (09). 
Call the file manager driver at A2C8. 
Exit via close (A2EA). 

A298-A2A2 APPEND command handler. 
Call A2A3 to OPEN the file. 
Read the file byte by byte until a zero is found. 
If append flag is on, add one to record number 
and turn flag off. 
Exit via a call to POSITION. 

A2A3-A2A7 OPEN command handler. 

A2A8-A2E9 

A2AA 

A2C8 

8-10 

Set file type as TEXT. 
Go to A3D5 to open file. 

Command handler common file management code. 
Set opcode to OPEN. 
If no L value was given on the command, use 0001 and 
store record length value in file manager parmlist. 
Close file if already open. 
Is there an available file buffer? 
If not, issue "NO FILE BUFFERS AVAILABLE" message. 
Point $40,$41 at the free file buffer. 
Copy filename to file buffer (allocates the buffer) 
(A743). 
Copy buffer pointers to file manager parmlist (A74E). 
Finish filling in the file manager parmlist (A71A) • 
Set operation code in parmlist. 
Exit through the file manager driver. 

A2EA-A2FB CLOSE command handler. 
If no filename was given as part of command, 
go to A3I6 to close all files. 

A2FC-A315 

Otherwise, find the open file buffer for fil e name 
(A764). 
If no such file open, exit to caller. 
otherwise, close file and free buffer (A2FC). 
Go back through CLOSE command handler to mak e ~ur e 
there are not more open buffers for the same f~le . 

Close a file and free its file buffer. 
Find out if this buffer is EXEC's (A7AF). 
If so, turn EXEC flag off. 
Release the buffer by storing a $00 on its filename 
field. 
copy file buffer pointers to the file manager 
parmlist. 
Set file manager opcode to CLOSE. 
Exit through the file manager driver routine. 

A316-A330 Close all open files. 
Point to first file buffer (A792). 
Go to A320. 

A31B Point to next file buffer on chain (A79A). 
If at end of chain, exit to caller. 

A320 Is this file buffer EXEC's? 

A331-A35C 

A35D-A38D 

If so, skip it and go to A31B. 
Is it not in use (open)? 
If so, skip it and go to A31B. 
Otherwise, close it and free it (A2FC). 
Go to A316 to start all over. 

BSAVE command handler. 
Insure that the A and L key words were present on the 
command. 
If not, issue "SYNTAX ERROR" message. 
Open and verify a B type file (A3D5). 
Write the A keyword value as the first two by te s of 
the file. 
Write the L keyword value as the next two by tes of 
the file. 
use the A value to exit by writing a range of byte s 
from memory to the· file. 

BLOAD command handler. 
Open the file, ignoring its type. 
Insure the type is B. 
If not, issue "FILE TYPE MISMATCH" message. 
Otherwise, open B type file and test file type (A3D5) 
Read the A value from the first two bytes of file. 
If A keyword was not given, use the value just read. 
Read L value as next two bytes in file. 
Go to A471 to read range of bytes to memory from file 

A38E-A396 . BRUN command handler. 
Call BLOAD command handler to load file into memory. 
Replace DOS intercepts. 
Exit DOS by jumping to the A address value to begin 
execution of the binary program. 

8-11 



A397-A3D4 

A3BC 

SAVE command handler. 
Get the active BASIC type (AAB6). 
If INTEGER, go to A3BC. 
If APPLESOFT, test $D6 flag to see if program is 
protected. 
If so, issue "PROGRAM TOO LARGE" message. 
Otherwise, open and test for A type file (A3D5). 
Compute program length (PGMEND-LOMEM) . 
Write this two byte length to file. 
Exit by writing program image from LOMEM as a range 
of bytes (A3FF) . 
Open and test for I type file (A3DS) . 
Compute program length (HIMEM-PGMSTART) . 
Write this two byte length to file. 
Exit by writing program image from PGMSTART as a 
range of bytes (A3FF) . 

A3DS-A3DF Open and test file type. 
Set file type wanted in file manager parmlist. 
Call A2A8 to open file. 
Go to A7C4 to check file type. 

A3EO-A3FE Write a 2 byte value to the open file. 
Store value to be written in file manager parmlist. 
Set write one byte opcodes. 
Call file manager driver. 
Call it again to write second byte and exit to caller 

A3FF-A40F Read/write a range of bytes. 
Set the address of the range in file manager parmlist 
Set subcode to read or write a range of by tes. 
Call the file manager driver. 
Close the file . 
Exit through the VERIFY command handler to insure 
data was written ok. 

A410-A412 Issue "FILE TYPE MISMATCH" message. 

A413-A479 LOAD command handler. 

8-12 

Close all files (A316). 
Open the file in question. 
Is it an A or I type file? 
If not, issue "FILE TYPE MISMATCH" message. 
Which BASIC is active? 
If INTEGER, go to A450. 
Select APPLESOFT BASIC (A4Bl). This call could result 
in DOS losing control if the RAM version must be 
run. 
Read first two bytes of file as length of program. 
Add length to LOMEM (program start) to compute 
program end. 
Is program end beyond HIMEM? 
If so , close file and issue "PROGRAM TOO LARGE". 
Set program end and start of variables pointers. 
Read program as range of bytes to program start. 
Replace DOS intercepts (A85l). 
Go to BASIC's relocation routine to convert a RAM 
APPLESOFT program to ROM and vice versa as needed. 

A450 

A47A-A4AA 

Select INTEGER BASIC (A4Bl) . 
Read length of program (first two bytes in file). 
compute program start (HIMEM~LENGT~) . 
If zero or less than LOMEM ·, 1ssue PROGRAM TOO LARGE" 
message and . close file . 
set program start pointers. 
Read program into memory as a range of bytes. 
Exit to ca1ler. 

Read t wo bytes from file (Address or Length) . 
set up parmlist to read two bytes to range length 
field (AA60) . 
Call file manager driver. 
store value read as range length in file manager 
parmlist just in case it was a length. 

A4AB-A4BO Close file and issue "PROGRAM TOO LARGE" message. 

A4Bl-A4DO 

A4Dl - A4E4 

Select desired BASIC . 
If desired BASIC is already active , exit to caller. 
save current command index in case we must RUN 
APPLESOFT . 
If INTEGER , go to A59E to select it . 
Otherwise, copy primary file name to sec~ndary 
buffer to save it in case RAM APPLESOFT 1s needed. 
Go to A57A to set APPLESOFT. 

RUN command handler. 
If APPLESOFT is active, set RUN intercepted flag so 
that RUN can complete after APPLESOFT is loaded. 
Call LOAD command handler to load the program. 
Skip a line on the screen. 
Put DOS intercepts back. 
Go to the RUN entry point in the current BASIC. 

A4E5-A4EF INTEGER BASIC RUN entry point intercept. 
Delete all variables (CLR equivalent). 
Go to the CHAIN entry point in INTEGER BASIC. 

A4FO-A4FB CHAIN command handler . 
Call the LOAD command handler to load the program. 
Skip a line. 
Replace DOS intercepts. 
Go to current BASIC's CHAIN entry point. 

A4FC~AS05 APPLESOFT ROM RUN entry point intercept. 
Call APPLESOFT to clear variables . 
Reset ONERR. 
Go to RUN entry point . 

A506-ASOD APPLESOFT RAM RUN entry point intercept . 
Call APPLESOFT to clear variables. 
Reset ONERR. 
Go to RUN entry point . 

ASlO-ASlA WRITE command handler. 
Call READ/WRITE common code (A526) . 
Set CSWL state to 5 (WRITE mode line start) . 
Exit DOS (9F83) . 

8-13 



A51B-A525 READ command handler . 
Call READ/WRITE common code (A526) . 
Set READ mode flag in status flags (AASl) . 
Exit DOS (9F83) . 

A526-A54E READ/WRITE common code . 
Locate the open file buffer for this file (A764). 
If not open , open it. 
Copy file buffer addresses to file manager parmlist. 
If R or B were given on command , copy to parmlist 
and issue a POSITION call to file manager . 
Exit to call.er. 

A54F-A56D INIT command handler . 
If v was given , use it . Otherwise , use 254 . 
Store first page number of DOS in file manager 
parmlist . · 
Call file manager driver to INIT diskette. 
Exit through SAVE to store greeting program on disk. 

A56E-A579 CATALOG command handler. 
Call file manager with CATALOG opcode . 
Set new v value as default for future commands. 
Exit to caller. 

A57A-A59D FP command handler. 
Set ROM card, if any, for APPLESOFT (A5B2). 
If successful, colds tart DOS (9D84). 
Otherwise, set status flag to indicate INTEGER BASIC 
is active. 
Set primary filename buffer to "APPLESOFT". 
Set flags to indicate RAM APPLESOFT and coldstart. 
Go to RUN command handler. 

A59E-A5Bl INT command handler . 
Set ROM card , if any , for INTEGER BASIC (A5B2) . 
If not successful , issue "LANGUAGE NOT AVAILABLE" . 
Otherwise , clear RUN intercepted flag . 
Coldstart DOS (9D84). 

A5B2-A5C5 Set ROM to desired BASIC . 
(This routine is passed a $4C for APPLESOFT or a $20 
for INTEGER , since these bytes appear at $EOOO in 
these BASICs . It will work regardless of which 
BASIC is onboard) 
If desired BASIC is already available , exit . 
Try selecting ROM card . 
I f desired BASIC is now available , exit . 
Try selecting onboard ROM . 
If desired BASIC is now available , exit . 
Other wise , exit with error return code . 

A5C6-A5DC EXEC c ommand handler . 

8-14 

Open the file (A2A3) . 
Copy fil e buffer address to EXEC ' s buffer pointer at 
AAB4 , AABS . 
Set EXEC ac t ive flag (AAB3) . 
Jump into POSITION command handler t o skip R lines. 

A5DD-A60D POSITION command handler . 
Locate the open file buffer (A764) . 
If not found , open one as a TEXT file . 
Copy buffer pointers to file manager parmlist . 
If R was not given on command , exit . 

ASF2 Otherwise , test R value for zero and exit if so. 
Decrement R value by one . 
Read file byte by byte until a carriage return (end 
of line - $8D) is reached . 
If at end of file, issue "END OF FILE" message. 
Otherwise, go to A5F2 to skip next record. 

A60E- A625 Write one data byte to file . 
Insure that BASIC is running a program (A65E). 
If not, close file and warmstart DOS . 
Set up file manager parmlist to write the data byte 
to the open file. 
Call file manager and exit. 

A626-A65B Read one data byte from file. 
Insure that BASIC is running a program (A65E) . 
If not, close file and warmstart DOS. 
Set CSWL intercept state to 6 (skip prompt character) 

A630 Read next file byte (A68C) . 
If not at end of file , go to A644 . 
Otherwise , close file. 
If state is not 3 (EXEC) issue "END OF DATA" message . 
Exit to caller . 

A644 If data byte is lower case character, turn its most 
significant bit off to fool GETIN routine in monitor. 
Store data byte in A register saved at entry to DOS. 
Using line index, turn high bit back on in previous 
data byte stored at $200 (input line buffer) to make 
it lower case if necessary. 
Exit DOS (9FB3). 

A65E-A678 Test to see if BASIC is running a program or is in 
immediate command mode . 
If active BASIC is INTEGER, go to A672. 
If line number is greater than 65280 and prompt is 
" ]" then APPLESOFT is in immediate mode. 
Otherwise, it is executing a program. 
Exit to caller with appropriate return code. 

A672 Check $D9 to determine whether BASIC is executing a 
program and exit with proper return code. 

A679-A681 Close current file and warmstart DOS. 

A682-A68B EXEC read one byte from file . 
Select EXEC file buffer . 
Copy file buffer addresses to file manager parmlist . 
Se t state to 3 (input echo) . 
Go to A62D to read a file byte . 

A68C-A69C Read next text file byte . 
Se t up fi l e manager parmlist t o read one byte. 
Call f ile manager driver . 
Retu r n t o caller with t he da t a byte . 

8-15 



A69D-A6A7 · Set $40,$41 to point to EXEC file buffer. 

A6A8-A6C3 File manager driver routine. 
Call the file manager itself (AB06). 
If no · errors, exit to calle~. 
Otherwise, point $40,$41 at file buffer; 
If found ., release it by storing a zero on the file 
name field. 
If error was not "END OF DATA", print error message. ·· 
Otherwise, pretend a $00 was read and return to 
caller. 

A6C4-A6D4 Miscellaneous error messages. 
A6C4 "COMMAND SYNTAX ERROR" 
A6C8 "NO FILE BUFFERS AVAILABLE" 
A6CC "PROGRAM TOO LARGE" 
A6DO "FILE TYPE MISMATCH" 

A6D5-A701 Error handler. 
Set warmstart flag and clear status (BFE6) . 
If APPLESOFT ONERR is active, go . to A6EF. 
Otherwise, print RETURN BELL RETURN. 
Print text of error message (A702). 
Print another RETURN. 

A6EF Replace DOS intercepts. 
If a BASIC program is in executio~, pass error code 
to BASIC's error handler. 
Otherwise, warmstart BASIC. 

A702-A7L9 Print text of error message. 
Using the error number as an index, print the message 
text from the message table (A971) byte. by byte. 
Last character has most significant bit on. 

A71A-A742 Complete file manager parameter list. 
Copy Volume value to parmlist. 
Copy Drive -value to parmlist. 
Copy Slot value to parmlist. 
Copy address of primary filename buffer to parmlist. 
Save file buffer address in $40,$41. 
Return to caller. 

A743-A74D Copy primary filename to file . buffer. filename fie·ld. 

A74E-A75A··Copy current buffer pointers to file manager parmlist 
Copy file · manager workarea buffer pointer. 
Copy T/S List sector buffer pointer. 
Copy data sector buffer address. 
Copy next . file buffer link address. 
Return to call·er. 

A75B-A763 Reset state. to 0 and set warmstart flag. 

A764-A791 Locate an open or free file buffer; 
Assume there are no· free file buffers by zeroing $45. 
Point $40,$41 at first buffer on chain. 
Go to A773. 

A76E Point $40,$41 at next buffer on chain. 
8-16 If at end of chain, exit with file not open code ·. 

., 

r • 

A773 Get first byte of filename field. 
If zero (fiLe buffer free), save file buffer address 
at $44,$45 as an available buffer and go to A76E. 
Otherwise, see if name in primary filename buffer 
matches the name in this file buffer. 
If not, go to A76E to get next buffer. 
If so, return to caller with open file found code. 

A792-A799 Point $40,$41 at first file buffer on chain. 

A79A-A7A9 Point $40,$41 at next file buffer on chain. 

A7AA-A7AE Get first byte of file name in file buffer. 

A7AF-A7C3 See if current buffer belongs to EXEC. 
Is EXEC active? 
If not, exit. 
If so, does current buffer address match EXEC's? 
Return to caller with appropriate code. 

A7C4-A7D3 Check file type. 
Does file type of open file match desired file type? 
If so, exit. 
Otherwise, turn lock bit off and test again. 
If ok, exit. 
Otherwise, close file and issue "FILE TYPE MISMATCH". 

A7D4-A850 Initialize (build) DOS file buffer chain. 
Set $40,$41 to point to first buffer. 
Set counter to MAXFILES value. 

A7E5 Store zero on filename field to mark as free. 
Set up link pointers in buffer to point to file 
manager workarea (45 bytes prior to filename field). 
Set up link pointer to T/ S List sector buffer (-256 
bytes from file manager workarea buffer). 
Set up link pointer to data sector buffer 256 by tes 
before that. 
Decrement counter. 
If zero, go to A82D to set HIMEM. 
Otherwise, set link to next file buffer as 38 bytes 
prior to data sector buffer. 
Go to A7E5 to set up next buffer. 

A82D Set link of last buffer to $0000. 
If INTEGER BASIC is active, go to A846. 
Otherwise, set APPLESOFT's HIMEM and STRING START 
pointers in zeropage to point just below the last 
buffer. 
Exit to caller. 

A846 Set INTEGER BASIC's HIMEM and PROGRAM START pointers 
to point just below the last buffer. 
Exit to caller. 

A851-A883 Replace DOS keyboard/ video intercept vectors. 
Is DOS keyboard (KSWL) vector still set? 
If so, go to A86A. 
Otherwise, save current KSWL vector ($38,$39) at 
AA55,AA56 and replace with DOS intercept routine's 
address. 

8-17 



A86A Is DOS video (CSWL) vector still set? 
If so, exit to caller. 
Otherwise, save current CSWL vector ($36,$37) at 
AA53,AA54 and replace with DOS intercept routine's 
add'ress. 
Exit to caller. 

A884-A908 DOS command name text table. 
This table consists of the ASCII name for each DOS 
command in order of command index values, with the 
last character. of each indicated by the MSB being 
on. Commands in order are: 

!NIT ,LOAD,SAVE ,RUN ,CHAIN .,DELETE ,LOCK ,UNLOCK ,CLOSE, 
READ,EXEC,WRITE,POSITION,OPEN,APPEND,RENAME, 
CATALOG,MON,NOMON,PRI,IN#,MAXFILES,FP,INT,BSAVE, 
BLOAD,BRUN,VERIFY. 

Example: !NIT is $49 $4E $49 $D4 (I N I T) 

A909-A·940 Command valid keywords table. 

8-18 

This table is used to determine which keywords are 
required or may be given for any DOS command. 
Each command ·has . a two byte entry with 16 flags, 
indicating which keywords may be given. The flag 
bit settings are as follows: 
BIT MEANING 
--0- F1lename legal but optional 

1 Command has no positional operand 
2 Filename 11 expected 
3 Filename 1·2 expected 
4 Slot number positional operand expected 
5 MAXFILES value expected as positional operand 
6 Command may only be issued from within a program 
7 Command may create a new file if file not found 
8 C, Ir 0 keywords legal 
9 V keyword legal 

10 D keyword legal 
11 S keyword legal 
12 L keyword legal 
13 R keyword legal 
14 B keyword legal 
15 A keyword legal 

·Thus, for a typical command, OPEN, where the value 
is $2378, bits 2, 6, 7, 9, 10, 11, and 12 are set so 
the command has one filename operand, may only be 
issued from within a program, may create a new file, 
and the V, D, S, and L keywords are legal. 

The command entries are: 
!NIT 2170 
LOAD A070 
SAVE Al70 
RUN A070 
CHAIN 2070 
DELETE 2070 
LOCK 2070 
UNLOCK 2070 
CLOSE 6000 
READ 2206 
EXEC 2074 
WRITE 2206 
POSITION 2204 
OPEN 2378 
APPEND 2270 
RENAME 3070 
CATALOG 4070 
MON 4080 
NOMON 4080 
PRI 0800 
!NI 0800 
MAXFILES 0400 
FP 4070 
INT 4000 
BSAVE 2179 
BLOAD 2071 
BRUN 2071 
VERIFY 2070 

A941-A94A Keyword name table. 
~his table contains all the ASCII names of the DOS 
keywords in standard order. Each keyword name 
occupies one byte: 

V,D,S,L,R,B,A,C,I,O 

A94B-A954 Keyword flag bit positions table. 
Th~s table gives the bit positions for each keyword 
into the second byte of the command valid keyword 
table above and in the flag (AA65) which indicates 
which keywords were present on the command line. 
The bit positions are: 

v - 40 
D - 20 
s - 10 
L - 08 
R - 04 
B - 02 
A - 01 
c - co 
I - AO not used in valid keyword table 
0 - 90 

8-19 



A955-A970 

A971-AA3E 

AA3F-:AA4F 

AA4F-AA65 
AA4F 
AA5l 

8-20 

AA52 
AA53 
AA55 
AA57 
AA59 

AA5D 
AA5E 
AA5F 
AA60 
AA62 
AA63 
AA64 
AA65 

Keyword value valid range table. 
This table indicates the range any keyword value 
may legally have. Each keyword has a four byte entry 
two bytes of minimum value, and two bytes of maximum' 
value. Values are: 

KEYWORD MIN 
v ·-a-
D 1 
s 1 
L 1 
R 0 
B 0 
A 0 

MAX 
254 

2 
7 

32767 
32767 
32767 
655.35 

C, I, and 0 do not appear in this table since they 
do not have numeric values. 

Error message text table. 
This table contains the text for each error code in 
order of error code number: 
NUMBER TEXT 

0 RETURN BELL RETURN 
1 "LANGUAGE NOT AVAILABLE" 
2 "RANGE ERROR" (Bad file manager opcode) 
3 "RANGE ERROR" (Bad file manager subcode) 
4 "WRITE PROTECTED" 
5 "END OF DATA" 
6 "FILE NOT FOUND" 
7 "VOLUME MISMATCH" 
8 "I /0 ERROR" 
9 "DISK FULL" 

10 "FILE LOCKED" 
11 "SYNTAX ERROR" 
12 "NO BUFFERS AVAILABLE" 
13 "FILE TYPE MISMATCH" 
14 "PROGRAM TOO LARGE" 
15 "NOT DIRECT COMMAND" 

Error message text offset index table. 
This table contains the offset in bytes to the text 
of any given error message in the table above. 
Entries are one byte each for each error code number 

DOS main routines variables. 
Current file buffer address (2 bytes). 
Status flags: $0l=READ state, $00=Warmstart, 

$80=Coldstart, $40=APPLESOFT RAM 
DOS CSWL intercept state number. 
Address of true CSWL handler (2 bytes). 
Address of true KSWL handler (2 bytes). 
MAXFILES value. 
Save area for s, X, Y, and A registers when DOS is 
entered (4 bytes). 
Command line index value (offset into line) . 
MON flags: (C=$40, I=$20, 0=$10) 
Index of last command times 2. 
Range length for LOAD ·and BLOAD (2 bytes) . 
Index of pending command, if any. 
Scratch variable (counter, message index, etc.) 
Index of current keyword. 
Keywords present on command line flags. 

·AA66-AA74 Keyword values parsed from command and defaulted. 
AA66 Volume (2 bytes) 
AA68 Drive (2 bytes) 
AA6A Slot (2 bytes) 
AA6C Length (2 bytes) 
AA.6E Record ( 2 bytes) 
AA70 Byte (2 bytes) 
AA72 Address (2 bytes) 
AA74 MON value (one byte) 

AA75-AA92 Primary file name buffer 

AA93-AAB0 Secondary "(RENAME) file name buffer 

AABl--AACO DOS main routines constants and variables. 
AABl MAXFILES default ($03). 
AAB2 Control-D ($84). 
AAB3 EXEC file active flag ($00=not active) . 
"AAB4 EXEC file buffer address (2 bytes). 
AAB6 Active BASIC flag: $00=INTEGER, $40=APPLESOFT ROM, 

$80=APPLESOFT RAM 
AAB7 RUN intercepted flag. 

' AABB "APPLESOFT" characters in ASCII (9 bytes) 

AAC1-AAC8 File manager constants. 
AACl Address of RWTS paramter list (B7E8) . 
AAC3 Address of VTOC sector buffer (B3BB) • 
AAC5 ·Address of directory sector buffer (B4BB) . 
AAC7 kddress of last byte of DOS plus one. (COOO) 

AAC9-AAE4 File manager function routine entry point table. 
This table contains a two byte function handler 
routine address for each of the 14 file manager 
opcodes in opcode order. 

- .-...r-- :w · AAE5-AAFO File manager read subcode handler entry point table. 
This table ·contains a two byte function ·handler 
routine address for each of the 6 read subcodes. 

AAFl-AAFC File manager write subcode handler entry point table. 
This . table contains a two byte function handler 
routine address for each of the 6 write subcodes. 

AAFD-AB05 File manager external entry point (from $3D6) • 
Is ~ register zero? 
If so, allow new files by simulating an INIT command 
index. 
Otherwise, require old file by simulating a LOAD 
command index. 
Fall through :to main file manager entry· point. 

AB06·-ABlE File manager main entry. 
·Save S register at B39B. 
Restore file manager workarea from file ·buffer {AE6A) 
Make sure opcode does not exceed 13. 
If it does, return with code=2 (invalid opcode). 
Use opcode as index into file manager function 
routine ·entry ·point table and · go to proper handler 
via RTS. 

8-21 



_j 

AB1F~AB21 Return with return code=2 (bad opcode). 

AB22-AB27 OPEN function handler. 
Call common open code (AB28) . 
Exit file manager. 

AB28-ABDB Common open routine. 
Initialize file manager workarea by resetting 
variables to their defaults (ABDC). 
Set sector length to 256. 
Insure record length is non-zero. If zero, use 1. 
Store record length in file manager workarea. 
Locate or allocate a directory entry for the file 
(BlC9). 
If file already exists, go to ABA6. 
Otherwise, save directory index for free entr y . 
Using la s t command index and valid ke ywords table , 
determine whether current command may create a ne w 
file. 
If so, go to AB64. 
Otherwise, if running "APPLESOFT", s et return code 
to "LANGUAGE NOT AVAILABLE" and exit. 
If not running "APPLESOFT" s e t return code to "FILE 
NOT FOUND" and exit. 

AB64 Set sector count in directory entr y t o 1 (ther e will 
only be a T/ S List sector initially). 
Allocate a sector for a T/ S List (B244). 
Store sector number of this sector in director y 
entry and in first and current T/ S List sector number 
in file manager workarea. 
Store track number in both places also. 
Move file type desired to director y entry. 
Write directory sector back to catalog (B037) 
Select T/ S List buffer (AFOC). 
Zero it (B7D6). 
And write it back (AF3A). 
Set return code to 6 ("FILE NOT FOUND"). 

ABA6 Place t-rack / sector of T/ S List in directory entry in 
first T/ S List variable in file manager workarea. 
Copy file type from director y to parmlist to pass it 
back to caller and to file manager workarea. 
Copy number of sectors in file to workarea. 
Save directory offset to entr y in workarea. 
Set end of data pointer to "infinity". 
Set number of data bytes represented by one T/ S List 
sector to 122*256 (30. 5K) in workarea. 
Go read first T/ S List sector (AF5E) 

ABDC-AC05 Initialize file manager workarea. 

8-22 

Zero entire 45 bytes of workarea. 
Save complemented volume number in workarea. 
Save drive number in workarea. 
Save slot*l6 in workarea. 
Set track number to $11 (catalog track). 
Return to caller. 

