=k
=F
P LLI
<z

= .

g

5

:

R N AT [g

NOTICE

Apple Computer Inc. reserves the right to make improvements in the product described in this
manual at any time and without notice.

This manual is copyrighted and contains proprietary information. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Apple Computer Inc.

©1979 by Apple Computer Inc.
10260 Bandley Drive
Cupertino, CA 95014

(408) 996-1010

Reorder Apple product number A2LO00IA (030-0004-01)

Written by Christopher Espinosa

“Apple” is a trademark of Apple Computer Inc.

o mmmmEm B BnEmHnHEMHNMNHNMNNRAR

oo

L 0 | g g B

'

i

(L4 U

|
\

TABLE OF CONTENTS

CHAPTER 1

APPROACHING YOUR APPLE

THE POWER SUPPLY
THE MAIN BOARD
TALKING TO YOUR APPLE
THE KEYBOARD
READING THE KEYBOARD
THE APPLE VIDEO DISPLAY
THE VIDEO CONNECTOR
EURAPPLE (50 HZ) MODIFICATION
SCREEN FORMAT
SCREEN MEMORY
SCREEN PAGES
SCREEN SWITCHES
THE TEXT MODE
THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
OTHER INPUT/OUTPUT FEATURES
THE SPEAKER
THE CASSETTE INTERFACE
THE GAME 1/0 CONNECTOR
ANNUNCIATOR OUTPUTS
ONE-BIT INPUTS
ANALOG INPUTS
STROBE OUTPUT
VARIETIES OF APPLES
AUTOSTART ROM / MONITOR ROM
REVISION @ / REVISION 1 BOARD
POWER SUPPLY CHANGES
THE APPLE II PLUS

CHAPTER 2
CONVERSATION WITH APPLES

STANDARD OUTPUT

THE STOP-LIST FEATURE

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
(OR, THE TEXT WINDOW)

SEEING IT ALL IN BLACK AND WHITE
STANDARD INPUT

RDKEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS
“‘OLD MONITOR” ROM RESET

~ CHAPTER 3
 THE SYSTEM MONITOR

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY
EXAMINING SOME MORE MEMORY
EXAMINING STILL MORE MEMORY
CHANGING THE CONTENTS OF A LOCATION
CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY

COMPARING TWO RANGES OF MEMORY

SAVING A RANGE OF MEMORY ON TAPE

READING A RANGE FROM TAPE

CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

Y Y YV O A I 1 Y

m m m m m m m m mom e

LA N

51
53

55
57
59

65
66

AR AR R

DEBUGGING PROGRAMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS
SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS
MINI-ASSEMBLER INSTRUCTION FORMATS

CHAPTER 4
MEMORY ORGANIZATION

RAM STORAGE

RAM CONFIGURATION BLOCKS
ROM STORAGE

[/0 LOCATIONS

ZERO PAGE MEMORY MAPS

CHAPTER J
INPUT/OUTPUT STRUCTURE

78 BUILT-IN I/0

79 PERIPHERAL BOARD 1/0

80 PERIPHERAL CARD 1/0 SPACE

80 PERIPHERAL CARD ROM SPACE

81 1/0 PROGRAMMING SUGGESTIONS

82 PERIPHERAL SLOT SCRATCHPAD RAM
83 THE CSW/KSW SWITCHES

84 EXPANSION ROM

CHAPTER O
HARDWARE CONFIGURATION

88 THE MICROPROCESSOR

90 SYSTEM TIMING

92 POWER SUPPLY

94 ROM MEMORY

95 RAM MEMORY

96 THE VIDEO GENERATOR

97 VIDEO OUTPUT JACKS

98 BUILT-IN I/O

99 ““USER 17 JUMPER

100 THE GAME 1/0 CONNECTOR
100 THE KEYBOARD

102 KEYBOARD CONNECTOR
103 CASSETTE INTERFACE JACKS
104 POWER CONNECTOR

105 SPEAKER

105 PERIPHERAL CONNECTORS

1]

U1 Y Y)

(E1 @1 (EY VBl OIEY st TRY OB ORYONY

IR

—
e
e

117

129

135

177

185

U R

APPENDIX A
THE 6502 INSTRUCTION SET

APPENDIX B
SPECIAL LOCATIONS

APPENDIX C
ROM LISTINGS

GLOSSARY

BIBLIOGRAPHY

1 190
194
195
#| 195
| 195

GENERAL INDEX
INDEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS

i3]

my RY TRY TR}

T T T T ST el A .)

COI R R R

INTRODUCTION

This is the User Reference Manual for the Apple 11 and Apple II Plus personal computers. Like
the Apple itself, this book is a tool. As with all tools, you should know a little about it before
you start to use it.

This book will not teach you how to program. It is a book of facts, not methods. If you have
just unpacked your Apple, or you do not know how to program in any of the languages available
for it, then before you continue with this book, read one of the other manuals accompanying
your Apple. Depending upon which variety of Apple you have purchased, you should have
received one of the following:

Apple II BASIC Programming Manual
(part number A2L0005)

The Applesoft Tutorial
(part number A2L0018)

These are tutorial manuals for versions of the BASIC language available on the Apple. They also
include complete instructions on setting up your Apple. The Bibliography at the end of this
manual lists other books which may interest you.

There are a few different varieties of Apples, and this manual applies to all of them. It is possible
that some of the features noted in this manual will not be available on your particular Apple. In
places where this manual mentions features which are not universal to all Apples, it will use a
footnote to warn you of these differences.

This manual describes the Apple II computer and its parts and procedures. There are sections on
the System Monitor, the input/output devices and their operation, the internal organization of
memory and input/output devices, and the actual electronic design of the Apple itself. For infor-
mation on any other Apple hardware or software product, please refer to the manual accompany-
ing that product.

CE T TV VA T/ /0 UV VI V€ VA VA € VI VO /R VAL VA VR VIt R TR T U B U R U U

A B RE Ly lE A

=

|

THE POWER SUPPLY

THE MAIN BOARD

TALKING TO YOUR APPLE

THE KEYBOARD

READING THE KEYBOARD

THE APPLE VIDEO DISPLAY

THE VIDEO CONNECTOR
EURAPPLE (50 HZ) MODIFICATION
SCREEN FORMAT

SCREEN MEMORY

SCREEN PAGES

SCREEN SWITCHES

THE TEXT MODE

THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
OTHER INPUT/OUTPUT FEATURES
THE SPEAKER

THE CASSETTE INTERFACE

THE GAME 1/0 CONNECTOR
ANNUNCIATOR OUTPUTS

ONE-BIT INPUTS

ANALOG INPUTS

STROBE OUTPUT

VARIETIES OF APPLES
AUTOSTART ROM / MONITOR ROM
REVISION @ / REVISION 1 BOARD
POWER SUPPLY CHANGES

THE APPLE II PLUS

For detailed information on setting up your Apple, refer to Chapter 1 of either the Apple BASIC
Programming Manual or The Applesoft Tutorial.

In this manual, all directional instructions will refer to this orientation: with the Apple’s
typewriter-like keyboard facing you, “‘front’” and ‘‘down’’ are towards the keyboard, ‘‘back’ and
“‘up” are away. Remove the lid of the Apple by prying up the back edge until it ‘“‘pops’’, then
pull straight back on the lid and lift it off.

This is what you will see:

Power Supply

Main Board

Speaker

Photo 1. The Apple II.

THE POWER SUPPLY

The metal box on the left side of the interior is the Power Supply. It supplies four voltages:
+5v, —5.2v, +11.8v, and —12.0v. It is a high-frequency ‘‘switching’’-type power supply, with
many protective features to ensure that there can be no imbalances between the different sup-
plies. The main power cord for the computer plugs directly into the back of the power supply.
The power-on switch is also on the power supply itself, to protect you and your fingers from
accidentally becoming part of the high-voltage power supply circuit.

TEY1 FEY FB] PR O FB] §®] fm] (m] (m1 (®7 (®y ®1 ™y (=7 =y (®] (™} [EY /¢y (PT /*T (FY /!

Fe

110 volt model 110/220 volt model

Photo 2. The back of the Apple Power Supply.
THE MAIN BOARD

The large green printed circuit board which takes up most of the bottom of the case is the com-
puter itself. There are two slightly different models of the Apple II main board: the original
(Revision @) and the Revision 1 board. The slight differences between the two lie in the elec-
tronics on the board. These differences are discussed throughout this book. A summary of the
differences appears in the section ‘‘Varieties of Apples’” on page 25.

On this board there are about eighty integrated circuits and a handful of other components. In
the center of the board, just in front of the eight gold-toothed edge connectors (‘‘slots”) at the
rear of the board, is an integrated circuit larger than all others. This is the brain of your Apple.
It is a Synertek/MOS Technology 6502 microprocessor. In the Apple, it runs at a rate of
1,023,000 machine cycles per second and can do over five hundred thousand addition or subtrac-
tion operations in one second. It has an addressing range of 65,536 eight-bit bytes. Its repertory
includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it
are used in many computers systems, as well as other types of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one to six slightly
smaller integrated circuits. These ICs are the Read-Only Memory (ROM) ‘‘chips’ for the Apple.
They contain programs for the Apple which are available the moment you turn on the power.
Many programs are available in ROM, including the Apple System Monitor, the Apple Autostart
Monitor, Apple Integer BASIC and Applesoft I BASIC, and the Apple Programmer’s Aid # I util-
ity subroutine package. The number and contents of your Apple’s ROMs depend upon which
type of Apple you have, and the accessories you have purchased.

Right below the ROMs and the central mounting nut is an area marked by a white square on the
board which encloses twenty-four sockets for integrated circuits. Some or all of these may be
filled with ICs. These are the main Random Access Memory (RAM) ‘‘chips’” for your Apple.
An Apple can hold 4,096 to 49,152 bytes of RAM memory in these three rows of components.*
Each row can hold eight ICs of either the 4K or 16K variety. A row must hold eight of the same

* You can extend your RAM memory to 64K by purchasing the Apple Language Card, part of the Apple
Language System (part number A2B0006).

E

-
-
=
-
™
E;
I-._I?,
=
=
L
L
-
-
-
-
-
-
-
.
*
=
™

type of memory components, but the two types can both be used in various combinations on
different rows to give nine different memory sizes.* The RAM memory is used to hold all of the
programs and data which you are using at any particular time. The information stored in RAM
disappears when the power is turned off.

The other components on the Apple II board have various functions: they control the flow of
information from one part of the computer to another, gather data from the outside world, or
send information to you by displaying it on a television screen or making a noise on a speaker.

The eight long peripheral slots on the back edge of the Apple’s board can each hold a peripheral
card to allow you to extend your RAM or ROM memory, or to connect your Apple to a printer or
other input/output device. These slots are sometimes called the Apple’s ‘‘backplane’ or
“‘mother board’’.

TALKING TO YOUR APPLE

Your link to your Apple is at your fingertips. Most programs and languages that are used with
the Apple expect you to talk to them through the Apple’s keyboard. It looks like a normal type-
writer keyboard, except for some minor rearrangement and a few special keys. For a quick
review on the keyboard, see pages 6 through 12 in the Apple II BASIC Programming Manual
or pages 5 through 11 in The Applesoft Tutorial.

Since you’re talking with your fingers, you might as well be hearing with your eyes. The Apple

will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored
blocks and lines on a black-and-white or color television set.

* The Apple Il is designed to use both the 16K and the less expensive 4K RAMs. However, due to the greater
availability and reduced cost of the 16K chips, Apple now supplies only the 16K RAMs.

FET TR PR gmy jm1 (ml (el i®1 imy el iml Pl el 'l ey El el lmn lER o OE1

3 T J A

(VA O Y

THE KEYBOARD

The Apple Keyboard
Number of Keys: 52
Coding: Upper Case ASCII
Number of codes: 91
Output: Seven bits, plus strobe

Power requirements: +5v at 120mA
—12v at SOmA

Rollover: 2 key

Special keys: CTRL
ESC
RESET
REPT

—

Memory mapped locations: Hex Decimal
Data $C000 49152 -16384
Clear $C010 49168 -16368

The Apple II has a built-in 52-key typewriter-like keyboard which communicates using the Amer-
ican Standard Code for Information Interchange (ASCID*. Ninety-one of the 96 upper-case
ASCII characters can be generated directly by the keyboard. Table 2 shows the keys on the key-
board and their associated ASCII codes. ‘‘Photo” 3 is a diagram of the keyboard.

The keyboard is electrically connected to the main circuit board by a 16-conductor cable with
plugs at each end that plug into standard integrated circuit sockets. One end of this cable is con-
nected to the keyboard; the other end plugs into the Apple board’s keyboard connector, near the
very front edge of the board, under the keyboard itself. The electrical specifications for this con-
nector are given on page 102.

Most languages on the Apple have commands or statements which allow your program to accept
input from the keyboard quickly and easily (for example, the INPUT and GET statements in
BASIC). However, your programs can also read the keyboard directly.

* All ASCII codes used by the Apple normally have their high bit set. This is the same as standard mark-
parity ASCIIL.

““Photo’’ 3. The Apple Keyboard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven
bits, along with another signal which indicates when a key has been pressed, are available to most
programs as the contents of a memory location. Programs can read the current state of the key-
board by reading the contents of this location. When you press a key on the keyboard, the value
in this location becomes 128 or greater, and the particular value it assumes is the numeric code
for the character which was typed. Table 3 on page 8 shows the ASCII characters and their asso-
ciated numeric codes. The location will hold this one value until you press another key, or until
your program tells the memory location to forget the character it’s holding.

Once your program has accepted and understood a keypress, it should tell the keyboard’s memory
location to “‘release’’ the character it is holding and prepare to receive a new one. Your program
can do this by referencing another memory location. When you reference this other location, the
value contained in the first location will drop below 128. This value will stay low until you press
another key. This action is called ‘‘clearing the keyboard strobe’’. Your program can either read
or write to the special memory location; the data which are written to or read from that location
are irrelevant. It is the mere reference to the location which clears the keyboard strobe. Once you
have cleared the keyboard strobe, you can still recover the code for the key which was last
pressed by adding 128 (hexadecimal $86) to the value in the keyboard location.

These are the special memory locations used by the keyboard:

Table 1: Keyboard Special Locations

Location:

Hex Decimal
$COPP 49152 -16384 Keyboard Data
$CA10 49168 -16368 Clear Keyboard Strobe

Description

The [RESET] key at the upper right-hand corner does not generate an ASCII code, but instead is
directly connected to the microprocessor. When this key is pressed, all processing stops. When
the key is released, the computer starts a reset cycle. See page 36 for a description of the RESET

IR R AT A AT A T O 4 T O W

R OED (Rl |#

L

m m

mn

e, m

R eee

function.

The [CTRL] and [SHIFT| keys generate no codes by themselves, but only alter the codes produced
by other keys.

The key, if pressed alone, produces a duplicate of the last code that was generated. If you
press and hold down the key while you are holding down a character key, it will act as if
you were pressing that key repeatedly at a rate of 10 presses each second. This repetition will
cease when you release either the character key or .

The POWER light at the lower left-hand corner is an indicator lamp to show when the power to
the Apple is on.

Table 2: Keys and Their Associated ASCII Codes
Key | Alone CTRL SHIFT Both Key | Alone CTRL SHIFT Both
space SAD SAD SAD $AQ || RETURN $8D $8D $8D $8D
0 $BO $BO $BO $BO G $C7 $87 $C7 $87
1! $B1 $B1 SA1 SAl H $C8 $88 $C8 $88
2" $B2 $B2 $A2 $SA2 I $C9 $89 $C9 $89
3# $B3 $B3 $A3 $A3 J $CA $8A $CA $8A
48 $B4 $B4 $A4 $SA4 K $CB $8B $CB $8B
5% $B5 $B5 $AS $AS L $CC $8C $CcC $8C
6& $B6 $B6 $A6 $A6 M $CD $8D $DD $9D
T $B7 $B7 $A7 $A7 N* $CE $8E $DE $9E
8($B8 $B8 $A8 $A8 O $CF $8F $CF $8F
9 $B9 $B9 $A9 $A9 P@ $DO $90 $Co $80
R $BA $BA SAA SAA Q $D1 $91 $D1 $91
o+ $BB $BB SAB SAB R $D2 $92 $D2 $92
,< SAC SAC $BC $BC S $D3 $93 $D3 $93
—= $AD $SAD $BD $BD T $D4 $94 $D4 $94
> SAE SAE $BE $BE U $D5 $95 $DS $95
/? SAF SAF $BF $BF A% $D6 $96 $D6 $96
A $C1 $81 $C1 $81 w $D7 $97 $D7 $97
B $C2 $82 $C2 $82 X $D8 $98 $D8 $98
C $C3 $83 $C3 $83 Y $D9 $99 $D9 $99
D $C4 $84 $C4 $84 Z | $DA $9A $DA $9A
E $C5 $85 $CS $85 — $88 $88 $88 $88
F $C6 $86 $C6 $86 — $95 $95 $95 $95
ESC $9B $9B $9B $9B

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.

Table 3: The ASCII Character Set

Decimal: 128 144 160 176 192 208 224 240

Hex: $80 $99¢ SA@ $BA $CO SDO SE@ SFO
0 $0 nul dle 0 @ P p
1 $1 soh dcl ! 1 A Q a q
2 $2 stx dc2 " 2 B R b r
3 $3 etx dc3 # 3 C S c S
4 $4 eot dc4 $ 4 D T d t
5 $5 enq nak % 5 E U e u
6 $6 ack syn & 6 F \% f v
7 $7 bel etb 7 G w g w
8 $8 bs can (8 H X h X
9 $9 ht em) 9 I Y i y
10 SA If sub * : J Z j z
11 $B vt esc + ; K [k {
12 $C | £ fs , < L \ 1 |
13 $D cr gs - = M] m }
14 SE) rs . > N " n -

15 SF si us / ? 0] _ o rub

Groups of two and three lower case letters are abbreviations for standard ASCII control charac-

ters.

Not all the characters listed in this table can be g

enerated by the keyboard. Specifically, the char-

acters in the two rightmost columns (the lower case letters), the symbols [(left square bracket), \
(backslash), _ (underscore), and the control characters ““fs”, “‘us’, and “‘rub’’, are not available

on the Apple keyboard.

The decimal or hexadecimal value for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the column and the left side of the row in which

the character appears.

FELOTEL PR IR PR OFRLOJRL (WL O(B) (Y O/} /RY OTELO!EYOMEL OMFLOMEY OMEYTO'EL L O'RLO'RLO'EL R

SRR O

|

THE APPLE VIDEO DISPLAY

The Apple Video Display
Display type: Memory mapped into system RAM

Display modes: Text, Low-Resolution Graphics,
High-Resolution Graphics

Text capacity: 960 characters (24 lines, 40 columns)
Character type: 5 x 7 dot matrix
Character set: Upper case ASCII, 64 characters
Character modes: ~ Normal, Inverse, Flashing
Graphics capacity: 1,920 blocks (Low-Resolution)
in a 40 by 48 array
53,760 dots (High-Resolution)
in a 280 by 192 array

Number of colors: 16 (Low-Resolution Graphics)
6 (High-Resolution Graphics)

THE VIDEO CONNECTOR

In the right rear corner of the Apple II board, there is a metal connector marked ‘“VIDEQ.
This connector allows you to attach a cable between the Apple and a closed-circuit video monitor.
One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and
the other end should have a connector compatible with the particular device you are using. The
signal that comes out of this connector on the Apple is similar to an Electronic Industries Associ-
ation (EIA)-standard, National Television Standards Committee (NTSC)-compatible, positive
composite color video signal. The level of this signal can be adjusted from zero to 1 volt peak by
the small round potentiometer on the right edge of the board about three inches from the back of
the board.

A non-adjustable, 2 volts peak version of the same video signal is available in two other places:
on a single wire-wrap pin* on the left side of the board about two inches from the back of the
board, and on one pin of a group of four similar pins also on the left edge near the back of the
board. The other three pins in this group are connected to —5 volts, +12 volts, and ground.
See page 97 for a full description of this auxiliary video connector.

* This pin is not present in Apple II systems with the Revision @ board.

Auxiliary Video
Output Connector

Auxiliary Video Pin

Level Adjustment
Potentiometer

*
¥
.
¥
¥
¥
¥
¥
o

Color Trim
Adjustment

Photo 4. The Video Connectors and Potentiometer.

EURAPPLE (50 HZ) MODIFICATION

Your Apple can be modified to generate a video signal compatible with the CCIR standard used
in many European countries. To make this modification, just cut the two X-shaped pads on the
right edge of the board about nine inches from the back of the board, and solder together the
three O-shaped pads in the same locations (see photo 5). You can then connect the video con-
nector of your Apple to a European standard closed-circuit black-and-white or color video moni-
tor. If you wish, you can obtain a ‘‘Eurocolor’ encoder to convert the video signal into a PAL or
SECAM standard color television signal suitable for use with any European television receiver.
The encoder is a small printed circuit board which plugs into the rightmost peripheral slot (slot 7)
in your Apple and connects to the single auxiliary video output pin.

WARNING: This modification will void the warranty on your Apple and requires
the installation of a different main crystal. This modification is not for beginners.

SCREEN FORMAT

Three different kinds of information can be shown on the video display to which your Apple is
connected:

10

AU T O 4 T T 4

TEOIEYOI®Y RV IR OEY OTEL OO M

1
[y

1
i

I8

1
'Y

e\ 1

U

3

-
R

§
g

s rmmmmme

.
.

e

<
. .
8 e i

L &

,_
o
:

&

|

|

|
0.

¥

jumper pads

1 -
WM.
e]
.

Blesmmmmmme
-

Yo

iy

pe
. .
B ol -

"
g &
1
1
1
1
1
'.

;
Sk 7

O‘
o
L

SemEw. .
Emmm ey B

.
.

I
T

Photo 5. Eurapple (50 hz) Jumper Pads.

1) Text. The Apple can display 24 lines of numbers, special symbols, and upper-case letters
with 40 of these characters on each line. These characters are formed in a dot matrix 7 dots
high and 5 dots wide. There is a one-dot wide space on either side of the character and a one-
dot high space above each line.

2) Low-Resolution Graphics. The Apple can present 1,920 colored squares in an array 40
blocks wide and 48 blocks high. The color of each block can be selected from a set of sixteen
different colors. There is no space between blocks, so that any two adjacent blocks of the
same color look like a single, larger block.

3) High-Resolution Graphics. The Apple can also display colored dots on a matrix 280 dots
wide and 192 dots high. The dots are the same size as the dots which make up the Text char-
acters. There are six colors available in the High-Resolution Graphics mode: black, white, red,
blue, green, and violet.* Each dot on the screen can be either black, white, or a color,
although not all colors are available for every dot.

When the Apple is displaying a particular type of information on the screen, it is said to be in
that particular ‘““‘mode’’. Thus, if you see words and numbers on the screen, you can reasonably
be assured that your Apple is in Text mode. Similarly, if you see a screen full of multicolored
blocks, your computer is probably in Low-Resolution Graphics mode. You can also have a four-
line “‘caption” of text at the bottom of either type of graphics screen. These four lines replace

* For Apples with Revision @ boards, there are four colors: black, white, green, and violet.

11

the lower 8 rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. In High-
Resolution Graphics, they replace the bottom 32 rows of dots, leaving a 280 by 160 matrix. You
can use these ‘‘mixed modes’’ to display text and graphics simultaneously, but there is no way to
display both graphics modes at the same time.

SCREEN MEMORY

The video display uses information in the system’s RAM memory to generate its display. The
value of a single memory location controls the appearance of a certain, fixed object on the screen.
This object can be a character, two stacked colored blocks, or a line of seven dots. In Text and
Low-Resolution Graphics mode, an area of memory containing 1,024 locations is used as the
source of the screen information. Text and Low-Resolution Graphics share this memory area. In
High-Resolution Graphics mode, a separate, larger area (8,192 locations) is needed because of
the greater amount of information which is being displayed. These areas of memory are usually
called “‘pages’’. The area reserved for High-Resolution Graphics is sometimes called the “‘picture
buffer’”’ because it is commonly used to store a picture or drawing.

SCREEN PAGES

There are actually rwo areas from which each mode can draw its information. The first area is
called the “‘primary page’’ or ‘‘Page 1. The second area is called the ‘‘secondary page’ or
“Page 2" and is an area of the same size immediately following the first area. The secondary
page is useful for storing pictures or text which you want to be able to display instantly. A pro-
gram can use the two pages to perform animation by drawing on one page while displaying the
other and suddenly flipping pages.

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as
they share the same range for the primary page. Both mixed modes which were described above
are also available on the secondary page, but there is no way to mix the two pages on the same
screen.

Table 4: Video Display Memory Ranges
Begins at: Ends at:
Screen Page He%(Decimal
Text/Lo-Res Primary $400 1024 $7FF 2047
Secondary $800 2048 $BFF 3071
Hi-Res Primary $2000 8192 $3FFF 16383
Secondary $4000 16384 $S5FFF 24575

SCREEN SWITCHES

The devices which decide between the various modes, pages, and mixes are called ‘‘soft
switches’”. They are switches because they have two positions (for example: on or off, text or
graphics) and they are called “‘soft’ because they are controlled by the software of the computer.

12

1 71 M M

T Ml m

1 ™ M Mm

14

[E]

I® (% [(®1 [El (B

IR

B I®

{ AN (4 . |)]

l

SRR TR O O

|

A program can ‘‘throw’’ a switch by referencing the special memory location for that switch. The
data which are read from or written to the location are irrelevant; it is the reference to the address
of the location which throws the switch.

There are eight special memory locations which control the setting of the soft switches for the
screen. They are set up in pairs; when you reference one location of the pair you turn its
corresponding mode ‘‘on’’ and its companion mode ‘off”’. The pairs are:

Table 5: Screen Soft Switches

Location: . Description:

Hex Decimal
$CO50 49232 -16304 Display a GRAPHICS mode.
$CB51 49233 -16303 Display TEXT mode.
$CO52 49234 -16302 Display all TEXT or GRAPHICS.
$COS3 49235 -16301 Mix TEXT and a GRAPHICS mode.*
$COB54 49236 -16300 Display the Primary page (Page 1).
SCh55 49237 -16299 Display the Secondary page (Page 2).
$CO56 49238 -16298 Display LO-RES GRAPHICS mode.*
$CO57 49239 -16297 Display HI-RES GRAPHICS mode.*

There are ten distinct combinations of these switches:

Table 6: Screen Mode Combinations

Primary Page Secondary Page
Screen Switches Screen Switches
All Text $CPS4 $CO51 || All Text $CO55 $CH51

All Lo-Res $C@54 $C@56 || All Lo-Res $C@55 $C@56
Graphics $C@52 $COB50 | Graphics $CO52 $CO50
All Hi-Res $CO54 $CH57 || All Hi-Res $COS5 $CO57
Graphics $CP52 $CO50 || Graphics $C052 $CO50
Mixed Text $C@54 $C056 || Mixed Text $C@#55 $C056
and Lo-Res $C@53 $C@50 || and Lo-Res $C@53 $C@50
Mixed Text $C@54 $C@57 | Mixed Text $C@55 $COS7
and Hi-Res $C@53 $C@50 || and Hi-Res $C@053 $C@50

(Those of you who are learned in the ways of binary will immediately cry out, “Where’s the
other six?!"’, knowing full well that with 4 two-way switches there are indeed sixteen possible
combinations. The answer to the mysterv of the six missing modes lies in the
TEXT/GRAPHICS switch. When the computer is in Text mode, it can also be in one of six
combinations of the Lo-Res/Hi-Res graphics mode, ‘‘mix”’ mode, or page selection. But since
the Apple is displaying text, these different graphics modes are invisible.)

To set the Apple into one of these modes, a program needs only to refer to the addresses of the
memory locations which correspond to the switches that set that mode. Machine language pro-
grams should use the hexadecimal addresses given above; BASIC programs should PEEK or
POKE their decimal equivalents (given in Table 5, ‘‘Screen Soft Switches’’, above). The
switches may be thrown in any order; however, when switching into one of the Graphics modes,
it is helpful to throw the TEXT/GRAPHICS switch last. All the other changes in mode will then
take place invisibly behind the text, so that when the Graphics mode is set, the finished graphics

* These modes are only visible if the *Display GRAPHICS switch is “‘on’’.

13

screen appears all at once.

THE TEXT MODE

In the Text mode, the Apple can display 24 lines of characters with up to 40 characters on each
line. Each character on the screen represents the contents of one memory location from the
memory range of the page being displayed. The character set includes the 26 upper-case letters,
the 10 digits, and 28 special characters for a total of 64 characters. The characters are formed in a
dot matrix 5 dots wide and 7 dots high. There is a one-dot wide space on both sides of each
character to separate adjacent characters and a one-dot high space above each line of characters to
separate adjacent lines. The characters are normally formed with white dots on a dark back-
ground; however, each character on the screen can also be displayed using dark dots on a white
background or alternating between the two to produce a flashing character. When the Video
Display is in Text mode, the video circuitry in the Apple turns off the color burst signal to the
television monitor, giving you a clearer black-and-white display.”