I 

AC06-AC39 CLOSE function · handler. 
Checkpoint data bu·ffer to disk if needed (AFlD). 
Checkpoint T/S List buffer if needed (AF34). 
Release any sectors which were preallocated but not 
used (B2C3). 
If VTOC does not need to be re-read, exit. 
Otherwise, re-read VTOC sector (AFF7). 
Flush through directory sectors in the catalog until 
we reach the one which contains the entry for this 
file. 
Get the index to the entry. 
Update the sector count in the entry to reflect the 
new file'~ length. 
Checkpoint the directory sector back to the disk. 
Exit file manager. 

AC3A-AC57 RENAME function handler. 
Call common code to locate/ open the file. 
If file is locked, exit with "FILE LOCKED" return 
code. 
Set $42,$43 to point to new name. 
Copy new name to directory entry. 
Write back dire ctory sector to disk. 
Exit file manager. 

AC58-AC69 READ function handler. 
Insure subcode does not exceed 5. If so, exit with 
return code=3. 
Use subcode as index into READ subcode handler en·tr y 
point table. 
Go to proper handler of subcode. 

AC6A-AC6C Return code = 3, subcode bad 

AC6D-AC6F "FILE LOCKED" error return 

AC70-AC86 WRITE function handler. 
If file is locked, exit with "FILE LOCKED" error. 
Insure subcode does not exceed 5. If so, exit with 
return code=3. 
Use subcode as index into WRITE subcode handler entry 
point table. 
Go to proper handler of subcode. 

AC87-AC89 POSITION AND READ ONE BYTE subcode handler 
Call position routine. 
Fall through to next subcode handler. 

AC8A-AC92 READ ONE BYTE subcode handler. 
Read next file byte (ACA8). 
Store in parmlist for pass back to caller. 
Exit the file manager. 

AC93-AC95 POSITION AND READ A RANGE OF BYTES subcode handler. 
Call position routine. 
Fall through to next subcode handler. 

8-23 



AC96-ACA7 READ A RANGE ·oF BYTES subcode handler, 
Decrement and check length (BlBS) . 
Read a byte (ACA8). 
Point $42,$43 at range address and add one to address 
Store byte read at address. 
Loop back to AC96. (length check will exit file 
manager when length is zero.) 

ACA8-ACBA Read a data byte. 
Read next data sector if necessary (BOB6) . 
If ·at end of file, exit with "END OF DATA" error. 
Otherwise, load data byte from data sector buffer. 
Increment record number/byte offset into file (BlSB) . 
Increment file position offset (Bl94). 
Return with data byte read. 

ACBB-ACBD POSITION AND WRITE ONE BYTE subcode handler. 
Call position routine. 
Fall through to next subcode handler. 

ACBE-ACC6 WRITE ONE BYTE subcode handler. 
Find data byte to be written. 
Write it to file (ACDA). 
Exit file manager. 

ACC7-ACC9 POSITION AND WRITE A RANGE OF BYTES subcode handler. 
Call position routine. 
Fall through to next subcode handler. 

AACA-ACD9 WRITE A RANGE OF BYTES subcode handler. 
Copy and advance range address pointer. 
Get next byte to write. 
Write it to file (ACDA). 
Test and decrement length (BlBS) . 
Loop back to AACA. 

ACDA-ACEE Write a data byte. 
Read the proper data sector (if necessary) (BOB6). 
Store data byte to be written in sector buffer. 
Flag data sector buffer as requiring rewrite. 
Increment record number / byte offset into file (BlSB) . 
Exit via file position offset increment routine 
(Bl94). 

ACEP-ACFS LOCK function handler. 
. Set mask byte to $80 (lock). 

Go to common code (ACFB) . 

ACF.6-ACFA UNLOCK function handler. 
Set mask byte to $00 ·(unlock). 
Fall through to common code. 

ACFB-ADll LOCK/UNLOCK common code. 

8-24 

Locate/open file (AB28) . 
Get index into directory to entry. 
Update file type byte to lock ($8X) or unlock (JOX) • 
Write directory sector back to disk. 
Exit file manager. 

AD12-AD17 POSITION function handler. 
Call position routine. 
Exit file manager. 

ADlB 

AD2B-AD88 

AD 54 

ADSE 

VERIFY function handler. 
Locate /open file (AB28) . 
Read next data sector. 
If at end of file, exit file manager. 
Otherwise, increment sector position. 
And loop back to ADlB. 

DELETE function handler. 
Locate/open file (AB28) . 
using directory index, determine if file is locked. 
If so, exit with "FILE LOCKED" error code .. 
Copy T/S List sector's track number from d~rectory to 
workarea and to last character of file name in the 
directory entry itself. . 
store a $FF over T/S List sector's track number 1n 
directory entry to mark file deleted. 
Copy T/S List sector's sector nu~ber to workarea. 
Write directory sector back to d~sk. 
Read next T/S List sector (AFSE) . 
If no more exist, write VTOC and exit file manager. 
Otherwise, select T/S List buffer (AFOC). 
Index to first T/S pair. 
If track number is zero or minus, skip it. 
Otherwise, free the data sector by updating the VTOC 
bit map (AD89) . 
Index to next T/S pair. 
If more, go to ADSE. 
Get T/S of next T/S List sector from thi s one. 
Free this T/S List sector (AD89) . 
Go process next one, if any (go to AD54). 
Otherwise, write VTOC and exit file manager. 

· AD89-AD97 Free a sector. 
Call B2DD to deallocate sector in VTOC bit map. 
zero the sector allocation area of the workarea. 
Return to caller. 

AD98-AE2E CATALOG function handler. 
Initialize file manager workarea (ABDC). 
Set V value to zero (complimented=$FF) . 
Read the VTOC sector (AFF7) . 
Set up a counter for 22 lines before waiting for 
the keyboard. 
Skip 2 lines on the screen. 
Print "DISK VOLUME". 
Convert Volume number and print it (AE42). 
Skip 2 more lines. 

ADCA Read next directory sector. 
If no more exist, exit file manager. 
Set index to first entry. 

ADDl Get track number. 
If zero, exit file manager. 
If minus, skip entry (deleted file). 
Print "*"" if file is locked (check file type byte). 
Use file type as index into file type name table at 
B3A7 and ·print single character found there. 

8-25 



Print a blank. 
Convert and .print the number of sectors in the file. 
Print a blank. 
Index to filename. 
Print file name. 
Skip to next line. 
Advance index to next directory entry. 
If there are more, go to ADDl. 
If not, go to ADCA to read next directory sector. 
Exit when finished. 

AE2F-AE41 Skip a line on CATALOG printout. 
Output a carriage return. 
Decrement line counter. 
If still nonzero, exit. 
Othe·rwise, wait for keyboard keypush. 
Then reset counter to 21 lines. 
And return to caller. 

AE42-AE69 Convert the number stored ·a.t $44 to a three character 
printable number and print it. 

AE6A-AE7D Restore file manager workarea from file buffer. 
Select file manager workarea buffer. 
Set return code in parmlist to zero initially. 
Copy 45 byte saved image of file manager workarea in 
file buffer to real f .ile manager workarea. 
Exit to caller. 

AE7E-AE8D Save file manager workarea in file buffer. 
Select file manager workarea buffer. 
Copy 45 byte workarea to file buffer. 
Exit to caller. 

AE8E-AF07 !NIT function handler. 

8-26 

Initialize the file manager workarea (ABDC). 
Call RWTS to format the diskette (BOSS) • 
Copy V value to VTOC buffer. 
Start track to allocate next value at $11. 
And direction of allocation as $01 (forward) • 
Zero VTOC bit map (all sectors in use). 
Skipping the first three tracks and track $11, ~opy 
the 4 byte bit mask (B3AO) to each track entry 1n 
the VTOC bit map to free the sectors. This leaves the 
first three tracks and the catalog track marked in 
use. 
Zero the directory sector buffer. 
Point to directory sector buffer. 
Set track $11 in RWTS parmlist. 
Set up link from this directory sector to next (track 
$11, sector-1). 
Call RWTS to write directory ·sector. 
Write each sector on track in this way except for 
sector zero. 
On last sector (sector 1) zero link pointer. 
Point RWTS parms at DOS load point (B7C2) • 
Write DOS image onto tracks 0-2 (B74A). 
Exit file manager. 

AF08-AF1C 
•~.~~-,• AF08 

1 

AFOC 
AFlO 

AF34-AF4A 

AF4B-AF5D 

AFSE-AFDB 

AFBS 

Select a buffer by setting $42,$43 to point to it. 
Select file manager workarea buffer in file buffer. 
Select T/S List sector buffer in file buffer. 
Select data sector buffer in file buffer. 
Exit to caller when $42,$43 are set. 

Checkpoint write data sector buffer to disk. 
Test flag to see if buffer was changed since last 
read/write. 
If not, exit to caller. 
Otherwise, set up RWTS pointer (AFE4). 
Call RWTS to write sector. 
Reset flag to indicate data sector no longer in need 
of a checkpoint. 
Exit to ca·ller. 

Checkpoint write T/S List sector buffer to disk. 
Test flag to see if buffer was changed since last 
read/write. 
If not, exit to caller. 
Otherwise, set up RWTS pointer (AF4B). 
Call RWTS to write sector. 
Reset flag to indicate T/S List sector no longer in 
need of checkpoint. 
Exit to caller. 

Prepare for RWTS call with a T/S List sector. 
Copy address of T/S List buffer to RWTS parmlist. 
Get track/sector of sector. 
Exit to caller. 

Read a T/S List sector to file buffer. 
(CARRY flag is set at entry to indicate whether the 
first T/S List for the file is wanted (C=O) or the 
next (C=l). 
Memorize carry flag entry code. 
Checkpoint current Tjg List sector if necessary. 
Set up for RWTS (AF4B) • 
Select T/S List buffer (AFOC}. 
Is first or next wanted? 
If first, go to AFBS to continue. 
Otherwise, get link to next T/S List from this one. 
If link is non-zero, use it to finu next one and go 
to AFBS. 
Otherwise, we are out of T/S Lists for this file. 
If we are reading file, exit with error code. 
Otherwise, allocate a new sector (8244). 
Point old T/S List sector to new one's track/sector. 
Write old T/S List sector back to disk. 
Zero the buffer. to form new T/S List sector. 
Compute and store the· relative sector number of the 
first sector listed in this sector at +5,+6 into the 
buffer. 
Set RWTS opcode to write new T/S List sector to disk. 
Set RWTS opcode to read old T/S List (unless we just 
allocated it above). 
Set track and sector and call RWTS to read old list 
or write new list. 
Compute relative sector number of last sector (plus 
one) in this list and sto·re in work area. 
Exit to caller with normal return code. 

8-27 



AFDC-AFE3 Read a data sector. 
Set up for RWTS (AFE4). 
Set RWTS READ opcode and go to RWTS driver to do it. 

AFE4-AFF6 Prepare for RWTS with data sector. 
Copy address of data sector buffer to RWTS parmlist 
Get its track/sector. · 
And exit to caller. 

AFF7-B010 Read/write the VTOC buffer. 
AFF7 Read VTOC entry, go to AFFD. 
AFFB Write VTOC entry, fall through. 
AFFD Common code. 

Copy VTOC sector buffer address to RWTS parmlist 
Ge~ its track number and use sector $00. · 
Ex1t through RWTS driver. 

BOll-B036 Read a directory sector. 
(If CARRY flag is zero on entry, read first directory 
sector. If CARRY is one, read next) 
Memorize entry code. 
Set buffer pointers (B045). 
First or next? 
If first, get track/sector of directory sector from 
VTOC at offset +1,+2. 
Otherwise, get track/sector from directory sector at 
offset +1!+2. If track is zero, exit with error code 
(end of d1rectory) . · 
Call RWTS to read sector. 
Exit with normal return code. 

B037-B044 Write directory sector. 
Set buffer pointers. 
Find its track/sector in workarea. 
Exit through RWTS to write it. 

B045-B05l Prepar7 for RWTS for directory buffer. 
Co~y d1rectory buffer address to RWTS parmlist. 
Ex1t to caller. 

B052-BOBS 

BOSS 

8-28 

Read/Write Track/Sector (RWTS) driver. 
Set track/sector in RWTS parmlist. 
Set command code (read,write,etc.) 
If writing, set flag (BSDS). 
Set volume number expected in parmlist. 
Set slot*l6 in parmlist. 
Set drive in parmlist. 
Set sector size in parmlist. 
Set IOB type in parmlist ($01) . 
Call RWTS, passing parmlist pointer. 
Copy true volume found to file manager parmlist. 
Reset volume expected field in RWTS parmlist. 
If an error did not occur, exit to caller 
Otherwise, get return code. · 
Translate vol mismatch to RC=7, write protected to 
RC=4 and all other errors to RC=8 (I/O error). 
Exit file manager now. 

BOB6-Bl33 

BOF3 

Bll4 

Read next data sector (if necessary). 
Is the current file position in the current data 
sector now in memory? 
If so, go to Bl2C. 
Otherwise, checkpoint data sector buffer. 
Is the current file position prior to or after this 
T/S List's domain? 
If not, go to BOF3. 
Otherwise, read each T/S List for the file, starting 
with the first, until the prop€r one is· found. 
If it is never found, exit with error (ran off end of 
file reading). 
Data is in this T/S List sector. 
Compute the displacement to the proper entry in this 
T/S List sector. 
Select the T/S List buffer. 
Get the track of the data sector wanted. 
If non-zero, go to Bll4. 
Otherwise, if not writing, exit with error (no data 
to read there). 
If writing, allocate a new sector and store its 
track/sector location in the list at this point 
(Bl34). 

Go to Bl20. 
Read old data sector, using the track/sector found 
in the T/S List entry. 

Bl20 · save number of sector last read in workarea. 
Bl2C Select data buffer. 

Get byte offset and exit normally to caller. 

Bl34-Bl5A Add a new data sector to file. 
Allocate a sector (B244). 
Put track/sector numbers in T/S List entry. 
Select data buffer and zero it. 
Set flags to indicate that the T/S List sector and 
the data sector buffer require checkpoints. 
Exit to caller. 

Bl5B-Bl93 Increment record number and byte offset into file. 
Copy current record number and byte offset to file 
manager parameter list to pass back to caller. 
Increment byte offset in workarea. 
If byte offset equals record length, set_ byte offset 
back to zero and increment record numbe-r. 
Return to caller·-

Bl94-BlAl .Increment file position offset. 
Increment byte offset into current ~ector by one. 
If- at end of sector, . increment sector number by one. 
Return to caller. 

BlA2-BlB4 Copy and advance range address. 
Copy range address from file manager parmlist to $42. 
Increment range ·address in parmlis·t for next .time 
through. 
Return · to caller. 

8-29 



BlBS-BlCB Decrement range length. 
Decrement range length in file manager parmlist by 
one. 
If zero, exit file manager. 
Otherwise, exit to caller. 

BlC9-B21B Locate or allocate a directory entry in the catalog. 
Read the VTOC sector (AFF7) . 
Set $42,$43 to point to file name we are looking for. 
Set pass number to one (locate file) . 

BlDB Initialize directory sector offset (first sector). 
BlEl Increment sector offset. 

Read directory sector. 
If at end of directory , go to B23A. 
Set entry index to first file entry. 

BlEB Get track . 
If deleted, skip entry, go to B217. 
If empty, end of directory, go to B212. 
Advance index to filename in directory. 
Compare against filename wanted. 
If they match, return entry index and exit . 

B20B If not, advance index to next entry in sector and 
loop back to BlEB. 
If at end of sector, go to BlEl to get next sector. 

B212 If pass number is one, go to BlDB to start second 
pass . 

B217 If pass number is one, go to B20B to skip entry. 
If second pass, fall through to allocate entry . 

B21C-B22F Copy file name to directory entry. 
Advance index to file name field in director y entry. 
Copy 30 by te filename to directory entr y . 
Reload director y index and return to caller. 

B230-B239 Advance index to next directory entr y in sector. 
Add 35 (length of entry ) to index. 
Test for end of sector and return to caller. 

B23A-B243 Switch to second pass in directory scan. 
If on pass one, switch to pass 2 and go to BlDB . 
If on pass two, exit file manager with "DISK FULL" 
error. 

B244-B2C2 Allocate a disk sector. 

8-30 

Is there a track currently allocated to this file? 
If not, go to B26A to find a track with free sectors. 

B249 Otherwise, decrement sector number to get next 
possible free sector number. 
If there are no more sectors on this track, go to 
B265 to find a new track. 
Otherwise , rotate the track bit mask by one position 
and get the bit for this sector . 
If the sector is in use , loop back to B249 . 
Otherwise , add one to file ' s sector count . 
Pass back sector number (track number is at B5Fl). 
And re tu r n to caller . 

B265 Indicate no track is being used at present . 
B26A Reset allocation flag to allow at least one complete 

search oE all t racks for some space . 
Read VTOC sector. 

B272 Get last track allocated from and add direction value 
to get next track to examine (+1 or -1). 
Are we back to track 0? 
If so , go to B284 . 
Otherwise, are we past track 34? 
If so , reverse direction and go to B28E. 

B28 4 Is this the second time we have come to track 0 ? 
(chec k allocation flag) • 
If so, exit with "DISK FULL" error. 
Otherwise , set allocation flag to remember this. 
Se t direction to forward (+l) . 

B28E Begin at directory track (17 + or - l). 
Compute bit map index (tracknumber*4). 
Copy track bit map from VTOC to workarea, watching 
to see if all four bytes are zero (track is full) . 
In any case, set all four bytes in VTOC to zero 
(allocate all sectors). 
If no free sectors in the track, go to B272 to try 
next track . 
Otherwise, write VTOC to disk to insure file's 
integrity. 
Set sector number to last sector in track. 
Go to B249 to allocate one of its free sectors to 
the file. 

B2C3-B2DC Release pre-allocated sectors in current track and 
checkpoint the VTOC. 
Has a track been allocated to the file? 
If not , exit to caller . 
Otherwise , read VTOC. 
Get next sector which could have been used (number 
of times track map was shifted during allocation). 
Call B2DD to shift track bit map back and merge it 
back into the VTOC bit map. 
Indicate no track has been allocated. 
Exit to caller. 

B2DD-B2FF Free one or more sectors by shifting mask in file 
manager's allocation area back into VTOC bit map. 
(If CARRY is set, current sector is freed also) 
Rotate entire 4 byte track bit mask once. 
Repeat for as many sectors as were allocated. 
Compute index into VTOC for this track's map. 
If zero, exit. 
Merge ("OR") file manager's bits with those already 
in VTOC, freeing sectors which were never used by 
the file. 
Return to caller . 

B300-B35E Calculate file position . 
Set record number passed in file manager parmlist 
in workarea and in sector offsets . 
Clear sector offset high part . 
Pe r form a 16 bit multiply as follows: 
3 by t e fi l e position = record number times record 
leng t h . 
Add the byte offset from the parmlist into the three 
byte file position value (B5E4 , B5E5 , B5E6) . 
Re turn t o caller . 

8-31 



B35F-B37D Erro r exits. 
B35F RC= l "LANGUAGE NOT AVAILABLE" 
B363 RC= 2 "RANGE ERROR" (bad opcode ) 
B367 RC= 3 "RANGE ERROR" (bad subcode) 
B36B RC =4 "WRITE PROTECTED" 
B36F RC=S "END OF DATA" 
B37 3 RC=6 "FILE NOT FOUND" 
B377 RC=9 "DISK FULL" (all files closed) 
B37B RC=A "FILE LOCKED" 

B37F-B396 Exit file manager. 
B37F Exit with no errors. 

Get return code of zero. 
Clear carry flag and go to B386. 

B385 Set carry flag to indicate error. 
B386 Save return code in parmlist. 

Clear monitor status register ($48) after RWTS has 
probably tromped on it. 
Save file manager workarea to file buffer (AE7E) • 
Restore processor status and stack registe r. 
Exit to original caller of file manager. 

B397-B3A3 File manager scratch space. 
B397 Track / sector of current d irectory sector (2 by tes). 
B39B S register save area. 
B39C Directory index. 
B39D Catalog line counter / Directory lookup flag / Etc. 
B39E LOCK/ UNLOCK mask / Allocation flag / Etc. 
B3AO Four byte mask used by INIT to free an e ntir.e track 

i n the VTOC bit map. 

B3A4-B3A6 Decimal conversion table (1,10,100). 

B3A7-B3AE File type name table used by CATALOG. 
File types are: T,I,A,B,S,R,A , B, corresponding to 
hex values: $00, $01, $02, $04, $08, $10, $20, and 
$40 respectively. 

B3AF-B3BA ASCII text "DISK VOLUME " backwards. Used by CATALOG. 

B3BB-B4BA VTOC sector buffer. 

8-32 

B3BC Track / sector of first directory sector. 
B3BE DOS release number (1, 2, or 3). 
B3Cl Volume number of diskette. 
B3E2 Number of entries in each T/ S List sector. 
B3EB Track to allocate next. 
B3EC Direction of track allocation (+1 or -1) 
B3EF Number of tracks on -a disk. 
B3FO Number of sectors on a disk. 
B3Fl Sector ·· size in bytes (2 bytes) 
B3F3 Track 0 bit map 
B3F7 Track 1 bit map 

etc. 
B47B Track 34 bit map 

B4BB- B5BA DIRECTORY sector buffer. 
B4BC Track/sector of next directory sector. 
B4C6 Firs t directory entry and 

Track of T/ S List 
B4C7 Sector of T/S List 
B4C8 File type and lock bit 
B4C9 F i lename field (30 bytes) 
B4E 7 size of file in sectors (including T/ S List(s)). 

BSBB-BSDO Fi l e manager parameter list . 
BSBB Opcode 
BSBC Subcode 
BSBD Eight bytes of variable parameters depending on 

opcode . 
BSCS Re t urn code. 
BSC7 Address of file manager workarea buffer . 
BSC9 Address of T/S Lis t sector buffer . 
BSCB Address of data sector buffer . 
BSCD Address of next DOS buffer on chain (not used) . 

B5Dl- B5FD Fi l e manager workarea . 
B5Dl lst T/S List sector ' s t rack/sector . 
B5D3 Curren t T/S List sector ' s track/sector . 
BSDS Flags: 80=T/S List needs checkpoint 

40=Da t a sector needs checkpoint 
20=VTOC sector needs checkpoint 
02=Last operation was write 

B5D6 Current data sector ' s track/sector. 
B5D8 Directory sector index for file entry. 
B5D9 I ndex into directory sector to directory entry for 

file . 
BSDA Number of sectors described by one T/ S List . 
BSDC Relative sector number of first sector in list . 
BSDE Relative sector number +1 of last sector in list . 
BSEO Relative sector number of last sector read . 
B5E2 Sector length in bytes. 
B5E4 File position (3 bytes) sector offset, by te offset 

into that sector . 
B5E8 Record length from OPEN . 
BSEA Rec ord number . 
BSEC Byte offset into record . 
BSEE Number of sectors in file . 
BSFO Sector allocation area (6 bytes) . 

Next sector to allocate (shift count) 
Track being allocated 
Four byte bit map of track being allocated , rota t ed 
to next sector to a l locate . 

B5F6 File type . 
B5F7 Slot number times 16 . 
B5F8 Drive number . 
B5F9 Volume number (complemented) . 
BSFA Track number. 

BSFE- BSFF Not used . 

8-33 



B600-B6FF Start of Boot 2/RWTS image. 
B600 Boot 1 image which can be written to INITed disks 

on track 0, sector 0. 
B65D DOS 3.3 patch area. 
B65D APPEND patch flag. 
B65E APPEND patch. Com~ here when file manager driver 

gets an error other than end of data. 
Locate and free the file buffer. 
Clear the APPEND flag. 
Get the error number and go print error (A6D2). 

B671 APPEND patch. Come here from APPEND command handler 
to increment record number if APPEND flag is set and 
to clear the flag. Exit through POSITION. 

B686 VERIFY patch. Come here from I/0 a range of bytes 
routine to exit through VERIFY after SAVE or BSAVE. 

B692 APPEND patch. Come here from file manager driver if 
return code was END OF DATA. 
Test the file position for zero. 
If non-zero, set APPEND flag on and return to caller. 
If zero (at start of file) , copy record number and 
byte offset to file manager parmlist and return a 
zero data byte to caller. 

B6FE Page address of first page in Boot 2. 
B6FF Number of sectors (pages) in Boot 2. 

B700-B749 DOS 2nd stage boot loader. 
Set RWTS parmlist to read DOS from disk. 
Call Read/W·rite group of pages ($B793). 
Create new stack. 
Call SETVID ($FE93) and SETKBD ($FE89) • 
Exit to DOS coldstart ($9D84). 

B74A-B78C Put DOS on tracks 0-2. 
Set RWTS parmlist to write DOS to disk. 
Call Read/Write group of pages ($B793). 
Exit to caller. 

B78D-B792 Unused. 

B793-B7B4 Read/Write a group of pages. 
call RWTS through external entry point ($B7B5) • 
Exit to caller. 

B7B5-B7Cl Disable interrupts and call RWTS. 

B7C2-B7D5 Set RWTS parameters for writing DOS. 

B7D6-B7DE Zero current buffer. 
Zero 256 bytes pointed to by $42,$43. 
Exit to caller. 

B7DF-B7E7 DOS 2nd stage boot loader parmlist. 

8-34 

B7DF Unused. 
B7EO Number of pages in 2nd DOS load. 
B7El Number of sectors to read/write. 
B7E2 Number of pages in 1st DOS load. 
B7E3 INIT DOS page counter. 
B7E4 Pointer to RWTS parmlist (2 bytes). 
B7E6 Pointer to 1st stage boot location (2 bytes). 

B7E8-B7F8 RWTS parmlist. 
B7E8 Table type. Must be $01. 
B7E9 S~ot number times 16. 
B7EA Drive number ($01 or $02). 
B7EB Volume number expected (0 matches any volume) • 
B7EC Track number ($00 to $22). 
B7ED Sector number ($00 to $OF) • 
B7EE Pointer to Device Characteristics Table (2 bytes). 
B7FO Pointer to user data buffer for READ/WRITE (2 bytes). 
B7F2 Unused. 
B7F3 Byte count for partial sector (use $00 for 256) • 
B7F4 Command code: O=SEEK, l=READ, 2=WRITE, 4=FORMAT. 
B7F5 Error code: (valid if carry set) $10=Write protect, 

$20=Volume mismatch, $40=Drive error, $08=INIT error. 
B7F6 Volume number found. 
B7F7 Slot number found. 
B7F8 Drive number found. 

· s7F9-B7FA Unused. 

B7FB-B7FE Device Characteristics Table (OCT). 
B7FB Device type (should be $00). 
B7FC Phases per track (should be $01) • 
B7FD Motor on time count (2 bytes - should be $EF, $D8). 

--B7FF Unused. 

B800-B829 PRENIBBLE routine. 
Converts 256 (8 bit) bytes to 342 (6 bit) "nibbles" 
of the form OOXXXXXX. 
Pointer to page to convert stored at $3E,$3F. 
Data stored at primary and secondary buffers. 
On entry: $3E,$3F contain pointer to user data. 
On exit: A-reg:unknown 

X-reg:$FF 
Y-reg:$FF 
Carry set 

Exit to caller. 

B82A-B8B7 WRITE routine. 
Writes prenibbilized data from primary and secondary 
buffers to disk. 
Calls Write a byte subroutine. 
Writes 5 bytes autosync, s .tarting data marks 
($D5/$AA/$AD), 342 bytes data, one byte checksum, and 
closing data marks ($DE/$AA/$EB). 
Uses Write Translate Table ($BA29). 
On entry: X-reg:Slot number times 16 
On exit: Carry set if error 

If no error: 
A-reg:unknown 
X-reg:unchanged 
Y-reg:$00 
Carry clear 
Uses $26,$27,$678 

Exit to caller. 

B8B8-B8Cl Write a byte subroutine. 
Timing critical code used to write bytes at 32 cycle 
intervals. 
Exit to caller. 8-35 



B8C2-B8DB POSTNIBBLE routine. 
Converts 342 (6 bit) "nibbles" of the form OOXXXXXX 
to 256 (8 bit) bytes. 
Nibbles stored at primary and secondary buffers. 
Pointer to data page stored at $3E,$3F. 
On entry: X-reg:Slot number times 16 

$3E,$3F:pointer to user data 
$26:byte count in secondary buffer ($00) 

On exit: A-reg:unknown 
X-reg:unknown 
Y-reg:byte count in secondary buffer 
Carry set 

Exit to caller. 

B8DC-B943 READ routine. 
Read a sector of data from disk and store it at 
primary and secondary buffers. (First uses secondary 
buffer high to low, then primary low to high) 
On entry: X-reg:Slot times 16 

Read mode (Q6L,Q7L) 
On exit: Carry set if error. 

If no error: 
A-reg:$AA 
X-reg:unchanged 
Y-reg:$00 
Carry clear 
Uses $26 

Exit to caller. 

B944-B99F RDADR routine. 
Read an Address Field. 
Reads starting address marks ($D5/$AA/$96) address 
info~mation (volume/track/sector/checksum) ; and 
clos1ng address marks ($DE/$AA). 
On entry: X-reg:Slot number times 16 

Read mode (Q6L,Q7L) 
On exit: Carry set if error. 

If no error: 
A-reg:$AA 
X-reg:unchanged 
Y-reg:$00 
Carry clear 
$2F: Volume number found 
$2E: Track number found 
$2D: Sector number found 
$2C: Checksum found 
Uses $26,$27 

Exit to caller. 

B9A0-B9FF SEEKABS routine. 

8-36 

Move disk arm to desired track. 
Calls arm move delay subroutine ($BA00) . 
On entry: X-reg:Slot number times 16 

A-reg:Desired track (halftrack for single 
phase disk). 

$478:Current track. 

On exit: A-reg:unknown 
X'-reg:unchanged 
Y-reg:unknown 
$2A and $478:Final track 
$27:Prior track (if seek needed) 
Uses: $26,$27,$2A,$2B 

Exit to caller. 

BA00-BA10 Arm move delay subroutine. 
Delays a specified number of 100 Usee intervals. 
On entry: A-reg:number of 100 Usee intervals. 

$46,$47:Should contain motor on time count 
($EF,$D8) from Device Characteristics Table 
$478:Current track. 

On exit: A-reg:$00 
x-reg:$00 
Y-reg:unchanged 
Carry set 

Exit to caller. 

~ BA11-BA28 Arm move .delay table. 
~ Contains values of 100 Usee intervals used during 

Phase-on and Phase-off of stepper motor. 

BA29-BA68 Write Translate Table. 
Contains 6 bit "nibbles" used to convert 8 bit bytes. 
Values range from $96 to $FF. 
Codes with more than one pair of adjacent zeros or 
with no adjacent ones are excluded. 

BA69-BA95 Unused. See note on page 8-41. 

BA96-BAFF Read Translate Table. 
Contains 8 bit bytes used to convert 6 bit "nibbles". 
Values range from $96 to $FF. 
Codes with more than one pair of adjacent zeros or 
with no adjacent ones are excluded. 

BBOO-BBFF Primary Buffer. 
BCOO-BC55 Secondary Buffer. 

BC56-BCC3 Write. Address Field during initialization. 
Calls Write double byte subroutine. 
Writes number of autosync bytes contained in Y-reg, 
starting address marks ($D5/$AA/$96), address 
information (volume/track/sector/checksum) , closing 
address marks ($DE/$AA/$EB). 
On entry: X-reg:Slot number times 16 

Y-reg:number of autosync to write 
$3E: $AA 
$3F: sector number 
$41: volume number 
$44: track number 

On exit: A-reg:unknown 
X-reg:unchanged 
Y-reg:$00 
Carry set 

Exit to caller. 

8-37 



BCC4-BCDE Write double byte subroutine. 
Timing critical code that encodes 
into even and odd bits and writes 
intervals . 
Exit to caller. 

address information 
it at 32 cycle 

BCDF-BCFF Unused. 

BDOO-BDlB 

BD19-BD33 

BD34-BD53 

BD54-BD73 

BD74-BDBF 

BD90-BDAA 

BDAB-BDBB 

BDBC-BDEC 

8-38 

Main entry to RWTS. 
Upon entry, store Y-reg and A-reg at $48,$49 as 
pointers to the IOB. 
Initialize maximum number of recals at 1 and seeks 
at 4. 
Check if the slot number has changed. If not, 
branch to SAMESLOT at $BD34. 
Update slot number in IOB and wait for old drive 
to turn off. 
SAMES LOT 
Enter read mode and read with delays to see if disk 
is spinning. 
Save result of test and turn on motor just in case. 
Move pointers in IOB to zero page for future use. 
Device Characteristics Table pointer at $3C,$3D 
and data buffer pointer at $3E,$3F. 
set up $47 (motor on time) with $DB from DCT. 
Check if the drive number has changed. If not, 
branch to $BD74. 
If so, change test results to show d:ive o~f. 
Select appropriate drive and save dr1ve be1ng used 
as high bit of $35. l=drive 1, O=drive 2. 
Get test results. If drive was on, branch to $BD90. 
Wait for capacitor to discharge using MSWAIT 
subroutine at $BAOO. 
Get destination track and go to it using MYSEEK 
subroutine at $BESA. . 
Check test result again and if drive was on, 
branch to TRYTRK at $BDAB. 
Delay for motor to come up to speed. 
TRYTRK 
Get command code. 
If null, exit through ALLDONE at $BE46, turning drive 
off and returning to caller. 
If =4, branch to FORMDSK at $BEOD. 
Otherwise, move low bit into carry (set=read, 
clear=write) and save value on status reg. 
If write operation, data is prenibbilized via a call 
to PRENIB16 at $B800. 
Initialize maximum retries at 48 and read an 
Address Field via RDADR16 at $B944. 
If read was good, branch to RDRIGHT a~ $BD~D. 
If bad read decrement retries, and, 1f st1ll some 
left try ag~in. Else, prepare to recalibrate. 
Decrement recal count. If no more, then indicate 
drive error via DRVERR at $BE04. . 
Otherwise reinitialize reseeks at 4 and recal1brate 
arm. Mov~ to desired track and try again. 

BDED-BE03 RDRIGHT 
veri£y on correct track. If so branch -to RTTRK 
at $BE10. 
If not , set · correct traok via SETTRK subroutine at 
$BE95 .and decrement reseek count .. 
If not zero then reseek track. If zero, then recal. 

BE04-BEOA DRVERR 
Clean up stack and status reg. 
Load A-reg with $40 (drive error) 
Goto HNDLERR at $BE48. 

BEOB-BEOC Used to branch to ALLDONE at $BE46. 
BEOD-BFOF FORMDSK 

Jump to DSKFORM at $BEAF. 
BE10-BE25 RTTRK 

Check volume number found against volume number 
wanted. 
If no volume was specified, then no error. 
If specified volume doesn't match, load A-reg with 
$20 (volume mismatch error) and exit via HNDLERR 
at $BE48. 

BE26-BE45 CRCTVOL 
Check to see if sector is correct. 
Use ILEAV table at $BFBB for software sector 

.interleaving. 
If wrong sector, try again by branching back to 
TRYADR at $BDCl. 
If sector correct, find out what operation to do. 
If write, branch to WRIT at $BE5l. 
Otherwise, read data via READ16 ($BBDC). 
If read is good, then postnibble data via POSTNB16 
($BBC2) and return to caller with no error. 

BE46-BE47 ALLDONE 
Skip over set carry instruction in HNDLERR. 

BE48-BE50 HNDLERR 
Set carry. 
Store . A-reg in IOB as return code. 
Turn off motor. 
Return to caller. 

BE5l-BE59 WRITE 
Write a sector using WRITE16 ($B82A). 
If the write was good, exit via ALLDONE ($BE46). 
If bad write, load A-reg with $10 (write protect 
error) and exit via HNDLERR ($BE48). 

BESA-BEBD MYSEEK 
Provides nece$Sary housekeeping before going to 
SEEKABS routine. 
Determines number of phases per track and stores 
track information in appropriate slot dependent 
location. 

BE8E-BE94 XTOY routine. 
Put slot in Y-reg by transferring X-reg divided 
by 16 into Y-reg. 

BE95-BEAE Set track number. 

8-39 

J 



BEAF-BFOC INIT command handler 
Provides setup for initializing a disk. 
Get the desired volume number from the IOB. 
Zero both the primary and secondary buffers. 
Recalibrate the disk arm to track 0. 
Set the number of sync bytes to be written between 
sectors to $28 (40.). 
Call TRACK WRITE routine for the actual formatting. 
Allow 48 retries during initialization. 
Double check that the first sector found is zero 
after calling TRACK WRITE. 
Increment the track number after successfully 
formatting a track. 
Loop back until 35 tracks are done. 

BFOD-BF6l TRACK WRITE routine. 
Start with sector zero. 
Preceed it with 128 self-sync bytes. 
Follow them with sectors 0 through 15 in sequence. 
Set retry count for verifying the track at 48. 
Fill the sector initilizat±on map with positive 
numbers. 
Loop through a delay period to bypass most of the 
·initial self-sync bytes. 
·Read the first Address Field found. 
If the read is good and sector zero was found, 
enter the VERIFY TRACK routine. 
Decrement the sync count by 2 (until it reaches 16 
at which time it is decrement·ed by l). 
If sync count is greater than or equal to 5, exit 
via $BF7l. 
If not, set carry and return to caller. 

BF62-BF87 VERIFY TRACK routine. 
This routine reads all 16 .sectors from the track that 
was just formatted. 
If an error occurs during the read of either the 
Address Field or the Data Field; the number of 
retries is decremented. 
The routine continues reading until retries is zero. 
Calls Sector Map routine ($BF88) . 

BF88-BFA7 Sector .Map routine. 
This routine marks the sector initialization map as 
each sector is verified. 
If an error occurs, ·the routine exits through $BF6C, 
which decrements the number of retries and continues 
if that value is greater than zero. 
Upon completion of track zero, the sync count is 
decremented by two if it is at least 16. 

BFA8-BFB7 Sector Initialization Map used . to mark sectors as 
they are initialized. 
Contains a $30 prior to initialization of a track. 
Value changed to $FF as each sector is completed. 

BFB8-BFC7 Sector Translate Table 
Sector interleaving done w-ith software. 

8-40 

BFC8-BFD8 Patch area starts here. 
Patch from $B74l to zero language card during boot. 
Call SETVID ($FE93). 
Unprotect Language Card (if present). 
Store $00 at $EOOO. 
Exit through SETKBD ($FE89) and DOS coldstart. 

BFD9-BFDB Unused. See note below. 

BFDC-BFE5 Patch called from $AOE2. 

BFE6-BFEC 

!it BFED-BFFF 

Set three additional defaults (Byte offset~O). 
Return to caller. 

Patch called from $A6D5. 
Call $A75B to reset state 
Mark RUN not interrupted. 
Return to caller. 

Patch called from $B377. 

and set warmstart flag. 

Call $AE7E to save file manager ·workarea. 
Restore stack. 
Close all open files ($A316) . 
Save stack again. 
Exit through $B385 ("DISK FULL ERROR"). 

~NOTE: In January 1983, minor revisions were made to DOS 3.3 
(see page 2-4) . The area from BA69-BA93, which was 
previously unused, was used to add three new patches. The 
second of these patches is an extension of the previous 
patch at $BFC8, and requires the use of $BFD9-$BFDB, 
previously unused. The three patches are documented below. 

Patch called from $A6BB. 
Clears the APPEND flag ($B65D) if last command 
was APPEND. Return to caller. 

BA76-BA8l Patch called from $BFD6. 
Set MODE flag to $FF (used by Apple SO-column 
firmware). Turn off 80-column display. 
Turn off alternate character set. 
Exit through $FB2F (Monitor INIT). 

BA84-BA93 Patch called from $B683. 
Set file manager parameters, byte offset, and 
record number to zero. Save stack in stack 
register save area. 
Exit through $B37F (exit file manager). 

In addition, the calculate file position routine ($B300-
$B35E) has been modified to clear the carry before adding 
the byte offset to the current byte position. 

8-41 



DOS ZERO PAGE USAGE 

BYTE 
24 
26,27 

28,29 
2A 

2B 

2C 
2D 
2E 
2F 
33 
35 
36,37 
38,39 
3C 

3D 

3E,3F 

40,41 

41 
42,43 
44,45 
46,47 
48,49 
4A,4B 

4C,4D 
67,68 
69,6A 
6F,70 
73,74 
76 
AF,BO 
CA,CB 
CC,CD 
D6 
D8,D9 

8-42 

USE 
Cursor horizontal (DOS) 
Sector read buffer address (ROM) 
Scratch space (RWTS) 
BASL/BASH (DOS) 
Segment merge counter (ROM,BOOT) 
Scratch space (RWTS) 
BOOT slot*l6 (ROM) 
Scratch space (RWTS) 
Checksum from sector header (RWTS) 
Sector number from sector header (RWTS) 
Track number from sector header (RWTS) 
Volume number from sector header (RWTS) 
Prompt character (DOS) 
Drive number in high bit (RWTS) 
CSWL,CSWH (DOS) 
KSWL,KSWH (DOS) 
Workbyte (ROM) 
Me·rge workbyte (BOOT) 
Device characteristics table address (RWTS) 
Sector number (ROM) 
Device characteristics table address (RWTS) 
Address of ROM sector-read subroutine (BOOT) 
Buffer address (RWTS) 
DOS image address (BOOT) 
File buffer address (DOS) 
Format track counter (RWTS) 
Buffer address (DOS) 
Numeric operand (DOS) 
Scratch space (RWTS) 
IOB address (RWTS) 
INTEGER BASIC LOMEM address (DOS) 
Format diskette workspace (RWTS) 
INTEGER BASIC HIMEM address (DOS) 
APPLESOFT BASIC PROGRAM START (DOS) 
APPLESOFT BASIC VARIABLES START (DOS) 
APPLESOFT BASIC STRING START (DOS) 
APPLESOFT BASIC HIMEM address (DOS) 
APPLESOFT BASIC line number high (DOS) 
APPLESOFT BASIC PROGRAM END (DOS) 
INTEGER BASIC PROGRAM START (DOS) 
INTEGER BASIC VARIABLES END (DOS) 
APPLESOFT BASIC PROGRAM protection flag (DOS) 
INTEGER BASIC line number (DOS) 
APPLESOFT BASIC ONERR (DOS) 

APPENDIX A 
EXAMPLE PROGRAMS 

This section is intended to supply the reader with utility 
programs which can be used to examine and repair diskettes •. 
These programs are provided in their source form to serve as 
examples of the programming necessary to interface practical 
programs to DOS. The reader who does not know assembly 
language may also benefit from these programs by entering 
them from the monitor in their binary form and saving them 
to disk for later use. It should be pointed out that the 
use of 16 sector diskettes is assumed, although most of the 
programs can be easily modified to work under any version of 
DOS. It is recommended that, until the reader is completely 
familiar with the operation of these programs, he would be 
well advised to use them only on an "expendable" diskette. 

~None of the programs can physically damage a diskette, but 
they can, if used improperly, destroy the data on a 

~diskette, requiring it to be re-INITialized. 

Five programs are provided: 

TRACK DUMP UTILITY 

This is an example of how to directly access the 
disk drive through its I/O select addresses. DUMP 
may be used to dump any given track in its raw, 
prenibbilized form, to memory for examination. This 
can be useful both to understand how disks are 
formatted and in diagnosing clobbered diskettes. 

ZAP DISK UPDATE UTILITY 

This program is. the backbone of any attempt to patch 
a diskette directory back together. It is also 
useful in examining the structure of files stored on 
disk and in applying patches to files or DOS 
directly •. ZAP allows its user to read, and 
optionally write, any sector on a diskette. As 
such, it serves as a good example of a program which 
calls Read/Write Track/Sector (RWTS). 

A-1 



!NIT 

FTS 

COPY 

REFORMAT A SINGLE TRACK 

This program will initialize a single track on a 
diskette. Any volume number ($00-$FF) may be 
specified. !NIT is useful in restoring a track whose 
sectoring has been damaged without reinitializing 
the entire diskette. DOS 3.3 and 48K is assumed. 

FIND T/S LISTS UTILITY 

FTS may be used when the directory for a diskette 
has been destroyed. It searches every sector on a 
diskette for what appear to be Track/Sector Lists, 
printing the track and sector location of each it 
finds. Knowing the locations of the T/S Lists can 
help the user patch together a new catalog using 
ZAP. 

CONVERT FILES 

COPY is provided as an example of direct use of the 
DOS File Manager package from assembly language. 
The program will read an input B-type file and copy 
its contents to an output T-type file. Although it 
could be used, for example, to convert files used by 
the Programma PIE editor for use by the Apple 
Toolkit assembler, it is not included as a utility 
program but rather as an example of the programming 
necessary to access the File Manager. 

STORING THE PROGRAMS ON DISKETTE 

The enterprising programmer may wish to type the source code 
for each program into an assembler and assemble the programs 
onto disk. The Apple Toolkit assembler was used to produce 
the listings presented here, and interested programmers 
should consult the documentation for that assembler for more 
information on the pseudo-opcodes used. For the 
non-assembly language programmer, the binary object code of 
each program may be entered from the monitor using the. 
following procedure. 

The assembly language listings consist of columns of 
information as follows: 

A-2 

The address of some object code 
The object code which should be stored there 
The statement number 
The statement itself 

For example •.. 

0800:20 DC 03 112 COPY JSR LOCFPL FIND PARMLIST 

indicates . that the binary code "20DC03" should be stored at 
0800 and · that this is statement 112. To enter a program in 
the monitor, the . reader must type in each address and its 
corresponding object code. The following is an example of 
how to enter ·the DUMP program: 

CALL -151 
0800:20 E3 03 · 
0803:84 00 
0805:85 01 
0807:A5 02 

•.• etc •.• 

0879:85 3F 
087B:4C 'B3 FD 
BSAVE DUMP,A$800,L$7E 

(Enter the monitor from BASIC) 

(Save prog~am to disk) 

Note that i -f a line (such as line 4 .in DUMP) has no object 
bytes associated with it, it may be ignored. When the 
program is to be run ... 

(Load program) 
(Get into monitor) 

BLOAD DUMP 
CALL -151 
02:11 N .800G (Store track to dump, run program) 

The BSAVE commands which must be used· with the other 
programs are: 

BSAVE ZAP,A$900,L$6C 
BSAVE !NIT ,A$800 ,L$8'9 
BSAVE FTS,A$900,L$DC 
BSAVE COPY,A$800,L$1EC 

A diskette containing ·these five programs is available at a 
reasonable cost directly from Quality Software, 6660 Reseda 
Blvd., Reseda, CA or telephone. (213) 344-6599. 

Also available from Quality Software is an expanded version 
of these utilities called BENEATH APPLE DOS' BAG OF TRICKS. 
See the page facing 1-1 for · more details. 

A-3 



DUMP - TRACK DUMP UTILITY 

The DUMP program will dump any track on a diskette in its 
raw, pre-nibbilized format, allowing the user to examine the 
sector address and data fields and the formatting of the 
track. This allows the curious reader to examine his own 
diskettes to better understand the concepts presented in the 
preceeding chapters. DUMP may also be used to examine most 
protected disks to see how they differ from normal ones and 
to diagnose diskettes with clobbered sector address or data 
fields with the intention of recovering from disk I/O 
errors. The DUMP program serves as an example of direct use 
of the DISK II hardware from assembly language, with little 
or no use of DOS. 

To use DUMP, first store the number of the track you wish 
dumped at location $02, then begin execution at $800. DUMP 
will return to the monitor after displaying the first part 
of the track in hexadecimal on the screen. The entire track 
image is stored, starting at $1000. For example: 

CALL -151 
BLOAD DUMP 

(Get into the monitor from BASIC) 
(Load the DUMP program) 

... Now insert the 
02:11 N 800G 

diskette to be dumped ..• 

The output might look 

1000- DS AA 96 AA AB 
1008- AA AB BA DE AA 
1010- 9E FF FF FF FF 
1018- AD AE B2 9D AC 
... etc ... 

(Store a 11 (track 17, the catalog 
track) in $02, N terminates the store 
command, go to location $800) 

like this .•. 

AA BB AB (Start of sector address) 
E8 co FF 
FF DS AA (Start of sector data) 
AE 96 96 (Sector data) 

Quite often, a sector with an I/O error will have only one 
bit which is in error, either in the address or data header 
or in the actual data itself. A particularly patient 
programmer can, using DUMP and perhaps a half hour of hand 
"nibbilizing" determine the location of the error and record 
the data on paper for later entry via ZAP. A thorough 
understanding of Chapter 3 is necessary to accomplish this 
feat. 

A-4 

0800: 

0800: 
0800: 
0800: 
0800: 
0800: 
0800: 
0800: 
0800: 
0800! 
0800: 
0800: 
0800: 
0800: 
0800: 

0800: 

0000: 
0002: 
003C: 
003E: 
0048: 

0800: 

1000: 
03E3: 
0309: 
FDED: 
FDB3: 

0800: 

COSO: 
C081: 
C082: 
C083: 
C084: 
COBS: 
C086: 
C087: 
COBS: 
C089: 
COSA: 
COBB: 
COSC: 
COSO: 
COSE: 
COSF: 

0800: 

0000 
0000 
0001 
0002 
0003 
0004 
0005 
0006 
0008 
OOOA 
oooc 
0000 
0001 
0002 
0004 
0000 
0010 
0020 
0040 
0080 

ORG $800 

4 *******************************************+*************** 
5 * 
6 * DUMP:THIS PROGRAM WILL ALLOW ITS USER TO DUMP AN ENTIRE * 
7 * TRACK IN ITS RAW FORM INTO MEMORY FOR EXAMINATION. * 
8 * 
9 * INPUT: $02 TRACK TO BE READ 

10 * * 
11 * OUTPUT:$1000 = ADDRESS OF TRACK IMAGE * 
12 * 
13 * ENTRY POINT: $800 
14 * * 
15 * PROGRAMMER: DON D WORTH 2/19/81 
16 * 
17 *********************************************************** 

19 * ZPAGE DEFINITIONS 

21 PTR 
22 TRACK 
23 AlL 
24 A2L 
25 PREG 

EQU $0 
EQU $2 
EQU $3C 
EQU $3E 
EQU $48 

WORK POINTER 
TRACK TO BE READ/WRITTEN 
MONITOR POINTER 
MONITOR POINTER 
MONITOR STATUS REGISTER 

27 * OTHER ADDRESSES 

29 BUFFER EQU 
30 LOCRPL EQU 
31 RWTS EQU 
32 COUT EQU 
33 XAM EQU 

35 * DISK 

37 DRVSMO EQU 
38 DRVSMl EQU 
39 DRVSM2 EQU 
40 DRVSM3 EQU 
41 DRVSM4 EQU 
42 DRVSMS EQU 
43 DRVSM6 EQU 
44 DRVSM7· EQU 
45 DRVOFF EQU 
46 DRVON EQU 
47 DRVSLl EQU 
48 DRVSL2 EQU 
49 DRVRD EQU 
50 DRVWR EQU 
51 DRVRDM EQU 
52 DRVWRM EQU 

54 * RWTS 

56 DSECT 
57 RPLIOB DS 
58 RPLSLT DS 
59 RPLDRV DS 
60 RPLVOL DS 
61 RPLTRK OS 
62 " RPLSEC DS 
63 RPLDCT DS 
64 RPLBUF DS 
65 RPLSIZ DS 
66 RPLCMD DS 
67 RPLCNL EQU 
68 RPLCRD EQU 
69 RPLCWR EQU 
70 RPLCFM EQU 
7l RPLRCD DS 
72 RPLRWP EQU 
73 RPLRVM EQU 
74 RPLRDE EQU 
75 RPLRRE EQU 

$1000 TRACK IMAGE AREA 
$3E3 LOCATE RWTS PARMLIST SUBRTN 
$3D9 RWTS SUBROUTINE 
$FDED PRINT ONE CHAR SUBROUTINE 
$FDB3 MONITOR HEX DUMP SUBRTN 

I/0 SELECTS 

$COSO 
$C08l 
$C082 
$C083 
$C084 
$C085 
$C086 
$C087 
$C088 
$C089 
$C08A 
$COBB 
$C08C 
$C08D 
$C08E 
$C08F 

PARMLIST 

l 
l 
l 
l 
l 
l 
2 
2 
2 
l 
$00 
$01 
$02 
$04 
l 
$10 
$20 
$40 
$80 

STEP MOTOR POSITIONS 

TURN DRIVE OFF AFTER 6 REVS 
TURN DRIVE ON 
SELECT DRIVE l 
SELECT DRIVE 2 
READ DATA LATCH 
WRITE DATA LATCH 
SET READ MODE 
SET WRITE MODE 

DEFINITION 

IOB TYPE ($01) 
SLOT*16 
DRIVE 
VOLUME 
TRACK 
SECTOR 
ADDRESS OF DCT 
ADDRESS OF BUFFER 
SECTOR SIZE 
COMMAND CODE 

NULL COMMAND 
READ COMMAND 
WRITE COMMAND 
FORMAT COMMAND 

RETURN CODE 
WRITE PROTECTED 
VOLUME MISMATCH 
DRIVE ERROR 
READ ERROR 

A-5 



OOOE: 76 RPLTVL DS l TRUE VOLUME 

OOOF : 77 RPLPSL DS l PREVI OUS SLOT 

0010 : 78 RPLPDR DS l PREVI OUS DRI VE 

0800 : 79 DEND 

086B : 149 * WHEN FINISHED, DUMP SOME OF TRACK IN HEX ON SCREEN 

086B : A9 00 151 EXIT LDA # >BUFFER DUMP 800 . 8AF 
086D:8S 3C lS2 STA AlL 
086F:A9 ' 10 lS3 LDA # <BUFFER 
0871: ss 3D lS4 STA AlL+l 

0800 : 81 * USE RWTS TO POSIT I ON THE ARM TO THE DESIRED TRACK 0873:A9. AF lSS LDA #> BUFFER+$AF 
087S:8S 3E lS6 STA A2L 

0800 : 20 E3 03 83 DUMP JSR LOCRPL LOCATE RWTS PARML I ST 

0803:84 00 84 STY PTR AND SAVE PO I NTER 

0805 : 8S 01 ss STA PTR+ l 

0877:A9 10 lS7 LDA # <BUFFER+$AF 
0879:8S 3F lSB STA A2L+l 
08 7B:4C B3 FD lS9 JMP XAM EXIT VIA HEX DISPLAY 

0807 : AS 02 87 LDA TRACK GET TRACK TO READ/WR I TE 

0809 : AO 04 88 LDY #RPLTRK STORE IN RWT S LI ST 

080B : 9l 00 89 STA (PTR) , Y 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

080D : A9 00 91 LDA #RPLCNL NULL OPERAT I ON 

080F : AO oc 92 LDY #RPLCMD AND STORE I N LIST 

0811 : 91 00 93 STA (PTR) , Y 

0813 : A9 00 9S LDA JIO ANY VOLUME WI LL DO 

081S : AO 03 96 LDY #RPLVOL 

0817:91 00 97 STA (PTR) , Y 

0819 : 20 E3 03 98 JSR LOCRPL RELOAD PO I NTER TO PARMS 

081C : 20 D9 03 99 JSR RWTS CALL RWTS 

081F:A9 00 100 LDA #0 

0821:85 48 101 STA PREG FIX P REG SO DOS IS HAPPY 

0823 : 103 * PREPARE TO DUMP TRACK TO MEMORY 

0823 : AO 01 lOS LDY jjRPLSLT GET SLOT * l6 

082S:Bl 00 106 LDA (PTR) , Y 

0827 : AA 107 TAX 

0828:BD 89 co 108 LDA DRVON , X KEEP DRI VE ON 

082B:BD BE co 109 LDA DRVRDM , X INSURE READ MODE 

082E:A9 00 111 LDA jj>BUFFER PO I NT AT DATA 

0830:8S 00 112 STA PTR 

0832 : A9 10 113 LDA #<BUFFER 

0834 : 8S 01 114 STA PTR+l 

0836 : AO 00 11S LDY jjO 

0838: 117 * START DUMPING AT THE BEGINNING OF A SECTOR ADDRESS 

0838: 118 * FIELD OR A SECTOR DATA FIELD 

0838 : BD BC co 120 LOOP! LDA DRVRD , X WAIT FOR NEXT BYTE 

083B : l0 FB 121 BPL LOOP! 