The area of memory which is used for the primary text page starts at location number 1024 and
extends to location number 2047. The secondary screen begins at location number 2048 and
extends up to location 3971. In machine language, the primary page is from hexadecimal address
$400 to address $7FF; the secondary page is from $800 to SBFF. Each of these pages is 1,024
bytes long. Those of you intrepid enough to do the multiplication will realize that there are only
960 characters displayed on the screen. The remaining 64 bytes in each page which are not
displayed on the screen are used as temporary storage locations by programs stored in PROM on
Apple Intelligent Interface® peripheral boards (see page 82).

Photo 6 shows the sixty-four characters available on the Apple’s screen.

Photo 6. The Apple Character Set.

Table 7 gives the decimal and hexadecimal codes for the 64 characters in normal, inverse, and
flashing display modes.

* This feature is not present on the Revision @ board.

14

El TE1 TE}

T

el (ED TEYT O ITEY O OTEY O1EY TEY O TE)

™1l

19§ 12)0rIRY) UGS [[ISV "L A4BL

48 61
s vl
as ¢l
o8 Tl
a8 11
Vs 01
6$ 6
8% 8
LS L
989
33
1234
€S ¢
(454
181
0s 0

A =
|

A o
A =
A o

-V
-V
-V
-V

3
O D> X >N — <
<UL —~=¥232ZO
3
A O n k= D> 3 X >N— — — <
® — Nt N O~ 00 O
=
O kD> X >N —
@ <ML AWELYOIT —~=~»¥23 2O
3
O D> B X =N — — —

R~ N N N O~ 0 DN
=
S —~ N ot O~ 00 N
=
@ <2V ALY —~»Ma23ZF ZO
S —~ N o <t WV O ™~ 00 O
(<]
@ <<V AWMLY~~~ 135 2ZO0O

=
5%
3

048 0ds 008 0ds ovs 0LS @98
vz 1444 80T 43 9Ll 091 144 871 [41 96 08

=
=N
23
=
0
@
=
"
Pl
=
<
A

0cs 0zs
43

=
A
>
=
A

XaH

<
o
o
-
o
=

[ewida(|

219M0 011U0)
(o ! k Jurysey4 3s19AU]
|eWwION

SId)dBIvy)) UG [[DSV :L dqeL

BT O T O O T A T O T T O O O O O |

15

[E/RRE

4 W @

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
$450
$4D0
$550
$5D0
$650
$6D0
$750
$7D0

ikl

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

i el il 1A L = 4 L e S

$00
$01
$02
$03
304
$05
306
307
$08
$09

® —~ N TN O 0

$0A
$0B
$0C
$0D
SOE
SOF
$10
$11
$12
$13
314
$15
$16
$17
$18
$19

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

S1B

$1C

28

$1D

S1E

$1F
$20
$21

31

32

33

$22
$23
$24
$25
$26
$27

34

35

37

38
39

Figure 1. Map of the Text Screen

16

O T

Figure 1 is a map of the Apple’s display in Text mode, with the memory location addresses for
each character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES)
MODE

In the Low-Resolution Graphics mode, the Apple presents the contents of the same 1,024 loca-
tions of memory as is in the Text mode, but in a different format. In this mode, each byte of
memory is displayed not as an ASCII character, but as two colored blocks, stacked one atop the
other. The screen can show an array of blocks 40 wide and 48 high. Each block can be any of
sixteen colors. On a black-and-white television set, the colors appear as patterns of grey and
white dots.

Since each byte in the page of memory for Low-Resolution Graphics represents two blocks on the
screen, stacked vertically, each byte is divided into two equal sections, called (appropriately
enough) ‘‘nybbles. Each nybble can hold a value from zero to 15. The value which is in the
lower nybble of the byte determines the color for the upper block of that byte on the screen, and
the value which is in the upper nybble determines the color for the lower block on the screen.
The colors are numbered zero to 15, thus:

Table 8: Low-Resolution Graphics Colors
Decimal Hex Color Decimal Hex Color
[} $0 Black 8 38 Brown
1 $1 Magenta 9 $9 Orange
2 $2 Dark Blue 10 SA Grey 2
3 $3 Purple 11 $B Pink
4 $4 Dark Green 12 $C Light Green
S $5 Grey 1 13 $D Yellow
6 $6 Medium Blue 14 SE Aquamarine
7 $7 Light Blue 15 SF White]

(Colors may vary from television to television, particularly on those without hue controls. You
can adjust the tint of the colors by adjusting the COLOR TRIM control on the right edge of the
Apple board.)

So, a byte containing the hexadecimal value $D8 would appear on the screen as a brown block on
top of a yellow block. Using decimal arithmetic, the color of the lower block is determined by
the quotient of the value of the byte divided by 16; the color of the upper block is determined by
the remainder.

Figure 2 is a map of the Apple’s display in Low-Resolution Graphics mode, with the memory
location addresses for each block on the screen.

Since the Low-Resolution Graphics screen displays the same area in memory as is used for the
Text screen, interesting things happen if you switch between the Text and Low-Resolution
Graphics modes. For example, if the screen is in the Low-Resolution Graphics mode and is full
of colored blocks, and then the TEXT/GRAPHICS screen switch is thrown to the Text mode, the
screen will be filled with seemingly random text characters, sometimes inverse or flashing. Simi-
larly, a screen full of text when viewed in Low-Resolution Graphics mode appears as long hor-
izontal grey, pink, green or yellow bars separated by randomly colored blocks.

W W W W W W i ey Gy T T

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
$450
$4D9
$550
$5D0
$650
$6D0
$750
$7D9

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

300
$01
$02
$03
$04
305
$06
$07
308

® —~ N N O~ 00

$09

$OA

10
11
12
13
14
15
16
17
18
19
20
21

$0B

$6C
$6D

$OE

$OF
$10

$11

$12
$13
$14
$15

$16

22

$17
$18

23
24
25
26
27
28

$19

$1A

$I1B

$1C

$1D
SIE
SIF

31

$20
$21
$22
$23

32

33
34
35

$24
$25
$26
$27

36
37
38
39

AHJ Anm;A-ﬂ.l«‘

Figure 2. Map of the Low-Resolution Graphics Mode

oo
—

Y

R

L

THE HIGH-RESOLUTION GRAPHICS (HI-RES)
MODE

The Apple has a second type of graphic display, called High-Resolution Graphics (or sometimes
““Hi-res’’). When your Apple is in the High-Resolution Graphics mode, it can display 53,760
dots in a matrix 280 dots wide and 192 dots high. The screen can display black, white, violet,
green, red, and blue dots, although there are some limitations concerning the color of individual
dots.

The High-Resolution Graphics mode takes its data from an 8,192-byte area of memory, usually
called a “‘picture buffer’”. There are two separate picture buffers: one for the primary page and
one for the secondary page. Both of these buffers are independent of and separate from the
memory areas used for Text and Low-Resolution Graphics. The primary page picture buffer for
the High-Resolution Graphics mode begins at memory location number 8192 and extends up to
location number 16383; the secondary page picture buffer follows on the heels of the first at
memory location number 16384, extending up to location number 24575. For those of you with
sixteen fingers, the primary page resides from $200@ to $3FFF and the secondary page follows in
succession at $4000 to $5FFF. If your Apple is equipped with 16K (16,384 bytes) or less of
memory, then the secondary page is inaccessible to you; if its memory size is less than 16K, then
the entire High-Resolution Graphics mode is unavailable to you.

Each dot on the screen represents one bit from the picture buffer. Seven of the eight bits in each
byte are displayed on the screen, with the remaining bit used to select the colors of the dots in
that byte. Forty bytes are displayed on each line of the screen. The least significant bit (first bit)
of the first byte in the line is displayed on the left edge of the screen, followed by the second bit,
then the third, etc. The most significant (eighth) bit is not displayed. Then follows the first bit
of the next byte, and so on. A total of 280 dots are displayed on each of the 192 lines of the
screen.

On a black-and-white monitor or TV set, the dots whose corresponding bits are ‘‘on’” (or equal to
1) appear white; the dots whose corresponding bits are “‘off”” or (equal to @) appear black. On a
color monitor or TV, it is not so simple. If a bit is “‘off”>, its corresponding dot will always be
black. If a bit is ““on’’, however, its color will depend upon the position of that dot on the screen.
If the dot is in the leftmost column on the screen, called ‘‘column ©’°, or in any even-numbered
column, then it will appear violet. If the dot is in the rightmost column (column 279) or any
odd-numbered column, then it will appear green. If two dots are placed side-by-side, they will
both appear white. If the undisplayed bit of a byte is turned on, then the colors blue and red are
substituted for violet and green, respectively.* Thus, there are six colors available in the High-
Resolution Graphics mode, subject to the following limitations:

1) Dots in even columns must be black, violet, or blue.
2) Dots in odd columns must be black, green, or red.

3) Each byte must be either a violet/green byte or a blue/red byte. It is not possible to mix
green and blue, green and red, violet and blue, or violet and red in the same byte.

* On Revision ® Apple boards, the colors red and blue are unavailable and the setting of the cighth bit is ir-
relevant.

19

K 0000

4) Two colored dots side by side always appear white, even if they are in different bytes.

5) On European-modified Apples, these rules apply but the colors generated in the High-
Resolution Graphics mode may differ.

Figure 3 shows the Apple’s display screen in High-Resolution Graphics mode with the memory
addresses of each line on the screen.

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features

Inputs: Cassette Input
Three One-bit Digital Inputs
Four Analog Inputs

Outputs: Cassette Output
Built-In Speaker
Four ‘“Annunciator’” Qutputs
Utility Strobe Output

THE SPEAKER

Inside the Apple’s case, on the left side under the keyboard, is a small 8 ohm speaker. It is con-
nected to the internal electronics of the Apple so that a program can cause it to make various
sounds.

The speaker is controlled by a soft switch. The switch can put the paper cone of the speaker in
two positions: “‘in”” and ‘‘out’’. This soft switch is not like the soft switches controlling the vari-
ous video modes, but is instead a roggle switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from “‘in’’ to
“out” or vice-versa. Each time the state is changed, the speaker produces a tiny ‘‘click’”. By
referencing the address of the speaker switch frequently and continuously, a program can gen-
erate a steady tone from the speaker.

The soft switch for the speaker is associated with memory location number 49200. Any reference
to this address (or the equivalent addresses -16336 or hexadecimal $C@3@) will cause the speaker
to emit a click.

A program can ‘‘reference’ the address of the special location for the speaker by performing a
“‘read” or ‘‘write’’ operation to that address. The data which are read or written are irrelevant, as
it is the address which throws the switch. Note that a ‘‘write”’ operation on the Apple’s 6502
microprocessor actually performs a ‘‘read’’ before the ‘‘write’, so that if you use a ‘‘write”
operation to flip any soft switch, you will actually throw that switch rwice. For toggle-type soft
switches, such as the speaker switch, this means that a “‘write’’ operation to the special location

20

ey Tt P ey ML ofEL Y PR OfEDOETOTEDOMELORY

rr e

3

ber ke lEr

Eelolipr der e bey

00018
0081$
00v1$
00018
0000%
00803
0008
00003

UG sdtydern uonnjosay-ysiy ayj jo depy ‘¢ aIn3iy

891L

1420

('74%Y

960Y

TLee
L1474 I

vzol1

ol]

1X0Q Yoes uJ

6t

L8
978
Y43
1443
€78
ws
178
s
418
q18
ais
J18
qa18
VIS

8¢
LE

9¢

S¢
143

€€

[43

1€
ot

6C

.14

Lz

9T

Y4
144

618

818
L1S
918
Sis
148
€18
[4%3

€T

[44

¥4

61

81

Ll

s
018
408
408
ass

O0$

91

SI
14!

€l

4

I

408

— \O 0o
L)

@ BH D
SRS
» O o0

= A N

DD DO DD DD D
00000”0%
QAN RO~

8916
0v06
c168
¥8L8
9698
8768
00v8
TLes
8C16
0006
7L88
vyL8
9198
8878
09¢8
[4%4
8806
0968
7e88
¥0L8
9LS8
8vv8
oes
618

paeTs
BS€TS
0aces
0STTs
0aiIzs
0S1TS
0Aaecs
0s0Ts
8VETS
87€TS
8VITS
87TTS
8V IS
8CI1CS
8V0Cs
870C$
08€CS
00cCs
L1443
007
081cS
00128
0807S
0e0Cs

To obtain the address for any byte, add the addresses for that byte’s box row, box column, and position in box.

21

S| N O O O O O T T T T T 1 OO VO

|
4‘

controlling the switch will leave the switch in the same state it was in before the operation was
performed.

THE CASSETTE INTERFACE

On the back edge of the Apple’s main board, on the right side next to the VIDEO connector, are
two small black packages labelled ““IN’” and ‘‘OUT”. These are miniature phone jacks into which
you can plug a cable which has a pair of miniature phono plugs on each end. The-other end of
this cable can be connected to a standard cassette tape recorder so that your Apple can save infor-
mation on audio cassette tape and read it back again.

The connector marked “OUT”’ is wired to yet another soft switch on the Apple board. This is
another toggle switch, like the speaker switch (see above). The soft switch for the cassette out-
put plug can be toggled by referencing memory location number 49184 (or the equivalent -16352
or hexadecimal $C020). Referencing this location will make the voltage on the OUT connector
swing from zero to 25 millivolts (one fortieth of a volt), or return from 25 millivolts back to
zero. If the other end of the cable is plugged into the MICROPHONE input of a cassette tape
recorder which is recording onto a tape, this will produce a tiny “‘click’” on the recording. By
referencing the memory location associated with the cassette output soft switch repeatedly and
frequently, a program can produce a tone on the recording. By varying the pitch and duration of
this tone, information may be encoded on a tape and saved for later use. Such a program to
encode data on a tape is included in the System Monitor and is described on page 46.

Be forewarned that if you attempt to flip the soft switch for the cassette output by writing to its
special location, you will actually generate two “clicks”> on the recording. The reason for this is
mentioned in the description of the speaker (above). You should only use “‘read’’ operations
when toggling the cassette output soft switch.

The other connector, marked ““IN”’, can be used to “‘listen’” to a cassette tape recording. Its
main purpose is to provide a means of listening to tones on the tape, decoding them into data,
and storing them in memory. Thus, a program or data set which was stored on cassette tape may
be read back in and used again.

The input circuit takes a 1 volt (peak-to-peak) signal from the cassette recorder’s EARPHONE
jack and converts it into a string of ones and zeroes. Each time the signal applied to the input
circuit swings from positive to negative, or vice-versa, the input circuit changes state: if it was
sending ones, it will start sending zeroes, and vice versa. A program can inspect the state of the
cassette input circuit by looking at memory location number 49248 or the equivalents -16288 or
hexadecimal $CP6@. If the value which is read from this location is greater than or equal to 128,
then the state is a “‘one’’; if the value in the memory location is less than 128, then the state isa
“zero”. Although BASIC programs can read the state of the cassette input circuit, the speed of a
BASIC program is usually much too slow to be able to make any sense out of what it reads.
There is, however, a program in the System Monitor which will read the tones on a cassette tape
and decode them. This is described on page 47.

22

ee TEvbee fer ber bev ke der et e Ter ferofer P Rl oRrofEL fEL TP PR LR OEL L

l

U U VO VA L L LY T

THE GAME 1I/0 CONNECTOR

The purpose of the Game I/0 connector is to allow you to connect special input and output dev-
ices to heighten the effect of programs in general, and specifically, game programs. This connec-
tor allows you to connect three one-bit inputs, four one-bit outputs, a data strobe, and four ana-
log inputs to the Apple, all of which can be controlled by your programs. Supplied with your
Apple is a pair of Game Controllers which are connected to cables which plug into the Game /0
connector. The two rotary dials on the Controllers are connected to two analog inputs on the
Connector; the two pushbuttons are connected to two of the one-bit inputs.

BRRANARURARNNRANRI B AR R U B B
B]
HngnaNsENssEERERERE RN RRY

i

ks
B &
5%
B &
B S
Be
B S
B
B S
B e
8%
"z
Bz
® ¥
B®
"3
B
®®
B E
B
5
5%
B
5 ¥
&

RARABRCARBARARNARAR IV SO

Photo 7. The Game I/0 Connector.

ANNUNCIATOR OUTPUTS

The four one-bit outputs are called ‘‘annunciators”. Each annunciator output can be used as an
input to some other electronic device, or the annunciator outputs can be connected to circuits to
drive lamps, relays, speakers, etc.

Each annunciator is controlled by a soft switch. The addresses of the soft switches for the annun-
ciators are arranged into four pairs, one pair for each annunciator. If you reference the first
address in a pair, you turn the output of its corresponding annunciator ‘‘off”’; if you reference the
second address in the pair, you turn the annunciator’s output ‘“‘on’>. When an annunciator is

23

“off, the voltage on its pin on the Game 1/0 Connector is near 0 volts; when an annunciator is
“on”, the voltage is near S volts. There are no inherent means to determine the current setting
of an annunciator bit. The annunciator soft switches are:

Table 9: Annunciator Special Locations
Address:
Decimal Hex
0 off 49240 -16296 $CO58
on 49241 -16295 $CO59
1 off 49242 -16294 $COSA
on 49243 -16293 $COSB
2 off 49244 -16292 $CO5C
on 49245 -16291 $COSD
3 off 49246 -16290 SCOSE
on 49247 -16289 $COSF

Ann. State

ONE-BIT INPUTS

The three one-bit inputs can each be connected to either another electronic device or to a push-
button. You can read the state of any of the one-bit inputs from a machine language or BASIC
program in the same manner as you read the Cassette Input, above. The locations for the three
one-bit inputs have the addresses 49249 through 49251 (-16287 through -16285 or hexadecimal
$CP61 through $C063).

ANALOG INPUTS

The four analog inputs can be connected to 150K Ohm variable resistors or potentiometers. The
variable resistance between each input and the +5 volt supply is used in a one-shot timing cir-
cuit. As the resistance on an input varies, the timing characteristics of its corresponding timing
circuit change accordingly. Machine language programs can sense the changes in the timing loops
and obtain a numerical value corresponding to the position of the potentiometer.

Before a program can start to read the setting of a potentiometer, it must first reset the timing
circuits. Location number 49264 (-16272 or hexadecimal $C@7@) does just this. When you reset
the timing circuits, the values contained in the four locations 49252 through 49255 (-16284
through -16281 or $C@64 through $CA67) become greater than 128 (their high bits are set).
Within 3.060 milliseconds, the values contained in these four locations should drop below 128.
The exact time it takes for each location to drop in value is directly proportional to the setting of
the game paddle associated with that location. If the potentiometers connected to the analog
inputs have a greater resistance than 150K Ohms, or there are no potentiometers connected, then
the values in the game controller locations may never drop to zero.

24

VEYO1Er 1El JE1 OIEYOEY OEY OMEY O/EYD O/EY OMEY OMEY OCEY OMEY OUEY O'EYO'EDOTED MRl OMEY

I1E]

IEl

FE.

R e

A

STROBE OUTPUT

There is an additional output, called C#46 STROBE, which is normally +5 volts but will drop to
zero volts for a duration of one-half microsecond under the control of a machine language or
BASIC program. You can trigger this ‘‘strobe’” by referring to location number 49216 (-16320 or
$CP4F). Be aware that if you perform a “‘write’” operation to this location, you will trigger the
strobe rwice (see a description of this phenomenon in the section on the Speaker).

Table 10: Input/Output Special Locations

S Address: .
Function: Decimal Hex Read/Write
Speaker 49200 -16336 $C030 R

Cassette Out 49184 -16352 $C020 R
Cassette In 49256 -16288 $CO60 R
Annunciators* | 49240 -16296 $C0O58 R/W
through through through
49247 -16289 $SCOSF
Flag inputs 49249 -16287 $Coh61
49250 -16286 $C062
49251 -16285 $C063
Analog Inputs | 49252 -16284 $C064
49253 -16283 $C065
49254 -16282 3CO66
49255 -16281 $C067
Analog Clear | 49264 -16272 $C0O70 R/W
Utility Strobe | 49216 -16320 $C040 R

AR

VARIETIES OF APPLES

There are a few variations on the basic Apple II computer. Some of the variations are revisions
or modifications of the computer itself; others are changes to its operating software. These are
the basic variations:

AUTOSTART ROM / MONITOR ROM

All Apple 11 Plus Systems include the Autostart Monitor ROM. All other Apple systems do not contain
the Autostart ROM, but instead have the Apple System Monitor ROM. This version of the ROM
lacks some of the features present in the Autostart ROM, but also has some features which are not
present in that ROM. The main differences in the two ROMs are listed on the following pages.

* See the previous table.

25

{F 4

e Editing Controls. The ESC-I, J, K, and M sequences, which move the cursor up, left, right,
and down, respectively, are not available in the Old Monitor ROM.

e Stop-List. The Stop-List feature (invoked by a |[CTRL S), which allows you to introduce a
pause into the output of most BASIC or machine language programs or listings, is not available

in the Old Monitor ROM.

e The RESET cycle. When you first turn on your Apple or press RESET]|, the Old Monitor
ROM will send you directly into the Apple System Monitor, instead of initiating a warm or
cold start as described in “The RESET Cycle”” on page 36.

The Old Monitor ROM does, however, support the STEP and TRACE debugging features of the
System Monitor, described on page 51. The Autostart ROM does not recognize these Monitor

commands.

REVISION ¢ / REVISION 1 BOARD

The Revision @ Apple II board lacks a few features found on the current Revision 1 version of
the Apple II main board. To determine which version of the main board is in your Apple, open
the case and look at the upper right-hand corner of the board. Compare what you see to Photo 4
on page 10. If your Apple does not have the single metal video connector pin between the four-
pin video connector and the video adjustment potentiometer, then you have a Revision @ Apple.

The differences between the Revision @ and Revision 1 Apples are summarized below.

e Color Killer. When the Apple’s Video Display is in Text mode, the Revision ® Apple board
leaves the color burst signal active on the video output circuit. This causes text characters to
appear tinted or with colored fringes.

e Power-on RESET. Revision @ Apple boards have no circuit to automatically initiate a RESET
cycle when you turn the power on. Instead, you must press RESET] once to start using your
Apple.

Also, when you turn on the power to an Apple with a Revision @ board, the keyboard will
become active, as if you had typed a random character. When the Apple starts looking for
input, it will accept this random character as if you had typed it. In order to erase this charac-
ter, you should press after you your Apple when you turn on its power.

® Colors in High-Resolution Graphics. Apples with Revision ® boards can generate only four
colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of
each byte displayed on the Hi-Res screen (see page 19) is ignored.

e 24K Memory Map problem. Systems with a Revision @ Apple 1I board which contain 20K or
24K bytes of RAM memory appear to BASIC to have more memory than they actually do.
See ‘‘Memory Organization™, page 72, for a description of this problem.

e 50 Hz Apples. The Revision @ Apple II board does not have the pads and jumpers which you
can cut and solder to convert the VIDEO OUT signai of your Apple to conform to the Euro-
pean PAL/SECAM television standard. It also lacks the third VIDEO connector, the single
metal pin in front of the four-pin video connector.

26

El 'El

1l 1 1 R

[E1 [E}

YEY OMEL OTEY OIEY OTEL OTEL OTEY OTEL OTEY TR OTR)

IE

IEl

fEl

FE. TH

. ® Speaker and Cassette Interference. On Apples with Revision @ boards, any sound generated
by the internal speaker will also appear as a signal on the Cassette Interface’s OUT connector.
If you leave the tape recorder in RECORD mode, then any sound generated by the internal
— speaker will also appear on the tape recording.

® (Cassette Input. The input circuit for the Cassette Interface has been modified so that it will
respond with more accuracy to a weaker input signal.

i

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110
volt power line input. These are are not equipped with the voltage selector switch on the back of
the supply.

THE APPLE II PLUS

The Apple II Plus is a standard Apple II computer with a Revision 1 board, an Autostart Moni-
tor ROM, and the Applesoft II BASIC language in ROM in lieu of Apple Integer BASIC. Euro-
pean models of the Apple II Plus are equipped with a 110/220 volt power supply. The Apple
Mini-Assembler, the Floating-Point Package, and the SWEET-16 interpreter, stored in the
Integer BASIC ROMs, are not available on the Apple II Plus.

Al W W W W W W W W W W W

ALY U U U | | N O
LT VI VI

l

27

|

/R /I TR /R R /R G VR R E VIR E TR F T E VR £

13

ia & & 0 @ a3 i 3

28

A

|

Hi

|

i

;

i

1

]

1k

'

4

F

1B

!

}

1]

(R Rk

Re
LS

ik
AR

L B
ve

B
\R 3

| R) L B!
\dk \L 3}

(P LI | O B

|

STANDARD OUTPUT

THE STOP-LIST FEATURE

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
(OR, THE TEXT WINDOW)

SEEING IT ALL IN BLACK AND WHITE
STANDARD INPUT

RDKEY

GETLN

ESCAPE CODES

THE RESET CYCLE

AUTOSTART ROM RESET

AUTOSTART ROM SPECIAL LOCATIONS
*“OLD MONITOR’’ ROM RESET

29

Almost every program and language on the Apple needs some sort of input from the keyboard,
and some way to print information on the screen. There is a set of subroutines stored in the
Apple’s ROM memory which handle most of the standard input and output from all programs
and languages on the Apple.

The subroutines in the Apple’s ROM which perform these input and output functions are called
by various names. These names were given to the subroutines by their authors when they were
written. The Apple itself does not recognize or remember the names of its own machine
language subroutines, but it’s convenient for us to call these subroutines by their given names.

STANDARD OUTPUT

The standard output subroutine is called COUT. COUT will display upper-case letters, numbers,
and symbols on the screen in either Normal or Inverse mode. It will ignore control characters
except RETURN, the bell character, the line feed character, and the backspace character.

The COUT subroutine maintains its own invisible “‘output cursor’™* (the position at which the
next character is to be placed). Each time COUT is called, it places one character on the screen
at the current cursor position, replacing whatever character was there, and moves the cursor one
space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifts the
cursor down to the first position on the next line. If the cursor passes the bottom line of the
screen, the screen ‘‘scrolls’” up one line and the cursor is set to the first position on the newly
blank bottom line.

When a RETURN character is sent to COUT, it moves the cursor to the first position of the next
line. If the cursor falls off the bottom of the screen, the screen scrolls as described above.

THE STOP-LIST FEATURE

When any program or language sends a RETURN code to COUT, COUT will take a quick peek at
the keyboard. If you have typed a since the last time COUT looked at the keyboard,
then it will stop and wait for you to press another key. This is called the Stop-List feature.**
When you press another key, COUT will then output the RETURN code and proceed with nor-
mal output. The code of the key which you press to end the Stop-List mode is ignored unless it
is a [CTRL C]. If it is, then COUT passes this character code back to the program or language
which is sending output. This allows you to terminate a BASIC program or listing by typing
CTRL C| while you are in Stop-List mode.

A line feed character causes COUT to move its mythical output cursor down one line without any
horizontal motion at all. As always, moving beyond the bottom of the screen causes the screen
to scroll and the cursor remains at its same position on a fresh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped
off the left edge, it is reset to the rightmost position on the previous line. If there is no previous
line (if the cursor was at the top of the screen), the screen does not scroll downwards, but instead

* From latin cursus, *‘runner’’
** The Stop-list feature is not present on Apples without the Autostart ROM.

30

T B RO OREELORLELOELEL R OEL OEL B

the cursor is placed again at the rightmost position on the top line of the screen.

When COUT is sent a “‘bell” character (CTRL G), it does not change the screen at all, but
instead produces a tone from the speaker. The tone has a frequency of 100Hz and lasts for
1/10th of a second. The output cursor does not move for a bell character.

BUT SOFT, WHAT LIGHT THROUGH YONDER
WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words “‘right””, “‘left’’,
“top’’, and ‘‘bottom’” mean the physical right, left, top, and bottom of the standard 40-character
wide by 24-line tall screen. There is, however, a way to tell the COUT subroutine that you want
it to use only a section of the screen, and not the entire 960-character display. This segregated
section of the text screen is called a “‘window’. A program or language can set the positions of
the top, bottom, left side, and width of the text window by storing those positions in four loca-
tions in memory. When this is done, the COUT subroutine will use the new positions to calcu-
late the size of the screen. It will never print any text outside of this window, and when it must
scroll the screen, it will only scroll the text within the window. This gives programs the power to
control the placement of text, and to protect areas of the screen from being overwritten with new
text.

Location number 32 (hexadecimal $20) in memory holds the column position of the leftmost
column in the window. This position is normally position @ for the extreme left side of the
screen. This number should never exceed 39 (hexadecimal $27), the leftmost column on the
text screen. Location number 33 (hexadecimal $21) holds the width, in columns, of the cursor
window. This number is normally 40 (hexadecimal $28) for a full 40-character screen. Be care-
ful that the sum of the window width and the leftmost window position does not exceed 40! If it
does, it is possible for COUT to place characters in memory locations not on the screen,
endangering your programs and data.

Location 34 (hexadecimal $22) contains the number of the top line of the text window. This is
also normally @, indicating the topmost line of the display. Location 35 (hexadecimal $23) holds
the number of the bottom line of the screen (plus one), thus normally 24 (hexadecimal $18) for
the bottommost line of the screen. When you change the text window, you should take care that
you know the whereabouts of the output cursor, and that it will be inside the new window.