083D:C9 FF 122 CMP #$FF AUTOSYNC? 

083F : DO F7 123 BNE LOOP! NO , DON ' T START IN MIDDLE 

084l:BD BC co 124 LOOP2 LDA DRVRD , X WA I T FOR NEXT BYTE 

0844:10 FB l2S BPL LOOP2 

0846:C9 FF 126 CMP jj$FF TWO AUTOSYNCS? 

0848:DO EE 127 BNE LOOP! NOT YET 

084A:BD BC co 128 L00P3 LDA DRVRD , X 

084D:l0 FB 129 BPL LOOP3 

084F : C9 FF 130 CMP #$FF STILL AUTOSYNCS? 

08Sl : FO F7 131 BEQ LOOP3 YES , WA I T FOR DATA BYTE 

08S3 : DO OS 132 BNE LOOP4 ELSE , START STORING DATA 

085S: 134 * ONCE ALIGNED , BEGIN COPYING THE TRACK TO MEMORY . 

08S5: 13S * COPY AT LEAST TWICE ITS LENGTH TO INSURE WE GET I T 

OSSS: 136 * ALL . 

08S5 BD BC co 138 LOOPD LDA DRVRD , X WAIT FOR NEXT DATA BYTE 

0858 10 FB 139 BPL LOOPD 

OSSA 91 00 1 40 LOOP4 STA (PTR) , Y STORE I N MEMORY 

OSSC E6 00 141 I NC PTR BUMP PO I NTER 

OSSE DO FS 142 BNE LOOPD 

0860 E6 01 1 4 3 I NC PTR+l 

0862 AS 01 1 44 LDA PTR+l 

086 4 C9 40 l4S CMP #$ 40 DONE AT LEAST A TRACK? 

0 866 90 ED 1 46 BCC LOOPD NO , CONT I NUE 

0868 BD 88 co 1 47 LDA DRVOFF , X TURN DRI VE OFF 

A-7 

I A-6 

J 



ZAP - DISK UPDATE UTILITY 

The next step up the l adder from DUMP is to access data on 
t h e dis ke tte at the sector level. The ZAP prog r am allows 
its us er to s pecify a track and sector to be read i nto 
memor y . The programmer can then make changes in the image of 
the sector in memor y and subsequently use ZAP to write the 
modified image back over the sector on disk . ZAP is 
particularly useful when it is necessary to patch up a 
damaged directory . Its use in this regard will be covered 
in more detail when FTS is explained. 

To use ZAP, store the number of the track and sector you 
wish to access in $02 and $03 respectively. Tracks may 
range from $00 to $22 and sectors from $00 to $OF. For 
example , the Volume Table of Contents (VTOC) for the 
diskette may be examined by entering $11 for the track and 
$00 for the sector . $04 should be initialized with either a 
$01 to indicate that the s ecto r is to be read into memor y , 
or $02 to ask that memor y be written out to the sector. 
Other value s for location $04 can produce damag i ng r esults 
($04 in location $04 will INIT your diskette!). When these 
three memor y locations have been s et up, begin execution at 
$900. ZAP will read or write the sector into or from the 
2 56 by te s s tarting at $800. For example : 

CALL -151 
BLOAD ZAP 
... Now i nsert the 

02:11 00 01 N 900G 

(Get i nto the monitor from BASIC) 
(Load the ZAP program) 

diskette t o be za pped ... 
(Stor e a 1 1 (track 17, the catalog 
track) in $02, a 00 (sector 0) at $03, 
and a 01 (read) at $04. N ends the 
s tore command and 900G runs ZAP.) 

The output might look like thi s ... 

0800- 04 11 OF 03 00 00 01 00 (Start of VTOC) 
0808- 00 00 00 00 00 00 00 00 
0810- 00 00 00 00 00 00 00 00 
0818- 00 00 00 00 00 00 00 00 
... etc ... 

In the above e xample, if the by t e at o ffset 3 (the ve r sion 
of DOS which INITed thi s disk e tte) i s to be changed, the 
following would be e ntered .•. 

803:0 2 
04:02 N 900G 

(Chang e 0 3 to 02 ) 
(Change ZAP to write mod e and do it) 

Note that ZAP will reme mber the previous value s in $02, $03, 
and $04. 

A-8 

If something i s wrong with the sector t o be read (a n I/O 
e rror, per ha ps ), ZAP will prin t an e rr o r message o f the 
f orm: 

RC =l O 

A return code o f 10, i n t his case , me an s t hat t he diske t te 
was wr i t e pro t e cte d and a write ope rat ion wa s a ttemp t ed . 
Other error c od e s a r e 20 - volume mi s match, 40 - d rive 
error, and 80- r e ad e rror . Re f er to the docume ntat ion o n 
RWTS given in Chapter 6 f o r mo r e info rmatio n on these 
errors. 

0 9 00 : 2 ORG $900 

090 0 : 
0 90 0: 
0 90 0: 
090 0 : 
090 0 : 
0900 : 
0900 : 
0900 : 
0900 : 
09 00: 
0900: 
090 0 : 
0900: 
0900 : 
0900 : 
0900 : 

4 ***** ****** ***** ** *** ************** *** ** **• ***** *** ** ****** 
5 * 

0087: 

0900: 

0000: 
0002: 
0003: 
0004 : 
0001: 
0002 : 
003C : 
00 3E : 
0 0 48 : 

0900 : 

0 800 : 
03E3 : 
0309: 
FDED : 
FDDA: 
FDB3: 

0900 : 

0 00 0 
0000 
0 0 01 
0 002 
00 03 
000 4 
000 5 
00 06 
00 0 8 
OO OA 
oooc 
0 000 

6 * ZAP: TH I S PROGRAM WILL ALLOW ITS USER TO READ/WRITE 
7 * INDIVIDUAL SECTORS FROM/TO THE DISKETTE 
8 * 
9 * INPUT: 

10 * 
11 * 
12 * 
13 * 
14 * 

$02 TRACK TO BE READ 
$03 = SECTOR TO BE READ/WRITTEN 
$04 = $01 - READ SECTOR 

$02 - WRITE SECTOR 
$800 = ADDRESS OF SECTOR DATA BUFFER 

* 

* 

* 

15 * ENTRY POINT: $900 * 
16 * * 
17 * PROGRAMMER: DON 0 WORTH 2/15/81 * 
18 * * 
19 **** ***** ********** ***** *** *** **** ** *** **** ************* *** 

21 BELL EQU $87 BELL CHARACTER 

23 * ZPAGE DEFINITIONS 

25 PTR EQU $0 WORK POINTER 
26 TRACK EQU $2 TRACK TO BE READ/WRITTEN 
27 SECTOR EQU $3 SECTOR TO BE READ/WRITTEN 
28 OPER EQU $4 OPERATION TO BE PERFORMED 
29 READ EQU 1 READ OPERATION 
30 WRITE EQU 2 WRITE OPERATION 
31 AlL EQU $3C MONITOR POINTER 
32 A2L EQU $3E MON I TOR POINTER 
33 PREG EQU $48 MONITOR STATUS REGISTER 

35 * OTHER ADDRESSES 

37 BUFFER EQU $800 SECTOR DATA BUFFER 
38 LOCRPL EQU $3E3 LOCATE RWTS PARMLIST SUBRTN 
39 RWTS EQU $309 RWTS SUBROUTINE 
40 COUT EQU $FDED PRINT ONE CHAR SUBROUTINE 
41 PRBYTE EQU $FDDA PRINT ONE HEX BYTE SUBRTN 
42 XAM EQU $FDB3 MONITOR HEX DUMP SUBRTN 

44 * RWTS PARMLIST DEFIN I TION 

46 DSECT 
47 RPLIOB OS 1 IOB TYPE ($01) 
48 RPLSLT OS 1 SLOT * l6 
49 RPLDRV OS 1 DRIVE 
50 RPLVOL OS 1 VOLUME 
51 RPLTRK OS 1 TRACK 
52 RP LSEC OS 1 SECTOR 
53 RPLDCT OS 2 ADDRESS OF OCT 
54 RPLBUF OS 2 ADDRESS OF BUFFER 
55 RPLS I Z OS 2 SECTOR SIZE 
56 RPLCMD OS 1 COMMAND CODE 
57 RPLCNL EQU $00 NULL COMMAND 

A-9 



0001 58 RPLCRD EQU $01 READ COMMAND 0959: 

0002 59 RPLCWR EQU $02 WRITE COMMAND 
126 * WHEN FINISHED , DUMP SOME OF SECTOR IN HEX 

0004 60 RPLCFM EQU $04 FORMAT COMMAND 

OOOD 61 RPLRCD DS 1 RETURN CODE 
0959rA9 00 128 EXIT LDA #>BUFFER DUMP 800.8B7 

0010 62 RPLRWP EQU $10 WRITE PROTECTED 
095B : 85 3C 129 STA AlL 

0020 : 63 RPLRVM EQU $20 VOLUME MISMATCH 
095D : A9 08 130 LDA # <BUFFER 

0040 : 64 RPLRDE EQU $40 DRIVE ERROR 
095F:85 3D 131 STA AlL+l 

0080: 65 RPLRRE EQU $80 READ ERROR 
096l : A9 AF 132 LDA #>BUFFER+$AF 

OOOE: ·66 RPLTVL DS 1 TRUE VOLUME 
0963:85 3E 133 STA A2L 

OOOF: 67 RPLPSL DS 1 PREVIOUS SLOT 
0965:A9 08 134 LDA #<BUFFER+$AF 

0010: 68 RPLPDR DS 1 PREVIOUS DRIVE 
0967:8~ 3F 135 STA A2L+l 
0969 : 4C B3 FD 136 JMP XAM EXIT VIA HEX DISPLAY 

0900 : 69 DEND 
*** SUCCESSFUL ASSEMBLY: NO ERRORS 

0900: 71 * FILL IN RWTS LIST 

0900:20 E3 03 73 ZAP JSR LOCRPL LOCATE RWTS PARMLIST 

0903:84 00 74 STY PTR AND SAVE POINTER 

0905 : 85 01 75 STA PTR+l 

0907:A5 02 77 LDA TRACK GET TRACK TO READ/WRITE 

0909 : AO 04 78 LDY #RPLTRK STORE IN RWTS LIST 

0908:91 00 79 STA (PTR) , Y 

090D:A5 03 81 LDA SECTOR GET SECTOR TO READ/WRITE 

090F:C9 10 82 CMP #16 BIGGER THAN 16 SECTORS? 

0911:90 04 83 BCC SOK NO 

0913:A9 00 84 LDA #0 

0915 : 85 03 85 STA SECTOR YES , PUT IT BACK TO ZERO 

0917 :AO 05 86 SOK LDY #RPLSEC 

0919:91 00 87 STA (PTR) , Y STORE IN RWTS LIST 

09lB : AO 08 89 LDY #RPLBUF ~ 
091D : A9 00 90 LDA #>BUFFER STORE BUFFER PTR IN LIST 

091F:91 00 91 STA (PTR) ,Y 

092l : C8 92 INY 
0922:A9 08 93 LDA # <BUFFER 

0924:91 00 94 STA (PTR) , Y 

0926 : A5 04 96 LDA OPER GET COMMAND CODE 

0928:AO oc 97 LDY IIRPLCMD AND STORE IN LIST 

092A: 91 00 98 STA (PTR) ,Y 

092C:A9 00 100 LDA #0 ANY VOLUME WILL DO 

092E:AO 03 101 LDY #RPLVOL 

0930:91 00 102 STA (PTR) ,Y ·- ~ 

0932: 104 * NOW CALL RWTS TO READ/WRITE THE SECTOR 

0932:20 E3 03 106 JSR LOCRPL RELOAD POINTER TO PARMS · ~3 

0935:20 D9 03 107 JSR RWTS CALL RWTS 

0938:A9 00 !08 LDA #0 

093A:85 48 109 STA PREG FIX P REG SO DOS IS HAPPY ~:-;;~ 
093C : 90 lB 110 BCC EXIT ALL IS WELL , ..... 

093E : 112 * ERROR OCCURED PRINT " RC=XX " 

3 
093E:A9 87 114 LDA #BELL BEEP THE SPEAKER 

0940 : 20 ED FD ll5 JSR COUT 

0943 : A9 D2 ll6 LDA #'R PRINT THE "RC=" ~ 
0945 : 20 ED FD ll7 JSR COUT 

0948 : A9 C3 i18 LDA # 'C 

094A:20 ED FD ll9 JSR COUT 

094D A9 BD 120 LDA #'= 

094F 20 ED FD 121 JSR COUT 

0952 AO OD 122 LDY #RPLRCD 

O'l 54 Bl 00 123 LDA (PTR) ,Y 'GET RWTS RETURN CODE ... -'~ 
09 56 20 DA FD 124 JSR PRBYTE -PRINT RETURN CODE IN HEX 

. .:....t: ~ 

~ 

A-10 
A-11 



INIT - REFORMAT A SINGLE TRACK 

Occasionally the sectoring information on a diskette can 
become damaged so that one or more sectors can no longer be 
found by DOS. To correct this problem requires that the 
sector address and data fields be re-formatted for the 
entire track thus affected. INIT can be used to selectively 
reformat a single track, thus avoiding a total re-INIT of 
the diskette. Before using INIT, the user should first 
attempt to write on the suspect sector (using ZAP). If RWTS 
refuses to write to the sector (RC=40), then INIT must be 
run on the entire track. To avoid losing data, all other 
sectors on the track should be read and copied to another 
diskette prior to reformatting. After INIT is run they can 
be copied back to the repaired diskette and data can be 
written to the previously damaged sector. 

To run INIT, first store the number of the track you wish 
reformatted at location $02, the volume number of the disk 
at location $03 (the volume number should match the volume 
numbe r of the other tracks), and then begin execution at 
$800. INIT will return to the monitor upon completion. If 
the track can not be formatted for some reason (e g. 
physical damage or problems with the disk drive itself) a 
return code i s printed. For example: 

CALL -151 
BLOAD INIT 
... Now insert the disk 

02:11 FEN 800G 

(Get into the monitor from BASIC) 
(Load the INIT program) 
to be INIT-ed ... 
(Store a 11 (track 17, the catalog 
track) in $02, a volume number of 
$FE (254) in $03, N terminates the 
store command, go to location $800) 

WARNING: DOS 3.3 must be loaded in the machine before 
running INIT and a 48K Apple is assumed. INIT will not work 
with other versions of DOS or other memory sizes. 

A- 12 

0800: 

0800: 
0800: 
0800: 
0800: 
0800: 
0800: 
0800 : 
0800: 
0800: 
0800: 
0800: 
0800: 
0800: 
0800: 

0800: 

0000: 
0002: 
0003: 
0020 : 
003E: 
0041: 
0044: 
0045: 
0048 : 
0087: 

0800: 

03E3: 
0309: 
0578: 
BBOO: 
BCOO: 
BBDC: 
B944: 
BFOD: 
FDED: 
FDDA: 

0800: 

COS O: 
COBl: 
C082: 
C083: 

~ C084: 
COBS : 
C086 : 
C087 : 
COBB: 
C089: 
COSA: 
COBB: 

COSC: 
COSO: 
COBE: 
COBF: 

0800: 

-,.. 0000 
0000 
0001 
0002 
0003 
0004 
0005 
0006 
0008 
OOOA 

2 ORG $800 

4 ***************************************************** ****** 
5 * 
6 * 
7 * 
8 * 
9 * 

10 * 
11 * 
12 * 
13 * 
14 * 
15 * 
16 * 

INIT: THIS PROGRAM 
SINGLE TRACK 

INPUT : $02 TRACK 

$03 VOLUME 

ENTRY POINT: $800 

PROGRAMMER: PIETER 

* 
WILL ALLOW ITS USER TO INITIALIZE A * 
WITH ANY VOLUME NUMBER DESIRED. * 

* 
TO BE INITIALIZED * 

* 
NUMBER * 

* 
* 
* 

LECHNER 2/19/81 
* 

17 ************************************************** ********* 

19 * 

21 PTR 
22 TRACK 
23 VOLUME 
24 SECFND 
25 AA 
26 VOL 
27 TRK 
28 SYNCNT 
29 PREG 
30 BELL 

32 * 

34 LOCRPL 
35 RWTS 
36 RTRYCNT 
37 NBUFl 
38 NBUF2 
39 READ16 
40 RDADR16 
41 DSKF2 
42 COUT 
43 PRBYTE 

45 * 

47 DRVSMO 
48 DRVSMl 
49 DRVSM2 
50 DRVSM3 
51 DRVSM4 
52 DRVSMS 
53 DRVSM6 
54 DRVSM7 
55 DRVOFF 
56 DRVON 
57 DRVSLl 
58 DRVSL2 

59 DRVRD 
60 DRVWR 
61 DRVRDM 
62 DRVWRM 

64 * 

66 
67 RPLIOB 
68 RPLSLT 
69 RPLDRV 
70 RPLVOL 
71 RPLTRK 
72 RPLSEC 
73 RPLDCT 
74 RPLBUF 
75 RPLSIZ 

ZPAGE DEFINITIONS 

EQU $0 WORK POINTER 
EQU $2 TRACK TO BE READ/WRITTEN 
EQU $3 VOLUME NUMBER 
EQU $20 SECTOR FOUND BY RDADR16 
EQU $3E ZPAGE CONSTANT FOR TIMING 
EQU $41 VOLUME USED BY WRADR16 
EQU $44 TRACK USED BY WRADR16 
EQU $45 SYNC COUNT USED BY DSKF2 
EQU $48 MONITOR P REGISTER SAVEAREA 
EQU $87 ASCII BELL 

OTHER ADDRESSES 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

DISK 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 

RWTS 

DSECT 
OS 
DS 
DS 
DS 
DS 
DS 
OS 
DS 
DS 

$3E3 LOCATE RWTS PARMLIST SUBRTN 
$309 RWTS SUBROUTINE 
$578 RETRY COUNT FOR DSKF2 
$BBOO PRIMARY SECTOR BUFFER 
$BCOO SECONDARY SECTOR BUFFER 
$B8DC READ DATA FIELD ROUTINE 
$B944 READ ADDRESS FIELD ROUTINE 
$BFOD FORMAT ONE TRACK ROUTINE 
$FDED MONITOR CHARACTER OUTPUT 
$FDDA MONITOR HEX OUTPUT 

I/0 SELECTS 

$COSO 
$C081 
$C082 
$C083 
$C084 
$COBS 
$C086 
$C087 
$COBB 
$C089 
$C08A 
$COBB 

$C08C 
$C08D 
$C08E 
$C08F 

PARMLIST 

1 
1 
1 
1 
1 
1 
2 
2 
2 

STEP MOTOR POSITIONS 

TURN DRIVE OFF AFTER 6 REVS 
TURN DRIVE ON 
SELECT DRIVE 1 
SELECT DRIVE 2 

READ DATA LATCH. 
WRITE DATA LATCH 
SET READ MODE 
SET WRITE MODE 

DEFINITION 

IOB TYPE ($01) 
SLOT*l6 
DRIVE 
VOLUME 
TRACK 
SECTOR 
ADDRESS OF OCT 
ADDRESS OF BUpFER 
SECTOR SIZE 

A-13 



OOOC: 76 RPLCMD DS 1 COMMAND CODE 
0000: 77 RPLCNL EQU $00 NULL COMMAND 
0001: 78 RPLCRD EQU $01 READ COMMAND 
000 2 : 79 RPLCWR EQU $02 WRITE COMMAND 
0004: 80 RPLCFM EQU $04 FORMAT COMMAND 

085D 20 DC B8 148 JSR READ16 YES , READ DATA FIELD 
0860 90 1F 149 BCC DONETRK ALL IS WELL , DONE . 
0862 AO OD 150 HNDERR LDY #RPLRCD ELSE, PHONEY UP A RC 
0864 91 00 151 STA (PTR) ,Y 

OOOD: 81 RPLRCD DS 1 RETURN CODE 
0010: 82 RPLRWP EQU $10 WRITE PROTECTED 0866 : 153 * ERROR OCCURED , PRINT "RC:::::.XX" 

00 20 : 83 RPLRVM EQU $20 VOLUME MISMATCH 
004 0 : 8 4 RPLRDE EQU $40 DRIVE ERROR 
0080: 85 RPLRRE EQU $80 READ ERROR 
OOOE : 86 RPLTVL DS 1 TRUE VOLUME 
OOOF: 87 RPI.;PSL DS 1 PREVIOUS SLOT 
0010: 88 RPLPDR DS 1 PREVIOUS DRIVE 
0800: 89 DEND 

0866:A9 87 155 LDA #BELL BEEP THE SPEAKER 
0868 : 20 ED FD 156 JSR COUT 
086B:A9 D2 157 LDA # ' R PRINT THE "RC=" 
086D : 20 ED FD 158 JSR COUT 
0870 : A9 C3 159 LDA # ' C 
0872 : 20 ED FD 160 JSR COUT 
0875 : A9 BD 161 LDA #'= 
0877 : 20 ED FD 162 JSR COUT 

0800: 91 * USE RWTS TO POSITION THE ARM .TO THE DESIRED TRACK 
087A : AO OD 163 LDY #RPLRCD 
087C : B1 00 164 LDA (PTR) , Y GET RWTS RETURN CODE 

0800:20 E3 03 93 DUMP JSR LOCRPL LOCATE RWTS PARMLIST 
087E : 20 DA FD 165 JSR PRBYTE PRI NT RETURN CODE IN HEX 

0803:84 00 94 STY PTR AND SAVE POINTER 
0805 : 8 5 01 95 STA PTR+1 0881: 167 * WHEN DONE, EXIT TO CALLER 

0807:A5 02 97 LDA TRACK GET TRACK TO READ/ WRITE 
0809:AO 04 98 LDY #RPLTRK STORE IN RWTS LIST 
080B:91 00 99 STA (PTR) , Y 

0881 BD 88 co 169 DONETRK LDA DRVOFF , X TURN DRIVE OFF 
0884 A9 00 170 LDA #$00 
0886 85 48 171 STA PREG CLEAR P REGISTER FOR DOS 
0888 60 172 RTS ; RETURN TO CALLER 

080D : A9 00 101 LDA #RPLCNL NULL OPERATION 
080F : AO oc 102 LDY *RPLCMD AND STORE IN LIST 
0811:91 00 103 STA (PTR) ,Y 

0813 : A9 00 105 LDA #0 ANY VOLUME WILL DO 
0815 : AO 03 106 LDY #RPLVOL 
0817:91 00 107 STA (PTR) ,Y 
0819:20 E3 03 108 JSR LOCRPL RELOAD POINTER TO PARMS 
081C:20 .D9 03 109 JSR RWTS CALL RWTS 
081F:BD 89 co 110 LDA DRVON,X LEAVE DRIVE ON 

0822: 112 * ESTABLISH ENVIRONMENT FOR DSKF2 ROUTINE 

0822:A5 02 114 LDA TRACK PASS TRACK TO DSKF2 ~ 0824:85 44 115 STA TRK 

0826 :AS 03 116 LDA VOLUME AND VOLUME 
~ 0928 : 85 41 117 STA VOL 

082A:A9 AA 118 LDA *$AA STORE CONSTANT FOR ZPAGE . . I 082C: 85 3E 119 STA AA TIMING 
082E : A9 28 120 LDA #$28 START WITH 40 SYNCS .. I ·_ -~ 
0830 : 85 45 121 STA SYNCNT - BETWEEN SE"CTORS I 0832 : AO 56 122 LDY· #$56 
0834:A9 00 123 LDA #$00 

1' ~ 0836:99 FF BB 124 ZNBUF2 STA NBUF2-1 , Y ZERO SECONDARY BUFFER 
0839:88 125 DEY 
083A:DO FA 126 BNE ZNBUF2 

-~~- ~ 083C:99 00 BB 127 ZNBUF1 STA NBUF1, y · AND PRIMARY BUFFER 
083F : 88 128 DEY 

13 0840 : DO FA 129 BNE ZNBUF1 

084 2 : 131 * INITIALIZE TRACK 

l.~ 0842 : 20 OD BF 133 JSR DSKF2 FORMAT TRACK AND VERIFY 
0845:A9 08 134 LDA #$08 IN CASE OF ERROR •. . 
0847:BO 19 135 BCS HNDERR ERROR? l 
0849: 137 * READ SECTOR ZERO TO VERIFY FORMATTING l-!1 
0849 A9 30 139 LDA #$30 NO , DOUBLE CHECK TRACK I 
084B 8D 78 05 140 STA RTRYCNT ALLOW 48 RETRIES 
084E 38 141 NOGOOD SEC 

I 084F CE 78 05 142 DEC RTRYCNT COUNT RETRIES 
0852 FO OE 143 BEQ HNDERR 
0854 20 44 B9 144 JSR RDADR16 READ AN ADDRESS FIELD ' 
0857 BO FS 145 BCS NOGOOD ERROR , TRY AGAIN I 0859 AS 2D 146 LDA: SEC END IS THIS SECTOR ZERO? 
085B DO F1 147 BNE NOGOOD NO , TRY AGAIN 

A-14 A-15 



FTS- FIND T/ S LISTS UTILITY 

From time to time one of your diskettes will develop an I/O 
error smack in the middle of the catalog track . When this 
occurs, any attempt to use the diskette will result in an 
I/0 ERROR message from DOS . Generally , when this happens , 
the data stored in the files on the diskette is still 
intact; only the pointers to the files are gone . If the 
data absolutely must be recovered , a knowledgeable Apple 
user can reconstruct the catalog from scratch. Doing this 
involves first finding the T/S Lists for each file, and then 
using ZAP to patch a catalog entry into track 17 for each 
file which was found. FTS is a utility which will scan a 
diskette for T/S Lists. Although it may flag some sectors 
which are not T/S Lists as being such , it will never miss a 
valid T/S List. Therefore, after running FTS the programmer 
must use ZAP to examine each track/sector printed by FTS to 
see if it is really a T/S List. Additionally, FTS will find 
every T/S List image on the diskette, even some which were 
for files which have since been deleted. Since it is 
difficult to determine which files are valid and which are 
old deleted files, it is usually necessary to restore all 
the files and copy them to another diskette, and later 
delete the duplicate or unwanted ones. 