Table 11: Text Window Special Locations
Function: Loca}tion: Min.imum/Normal/Maximum Value|
Decimal Hex | Decimal Hex
Left Edge 32 $20 | 0/0/39 $0/30/$17
Width 33 $21 | 0/40/40 $0/$28/%28
Top Edge 34 $22 | 0/0/24 $0/30/318
Bottom Edge | 35 $23 | 0/24/24 $0/$18/818

TR

SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what’s sent to it in either Normal or Inverse text
modes (see page 14). The particular form of its output is determined by the contents of location
number 50 (hexadecimal $32). If this location contains the value 255 (hexadecimal $FF), then
COUT will print characters in Normal mode; if the value is 63 (hexadecial $3F), then COUT will
present its display in Inverse mode. Note that this mode change only affects the characters
printed after the change has been made. Other values, when stored in location 50, do unusual
things: the value 127 prints letters in Flashing mode, but all other characters in Inverse; any
other value in location 5@ will cause COUT to ignore some or all of its normal character set.

Table 12: Normal/Inverse Control Values
Value: Effect:
Decimal Hex
255 SFF | COUT will display characters in Normal mode.
63 $3F | COUT will display characters in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

The Normal/Inverse ‘‘mask’ location, as it is called, works by performing a logical ‘““AND”’
between the bits contained in location 5@ and the bits in each outgoing character code. Every bit
in location 5@ which is a logical “‘zero’” will force the corresponding bit in the character code to
become ‘‘zero’” also, regardless of its former setting. Thus, when location 5@ contains 63 (hexa-
decimal $3F or binary @@111111), the top two bits of every output character code will be turned
“off””. This will place characters on the screen whose codes are all between 0 and 63. As you
can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters
are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are concerned with the gathering of standard input:
RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which accumulates a
number of keystrokes into a chunk of information called an input line.

RDKEY

The primary function of the RDKEY subroutine is to wait for the user to press a key on the key-
board, and then report back to the program which called it with the code for the key which was
pressed. But while it does this, RDKEY also performs two other helpful tasks:

1). Input Prompting. When RDKEY is activated, the first thing it does is make visible the hid-
den output cursor. This accomplishes two things: it reminds the user that the Apple is waiting
for a key to be pressed, and it also associates the input it wants with a particular place on the
screen. In most cases, the input prompt appears near a word or phrase describing what is being
requested by the particular program or language currently in use. The input cursor itself is a
flashing representation of whatever character was at the position of the output cursor. Usually
this is the blank character, so the input cursor most often appears to be a flashing square.

32

[E1 [F] IE) FF, fFL FRL OIFL OIE1 OIFLOIEY IR OIF1 OMEY OIE) OMEY (Bl OCMEYO(EY O/EYO/EY OTEY O[EY1 MR}

r

AR

When the user presses a key, RDKEY dutifully removes the input cursor and returns the
value of the key which was pressed to the program which requested it. Remember that the
output cursor is just a position on the screen, but the input cursor is a flashing character on the
screen. They usually move in tandem and are rarely separated from each other, but when the
input cursor disappears, the output cursor is still active.

2). Random Number Seeding. While it waits for the user to press a key, RDKEY is continually
adding 1 to a pair of numbers in memory. When a key is finally pressed, these two locations
together represent a number from @ to 65,535, the exact value of which is quite unpredictable.
Many programs and languages use this number as the base of a random number generator.
The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal
$4E and $4F).

GETLN

The vast majority of input to the Apple is gathered into chunks called input lines. The subroutine
in the Apple’s ROM called GETLN requests an input line from the keyboard, and after getting
one, returns to the program which called it. GETLN has many features and nuances, and it is
good to be familiar with the services it offers.

When called, GETLN first prints a prompting character, or ‘‘prompt’’. The prompt helps you to
identify which program has called GETLN requesting input. A prompt character of an asterisk
() represents the System Monitor, a right caret (>) indicates Apple Integer BASIC, a right
bracket (1) is the prompt for Applesoft II BASIC, and an exclamation point (!) is the hallmark of
the Apple Mini-Assembler. In addition, the question-mark prompt (?) is used by many programs
and languages to indicate that a user program is requesting input. From your (the user’s) point
of view, the Apple simply prints a prompt and displays an input cursor. As you type, the charac-
ters you type are printed on the screen and the cursor moves accordingly. When you press
[RETURN], the entire line is sent off to the program or language you are talking to, and you get
another prompt.

Actually, what really happens is that after the prompt is printed, GETLN calls RDKEY, which
displays an input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in
an input buffer and prints it on the screen where the input cursor was. It then calls RDKEY again.
This continues until the user presses RETURN]. When GETLN receives-a RETURN code from
the keyboard, it sticks the RETURN code at the end of the input buffer, clears the remainder of
the screen line the input cursor was on, and sends the RETURN code to COUT (see above).
GETLN then returns to the program which called it. The program or language which requested
input may now look at the entire line, all at once, as saved in the input buffer.

At any time while you are typing a line, you can type a and cancel that entire line.
GETLN will simply forget everything you have typed, print a backslash (\), skip to a new line,
and display another prompt, allowing you to retype the line. Also, GETLN can handle a max-
imum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and
you must start over. To warn you that you are approaching the limit, GETLN will sound a tone
every keypress starting with the 249th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple
typographical errors. A quick introduction to the standard editing functions and the use of the
two arrow keys, and , appears on pages 28-29 and 53-55 of the Apple I BASIC Program-
ming Manual, or on pages 27-28, 52-53 and Appendix C of The Applesoft Tutorial, at least one

33

of which you should have received. Here is a short description of GETLN’s editing features:
THE BACKSPACE ([—]) KEY

Each press of the backspace key makes GETLN *‘forget’ one previous character in the input line.
It also sends a backspace character to COUT (see above), making the cursor move back to the
character which was deleted. At this point, a character typed on the keyboard will replace the
deleted character both on the screen and in the input line. Multiple backspaces will delete succes-
sive characters; however, if you backspace over more characters than you have typed, GETLN
will forget the entire line and issue another prompt.

THE RETYPE ([=]) KEY

Pressing the retype key has exactly the same effect as typing the character which is under the cur-
sor. This is extremly useful for re-entering the remainder of a line which you have backspaced
over to correct a typographical error. In conjunction with pure cursor moves (which follow), it is
also useful for recopying and editing data which is already on the screen.

ESCAPE CODES

When you press the key marked on the keyboard, the Apple’s input subroutines go into
escape mode. In this mode, eleven keys have separate meanings, called ‘‘escape codes’”. When
you press one of these eleven keys, the Apple will perform the function associated with that key.
After it has performed the function, the Apple will either continue or terminate escape mode,
depending upon which escape code was performed. If you press any key in escape mode which is
not an escape code, then that keypress will be ignored and escape mode will be terminated.

The Apple recognizes eleven escape codes, eight of which are pure cursor moves, which simply
move the cursor without altering the screen or the input line, and three of which are screen clear
codes, which simply blank part or all of the screen. All of the screen clear codes and the first four
pure cursor moves (escape codes @, A, B, C, D, E, and F) terminate the escape mode after
operating. The final four escape codes (I, K, M, and J) complete their functions with escape
mode active.*

A press of the key followed by a press of the [A] key will move the cursor one space
to the right without changing the input line. This is useful for skipping over unwanted
characters in an input line: simply backspace back over the unwanted characters, press
to skip each offending symbol, and use the retype key to re-enter the remainder
of the line.

Pressing followed by [B] moves the cursor back one space, also without disturbing
the input line. This may be used to enter something twice on the same line without
retyping it: just type it once, press [ESC] [B] repeatedly to get back to the beginning of the
phrase, and use the retype key to enter it again.

* These four escape codes are not available on Apples without the Autostart Monitor ROM.

34

=3 E® (Y O ER IEY O ET ER OEFRE OER OFRT EY (E}

L0 U LI LI I A A L L A A A LA LA A A

The key sequence moves the cursor one line directly down, with no horizontal
movement. If the cursor reaches the bottom of the text window, then the cursor
remains on the bottom line and the text in the window scrolls up one line. The input
line is not modified by the sequence. This, and [D] (below), are useful for
positioning the cursor at the beginning of another line on the screen, so that it may be
re-entered with the retype key.

[D] The [ESC][D] sequence moves the cursor directly up one line, again without any horizon-
tal movement. If the cursor reaches the top of the window, it stays there. The input
line remains unmodified. This sequence is useful for moving the cursor to a previous
line on the screen so that it may be re-entered with the retype key.

The sequence is called ‘‘clear to end of line”’. When COUT detects this
sequence of keypresses, it clears the remainder of the screen line (not the input line!)

from the cursor position to the right edge of the text window. The cursor remains
where it is, and the input line is unmodified. always clears the rest of the line to
blank spaces, regardless of the setting of the Normal/Inverse mode location (see above).

This sequence is called “‘clear to end of screen’. It does just that: it clears everything in
the window below or to the right of the cursor. As before, the cursor does not move
and the input line is not modified. This is useful for erasing random garbage on a clut-
tered screen after a lot of cursor moves and editing.

The sequence is called ““home and clear”. It clears the entire window and
places the cursor in the upper left-hand corner. The screen is cleared to blank spaces,

regardless of the setting of the Normal/Inverse location, and the input line is not

changed (note that *‘[@]” is [SHIFT PJ).

These four escape codes are synonyms for the four pure cursor moves given above.

E When these four escape codes finish their respective functions, they do nor turn off the

[ESC][M]escape mode: you can continue typing these escape codes and moving the cursor around

[ESC][I] the screen until you press any key other than another escape code. These four keys are
placed in a ‘‘directional keypad’’ arrangement, so that the direction of each key from the
center of the keypad corresponds to the direction which that escape code moves the cur-
sor.

-> = B

B 0] < = [[

A & -

Figure 4. Cursor-moving Escape Codes.

35

THE RESET CYCLE

When you turn your Apple’s power switch on* or press and release the key, the Apple’s
6502 microprocessor initiates a RESET cycle. It begins by jumping into a subroutine in the
Apple’s Monitor ROM. In the two different versions of this ROM, the Monitor ROM and the
Autostart ROM, the RESET cycle does very different things.

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET cycles by flipping the soft switches which
control the video screen to display the full primary page of Text mode, with Low-Resolution
Graphics mixed mode lurking behind the veil of text. It then opens the text window to its full
size, drops the output cursor to the bottom of the screen, and sets Normal video mode. Then it
sets the COUT and KEYIN switches to use the Apple’s internal keyboard and video display as the
standard input and output devices. It flips annunciators # and 1 ON and annunciators 2 and 3
OFF on the Game [/0 connector, clears the keyboard strobe, turns off any active I/O Expansion
ROM (see page 84), and sounds a ‘‘beep!”’.

These actions are performed every time you press and release the key on your Apple. At
this point, the Autostart ROM peeks into two special locations in memory to see if it’s been
RESET before or if the Apple has just been powered up (these special locations are described
below). If the Apple has just been turned on, then the Autostart ROM performs a ‘‘cold start’”;
otherwise, it does a ‘‘warm start’’.

1) Cold Start. On a freshly activated Apple, the RESET cycle continues by clearing the screen
and displaying ‘““APPLE II"’ top and center. It then sets up the special locations in memory to
tell itself that it’s been powered up and RESET. Then it starts looking through the rightmost
seven slots in your Apple’s backplane, looking for a Disk II Controller Card. It starts the
search with Slot 7 and continues down to Slot 1. If it finds a disk controller card, then it
proceeds to bootstrap the Apple Disk Operating System (DOS) from the diskette in the disk
drive attached to the controller card it discovered. You can find a description of the disk
bootstrapping procedure in Do’s and Don’ts of DOS, Apple part number A2L0012, page 11.

If the Autostart ROM cannot find a Disk II controller card, or you press again before
the disk booting procedure has completed, then the RESET cycle will continue with a
“‘lukewarm start’’. It will initialize and jump into the language which is installed in ROM on
your Apple. For a Revision @ Apple, either without an Applesoft Il Firmware card or with
such a card with its controlling switch in the DOWN position, the Autostart ROM will start
Apple Integer BASIC. For Apple II-Plus systems, or Revision @ Apple IIs with the Applesoft
II Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoft
II Floating-Point BASIC.

2) Warm Start. If you have an Autostart ROM which has already performed a cold start cycle,

then each time you press and release the [RESET] key, you will be returned to the language
you were using, with your program and variables intact.

* Power-on RESET cycles occur only on Revision 1 Apples or Revision & Apples with at least one Disk II con-
troller card.

36

1 1 E} E1 1 TRY

™1 TE1 TE} ™1 Bl TR}

Il JEL IFL OIFL IEY B TR TF1 TE)

IEl

FE. T}

AUTOSTART ROM SPECIAL LOCATIONS

The three “‘special locations™ used by the Autostart ROM all reside in an area of RAM memory
reserved for such system functions. Following is a table of the special locations used by the
Autostart ROM:

Table 13: Autostart ROM Special Locations
Location:
Decim(;l Hex Contents:
1010 $3F2 Soft Entry Vector. These two locations contain
1011 $3F3 the address of the reentry point for whatever
language is in use. Normally contains SEQ®3.
1012 $3F4 Power-Up Byte. Normally contains $45. See
below.
64367 $FB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.

When the Apple is powered up, the Autostart ROM places a special value in the power-up loca-
tion. This value is the Exclusive-OR of the value contained in location 1811 with the constant
value 165. For example, if location 1011 contains 224 (its normal value), then the power-up
value will be:

Decimal Hex Binary
Location 1011 224 SEO 11100000
Constant 165 $SA5 10100101
Power-Up Value 69 $45 01000101

Your programs can change the soft entry vector, so that when you press you will go to
some program other than a language. If you change this soft entry vector, however, you should
make sure that you set the value of the power-up byte to the Exclusive-OR of the high part of
your new soft entry vector with the constant decimal 165 (hexadecimal $AS). If you do not set
this power-up value, then the next time you press the Autostart ROM will believe that
the Apple has just been turned on and it will do another cold start.

For example, you can change the soft entry vector to point to the Apple System Monitor, so that
when you press you will be placed into the Monitor. To make this change, you must
place the address of the beginning of the Monitor into the two soft entry vector locations. The
Monitor begins at location $SFF69, or decimal 65385. Put the last two hexadecimal digits of this
address ($69) into location $3F2 and the first two digits (3FF) into location $3F3. If you are
working in decimal, put 105 (which is the remainder of 65385/256) into location 1010 and the
value 255 (which is the integer quotient of 65385/256) into location 1011.

Now you must set up the power-up location. There is a machine-language subroutine in the
Autostart ROM which wil automatically set the value of this location to the Exclusive-OR men-
tioned above. Al you need to do is to execute a JSR (Jump to SubRoutine) instruction to the
address SFB6F. If you are working in BASIC, you should perform a CALL -1169. Now every-
thing is set, and the next time you press [RESET], you will enter the System Monitor.

To make the [RESET] key work in its usual way, just restore the values in the soft entry vector to
their former values ($E@@3, or decimal 57347) and again call the subroutine described above.

R O O

37

.

“OLD MONITOR” ROM RESET

A RESET cycle in the Apple II Monitor ROM begins by setting Normal video mode, a full screen
of Primary Page text with the Color Graphics mixed mode behind it, a fully-opened text window,
and the Apple’s standard keyboard and video screen as the standard input and output devices. It
sounds a “‘beep!”’, the cursor leaps to the bottom line of the uncleared text screen, and you find
yourself facing an asterisk (x) prompt and talking to the Apple System Monitor.

fFL TFL TEL TR OTEL TEDOTEL YL OTEL ML MY OTELOTEL MR

IEY OYEL OMEDOIED Y OTEY TRY

Ir

FF.. TF}

38

HHHHHEHHHRHR AN

AT NY Y AT AR AN Ny Y (VY

|t Lt L L | | { o ot

e

ENTERING THE MONITOR

ADDRESSES AND DATA

EXAMINING THE CONTENTS OF MEMORY
EXAMINING SOME MORE MEMORY
EXAMINING STILL MORE MEMORY
CHANGING THE CONTENTS OF A LOCATION
CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
MOVING A RANGE OF MEMORY
COMPARING TWO RANGES OF MEMORY
SAVING A RANGE OF MEMORY ON TAPE
READING A RANGE FROM TAPE

CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
THE MINI-ASSEMBLER

DEBUGGING PROGRAMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECIAL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS

SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS
MINI-ASSEMBLER INSTRUCTION FORMATS

39

I

Buried deep within the recesses of the Apple’s ROM is a masterful program called the System
Monitor. It acts as both a supervisor of the system and a slave to it; it controls all programs and
all programs use it. You can use the powerful features of the System Monitor to discover the
hidden secrets in all 65,536 memory locations. From the Monitor, you may look at one, some,
or all locations; you may change the contents of any location; you can write programs in Machine
and Assembly languages to be executed directly by the Apple’s microprocessor; you can save vast
quantities of data and programs onto cassette tape and read them back in again; you can move
and compare thousands of bytes of memory with a single command; and you can leave the Moni-
tor and enter any other program or language on the Apple.

ENTERING THE MONITOR

The Apple System Monitor program begins at location number $FF69 (decimal 65385 or —151)
in memory. To enter the Monitor, you or your BASIC program can CALL this location. The
Monitor’s prompt (an asterisk [+]) will appear on the left edge of the screen, with a flashing cur-
sor to its right. The Monitor accepts standard input lines (see page 32) just like any other system
or language on the Apple. It will not take any action until you press [RETURN]. Your input lines
to the Monitor may be up to 255 characters in length. When you have finished your stay in the
Monitor, you can return to the language you were previously using by typing
(or, with the Apple DOS, [3][D][#][G][RETURN]), or simply press [RESET].*

ADDRESSES AND DATA

Talking to the Monitor is somewhat like talking to any other program or language on the Apple:
you type a line on the keyboard, followed by a [RETURN], and the Monitor will digest what you
typed and act according to those instructions. You will be giving the Monitor three types of
information: addresses, values, and commands. Addresses and values are given to the Monitor in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits (#-9) to represent them-
selves and the first six letters (A-F) to represent the numbers 10 through 15. A single hexade-
cimal digit can, therefore, have one of sixteen values from 0 to 15. A pair of hex digits can
assume any value from 0 to 255, and a group of four hex digits can denote any number from 0 to
65,536. It so happens that any address in the Apple can be represented by four hex digits, and
any value by two hex digits. This is how you tell the Monitor about addresses and values. When
the Monitor is looking for an address, it will take any group of hex digits. If there are fewer than
four digits in the group, it will prepend leading zeroes; if there are more than four hex digits, the
Monitor will truncate the group and use only the last four hex digits. It follows the same pro-
cedure when looking for two-digit data values.

The Monitor recognizes 22 different command characters. Some of these are punctuation marks,
others are upper-case letters or control characters. In the following sections, the full name of a
command will appear in capital letters. The Monitor needs only the first letter of the command
name. Some commands are invoked with control characters. You should note that although the
Monitor recognizes and interprets these characters, a control character typed on an input line will
not appear on the screen.

* This does not work on Apples without the Autostart ROM.

CELOTEOTEOWOFOTELTELOTELOTRLOTELOMELOTELOMELOTELOTELOTFLOELOTELOMEL ML ML

The Monitor remembers the addresses of up to five locations. Two of these are special: they are
the addresses of the last location whose value you inquired about, and the location which is next
to have its value changed. These are called the last opened location and the next changeable loca-
tion. The usefulness of these two addresses will be revealed shortly.

EXAMINING THE CONTENTS OF MEMORY

When you type the address of a location in memory alone on an input line to the Monitor, it will
reply* with the address you typed, a dash, a space, and the value** contained in that location,

thus:
*EQ00
Eddo— 24
*300
#360— 99

*

Each time the Monitor displays the value contained in a location, it remembers that location as
the last opened location. For technical reasons, it also considers that location as the next change-
able location.

L

EXAMINING SOME MORE MEMORY

If you type a period (.) on an input line to the Monitor, followed by an address, the Monitor will
display a memory dump: the values contained in all locations from the last opened location to the
location whose address you typed following the period. The Monitor then considers the last loca-
tion displayed to be both the last opened location and the next changeable location.

** The values printed in these examples may differ from the values displayed by your Apple for the same in-
structions.

! * ln the examples, your queries are in normal type and the Apple replies in boldface.

- .

20

#920— 09
+. 2B

#g21— 28 44 18 OF 0C 44 g4
#928— A8 #6 D§ 67
*300

#340— 99
«.315

#301— B9 #9 #8 A GA PA 99
#368— @49 68 C8 D F4 A6 2B A9
#316— 69 85 27 AD CC 43
*.32A

#316— 85 41

#318— 84 49 8A 4A 4A 4A 4A #9
#329— C@# 85 3F A9 5D 85 3E 24
#328— 43 63 24

*

You should notice several things about the format of a memory dump. First, the first line in the
dump begins with the address of the location following the last opened location; second, all other
lines begin with addresses which end alternately in zeroes and eights; and third, there are never
more than eight values displayed on a single line in a memory dump. When the Monitor does a
memory dump, it starts by displaying the address and value of the location following the last
opened location. It then proceeds to the next successive location in memory. If the address of
that location ends in an 8 or a @, the Monitor will “‘cut’ to a new line and display the address of
that location and continue displaying values. After it has displayed the value of the location
whose address you specified, it stops the memory dump and sets the address of both the last
opened and the next changeable location to be the address of the last location in the dump. If
the address specified on the input line is less than the address of the last opened location, the
Monitor will display the address and value of oniy the location following the last opened location.

You can combine the two commands (opening and dumping) into one operation by concatenating
the second to the first; that is, type the first address, followed by a period and the second address.
This two-addresses-separated-by-a-period form is called a memory range.

*300.32F

#360— 99 B9 49 #8 A GA A 99
#308— #9 #8 C8 D F4 A6 2B A9
#316— 69 85 27 AD CC #3 85 41
#318— 84 44 8A 4A 4A 4A 4A ¥9
#320— C4 85 3F A9 5D 85 3E 24
#328— 43 63 20 46 #3 AS 3D 4D
*30.40 :

#936— AA 99 FF AA 95 C2 #5 C2
#938— 1B FD D§ 63 3C 94 40 ¢4¢
$gap— 390

*EQ15.ED2S

42

1EF] YE: 1) (B 1E] 1E7 IE1 OIEL OIE} OIED O IEYOIEDOFEI 1B EY IFl 'FEl CFR O OFl Bl Bl

1B

E#15— 4C ED FD
E#18— A9 24 C5 24 B# #C A9 8D
E#620— A6 67 26 ED FD A9

*

EXAMINING STILL MORE MEMORY

A single press of the key will cause the Monitor to respond with one line of a memory
dump; that is, a memory dump from the location following the last opened location to the next
eight-location ‘‘cut’”. Once again, the last location displayed is considered the last opened and
next changeable location.

+5
#095— 99
+[RETURN]
[T

+[RETURN]

gd08— 00 69 99 09 69 09 09 ¢
*32

#932— FF
+[RETURN]
AA #8 C2 #5 C2
+[RETURN]

#638— 1B FD D§ #3 3C 64 3F 64

*

CHANGING THE CONTENTS OF A LOCATION

You’ve heard all about the ‘‘next changeable location”; now you’re going to use it. Type a
colon followed by a value.

0

goge— 0@
«:S5F

Presto! The contents of the next changeable location have just been changed to the value you
typed. Check this by examining that location again:

0

#gp9— SF

22 EERE R EEEEE R R R R R R RN

43

.

*

You can also combine opening and changing into one operation:

*302:42
*302
#302— 42

*

When you change the contents of a location, the old value which was contained in that location
disappears, never to be seen again. The new value will stick around until it is replaced by another
hexadecimal value.

CHANGING THE CONTENTS OF
CONSECUTIVE LOCATIONS

You don't have to type an address, a colon, a value, and press for each and every loca-
tion you wish to change. The Monitor will allow you to change the values of up to eighty-five
locations at a time by typing only the initial address and colon, and then all the values separated
by spaces. The Monitor will duly file the consecutive values in consecutive locations, starting at
the next changeable location. After it has processed the string of values, it will assume that the
location following the last changed location is the next changeable location. Thus, you can con-
tinue changing consecutive locations without breaking stride on the next input line by typing
another colon and more values.

+300:69 01 20 ED FD 4C 0 3
+300

#309— 69

*[RETURN]

#1 26 ED FD 4C 44 63
*10:0 1 2 3

*:4 5 6 7
*10.17

G016— 00 61 02 63 #4 65 #6 @7

*

MOVING A RANGE OF MEMORY

You can treat a range of memory (specified by two addresses separated by a period) as an entity

44

F1

3

!

El

1E]

FE O IEL. 1By IE] 1B TO1E 1ET JEYOTEY O TED TEY TEY Bl IEY OTEY OIEL OE

unto itself and move it from one place to another in memory by using the Monitor’s MOVE
command. In order to move a range of memory from one place to another, the Monitor must be
told both where the range is situated in memory and where it is to be moved. You give this
information to the Monitor in three parts: the address of the destination of the range, the
address of the first location in the range proper, and the address of the last location in the range.
You specify the starting and ending addresses of the range in the normal fashion, by separating
them with a period. You indicate that this range is to be placed somewhere else by separating the
range and the destination address with a left caret (<). Finally, you tell the Monitor that you
want to move the range to the destination by typing the letter M, for “MOVE”. The final com-
mand looks like this:

{destination} < {start} . {end} M

When you type this line to the Monitor, of course, the words in curly brackets should be replaced
by hexadecimal addresses and the spaces should be omitted. Here are some real examples of
memory moves:

0. F

#d9d— SF 49 65 47 69 90 69 69
$ae8— 00 09 09 G40 69 69 99 99
*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03

*300.30C

#396— A9 8D 24 ED FD A9 45 24
#398— DA FD 4C 44 43
*P<300.30CM

*0.C

#dpd— A9 8D 24 ED FD A9 45 24
#898— DA FD 4C ¢4 43
*310<8.AM

*310.312

#316— DA FD 4C
+2<7.9M

«0.C

§ad9— A9 8D 26 DA FD A9 45 24
#@98— DA FD 4C 44 43

*

The Monitor simply makes a copy of the indicated range and moves it to the specified destina-
tion. The original range is left undisturbed. The Monitor remembers the last location in the ori-
ginal range as the last opened location, and the first location in the original range as the next
changeable location. If the second address in the range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

If the destination address of the MOVE command is inside the original range, then strange and
(sometimes) wonderful things happen: the locations between the beginning of the range and the

| .

VO VOt L L

destination are treated as a sub-range and the values in this sub-range are replicated throughout
the original range. See ‘‘Special Tricks™", page 55, for an interesting application of this feature.

COMPARING TWO RANGES OF MEMORY

You can use the Monitor to compare two ranges of memory using much the same format as you
use to move a range of memory from one place to another. In fact, the VERIFY command can
be used immediately after a MOVE to make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a destination. In short-
hand:

(destination} < {start} . {end} V

The Monitor compares the range specified with the range beginning at the destination address. If
there is any discrepancy, the Monitor displays the address at which the difference was found and
the two offending values.

«0:D7 F2 E9 F4 F4 ES EE A0 E2 F9 A@ C3 C4 C5

*300<0.DM

*300<0.DV

+6:E4

*300<0.DV

##96—E4 (EE)

*

Notice that the VERIFY command, if it finds a discrepancy, displays the address of the location
in the original range whose value differs from its counterpart in the destination range. If there is
no discrepancy, VERIFY displays nothing. It leaves both ranges unchanged. The last opened and
next changeable locations are set just as in the MOVE command. As before, if the ending
address of the range is less than the starting address, the values of only the first locations in the
ranges will be compared. VERIFY also does unusual things if the destination is within the origi-
nal range; see ‘‘Special Tricks”, page 55.

SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you to save a range of memory onto cassette
tape and recall it again for later use. The first of these two commands, WRITE, lets you save the
contents of one to 65,536 memory locations on standard cassette tape.

To save a range of memory to tape, give the Monitor the starting and ending addresses of the
range, followed by the letter W (for WRITE):

46

El TEl

=1 ey el 1ED TETIEL TED OJED 'El E1 0 TE]

1=\

{start} . {end] W

_ B]
R

To get an accurate recording, you should put the tape recorder in record mode before you press

- RETURN] on the input line. Let the tape run a few seconds, then press RETURN|. The Monitor

will write a ten-second ‘‘leader’’ tone onto the tape, followed by the data. When the Monitor is
finished, it will sound a >’beep!’ and give you another prompt. You should then rewind the tape,

N

el and label the tape with something intelligible about the memory range that’s on the tape and what
it’s supposed to be.
-
- +0 . FF FF AD 30 C0 88 DO 04 C6 01 FO 08 C
) A D@ F6 A6 00 4C 02 00 60
=
«0 .14
————
- #odd— FF FF AD 34 C# 88 D# 64
. #ed8— C6 #1 FH #8 CA DB F6 A6
... G16— 48 4C B2 66 66
+0 . 14W
I
— *
] It takes about 35 seconds total to save the values of 4,096 memory locations preceded by the

ten-second leader onto tape. This works out to a speed of about 1,350 bits per second, average.
The WRITE command writes one extra value on the tape after it has written the values in the
memory range. This extra value is the checksum. It is the partial sum of all values in the range.
The READ subroutine uses this value to determine if a READ has been successful (see below).

I

r
E

|

READING A RANGE FROM TAPE

N

Once you’ve saved a memory range onto tape with the Monitor’s WRITE command, you can
read that memory range back into the Apple by using the Monitor’s READ command. The data
values which you’ve stored on the tape need not be read back into the same memory range from
whence they came; you can tell the Monitor to put those values into any similarly sized memory
range in the Apple’s memory.

P

The format of the READ command is the same as that of the WRITE command, except that the
command letter is R, not W:

!
&

{start} . {end} R

e
|

Once again, after typing the command, don’t press [RETURN]. Instead, start the tape recorder in
PLAY mode and wait for the tape’s nonmagnetic leader to pass by. Although the WRITE com-
mand puts a ten-second leader tone on the beginning of the tape, the READ command needs
only three seconds of this leader in order to lock on to the frequency. So you should let a few
seconds of tape go by before you press [RETURN], to allow the tape recorder’s output to settle
down to a steady tone.

Wl

)

*0:0@@@0@@@0@00@0@@@0@‘
/']

'

*0. 14

.

A

go00— 00 09 09 69 069 00 99 949
$o98— 09 60 09 60 09 00 09 040
go16— 06 00 09 09 09

*0 . 14R

*0.14

#gd9— FF FF AD 34 C¢ 88 DY 64
#908— C6 81 F9 48 CA DB F6 A6
$g10— 09 4C 92 09 69

*

After the Monitor has read in and stored all the values on the tape, it reads in the extra check-
sum value. It compares the checksum on the tape to its own checksum, and if the two differ, the
Monitor beeps the speaker and displays ‘““ERR”’. This warns you that there was a problem during
the READ and that the values stored in memory aren’t the values which were recorded on the
tape. If, however, the two checksums match, the Monitor will give you another prompt.

CREATING AND RUNNING MACHINE
LANGUAGE PROGRAMS

Machine language is certainly the most efficient language on the Apple, albeit the least pleasant in
which to code. The Monitor has special facilities for those of you who are determined to use
machine language to simplify creating, writing, and debugging machine language programs.

You can write a machine language program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered above. You can get a hexade-
cimal dump of your program, move it around in memory, or save it to tape and recall it again
simply by using the commands you’ve already learned. The most important command, however,
when dealing with machine language programs is the GO command. When you open a location
from the Monitor and type the letter G, the Monitor will cause the 6502 microprocessor to start
executing the machine language program which begins at the last opened location. The Monitor
treats this program as a subroutine: when it’s finished, all it need do is execute an RTS (return
from subroutine) instruction and control will be transferred back to the Monitor.

Your machine language programs can call many subroutines in the Monitor to do various things.
Here is an example of loading and running a machine language program to display the letters A
through Z:

*300:A9 C1 20 ED FD 18 69 1 C9 DB D@ F6 60

+300.30C

#306— A9 C1 26 ED FD 18 69 41

#368— C9 DB D# F6 64

*300G

ABCDEFGHI JKLMNOPQRSTUVWXYZ

*

(The instruction set of the Apple’s 6502 microprocessor is listed in Appendix A of this manual.)

48

[El TE1

[E1 T[E1 TE1 T'El 'El TEl

IE1 JE1 TE1 TE1 [E) TE}

|E)

1
1

IE] 1 |IE

1E

Now, straight hexadecimal code isn’t the easiest thing in the world to read or debug. With this in
y—1 mind, the creators of the Apple’s Monitor neatly included a command to list machine language
programs in assembly language form. This means that instead of having one, two, or three bytes
of unformatted hexadecimal gibberish per instruction you now have a three-letter mnemonic and
some formatted hexadecimal gibberish to comprehend for each instruction. The LIST command
to the Monitor will start at the specified location and display a screenfull (20 lines) of instruc-
- tions:

*300L

= =
L) 4366— A9 C1 LDA #S$C1
- #362— 24 ED FD JSR SFDED
L #365— 18 CLC
. #366— 69 @1 ADC #8641
——— §368— C9 DB (MP #SDB
l__ §36A— D# F6 BNE $4342
- #30C— 64 RTS
§36D— @4 BRK
. $36E— 44 BRK
= §30F— 64 BRK
L 4316— 49 BRK
- §311— 44 BRK
§312— 49 BRK
#313— 44 BRK
| #314— 49 BRK
L §315— 44 BRK
S #316— 'Y BRK
I - #317— 64 BRK
#318— 44 BRK
| #319— 44 BRK

B

*

Recognize those first few lines? They’re the assembly language form of the program you typed
in a page or so ago. The rest of the lines (the BRK instructions) are just there to fill up the
screen. The address that you specify is remembered by the Monitor, but not in one of the ways
explained before. It’s put in the Program Counter, which is used solely to point to locations
within programs. After a LIST command, the Program Counter is set to point to the location
immediately following the last location displayed on the screen, so that if you do another LIST
command it will continue with another screenfull of instructions, starting where the first screen
left off.

g

i
\

THE MINI-ASSEMBLER

I\

There is another program within the Monitor* which allows you to type programs into the Apple
in the same assembly format which the LIST command displays. This program is called the
Apple Mini-Assembler. It is a ‘‘mini’’-assembler because it cannot understand symbolic labels,
something that a full-blown assembler must do. To run the Mini-Assembler, type:

|

¥
A\

\

i
\ |

* The Mini-Assembler does not actually reside in the Monitor ROM, but is part of the Integer BASIC ROM
set. Thus, it is not available on Apple II Plus systems or while Firmware Applesoft II is in use.

| .

2y

*F666G

You are now in the Mini-Assembler. The exclamation point (!) is the prompt character. During
your stay in the Mini-Assembler, you can execute any Monitor command by preceding it with a
dollar sign ($). Aside from that, the Mini-Assembler has an instruction set and syntax all its
own.

The Mini-Assembler remembers one address, that of the Program Counter. Before you start to
enter a program, you must set the Program Counter to point to the location where you want your
program to go. Do this by typing the address followed by a colon. Follow this with the
mnemonic for the first instruction in your program, followed by a space. Now type the operand
of the instruction (Formats for operands are listed on page 66). Now press [RETURN]. The
Mini-Assembler converts the line you typed into hexadecimal, stores it in memory beginning at
the location of the Program Counter, and then disassembles it again and displays the disassem-
bled line on top of your input line. It then poses another prompt on the next line. Now it’s
ready to accept the second instruction in your program. To tell it that you want the next instruc-
tion to follow the first, don’t type an address or a colon, but only a space, followed by the next
instruction’s mnemonic and operand. Press [RETURN]. It assembles that line and waits for
another.

If the line you type has an error in it, the Mini-Assembler will beep loudly and display a
circumflex () under or near the offending character in the input line. Most common errors are
the result of typographical mistakes: misspelled mnemonics, missing parentheses, etc. The
Mini-Assembler also will reject the input line if you forget the space before or after a mnemonic
or include an extraneous character in a hexadecimal value or address. If the destination address
of a branch instruction is out of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-Assembler will also flag this as an error.

1300 :LDX #02

$306— A2 #2 LDX #$42
! LDA $0,X

4362— B5 #4 LDA $40,X
! STA $10.X

#364— 95 14 STA $16,X
! DEX

#366— CA DEX

! STA $C030

#3697 8D 34 C4 STA $CH34¢
! BPL $302

#30A— 16 F6 BPL $6392
! BRK

#36C— .1 BRK
!

To exit the Mini-Assembler and re-enter the Monitor, either press [RESET] or type the Monitor

50

El TE]

El

"El

1O IET O TED O TEDT O TEY O TEY O OJEL Bl OTE]

1E1

T 1F TE 1 [y 4 1]

1E1

11

command (preceded by a dollar sign) FF69G:

IFIF

00

(1}

1$FF69G

w

*

- Your assembly language program is stored in memory. You can look at it again with the LIST
command:

- =
L"' +300L
.. #366— A2 42 LDX #$62
L §382— B5 #4 LDA $##,X
- #364— 95 14 STA $14.,X
L #306— CA DEX

- w397— 8D 34 C4 STA $C#34
— B30A— 14 F6 BPL $4362
L §39C— 09 BRK
= #36D— (1] BRK

- #39E— LX) BRK
L . #30F— (X} BRK
s | #310— (1) BRK

#311— 6o BRK
- #312— e BRK
#313— e BRK

L N #314— (LX) BRK
g #315— e BRK
I #316— LX) BRK
| #317— (1] BRK

#318— #e BRK
#319—

*

D
=
=
=
=
&=

DEBUGGING PROGRAMS

As put so concisely by Lubarsky*, ‘‘There’s always one more bug.”” Don’t worry, the Monitor
provides facilities for stepping through ornery programs to find that one last bug. The Monitor’s
STEP** command decodes, displays, and executes one instruction at a time, and the TRACE**
command steps quickly through a program, stopping when a BRK instruction is executed.

VA

!
|

Each STEP command causes the Monitor to execute the instruction in memory pointed to by the
Program Counter. The instruction is displayed in its disassembled form, then executed. The
contents of the 6502’s internal registers are displayed after the instruction is executed. After exe-
cution, the Program Counter is bumped up to point to the next instruction in the program.

I\

5
A\

Here’s what happens when you STEP through the program you entered using the Mini-
Assembler, above:

*In Murphy’s Law, and Other Reasons why Things Go Wrong, edited by Arthur Bloch. Price/Stern/Sloane 1977.
** The STEP and TRACE commands are not available on Apples with the Autostart ROM.

| .

u
A\ |

b

*300S
#300— A2
A=A X=§2
*S

#342— B5
A=4C X=¢2
*S

#304— 95
A=§C X=62
*12

#912— #C
*S

#366— CA
A=0C X=#1
*S

#3497 8D
A=0C X=§1
*S

#30A— 14
A=#C X=#1
=S

#392— BS
A=¢§B X=#1
*S

#364— 95
A=§B X=#1

*

92 LDX
Y=D8 P=34 S=F8

(X'} LDA
Y=D8 P=3§ S=F8§

14 STA
Y=D8 P=3§ S=F8

DEX
Y=D8 P=3# S=F8

34 Co STA
Y=D8 P=34 S=F8

Fé BPL
Y=D8 P=34 S=F8

L1 LDA
Y=D8 P=34 S=F8

14 STA
Y=D8 P=34 S=F8

#$42

$690,X

$14.,X

$Cd349

$4362

$44.X

$14,X

Notice that after the third instruction was executed, we examined the contents of location 12.
They were as we expected, and so we continued stepping. The Monitor keeps the Program
Counter and the last opened address separate from one another, so that you can examine or
change the contents of memory while you are stepping through your program.

The TRACE command is just an infinite STEPper. It will stop TRACEing the execution of a pro-
gram only when you push or it encounters a BRK instruction in the program. If the
TRACE encounters the end of a program which returns to the Monitor via an RTS instruction,
the TRACEing will run off into never-never land and must be stopped with the button.

«T

#346— CA
A=#B X=6440
#367— 8D
A=@B X=04¢
#30A— 16

DEX
Y=D8 P=32 S=F8
39 C4 STA
Y=D8 P=32 S=F8
Fé6 BPL

$Cd39

$4302

52

1B (B IE) O IEl O IED O E1 OTE] OIE] OIEY O[EY [El OTEY IEl TEY 'EY OTEY OTEl TR}

1
i

Bl 1B IE) 1 JE

FE.

A=¢B X=#4# Y=D8 P=32 S=F8

#392— BS 44 LDA $44.,X
A=@A X=¢#9 Y=D8 P=34 S=F8

§394— 95 14 STA $14,X
A=A X=¢#¢ Y=D8 P=34 S=F8

#346— CA DEX

A=#A X=FF Y=D8 P=B# S=F8

#3497 8D 34 C¢ STA $CH34
A=#A X=FF Y=D8 P=B# S=F8

#30A— 14 Fo BPL $4362
A=#A X=FF Y=D8 P=B# S=F8

#34C— (X'} BRK

#30C— A=#A X=FF Y=D8 P=B# S=F8

EXAMINING AND CHANGING REGISTERS

As you saw above, the STEP and TRACE commands displayed the contents of the 6502’s inter-
nal registers after each instruction. You can examine these registers at will or pre-set them when
you TRACE, STEP, or GO a machine language program.

The Monitor reserves five locations in memory for the five 6502 registers: A, X, Y, P (processor
status register), and S (stack pointer). The Monitor’'s EXAMINE command, invoked by a
[CTRL E], tells the Monitor to display the contents of these locations on the screen, and lets the
location which holds the 6502°s A-register be the next changeable location. If you want to
change the values in these locations, just type a colon and the values separated by spaces. Next
time you give the Monitor a GO, STEP, or TRACE command, the Monitor will load these five
locations into their proper registers inside the 6502 before it executes the first instruction in your
program.

*|CTRL E

A=#§A X=FF Y=D8 P=B¢§ S=F8
+: B0 02

+[CTRL E]

A=B# X=¢#2 Y=D8 P=B# S=F8
*306S

W366— CA DEX
A=B# X=#1 Y=D8 P=34 S=F8
*S

#3607 8D 34 C¢ STA $CH34
A=B# X=#1 Y=D8 P=34 S=F8
*S

#39A— 14 F6 BPL $9342
A=B# X=#1 Y=D8 P=34 S=F8

CUTTN N WOy ddddyyyyyyy

53

.

MISCELLANEOUS MONITOR COMMANDS

You can control the setting of the Inverse/Normal location used by the COUT subroutine (see
page 32) from the Monitor so that all of the Monitor’s output will be in Inverse video. The
INVERSE command does this nicely. Input lines are still displayed in Normal mode, however.
To return the Monitor’s output to Normal mode, use the NORMAL command.

*0 . F

gdge— A 6B 0C 6D UE #F DY 64
#g98— C6 #1 F94 #8 CA DF F6 A6
* |

*0.F

#g9d— #A éB #C 6D OE @6F D4 64
#d08— C6 61 F9 68 CA D# F6 A6
*N

*0.F

$909— #A 6B #C 4D #E #F D# 44
#9@8— C6 41 F9 #8 CA DP F6 A6

*

The BASIC command, invoked by a [CTRL B, lets you leave the Monitor and enter the language
installed in ROM on your Apple, usually either Apple Integer or Applesoft II BASIC. Any pro-
gram or variables that you had previously in BASIC will be lost. If you’ve left BASIC for the
Monitor and you want to re-enter BASIC with your program and variables intact, use the
(CONTINUE BASIC) command. If you have the Apple Disk Operating System (DOS)
active, the ‘3D@G’ command will return you to the language you were using, with your program
and variables intact.

The PRINTER command, activated by a [CTRL P], diverts all output normally destined for the
screen to an Apple Intelligent Interface® in a given slot in the Apple’s backplane. The slot
number should be from 1 to 7, and there should be an interface card in the given slot, or you will
lose control of your Apple and your program and variables may be lost. The format for the com-
mand is:

{slot number}

A PRINTER command to slot number @ will reset the flow of printed output back to the Apple’s
video screen.

The KEYBOARD command similarly substitutes the device in a given backpia\ne slot for the
Apple’s keyboard. For details on how these commands and their BASIC counterparts PR# and

IN# work, please refer to ““CSW and KSW Switches’’, page 83. The format for the KEYBOARD
command is:

{slot number} [CTRL K

54

EY IE) IE) 1B 1B 1B (P11 El OIED O OIE1 OTE]OME1 OMEY O OMEYOIE) OTEYT OBl O'E1O'EYlORDOEl TR

'

IFIIIFIII

w o

IFI
w ou

rE==
1)
W

"

¥
B

W i

F
i

LW

|
i

iy

'y

-
VLI

!
\

'y

A slot number of @ for the KEYBOARD command will force the Monitor to listen for input from
the Apple’s built-in keyboard.

The Monitor will also perform simple hexadecimal addition and subtraction. Just type a line in
the format:

{value} + {value}
{value} — {value}

The Apple will perform the arithmetic and display the result:

*20+13
=33
*4A—C
=3E
+FF+4
=#3
*3—4
=FF

*

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monitor commands on a single line as you like, as long as you separate
them with spaces and the total number of characters in the line is less than 254. You can inter-
mix any and all commands freely, except the STORE (:) command. Since the Monitor takes all
values following a colon and places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another address is encountered. The
NORMAL command makes a good separator; it usually has no effect and can be used anywhere.

«300.307 300:18 69 1 N 300.302 306S S

9399— 00 09 09 09 60 99 99 99
#396— 18 69 61

#300— 18 CLC
A=#4 X=01 Y=D8 P=3§ S=F8
93601— 69 01 ADC #3461

A=#5 X=01 Y=D8 P=3§ S=F8

*
Single-letter commands such as L, S, I, and N need not be separated by spaces.
If the Monitor encounters a character in the input line which it does not recognize as either a
hexadecimal digit or a valid command character, it will execute all commands on the input line up
to that character, and then grind to a halt with a noisy beep, ignoring the remainder of the input

line.

The MOVE command can be used to replicate a pattern of values throughout a range in memory.

55

To do this, first store the pattern in its first position in the range:

El

——
| —
*300:11 22 33
-
* o
Remember the number of values in the pattern: in this case, 3. Then use this special arrange- E
ment of the MOVE command:
i
{start+number} < {start} . {end—number} M L
This MOVE command will first replicate the pattern at the locations immediately following the E
original pattern, then re-replicate that pattern following itself, and so on until it fills the entire
range. —
| —
+303<300.32DM .
|
+300.32F
#346— 11 22 33 11 22 33 11 22 e
#348— 33 11 22 33 11 22 33 11 .
#314— 22 33 11 22 33 11 22 33 [
#318— 11 22 33 11 22 33 11 22
#326— 33 11 22 33 11 22 33 11 —
#328— 22 33 11 22 33 11 22 33 B
*
=
A similar trick can be done with the VERIFY command to check whether a pattern repeats itself
through memory. This is especially useful to verify that a given range of memory locations all -
contain the same value: —
+300:0 ™
*301<300.31FM —
B
*301<300.31FV .
B
*304:02
+301<300.31FV e
#363—946 (42) -
#364—92 (69) -
) b
You can create a command line which will repeat all or part of itself indefinitely by beginning the
part of the command line which is to be repeated with a letter command, such as N, and ending it [
with the sequence 34:n, where » is a hexadecimal number specifying the character position of the =
command which begins the loop; for the first character in the line, »=@. The value for n must —
be followed with a space in order for the loop to work properly. een

*N 300 302 34:0

#366— 11

El |E)

-
l —
§362— 33
—— §306— 11
l §362— 33
—— #360— 11
L - 4382— 33
- #360— 11
| §342— 33
l{ #360— 11
—— #3g2— 33
L- #366— 11
4362— 33
e 439

*

X

The only way to stop a loop like this is to press [RESET|.

W

CREATING YOUR OWN COMMANDS

l;

The USER ([CTRL Y|) command, when encountered in the input line, forces the Monitor to
jump to location number $3F8 in memory. You can put your own JMP instruction in this loca-
tion which will jump to your own program. Your program can then either examine the Monitor’s

J

-
- registers and pointers or the input line itself. For example, here is a program which will make
— the [CTRL Y] command act as a ‘‘comment’ indicator: everything on the input line following

the will be displayed and ignored.
*F666G

1300:LDY $34

W

§300— A4 34 LDY $34
] ! LDA 200.Y
I__ #362— B9 44 #2 LDA $#286,Y
- ! JSR FDED
_L — §365— 24 ED FD JSR $FDED
I = I INY
—p—— §368— C8 INY
I CMP #$8D
— §369— C9 8D QP #$8D
! BNE 302
—
§34B— D# F5 BNE $#342
I JMP $FF69
-
§3D— 4C 69 FF JMP SFF69
e 13F8: JMP $300
§3F8— 4C 09 63 JIMP $#344
—

'y

-

1$SFF69G

«[CTRL Y] THIS IS A TEST.

THIS

IS A

TEST.

58

Tl Tl

El

E]

El 'El

IEL TEl TEL (F1 TEl TEl TEl (El TEl [El

Fl

I

TE} IEl IE1 'E IE

FE.

SUMMARY OF MONITOR COMMANDS

Summary of Monitor Commands.

Examining Memory.
{adrs} Examines the value contained in one location.

{adrs1].{adrs2} Displays the values contained in all locations
between {adrsl} and {adrs2}.

RETURN Displays the values in up to eight locations fol-
lowing the last opened location.

Changing the Contents of Memory.

{adrs}:{val} {val} ... Stores the values in consecutive memory loca-
tions starting at {adrs}.

{val} {val} ... Stores values in memory starting at the next
changeable location.

Moving and Comparing.

{dest} < {start}.{end]M Copies the values in the range {start}.{end} into
the range beginning at {dest}.

{dest} < {start}.{end}V Compares the values in the range {start}.{end}
to those in the range beginning at {dest}.

Saving and Loading via Tape.

{start}.{end}W Writes the values in the memory range
{start}.{end} onto tape, preceded by a ten-
second leader.

{start}.{end}R Reads values from tape, storing them in
memory beginning at {start} and stopping at
{end}. Prints ““ERR” if an error occurs.

Running and Listing Programs.

{adrs})G Transfers control to the machine language pro-
gram beginning at {adrs}.

{adrs}L Disassembles and displays 20 instructions, start-
ing at {adrs}. Subsequent L’s will display 20
more instructions each.

~

TR R R

-

Summary of Monitor Commands.

The Mini-Assembler

F666G

${command}

$FF69G

{adrs} S

{adrs} T

[CTRL E|

Miscellaneous.

I

N

CTRL B

CTRL C

{val}+ {val}

{val} — {val}

{slot} [CTRL P

(slot} [CTRL K]

[CTRL Y]

Invoke the Mini-Assembler.*

Execute a Monitor command from the Mini-
Assembler.

Leave the Mini-Assembler.

Disassemble, display, and execute the instruc-
tion at {adrs}, and display the contents of the
6502’s internal registers. Subsequent S’s will

display and execute successive instructions.**

Step infinitely. The TRACE command stops
only when it executes a BRK instruction or

when you press [RESET|.**

Display the contents of the 6502’s registers.

Set Inverse display mode.
Set Normal display mode.

Enter the language currently installed in the
Apple’s ROM.

Reenter the language currently installed in the
Apple’s ROM.

Add the two values and print the result.

Subtract the second value from the first and
print the result.

Divert output to the device whose interface
card is in slot number {slot}. If {slot}=0, then
route output to the Apple’s screen.

Accept input from the device whose interface
card is in slot number {slot}. If {slot}=0, then
accept input from the Apple’s keyboard.

Jump to the machine language subroutine at
location $3F8.

* Not available in the Apple II Plus.
** Not available in the Autostart ROM.

60

M1 ML TED MEY ™Y TEL BT OEL TR OTREL MR

IEl EY [El TEl TEl

1E|

1El IEE TEE 1B

1§

T Tk

RN W W W

SOME USEFUL MONITOR SUBROUTINES

Here is a list of some useful subroutines in the Apple’s Monitor and Autostart ROMs. To use
these subroutines from machine language programs, load the proper memory locations or 6502
registers as required by the subroutine and execute a JSR to the subroutine’s starting address. It
will perform the function and return with the 6502’s registers set as described.

SFDED CcouT Output a character

COUT is the standard character output subroutine. The character to be output should be in the
accumulator. COUT calls the current character output subroutine whose address is stored in
CSW (locations $36 and $37), usually COUT1 (see below).

SFDF¢ COUT1 Output to screen

COUT1 displays the character in the accumulator on the Apple’s screen at the current output cur-
sor position and advances the output cursor. It places the character using the setting of the
Normal/Inverse location. It handles the control characters RETURN, linefeed, and bell. It
returns with all registers intact.

SFE8Y SETINV Set Inverse mode

Sets Inverse video mode for COUTI1. All output characters will be displayed as black dots on a
white background. The Y register is set to $3F, all others are unchanged.

SFE84 SETNORM Set Normal mode

Sets Normal video mode for COUTI1. All output characters wwill be displayed as white dots on a
black background. The Y register is set to $FF, all others are unchanged.

SFDSE CROUT Generate a RETURN
CROUT sends a RETURN character to the current output device.
$SFDSB CROUT1 RETURN with clear

CROUT]1 clears the screen from the current cursor position to the edge of the text window, then
calls CROUT.

SFDDA PRBYTE Print a hexadecimal byte

This subroutine outputs the contents of the accumulator in hexadecimal on the current output
device. The contents of the accumulator are scrambled.

$FDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimal digit. The
contents of the accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value. The accu-
mulator contains the first byte output, the X register contains the second. The contents of the

| :

accumulator are usually scrambled.
$F948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the accumulator usually
contains $A@, the X register contains 0.

$F94A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device. Upon entry, the X
register should contain the number of blanks to be output. If X=3$00, then PRBL2 will output
256 blanks.

SFF3A BELL Output a *‘bell” character

This subroutine sends a bell (CTRL G) character to the current output device. It leaves the
accumulator holding $87.

$FBDD BELL1 Beep the Apple’s speaker

This subroutine beeps the Apple’s speaker for .1 second at 1KHz. It scrambles the A and X
registers.

SFDUC RDKEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor on the screen at
the position of the output cursor and jumps to the current input subroutine whose address is
stored in KSW (locations $38 and $39), usually KEYIN (see below).

$FD35 RDCHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard input, but also
interprets the eleven escape codes (see page 34).

$FD1B KEYIN Read the Apple’s keyboard

This is the keyboard input subroutine. It reads the Apple’s keyboard, waits for a keypress, and
randomizes the random number seed (see page 32). When it gets a keypress, it removes the
flashing cursor and returns with the keycode in the accumulator.

SFD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines (see page 33). Your programs can call
GETLN with the proper prompt character in location $33; GETLN will return with the input line
in the input buffer (beginning at location $20@) and the X register holding the length of the input
line.

$FD67 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard
output before falling into GETLN (see above).

62

M1 MY M OMELOMEY OTEL OB OB D OTRL TR

MEl 1B IE) IE IE IEL IED Bl 'EY [(E1 [El TRl

N

EF

O

c——

SFD6F GETLN1 Get an input line, no prompt

GETLNI1 is an alternate entry point for GETLN which does not issue a prompt before it gathers
the input line. If, however, the user cancels the input line, either with too many backspaces or
with a [CTRL X], then GETLNI will issue the contents of location $33 as a prompt when it gets
another line.

SFCAS8 WAIT Delay
This subroutine delays for a specific amount of time, then returns to the program which called it.
The amount of delay is specified by the contents of the accumulator. With A the contents of the

accumulator, the delay is 2(26+27A +5A2) useconds. WAIT returns with the A register zeroed
and the X and Y registers undisturbed.

$F864 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen to the color passed in the
accumulator. See page 17 for a table of Low-Res colors.

$F85F NEXTCOL Increment color by 3

This adds 3 to the current color used for Low-Res Graphics.

$F8eg PLOT Plot a block on the Low-Res screen

This subroutine plots a single block on the Low-Res screen of the prespecified color. The block’s

vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y unmolested.

$F819 HLINE Draw a horizontal line of blocks

This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res
screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the
leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in loca-
tion $2C. HLINE returns with A and Y scrambled, X intact.

$F828 VLINE Draw a vertical line of blocks
This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the top verti-

cal coordinate in the accumulator, and the bottom vertical coordinate in location $2D. VLINE
will return with the accumulator scrambled.

$F832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the video
display is in Text mode, it will fill the screen with inverse-mode ““@”’ characters. CLRSCR des-
troys the contents of A and Y.

$F836 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the
screen.

63

$F871 SCRN Read the Low-Res screen
This subroutine returns the color of a single block on the Low-Res screen. Call it as you would

call PLOT (above). The color of the block will be returned in the accumulator. No other regis-
ters are changed.

$FB1E PREAD Read a Game Controller

PREAD will return a number which represents the position of a game controller. You should
pass the number of the game controller (@ to 3) in the X register. If this number is not valid,
strange things may happen. PREAD returns with a number from $0@ to $FF in the Y register.
The accumulator is scrambled.

$FF2D PRERR Print “ERR™’

Sends the word ““ERR”, followed by a bell character, to the standard output device. The accu-
mulator is scrambled.

SFF4A 10SAVE Save all registers

The contents of the 6502’s internal registers are saved in locations $45 through $49 in the order
A-X-Y-P-S. The contents of A and X are changed; the decimal mode is cleared.

SFF3F IOREST Restore all registers

The contents of the 6502’s internal registers are loaded from locations $45 through $49.

64

El |1

1 EY MY OMmElY MY Il MY TR /Y RY TR

TEl IE1 IEL IE1 'Y Bl IE

IE]

(148 {) i

MONITOR SPECIAL LOCATIONS

Table 14: Page Three Monitor Locations
Address: Use:
Decimal Hex Monitor ROM Autostart ROM
1008 $3F0 Holds the address
1009 $3F1 of the subroutine
which handles
None. .
machine language
“BRK™ requests
(normally SFAS59).
:g}? ggg None. Soft Entry Vector.
1012 $3F4 None. Power-up Byte.
1013 $3F5 | Holds a ““JuMP™ instruction to the
1014 $3F6 | subroutine which handles Applesoft 11
1015 $3F7 | “&” commands.* Normally $4C $58
$FF.
1016 $3F8 | Holds a “‘JuMP” instruction to the
1017 $3F9 | subroutine which handles ““USER”
1018 $3FA | ([CTRLY]) commands.
1019 $3FB | Holds a “‘JuMP” instruction to the
1020 $3FC | subroutine which handles Non-
1021 $3FD | Maskable Interrupts.
1022 $3FE | Holds the address of the subroutine
1923 $3FF | which handles Interrupt ReQuests.