To run FTS, simply load the program and start execution at 
$900. FTS will print the track and sector number of each 
sector it finds which bears a resemblance to a T/S List. 
For example : 

CALL -151 
BLOAD FTS 
... Now insert the disk 

900G 

(Get into the monitor from BASIC) 
(Load the FTS program) 
to be scanned .•• 
(Run the FTS program on this diskette) 

The output might look like this ... 

T=l2 S=OF 
T=l3 S=OF 
T=l4 S=OD 
T=l4 S=OF 
Here , only four possible files were found. ZAP should now 
be used to read track $12, sector $OF . At +$0C is the track 
and sector of the first sector in the file . This sector can 
be read and examined to try to identify the file and its 
t ype . Usually a BASIC program can be identified, even though 
it is stored in tokenized form , from the text strings 
contained in the PRINT statements . An ASCII conversion 
chart (see page 8 in the APPLE II REFERENCE MANUAL) can be 
used to decode these character s t rings . Straight T-type 
files will also contain ASCI I text , with each line separated 
from the others with $8D (carriage returns) . B-type files 
are the hardest to identify , unless the address and length 
stored in the first 4 bytes are recognizable. If you cannot 
identify the file , assume it is APPLESOFT BASIC. If this 

A-16 

-· ~ 

- ~ -.;;~ 

3 

~ 

. 1 ~ 

~ 

' .~ 

assumption turns out to be incorrect, you can always go b k 

Ga~d ZAPb 
1
the ~ile type in the CATALOG to try something els:~ 

~ven e ow ~s ~n example ZAP to the CATALOG to create an 
entry for the f~le whose T/S List is at T=l2 S=OF. 

CALL -151 
BLOAD ZAP 

. . . insert disk to be 
800:0D N 801<800 . 8FEM 
80B:l2 OF 02 
:Cl AO AO AO AO AO AO 
:AO AO AO AO AO AO AO 
:AO AO AO AO AO AO AO 
: AO AO AO AO AO AO AO 
:AO AO 
02 : 11 OF 02 N 900G 

ZAPped ... 
(Zero sector area of memory) 
(Track 12, Sector OF, Type-A) 
(Name is "A") 
(fill name out with 29 blanks) 

(Write new sector image out as 
first (and only) catalog sector) 

The file should immediately be copied to another diskette 
and then the process repeated for each T/S List found by FTS 
until all o~ the files have been recovered. As each file is 
recov7red, ~t may be RE~AMEd to its previous name. once all 
the f~les have been cop~ed to another disk and successfully 
tested, the damaged d~sk may be re-INITialized. 

0900: 2 ORG $900 

0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 
0900: 

~ :•********************************************************* 

6 * FTS: THIS PROGRAM SCANS THE ENTIRE DISKETTE FOR WHAT * 

0087: 
008D: 

0900: 

0000: 
003C: 
003E: 
0048: 

0900: 

0800: 
03E3: 
03D9: 
FDED: 
FDDA: 

0900: 

0000: 
0000: 
0001: 
0002 : 
0003 : 
0004: 
0005: 

7 * APPEAR TO BE TRACK /SECTOR LISTS AND PRINTS THE 
8 * TRACK AND SECTOR OF EACH ONE IT FINDS. 
9 * 

10 * INPUT: NONE 
11 * 
12 * ENTRY POINT: $900 

* 
* 
* 

13 * * 
14 * PROGRAMMER: DON D WORTH 2/15/81 * 
15 * • 
16 *********************************************************** 

18 BELL 
19 RETURN 

21 * 

23 PTR 
24 AlL 
25 A2L 
26 PREG 

28 * 

30 BUFFER 
31 LOCRPL 
32 RWTS 
33 COUT 
34 PRBYTE 

36 * 

38 
39 RPLIOB 
40 RPLSLT 
41 RPLDRV 
42 RPLVOL 
43 RPLTRK 
44 RPLSEC 

EQU $87 
EQU $8D 

BELL CHARACTER 
CARRIAGE RETURN 

ZPAGE DEFINITIONS 

EQU $0 
EQU $3C 
EQU $3E 
EQU $48 

OTHER ADDRESSES 

EQU $800 
EQU $3E3 
EQU $3D9 
EQU $FDED 
EQU $FDDA 

WORK POINTER 
MONITOR POINTER 
MONITOR POINTER 
MONITOR STATUS REGISTER 

SECTOR DATA BUFFER 
LOCATE RWTS PARMLIST SUBRTN 
RWTS SUBROUTINE 
PRINT ONE CHAR SUBROUTINE 
PRINT ONE HEX BYTE SUBRTN 

RWTS PARMLIST DEFINITION 

DSECT 
DS 1 IOB TYPE ($01) 
DS 1 SLOT*l6 
DS 1 DRIVE 
DS 1 VOLUME 
DS 1 TRACK 
DS 1 SECTOR 

A-17 



0006: 
0008: 
OOOA : 
OOOC : 
0000: 
0001 : 
0002: 
0004 : 
OOOD : 
0010: 
0020 : 
0040: 
0080: 
O·OOE: 
OOOF : 
0010 : 
0900: 

0900: 

0900:20 E3 03 
0903 : 84 00 
0905 : 85 01 

0907 : A9 03 
0909 : AO 04 
090B : 9l 00 

090D : AO 08 
090F:A9 00 
0911 : 91 00 
0913:C8 
0914:A9 08 
0916:91 00 

0918:A9 01 
091A : AO OC 
091C:91 00 

091E : A9 00 
0920 : AO 03 
0922:91 00 

0924: 

0924 :AO 05 
0926 : A9 00 
0928 : 91 00 

092A: 

092A : 20 E3 03 
092D : 20 D9 03 
0930 : A9 00 
0932:85 48 
0934:90 26 

0936: 

0936 : 20 B3 09 
0939 : A9 87 
093B:20 ED FD 
093E:A9 D2 
0940 : 20 ED FD 
0943:A9 C3 
0945:20 ED FD 
0948 : A9 BD 
09 4A: 20 ED FD 
09 4D:AO OD 
094F : Bl 00 

A-18 

45 RPLDCT 
46 RPLBUF 
47 RPLSIZ 
48 RP LCMD 
49 RP LCNL 
50 RPLCRD 
51 RPLCWR 
52 RPLCFM 
53 RPLRCD 
54 RPLRWP 
55 RPLRVM 
56 RPLRDE 
57 RP LRRE 
58 RPLTVL 
59 RPLPSL 
60 RPLPDR 
61 

63 * 

65 FTS 
66 
67 

69 
70 
71 

73 
74 
75 
76 
77 
78 

80 
81 
82 

84 
85 
86 

88 * 

90 NEWTRK 
-91 
92 

94 * 

96 NEWSEC 
97 
98 
99 

100 

102 * 

104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
1~4 

DS 2 
DS 2 
DS 2 
DS l 
EQU $00 
EQU $01 
EQU $02 
EQU $04 
DS l 
EQU $10 
EQU $20 
EQU $40 
EQU $80 
DS l 
DS l 
DS l 
DEND 

ADDRESS OF DCT 
ADDRESS OF BUFFER 
SECTOR SI ZE 
COMMAND CODE 

NULL COMMAND 
READ COMMAND 
WR I TE COMMAND 
FORMAT COMMAND 

RETURN CODE 
WR I TE PROTECTED 
VOLUME MISMATCH 
DR I VE ERROR 
READ ERROR 

TRUE VOLUME 
PREVI OUS SLOT 
PREVIOUS DR I VE 

START TRACK/SECTOR JUST PAST DOS (TRACK 3) 

JSR LOCRPL LOCATE RWTS PARMLIST 
STY PTR AND SAVE POINTER 
STA PTR+l 

LDA #3 FIRST NON - DOS TRACK 
LDY #RPLTRK STORE I N RWTS LIST 
STA (PTR) , Y 

LDY #RPLBUF 
LDA #>BUFFER STORE BUFFER PTR IN LIST 
STA (PTR) , Y 
INY 
LDA #<BUFFER 
STA (PTR) , Y 

LDA #RPLCRD 
LDY #RPLCMD 
STA (PTR) , Y 

LDA #0 
LDY #RPLVOL 
STA (PTR) , Y 

GET COMMAND CODE FOR READ 
AND STORE IN LIST 

ANY VOLUME WILL DO 

NEW TRACK, START SECTOR AT ZERO 

LDY #RPLSEC 
LDA #0 
STA (PTR) , Y 

NOW CALL RWTS TO READ THE SECTOR 

JSR LOCRPL 
JSR RWTS 
LDA #0 
STA PREG 
BCC SCAN 

RELOAD POINTER TO FARMS 
CALL RWTS 

FIX P REG SO DOS IS HAPPY 
ALL IS WELL 

ERROR OCCURED , PRINT " RC=XX" 

JSR PRTTS 
LDA #BELL 
JSR COUT 
LDA # ' R 
JSR COUT 
LDA '# ' C 
JSR COUT 
LDA # ' = 
JSR COUT 
LDY #RPLRCD 
LDA (PTR) , Y 

PRINT TRACK/SECTOR 
BEEP THE SPEAKER 

PRINT THE " RC= " 

GET RWTS RETURN CODE 

0951 20 DA FD 
0954 A9 BD 
0956 20 ED FD 
0959 4C BE 09 

095C: 

095C : A2 00 
095E:BD 00 08 
096l:DO 05 
0963 :EB 
0964 : DO F8 
0966:FO 26 

0968 :A2 05 
096A:BD 00 08 
096D:DO lF 
096F:E8 
0970:EO OC 
0972:90 F6 

0974:BD 00 08 
0977:C9 23 
0979:BO 13 
097B:E8 
097C :.BD 00 08 
097F:C9 10 
098l : BO OB · 
0983 : E8 
0984:DO EE. 

0986:20 B3 09 
0989:A9 8D 
098B:20 ED FD 

098E: 

098E:AO 05 
0990:Bl 00 
0992:18 
0993:69 01 
0995:91 00 
0997:C9 10 · 
0999 : BO 03 
099B:4C 2A 09 

099E:AO 04 
09AO:Bl 00 
09A2:18 
09A3:69 01 
09A5:91 00 
09A7 : C9 11 
09A9:FO F3 
09AB:C9 23 
09AD:BO 03 
09AF:4C 24 09 
09B2:60 

09B3: 

09B3 A9 D4 
09B5 20 ED FD 
09B8 AO 04 
09BA Bl 00 
09BC 20 CC 09 

09BF A9 D3 
09Cl 20 ED FD 
09C4 AO 05 
09C6 B1 00 
09C8 -20 CC 09 
09CB 60 

115 
116 
117 
118 

1'20 * 

122 SCAN 
123 SCLPO 
124 
125 
126 
127 

129 SCANl 
130 SCLPl 
131 
132 
133 
134 

136 SCLP2 
137 
138 
139 
140 
141 
142 
143 
144 

146 
147 
148 

150 * 
1'52 NXTSEC 
153 
154 
155 
156 
157 
158 
159 

161 NXTTRK 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 EXIT 

173 * 

175 PRTTS 
176 
177 
178 
179 

181 
182 
183 
184 
185 
186 

JSR PRBYTE 
LDA #RETURN 
JSR COUT 
JMP NXTSEC 

PRINT RETURN CODE IN HEX 

GO ON 

NO ERROR, SEE IF SECTOR LOOKS LIKE A T/ S LIST 

LDX 10 
LDA BUFFER,X 
BNE SCAN1 
INX 
BNE SCLPO 
BEQ NXTSEC 

LDX #5 
LDA BUFFER,X 
BNE NXTSEC 
INX 
CPX U2 
BCC SCLPl 

MAKE SURE ITS NOT ALL ZERO 

IF IT IS, SKIP IT 

START AT OFFSET 5 

HEADER OF T/ S MUST BE ZERO 

AT THE T/ S PAIRS YET? 
NO, KEEP CHECKING 

LDA BUFFER,X GET TRK 
CMP #35 MUST BE 0-34 
BCS NXTSEC 
INX 
LDA BUFFER,X GET SECTOR 
CMP #16 MUST BE 0-15 
BCS NXTSEC 
INX 
BNE SCLP2 

JSR PRTTS ALL CONDITIONS MET 
LDA #RETURN 
JSR COUT 

BUMP SECTOR NUMBER OR . TRACK AND CONTINUE 

LDY #RPLSEC 
LDA (PTR) ,Y. 
CLC 
ADC #1' 
STA (PTR) ,Y 
CMP U6 
BCS NXTTRK 
JMP NEWSEC 

LDY #RPLTRK 
LDA (PTR) ,Y 
CLC 
ADC U 
STA (PTR) ,Y 
CMP #$11 
BEQ NXTTRK 
CMP #35 
BCS EXIT 
JMP NEWTRK 
RTS 

GET LAST SECTOR 

BUMP BY 'ONE 
AND PUT IT BACK IN LIST 
TOO. BIG? 

NO, GO READ IT 

GET LAST TRACK 

BUMP BY ONE 
AND ' PUT IT BACK IN LIST 
CATALOG TRACK? 
YES, SKIP OVER THAT ONE 
DONE ALL 35 T'RACKS? 
YES, LEAVE 
NO, GO READ FIRST SECTOR 

PRTTS: PRINT "T=XX S=XX" 

LDA i 'T 
JSR COUT 
LDY #RPLTRK 
LDA (PTR) ,Y 
JSR PRTEQ 

LDA I' S 
JSR COUT 
LDY #RPLSEC 
LDA (PTR) ,Y 
JSR PRTEQ 
RTS 

PRINT "T" 

PRINT "=XX " 

PRINT "S" 

PRINT "=XX II 

A-19 



09CC :48 18 8 PRTEQ PHA 
09CD:A9 BD 189 LOA · ·= 09CF : 20 ED FD 190 JSR COUT 
090 2 : 68 19 1 PLA 
090 3 : 20 DA FD 192 JSR PRBYTE 
09D6:A9 AO 19 3 LOA # ' 
0908:20 ED FD 194 J SR COUT 
09DB:6 0 19 5 RTS 

*** SUCCESSFUL ASSEMBLY: NO ERRORS 

COPY - CONVERT FILES 

The COPY program demonstrates the use of the DOS File 
Manager subroutine package from assembl y languag e . COPY 
will read as input a Binar y t ype file, stripping off the 
address and length information, and write the data o ut a s 
newly created Text type file. The name of the input file 
assumed to be "INPUT", although this could jus t a s ea s ily 
have been inputted from the keyboard, and the name of the 
output file is "OUTPUT". COPY is a single drive ope ration, 
using the last drive which wa s r e ferenc e d. 

To run COPY, load it and begin e x ecution at $8 00: 

CALL -151 
BLOAD COPY 
... Now in s ert the dis k 

BOOG 

(Ge t into t he monito r f r om BASIC) 
(Load the COPY progr a m) 
containing I NPUT ... 
(Run the COPY program) 

a 
i s 

When COPY finishes, it will r e turn t o BASIC. If any e rr o r s 
occur, the return code passed back from the File Ma nage r 
will be printed. Consult the docume ntation on the File 
Manager parameter list in Chapter 6 for a li s t o f these 
return cod e s. 

A-20 

0800 : 

08 00 : 
0800 : 
0800 : 
0800: 
0800: 
0800 : 
0800 : 
0800 : 
0800 : 
0800: 
0 80 0: 
0800: 
0800: 

0087 : 

0800 : 

0000 : 
0002: 
0004: 
003C: 
003E: 

0800 : 

1000 : 
0300 : 
03E3 : 
03DC : 
0306 : 
FDED : 
FDDA: 

0800 : 

0000 : 
0000 : 
0001 : 
0002: 
0003 : 
0004 : 
0005 : 
0006: 
0007 : 
0008 : 
0009: 
OOOA : 
OOOB: 
OOOC: 
0001: 
0000 : 
0001 : 
0002 : 
0003: 
0004 : 
0002 : 

OOOA: 
0002 : 
0 002 
000 4 
0 005 
0006 
0007 
0000 
0001 
0002 
000 4 
0008 

2 ORG $800 

4 **** ***** ***** *** *** **** ******* ******** ******* ** **** ******* 
5 * * 
6 * COPY:THIS PROGRAM DEMONSTRATES THE USE OF THE DOS FILE * 
7 * MANAGER BY COPYING A BI NARY FILE TO A TEXT FILE. * 
8 * * 
9 * INPUT : INPUT FILE NAME IS "INPUT " 

10 * OUTPUT FILE NAME IS " OUTPUT " * 
11 * * 
12 * ENTRY PO I NT : $800 * 
13 * * 
1 4 * PROGRAMMER: DON D WORTH 2/19/81 * 
15 * * 
16 * * * ** *~** **** * *** * ********* * ****** * **** * ****** ******** * * * ** 

18 BELL 

20 * 

22 PTR 
23 BUFP 
24 EBYTE 
25 AlL 
26 A2L 

28 * 

30 BUFFER 
31 DOSWRM 
32 LOCRPL 
33 LOCFPL 
34 FM 
35 COUT 
36 PRBYTE 

38 * 

40 
41 FMOCOD 
42 FMOCOP 
43 FMOCCL 
44 FMOCRD 
45 FMOCWR 
46 FMOCDE 
47 FMOCCA 
48 FMOCLO 
49 FMOCUN 
50 FMOCRE 
51 FMOCPO 
52 FMOCIN 
53 FMOCVE 
54 FMSBCD 
55 FMSBNO 
56 FMSBON 
57 FMSBRA 
58 FMSBPO 
59 FMSBPR 
60 FMPRMS 

62 * 
63 
6 4 FMRCLN 
65 FMVOL 
66 FMDRV 
67 FMSLT 
68 FMTYPE 
69 FMTYPT 
70 FMTYPI 
71 FMTYPA 
72 FMTYPB 
73 FMNAME 

EQU $87 BELL CHARACTER 

ZPAGE DEFINITIONS 

EQU $0 
EQU $2 
EQU $4 
EQU $3C 
EQU $3E 

OTHER ADDRESSES 

EQU $1000 
EQU $3D0 
EQU $3E3 
EQU $3DC 
EQU $3D6 
EQU $FDED 
EQU $FDDA 

WORK POINTER 
BUFFER POINTER 

MONITOR POINTER 
MONITOR POINTER 

DATA BUFFER 
DOS WARMSTART ADDRESS 
LOCATE RWTS PARMLIST SUBRTN 
LOCATE FILE MGR PARMLIST SUB 
FILE MANAGER ENTRY POINT 
PRINT ONE CHAR SUBROUTINE 
PRINT ONE HEX BYTE SUBRTN 

FILE MANAGER PARMLIST DEFINITION 

DS ECT 
DS l 
EQU $01 
EQU $02 
EQU $03 
EQU $04 
EQU $05 
EQU $06 
EQU $07 
EQU $08 
EQU $09 
EQU $0A 
EQU $0B 
EQU $0C 
DS 1 

EQU $00 
EQU $0 1 
EQU $02 
EQU $03 
EQU $04 
DS 8 

OPEN PARMS 
ORG FMPRMS 
DS 2 
DS 1 
DS 1 
DS 1 
DS 1 
EQU 0 
EQU 1 
EQU 2 
EQU 4 
DS 2 

OPERATION CODE 
OPEN 
CLOSE 
READ 
WRITE 
DELETE 
CATALOG 
LOCK 
UNLOCK 
RENAME 
POSITION 
INIT 
VERIFY 

SUBCODE 

NO OPERATION 
READ/ WRITE ONE BYTE 
READ/ WRITE RANGE OF BYTES 
POSITION AND DO ONE BYTE 
POSITION AND DO RANGE 

SPECIFIC PARAMETERS 

RECORD LENGTH 
VOLUME 
DRIVE 
SLOT 
TYPE 

TEXT 
INTEGER 
APPLESOFT 
BINARY 

ADDRESS OF FILE NAME 

A-21 



OOOA 7S * READ/WRITE PARMS 082F: 138 * OPEN OUTPUT FILE 
0002 76 ORG FMPRMS 
0002 77 -FMRCNM DS 2 RECORD NUMBER 082F : AO 08 140 LDY #FMNAME STORE OUTPUT FILE NAME 
0004 78 FMOFFS DS 2 BYTE OFFSET 0831:A9 CA 141 LDA #>ONAME PTR IN LIST 
0006 79 · FMRALN DS 2 RANGE LENGTH 0833:91 00 142 STA (PT R) ,Y 
0008 80 FMRAAD DS 2 · RANGE ADDRESS 083S :C8 143 !NY 
0008 81 FMDATA .EQU FMRAAD DATA BYTE READ/WRITTEN 0836:A9 09 144 LDA # <ONAME 

0838:91 00 14S STA (PTR) , Y 
OOOA: 83 * RENAME PARMS 083A:AO 07 146 LDY #FMTYPE TEXT FILE AS OUTPUT 
0002: 84 ORG FMPRMS 083C : A9 00 147 LDA #FMTYPT 
0002: 8S FMNNAM DS 2 ADDRESS OF NEW NAME 083E : 91 00 148 STA (PTR) ,Y 

0840:A2 00 149 LDX #0 NEW FILE IS OK 
·0004: 87 ' * INIT PARMS 0842:20 D3 08 1SO JSR OPEN 
0002 : 88 ORG FMPRMS 084S:90 OB 1S1 BCC OUTOP 
0001: 89 FMPAGE EQU FMSBCD FIRST PAGE OF DOS IMAGE 0847:AO OA 1S2 LDY #FMRC 

0849:B1 00 1S3 LDA (PTR) , Y 
0002: 91 * COMMON PARMS 084B:C9 06 1S4 CMP #FMRCNF FILE NOT FOUND? 
OOOA: 92 ORG FMPRMS+8 . 084D:FO 03 1SS BEQ OUTOP YES , WAS ALLOCATED THEN 
OOOA: 93 FMRC DS 1 RETURN CODE 084F : 4C BC 08 1S6 JMP ERROR 
0000: 94 FMRCOK EQU 0 NO ERRORS 
0002 : 9S FMRCBO EQU 2 BAD OPCODE 08S2:AS 02 1S8 OUTOP LDA BUFP SAVE OPEN OUTPUT FILE BUFFER 
0003: 96 FMRCBS EQU 3 BAD SOBCODE 08S4 : 8D E8 09 1S9 STA OBUFF 
0004: 97 FMRCWP EQU 4 WRITE PROTECTED 08S7 : AS 03 160 LDA BUFP+1 
OOOS : 98 FMRCED EQU s END OF DATA 08S9:8D E9 09 161 STA OBUFF+1 
0006: 99 · FMRCNF EQU 6 F I LE NOT FOUND 