TR

* See page 123 in the Applesoft I1 BASIC Reference Manual.

| .

MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing formats used in 6562
Assembly language programming. The mnemonics are standard, as used in the MOS
Technology/Synertek 6500 Programming Manual (Apple part number A2L0003), but the
addressing formats are different. Here are the Apple standard address mode formats for 6502
Assembly Language:

Table 15: Mini-Assembler Address Formats
Mode: Format:
Accumulator None.
Immediate #${value}
Absolute ${address}
Zero Page ${address}
Indexed Zero Page ${address},X
${address},Y
Indexed Absolute ${address},X
${address},Y
Implied None.
Relative ${address}
Indexed Indirect (${address},X)
Indirect Indexed (${address}),Y
Absolute Indirect (${address})

An f{address} consists of one or more hexadecimal digits. The Mini-Assembler interprets
addresses in the same manner that the Monitor does: if an address has fewer than four digits, it
adds leading zeroes; if it has more than four digits, then it uses only the last four.

All dollar signs ($), signifying that the addresses are in hexadecimal notation, are ignored by the
Mini-Assembler and may be omitted.

There is no syntactical distinction between the Absolute and Zero Page addressing modes. If you
give an instruction to the Mini-Assembler which can be used in both Absolute and Zero-Page
mode, then the Mini-Assembler will assemble that instruction in Absolute mode if the operand
for that instruction is greater than S$FF, and it will assemble that instruction in Zero Page mode if
the operand for that instruction is less than $0100.

Instructions with the Accumulator and Implied addressing modes need no operand.

Branch instructions, which use the Relative addressing mode, require the target address of the
branch. The Mini-Assembler will automatically figure out the relative distance to use in the
instruction. If the target address is more than 127 locations distant from the instruction, then the
Mini-Assembler wil sound a “‘beep”’, place a circumfex (*) under the target address, and ignore
the line.

If you give the Mini-Assembler the mnemonic for an instruction and an operand, and the

addressing mode of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the line.

66

ME1 I'EY IED OBl OTED OTEL OTEY O'BER OTEYDOTRY TR MR

11 IFl IE

|

|E

1E]

L TEl] 1Bl IEl IE

m._5® 68 RAM STORAGE
L 70 RAM CONFIGURATION BLOCKS
m—na 72 ROM STORAGE
L—- 73 1/O LOCATIONS
74 ZERO PAGE MEMORY MAPS

i 505

67

The Apple’s 6502 microprocessor can directly reference a total of 65,536 distinct memory loca-
tions. You can think of the Apple’s memory as a book with 256 ‘‘pages’’, with 256 memory loca-
tions on each page. For example, ‘‘page $30°" is the 256 memory locations beginning at location
$3000 and ending at location $30FF. Since the 6502 uses two eight-bit bytes to form the address
of any memory location, you can think of one of the bytes as the page number and the other as

the location within the page.

1 Bl TRl

-
The Apple’s 256 pages of memory fall into three categories: Random Access Memory (RAM),
Read-Only Memory (ROM), and Input/Output locations (I/0). Different areas of memory are E:
dedicated to different functions. The Apple’s basic memory map looks like this:
System Memory Map E
Page Number:
Decimal Hex [
0 $00 =
1 $01 —
2 $02 o
’ RAM (48K) e
_ . _
190 $BE .
191 $BF Bt
192 $Co
193 $C1 ™
1/0 (2K) —
- - =
198 $C6
199 $C7
200 $C8
201 $C9 -
I/0 ROM (2K)
. . i
206 $CE -
207 $CF =
208 $D0 e
209 $D1 .
-
o ROM (12K)
254 SFE =
255 SFF -
—
Figure 5. System Memory Map =
e

RAM STORAGE

The area in the Apple’s memory map which is allocated for RAM memory begins at the bottom

T (B

68

of Page Zero and extends up to the end of Page 191. The Apple has the capacity to house from
4K (4,096 bytes) to 48K (49,152 bytes) of RAM on its main circuit board. In addition, you can
expand the RAM memory of your Apple all the way up to 64K (65,536 bytes) by installing an
Apple Language Card (part number A2B0006). This extra 16K of RAM takes the place of the
Apple’s ROM memory, with two 4K segments of RAM sharing the 4K range from $D@#9 to
$DFFF.

ol

Most of your Apple’s RAM memory is available to you for the storage of programs and data.
The Apple, however, does reserve some locations in RAM for use of the System Monitor, vari-
ous languages, and other system functions. Here is a map of the available areas in RAM

memory:
Table 16: RAM Organization and Usage
Page Number: .
Decimal Hex Used For:
0 $00 | System Programs
1 $01 | System Stack
2 $02 | GETLN Input Buffer
3 303 Monitor Vector Locations
4 $04
S $05 | Text and Lo-Res Graphics
6 $06 | Primary Page Storage
7 $07
8 $08
9 $09 | Text and Lo-Res Graphics
10 $OA | Secondary Page Storage
11 $0B
FREE
12 $0C
through
31 $1F
RAM
32 $20 | Hi-Res Graphics
through Primary Page
63 $3F | Storage
64 $40 | Hi-Res Graphics
through Secondary Page
95 $5F | Storage
96 $60
through
191 $BF

Following is a breakdown of which ranges are assigned to which functions:

Zero Page. Due to the construction of the Apple’s 6502 microprocessor, the lowermost page in
the Apple’s memory is prime real estate for machine language programs. The System Monitor
uses about 20 locations on Page Zero; Apple Integer BASIC uses a few more; and Applesoft II
BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the
locations on zero page which are used by these system functions.

Page One. The Apple’s 6502 microprocessor reserves all 256 bytes of Page 1 for use as a
“‘stack”’. Even though the Apple usually uses less than half of this page at any one time, it is not
easy to determine just what is being used and what is lying fallow, so you shouldn’t try to use

T RERY

69

.

Page 1 to store any data.

Page Two. The GETLN subroutine, which is used to get input lines by most programs and
languages, uses Page 2 as its input buffer. If you’re sure that you won’t be typing any long input
lines, then you can (somewhat) safely store temporary data in the upper regions of Page 2.

Page Three. The Apple’s Monitor ROM (both the Autostart and the original) use the upper six-
teen locations in Page Three, from location $3F@ to $3FF (decimal 1008 to 1023). The
Monitor’s use of these locations is outlined on page 62.

Pages Four through Seven. This 1,024-byte range of memory locations is used for the Text and
Low-Resolution Graphics Primary Page display, and is therefore unusable for storage purposes.
There are 64 locations in this range which are not displayed on the screen. These 64 locations are
reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple’s RAM memory is composed of eight to 24 integrated circuits. These IC’s reside in
three rows of sockets on the Apple board. Each row can hold eight chips of either the 4,096-bit
(4K) or 16,384-bit (16K) variety. The 4K RAM chips are of the Mostek ““4096’° family, and
may be marked “MK4096> or ““MCM6604”". The 16K chips are of the <4116’ type, and may
have the denomination “MK4116” or “UPD4160’°. Each row must have eight of the same type
of chip, although different rows may hold different types.

A row of eight 16K IC’s represents 16,384 eight-bit bytes of RAM. The leftmost IC in a row
represents the lowermost (least significant) bit of every byte in that range, and the rightmost IC
in a row represents the uppermost (most significant) bit of every byte. The row of RAM IC’s
which is frontmost on the Apple board holds the RAM memory which begins at location @ in the
memory map; the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is, by plugging Memory
Configuration Blocks into three IC sockets on the left side of the Apple board. These
configuration blocks are three 14-legged critters which look like big, boxy integrated circuits. But
there are no chips inside of them; only three jumper wires in each. The jumper wires ‘strap”
each row of RAM chips into a specific place in the Apple’s memory map. All three configuration
blocks should be strapped the same way. Apple supplies several types of standard configuration
blocks for the most common system sizes. A set of these was installed in your Apple when it was
built, and you get a new set each time you purchase additional memory for your Apple. If, how-
ever, you want to expand your Apple’s memory with some RAM chips that you did not purchase
from Apple, you may have to construct your own configuration blocks (or modify the ones
already in your Apple).

There are nine different RAM memory configurations possible in your Apple. These nine

memory sizes are made up from various combinations of 4K and 16K RAM chips in the three
rows of sockets in your Apple. The nine memory configurations are:

70

1

| 4}

E}

TTOE O 1E) O TE IFE) OTED O IEL 1Bl IEY OIEDOIFD OIEYOTEDT OTEY O OIEY O O(El OIEY O OTEl O 'E1 O JER

R

RS

$Co00

$B00O
SA000 | 16K
$9000

4K

$8000

$7000
$6000

16K | 16K | 16K 4K

$5000

4K | 4K
$4000

$3000
4K

$2000 | 16K | 16K | 16K | 16K | 16K | 16K
4K | 4K

$1000
4K | 4K | 4K

$0000
System

Size 48K 36K 32K 24K 20K 16K 12K 8K 4K

Figure 6. Memory Configurations

Of the fourteen *‘legs’” on each controller block, the three in the upper-right corner (looking at it
from above) represent the three rows of RAM chips on the Apple’s main board. There should
be a wire jumper from each one of these pins to another pin in the configuration block. The
“other pin’’ corresponds to a place in the Apple’s memory map where you want the RAM chips
in each row to reside. The pins on the configuration block are represented thus:

4K range $0000-$OFFF | 1 O 14 | Frontmost row (“‘C”)
4K range $1000-S1FFF 13 | Middle row (“D”")
4K range $2000-$2FFF 12 | Backmost row (““E)
4K range $3000-$3FFF 11 | No connection.

4K range $4000-$4FFF 10 | 16K range $0000-$3FFF
4K range $5000-$SFFF 9 | 16K range $4000-$7FFF
4K range $8000-S8FFF 8 | 16K range $8000-SBFFF

NS AN Wy

Figure 7. Memory Configuration
Block Pinouts

If a row contains eight chips of the 16K variety, then you should connect a jumper wire from the
pin corresponding to that row to a pin corresponding to a 16K range of memory. Similarly, if a
row contains eight 4K chips, you should connect a jumper wire from the pin for that row to a pin
corresponding to a 4K range of memory. You should never put 4K chips in a row strapped for
16K, or vice versa. It is also not advisable to leave a row unstrapped, or to strap two rows into
the same range of memory.

You should always make sure that there is some kind of memory beginning at location @. Your

Apple’s memory should be in one contiguous block, but it does not need to be. For example, if
you have only three sets of 4K chips, but you want to use the primary page of the High-

71

Resolution Graphics mode, then you would strap one row of 4K chips to the beginning of
memory (4K range $0000 through $6FFF), and strap the other two rows to the memory range
used by the High-Resolution Graphics primary page (4K ranges $200@ through $2FFF and $3000
through $3FFF). This will give you 4K bytes of RAM memory to work with, and 8K bytes of
RAM to be used as a picture buffer.

Notice that the configuration blocks are installed into the Apple with their front edges (the edge
with the white dot, representing pin 1) towards the front of the Apple.

There is a problem in Apples with Revision @ boards and 20K or 24K of RAM. In these systems,
the 8K range of the memory map from $4000 to $5FFF is duplicated in the memory range $6000
to $7FFF, regardless of whether it contains RAM or not. So systems with only 20K or 24K of
RAM would appear to have 24K or 36K, but this extra RAM would be only imaginary. This has
been changed in the Revision 1 Apple boards.

ROM STORAGE

The Apple, in its natural state, can hold from 2K (2,048 bytes) to 12K (12,288 bytes) of Read-
Only memory on its main board. This ROM memory can include the System Monitor, a couple
of dialects of the BASIC language, various system and utility programs, or pre-packaged
subroutines such as are included in Apple’s Programmer’s Aid # 1 ROM.

The Apple’s ROM memory resides in the top 12K (48 pages) of the memory map, beginning at
location $D@@@. For proper operation of the Apple, there must be some kind of ROM in the
upppermost locations of memory. When you turn on the Apple’s power supply, the microproces-
sor must have some program to execute. It goes to the top locations in the memory map for the
address of this program. In the Apple, this address is stored in ROM, and is the address of a pro-
gram within the same ROM. This program initializes the Apple and lets you start to use it. (For
a description of the startup cycle, see ‘““The RESET Cycle”’, page 36.)

Here is a map of the Apple’s ROM memory, and of the programs and packages that Apple
currently supports in ROM:

Table 17: ROM Organization and Usage
Page Number: .
Decimal Hex Used By:
208 $D0O) e Al
212 $D4 Programmer’s Aid #1
216 $D8
220 $DC Applesoft
224 SEQ 11
228 $E4 BASIC
232 $E8 Integer BASIC
236 SEC
240 $FO
244 $F4 Utility Subroutines
248 SF8 .
252 $FC Monitor ROM Autostart ROM
72

TEl TE)

El

EY IEF) 1E}] 1E) 1E) YE! VBl /E! 'E} 1®! 1E)] 1EY [EY1 TEY TEY IE! TEY TEl 'El1 'EY} 17

FE

IR U O T

Six 24-pin IC sockets on the Apple’s board hold the ROM integrated circuits. Each socket can
hold one of a type 9316B 2,048-byte by 8-bit Read-Only Memory. The leftmost ROM in the
Apple’s board holds the upper 2K of ROM in the Apple’s memory map; the rightmost ROM IC
holds the ROM memory beginning at page $D@ in the memory map. If a ROM is not present in
a given socket, then the values contained in the memory range corresponding to that socket will
be unpredictable.

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substi-
tute its own ROMs in their place. When you have an Apple Firmware card installed in any slot in
the Apple’s board, you can disable the Apple’s on-board ROMs by flipping the card’s controller
switch to its UP position and pressing and releasing the button, or by referencing location
$CP80 (decimal 49280 or -16256). To enable the Apple’s on-board ROMs again, flip the con-
troller switch to the DOWN position and press [RESET], or reference location $C@81 (decimal
49281 or -16255). For more information, see Appendix A of the Applesoft Il BASIC Program-
ming Reference Manual.

I/0 LOCATIONS

4,096 memory locations (16 pages) of the Apple’s memory map are dedicated to input and output
functions. This 4K range begins at location $C@@@ (decimal 49152 or -16384) and extends on up
to location SCFFF (decimal 53247 or -12289). Since these functions are somewhat intricate, they
have been given a chapter all to themselves. Please see Chapter 5 for information on the alloca-
tion of Input/Output locations.

73

ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$AD
$BO
$Co
$D0
$EQ
$FO

3
$3

4
$4

5
$5

6

$6

7
$7

8
$8

11
$B

12
$C

13
$D

14
SE

15
$F

Table

: Applesoft I BASIC Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$AQ
$B0
$Co
$D0
SEQ
SFO

$1

$2

4
$4

5
$5

6
$6

7

8

9

10

11

$7 $8 8§89 SA $B-

12

13

14

$C $D SE

15
$F

74

EY O 1E (E1 O1E O1El 1EL 1E] IED IFD O IEl TED OTEYOTED] O OTEY OTEY O OIE) OrEY O O(El O OMEYl OTEY O OTEYl OTEYl MRl

IR R R T TR

Table 20: Apple DOS 3.2 Zero Page Usage

Decimal

Hex
$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B@
$Co
$D@
$SE0
SFO

[

1
$1

2 3 4 5 6 7 8 9 10

11

12

13

14

$2 $3 %4 85 $6 $7 $8 $9 SA $B SC S$SD SE

15
$F

Table 21: Integer BASIC Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$BO
$Co
$D9
SEQ
$FO

1
$1

2 3 4 5 6 7 8 9 10
$2 $3 %4 $5 $6 $7 $8 89 SA

11
$B

12

13
$D

14
SE

15
$F

75

[ETIRE |

13

13

(B

13

i

i

EL

& 1)

& 1

14l

tdl

Tdl

&l

= 1

Ll

Al

L

L

¢ 4]

LE 1]

76

- 78 BUILT-IN /O
L 79 PERIPHERAL BOARD 1/0
m_.»= g0 PERIPHERAL CARD I/0O SPACE
l 80 PERIPHERAL CARD ROM SPACE
=-w 81 1/0 PROGRAMMING SUGGESTIONS

— 82 PERIPHERAL SLOT SCRATCHPAD RAM
I_ 83 THE CSW/KSW SWITCHES
m_u= 84 EXPANSION ROM

The Apple’s Input and Output functions fall into two basic categories: those functions which are
performed on the Apple’s board itself, and those functions which are performed by peripheral
interface cards plugged into the Apple’s eight peripheral ‘‘slots’’. Both of these functions com-
municate to the microprocessor and your programs via 4,096 locations in the Apple’s memory
map. This chapter describes the memory mapping and operation of the various input and output
controls and functions; the hardware which executes these functions is described in the next
chapter.

BUILT-IN 1I/0

Most of the Apple’s inherent 1/0 facilities are described briefly in Chapter 1, ““Approaching your
Apple”. For a short description of these facilities, please see that chapter.

The Apple’s on-board 1/0 functions are controlled by 128 memory locations in the Apple’s
memory map, beginning at location $C@@@ and extending up through location $CO7F (decimal
49152 through 49279, or -16384 through -16257). Twenty-seven different functions share these
128 locations. Obviously, some functions are affected by more than one location: in some
instances, as many as sixteen different locations all can perform exactly the same function. These
128 locations fall into five types: Data Inputs, Strobes, Soft Switches, Toggle Switches, and Flag
Inputs.

Data Inputs. The only Data Input on the Apple board is a location whose value represents the
current state of the Apple’s built-in keyboard. The uppermost bit of this input is akin to the Flag
Inputs (see below); the lower seven bits are the ASCII code of the key which was most recently
pressed on the keyboard.

Flag Inputs. Most built-in input locations on the Apple are single-bit ‘flags’. These flags appear
in the highest (eighth) bit position in their respective memory locations. Flags have only two
values: ‘on’ and ‘off’. The setting of a flag can be tested easily from any language. A higher-
level language can use a ““PEEK’’ or similar command to read the value of a flag location: if the
PEEKed value is greater than or equal to 128, then the flag is on; if the value is less than 128,
the flag is off. Machine language programs can load the contents of a flag location into one of the
6502’s internal registers (or use the BIT instruction) and branch depending upon the setting of
the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction
will cause a branch if the flag is off.

The Single-Bit (Pushbutton) inputs, the Cassette input, the Keyboard Strobe, and the Game Con-
troller inputs are all of this type.

Strobe Outputs. The Utility Strobe, the Clear Keyboard Strobe, and the Game Controller Strobe
are all controlled by memory locations. If your program reads the contents of one of these loca-
tions, then the function associated with that location will be activated. In the case of the Utility
Strobe, pin 5 on the Game 1/0 connector will drop from +5 volts to 0 volts for a period of .98
microseconds, then rise back to +5 again; in the case of the Keyboard Strobe, the Keyboard’s
flag input (see above) will be turned off; and in the case of the Game Controller Strobe, all of the
flag inputs of the Game Controllers will be turned off and their timing loops restarted.

Your program can also trigger the Keyboard and Game Controller Strobes by writing to their con-
trolling locations, but you should not write to the Utility Strobe location. If you do, you will pro-
duce fwo .98 microsecond pulses, about 24.43 nanoseconds apart. This is due to the method in
which the 6502 writes to a memory location: first it reads the contents of that location, then it

1 TE1}

El. IE! 1E] 1E' 1E] 1E IE] 'E! El IE! J1El IE! IEl IE' [El (E! 1EY 'El E1l /El IEl1 I|E

AR NN Al

writes over them. This double pulse will go unnoticed for the Keyboard and Game Controller
Strobes, but may cause problems if it appears on the Ultility Strobe.

Toggle Switches. Two other strobe outputs are connected internally to two-state ‘‘flip-flops”’.
Each time you read from the location associated with the strobe, its flip-flop will “‘toggle™ to its
other state. These toggle switches drive the Cassette Output and the internal Speaker. There is
no practical way to determine the setting of an internal toggle switch. Because of the nature of
the toggle switches, you should only read from their controlling locations, and not write to them
(see Strobe Outputs, above).

Soft Switches. Soft Switches are two-position switches in which each side of the switch is con-
trolled by an individual memory location. If you reference the location for one side of the
switch, it will throw the switch that way; if you reference the location for the other side, it will
throw the switch the other way. It sets the switch without regard to its former setting, and there
is no way to determine the position a soft switch is in. You can safely write to soft switch con-
trolling locations: two pulses are as good as one (see Strobe Outputs, above). The Annunciator
outputs and all of the Video mode selections are controlled by soft switches.

The special memory locations which control the built-in Input and Output functions are arranged
thus:

Table 22: Built-In I/0 Locations
S0 S$1 $2 $3 %4 85 S$6 $7 38 $9 SA $B S$SC $D SE SF
$COPP | Keyboard Data Input
$CP10 | Clear Keyboard Strobe
$CO20 | Cassette Output Toggle
$CPB30 | Speaker Toggle
$CP4¢ | Utility Strobe
$CO5O | gr | tx | nomix | mix | pri | sec | lores | hires an anl an2 i an3
$CP60 | cin | pbl pb2 pb3 | gcd | gel | ge2 gc3 repeat $CP60-SCH6T
$C@76 | Game Controller Strobe

Key to abbreviations:

gr Set GRAPHICS mode tx Set TEXT mode
nomix Set all text or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page

lores Display Low-Res Graphics hires Display Hi-Res Graphics

an Annunciator outputs pb Pushbutton inputs
gc Game Controller inputs cin Cassette Input

PERIPHERAL BOARD 1/0

Along the back of the Apple’s main board is a row of eight long ‘‘slots’’, or Peripheral Connec-
tors. Into seven of these eight slots, you can plug any of many Peripheral Interface boards
designed especially for the Apple. In order to make the peripheral cards simpler and more versa-
tile, the Apple’s circuitry has allocated a total of 280 byte locations in the memory map for each

| .

of seven slots. There is also a 2K byte ‘‘common area’, which all peripheral cards in your Apple
can share.

Each slot on the board is individually numbered, with the leftmost slot called ‘‘Slot @** and the
rightmost called “‘Slot 7°’. Slot @ is special: it is meant for RAM, ROM, or Interface expansion.
All other slots (1 through 7) have special control lines going to them which are active at different
times for different slots.

PERIPHERAL CARD 1/0 SPACE

Each slot is given sixteen locations beginning at location $C@8@ for general input and output pur-
poses. For slot @, these sixteen locations fall in the memory range $C@#80 through $C@8F; for
slot 1, they’re in the range $C@90 through $CO9F, er cetera. Each peripheral card can use these
locations as it pleases. Each peripheral card can determine when it is being selected by listening to
pin 41 (called DEVICE SELECT) on its peripheral connector. Whenever the voltage on this pin
drops to 0 volts, the address which the microprocessor is calling is somewhere in that peripheral
card’s 16-byte allocation. The peripheral card can then look at the bottom four address lines to
determine which of its sixteen addresses is being called.

Table 23: Peripheral Card I1/0 Locations
$ S$1 82 83 $4 85 %6 $7 $8 $9 SA $B SC $D SE SF
$C080 0
$C090 1
SCOAD 2
$SCOBO Input/Output for slot number 3
$COCH 4
$CODG S
SCOED 6
SCOFQ 7

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256-byte page of memory. This page is usually
used to house 256 bytes of ROM or Programmable ROM (PROM) memory, which contains driv-
ing programs or subroutines for the peripheral card. In this way, the peripheral interface cards
can be ‘“‘intelligent’”: they contain their own driving software; you do not need to load separate
programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number $Cn, where » is the
slot number. Slot @ does not have a page reserved for it, so you cannot use most Apple interface
cards in that slot. The signal on Pin 1 (called I/O SELECT) of each peripheral slot will become
active (drop from +5 volts to ground) when the microprocessor is referencing an address within
that slot’s reserved page. Peripheral cards can use this signal to enable their PROMs, and use the
lower eight address lines to address each byte in the PROM.

80

IEl IEl JEL Bl O TE] JEY O 1EY O (EY IED IEl TEl El I'EY IEY IEVU B

1El] 1E I1E]

1E

~FE. TE]

o dl e

RS

Table 24: Peripheral Card PROM Locations
$00 S10 $20 $30 $40 $50 S$60 $70 $80 S99 SAO SBO $SCO $DO SEQ SFO
$C100 1
$C200 2
$C300 3
$C400 PROM space for slot number 4
$SC500 5
$C600 6
$C700 7

I/0 PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMs should be portable; that is, they should be able to func-
tion correctly regardless of where they are placed in the Apple’s memory map. They should con-
tain no absolute references to themselves. They should perform all JuMPs with conditional or
forced branches.

Of course, you can fill a peripheral card PROM with subroutines which are nor portable, and your
only loss would be that the peripheral card would be slot-dependent. If you’re cramped for space
in a peripheral card PROM, you can save many bytes by making the subroutines slot-dependent.

The first thing that a subroutine in a peripheral card PROM should do is to save the values of all
of the 6502’s internal registers. There is a subroutine called IOSAVE in the Apple’s Monitor
ROM which does just this. It saves the contents of all internal registers in memory locations $45
through $49, in the order A-X-Y-P-S. This subroutine starts at location SFF4A. A companion
subroutine, called IORESTORE, restores all of the internal registers from these storage locations.
You should call this subroutine, located at $FF3F, before your PROM subroutine finishes.

Most single-character input and output is passed in the 6502’s Accumulator. During output, the
character to be displayed is in the Accumulator, with its high bit set. During input, your
subroutine should pass the character received from the input device in the Accumulator, also
with its high bit set.

A program in a peripheral card’s PROM can determine which slot the card is plugged into by exe-
cuting this sequence of instructions:

0300 - 290 4A FF JSR SFF4A
0303 - 78 SEI

0304 - 20 58 FF JSR $FF58
0307 - BA TSX

0308 - BD 00 01 LDA $0100,X
030B- 8D F8 @7 STA $OTF8
030E- 29 OF AND #$0OF
0310- A8 TAY

After a program executes these steps, the slot number which its card is in will be stored in the
6502s Y index register in the format $@n, where n is the slot number. A program in the ROM
can further process this value by shifting it four bits to the left, to obtain $/9.

P311- 98 TYA

81

0312- DA ASL

$313- DA ASL
$314- DA ASL
0315- DA ASL
0316- AA TAX

A program can use this number in the X index register with the 6502’s indexed addressing mode
to refer to the sixteen I/0 locations reserved for each card. For example, the instruction

0317- BD 8¢ C0 LDA $C080,X

will load the 6502’s accumulator with the contents of the first I/0 location used by the peripheral
card. The address $C@8@ is the base address for the first location used by all eight peripheral
slots. The address $C@81 is the base address for the second 1/0 location, and so on. Here are
the base addresses for all sixteen 1/0 locations on each card:

Table 25: 1/0 Location Base Addresses
Base Slot

Address 0 1 2 3 4 5 6 7
$CO8G $CO8H $CA90 SCOAD $SCOBO $CoCco $CODO SCOED SCOFQ
$CO81 $CO81 $CP91 SCOAL $COB1 $COC1 $SCOD1 $SCOE1 $COF1
$CP82 $CH82 $C092 SCOA2 $COB2 $COC2 $COD2 SCOE2 $COF2
$C0O83 $CP83 $CP93 SCOA3 $SCOB3 $COC3 $COD3 SCOE3 SCOF3
$CP84 $C084 $CP94 SCPA4 $COB4 SCoc4 $COD4 SCOE4 SCOF4
$Ch85 $CO8S $CP95 SCOAS $SCOBS $COCS $COD5 $SCOES $SCOFS
$CO86 $Ch86 $C096 SCOAG6 $COB6 $COHC6 $COD6 SCOE6 SCOF6
$CO87 $CP87 $CO97 SCOAT SCOB7 $COC7 $COD7 SCOE7 SCOF7
$CH88 $CO88 $CP98 $COAS8 $COBS $COCS8 $CADY $SCOE8 SCOF8
$CH89 $CP89 $CA99 $SCOA9 SCOB9 $COCI $CODY9 $SCOE9 SCOF9
$SCO8A SCO8A $CO9A SCAAA SCHABA SCHCA $SCODA SCOHEA SCOFA
$CO8B $SCO8B SCPIB $SCOAB SCOBB $COCB $CODB $COEB SCOFB
$CO8C SCP8C $CP9C SCHAC SCOBC $CACC $SCHDC SCPEC $COFC
$CO8D SCP8D $CP9D SCHAD SCOHBD $CHCD $CODD SCOHED $COFD
$CO8E SCP8E SC@9E SCOAE SCOBE $COCE SCODE SCOEE SCOFE
SCO8F SCO8F $SCO9F SCHAF SCOBF $COACF SCODF SCOEF $COFF
1/0 Locations

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple’s RAM memory.
These 64 locations are actually in memory pages $04 through $@7, inside the area reserved for the
Text and Low-Resolution Graphics video display. The contents of these locations, however, are
not displayed on the screen, and their contents are not changed by normal screen operations.*
The peripheral cards can use these locations for temporary storage of data while the cards are in
operation. These ‘‘scratchpad’” locations have the following addresses:

* See “‘But Soft...”", page 31.

82

1) 1TES1 e 1E1l e IEl I1E1l 1l el Fl 1E1 e

1El

1E) 1E) 1E1l

¥

E'l 1E) 1E1] 1

£F

)

i

E

ol et
H Il’-lll

o et ol o
o llrl!,

N

ooal ol

R

-
i

&y

Table 26: 1/0 Scratchpad RAM Addresses
Base Slot Number

Address | 1 2 3 4 5 6 7

$0478 $0479 $P4TA $P47B $P47C $047D SP4TE $047F
$P4F8 $04F9 SP4FA S@4FB $P4FC SOG4FD S@4FE SP4FF
$0578 $0579 $657A $057B $@57C $@STD S@STE SO@STF
$OSF8 $OSF9 $BSFA S@SFB $OSFC SOSFD $@SFE SOSFF
$0678 $0679 $B67A $P67B $067C $P67D SB6TE $06TF
SO6F8 $06F9 SO6FA $P6FB $P6FC $B6FD S@6FE $O6FF
$0778 $0779 $B77TA $977B $H77C $B77D S$PTTE $OTTF
$OTFS SO7F9 SATFA $S@7FB $@7FC SOTFD S$@7FE SOTFF

Slot @ does not have any scratchpad RAM addresses reserved for it. The Base Address locations
are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations
have dedicated functions: location $7F8 holds the slot number (in the format $Cn) of the peri-
pheral card which is currently active, and location $5F8 holds the slot number of the disk con-
troller card from which any active DOS was booted.

By using the slot number $@n, derived in the program example above, a subroutine can directly
reference any of its eight scratchpad locations:

P31A- B9 78 04 LDA $0478.Y
#31D- 99 F8 04 STA SP4F8.Y
0320- B9 78 05 LDA $0578.,Y
$323- 99 F8 05 STA SOSF8.,Y
0326 - B9 78 06 LDA $0678.Y
$329- 99 F8 06 STA SO6F8 .Y
#32C- B9 78 07 LDA $0778.Y
032F- 99 F8 @7 STA $OTF8.,Y

THE CSW/KSW SWITCHES

The pair of locations $36 and $37 (decimal 54 and 55) is called CSW, for *‘Character output
SWitch”. Individually, location $36 is called CSWL (CSW Low) and location $37 is called
CSWH (CSW High). This pair of locations holds the address of the subroutine which the Apple
is currently using for single-character output. This address is normally SFDF@, the address of the
COUT subroutine (see page 30). The Monitor’s PRINTER (CTRL P]) command, and the
BASIC command PR#, can change this address to be the address of a subroutine in a PROM on
a peripheral card. Both of these commands put the address $Cr@@ into this pair of locations,
where 7 is the slot number given in the command. This is the address of the first location in
whatever PROM happens to be on the peripheral card plugged into that slot. The Apple will then
call this subroutine every time it wishes to output one character. This subroutine can use the
instruction sequences given above to find its slot number and use the 1/0 and RAM scratchpad
locations for its slot. When it is finished, it can either execute an RTS (ReTurn from
Subroutine) instruction, to return to the program or language which is sending the output, or it
can jump to the COUT subroutine at location SFDF@, to display the character on the screen and
then return to the program which is producing output.

Similarly, locations $38 and 39 (decimal 56 and 57), called KSWL and KSWH separately or KSW

83

(Keyboard input SWitch) together, hold the address of the subroutine the Apple is currently
using for single-character input. This address is normally $FD1B, the address of the KEYIN
subroutine. The Monitor’s KEYBOARD command (CTRL K]) and the BASIC command IN#
both change this address to $C00, again with » the slot number given in the command. The
Apple will call the subroutine at the beginning of the PROM on the peripheral card in this slot
whenever it wishes to get a single character from the input device. The subroutine should place
the input character into the 65@2’s accumulator and ReTurn from Subroutine (RTS). The
subroutine should set the high bit of the character before it returns.

The subroutines in a peripheral card’s PROM can change the addresses in the CSW and KSW
switches to point to places in the PROM other than the very beginning. For example, a certain
PROM could begin with a segment of code to determine what slot it is in and do some initializa-
tion, and then jump in to the actual character handling subroutine. As part of its initialization
sequence, it could change KSW or CSW (whichever is applicable) to point directly to the begin-
ning of the character handling subroutine. Then the next time the Apple asks for input or output
from that card, the handling subroutines will skip the already-done initialization sequence and go
right in to the task at hand. This can save time in speed-sensitive situations.

A peripheral card can be used for both input and output if its PROM has seperate subroutines for
the separate functions and changes CSW and KSW accordingly. The initialization sequence in a
peripheral card PROM can determine if it is being called for input or output by looking at the
high parts of the CSW and KSW switches. Whichever switch contains $Cn is currently calling
that card to perform its function. If both switches contain $Cn, then your subroutine should
assume that it is being called for output.

EXPANSION ROM

The 2K memory range from location $C80@ to SCFFF is reserved for a 2K ROM or PROM on a
peripheral card, to hold'large programs or driving subroutines. The expansion ROM space also
has the advantage of being absolutely located in the Apple’s memory map, which gives you more
freedom in writing your interface programs.

This PROM space is available to all peripheral slots, and more than one card in your Apple can
have an expansion ROM. However, only one expansion ROM can be active at one time.

Each peripheral card’s expansion ROM should have a flip-flop to enable it. This flip-flop should
be turned “‘on’’ by the DEVICE SELECT signal (the one which enables the 256-byte PROM).
This means that the expansion ROM on any card will be partially enabled after you first reference
the card it is on. The other enable to the expansion ROM should be the I/0 STROBE line, pin
20 on each peripheral connector. This line becomes active whenever the Apple’s microprocessor
is referencing a location inside the expansion ROM’s domain. When this line becomes active,
and the aforementioned flip-flop has been turned ‘‘on’’, then the Apple is referencing the expan-
sion ROM on this particular board (see figure 8).

A peripheral card’s 256-byte PROM can gain sole access to the expansion ROM space by referring
to location $CFFF in its initialization subroutine. This location is a special location, and all peri-
pheral cards should recognize it as a signal to turn their flip-flops ‘‘off”” and disable their expan-
sion ROMs. Of course, this will also disable the expansion ROM on the card which is trying to
grab the ROM space, but the ROM will be enabled again when the microprocessor gets another
instruction from the 256-byte driving PROM. Now the expansion ROM is enabled, and its space
is clear. The driving subroutines can then jump directly into the programs in the ROM, where

84

= IE A =1 I3 1 I -4 1§ e

e e 8] T

pre— p— P pr—— P Py — .

r—

R TR LR L T LA L LA LA L

PR EE R R

1/0 SELECT ENABLE 1
- LATCH

ROM

ENABLE 2

1/0 STROBE

AP TO A1Q

Figure 8. Expansion ROM Enable Circuit

they can enjoy the 2K of unobstructed, absolutely located memory space:

$332- 2C FF CF BIT $CFFF
$335- 4C 00 C8 JMP $C800

It is possible to save circuitry (at the expense of ROM space) on the peripheral card by not fully
decoding the special location address, SCFFF. In fact, if you can afford to lose the last 256 bytes
of your ROM space, the following simple circuit will do just fine:

TO RESET, ROM ENABLE
FLIP-FLOP

Figure 9. $CFXX Decoding

85

-

| /T /R VIR VO VO VNN {NRRE PO | TR VRN (NG VN JENF VAN (AT IR JRNNNG VAN PR RN VR - R |

86

THE MICROPROCESSOR
SYSTEM TIMING

POWER SUPPLY .

ROM MEMORY

RAM MEMORY ,

THE VIDEO GENERATOR
VIDEO OUTPUT JACKS
BUILT-IN I/O

“USER 1 JUMPER ,
THE GAME 1/0 CONNECTOR
THE KEYBOARD
KEYBOARD CONNECTOR
CASSETTE INTERFACE JACKS

4 . POWER CONNECTOR

SPEAKER ,
PERIPHERAL CONNECTORS

87

THE MICROPROCESSOR

The 6562 Microprocessor

Model:

Manufactured by:

Number of instructions:
Addressing modes:
Accumulators:

Index registers:

Other registers:

Stack:

Status flags:

Other flags:

Interrupts:
Resets:
Addressing range:
Address bus:

Data bus:

Voltages:
Power dissipation:

Clock frequency:

MCS6502/SY 6502
MOS Technology, Inc.
Synertek

Rockwell

56

13

1 (A)

2 (X,Y)

Stack pointer (S)
Processor status (P)

256 bytes, fixed

N (sign)

C (carry)

V (overflow)

I (Interrupt disable)
D (Decimal arithmetic)
B (Break)

2 (IRQ, NMI)

1 (RES)

210 (64K) locations
16 bits, parallel

8 bits, parallel
Bidirectional

+5 volts
.25 watt

1.023MHz

88

The microprocessor gets its main timing signals, ®@ and ®1, from the timing circuits described
below. These are complimentary 1.023MHz clock signals. Various manuals, including the MOS

R IRl IR O IE) fEY 1l 1Bl IEl (ED uflr =1 (ED OEY ET e (B Bl (EY O (EY El1 El M)

r

EE

v —
— OO — —
o 8 S <& © » g =
= & 3] - = = 55 s 9
- = = O ee oo O ee S 0O
2T o - g < oa X< 2 =]
2% 235 =8 s E S & g &
: S £
== 560 Qo o s &3 2 O
.
5
i
i
L
‘-
=
1™
«
=3
[~-]
=
s
D
2
< &
: 2
=
<
p—
Q =
2
3 20
b=t <]
=}
(e}
O
=
s
Q
=
o
=
(5]
=9

Technology Hardware manual, use the designation ®2 for the Apple’s ®@ clock.

The microprocessor uses its address and data buses only during the time period when ®@ is
active. When ®0 is low, the microprocessor is doing internal operations and does not need the
data and address buses.

The microprocessor has a 16-bit address bus and an 8-bit bidirectional data bus. The Address bus
lines are buffered by three 8T97 three-state buffers at board locations H3, H4, and HS. The
address lines are held open only during a DMA cycle, and are active at all other times. The
address on the address bus becomes valid about 300ns after ®1 goes high and remains valid
through all of ©@.

The data bus is buffered through two 8T28 bidirectional three-state buffers at board locations H10
and H11. Data from the microprocessor is put onto the bus about 300ns after ®1 and the
READ/WRITE signal (R/W) both drop to zero. At all other times, the microprocessor is either
listening to or ignoring the data bus.

The RDY, RES, IRQ, and NMI lines to the microprocessor are all held high by 3.3K Ohm resis-
tors to +5v. These lines also appear on the peripheral connectors (see page 105).

The SET OVERFLOW (SO) line to the microprocessor is permanently tied to ground.

SYSTEM TIMING

Table 27: Timing Signal Descriptions

14M: Master Oscillator output, 14.318 MHz. All timing signals are
derived from this signal.

T™: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency, 3.580MHz. Used by the video gen-
eration circuitry.

OP (D2) : Phase 0 system clock, 1.023MHz, compliment to ®1.
Pl Phase 1 system clock, 1.023 MHz, compliment to ®@.
Q3: A general-purpose timing signal, twice the frequency of the sys-

tem clocks, but asymmetrical.

All peripheral connectors get the timing signals 7M, ®@, ®1, and Q3. The timing signals 14M
and COLOR REF are not available on the peripheral connectors.

90

MEE O 1E 1=l 1B I1E) 1= 1= B (EFEY IE O 1El O IE O El O 1E O (E1 1B O (E)Y E1 OMEY OMEY El1 1BEY IFE)

™ |

|
500 nsec 500
|

* a—

S| - —

sec

51—

Q3

300
nsec

|
|
|
|
6502 Address X)C \
I

)(See 6502 Hardware
Data from 6502 (read))(' manuals for details.

100 nsec 4-‘ st ——

Data to 6502 (write))QC/

Figure 11. Timing Signals and Relationships

WA RN NN W

91

-

POWER SUPPLY

The Apple Power Supply (U. S. Patent #4,130,862)

Input voltage: 107 VAC to 132 VAC, or
214 VAC to 264 VAC
(switch selectable*)

Supply voltages: +5.0
+11.8
—12.0
—5.2

Power Consumption: 60 watts max. (full load)
79 watts max. (intermittent**)

Full load power output: +5v: 2.5 amp
—5v: 250ma
+12v: 1.5 amp (~ 2.5 amp intermittent**)
—12v: 250ma

Operating temperature: 55¢ (131° Farenheit)

The Apple Power Supply is a high-voltage ‘‘switching’® power supply. While most other power
supplies use a large transformer with many windings to convert the input voltage into many lesser
voltages and then rectify and regulate these lesser voltages, the Apple power supply first converts
the AC line voltage into a DC voltage, and then uses this DC voltage to drive a high-frequency
oscillator. The output of this oscillator is fed into a small transformer with many windings. The
voltages on the secondary windings are then regulated to become the output voltages.

The +35 volt output voltage is compared to a reference voltage, and the difference error is fed
back into the oscillator circuit. When the power supply’s output starts to move out of its toler-
ances, the frequency of the oscillator is altered and the voltages return to their normal levels.

If by chance one of the output voltages of the power supply is short-circuited, a feedback circuit
in the power supply stops the oscillator and cuts all output circuits. The power supply then
pauses for about 2> second and then attempts to restart the oscillations. If the output is still
shorted, it will stop and wait again. It will continue this cycle until the short circuit is removed or
the power is turned off.

If the output connector of the power supply is disconnected from the Apple board, the power
supply will notice this “‘no load” condition and effectively short-circuit itself. This activates the
protection circuits described above, and cuts all power output. This prevents damage to the
power supply’s internals.

* The voltage selector switch is not present on some Apples.
** The power supply can run 20 minutes with an intermittent load if followed by 10 minutes at normal load
without damage.

92

El

El

MEY O(ED TE) O 1ED OIED O1ED O IE) O IED O IED OIEDL OIEDl OIFL O IEDOIED O O(EY O O1ELOIEY O OIEY OEY OIEY !

EE

-0 BLU/WHT

——O ORG/ WHT
0RG
o BLK

T
+ ,
1

ﬁ
LI
J

|
|
|
R0 B RaT
ex R ‘QQE\
I i

—r

TROOO!

T

Ful
ez 3 4
R

6
i 7
~ @
& o > >
.- 2
— & —

l(g Rz
0
L]
Q

LINE
FLTER
ol
Hz

107 10
135V AC
60

3RD WIRE GROUND

Figure 12. Power Supply Schematic Drawing

L0 VI VOV i

| .

If one of the output voltages leaves its tolerance range, due to any problem either within or
external to the power supply, it will again shut itself down to prevent damage to the components
on the Apple board. This insures that all voltages will either be correct and in proportion, or they
will be shut off.

When one of the above fault conditions occurs, the internal protection circuits will stop the oscil-
lations which drive the transformer. After a short while, the power supply will perform a restart
cycle, and attempt to oscillate again. If the fault condition has not been removed, the supply will
again shut down. This cycle can continue infinitely without damage to the power supply. Each
time the oscillator shuts down and restarts, its frequency passes through the audible range and
you can hear the power supply squeal and squeak. Thus, when a fault occurs, you will hear a
steady ““click click click”” emanating from the power supply. This is your warning that something
is wrong with one of the voltage outputs.

Under no circumstances should you apply more than 140 VAC to the input of the transformer
(or more than 280 VAC when the supply’s switch is in the 220V position). Permanent damage to
the supply will result.

You should connect your Apple’s power supply to a properly grounded 3-wire outlet. It is very
important that the Apple be connected to a good earth ground.

CAUTION: There are dangerous high voltages inside the power supply’s case. Much of the
internal circuitry is not isolated from the power line, and special equipment is needed for service.
DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it to your Apple dealer for
service.

ROM MEMORY

The Apple can support up to six 2K by 8 mask programmed Read-Only Memory ICs. One of
these six ROMs is enabled by a 74LS138 at location F12 on the Apple’s board whenever the
microprocessor’s address bus holds an address between $D@@@ and SFFFF. The eight Data out-
puts of all ROMs are connected to the microprocessor’s data line buffers, and the ROM’s address
lines are connected to the buffers driving the microprocessor’s address lines A@ through A10.

The ROMs have three “‘chip select’ lines to enable them. CS1 and CS3, both active low, are
connected together to the 74LS138 at location F12 which selects the individual ROMs. CS2,
which is active high, is common to all ROMs and is connected to the INH (ROM Inhibit) line on
the peripheral connectors. If a card in any peripheral slot pulls this line low, all ROMs on the
Apple board will be disabled.

The ROMs are similar to type 2316 and 2716 programmable ROMs. However, the chip selects
on most of these PROMs are of a different polarity, and they cannot be plugged directly into the
Apple board.

94

rEy 1 I1E] 1E, 1B 1B 1Bf 1B 'E} 'E) (El 1E) 1(E! 1E. (E] 1B 1Bl 1EY EY 'El T'EY IE! TIE)

AT | 10O 24 | +5v
A6 | 2 23 | A8
A5 | 3 22| A9
A4 | 4 21 | CS3
A3 |5 20 | CST
A2 | 6 19 | Al0
Al | 7 18 | CS2
AB | 8 17 | D7
Do | 9 16 | D6
D1 | 10 15 | D5
D2 | 11 14 | D4
Gnd | 12 13 | D3

Figure 13. 9316B ROM Pinout.

RAM MEMORY

The Apple uses 4K and 16K dynamic RAMs for its main RAM storage. This RAM memory is
used by both the microprocessor and the video display circuitry. The microprocessor and the
video display interleave their use of RAM: the microprocessor reads from or writes to RAM only
during @0, and the video display refreshes its screen from RAM memory during ®1.

The three 74LS153s at E11, E12, and E13, the 74LS283 at E14, and half of the 74LS257 at C12
make up the address multiplexer for the RAM memory. They take the addresses generated by
the microprocessor and the video generator and multiplex them onto six RAM address lines. The
other RAM addressing signals, RAS and CAS, and the signal which is address line 6 for 16K
RAMs and CS for 4K RAMs, are generated by the RAM select circuit. This circuit is made up of
two 74LS139s at E2 and F2, half of a 74LS153 at location C1, one and a half 74L.S257s at C12
and J1, and the three Memory Configuration blocks at D1, E1, and F1. This circuit routes sig-
nals to each row of RAM, depending upon what type of RAM (4K or 16K) is in that row.

The dynamic RAMs are refreshed automatically during ®1 by the video generator circuitry. Since
the video screen is always displaying at least a 1K range of memory, it needs to cycle through
every location in that 1K range sixty times a second. It so happens that this action automatically
refreshes every bit in all 48K bytes of RAM. This, in conjunction with the interleaving of the
video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM
refresh run at full speed, without interfering with each other.

The data inputs to the RAMs are drawn directly off of the system’s data bus. The data outputs of
the RAMs are latched by two 74L.S174s at board locations BS and B8, and are multiplexed with
the seven bits of data from the Apple’s keyboard. These latched RAM outputs are fed directly to
the video generator’s character, color, and dot generators, and also back onto the system data bus
by two 74L.S257s at board locations B6 and B7.

R VIR O e e O

| .

—-S5v | 1O 16 | Gnd —=S5v | 1O 16 | Gnd
Dataln | 2 15 | CAS Dataln | 2 15 | CAS
R/W | 3 14 | Data Out R/W | 3 14 | Data Out

RAS | 4 13 | CS RAS | 4 13 | A6

A5 | 5 12 | A2 AS | 5 12 | A2

Ad | 6 11 | Al Ad | 6 11 | Al

A3 7 10 | AQ A3 7 10 | AQ
+12v | 8 91 +5v +12v | 8 9| +5v

4096 4K RAM 4116 16K RAM
Pinout Pinout

Figure 14. RAM Pinouts

THE VIDEO GENERATOR

There are 192 scan lines on the video screen, grouped in 24 lines of eight scan lines each. Each
scan line displays some or all of the contents of forty bytes of memory.

The video generation circuitry derives its synchronization and timing signals from a chain of
74LS161 counters at board locations D11 through D14. These counters generate fifteen syn-
chronization signals:

HO® H1 H2 H3 H4 HS5
V@ V1 V2 V3 V4
VA VB VC

The "H" family of signals is the horizontal byte position on the screen, from @@@000 to binary
100111 (decimal 39). The signals V@ through V4 are the vertical line position on the screen,
from binary #0000 to binary 18111 (decimal 23). The VA, VB, and VC signals are the vertical
scan line position within the vertical screen line, from binary @00 to 111 (decimal 7).

These signals are sent to the RAM address multiplexer, which turns them into the address of a
single RAM location, dependent upon the setting of the video display mode soft switches (see
below). The RAM multiplexer then sends this address to the array of RAM memory during ®1.
The latches which hold the RAM data sent by the RAM array reroute it to the video generation
circuit. The 7415283 at location rearranges the memory addresses so that the memory mapping
on the screen is scrambled.

If the current area on the screen is to be a text character, then the video generator will route the
lower six bits of the data to a type 2513 character generator at location AS. The seven rows in
each character are scanned by the VA, VB, and VC signals, and the output of the character gen-
erator is serialized into a stream of dots by a 74166 at location A3. This bit stream is routed to
an exclusive-OR gate, where it is inverted if the high bit of the data byte is off and either the
sixth bit is low or the 555 timer at location B3 is high. This produces inverse and flashing charac-
ters. The text bit stream is then sent to the video selector/multiplexer (below).

If the Apple’s video screen is in a graphics mode, then the data from RAM is sent to two

74L.S194 shift registers at board locations B4 and B9. Here each nybble is turned into a serial
data stream. These two data streams are also sent to the video selector/multiplexer.

96

El TEl

el 1E' TE1 1E] TE] TE!l TEl TEl TEl

1

M (E) IEF] 1E) 1EY 1B (Bl 1E) |E]l 'E] JTEl IE

R R e

The 74LS257 multiplexer at board position A8 selects between Color and High-Resolution graph-
ics displays. The serialized Hi-res dot stream is delayed one-half clock cycle by the 74LS74 at
location A1l if the high bit of the byte is set. This produces the alternate color set in High-
Resolution graphics mode.

The video selector/multiplexer mixes the two data streams from the above sources according to
the setting of the video screen soft switches. The 74LS194 at location A10 and the 74LS151 at
A9 select one of the serial bit streams for text, color graphics, or high-resolution graphics
depending upon the screen mode. The final serial output is mixed with the composite synchroni-
zation signal and the color burst signal generated by the video sync circuits, and sent to the video
output connectors.

The video display soft switches, which control the video modes, are decoded as part of the
Apple’s on-board 1/0 functions. Logic gates in board locations B12, B13, B11, A12, and All are
used to control the various video modes.

The color burst signal is created by logic gates at B12, B13, and C13 and is conditioned by RS,
coil L1, C2, and trimmer capacitor C3. This trimmer capacitor can be tuned to vary the tint of
colors produced by the video display. Transistor Q6 and its companion resistor R27 disable the
color burst signal when the Apple is displaying text.

VIDEO OUTPUT JACKS

The video signal generated by the aforementioned circuitry is an NTSC compatible, similar to an
EIA standard, positive composite video signal which can be fed to any standard closed-circuit or
studio video monitor. This signal is available in three places on the Apple board:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack.
The sleeve of this jack is connected to the Apple’s common ground and the tip is connected to
the video output signal through a 200 Ohm potentiometer. This potentiometer can adjust the
voltage on this connector from 0 to 1 volt peak.

Auxiliary Video Connector. On the right side of the Apple board near the back is a Molex
KK100 series connector with four square pins, .25 tall, on .10” centers. This connector supplies
the composite video output and two power supply voltages. This connector is illustrated in figure
15.

Table 28: Auxiliary Video Output Connector Signal Descriptions
Pin Name Description
1 GROUND System common ground; 0 volts.

2 VIDEO NTSC compatible positive composite video. Black level is
about .75 volt, white level about 2.0 volt, sync tip level is 0
volts. . Output level is not adjustable. This is not protected
against short circuits.

3 +12v +12 volt power supply.

4 —5Sv —5 volt line from power supply.

|) o

Auxiliary Video Pin. This single metal wire-wrap pin below the Auxiliary Video Output Connec-
tor supplies the same video signal available on that connector. It is meant to be a connection
point for Eurapple PAL/SECAM encoder boards.

>
)

[a)

"S5
Elalalﬂ ———1—Connector
E] | Pn

+12V
IDEO

Figure 15. Auxiliary Video Output Connector and Pin.

BUILT-IN 1/0

The Apple’s built-in 170 functions are mapped into 128 memory locations beginning at $C000.
On the Apple board, a 74L.S138 at location F13 called the 1/0 selector decodes these 128 special
addresses and enables the various functions.

The 74L.S138 is enabled by another 138 at location H12 whenever the Apple’s address bus con-
tains an address between $SCO@@ and SCOFF. The 1/0 selector divides this 256-byte range into
eight sixteen-byte ranges, ignoring the range $SC080 through $SCAFF. Each output line of the 138
becomes active (low) when its associated 16-byte range is being referenced.

The 0> line from the 1/0 selector gates the data from the keyboard connector into the RAM
data multiplexer.

The 1" line from the 1/0 selector resets the 74LS74 flip-flop at B10, which is the keyboard flag.

The ““2”° line toggles one half of a 74LS74 at location K13. The output of this flip-flop is con-
nected through a resistor network to the tip of the cassette output jack.

The “*3” line toggles the other half of the 74LS74 at K13. The output of this flip-flop is con-
nected through a capacitor and Darlington amplifier circuit to the Apple’s speaker connector on
the right edge of the board under the keyboard.

The **4” line is connected directly to pin S of the Game 1/0 connector. This pin is the utility
CP40 STROBE .

The *“5” line is used to enable the 74LS259 at location F14. This IC contains the soft switches
for the video display and the Game 1/0 connector annunciator outputs. The switches are selected

98

1Bl O1ED 1Bl O I1E O OIEl OIEDOIEY O OED O OIEY OIEDl OIEY OIEY OIEl OIEl OTEY 'El 'El TEl 1 TEl TEl

1E!

by the address lines 1 through 3 and the setting of each switch is controlled by address line @.

The 6" line is used to enable a 74LS251 eight-bit multiplexer at location H14. This multi-
plexer, when enabled, connects one of its eight input lines to the high order bit (bit 7) of the
three-state system data bus. The bottom three address lines control which of the eight inputs the
multiplexer chooses. Four of the mux’s inputs come from a 553 quad timer at location H13.
The inputs to this timer are the game controller pins on the Game I/O connector. Three other
inputs to the multiplexer come from the single-bit (pushbutton) inputs on the Game I/0 connec-
tor. The last multiplexer input comes from a 741 operational amplifier at location K13. The
input to this op amp comes from the cassette input jack.

The 7" line from the 1/0 selector resets all four timers in the 553 quad timer at location H13.
The four inputs to this timer come from an RC network made up of four 0.022uF capacitors,
four 100 Ohm resistors, and the variable resistors in the game controllers attached to the Game
I/0 connector. The total resistance in each of the four timing circuits determines the timing
characteristics of that circuit.

“USER 1"’ JUMPER

There is an unlabeled pair of solder pads on the Apple board, to the left of slot @, called the
“User 1 jumper. This jumper is illustrated in Photo 8. If you connect a wire between these two
pads, then the USER 1 line on each peripheral connectors becomes active. If any peripheral card
pulls this line low, a/l internal 1/0 decoding is disabled. The I/O SELECT and the DEVICE
SELECT lines all go high and will remain high while USER 1 is low, regardless of the address on
the address bus.

E gt
£ 8
IR
3 i
z:qh
L&
e {
EY
B &
£3

The USER 1 Jumper

»
4 o mesnas
>

»

Photo 8. The USER 1 Jumper.

MR

| .

THE GAME 1I/0 CONNECTOR

+Sv | 1 O 16 | NC
PBO | 2 15 | ANO
PBI | 3 14 | AN1
PB2 | 4 13 | AN2
CP40 STROBE | 5 12 | AN3
GCO | 6 11 | GC3
GC2 | 7 10 | GC1

Gnd | 8 9 | NC

Figure 16.

Game 1/0 Connector Pinouts

Table 29: Game I/0 Connector Signal Descriptions

Pin: Name: Description:

1 +5v +5 volt power supply. Total current drain on this pin must be
less than 100mA.

2-4 PB@-PB2 Single-bit (Pushbutton) inputs. These are standard 74LS series
TTL inputs.

5 C040 STROBE A general-purpose strobe. This line, normally high, goes low
during ®@ of a read or write cycle to any address from $C040
through $C@4F. This is a standard 74LS TTL output.

6,7,10,11 GC@-GC3 Game controller inputs. These should each be connected
through a 150K Ohm variable resistor to +5v.

8 Gnd System electrical ground.

12-15 AN@-AN3 Annunciator outputs. These are standard 74LS series TTL out-
puts and must be buffered if used to drive other than TTL
inputs.

9,16 NC No internal connection.

THE KEYBOARD

The Apple’s built-in keyboard is built around a MM5740 monolithic keyboard decoder ROM.
The inputs to this ROM, on pins 4 through 12 and 22 through 31, are connected to the matrix of
keyswitches on the keyboard. The outputs of this ROM are buffered by a 7404 and are connected

to the Apple’s Keyboard Connector (see below).