I . 08SC:20 SA 09 162 JSR REWIND POSITION TO START OF FILE 
0007 : 100 FMRCBV EQU 7 BAD VOLUME 
0008: 101 FMRCIO EQU 8 I / 0 ERROR 08SF: 164 * READ ADDRESS / LENGTH FROM BINARY FILE 
0009: 102 FMRCDF EQU 9 DISK FULL 
OOOA: 103 FMRCLK EQO 10 FILE LOCKED 08SF:A9 04 166 LDA # 4 READ 4 BYTES F I RST 
OOOB : 104 DS 1 NOT USED 0861:AO 06 167 LDY #FMRALN 
OOOC: 10S FMF.MWA DS 2 FILE MANAGER WORKAREA PTR I - - 0863:91 00 168 STA (PTR) , Y 
OOOE: 106 FMTSL DS 2 T/ S LIST PTR ~ 086S : A9 00 169 LDA #0 
0010 : 107 FMBUFF DS 2 DATA BUFFER PTR 0867:C8 170 INY 
0800: 108 DEND 0868 : 91 00 171 STA (PTR) , Y 

086A : 20 74 09 172 JSR READ 
0800: llO * LOCATE FM PARMLIST 

086D: 174 * READ ENTIRE BINARY FILE INTO MEMORY AT $1000 
0800 : 20 DC 03 ll2 COPY JSR LOCFPL FIND PARMLIST 

-~ 0803:84 00 113 STY PTR SET UP POINTER TO IT 086D:AD 02 10 176 LDA BUFFER+2 COPY DATA LENGTH TO LI ST 
080S : 8S 01 ll4 STA PTR+1 0870:AO 06 177 LDY #FMRALN 

0872:91 00 178 STA (PTR) ,Y 
0807: ll6 * OPEN IN POT FILE " ~ 0874 : AD 03 10 179 LDA BUFFER+3 

0877 : C8 180 !NY 
0807 : AO 08 ll8 LDY #FMNAME STORE ' INPUT FILE NAME 0878 : 91 00 181 STA (PTR) , Y 
0809:A9 AC ll9 LDA # >!NAME PTR IN LIST ·-~ 

0·87A: 18 182 CLC 
080B:91 00 120 STA (PTR) , Y 087B : AD 02 10 183 LDA BUFFER+2 COMPUTE ENDING BYTE 
080D:C8 121 INY 087.E: 48 184 PHA 
080E:A9 09 122 LDA #<INAME 087F:69 00 18S ADC # >BUFFER 
0810:91 00 123 STA (PTR) ,Y I - ~ 0881:8S 04 186 STA EBYTE 
0812:AO 07 124 LDY #FMTYPE BINARY FILE AS INPUT 

... . ·.0883:AD 03 10 187 LDA BUFFER+3 
0814:A9 04 125 LDA #FMTYPB 0886 : 48 188 PHA 
0816:91 00 126 STA (PTR) ,Y .. -~ 

0887 : 69 10 189 ADC #<BUFFER 
0818 : A2 01 127 LDX #1 OLD FILE EXPECTED OB89:8S OS 190 STA EBYTE+1 
081A:20 D3 08 128 JSR OPEN AND OPEN THE FILE 088B : 20 74 09 191 JSR READ READ BLOB INTO MEMORY 
0810:90 03 129 BCC INOP 
081F: 4C BC 08 130 JMP ERROR ANY ERROR IS FATAL -.- 3 088E: 193 * WRITE ENTIRE BLOB OUT INTO TEXT FILE 

0822 AS 02 132 INOP LDA BUFP 088E:AO 00 19S LDY #0 
0824 8D EA 09 133 STA !BUFF SAVE OPEN FILE BUFFER 0890:98 196 TYA 
0827 AS 03 134 LDA BUFP+1 0891:91 04 197 STA (EBYTE) , Y MARK END OF FILE 
0829 8D EB 09 13S STA IBUFF+1 0893:68 198 PLA 
082C 20 SA 09 136 JSR REWIND POSITION TO START OF FILE 0894 : AO 07 199 LDY #FMRALN+1 SET RANGE LENGTH 

0896:91 00 200 STA (PTR) ,Y 
0898 : 88 201 DEY 
0899 : 68 202 PLA 
089A:91 00 203 STA (PTR) , Y 
089C : 20 82 09 204 JSR WRITE WRITE BLOB FROM MEMORY 

•-

A-22 A-23 



089F: 

089F:AD E8 09 
08A2:85 02 
08A4:AD E9 09 
08A7 : 85 03 
08A9:20 46 09 
08AC:AD EA 09 
08AF:85 02 
08B1 : AD EB 09 
08B4 : 85 03 
08B6:20 46 09 
08B9 : 4C DO 03 

08BC : 

08BC:AO OA 
08BE : B1 00 
08C0 : 48 
08C1 : A9 C5 
08C3 : 20 ED FD 
08C6 : A9 D2 
08C8 : 20 ED FD 
08CB : 20 ED FD 
08CE:68 
08CF:20 DA FD 
08D2 : 00 

08D3 : 

08D3 : AD D2 03 
08D6:85 03 
08D8 : AO 00 
08DA : 84 02 

08DC : 

08DC:B1 02 
08DE : 48 
08DF:C8 
08EO:B1 02 
08E2 : 85 03 
08E4 : 68 
08E5:85 02 
08E7:DO OA 
08E9 : A5 03 
08EB:DO 06 

08ED : A9 OC 
08EF :4 8 
08F0 :4C C1 08 

08F3 : AO 00 
08F5 : B1 02 
08F7 :F O 04 
08F9:AO 24 
08FB:DO DF 

08FD : A9 01 
08FF : 91 02 

0901 : 

0901:AO 00 
0903:A9 01 
0905:91 00 
0907 : A9 00 
0909 : AO 02 
090B : 91 00 
090D:C8 
090E:91 00 
0910 : AO 04 
0912:91 00 

A-24 

206 * 

208 EXIT 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 

220 * 

222 ERROR 
223 
22 4 
225 ERR 
226 
227 
228 
229 
230 
231 
232 

234 • 

236 OPEN 
237 
238 
239 

241 * 

243 GBUFO 
244 
245 
246 
247 
248 
249 
250 
251 
252 

254 
255 
256 

258 GBUF 
259 
260 
261 
262 

264 GOTBUF 
265 

267 * 

269 
270 
271 
272 
273 
274 
275 
276 
277 
278 

WHEN FINISHED , CLOSE FILES 

LDA OBUFF 
STA BUFP 
LDA OBUFF+l 
STA BUFP+1 
JSR CLOSE 
LDA !BUFF 
STA BUFP 
LDA IBUFF+l 
STA BUFP+1 
JSR CLOSE 
JMP DOSWRM 

CLOSE OUTPUT FILE 

CLOSE INPUT FILE 
BACK TO DOS 

ERROR, PRINT "ERRXX " 

LDY #FMRC 
LDA (PTR) , Y 
PHA 
LDA # ' E 
JSR COUT 
LDA # ' R 
JSR COUT 
JSR COUT 
PLA 
JSR PRBYTE 
BRK 

FIND RETURN CODE 

PRINT "ERR" 

PRINT HEX CODE 
DIE HORRIBLY 

OPEN : COMPLETE PARMLIST AND OPEN FILE 

LDA DOSWRM+2 FIND DOS ENTRY 
STA BUFP+1 
LDY #0 
STY BUFP POINT AT BUFFER CHAIN 

SCAN DOS BUFFERS FOR A FREE ONE 

LDA 
PHA 
!NY 
LDA 
STA 
PLA 
STA 
BNE 
LDA 
BNE 

(BUFP) , Y 

(BUFP) , Y 
BUFP+1 

BUFP 
GBUF 
BUFP+l 
GBUF 

LDA #12 
PHA 
JMP ERR 

LDY #0 
LDA (BUFP) , Y 
BEQ GOTBUF 
LDY #36 
BNE GBUFO 

LDA #l 
STA (BUFP) , Y 

LOCATE NEXT DOS BUFFER 

GOT ONE 

GOT ONE 

NO FILE BUFFERS RETURN CODE 

GO PRINT MESSAGE 

LOOK AT FILENAME 

NONE THERE , FREE BUFFER 
IT ' S NOT FREE 
GO GET NEXT ONE 

MARK BUFFER IN USE 

F INI SH COMPLETI NG OPEN LIST 

LDY #FMOCOD 
LDA #FMOCOP 
STA (PTR) , Y 
LDA #0 
LDY #FMRCLN 
STA (PTR) , Y 
!NY 
STA (PTR), Y 
LDY #FMVOL 
STA (PTR) , Y 

SET OPCODE TO OPEN 

SET RECORD LENGTH TO 0 

AND VOLUME (ANY VOL) 

0914 20 E3 03 
0917 84 3C 
0919 85 3D 
09lB AO Ol 
091D Bl 3C 
09lF 4A 
0920 4A 
0921 4A 
0922 4A 
0923 AO 06 
0925 91 00 
0927 AO 02 
0929 Bl 3C 
092B AO 05 
092D 91 00 

092F: 

092F : AO lE 
093l : Bl 02 
0933:48 
0934 :C8 
0935 : CO 24 
0937:90 F8 

0939 : AO ll 
093B : 68 
093C:91 00 
093E:88 
093F : CO OC 
094l : BO F8 

0943 : 4C D6 03 

0946 : 

0946:AO 00 
0948:A9 02 
094A : 9l 00 
094C : 20 2F 09 
094F : 90 03 
0951 : 4C BC 08 
0954 : AO 00 
0956:98 
0957:91 02 
0959 : 60 

095A: 

095A AO 02 
095C A9 00 
095E 91 00 
09 60 C8 
0961 co 06 
0963 90 F9 
0965 AO 00 
0967 A9 OA 
0969 91 00 
096B 20 2F 09 
096E 90 03 
0970 4C BC 08 
0973 60 

280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 

296 * 

298 CALLFM 
299 CFMLP1 
300 
301 
302 
303 

305 
306 CFMLP2 
307 
308 
309 
310 

312 

314 • 

316 CLOSE 
317 
318 
319 
320 
321 
322 CLOK 
323 
324 
325 

327 * 

329 REWIND 
330 
331 REWLP 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 REWRTS 

JSR 
STY 
STA 
LDY 
LDA 
LSR 
LSR 
LSR 
LSR 
LDY 
STA 
LDY 
LDA 
LDY 
STA 

LOCRPL 
AlL 
AlL+l 
u 
(AlL) , Y 
A 
A 
A 
A 
#FMSLT 
(PTR) ,Y 
#2 
(AlL) , Y 
#FMDRV 
(PTR) , Y 

FIND RWTS PARMS 

GET SLOT*16 

SLOT=SLOT/16 

STORE IN LIST 

GET DRIVE 

AND SLOT 

COMMON INTERFACE TO FILE MANAGER 

LDY #30 
LDA (BUFP) , Y GET THREE BUFFER PTRS 
PHA 
!NY 
CPY #36 
BCC CFMLPl 

LDY #FMBUFF+1 
PLA 
STA (PTR) , Y COPY THEM TO FM LIST 
DEY 
CPY #FMFMWA 
BCS CFMLP2 

JMP FM EXIT THRU FILE MANAGER 

CLOSE : CLOSE DOS FILE 

LDY 
LDA 
STA 
JSR 
BCC 
JMP 
LDY 
TYA 
STA 
RTS 

#FMOCOD 
#FMOCCL 
(PTR) , Y 
CALLFM 
CLOK 
ERROR 
#0 

(BUFP) , Y 

CLOSE FILE 

FREE BUFFER 

REWIND : POSITION TO START OF FILE 

LDY #FMRCNM 
LDA #0 
STA (PTR) ,Y ZERO RECORD NUMBER AND .. 
!NY 
CPY #FMOFFS +2 BYTE OFFSET. 
BCC REWLP 
LDY #FMOCOD 
LDA #FMOCPO POSITION OPCODE 
STA (PTR) ,Y 
JSR CALLFM EXIT VIA FILE MANAGER 
BCC REWRTS CHECK FOR ERRORS 
JMP ERROR 
RTS 

A-25 



0974: 343 * 

0974 :AD EA 09 345 READ 
0977:85 02 346 
0979 : AD EB 09 347 
097C: 85 03 348 
097E:A9 03 349 
0980:DO oc 350 

0982: 352 * 

0982 :AD E8 09 354 WRITE 
0985:85 02 355 
0987 : AD E9 09 356 . 
098A:85 03 357 
098C:A9 04 358 
098E : 359 * 

098E: 361 * 

098E : AO 00 363 DOIO 
0990 : 91 00 364 
0992 : AO 01 365 
0994 : A9 02 366 
0996 : 91 00 367 
0998 : AO 08 368 
099A:A9 00 369 
099C: 91 00 370 
099E : C8 371 
099F:A9 10 372 
09A1:91 00 373 
09A3:20 2F 09 374 
09A6:90 03 375 
09A8:4C BC 08 376 
09AB:60 377 ·DoiORT 

09AC: 379 * 

09AC : C9 CE DO 381 I NAME 
09AF:D5 ·D4 AO 
09B2:AO AO MJ 
09B5:AO AO AO 
09B8:AO AO AO 
09BB : AO AO AO 
09BE:AO AO AO 
09C1 :AO AO AO 
09C4 :AO AO AO 
09C7:AO AO AO 
09CA:CF D5 D4 382 ONAME 
09CD~DO D5 D4 
09DO:AO AO AO 
09D3 :AO AO AO 
09D6:AO AO AO 
09D9:AO AO AO 
09DC:AO AO AO 
09DF:AO AO A· a 
09E2 :AO AO AO 
09E5:AO AO. AO 

09E8 : 384 OBUFF 
09EA : 385 !BUFF 

*** SUCCESSFUL ASSEMBLY : 

A-26 

READ: READ A RANGE OF BYTES TO $1000 

LDA I BUFF FIND PROPER BUFFER 
STA BUFP 
LDA IBUFF+1 
STA BUFP+1 
LDA #FMOCRD READ OPCODE 
BNE DOIO GO DO COMMON" CODE 

WRITE : WRITE A RANGE OF BYTES FROM $1000 

LDA OBUFF FIND PROPER BUFFER 
STA BUFP 
LDA OBUFF+1 
STA BUFP+ 1 
LDA #FMOCWR WRITE OPCODE 
BNE DOIO 

DOIO: READ/WRITE A RANGE OF BYTES 

LDY #FMOCOD 
STA (PTR) , Y SET OPCODE 
LDY #FMSBCD 
LDA #FMSBRA 
STA (PTR) ,Y DO RANGE OF BYTES 
LDY #FMRAAD 
LDA #>BUFFER 
STA (PTR) ,Y RANGE ADDRESS=$1000 
INY 
LDA # BUFFER 
STA (PTR) , Y 
JSR CALLFM CALL FM TO DO I/0 OPERATION 
ace DOIORT 
JMP ERROR 
RTS 

DATA 

ASC 'INPUT 

ASC 'OUTPUT 

DS 2 
DS 2 

NO ERRORS 

APPENDIX B 
DISK PROTECTION SCHEMES 

As the quantity and quality of Apple II software has 
increased, so has the inc~dence of illegal duplication of 
copyrighted software. To combat this, software vendors have 
introduced methods for protecting their software. Since 
most protection schemes involve a modified or custom Di~k 
Operating System, it seems appropriate to discuss disk 
protection in general. 

Typically, a protection scheme's purpose is to stop 
unauthorized duplication of the contents of the diskette, 
although it may also include, or be limited to, preventing 
the listing of the software (if it is in BASIC). This has 

1 been attempted in a variety of ways, all of which 
necessitate reading and writing non-standard formats on the 
disk. If the reader is unclear about how a normal diskette 
is formatted, he should refer to Chapter 3 for more 
information. 

Early protection methods were primitive in comparison to 
what is being done now. Just as the methods of protection 
have improved, so have the techniques people have used to 
break them. The cycle seems endless. As new and more 
sophisticated schemes are developed, they are soon broken, 
prompting the software vendor to try to create even more 
sophisticated systems. 

It seems reasonable at this time to say that it is 
impossible to protect a disk in such a way that it can't be 
broken. This is, in large part, due to the fact that the 
diskette must be "bootable"; i.e. that it must contain at 
least one sector (Track 0, Sector 0) which can be read by 
the program in the PROM on the disk controller card. This 
means that it is possible to trace the boot process by 
disassembling the normal sector or sectors that must be on 
the disk. It turns out that it is even possible to protect 
these sectors. Because of a lack of space on the PROM (256 
bytes), the software doesn't fully check either the Address 
Field or the Data Field. But potential protection schemes 
which take advantage of this are limited and must involve 
only certain changes which will be discussed below. 

8-1 



Mo~t ~rotected dis~s use a modified version of Apple's DOS. 
Th1s lS a much eas1er task than writing one's own Disk 
Operating System and will be the primary area covered by 
this discussion. 

Although there are a vast array of different protection 
schemes, they all consist of having some portion of the disk 
unreadable by a normal Disk Operating System. The two 
logical areas to alter are the Address Field and the Data 
F~eld. Each include a number of bytes which, if changed, 
w1ll cause a sector to be unreadable. We will examine how 
that is done in some detail. 

The Address Field normally starts with the bytes 
$D5/$AA/$96. If any one of these bytes were changed, DOS 
would not be able to locate that particular Address Field 
causing an error. While all three bytes can and have bee~ 
changed by various schemes, it is important to remember that 
th~y must be chosen in such a way as to guarantee their 
un1queness. ~pple's DOS does this by reserving the bytes 
$D5 and $AA; 1.e. these bytes are not used in the storage of 
data. The sequence chosen by the would-be disk protector 
can not occur anywhere else on the track, other than in 
another Address Field. Next comes the address information 
itself (volume, track, sector, and checksum). Some common 
techniques include changing the order of the information 
doubling the sector numbers, or altering the checksum with 
some constant. Any of the above would cause an I/0 error in 
a normal DOS. Finally, we have the two closing bytes 
($DE/$AA}, which are similar to the starting bytes, but with 
a.difference. Their uniqueness is not critical, since DOS 
w1ll read whatever two bytes follow the information field 
using them for verification, but not to locate the field ' 
itself. 

The Data Field is quite similar to the Address Field in that 
its thr~e parts correspond almost identically, as far as 
protect1on schemes are concerned. The Data Field starts 
with $D5/$AA/$AD, only the third byte being different and 
all that applies to the Address Field applies here al~o. 
Switching the third bytes between the two fields is an 
example of a protective measure. The data portion consists 
of 342 bytes of data, followed by a checksum byte. Quite 
often the data is written so that the checksum computation 
~ill ~e non-zero, causing an error . The closing bytes are 
1dent1cal to those of the Address Field ($DE/$AA) . 

As mentioned earlier, the PROM on the disk controller skips 
certain parts of both types of fields. In particular, 
neither trailing byte ($DE/$AA} is read or verified nor is 
the checksum tested, allowing these bytes to be modified 
even in track 0 sector 0. However, this protection is 
easily defeated by making slight modifications to DOS's RWTS 
routines, rendering it unreliable as a protective measure . 

B-2 

In the early days of disk protection, a single alteration 
was all that was needed to stop all but a few from copying 
the disk. Now, with more educated users and powerful 
utilities available, multiple schemes are quite commonly 
used . The first means of protection was probably that of 
hidden control characters imbedded in a file name. Now it 
is common to find a disk using multiple non-standard formats 
writt~n even between - t~acks. 

A state of the art protection scheme consists of two 
elements. First, the data is stored on the diskette in some 
non-standard way in order to make copying very difficult. 
s econdly, some portion of memory is utilize~ that will be 
altered upon a RESET. (For examp1 e, the pr1mary text page 
or certain zero page locations) This is to prevent the 
software from being removed from memory intact. 

THt RACE IS ON BETWEEN 
THE PROTECTORS 

AND THE UNPOOTECTORS. 
Recently, several "nibble" or byte copy programs have become 
available . Unlike traditional copy programs which require 
the data to be in a predefined forma~, these utilities make 
as few assumptions as possible about the data structure. 
Ever since protected disks were first introduced, it has 
been asked, "why can't a track be read into memory and then 
written back out to another diskette in exactly the same 
way?" . The problem lies with the self-sync or auto-sync 
bytes. (For a full discussion see Chapter 3) These bytes 
c o n tain extra zero bits that are lost when read into 
memory . In memory it is impossible to determine the 

8-3 



difference between a hexadecimal $FF that was data and a hex 
$FF that was a self-sync byte . Two solutions are currently 
being implemented in nibble copy programs. One is to 
analyze the data on a track with the hope that the sync gaps 
can be located by deduction. This has a high probability of 
success if 13 or 16 sectors are present , even if they have 
been modified, but may not be effective in dealing with 
non-standard. sectoring where sectors are larger than 256 
bytes . In short, this method is effective but by no means 
foolproof . . The second method is simple but likewise has a 
difficulty . It simply wri t es every hex $FF found on t he 
track as if it were a sync byte . This , however , will expand 
the physical space needed- t o write the track back ou t, since 
sync bytes requ ire 25% more room. I f enough hex $FF ' s occur 
in t he data , the trac k wiL l overwrite i tse lf . This c an 
happen in general if the d rive used to wr ite the data is 
s i gnificant l y slower than · normal. Thus , we are back to 
ha v i ng to analyze t he d a t a a nd, i n effec t , make some 
ass ump t ion s . I t appea r s that, apa r t from using some 
hardware device to he l p fi nd t he sync bytes , a software 
program must ma ke s ome assumptions about h ow the data is 
structured on the d isket t e . 

The result of t he introduct ion of nibble c opy programs has 
been to " f o r ce the . ha nd " of the software vendors . The 
init i al respon se was t o develop new prot ect i on s c hemes t hat 
defeated the nibb le copy p rograms . Mo re r ecent protection 
s chemes , howeve-r, i nvolve hardware a nd t imi ng dependencies 
which requi r e c ur r e nt n i bble c op y p r og rams to rely heavily 
upo n the use r f o r d i r ect ion .. I f the p r ese n t tr e nd 
c ontinues , i t is ve r y . l i kely tha t p r otect i on s c hemes wi l l 
evo lve to a po i nt where a utoma t ed techn i ques cannot be used 
to defeat . them. 

B-4 

ACCESS TIME 

ADDRESS 

ALGORITHM 

ALPHANUMERIC 

AND 

ARM 

ASCII 

APPEND1X- C 
GLOSSARY 

The time required to locate and read or 
write data on a direct access storage 
device, such as a diskette drive. 

The numeric location of a piece of data 
in memory. Usually given as a 
hexadecimal number from $000~ to $FFFF 
(65535 decimal) . A disk address is the 
location of a data sector, expressed in 
terms of i ts track and sector numbers. 

A sequence of steps which may be 
performed by a program or other process, 
which will produce a given result. 

An alphabetic character (A-Z) o r a 
numeric digit (0-9). The term used to 
refer to the class of all characte rs and 
digits. 

As opposed to digital. Having a value 
which is continuous, such as a voltage 
or electr i cal resistance. 

The logical process of determining 
whether two bits are both ones. 0 AND 1 
results. in 0 (f.alse), 1 AND 1 r esults in 
1 (true). 

The portion of a disk drive which 
suspends the read/ write head over the 
disk's surface. The arm can be moved 
radially to allow access to different 
tracks. 

American Standard Code for Information 
Interchange. A hexadecimal to character 
conversion code assignment, such that 
the 256 possible values of a single byte 
may each represent a alphabetic, 
numeric, special, or control character. 
ASCII is used when interfacing to 
peripherals, such as keyboards, 
printe.rs, or vide o text display_s. 

c,..r 



ASSEMBLY LANGUAGE 

BACKUP 

BASE 

BINARY 

BIT 

BIT CELL 

BIT SLIP MARKS 

BOOT/BOOTSTRAP 

BRK 

BUFFER 

BUG 

Also known as MACHINE LANGUAGE. The 
native programming language of the 
individual computer . Assembly language 
is oriented to the machine , and is not 
humanized , as is BASIC , PASCAL, or 
FORTRAN . An assembler is used to 
convert assembly language statements to 
an executable program . 

The process of making a copy of a 
program or data against the possibility 
of its accidental l oss or destruction. 

The number system in use . Decimal is 
base 10 , since each digit represents a 
power of 10 (1 , 10 , 100 , .•. ). Hexadecimal 
is base 16 (1 , 16 , 256 , .•. ) . Binary is 
base 2 (1 , 2 , 4 , 8, ... ). 

A number system based upon powers of 2 . 
Only the digits 0 and 1 are used . 101 
in binary , for example , is 1 units 
digit , 0 twos, and 1 fours, or 5 in 
decimal . 

A single binary digit (a 1 or a 0) . A 
bit is the smallest unit of storage or 
information in a computer . 

The space on a diskette , between two 
clock pulses , which can hold the value 
of a single binary 0 or 1 (bit). 

The epilogue of a disk field. Used to 
double check that the disk head is still 
in read sync and the sector has not been 
damaged. 

The process of loading a very large 
program into memory by loading 
successively larger pieces, each of 
which loads its successor . The program 
loads itself by "pulling itself up by 
its bootstraps" . 

BREAK . An assembly langauge instruction 
which can be used to force an interrupt 
and immediate suspension of execution of 
a program . 

An area of memory used to temporarily 
hold data as it is being transferred to 
or from a peripheral, such as a disk 
drive . 

A programming error. Faulty operation 
of a program . 

BYTE 

CARRIAGE RETURN 

CARRY FLAG 

CATALOG 

CHAIN 

CHECKSUM/CRC 

CLOBBERED 

CODE 

COLDSTART 

CONTIGUOUS 

CONTROL BLOGK 

The smallest unit of addressable memory 
in a computer. A byte usually consists 
of 8 bits and can contain a decimal 
number ranging from 0 to 255 or a single 
alphanumeric character. 

A control character which instructs the 
printer to end one line and begin 
another. When printing a carriage 
return is usually followed by a line 
feed . 

A 6502 processor flag which indicates 
that a previous addition resulted in a 
carry . Also used as an error indicator 
by many system programs. 

A directory of the files on a diskette. 
See DIRECTORY. 

A linked list of data elements. Data is 
chained if its ·elements need not be 
contiguous in storage and each element 
can be found from its predecessor via an 
address pointer . 

A method for verifying that data has not 
been damaged. When data is written, the 
sum of all its constituent bytes is 
stored with it . If , when the data is 
later read , its sum no longer matches 
the checksum, it has been damaged. 

Damaged or destroyed. A clobbered 
sector is one which has been overwritten 
such that it is unrecoverable. 

Executable instructions to the computer, 
usually in machine language . 