The keyboard decoder rapidly scans through the array of keys on the keyboard, looking for one
which is pressed. This scanning action is controlled by the free-running oscillator made up of
three sections of a 7400 at keyboard location U4. The speed of this oscillation is controlled by

C6, R6, and R7 on the keyboard’s printed-circuit board.

100

1B (E] O IED OIED O OIED OIEDl OIE] OIED OMEY OMEY OIED OTE)Y OTEl OMEY OTEl OTEYL TRl OTE}

1E}

TEl 1B |E)

#l

"
13534 4N uMd

T0MINOD LiMS ~ TO¥INOD
2 T 131Ms
: - L LatHsNn S on a3x

3
N] e
i 15
(S5 01y 9
. EEEIEUEPE b
(52 A3%)
1434 -
" i
i
S I

(H9IH= 3041 V1Y)
vIva 104100

es) |1

OvLSAN SN

:
(82) IO
00%L iN /1 0¥ INOY Haivn
HOLIMS,

U

=
S
]
k
)&
P
fai
S
by
AN

ARVADN

JaEVa
AL
N

B

ARG

B

SN
ENS
G
/]
\2]

IARVARVARVARYAR

{

)
A/
B
NN

BN
(B
%

2\
5/

JArVARYAE

[:4'
AL

o

&

A
g/
Jany

y,xu:n: £
AP

ZNPANUANTND

CRY(ER B
eIV)

lai
A2/

I
A
S
2\
B

&

bS AN
HOLYDION! 43M04

B

EESPAS %S

Figure 17. Schematic of the Apple Keyboard

101

S S O O T O O T T . O A A VO O

The key on the keyboard is connected to a 555 timer circuit at board location U3 on the
keyboard. This chip and the capacitor and three resistors around it generate the 10Hz “REPeaT”
signal. If the 220K Ohm resistor R3 is replaced with a resistor of a lower value, then the [REPT
key will repeat characters at a faster rate.

See Figure 17 for a schematic diagram of the Apple Keyboard.

KEYBOARD CONNECTOR

The data from the Apple’s keyboard goes directly to the RAM data multiplexers and latches, the
two 74LS257s at locations B6 and B7. The STROBE line on the keyboard connector sets a
741574 flip-flop at location B10. When the 1/0 selector activates its ““@”” line, the data which is
on the seven inputs on the keyboard connector, and the state of the strobe flip-flop, are multi-
plexed onto the Apple’s data bus.

Table 30: Keyboard Connector Signal Descriptions
Pin: Name: Description:

1 +5v +5 volt power supply. Total current drain on this pin must be
less than 120mA.

2 STROBE Strobe output from keyboard. This line should be given a pulse
at least 10us long each time a key is pressed on the keyboard.
The strobe can be of either polarity.

3 RESET Microprocessor’s RESET line. Normally high, this line should
be pulled low when the button is pressed.

49,16 NC No connection.

5-7, 10-13 Data Seven bit ASCII keyboard data input.

8 Gnd System electrical ground.

15 —12v —12 volt power supply. Keyboard should draw less than
S0mA.

102

El TF]

1 TE1 TE]

El TE]

(El TE] TE] TE] IE) [El [IE}

El

'El IE] I'E] 1 IE] IEl |E]

+5v | 10O 16 | NC
STROBE | 2 15 | —12v
RESET | 3 14 | NC
NC | 4 13 | Datal
Data5 | § 12 | Data ®
Data4 | 6 11 | Data 3
Data6 | 7 10 | Data 2
Gnd | 8 9 | NC
Figure 18.

Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

The two female miniature phone jacks on the back of the Apple II board can connect your Apple
to a normal home cassette tape recorder.

Cassette Input Jack: This jack is designed to be connected to the ‘‘Earphone” or *“‘Monitor”
output jacks on most tape recorders. The input voltage should be 1 volt peak-to-peak (nominal).
The input impedance is 12K Ohms.

Cassette Output Jack: This jack is designed to be connected to the ‘‘Microphone’ input on
most tape recorders. The output voltage is 25mv into a 100 Ohm impedance load.

LU U VA A A Y U (Y

%ﬁil

POWER CONNECTOR

This connector mates with the cable from the Apple Power Supply. This is an AMP #9-35028-1

six-pin male connector.

Table 31: Power Connector Pin Descriptions

Description:

Pin: Name:
1,2 Ground
3 +5v

4 +12v

5 —12v

6 —5v

Common electrical ground for Apple board.

+5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~1.5 amp from this supply.

+12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~400ma from this supply.

—12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~12.5ma from this supply.

—5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~—0.0ma from this supply.

—12v -5V
+5V +12V
GND GND

Figure 19. Power Connector

104

g1

11

I 1Al] = s Il 1E. IE1 1El Fl 'EY E

1Tl

"Fl 1F 1E] 1E 1= 1 121

F

1}

= SPEAKER

The Apple’s internal speaker is driven by half of a 74L.S74 flip-flop through a Darlington amplifier
circuit. The speaker connector is a Molex KK100 series connector, with two square pins, .25”
tall, on .10 centers.

Table 32: Speaker Connector Signal Descriptions

| Pin: N:nnc: Description:
[1 SPKR Speaker signal. This line will deliver about .5 watt into zuT@]
| Ohm load. |

1]

[2 +5v +5 volt power supply. ‘

) 1| |

BIELG

' w o
El

1l

Figure 20. Speaker Connector

il

| |

PERIPHERAL CONNECTORS

1

The eight peripheral connectors along the back edge of the Apple’s board are Winchester
#2HW25C0-111 50-pin PC card edge connectors with pins on .10”" centers. The pinout for these
connectors is given in Figure 21, and the signal descriptions are given on the following pages.

LI | I | I 1 I | B |

\

105

El

—
i
b
o s
O -
-
] .

GND 26 || (3| 25 +5V =
DMAIN 27 | 2| 24 DMAOUT —
INTIN 28| (3| 23 INT OUT

NMI 29 | (3| 22 DMA —

JRQ 30 |C] (3| 27 RDY —

RES 37 | [3J| 20 17O STROBE

INH 32 |Cd (3|19 NC. =
-12v 33| 3| 18 R/W =

-5V 34| (3| 17 A15

N.C. 35| [3| 16 A4 "

7M 36 ||| 15 A13 =
Q3 37 |Cd|=3| 14 A2
o1 38 ||| 13 A =
USER1 39 ||| 12 A10 =
0 40 |V | 17 A9
DEVICE SELECT 47 | 3| 10 A8 &
D7 42|03 3|9 A7 =
De 43|33 & A6
D5 44| (3|7 A5 i
D4 45|C] (|6 A4 =
D3 46| (3|5 A3
D2 47| (| 4 A2 »
D1 48| (|3 At -
N el=Bl3 ﬁ% SELECT i
+
12V 50 :L_FJ 1 e
S
O i

1P TFl 1B

Figure 21. Peripheral Connector Pinout

rFl [} A

106

AU VIV L I T L Y A L A 1 A VA M U U L LU

Table 33: Peripheral Connector Signal Description

Pin:

Name:

Description:

2-17

18

19

20

21

22

23

24

25

26

1/0 SELECT

AD-A15

SYNC

I/0 STROBE

@)

o)
>

INT OUT

DMA OUT

+5v

GND

This line, normally high, will become low when
the microprocessor references page $Cn, where
n is the individual slot number. This signal
becomes active during ®@ and will drive 10
LSTTL loads*. This signal is not present on
peripheral connector 0.

The buffered address bus. The address on
these lines becomes valid during ®1 and
remains valid through ®@. These lines will
each drive 5 LSTTL loads®.

Buffered Read/Write signal. This becomes
valid at the same time the address bus does,
and goes high during a read cycle and low dur-
ing a write. This line can drive up to 2 LSTTL
loads™.

On peripheral connector 7 only, this pin is con-
nected to the video timing generator’s SYNC
signal.

This line goes low during ®@ when the address
bus contains an address between $C80@ and
SCFFF. This line will drive 4 LSTTL loads*.

The 6502’s RDY input. Pulling this line low
during @1 will halt the microprocessor, with the
address bus holding the address of the current
location being fetched.

Pulling this line low disables the 6502’s address
bus and halts the microprocessor. This line is
held high by a 3K Q resistor to +5v.

Daisy-chained interrupt output to lower priority
devices. This pin is usually connected to pin 28
(INT IN).

Daisy-chained DMA output to lower priority
devices. This pin is usually connected to pin 22
(DMA IN).

+5 volt power supply. 500mA current is avail-
able for all peripheral cards.

System electrical ground.

* Loading limits are for each peripheral card.

107

Table 33 (cont’d): Peripheral Connector Signal Description

Pin:

Name:

Description:

27

26

29

30

31

32

33

34

35

36

37

38

39

DMA IN

INT IN

Z,

INH

—12v

—5v

COLOR REF

™

Q3

d1

USER 1

Daisy-chained DMA input from higher priority
devices. Usually connected to pin 24 (DMA
ouT).

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt. When this line is
pulled low the Apple begins an interrupt cycle
and jumps to the interrupt handling routine at
location $3FB.

Interrupt ReQuest. When this line is pulled
low the Apple begins an interrupt cycle only if
the 6502°s 1 (Interrupt disable) flag is not set.
If so, the 6502 will jump to the interrupt han-
dling subroutine whose address is stored in
locations $3FE and $3FF.

When this line is pulled low the microprocessor
begins a RESET cycle (see page 36).

When this line is pulled low, all ROMs on the
Apple board are disabled. This line is held high
by a 3K resistor to +5v.

—12 volt power supply. Maxmum current is
200mA for all peripheral boards.

—5 volt power supply. Maximum current is
200mA for all peripheral boards.

On peripheral connector 7 only, this pin is con-
nected to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

TMHz clock. This line will drive 2 LSTTL
loads*.

2MHz asymmetrical clock. This line will drive
2 LSTTL loads*.

Microprocessor’s phase one clock. This line
will drive 2 LSTTL loads*.

This line, when pulled low, disables a// internal
1/0 address decoding™*.

* Loading limits are for each peripheral card.

** See page 99.

108

T OIE!] O IE] O TE] OIED] O OIED O OIED O OIFEDOIED OIFEDLOIFD Ol OIEl I relr ImErOIEYOIEDOMEYOMEYOTEYOIEY R

fE!

R R e

Table 33 (cont’d): Peripheral Connector Signal Description

Description:

Pin: Name:

40 ot}

41 DEVICE
SELECT

42-49 DO-D7

50 +12v

Microprocessor’s phase zero clock. This line
will drive 2 LSTTL loads*.

This line becomes active (low) on each peri-
pheral connector when the address bus is hold-
ing an address between $C@m and S$COnF,
where n is the slot number plus $8. This line
will drive 10 LSTTL loads*.

Buffered bidirectional data bus. The data on
this line becomes valid 300nS into ®@ on a
write cycle, and should be stable no less than
100ns before the end of ®@ on a read cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA total for all peripheral cards.

* Loading limits are for each peripheral card.

109

P

B6 A8 AW MIZ A RW
S | A7 | 4G (A11AI3) AS

i

£ |

L&

it 1

&)

iy

B]

()

)

Figure 22-1. Schematic Diagram of the Apple 11

E /R |

110

Figure 22-2. Schematic Diagram of the Apple II

S| O O T T O O T T VO Y\ Y R\ WO

111

& @ @ @ o Eay Gy &l al al &y 4l lal &l &l &l el &l el ldl & dd

COLCR DB M A¢ AZ AC AR \‘
REF\TH M (A1 |AL (A5 (47 & @ CFETE
NOTE: UNLESS OTHERWISE SPECIFIED
VS V3 VI VC VA HA 1D
w vz 8 [HS | LOPS -y
— - — w |
— — |
1
|
—TIT M 7815153
SRR
S <5 o
1 B 1 ol
s, S0F T 3,
B a1]
= g
ie, s 2
o b va 741504
| . i
g ey , <
2o o
[E =
so -
“f o
=]
7aLs257-C1z £
HBL(CI3-6)
Lelfoa <
s, fog]
e o0
e 5,04
e ult =
'
e e =
1 gl
8, =
o1'° o—
] -
Sl b =]
1§ £t g
e
2 1/4 74LS04 =
i)
') 175]
14-6) Pl
b HIRES 3 S
BiI-6) - -
L4 172 TLs20-02 113 [
7 2 s, I} ~
13 oL B) (o]
174 TLSR-Cl4 N P 5 P
2 is
WP_, e HENGR SELECT m
N
s aLSI39- £2
. 20
/4 7ALSe8-AI1 MEMORY SELECT-F1 €4
13, ! LR Fli4
o, el e
H Lofoa 3 2
o0
i s -
 —a i IR zal 4 B " RS
v TausgE R B M B 8 - 2
- ' e
s o
3 2 L % 8
a 2 7
e —Elip 2 L]
i®, 3 s
_ [EYE P N s
1 . 7
H 7415257-01 e
V. VA M4 |H2 W | Ax Lw 0 | 7™ liam a@ a2 |ad 12 | a8 a0 a1 ,Lmﬂ 745139-F2
W VB VB W5 M3 M [DPS CAS C'REF DO ™ Al A3 AS A7 AZ AIl AI3 AIS

112

90 va 20 00 ANONId HYY %21/%
20|50|€0) 1@

Q0 ¢ vy Gv Sy My TQ 98y
9y
T nov v 2v 5900 S OND
S|
d
212 60 82 0 9 kel v 2 S LO4F]
oy vy vy e s vy Wy || v e .
0
&]
M Ll
L i
e —° =
i ! i Il . Il ! 1 i . p
10
0 [3 &
v
Al NP A
€13 L
3 =
i3s3y a0 sa 50 10 50 sa »0 o g -
ey s vy vy vy vy wew | | v —— 135y
sLlg s o
¢ =]
z
—11'v1)
o ah I . [g
fleosee S 1408 — T T T T T T T 7 2 =
T i i ! I ! Il ! i . i ! I ! il 13 20
il e | e e T T I i
w8 8 om
o 7
w s s =
i 5
8 oy
el s vy 2]
28 2vy o
o -
1383y vy
< ovy «
i wotmﬂ £
o A N >
v -0uv0BA3 2
9
-
o foilo |0 o5 o3 33 oX 3 &
STPIvTaT ! 2010 a i ~
3 s X0t Py
]
s | copecece o piela ¥« i =]
z S El cl 8 2v) Z < 21 2!
o
W [<9]

S| O O T T T O T O O O O O W O

113

Figure 22-5. Schematic Diagram of the Apple II

114

115

50 €0 10
va|20(0a
F on
1
ikl
]@ slsly Ie
s [OHN026 1900 polt WY wsIeL 2 —
e Is L]
2 e0sa o e °
s T2 E-v51S T e st crew -
veISTRL =
z
. . t o
2 < arirod -]
&N_:.;_.n 2 | i) -
7y ! [
20570 — 2T9T6TvI @1 112181 . NS =
T Z
2 s 1525 Hifg]
(I-2¥) s 1408 _ ﬂ o 8 wes
ls e |1ifere CELS ™ -4
; _ 1SS0 W © 4
z =0
sp_gen i PR " s
%2l .
2v (3 ooy
o ,s,l_nwma 0201000 o e a
N an 505020 1000 'Sfr | ©
: =
) -
(82v)§ 1308 M 2 sl AYT Q-6 0L Z J =
8Y-25280L m
S om-vi5102 2/t ..nnw
=
§ 1408 4
o - 5]
% -
g h
- ol
FIONY (o]
v
A "o -
51 L————————— <% Wb
104100 0301 120 =
iz *‘ 1y
o veoz z'ev
i .
1504 dvam um IR crav
1¥ =282 274 n
It
L3
H By .
apir - 2 2'se
o3ain xnv on
e (129§ 1108 3t
su
e
i vosenz
Y o = INAS
« Ul 8y
e
2+ s s+

B | L L O O T O T A, L O L O O T L A\ O

116

117

Dt W L0ttt e ottt bl otUote o tUoteoEE DY A A A Y W
L.I:L_I:L_I:I:I:I:I:..:L_L_I:I:L.,I:L_L,L_L,L_L,Lf

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS

CcLC
CLD
cu
CLv
CMP
CPX
CcpPY
DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overfiow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-Or" Memory with
Accumulator

Increment Memory by One
Increment Index X by One
increment Index Y by One

Jump to New Location

Jump to New Location Saving
Return Address

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift Right one Bit (Memory or
Accumulator)

No Operation
“OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator}

Return from interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transter Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

118

eV TE1 TEY EYL BV OBV OTEL OME1 MEY TRY TRY TR

Fl

[E

=

U LT VA A A A L

V< == >+ | LOTVOIZTXD>

o

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator

Index Registers
Memory

Borrow

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To

Transfer To

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
D Enonnonoen

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

e =

FIGURE 3.

By nnnonnn.

NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transferred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

119

PROGRAMMING MODEL

~
(=]

ACCUMULATOR

I

~
(=]

INDEX REGISTER Y

I

-~
o

INDEX REGISTER X

|

PCH

PCL PROGRAM COUNTER

I R S
Lo Lo

STACK POINTER

0
n[v[e]o[1]z]c] PROCESSOR STATUS REGISTER, "P"

L CARRY
ZERO
L INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND

OVERFLOW
NEGATIVE

~

120

[

ELO(E) O IEY O OTED OIED O O1ED OIFEL OB IEYOIEDOEDOTEYOTEY

| 4 A

L
]
L
e
I INSTRUCTION CODES
|
m—
I Assembly HEX
- Name Operation Addressing Language 0P No. | “P" Status Reg.
= Description Mode Form Code | Bytes| NZCIDV
I ADC
Add memory to A-M-C —AC | Immediate ADC #Oper 69 2 VVVEV
l'ﬁ accumulator with carry Zero Page ADC Oper 85 2
Zero Page.x | ADC OperX 75 2
Absolute ADC Oper 60 3
Absolute. X ADC Oper X 70 3
e AbsoluteY | ADC OperY | 79 | 3
(indirect.X) ADC (Oper.X) 61 2
(Indirect).Y ADC (Oper).Y i 2
AND
w— “"AND" memory with AAM —A Immediate AND #Oper 29 2 VNV
accumulator Zero Page AND Oper 25 2
Zero Page.X | AND OperX 35 2
L—S Absolute AND Oper 20 3
Absolute. X AND Oper X 30 3
Absolute.Y AND Oper.Y 39 3
(Indirect,X) AND (Oper.X) 21 2
h= (Indirect).Y AND (Oper).Y 31 2
ASL
Shift left one bit (See Figure 1) | Accumulator | ASL A 0A 1 VVV-——
'—5 (Memory or Accumulator) Zero Page ASL Oper 06 2
Zero Page.X | ASL Oper.X 16 2
Absolute ASL Oper OE 3
Absolute. X ASL Oper X 1E 3
- BCC
Branch on carry clear Branch on C=0 | Relative BCC Oper 90 2| -
L. BCS
I—-_ Branch on carry set Branch on C=1 | Relative BCS Oper B0 2 | o .
BEQ
Branch on result zero Branch on Z=1 | Relative BEQ Oper FO 2 |
BIT
Test bits in memory AAM. M; =N, | Zero Page BIT* Oper 24 2 Mov——~Mg
with Mg -V Absolute BIT* Oper 2C 3
BMI
Branch on result minus Branch on N=1 | Relative BMI Oper 30 2 |
BNE
Branch on result not zero | Branch on 2=0 | Relative BNE Oper DO 2 | T
I BPL
e Branch on result plus Branch on N=0 | Relative BPL oper 10 2 | -
BRK
Force Break Forced Implied BRK* 00 1 ——=1-=
Interrupt
PC+24 P4
BVC
Branch on overflow clear | Branch on V=0 | Relative BVC Oper 50 2 R
Note | @y < and 7 are lransierred (0 1he SIatus register If Ihe resufi of AV M 15 Note 2 A BRK Command C8nnof be maskea by setting |
I then A 1 otherwse Z + 0

121

e

| Assembly HEX
Name Operation ‘ Addressing Language opP No. | “P" Status Reg
Description | Mode Form Code | Bytes NZCIDV
BVS
Branch on overflow set | Branch on V=1 | Relative BVS Oper 70 2 -
CLC
Clear carry flag 0—-C Implied CLC 18 1 -0-
CLD
Clear decimal mode 0—-D Implied CLD D8 1 -0 ——~
CLI
0—I Implied cu 58 1 -—0—
CLv
Clear overflow flag 00—~V Implied CLvV B8 1 0 ———-
cmMp
Compare memory and A—M Immediate CMP #0per c9 2 VAV
accumulator Zero Page CMP Oper c5 2
Zero Page, X | CMP Oper X D5 2
Absolute CMP Oper cD 3
Absolute X CMP Oper,X oD 3
Absolute,Y CMP OperY D9 3
(Indirect,X) CMP (Oper.X) c1 2
(Indirect).Y CMP (Oper).Y D1 2
CPX
Compare memory and X—M Immediate CPX #0Oper E0 2 VVV===
index X Zero Page CPX Oper E4 2
Absolute CPX Oper EC 3
cPY
Compare memory and Y—M Immediate CPY #Oper co 2 VVV=—
index Y Zero Page CPY Oper c4 2
Absolute CPY Oper ccC 3
DEC
Decrement memory M—1-—+M Zero Page DEC Oper Cé 2 YV
by one Zero Page.X | DEC OperX D6 2
Absolute DEC Oper CE 3
Absolute X DEC Oper,X DE 3
DEX
Decrement index X X—1-—X Implied DEX CA 1 Vv
by one
DEY
Decrement index Y Y—1-—=Y Implied DEY 88 1 VV=———
by one
122

i¥

'R 1E1 1E 1E

1E1

1E1

15

iFE)

1)

F: 1B

0 VU VI VIV i

Assembly HEX
Name Operation Addressing Language 0P No. | “P" Status Reg.
Description Mode Form Code |Bytes| NZCIDV
EOR
“Exclusive-0r" memory AVM —=A Immediate EOR #0per 49 2 VA
with accumulator Zero Page EOR Oper 45 2
Zero Page X | EOR Oper.X 55 2
Absolute EOR Oper 4D 3
Absolute. X EOR Oper,X 5D 3
Absolute.Y EOR Oper.Y 59 3
(Indirect.X) EOR (Oper.X) 41 2
(Indirect).Y EOR (Oper)Y 51 2
INC
Increment memory M+1-+-M Zero Page INC Oper E6 2 Y
by one Zero Page,X | INC Oper.X F6 2
Absolute INC Oper EE 3
Absolute X INC Oper.X FE 3
INX
Increment index X by one | X + 1 —X implied INX E8 1 N
INY
Increment index Y by one [Y + 1 —=Y Implied INY c8 1 vV
JMP
Jump to new location (PC+1) —PCL | Absolute JMP Oper 4C 3 |
(PC+2) —PCH | Indirect JMP (Oper) 6C 3
JSR
Jump to new location PC+2¢, Absolute JSR Oper 20 3| ——
saving return address (PC+1) —=PCL
(PC+2) —PCH
LDA
Load accumulator M—=A Immediate LDA #Oper A9 2 A
with memory Zero Page LDA Oper A5 2
Zero Page X | LDA OperX BS 2
Absolute LDA Oper AD 3
Absolute X LDA OperX BD 3
Absolute Y LDA OperY BS 3
(Indirect.X) LDA (Oper.X) Al 2
(Indirect),Y LDA (Oper)Y B1 2
LDX
Load index X M X Immediate LDX #Oper A2 2 V==
with memory Zero Page LDX Oper A6 2
Zero Page,Y | LDX OperY B6 2
Absolute LDX Oper AE 3
Absolute Y LDX OperY BE 3
LDY
Load index Y MY Immediate LDY #Oper A0 2 N
with memory Zero Page LDY Oper A4 2
Zero Page X | LDY OperX B4 2
Absolute LDY Oper AC 3
Absolute X LDY Oper.X BC 3

123

Assembly HEX
Name Operation Addressing Language oP No. | "P" Status Reg.
Description Mode Form Code |Bytes| NZCIDV
LSR
Shift right one bit (See Figure 1) | Accumulator | LSR A 4A 1 0vVv-———
(memory or accumulator) Zero Page LSR Oper 46 2
Zero Page X | LSR Oper.X 56 2
Absolute LSR Oper 4E 3
Absolu_!_e_x LSR Oper.X SE 3
NOP
| No operation No Operation Implied NOP EA 1
ORA
“OR" memory with AVM—=A Immediate ORA #0per 09 2 VvV
accumulator Zero Page ORA Oper 05 2
Zero Page.X | ORA Oper.X 15 2
Absolute _ ORA Oper 00 3
Absolute. X ORA Oper X 10 3
Absolute,Y ORA Oper.Y 19 3
(Indirect,X) ORA (Oper.X) 01 2
(Indirect).Y ORA (Oper).Y " 2
PHA
Push accumulator Ay Implied PHA 48 L
on stack
PHP
Push processor status P4 Implied PHP 08 1| ————
on stack
PLA
Pull accumulator At Implied PLA 68 1 VV———=
from stack
PLP
Pull processor status P{ Implied PLP 28 1 From Stack
from stack
ROL
Rotate one bit left (See Figure 2) | Accumulator | ROL A 2A 1 V==
(memory or accumulator) Zero Page ROL Oper 26 2
Zero Page X | ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute X ROL Oper.X 3E 3
ROR
Rotate one bit right (See Figure 3) | Accumulator | ROR A 6A 1| VWV
(memory or accumulator) Zero Page ROR Oper 66 2
Zero Page.X | ROR Oper.X 76 2
Absolute ROR Oper 6E 3
Absolute X ROR Oper,X 7E 3
124

| S| S

|

[E

E]

IEl J'E! TE1 JEi TEl TE! TE! TE. 1TE]

1E|

-

Fl |E]

EE

ROV GO R O O A O

to index X

Assembly HEX
Name Operation Addressing Language 0P No. | “P" Status Reg
Description Mode Form Code |Bytes| NZCIDV
RTI
Return from interrupt P4PCH Implied RTI 40 1 From Stack
RTS .
Return from subroutine PC4. PC+1 —PC| Implied RTS 0 1 e
SBC
Subtract memory from A-M-C—A |Immediate SBC #Oper E9 2 VVVE
accumulator with borrow Zero Page SBC Oper ES 2
Zero Page.X | SBC Oper.X F5 2
Absolute SBC Oper ED 3
Absolute.X SBC Oper X FD 3
Absolute.Y SBC OperY F9 3
(Indirect.X) SBC (Oper.X) E1 2
(Indirect).Y SBC (Oper).Y F1 2
SEC
Set carry flag 1—-C Implied SEC 38 1 ——1——=
SED
Set decimal mode 1D Implied SED F8 1 1=
SEI
Set interrupt disable 1=l Implied SEI 78 1 ———1—
status
STA
Store accumulator A—-M Zero Page STA Oper 85 2| -
in memory Zero Page X | STA Oper X 95 2
Absolute STA Oper 8D 3
Absolute X STA Oper,X 90 3
Absolute.Y STA Oper,Y 9 3
(Indirect.X) STA (Oper,X) 81 2
| (indirect).Y STA (Oper).Y 91 2
STX
Store index X in memory | X =M Zero Page STX Oper 86 2 i
Zero PageY STX Oper,Y 9% 2
Absolute STX Oper 8E 3
STY
Store index Y in memory | Y =M Zero Page STY Oper 84 2 | ———~
Zero Page X | STY Oper.X 94 2
Absolute STY Oper 8C 3
TAX
Transter accumulator A =X Implied TAX AA 1 VV e
to index X
TAY
Transfer accumulator A=Y Implied TAY A8 1 R
to index Y
TSX
Transfer stack pointer S «~X Implied TSX BA 1 VA

125

Assembly HEX
Name Operation Addressing Language opP No. | “P” Status Reg.