A restart of a program which 
reinitializes all of its parameters , 
usually erasing any work which was in 
progress at the time of the restart . A 
DOS coldstart erases the BASIC program 
in memory . 

Physically next to. TWO bytes are 
contiguous if they are adjoining each 
other in memory or on the disk . 

A collection of data which is used by 
the operating system to manage 
resources. Examples of a control block 
used by DOS are the file buffers . 



CONTROL CHARACTER 

CONTROLLER CARD 

CSWL 

CYCLE 

DATA 

DATA SECTOR BUFFER 

DATA TYPE 

DCT 

DECIMAL 

DEFERRED COMMANDS 

C-4 

A special ASCI I code which is used to 
perform a unique function on a 
peripheral , but does not generate a 
printable character . Carriage return , 
line feed , form feed , and bell are all 
control characters . 

A hardware circuit board which is 
plugged into an APPLE connector which 
allows communic ation with a peripheral 
device , such as a disk or printer . A 
controller card usually contains a small 
driver program i n ROM. 

A vector in zero-page through which 
output data is passed for display on the 
CRT or for printing . 

The smallest unit of time within the 
central processor of the computer. Each 
machine language instruction requires 
two or more cycles to complete. One 
cycle (on the APPLE) is one micro-second 
or one millionth of a second . 

Units . of informa t ion. 

On the APPLE, a 256 byte buffer used by 
DOS to hold the image of any given 
sector on the diskette. As information 
is read from the file , data is extracted 
from the data sector buffer until it is 
exhausted, at which time it is refilled 
with the next sector image . 

The type of information stored in a 
byte. A byte might contain a printable 
ASCII character, binary numeric data, or 
a machine language instruction. 

Device Characteristics Table. Used as an 
input parameter table to Read/Write 
Track/Sector (RWTS) to describe the 
hardware characteristics of the diskette 
drive . 

A number system based upon powers of 
10 . Digits range from 0 to 9 . 

DOS commands which may (or must) be 
invoked from within an executing BASIC 
program . OPEN, READ, WRITE, and CLOSE 
are all examples of deferred commands . 

-· ~ • 

3 
) · -. l 3 

l ~ 
! . ~ 

.J 

-· 'j' 
I ' 

I •. 
I 

DIGITAL 

DIRECT ACCESS 

DIRECTORY 

DISK INITIALIZATION 

DISPLACEMENT 

DRIVER 

DUMP 

ENCODE 

.As opposed· to analog. Discrete values as 
opposed to continuous ones. Only 
digital values may be stored in a 
computer. Analog measurements from the 
real world , such as a voltage or the 
level of light outside, must be 
converted into a numerical value which, 
of necessity, ·must be "rounded off" to a 
discrete value. 

Peripheral storage allowing rapid access 
of any piece of data , regardless of its 
placement on the . medium . Magnetic tape 
is generally not considered direct 
access, since the entire tape must be 
read to locate the last byte. A 
diskette is direct access, since the arm 
may be rapidly ·moved to any track and 
sector . 

A catalog of all files stored on a 
diskette. The directory · must contain 
each file's name and its location on the 
disk as well as other information 
regarding the ~ype of data stored 
there. 

The process which places track 
formatting information, including 
sectors and gaps, on a blank diskette. 
During disk initialization , DOS also 
places a VTOC and directory on the newly 
formatted disk , as well as saving the 
HELLO program . 

The distance from the beginning of a 
block of data to a particular byte or 
field . Displacements are usually given 
beginning with 0, for the first byte, 1 
for the second, etc . Also known as an 
offset. 

A program which provides an input stream 
to another program or an output device . 
A printer driver accepts input from a 
user program in the form of lines to be 
printed, and sends them to the printer. 

An unformatted or partially formatted 
listing of the contents of memory or a 
diskette in hexadecimal . Used for 
diagnostic purposes. 

To translate data from one form to 
another for any of a number of reaso~s . 

In DOS 3 . 3, Data is encoded from 8 b1t 
bytes to 6 bit bytes for storage on a 
DISK II. 

C-5 



ENTRY POINT (EPA) 

EOF 

EPILOGUE 

EXCLUSIVE OR 

FIELD 

FILE 

FILE BUFFERS 

FILE DESCRIPTOR 

FILE MANAGER 

FILE TYPE 

FIRMWARE 

C-6 

The entry point address is the location 
within a program where execution is to 
start. This is not necessarily the same 
as the load point (or lowest memory 
address in the program) . 

End Of File. This mark signals the end 
of a data file. $00 for APPLE DOS text 
files. 

The last three bytes of a field on a 
track. These unique bytes are used to 
insu~e the integrity of the data which 
preceeds them. 

A logical operation which compares two 
bits to determine if they are 
different. 1 EOR 0 results in 1. 1 EOR 
1 results in 0. 

A group of contiguous bytes forming a 
single piece of data, such as a person's 
name, his age, or his social security 
number. In disk formatting, a group of 
data bytes surrounded by gaps. 

A named collection of data on a diskette 
or other mass storage medium. Files .can 
contain data or programs. 

In APPLE DOS, a collection of buffers 
used to manage one open file. Included 
are a data sector buffer, a Track / Sector 
List sector buffer, a file manager 
workarea buffer, the name of the file, 
and pointers. The DOS command, MAXFILES 
3, causes 3 of these file buffers to be 
allocated. 

A single entry in a diskette directory 
which describes one file. Included are 
the name of the file, its data type, its 
length~ and its location on the 
diskette. 

That portion of DOS which ·manages 
files. The file manager handles such 
general operations as OPEN, CLOSE, READ, 
WRITE, POSITION, RENAME, DELETE, etc. 

The type of data held by a file. Valid 
DOS file types are Binary, Applesoft, 
Integer-BASIC, Text, Relocatable, S, A, 
and B. 

A middle ground between hardware and 
software. Usually used to describe 
micro-code or programs which have been 
stored in read-only memory. 

-. 
GAPS 

HARD ERROR 

HARDWARE 

HEAD 

HEXADECIMAL/HEX 

HIGH MEMORY 

HIMEM 

IMMEDIATE COMMAND 

INDEX 

INSTRUCTION 

INTEGER 

The spaces between fields of data on a 
diskette. Gaps on an APPLE diskette 
contain self-sync bytes. 

An unrecoverable Input/Output error. 
The data stored in the disk sector can 
never be successfully read again. 

Physical computer equipment, as opposed 
to programs which run on the equipment. 
A disk drive is an example of a hardware 
component. 

The read/write head on a diskette 
drive. A magnetic pickup, similar in 
nature to the head on a stereo tapedeck, 
which rests on the spinning surface of 
the diskette. 

A numeric system based on powers of 16. 
Valid hex digits range from 0 to 9 and A 
to F, where A is 10, B is 11, ... , and 
F is 15. B30 is 11 256's, 3 16's, and 0 
l's, or 2864 in decimal. Two 
hexadecimal digits can be used to 
represent the contents of one byte. 
Hexadecimal is used with computers 
because it easily converts with binary. 

Those memory locations which have high 
address values. $FFFF is the highest 
memory location. Also called the "top" 
of memory. 

APPLE's zero-page address which 
identifies the first byte past the 
available memory which can be used to 
store BASIC programs and their 
variables. 

A DOS command which may be entered at 
any time, especially when DOS is waiting 
for a command from the keyboard. 
Deferred commands are the opposite of 
immediate commands. 

A displacement into a table or block of 
storage. 

A single step to be performed in an 
assembly language or machine language 
program. Instructions perform such 
operations as addition, subtraction, 
store, or load. 

As opposed to floating point. A "wh<;>le" 
number with no fraction associated w~th 
it. 

C-7 



INTERCEPT 

INTERLEAVE 

INTERRUPT 

lOB 

I/0 ERROR 

JMP 

JSR 

K 

KSWL 

LABEL 

LATCH 

C-8 

A program which logically places itself 
in the execution path of another 
program, or pair of programs. A video 
intercept is used to re-direct program 
output from the screen to a printer, for 
example. 

The practice of s~lecting the order of 
sectors on a diskette track to minimize 
access time due to rotational delay. 
Also called "skewing" or interlacing. 

A hardware signal which causes the 
computer to halt execution of a program 
and enter a special handler routine. 
Interrupts are used to service real-time 
clock time-outs, BRK instructions, and 
RESET. 

Input/Output Block. A collection of 
parameter data, passed to Read/Write 
Track/Sector, describing the operation 
to be performed. 

Input/Output Error. An error which 
occurs during transmission of data to or 
from a peripheral device, such as a . disk 
or cassette tape. 

A 6502 assembly langauge instruction 
which causes the computer to begin 
executing instructions at a different 
location in memory •. Similar to a GOTO 
statement in BASIC. 

A 650Z assembly langauge instruction 
which causes the- computer to "call" a 
subroutine. Similar to a GOSUB statement 
in BASIC. 

A unit of measurement, usually applied 
to bytes. 1 K bytes is equivalent to 
1024 bytes. 

A vector in zero-page through which 
input data is passed from the 
keyboard or a remote terminal. 

A name associated with a location in a 
program or in memory. Labels are used in 
assembly langauge much like statement 
numbers are used in BASIC. 

A component into which the Input/Output 
hardware can store a byte value,_ which 
will hold that value until the central 
processor has time to read it (or vice 
versa). 

-·· ·:· ~ 

I ~ 

~l-·~ 
I . - ~ -~ 

! ~ 
I 

LINK 

LIST 

LOAD POINT (LP) 

LOGICAL 

LOOP 

LOW MEMORY 

LOMEM" 

LSB/LO ORDER 

MASTER DISK 

MICROSECOND 

MONITOR 

An address pointer in an element of a 
linked chain of data or buffers~ 

A one dimensional sequential array of 
data items. 

The lowest address of a loaded assembly 
language program -- the first byte 
loaded. Not necessarily the same as the 
entry point address (EPA) • 

A form of arithmetic which operateE 
binary "truth" or "false", 1 or 0. 
OR, NAND, NOR, and EXCLUSIVE OR are 
logical operations. 

with 
AND, 
all 

A programming construction in which a 
group of instructions or statements are 
repeatedly executed; 

The memory locations with the lowest 
addresses. $0000 is the lowest · memory 
location. Also called the. "bottom" of 
memory. 

APPLE's zero-page address which 
identifies the first byte of the 
available memory which can be used to 
store BASIC programs and their 
variables. 

Least Significant Bit or Least 
Significant Byte. The l'a bit in a byte 
or the second pair of hexadecimal digits 
forming an address.. In the address 
$8030, $30 is the LO order part of the 
address. 

A DOS diskette which will boot in an 
APPLE II of any size memory and take 
full advantage of it. 

A millionth of a second. Equivalent to 
one cycle of the APPLE II central -
processor. Also written as "Usee". 

A machine language program which always 
resides in the computer and which is the 
first to receive control when the 
machine is powered up. The APPLE 
monitor resides in ROM and allows 
examination and modification of memory 
at a byte level. 

C-9 



MSB/HI ORDER 

NULL 

NIBBLE/NYBBLE 

OBJECT CODE 

OBJECT MODULE 

OFFSET 

OPCODE 

OPERATING SYSTEM 

OR 

OVERHEAD 

PAGE 

C-10 

Most Significant Bit or Most Significant 
Byte. The 128's bit of a byte (the 
left-most) or the first pair of 
hexadecimal digits in an address. In 
the byte value $83, the MSB is on (is a 
1). 

Empty, having no length or value. A 
null string is one which contains no 
characters. The null control character 
($00) produces no effect on a printer 
(also called an idle) . 

A portion of a byte, usually 4 bits and 
represented by a single hexadecimal 
digit. $FE contains two nibbles, $F and 
$E. 

A machine language program in binary 
form, ready to execute. Object code is 
the output of an assembler. 

A complete machine language program in 
object code form, stored as a file on a 
diskette. 

The distance from the beginning of a 
block of data to a particular byte or 
field. Offsets are usually given 
beginning with 0, for the first byte, 1 
for the second, etc. Also known as a 
displacement. 

Operation Code. The three letter 
mnemonic representing a single assembly 
language instruction. JMP is the opcode 
for the jump instruction. 

A machine language program which manages 
the memory and peripherals 
automatically, simplifying the job of 
the applications programmer. 

The logical operation comparing two bits 
to determine if either of them are 1. 1 
OR 1 results in 1 (true), 1 OR 0 results 
in 1, 0 OR 0 results in 0 (false). 

The space required by the system, either 
in memory or on the disk, to manage 
either. The disk directory and VTOC are 
part of a diskette's overhead. 

256 bytes of memory which share a common 
high order address byte. Zero page is 
the first 256 bytes of memory ($0000 
through $00FF) • 

PARALLEL 

PARAMETER LIST 

PARITY 

PARSE 

PATCH 

PERIPHERAL 

PHYSICAL RECORD 

POINTER 

PROLOGUE 

PROM 

PROMPT 

Opposite of serial. A communication 
mode which sends all of the bits in a 
byte at once, each over a separate line 
or wire. 

An area of storage set aside for 
communication between a calling program 
and a subroutine • . The parameter list 
contains input and output variables 
which will be used by the subroutine. 

A scheme, similar to checksums but on a 
bit level rather than a byte level, 
which allows detection of errors in a 
single data byte. An extra parity bit 
is attached to each byte which is a sum 
of the bits in the byte. Parity is used 
in expensive memory to detect or correct 
single bit failures, and when sending 
data over communications lines to detect 
noise errors. 

The process of interpreting character 
string data, such as a command with 
keywords. 

A small change to the object code of an 
assembly language program. Also called 
a "zap". 

A device which is external to the 
computer itself, such as a disk drive or 
a printer. Also called an Input/ Output 
device. 

A collection of data corresponding to 
the smallest unit of storage on a 
peripheral device. For disks, a 
physical record is a sector. 

The address or memory location of a 
block of data or a single data item. 
The address "points" to the data. 

The three bytes at the beginning of a 
disk field which uniquely identify it 
from any other data on the track. 

Programmable Read Only Memory. PROMs are 
usually used on controller cards 
associated with peripherals to hold the 
driver program which interfaces the 
device to applications programs. 

An output string which lets the user· 
know that input is expected. A "*" is 
the prompt character for the APPLE 
monitor. 

C-11 



PROTECTED DISK 

PSEUDO-OPCODE 

RANDOM ACCESS 

RAM 

RECAL 

RECORD 

REGISTER 

RELEASE 

RELOCATABLE 

C-12 

A diskette whose format or content has 
been modified to prevent its being 
copied. Most retail softwar~ today is 
distributed on protected disks to 
prevent theft. 

A special assembly language opcode which 
does not translate into a machine 
instruction. A pseudo-opcode instructs 
the assembler to perform some function, 
such as skipping a page in an assembly 
listing or reserving data space in the 
output object code. 

Direct access. The capability to 
rapidly access any single piece of data 
on a storage medium without having to 
sequentially read all of its 
predecessors. 

Random Access Memory. Computer memory 
which will allow storage and retrieval 
of values by address. 

Recalibrate the disk arm so that the 
read/write head is positioned over track 
zero. This is done by pulling the arm 
as far as it will go to the outside of 
the diskette until it hits a stop, 
producing a "clacking" sound. 

A collection of associated data items or 
fields. One or more records are usually 
associated with a file. Each record 
might correspond to an employee, for 
example. 

A named temporary storage location in 
the central processor itself. The 6502 
has 5 registers; the A, X, Y, s, and P 
registers. Registers are used by an 
assembly language program to access 
memory and perform arithmetic. 

A version of a distributed piec~ of 
software. There have been several· 
releases of DOS. 

The attribute of an object module file 
which contains a machine language 
program and the information necessary to 
make it run at any memory location. 

RETURN CODE 

RWTS 

SEARCH 

SECTOR 

SECTOR ADDRESS 

SECTOR DATA 

SEEK 

SELF-SYNC 

SEQUENTIAL ACCESS 

SERIAL 

SHIFT 

A numeric value returned from a . 
subroutine, indicating the success or 
failure of the operation attempted. A 
return code of zero usually means there 
were no eirors. Any other value 
indicates the nature of the error, a& 
defined by the design of the 
subroutine. 

Read Only Memory. Memory which has a 
permanent value. The APPLE monitor and 
BASIC interpreters are stored in ROM. 

Read/Write Track/Sector. A collection 
of subrou·tines which allow access to the 
diskette at a track and sector level. 
RWTS is part of DOS and may be called by 
external assembly language programs. 

The process of scanning a track for a 
given sector. 

The smallest updatable unit of data on a 
disk track. One sector on an APPLE DISK 
II contains 256 data bytes. 

A disk field which identifies the sector 
data field which follows in terms of its 
volume, track, and sector number. 

A disk field which contains the actual 
sector data in nibbilized form. 

The process. of moving the disk arm to a 
given track. 

Also called "auto-sync" bytes. Special 
disk bytes which contain more than 8 
bits, allowing synchronization of the 
hardware to. byte boundaries· when 
reading. 

A mode of data retreival where each byte 
of data is read in the order in which it 
was written · to the disk. 

As opposed to pa~allel. A cornrnunicat~on 
mode which sends data bits one at a t1me 
over a single line or wire. 

A logical operation which moves the bits 
of a byte either left or right one 
position, moving a 0 into the bit at the 
other end. 

C-13 



SLAVE DISK 

SOFT ERROR 

SOFTWARE 

SOURCE CODE 

SKEWING 

STATE MACHINE 

STROBE 

SUBROUTINE 

TABLE 

TOGGLE 

C-14 

A diskette with a copy of ?OS which is 
not relocatable. The DOS 1mage will 
alway~ be loaded into the same memory 
loca~1on, regadless of the size of th 
mach1ne. e 

A recoverable I/O error. A worn diskette 
might produce soft errors occasionally. 

Computer programs and data which can be 
loaded into RAM memory and executed. 

A program in a form which is 
understandable to humans; in character 
form as opposed to internal binary 
machine format. Source assembly code 
must be processed by an assembler to 
translate it into machine or "object" 
code . 

The process of interleaving sectors. 
See INTERLEAVE . 

A ~recess. (in software or hardware) 
w~1ch def7nes a unique target state, 
g1ven an 1nput state and certain 
condi~ions. A state machine approach is 
~sed 1n DOS to keep track of its video 
l~tercepts and by the hardware on the 
d1sk controller card to process disk 
data. 

The act of triggering an I/0 function by 
momentarily referencing a special I/O 
address . Strobing $C030 produces a 
click on the speaker. Also called 
"toggling". 

A program whose function is required 
repeatedly during execution and 
therefore is called by a main program in 
several places. 

A.c~llection of data entries, having 
s1m1lar format, residing in memory. 
Each entry might contain the name of a 
r,rogram and its address, for example. A 

lookup" can be performed on such a 
table to locate any given program by 
name. 

The act of triggering an I/0 function by 
momentarily referencing a special I/0 
ad~ress. Toggling $C030 produces a 
cl1ck on the speaker. Also called 
"strobe". 

TOKENS 

TRACK 

TRANSLATE TABLE 

T/S LIST 

TTL 

UTILITY 

VECTOR 

VOLUME 

VTOC 

.· .. 3 WARMS'!' ART 

WRITE PROTECTED 

A method where human recognizable words 
may be coded to single binary byte 
values for memory compression and faster 
processing. BASIC statements are 
tokenized, where hex codes are assigned 
to words like IF, PRINT, and END. 

One complete circular path of magnetic 
storage on a diskette. There are 35 
concentric tracks on an APPLE diskette. 

A table of single byte codes which are 
to replace input codes on a one-for-one 
basis. A translate table is used to 
convert from 6 bit codes to disk codes. 

Track/Sector List. A sector which 
describes the location of a file by 
listing the track and sector number for 
each of its data sectors in the order 
that they are to be read or written. 

Transistor to Transistor Logic. A 
standard for the interconnection of 
integrated circuits which also defines 
the voltages which represent O's and 
l's. 

A program which is used to maintain, or 
assist in the development of, other 
programs or disk files. 

A collection of pointers or JMP 
instructions at a fixed location in 
memory which allow access to a 
relocatable program or data. 

An identification for a diskette, disk 
platter, or cassette, containing one or 
more files. 

Volume Table Of Contents. Based upon the 
IBM OS /VS VTOC . On the APPLE, a sector 
mapping the free sectors on the diskette 
and giving the location of the 
directory. 

A restart of a program which retains, as 
much as is possible, the work which was 
in progress at the time. A DOS 
warmstart retains the BASIC program in 
memory. 

A diskette whose write protect notch is 
covered, preventing the disk drive from 
writing on it . 

C-15 



ZAP 

ZERO PAGE 

C-16 

From the IBM utility program, SUPERZAP. 
A program which allows updates to a disk 
at a byte level, using hexadecimal. 

The first 256 bytes of memory in a 6502 
based machine. Zero page locations have 
special significance to the central 
processor, making their management and 
assignment critical. 

INDEX 

& in Applesoft 5-5 

A type file 2-2, 4-6, 4-12, 6-12 
Address Field 3-7, 3-10 to 3-14, 3-17, 8-36, 8-37, 8-40, B-1, B-2 
allocate sector/track 4-1 to 4-4, 4-10, 4-18, 8-25, 8-29 to 8-33 
APPEND command 2-1, 8-4, 8-10, 8-19, 8-34 . 
Applesoft entry point vector 8-5 

file 4-6, 4-7, 4-12, 4-14, 6-10 
autosync bytes - see self-sync bytes 
autostart ROM 2-1, 2-2, 5-5 

B type file 2-2, 4-6, 4-12, 6-10, A-2 
BASIC coldstart 8-4, 8-5 

commands 8-18, 8-19 
entry point vector table 8-4 
~rror handler 8-4 
relocate 8-4 
warmstart 8-5 

BINARY file · 4-6, 4-7, 4-10, 4-12, 4-13, 6-10 
bit cell 3-3, 3-7, c-2 
BLOAD command 4-12, 8-4, 8-11, 8-19, 8-20 
boot, bootstrap loading 2-3, 3-22, 4-2, 5-1, 5-4 to 5-7, 7-2, 

8-1 ·to · 8-3, 8-34, B-1, C-2 
bootstrap loader 2-3, 5-4 
BRUN command 4-12, 8-4, 8-19 
BSAVE command 2-3, 4-2, 4-12, 8-4, 8-11, 8-19, 8-34 

catalog 3-2, ·4-2, 4-4 to 4-7, 4-10, 4-17, 4-18, 6-7, 6-15, 
8-22, 8-26, 8-30, C-3 

CATALOG command . 5-2, 6-8, 6-11, 6-13, 7-3, 8-4, 8-14, 8-25, 8-32 
CHAIN command 8-4, ·8-13, 8-19 
checksum 3-7, 3-12 to 3-14, 3-17, 4-17, 8-2, 8-35, 8-36, 8-42, 

B-2, C-3 
clobbered diskettes 1-1, 4-16 to 4-18 

CLOSE command 5-2, 6-8, 6-10, 8-4, 8-11, 8-19, 8-23 
close files · 6-8, .6-10, 8-10 to 8-12 
coldstart 5-5, 5-7, 7-3, 8-4, 8-5, 8-14, 8-20, C-3 
command handler table 8-9 
controller card 8-1, C-3 
COPY 2-2, 2-3, 4-18 
CP/M 3-22 
CSWL 8-6, 8-7, 8-13, 8-15, 8-18, 8-20, 8-42, C-4 
cursor 8-5, 8-42 

1-1 



damaged diskettes 4-16 to 4-18 
data bit 3-3, 3-7 
data bytes 3-7, 3-14, 3-15, 3-21, 6-4 
Data Field 3-7, 3-10 to 3-13, 3-17, 8-41, B-1, B-2 
Data Field encoding 3-13 
data latch 3-4, 3-7, 3-8, 6-2, 6-3, C-8 
DCT - see Device Characteristics Table 
decimal convert routine 8-9 
decode 3-7, 3-10, 3-17 
DELETE command 4-18, 5-2, 6-8, 6-11, 8-4, 8-19, 8-25 
deleted file 4-6 
descriptive entry 4-6, 4-8, 4-17, 4-18 
Device Characteristics Table 8-35, 8-37, 8-38, 8-42, C-4 
disk arm 3-2, 4-2, 5-7, 8-1, 8-36 to 8-38, C-1, C-12 
disk arm phases 3-2, 6-2, 6-3, 6-5, 8-35 
disk bytes 3-13 to 3-16, 3-20 
disk protection - see protected disks 
DOS 3.2.1 and earlier 1-2, 2-1 to 2-3, 3-2, 3-8, 3-14, 3-22, 7-2 
DOS 3.3 1-2, 2-1 to 2-3, 3-2, 3-14, 3-20, 3-22, 7-2, A-2 
DOS toolkit - see toolkit 
DOS command parse routine 8-7 

exit routine 8-7 
restore register routine 8-7 

DUMP - see utility programs 

encode 8-38, C-5 
encode data 3-13 
encoding technique 3-13 to 3-15, 3-20 
epilogue 3-7, 3-12, 3-13, C-2, C-6 
error message text table 8-20 
ERROR, DISK FULL 4-18, 6-8, 8-30 to 8-32, 8-41 

END OF DATA 8-15, 8-16, 8-24, 8-32 
FILE LOCKED 8-32 
FILE NOT FOUND 8-22, 8-32 
FILE TYPE MISMATCH 8-12, 8-17 
LANGUAGE NOT AVAILABLE 8-14, 8-22, 8-32 
PROGRAM TOO LARGE 8-12, 8-13 
RANGE 8-8, 8-32 
SYNTAX 8-8, 8-11, 8-16 
WRITE PROTECTED 8-32 

EXEC command 8-4 to 8-6, 8-11, 8-17, 8-19 

FID 2-3, 4-18, 6-7 
file buffer 5-2, 5-7, 6-8, 6-13, 6-14, 7-3, 8-5, 8-9, 8-10, 

8-15 to 8-17, 8-20, 8-26, 8-32, C-2 
file manager 5-2, 5-5, 5-7, 6-7, 6-8 to 6-11, 6-13, 6-15, 6-17, 

8-10, 8-12, 8-14 to 8-16, 8-26, 8-30 to 8-32, A-2, C-6 
file manager workarea 6-8, 6-10 to 6-13, 6-15, 8-17, 8-22, 

8-25 to 8-29, 8-31, 8-33, 8-41 
FORMAT command 6-5, 6-7, 8-19, 8-35 
FP command 8-4, 8-19 
free sectors 2-3, 4-3, 4-4, 4-18, 8-30 

gaps 3-7, 3-10, 3-11, C-7 

1-2 

hardware addresses 6-1 
hexadecimal convert routine 8-9 
HIMEM 5-l, 5-2, 5-5, 5-7, 7-3, 8-12, 8-13, 8-17, 8-42 

I/0 BlOCk - see IOB 
I/0 ERROR 4-16, 4-17, 6-8, A-16 
IN• command 8-3, 8-4, 8-9, 8-19 
!NIT command 5-2, 6-8, 6-12, 8-4, 8-14, 8-19, 8-21, 8-26, 8-32, 

9-34, 9-40 
!NIT, INITialization 3-1, 3-10, 3-12, 4-2, 5-l, 5-5, 5-7, 7-1, 

7-3, 8-40 
INPUT statement handler 9-6 
INT command 9-4, 8-14 
integer file 4-6, 4-12, 4-15, 6-10 
IOB 6-4 to 6-6, 8-39, 8-42, C-3, C-9 

keyboard intercept handler 9-3, 8-5 
keyword flag bit 8-19 
keyword values table 9-9 
KSWL 9-6, 9-7, 9-20, 8-42, C-8 

language card 2-3, 7-2, 7-3, 9-41 
LOAD command 2-2, 4-12, 9-3, 8-4, 8-12, 8-19, 9-20 
LOCK command 5-2, 6-9, 6-11, 8-4, 9-10, 9-19, 9-24, 8-32 
LOMEM 9-12, 8-13, 8-42, C-9 

MASTER CREATE 2-2, 4-17, 7-1, 7-2 
master diskette 2-3, 5-6, 5-7, 7-1, 9-1, C-9 
MAXFILES command 5-2, 5-5, 6-13, 8-4, 8-5, 8-8, 9-9, 

9-17 to 9-21, C-6 
MON command 
motor onjoff 
MUFFIN 2-3 

2-1, 8-4, 8-7 to 9-9, 8-19, 8-20, 8-21 
6-2, 6-3, 6-5, 9-39, 8-39 

nibbilize 2-3, 5-7, 9-2, 9-36, A-4, C-13 
nibble copy programs B-4 
NOMON command 2-1, 9-4 to 8-6, 9-9, 9-19 

ONERR 9-13 
OPEN command 2-1, 2-2, 5-2, 6-9, 6-10 to 6-12, 9-4, 9-10, 

9-19, 9-22, 9-33 
open file 5-2, 6-7, 6-9, 6-10 6-13, 6-15, 8-10, 9-11, 9-14, 

9-2, 9-41 
output handler 8-6, 8-7 
overhead 4-1, 4-~ 

parameter list, file manager 6-7 to 6-10, 6-12, 9-3, 
9-9 to 8-15, 9-26 to 9-35, A-5, A-20, C-11 

parmlist - see parameter list, file manager 
parse 9-7, c-11 
Pascal 7-2 
phases - see disk arm phases 
POSITION command 2-1, 5-2, 6-9, 6-10, 6-12, 8-4, 8-14, 8-15, 

9-19, 8-25 
PR• command 9-3, 8-4, 8-9, 8-19 
prenibbilize 3-15, 3-20, 9-35, 8-38, A-1, A-4 
prologue 3-7, 3-12, 3-13, C-11 
protected disk A-4, B-2 to B-4, c-12 
protection scheme - see protected disks 

1-3 



I 

I 

R type file - see RELOCATABLE file 
random file 4-10 
RDADR, read address field 8-36 
READ command 2-1, 5-2, 6-5, 6-6, 6-8, 6-10, 6-11, 6-12, 8-4, 

8-14, 8-19, 8-23 
read flag 8-6, 8-14 
RELOCATABLE files 2-2, 4-6, 4-12, 6-10 
RENAME command 5-2, 6-8, 6.,.-11, 8-4, 8-10, 8-19, 8-23 
repa;iring diskettes 4-16 to 4-18 
reserved· bytes 3-12~ 3-15, 3-21 
RESET 4-16, 4-18 0 5-5, 8-5, B-3 · 
return code 6~5 to 6-8, 6-10 to 6-12 
RUN · co..and 8-4, 8-6, 8-7, 8-13, 8-19, 8-21 
RWTS 2-2, 2-3, 3-15, 3-22, 4-17, 5-2, 5-3, 5-5, 5-7·, 6-3, 6-4, 

6-6, 6-17, 7-2, 8-26 to · 8-28, 8-3·4, 8-35, 8-38, 8-42, 
A-1, A-5; B-2, C-13 

s type files 2-2, 4-6, 4-12, 6-10 
SAVE COIIDIIand 2-3, 4-12, 8-4, 8-12, 8-19~ 8-34 
sector interleaving 3-22, 3-23, 8-3, 8-39, C-8 
SEEK command 6.-3, 6-5, 6-6 
self-sync bytes 3-4, 3-7, 3-8, . 3-10, 3-11, 8-37, 8-40, C-13 
sequential file 4-10, 4-11 
skewing - see sector interleaving 
slave diskette 5-6, 5-7, 7-1, 7-3 
slot number 6-2, 6-5 to 6-7, 6-10 to 6-12, 6-15, 8-1, 8-3, 8-4, 

8-28, 8-33, 8-35 to 8-38 
soft errors 4-16 
soft sectoring 3-2 
stepper motor 3-2, 6-2, 8-37 

T/L list - see trackjsector list 
TEXT file 2-1·, 4-6 1 4-7, 4-10, 4-11, 4-17, 6-10, A-2 
toolkit, DOS 2-2, 4-12, A-2 
track/sector list 4-8 to 4-10, 4-17, 4-18, 6-8, 6-10 to 6-13, 

6-15·, 8-17, 8-22, 8-23, 8-25, 8-27 to 8-29, 8-32, 8-33, 
A-2, A-16, C-6, C-15 

translate table 8-37, C-15 

UNLOCK command 5-2, 6-8, 6-11, 8-4, 8-10, 8-19, 8-24, 8-32 
utility programs, A-1 to A-26 

COPY, convert files A-2, A-20 to A-26 
DUMP, track dump facility A-1, A-4 to A-7 
PTS, find T/S list . A-2, A-16 to A-20 
INIT, reformat single track A-2, A-12 to A-15 
ZAP, disk update utility A-1, A-8 to A-11 

vectors, DOS 5-2, 5-4, 5-5, 6-17 
VERIFY command 2-3, 4-17, 5-2, 6-8, 6-1, 8-4, 8-12, 8-19, 8-25, 

8-34 
video intercept handler 8-3, 8-5 
video intercept state 8-6, 8-8 
VTOC, voluae table of contents 2-3, 3-2, 4-2 to 4-5, 4-18, 5-5, 

6-7·, 8-23, 8-25, 8-26, 8-28, 8~3o to 8-33, C-15 

warmstart 5-5·, 8-5, 8-8, 8-15, 8-20, c-I5 
WRITE C~d 2-1, 5-2, 6-5, 6-6, 6-8, 6-10 to 6-12, 8-4, 8-7', 

8-13, 8-14, 8-19, 8-23 

ZAP 4-17, 4-18, 8-42, A-1, A-16, C-16. 
zero page, DOS usage 8-42 

1-4 

• ~ 

.. ~ 

• 

I 

[i 

[! 

~-.. 
~ 



FILE MANAGER RETURN CODES (+OA) 
00 = NO ERRORS 
01 =NOT USED 
02 = BAD CALL TYPE (+00) 
03 = BAD SUB-CALL TYPE (+01) 
04 =WR ITE PROTECTED 
05 =END OF DATA 
06 =FILE NOT FOUND (WAS ALLOCATED IF X=O WHEN CALLED) 
07 =VOLUME MISMATCH 
08 = DISK 1/0 ERROR 
09 = DISK FULL 
OA = FIL E LOCKED 

Also See Page 6-8 

DOS FILE BUFFER FORMAT 

FILENAME 
FMW 

TSL 
DATA 

00 

08 

10 
FILE NAME 

18 _l FMW 

20 TSL I DATA I LINK I 

IF FIRST BYTE IS 00 THIS FILE BUFFER IS FREE 
ADDRESS OF FILE MANAGER WORKAREA 
BUFFER (45 BYTES) 
ADDRESS OF TIS LIST BUFFER (256 BYTES) 
ADDRESS OF DATA SECTOR (256 BYTES) 

Also See Page 6-13 

DOS ADDRESSES FOR VARIOUS 
MACHINE SIZES 

MAIN FILE END 
SIZE DOS MANG. RWTS RAM 

16K 1000 2AFD 37B5 4000 
20K 2000 3AFD 47B5 5000 
24K 3000 4AFD 57B5 6000 
32K 5000 6AFD 77B5 8000 
36K 6000 7AFD 87B5 9000 
40K 7000 8AFD 97B5 AOOO 
48K 9000 AAFD B7B5 cooo 

Also See Page 5-3 

DOS PAGE 3 VECTORS 

300 JMP $9DBF JUMP TO DOS WARMSTART 
303 JMP $9084 JUMP TO DOS COLDSTART 
306 JMP $AAFD JUMP TO DOS FILE MANAGER 
309 JMP $B7B5 JUMP TO RWTS 
3DC LOA $9DOF SUBROUTINE TO LOCATE FILE 

LOY S9DOE MANAGER PARM LIST 
RTS 

3E3 LOA $AAC2 SUBROUTINE TO LOCATE RWTS 
LOY SAAC1 PARM LIST 
RTS 

3EA JMP $A851 JUMP TO REPLACE DOS INTERCEPTS 
NOP SUBROUTINE 
NOP 

3EF JMP $FA59 AUTOSTART BRK HANDLER 
3F2 $9DBF AUTOSTART RESET HANDLER 
3F4 $38 POWER-UP BYTE ($3F3 EOR $AS) 
3F5 JMP $FF58 APPLESOFT & HANDLER 
3F8 JMP SFF65 CTL-Y HANDLER 
3FB JMP SFF65 NMI HANDLER 
3FE SFF65 IRQ HANDLER 

Also See Page 5-5 

DOS LOCATION TABLE 

DISKETTE STORAGE MEMORY STORAGE 
MASTER SLAVE LOAD RELOCATED 

TRACK SECTOR TRACK SECTOR ADDRESS ADDRESS 

00 00 00 00 $3600 $8600 
00 01 00 01 $3700 $8700 
00 02 00 02 $3600 $8800 
00 03 00 03 $3900 $8900 
00 04 00 04 $3AOO $8AOO 
00 05 00 05 $3800 $8800 
00 06 00 06 S3COO S8COO 
00 07 00 07 $3000 $8DOO 
00 08 00 08 S3EOO $8EOO 
00 09 00 09 S3FOO $8FOO 
00 OA 00 OA* $1800 
00 08 00 08* $1COO 
00 oc 00 oc $1000 $9DOO 
00 OD 00 OD $1 EOO $9EOO 
00 OE 00 OE $1FOO $9FOO 
00 OF 00 OF $2000 SAOOO 
01 00 01 00 $2100 $A100 
or 01 01 01 $2200 SA200 
01 02 01 02 $2300 $A300 
01 03 01 03 $2400 $A400 
01 04 01 04 $2500 $A500 
01 05 01 05 $2600 SA600 
01 06 01 06 $2700 SA700 
01 07 01 07 $2800 SABOO 
01 08 01 08 $2900 SA900 
01 09 01 09 S2AOO SAAOO 
01 OA 01 OA $2800 SA800 
01 08 01 08 S2COO $ACOO 
01 oc 01 oc $2000 $ADOO 
01 OD 01 OD S2EOO $AEOO 
01 OE 01 OE S2FOO $AFOO 
01 OF 01 OF $3000 $8000 
02 00 02 00 $3100 $8100 
02 01 02 01 $3200 $8200 
02 02 02 02 $3300 $8300 
02 03 02 03 $3400 $8400 
02 04 02 04 $3500 $8500 

"These sectors are blank 

Also See Page 5-6 

I 
I 
I 

i 

j 
I 

BE1xa111 
APPlE 
DOS 

REFERENCE 
CARD 
DOS 3.3 

QU~LrTY SOFTW~RE 
6660 Reseda Blvd. 
Suite 105 
Reseda. CA 91335 
( 213) 344-6599 



RWTS CALL 
JSR $3E3 
STY PTA 
STA PTR+1 

JSR $3E3 
JSR $309 
BCS ERROR 

LOCATE PARM LIST. 
SET UP ZPAGE 
POINTER 

RELOAD PARM PTA. 
CALL RWTS 
IF ERROR. BRANCH 

Also See Page 6-4 

RWTS PARAMETERS (lOB) 

SLOT 
+00 $01 

16 

+04 TRK SEC 

----· 

+08 
ADDR OF 
BUFFER 

• OC cc 

+10 
PREV 
DRIVE 

----

RC RETURN CODE 

$00 = NO ERRORS 

RC 

$08 = FORMATTING ERROR 
$10 = WRITE PROTECTED 

--
DRIVE VOL 

ADDR OF 
OCT 

NOT 
USED 

$00 

PREV PREV 

CC. 

VOL SLOT 

COMMAND CODE 
$00 = SEEK 
$01 = READ 
$02 = WRITE 
$04 FORMAT 

$20 = VOL MISMATCH 
$40 = DRIVE ERROR 
$80 = READ ERROR 

Also See Page 6-5 

DEVICE CHARACTERISTICS TABLE 
(OCT) 

+00 
MOTOR ON 

$EFD8 

Also See Page 6-5 

FILE MANAGER CALL 
JSR $3DC 
STY PTA 
STA PTR+1 

LOX #0 
JSR $306 
BCS ERROR 

LOCATE PARM LIST. 
SET UP ZPAGE . 
POINTER. 

ALLOW NEW FILE 
CALL FILE MANAGER 
IF ERROR, BRANCH 

Also See Page 6-7 

FILE MANAGER PARAMETER LIST 

;: 

--
... 
0 

-
w 
0 

-

:g 0 

;; 

:;: ;; 

z 
w .. 
0 

N 
0 

w .. g 
" 

W· 

""' 

~ 

.... 
ww ...... 
>"­..... 

0 -

oa: 
a:w 
OOI 
u:l 
w:> 
a:z 

0~ai00CW 

0 .. 
w 
0: 

w .... a: 
~ 

0 0 

" g .. .... .. 
" 

0 

> 

" u 
g 

0 

" u g 
z 
" 

0 

w 
:1 .. 
~ 
0: 

.. .. 
w 
0: 
0 

~ 

1---+---1~~ 
u:~ 

w 
t: .. 
oa: 
a:w 
o"' u:l 
w:> 
o:z 

0 

.. 
0 

> 

FILE MANAGER RETURN CODES (+OA) 
00 = NO ERRORS 
01 = NOT USED 
02 = BAD CALL TYPE (+00) 
03 = BAD SUB-CALL TYPE (+01) 
04 = WRITE PROTECTED 
05 = END OF DATA 
06 = FILE NOT FOUND (WAS ALLOCATED IF X=O WHEN CALLED) 
07 = VOLUME MISMATCH 
08 = DISK 1/ 0 ERROR 
09 = DISK FULL 
OA = FILE LOCKED 

Also See Page 6-8 

DOS FILE BUFFER FORMAT 

FILENAME 
FMW 

TSL 
DATA 

00 

08 

10 
FILE NAME 

181-------.-------,------+-I~F~M~W~~ 
20 TSL I DATA I LINK I 

IF FIRST BYTE IS 00 THIS FILE BUFFER IS FREE 
ADDRESS OF FILE MANAGER WORKAREA 
BUFFER (45 BYTES) 
ADDRESS OF T/ S LIST BUFFER (256 BYTES) 
ADDRESS OF DATA SECTOR (256 BYTES) 

Also See Page 6-13 

DOS ADDRESSES FOR VARIOUS 
MACHINE SIZES 

MAIN FILE END 
SIZE DOS MANG. RWTS RAM 

16K 1000 2AFD 37B5 4000 
20K 2000 3AFD 47B5 5000 
24K 3000 4AFD 57B5 6000 
32K 5000 6AFD 77B5 8000 
36K 6000 7AFD 87B5 9000 
40K 7000 8AFD 97B5 AOOO 
48K 9000 AAFD B7B5 cooo 

Also See Page 5-3 



TRACK FORMAT 

ADDRESS FIELD 
PROLOGUE VOLUME TRACK SECTOR CHECKSUM EPILOGUE 

I os AA gslxx vvl xx vvlxx vvlxx vv loE AA Eal 

ODD-EVEN ENCODED 

DATA BYTE -D1DsDsD•D3D2D1Do 
XX - 1 D1 1 Ds 1 D3 1 D, 
YY - 1 Ds 1 D• 1 D2 1 Do 

Also See Page 3-12 

DATA FIELD 

PROLOGUE USER DATA CHECKSUM EPILOGUE 

los AA Aol 342 BYTES DATA I xx loE AA Eal 
-==::;;=:> 
SIX AND TWO 

ENCODED 

Also See Page 3-13 

"6 and 2" WRITE TRANSLATE TABLE 

00 96 10 B4 20 06 30 = ED 
01 97 11 B5 21 07 31 EE 
02 9A 12 B6 22 09 32 EF 
03 9B 13 B7 23 DA 33 F2 
04 90 14 B9 24 DB 34 F3 
05 9E 15 BA 25 = DC 35 F4 
06 9F 16 BB 26 = DO 36 F5 
07 A6 17 BC 27 DE 37 F6 
08 A7 18 BD 28 = OF 38 F7 
09 AB 19 BE 29 = E5 39 F9 
OA = AC 1A BF 2A = E6 3A = FA 
OB =AD 1B = CB 2B = E7 3B = FB 
OC = AE 1C =CD 2C = E9 3C = FC 
OD = AF 10 = CE 20 = EA 30 = FD 
OE = B2 1E = CF 2E = EB 3E = FE 
OF = B3 1F = 03 2F = EC 3F = FF 

AA} 
05 Reserved Bytes 

Also See Page 3-20 

DIRECT USE OF DISK DRIVE 

ADDRESS LABEL DESCRIPTION 

$COSO PHASE OFF Stepper motor phase 0 off. 
$C081 PHASE ON Stepper motor phase 0 on. 
$C082 PHASElOFF Stepper motor phase 1 off. 
$C083 PHASElON Stepper motor phase 1 on. 
$C084 PHASE20FF Stepper motor phase 2 off. 
$C085 PHASE20N Stepper motor phase 2 on. 
$C086 PHASE30FF Stepper motor phase 3 off. 
$C087 PHASE30N Stepper motor phase 3 on. 
$COBB MOTOROFF Turn motor off. 
$C089 MOTORON Turn motor on. 
$C08A DRVOEN Engage drive 1. 
$COBB DRVlEN Engage drive 2. 
$C08C Q6L Strobe Data Latch for I/0. 
$C08D Q6H Load Data Latch. 
$C08E Q7L Prepare latch for input. 
$C08F Q7H Prepare latch for output. 

07L with Q6L ~ Read 
07L with 06H ~ Sense Write Protect 
07H with 06L ~ Write 
07H with Q6H ~ Load Write Latch 

Also See Pages 6-1 to 6-3 

DISK LAYOUT 

TRACKS 
All DOS versions •••••••••••••••• 35 

SECTORS PER TRACK 
DOS 3.2.1 and earlier •••••••.•.• l3 
DOS 3.3 ••••••••••••••••••••••••• 16 

SECTORS PER DISKETTE 
DOS 3.2.1 and earlier •••••••••• 455 
DOS 3 • 3 •••••••••••••••••••••••• 56 0 

BYTES PER SECTOR 
All DOS versions •.••••••••••••• 256 

BYTES PER DISKETTE 
DOS 3.2.1 and earlier •••••.• ll6480 
DOS 3. 3 ••••••••••••••••••••• 143360 

USABLE* SECTORS FOR DATA STORAGE 
DOS 3.2.1 and earlier •••••••••• 403 
DOS 3 • 3 •••••••••••••••••••••••• 4 9 6 

USABLE* BYTES PER DISKETTE 
DOS 3.2.1 and earlier ••••••• l03168 
DOS 3.3 ••••••••••••••••••••• 126976 

* Excludes DOS, VTOC, and CATALOG 

VOLUME TABLE OF CONTENTS (VTOC) 
TRACK $11, SECTOR $00 

LINK 
VER 
v 
NE 
AT 

TD 
ST 
ss 
TRACK 0 

TRACK N 

0 

8 

00 

08 
10 

18 

20 
28 

30 
38 

40 
48 

50 

58 

60 
68 

70 
78 

80 
88 

90 
98 

AO 
AS 

BO 
B8 
c 
CB 

DO 
D 

EO 
E8 

FO 
F8 

I I I I I I I 
I LINK I VERI I v I 

rNE 

AT I+- I TD I ST I ss 
TRACK 0 TRACK 

2 

4 

6 

8 
10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

T/ S OF FIRST DIRECTORY SECTOR 
DOS VERSION (1 , 2, OR 3) 
VOLUME NUMBER (1-254) 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

NUMBER OF T/ S LIST ENTRIES PER T/S LIST SECTOR 
LAST TRACK ALLOCATED 
DIRECTION OF TRACK ALLOCATION 
NUMBER OF TRACKS PER DISK 
NUMBER OF SECTORS PER TRACK 
SECTOR SIZE IN BYTES 
FREE SECTORS BIT MAP FOR TRACK 0 

FREE SECTORS BIT MAP FOR TRACK N 

FREE SECTORS BIT MAP 
13 SECTOR DISK: CBA9 8765 4321 0 . 
16 SECTOR DISK: FEDC BA98 7654 3210 

Also See Pages 4-2 to 4-4 



VOLUME TABLE OF CONTENTS (VTOC) 
TRACK $11, SECTOR $00 

LINK 
VER 
v 
NE 
AT 

TD 
ST 
ss 
TRACK 0 

TRACK N 

00 

08 

10 

18 

20 

28 

30 

38 

40 

48 

50 

58 

60 

68 

70 

78 

80 

88 

90 

98 

AO 

AB 

BO 

BB 

co 
ce 
DO 

DB 

EO 
EB 

FO 

FB 

I I I I I I I 

I LINK I VERI I v I 

I NE 

AT I+- I TD I ST I ss 
TRACK 0 TRACK 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

T/ S OF FIRST DIRECTORY SECTOR 
DOS VERSION (1 . 2. OR 3) 
VOLUME NUMBER (1-254) 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

NUMBER OF T/ S LIST ENTRIES PER T/S LIST SECTOR 
LAST TRACK ALLOCATED 
DIRECTION OF TRACK ALLOCATION 
NUMBER OF TRACKS PER DISK 
NUMBER OF SECTORS PER TRACK 
SECTOR SIZE IN BYTES 
FREE SECTORS BIT MAP FOR TRACK 0 

FREE SECTORS BIT MAP FOR TRACK N 

FREE SECTORS BIT MAP 
13 SECTOR DISK: CBA9 8765 4321 0 
16 SECTOR DISK: FEDC BA98 7654 3210 

A/so See Pages 4-2 to 4-4 

LINK 

TSP 

FT 

FL 

DIRECTORY (CATALOG) SECTOR 

00 

08 

10 

18 

20 

28 

30 

38 

40 

48 

50 

58 

60 

68 

70 

78 

80 

88 

90 

98 

AO 

AB 

BO 

BB 

co 
CB 

DO 

DB 

EO 
EB 

FO 

FB 

I I I I I I J 
I LINK I 

I TSP I FT I 

FILENAME #1 

I FL I 

ENTRY FOR FILE #2 

~ 
ENTRY FOR FILE #3 

I 

ENTRY FOR FILE #4 

I 
ENTRY FOR FILE #5 

I 

ENTRY FOR FILE #6 

I 

ENTRY FOR FILE #7 

TI S OF NEXT DIRECTORY SECTOR OR 0000 IF NO 
MORE EXIST 
Ti S POINTER OF FIRST Ti S LIST FOR THIS FILE OROO IF 
END OF DIRECTORY OR FF IF DELETED FILE. 
FILE TYPE· 80-LOCKED 00-TEXT 
01-INT BASIC 02-ASOFT 04-BINARY 
08-S - 1 0-R 20-A 
40-B 
FILE LENGTH IN SECTORS 

REMAINING FILE ENTRIES HAVE SAME FORMAT AS FOR 
FILE #1 (TSP THROUGH FL) 

A/so See Page 4-6 

TRACK/SECTOR LIST SECTOR 

LINK 

OFF 

so 

S1 

00 

08 

10 

18 

20 

28 

30 

38 

40 

I I I I I I I 
I LINK I I OFF I 

so S1 

S2 S3 S4 S5 

S6 S7 sa S9 

S10 S11 S12 S13 

S14 S15 S16 S17 

S18 S19 S20 S21 

S22 S23 S24 S25 

S26 S27 S28 S29 

~ 

EOr-~~-;--~~-+~--~1-~~_, 
E8r-~~-;--~~-+~~~1-~~_, 
FO S114 

F8 S118 

S115 

S119 

S116 

S120 

S117 

S121 

Ti S OF NEXT T/S LIST SECTOR IF DATA SECTORS 
EXIST BEYOND 121 . 
SECTOR OFFSET INTO FILE OF FIRST DATA SECTOR 
LISTED 
T/ S OF DATA SECTOR 0 OR 0000 IF THIS SECTOR 
WAS NOT WRITTEN 
etc. 

A/so See Page 4-8 

TEXT FILE FORMAT 
~---R~E~C~O_R~D~o--~1 ~ RECORD 1 

8D = CARRIAGE RETURN 00 =END OF DATA 

A/so See Page 4- 11 

BASIC (A OR I) FILE FORMAT 
PROGRAM IMAGE 

LL = LENGTH OF IMAGE LOW ORDER PART 
LH = LENGTH OF IMAGE HIGH ORDER PART 

A /so See Pages 4-14. 4-15 

BINARY FILE FORMAT 

~~~~ 
AL = ADDRESS OF IMAGE LOW ORDER PART
AH = ADDRESS OF IMAGE HIGH ORDER PART
LL = LENGTH OF IMAGE LOW ORDER PART
LH = LENGTH OF IMAGE HIGH ORDER PART

A/so See Page 4-13

BINARY IMAGE

Beneath Apple DOS

ISBN 0-912985-00-3 19.95

I,

~QU~UTY
~SOFTW~RE

-

-