Description Mode Form Code {Bytes| NZCIDV
TXA
Transfer index X X =A Implied TXA BA 1 Vv -
to accumulator o I
TXS
Transfer index X to X =S Implied XS 9A 1 .
stack pointer B
TYA
Transfer index Y Y -A Implied TYA 98 1 VV———
to accumulator

126

e e I1E e I1e ey e’ rEYOrer el e el

1

-

U0 VRV O

HEX OPERATION CODES

00 — BRK

01 — ORA — (Indirect, X
02 — NOP

03 — NOP

04 — NOP

05 — ORA — Zero Page
06 — ASL — Zero Page
07 — NOP

08 — PHP

09 — ORA — Immediate
O0A — ASL — Accumulator
0B — NOP

0C — NOP

0D — ORA — Absolute
OE — ASL — Absolute

OF — NOP
10 — BPL
11 — ORA — (Indirect), Y
12 — NOP
13 — NOP
14 — NOP

15 — ORA — Zero Page, X
16 — ASL — Zero Page, X
17 — NOP

18 — CLC

19 — ORA — Absolute, Y
1A — NOP

18 — NOP

1C — NOP

1D — ORA — Absolute, X
1E — ASL — Absolute, X

1F — NOP
20 — JSR
21 — AND — (Indirect, X)
22 — NOP
23 — NOP

24 — BIT — Zero Page
25 — AND — Zero Page
26 — ROL — Zero Page
27 — NOP

28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B — NOP

2C — BIT — Absolute
2D — AND — Absolute
2E — ROL — Absolute

2F — NOP
30 — BMI
31 — AND — (Indirect), Y
32 — NOP
33 — NOP
34 — NOP

35 — AND — Zero Page. X
36 — ROL — Zero Page, X
37 — NOP

38 — SEC

39 — AND — Absolute, Y
3A — NOP

3B — NOP

3C — NOP

3D — AND — Absolute, X
3E — ROL — Absolute, X

3F — NOP

40 — RTI

41 — EOR — (Indirect, X)
42 — NOP

43 — NOP

44 — NOP

45 — EOR — Zero Page
46 — LSR — Zero Page
47 — NOP

48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
4B — NOP

4C — JMP — Absolute

4D — EOR — Absolute
4E — LSR — Absolute

4F — NOP
50 — BVC
51 — EOR (indirect), Y
52 — NOP
53 — NOP
54 — NOP

55 — EOR — Zero Page, X
56 — LSR — Zero Page. X
57 — NOP

58 — CLI

59 — EOR — Absolute, Y
5A — NOP

5B — NOP

5C — NOP

5D — EOR — Absolute, X

127

SE — LSR — Absolute, X
5F — NOP

60 — RTS
61 — ADC — tIndirect, X)
62 — NOP
63 — NOP
64 — NOP

65 — ADC — Zero Page
66 — ROR — Zero Page
67 — NOP

68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — NOP

6C — JMP — Indirect

6D — ADC — Absolute

6E — ROR — Absolute

6F — NOP

70 — BVS

71 — ADC — (Indirect), Y
72 — NOP

73 — NOP

74 — NOP

75 — ADC — Zero Page. X
76 — ROR — Zero Page, X
77 — NOP

78 — SEI

79 — ADC — Absolute, Y
7A — NOP

78 — NOP

7C — NOP

7D — ADC — Absolute, X NOP
7E — ROR — Absolute. X NOP

7F — NOP
80 — NOP
81 — STA — (ndirect, X)
82 — NOP
83 — NOP

84 —STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — NOP

88 — DEY
89 — NOP
8A — TXA
8B — NOP

8C — STY — Absolute

8D — STA — Absolute
B8E — STX — Absolute

8F — NOP
90 — BCC
91 — STA — (Indirect), Y
92 — NOP
93 — NOP

94 — STY — Zero Page. X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y
97 — NOP

98 — TYA
99 — STA — Absolute, Y
9A — TXS
98 — NOP
9C — NOP
9D — STA — Absofute, X
9E — NOP
9F — NOP

A0 — LDY — Immediate

A1 — LDA — (Indirect, X)
A2 — LDX — Immediate

A3 — NOP

A4 — LDY — Zero Page

A5 — LDA — Zero Page

A6 — LDX — Zero Page

A7 — NOP

A8 — TAY
A9 — LDA — Immediate
AA — TAX
AB — NOP

AC — LDY — Absolute
AD — Absolute

AE — LDX — Absolute
AF — NOP

B0 — BCS

B1 — LDA — (Indirect), Y
B2 — NOP

B3 — NOP

B4 — LDY — Zero Page. X
B5 — LDA — Zero Page. X
B6 — LDX — Zero Page. Y
B7 — NOP

B8 — CLV
B9 — LDA — Absolute, Y
BA — TSX
BB — NOP

BC —LDY — Absolute. X
BD — LDA — Absolute, X
BE — LDX — Absolute, Y
BF — NOP

CO0 — CPY — Immediate
C1 — CMP — (Indirect. X)
C2 — NOP

C3 — NOP

C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC — Zero Page
C7 — NOP

C8 — INY

C9 — CMP — Immediate
CA —DEX

CB —NOP

CC —CPY — Absolute

CD —CMP — Absolute

CE — DEC — Absolute

CF — NOP

DO — BNE

D1 — CMP — (Indirect), Y
D2 — NOP

D3 — NOP

D4 — NOP

D5 — CMP — Zero Page. X
D6 — DEC — Zero Page, X
D7 — NOP

D8 — CLD

DS — CMP — Absolute, Y
DA — NOP

128

DB — NOP

DC —NOP

DD —CMP — Absolute. X
DE — DEC — Absolute, X
DF — NOP

E0 — CPX — Immediate
E1 — SBC — (Indirect. X
E2 — NOP

E3 — NOP

E4 — CPX — Zero Page
ES5 — SBC — Zero Page
E6 — INC — Zero Page
E7 — NOP

E8 — INX

E9 — SBC — Immediate
EA — NOP

EB — NOP

EC — CPX -— Absolute
ED — SBC — Absolute
EE — INC — Absolute

EF — NOP
FO — BEQ
F1 — SBC — (Indirect), Y
F2 — NOP
F3 — NOP
F4 — NOP

F5 — SBC — Zero Page, X
F6 — INC — Zero Page. X
F7 — NOP

F8 — SED
F9 — SBC — Absolute, Y
FA — NOP
FB — NOP
FC — NOP

FD — SBC — Absolute, X
FE — INC — Absolute, X
FF — NOP

IEl

El TEl

el

ey O E1 O 'El O TED OTE) O OJED O O'ED O OTED O TE1 O TEL O TEY O IE! OTEl OIED OTEl TEl TE)

e

ot

LR
)

e A

g B
-
4

129

Table 1: Keyboard Special Locations

Location:
Hex Decimal

Description:

$COPP 49152 -16384 Keyboard Data

$CP1P 49168 -16368 Clear Keyboard Strobe

Table 4: Video Display Memory Ranges

Screen Page Begins at: _ Ends at: _
Hex Decimal Hex Decimal

Text/Lo-Res Primary $400 1024 $7FF 2047
Secondary $800 2048 $BFF 3071

Hi-Res Primary $2000 8192 $3FFF 16383
Secondary $4000 16384 $5FFF 24575

Table 5: Screen Soft Switches
Location: . Description:
Hex Decimal

$CO50 49232 -16304 Display a GRAPHICS mode.
$CO51 49233 -16303 Display TEXT mode.

$C052 49234 -16302 Display all TEXT or GRAPHICS.
$COS53 49235 -16301 Mix TEXT and a GRAPHICS mode.

$COP54 49236 -16300 Display the Primary page (Page 1).
$COA55 49237 -16299 Display the Secondary page (Page 2).

$CP56 49238 -16298 Display LO-RES GRAPHICS mode.
$CO57 49239 -16297 Display HI-RES GRAPHICS mode.

Table 9: Annunciator Special Locations

Address:

Ann. State Decimal Hex

0 off 49240 -16296 $CO58
on 49241 -16295 $C@59

1 off 49242 -16294 $COSA
on 49243 -16293 $COSB

2 off 49244 -16292 $C@sC
on 49245 -16291 $COSD

3 off 49246 -16290 $COSE
on 49247 -16289 $COSF

130

ey 1 ey ey rel

TE!

el el E1 E1 OTED IR (Bl OB O IElOIE OBl OIE OEl OJE [E

e

Table 10: Input/Output Special Locations
Function Addrt;;z:dmal Hex Read/Write
Speaker 49200 -16336 $C@30 R

Cassette Out | 49184 -16352 $C020 R
Cassette In 49256 -16288 $C060 R
Annunciators | 49240 -16296 $CO58 R/W
through through through
49247 -16289 $SCOSF
Flag inputs 49249 -16287 $CO61
49250 -16286 $C062
49251 -16285 $C063
Analog Inputs | 49252 -16284 $Co64
49253 -16283 $CO65
49254 -16282 $C066
49255 -16281 $Co67
Analog Clear | 49264 -16272 $CO70 R/W
Utility Strobe | 49216 -16320 $C040 R

R RE R

Table 11: Text Window Special Locations

Function Locgtion: Min.imum/Normal/ Maximum Value|
Decimal Hex | Decimal Hex
Left Edge 32 $20 | 0/0/39 $0/80/817
Width 33 $21 | 0/40/40 $0/$28/828
Top Edge 34 $22 | 0/0/24 $0/%0/$18
Bottom Edge 35 $23 | 0/24/24 $0/$18/%18

Table 12: Normal/Inverse Control Values

Value:

Decimal Hex Effect:

255 S$FE | COUT will display characters in Normal mode.

63 $3F | COUT will display characters in Inverse mode.

127 $7F | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

VI T\ T - AL LA L1 LA A Lt L L 1}

Table 13: Autostart ROM Special Locations

Location:

Decimal Hex Contents:

1010 $3F2 Soft Entry Vector. These two locations contain

1011 $3F3 the address of the reentry point for whatever
language is in use. Normally contains SE0@3.

1012 $3F4 Power-Up Byte. Normally contains $45.

64367 $FB6F This is the beginning of a machine language

(-1169) subroutine which sets up the power-up location.

131

Table 14: Page Three Monitor Locations
Address: Use:
Decimal Hex Monitor ROM Autostart ROM
1008 $3F0 Holds the address
1009 $3F1 of the subroutine
which handles
None. .
machine language
“BRK’ requests
(normaly $FA59).
igi? ggig None. Soft Entry Vector.
1012 $3F4 | None. Power-up byte.
1013 $3F5 | Holds a ‘‘JuMP” instruction to the
1014 $3F6 | subroutine which handles Applesoft 11
1015 $3F7 | “&” commands. Normaly $4C $58
$FF.
1016 $3F8 | Holds a “‘JuMP” instruction to the
1017 $3F9 | subroutine which handles “‘User”’
1018 $3FA | (CTRLY]) commands.
1019 $3FB | Holds a ‘‘JuMP”’ instruction to the
1020 $3FC | subroutine which handles Non-
1021 $3FD | Maskable Interrupts.
1022 $3FE | Holds the address of the subroutine
1023 $3FF | which handles Interrupt ReQuests.
Table 22: Built-In I/0 Locations
$0 $1 $2 $3 $4 $5 S6 $7 38 $9 SA S$B S$C $D SE SF
$CPPP | Keyboard Data Input
$CO10 | Clear Keyboard Strobe
$CP20 | Cassette Output Toggle
$C030 | Speaker Toggle
$CP40 | Utility Strobe
$COSO | gr | tx | nomix | mix | pri | sec | lores | hires an@ anl an2 an3
$CO60 | cin | pbl pb2 pb3 | ged | gel | ge2 gc3 repeat $CO60-$CO67
$CP70 | Game Controller Strobe
Key to abbreviations:
gr Set GRAPHICS mode tx Set TEXT mode
nomix Set all text or graphics mix Mix text and graphics
pri Display primary page sec Display secondary page
lores Display Low-Res Graphics hires Display Hi-Res Graphics
an Annunciator outputs pb Pushbutton inputs
gc Game Controller inputs cin Cassette Input
132

=1

TEl [E] JE! [El [E] [|E] JE!

E]

[E]

E. [Ej}

1E]

1 JE] 'El TVE! JTEl IE] |E]

$CO80 $CO80 $CP99 $COAD $COBO $COCH $CODO $SCOED SCOFQ
$CO81 $Co81 $CO91 $SCOA1 $COB1 $COC1 $COD1 $SCOE1 $COF1

$C0O82 $C082 $C092 SCOA2 $COB2 $COC2 $COD2 SCOE2 $SCOF2

$CO83 $CO83 $C093 SCOA3 $COB3 $COC3 $COD3 SCOE3 $COF3

$Co84 $CP84 $C0A94 $SCOA4 $COB4 $COC4 $COD4 $SCOE4 $SCOF4
$C08S $CO85 $C@95 $COAS $COBS $COCS5 $CODS $SCOES $COFS
$CH86 $C086 $C096 $SCPA6 $COB6 $COC6 $COD6 SCOE6 $COF6
$Ca87 $Ca87 $C097 SCOAT $COB7 $CocC7 $COD7 $SCOE7 $SCOF7
$CO88 $C088 $CP98 $SCOAS8 $COB8 $COC8 $COD8 SCOES $SCOF8
$CO89 $C089 $C099 SCOA9 $COBY $COCY $CODY9 $SCOE9 $COF9
SCO8A | SCOSA SCH9A SCPAA SCOBA $COCA SCODA SCOEA $SCOFA
$CP8B $CP8B $CP9B SCOAB $CPBB $CACB $CODB SCOEB $SCOFB
$C0O8C $CP8C $CP9C SCOAC $COBC $SCOCC $CODC SCOEC $COFC
$CP8D | $COSD $CE9D $CHAD $CPBD $COHCD $CODD SCOED $C@FD
$CO8E SCPSE SCO9E SCOAE S$COBE S$SCOCE S$SCODE SCOEE $SCOFE
$CO8F SCOSF $C@9F SCOAF $SCOBF $COCF $CODF $COEF SCOFF
i 1/0 Locations

g Table 23: Peripheral Card 1/0 Locations
- S0 $1 $2 $3 %4 S5 $6 $7 S8 %9 SA $B SC SD SE SF
E $CO80 0
SCOAD 2
$SCOBO Input/Output for slot number 3
$CoCo 4
% $CODG 5
SCOEQ 6
SCOFo 7
Table 24: Peripheral Card PROM Locations
% SO0 S10 S20 $30 $40 $50 $60 $70 $80 $90 SAG SBO $SCO SD@ SEQ SF0
$C100 1
$C200 2
$C300 3
% $C400 PROM space for slot number 4
$C500 S
$C600 6
$C700 7
E Table 25: 1/0 Location Base Addresses
’ Base Slot
Address (] 1 2 3 4 S 6 7
-
=

133

o

Table 26: 1/0 Scratchpad RAM Addresses

Base Slot Number

Address | 1 2 3 4 5 6 7

$0478 $0479 $047A $P47B $047C $P47D SO4TE SO4TF
$04F8 $04F9 SP4FA SO4FB $04FC S$P4FD SO4FE SO4FF
$0578 $0579 $657A $057B $057C $@8S7TD S$OSTE S$@STF
$OSF8 $05F9 $OSFA $O5FB $OSFC $OSFD $OSFE $OSFF
$0678 80679 $067A $067B $067C $067D $O6TE SO6TF
$06F8 $06F9 $O6FA $@6FB $P6FC $O6FD SO6FE SO6FF
$0778 $0779 $077A $077B $077C $977D S$O77E S$S@7TF
$O7F8 $O07F9 $O7FA SO7TFB $O7FC S$OTFD S$SOTFE S$OTFF

134

1 JE] 'F1 TE] O IE1 O IE] O E1 O ET O O/E] O JE O E] OIEOIE]OMEY OMEY OIMMEOIEOTEOTEY OB OTEYOIE

THIFHHE

136 AUTOSTART ROM LISTING
~ 155 MONITOR ROM LISTING

T I T

0 1 A0 W ot WL kbl oy 3 Ak Dy A

_L._L_L._L._L._L._L._IL._IZL,LWLVLVLWI:

135

AUTOSTART ROM LISTING

0000C:

Q000

0000:
0000:

[ele]ele)

0000:
0000¢:

0000

0000:

0000

000G
0000:
0000:
0000
0000

0000

0000:
0000:

F800

F200:
F800:
FB00:
F800:
FB800:
FB00:
F800:
FBOO:
FB00:
FB800:
FB8GO0:
F800:
F800:
FB800:
FB00:
FB800.
F800:
F800:
FB800:
F800:
FB800:
F800:
FBO0O:
FB00:
FB0O:
FB00:
FBOO:
F800:
FB800:
FB800:
FB00:
F800:
FB0G:
F800:
FB800:
FB00:
F800:
FB800:
FB800:
FB800:
F800:
F800:
FB800:
F800:
FB00:

F8co

F800:
F800:

2
3
4
5

42

55

59
&0
61
&2
&3
64
&5
=13

7

=33

APPLE 11
MONITOR 1II

COPYRIGHT 1978 BY
APPLE COMPUTER., INC.

ALL RIGHTS RESERVED

STEVE WOZINIAK

Kok % koA ok % A ok % %

#* 3 3t 33t 3

3t

MODIFIED NOV 1978
BY JOHN A
*

R L R ety

ORG $F800

OBJ $2000
Loco EQU %00
LOC1 EGU $01

> WNDLFT EQU $20

WNDWDTH EGU $21
WNDTOP EQU $22
WNDBTM EQU $23
CH EQU %24
cv EQU $25
GBASL EQU $2&6
GBASH EQU $27
BASL EQU 28
BASH EQU %29
BAS2L EQU 24
BAS2H EQU $2B

H2 EQU $2C
LMNEM EQU s$2C
va EQU $2D
RMNEM EQU 2D
MASK EQU $2E

CHKSUM EGU $2E
FORMAT EQU $2E
LASTIN EQU $2F
LENGTH EQU %2F
SIGN EQU $2F
COLOR EQU $30
MODE EQU $31
INVFLG EQU %32
PROMPT EQU %33
Y8AV EQU %34
YSAV1 EQU $35
CSWL EQU $36

CSWH EQU %37
KSWL EQU 38
KSWH EQU $39
PCL EQU $3A
PCH EQU $3B
AlLL EQU $3C
AlH EQU 3D
A2L EQU $3E
AZ2H EQU $3F
A3L EQU $40
A3H EQU $41
ALL EQU $42
AdH EQU $43
ASL EQU %44
ASH EQU %45

136

Ml

1

= ¥

TEl [E1 [E] [E]

1 TE]

{E

E]

L]
'Y

El TE] [El [E] [TE! TE]

[E]

'El |E! 'El1 'E] [El [E]

FE|

BRI e ee

Fg800:
FBGO:
FB800:

FB800

F800:
FB00:
F800:
F8ceC:
FBOO:
FB0O:
F800:
F800:
F800:
FBOO:
FB800:
F800:
FB00:
FBOG:
F800:
FB0O-
F800:
FB00:
F800:
FB00:
FB00:
FB00:
F800:
FB00:

F800

FB00:
F800:
FB0C:
FB800:
FB800:
F800:
FB0G:
F800:
FB00:
F800:
F800:
FB00:
F800:
FB00:
FBOC:
F800:
FB00:
Fe0o0:
F801:
FBga:
F805:
FBOG&:
F808:
FBOA:
F80C:
FBOE:
FB1O:
FB12:
FB14:
FB1&:
FB818:
FB19:
F8i1cC:
FBIE:
F820:
FB21:
F824:
FB2é&:
FB28:
FB2%:
F82c:
FB20:
FBZF:
FEe31:

an
o8
20
28
A9
70
&9
es
Bl
45
25
S1
91
&0
20
c4
BO
ol 5]
20
?0
£9
48
20
68
cS
90
&0

47

OF
o2

2E
26
30
2E
26
)
00
2C
11
OE
Fé
o1

00

5

B8

FB

Fe

Fe

ACC
XREG
YREG
STATUS
SPNT
RNDL
RNDH
PICK
IN
BRKV
SOFTEV
PWREDUP
AMPERV
USRADR
NMI
IRQLOC
LINE1L
MSLOT
I0ADR
KBD
KBDSTRB
TAPEQUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
SETANO
CLRANO
SETAN1
CLRAN1
SETANZ
CLRANZ2
SETAN3
CLRAN3
TAPEIN
PADDLO
PTRIG
CLRROM
BASIC
BASICR2

PLOT

2 RTMASK
> PLOT1L

HLINE
HLINE1

VLINEZ
VLINE

RTES1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQU
EQU
EQU
PAGE
LSR
PHP
JSR
PLP
LDA
BCC
ADC
STA
LDA
EOR
AND
EOR
STA
RTS
JSR
CPY
BCS
INY
JSR
BCC
ADC
PHA
JSR
PLA
CMP
BCC
RTS

$45

$46

47

$48

$49

$4E

$4F

$95

$0200
3F0

$£3F2

$3F4

$3F S
$03F8
$03FB
$3FE

$400
$07F8
$C000
$C000
$C010
$C020
$C030
$C050
$C051
$C052
$C0O53
$C054
$C055
$C056
$C057
$C058
$C059
$C054A
$COS5B
$CO5C
$COS5D
$CO5E
$COSF
$C060
$C0&64
$C070
$CFFF
$E000
$E003

A
GBASCA
#$0F
RTMASK

#$EO
MASK

(GBASL), Y

COLOR
MASK

(GBASL), Y
(GBASL). Y

PLOT
H2
RTS1

PLOT1
HLINE1L
#$01
PLOT

va
VLINEZ

LC

137

NOTE OVERLAP WITH ASH!

NEW VECTOR FOR BRK

VECTOR FOR WARM START

THIS MUST = EOR #$A5 OF SOFTEV+1
APPLESOFT & EXIT VECTOR

FB32:
F834:
F836:
FB38:
F83a:
F83C:
F83E:
FB40:
F843:
FB44:
F846:
Fe47:
FB&7:
FB48:
FB4ae:
FB4E:
F84D:
F84F .
F850:
FEs2:
F854:
FE856.
FB85&:
FE5%:
F85A:
Fes5C:
FB5E:
FBSF -
F861.
FB&2:
F864:
FB8&a:
F868:
F869:
F86A"
FB&B:
FB86C:
FB6E:
F870:
F871:
F872:
F873:
F876:
FB878:
F87%:
FB73:
F87C:
F87D:
FB7E:
FB7F:
F881:
F882:
Fesa:
F884:
FB88&:
F889:
FB8C:
F8BE:
FBeF:
F8%90:
FB92:
F893:
FBe5:
FB897:
FB99:
FB9B:
FB9C:
F89D:
FBAO:
F8A3:
FBAS:
F887:
FBAS:

AO
Do
AD
24
AOQ
AT
85
20
83
10
&0

48
44
29
o]
85
&8
29
50
&S

S

[oZ2}
0A
05
e5
60

5
A2

18
&9
29
25
04
oA
(025}
oA
05
gs
60
44
o8
20
B1
2e
S0
aa

44
4a
29

&0

As
AL
20
20
Al
AB
4a
%0
6A
BO
ce
FO
29
4a
Y
BD
20
DO
AO
A9
Al

oF
oz
27

2D
27

00
30
28

Fé

o3
04

27

18
o
7F

25

30

47
26

04

3A
3B
96
48
34

09

10
A2
ocC
87

b2
79
04
80
00

Fg8

FD
F9

Fo
F8

142

143
144
145
146
147
148
149
150
151
152

CLRSCR

CLRTOP
CLRSC2

LRSC3

el

LDY #$2F
BNE CLRSC2
LDY #3227
STY va

LDY #s27
LDA #£00
STA COLOR
JBR VLINE
DEY

BPL CLRSC3
RTS

PAGE

1
- L

TE1 [El

el

GBASCALC PHA

GBCALC

SETCOL

SCRN

SCRNZ2

RTMSKZ

INSDE!L

INSDE2

IEVEN

ERR

GETFMT

LSR A

AND #$03
ORA #204
STA GBASH
PLA

AND #%18
BCC GECALC
ADC #37F
STA GBASL
ASL A

ASL A

ORA GBASL
STA GBASL
RTS

LDA COLOR
cLe

ADC #$03
AND #$0F
STA COLOR
ASL A

ASL A

ASL A

ASL A

ORA COLOR
STA COLOR
RTS
LSR
PHP
JSR GBASCALC

LDA (GBASL).Y

PLP

BCC RTMSKZ

LSR A

LSR A

LSR A

LSR A [
AND #£0OF —
RTS

PAGE

LDX PCL
LDY PCH
JBR PRYX2
JSR PRBLNK
LDA (PCL, X}
TAY

LSR A

ECC IEVEN
ROR A

BCS ERR
CMP #3A2
BEG ERR
AND #$87
LSR A

TAX

LDA FMT1, X
JSR SCRN2
BNE GETFMT
LDY #%80
LDA #3$00
TAX

ey I E1 1E TE! [IEl

Y
1

|E

e

/E] 'El I1E} 'E]l I|E [E]

TE)

TE

138

R R VI VI U A

F8AA:
FBAD:
FBAF:
FBE1L:
FBB3:
FB8B4:
FB8B&:
FBB7:
FB8B8:
FBBA:
F8BC:
FBBE:
F8BF:
FBC1:
Feca:
FBC2:
FBCS:
FBC&:
F8C8:
FBCY?:
FBCA:
FBCC:
F8CD:
F8D0:
F8Do:
F8D3:

FeDh4

F8b6:
FBDY:
F8DE:
FBDE:
FBEO:
FBEL:
FBE3:
FBES:
FBE7:
FBES:
FBEA:
FBEE:
FBEE:
FBFO:
FBF3:
FBF5:
FBF7:
FBF<:
F8FB:
FBFD:
FBFE:
FBFF:
F901:
FRC3:
FR06:
FR07:
FR09:
F20C:
F9OE:
F?10:
F9i2:
FR14:
FR16:
Fe18:
F91B:
FR1E:
Fo21:
Fe23:
F926:
Fo27:
F929:
Fo2A:
F92B:
FR2D:
F930:
Fe32:

BD
85
29
85
98
29
AA
98
A
EO
FO
an
20
44
4A
09
88

cs
88
DO
60
FF

-

48
B1
20
A2
20
ca
c8
?0

A2

70
68
AB
B9
85
B9
85
AT
AQ
06
26
24
8e
DO
&9
20
CA
DO
20
A4
A2
EO
FO
0&
90
BD
20
BD
FO
20
ca
DO
&0
88
30
20
AS
co

Ab
2E
03

2F

8F

03
8A
OB

o8

20

Fa

FF
82

3A
DA
o1
44

2F

Fi
03
04

2
<

co
2C
00
2D
00
(o)<}
2D

2C

F8
BF
ED

EC
48
2F
06
03
ic
2E
OE
B3
ED
B?
03
ED

E7

E7
DA
2E

EB

Fo

FF

F8

FD

Fo

Fo

Féa

FD

Fo

Fo
FD
Fo

FD

FD

218
21&
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
234
2495
246
247
248
247
250
251
252
253
254
255
256
257
258
259
280
261
262
262
264
265
266
267
268
26°
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

MNNDX 1

MNNDX2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

NXTCOL

PRMNZ2

PRADR1

PRADR2

PRADR3

PRADR4

PRADRS

LDA
STA
AND
STA
TYA
AND
TAX
TYA
LDY
CPX
BEG
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
PAGE
JSR
PHA
LDA
JSR
LDX
JSR
CPY
INY
BCC
LDX
CPY
BCC
PLA
TAY
LDA
STA
LDA
STA
LDA
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JSR
DEX
BNE
JSR
LDY
LDX
CPX
BEG
ASL
BCC
LDA
JSR
LDA
BEG
JSR
DEX
BNE
RTS
DEY
BMI
JSR
LDA
CMP

FMT2, X
FORMAT
#+03

LENGTH

#$8F

#$03
#3$8A
MNNDX3
A
MNNDX3
A

A

#$20

MNNDX2

MNNDX 1
$FF, $FF, $FF
INSDS1

(PCLY, Y
PRBYTE
#$01
PRBL2
LENGTH

PRNTOP
#$03
#$04
PRNTBL

MNEML, Y
LMNEM
MNEMR, Y
RMNEM
#$00
#$05
RMNEM
LMNEM

A

PRMNZ2
#$BF
CcouT

NXTCOL
PRBLNK
LENGTH
#$06

#$03
PRADRS
FORMAT
PRADR3
CHAR1-1, X
couT
CHAR2-1, X
PRADR3
couT

PRADR1
PRADR2
PRBYTE

FORMAT
#$E8

139

F934:
F936&:
Fe38:
F938:
FQ3L:
F93C:
FQ3D:
FQ3F:
F240:
F941:
Fo44:
FR45:
F948:
Fo4A-

F94C

FR4F:
F950"
Fe5a:
FQ53:
F954:
F9556:
Fe5&:
F259:
F95B:
F95C:
FP5E:
FR60:
FP6&1:
Fo62:
FR463:
Fo64:
Fo&5:
Fobé4:
FR&7:
Fo68:
Fos9:
F96h:
F9&B:
FR6&C:
FR&D:
FQbLE:
FR&F:
F70:
Fo71:
Fe72:
F973:
F974:
F75:
F976:
F977:
F978:
Fo79:
F97A:
F97B:
Fe7¢C:
FR7D:
FQ7E:
FI7F:
F?80:
Fo81:
FoB2:
F983:
Fo84:
Fo85:
F986:
Fo87:
Fe8e:
F989:
Fo8A:
F98B:
F28C:
F98D:
F9BE:

B1
90

20
an
Ee
DO
ce
98
20
8A
4c
A2
A9
20
cA
Do
50
38
A5
A4
Al
10
88
55
%0
cs
&0
04
20
54
30
oD
80
04
%0
03
22
54

I}
=

oD
80
04
F0
04

f}
=

54

2
2

oD
80
[e2:3
0
04
20
54
3B
oD
80
04
90
00

22

44
33
oD
ce

00
1
22
44
33
oD

34
Fo

5&

01

DA

DA

-
3

AD
ED
F8
2F
3B
o1

34
01

Fo

FD

FD

FD

288
289
290
291
292
292
294
295
296
297
298
299
300
201
302
203
304
205
306
307
308
30%
310
i1
312
313
314
318
316
317
318
319
320
321
3az

fet=ic]
323

324
325
326
32

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
35¢
351
352
353
254
355
35&
357
358
359
350

RELADR

PRNTYX
PRNTAX
PRNTX

PRBLNK
PRBLZ2
PRBL3

PCADY
PCADJ2
PCADJ3

PCADU4

RTS2
FMT1

LDA
BCC

PAGE

JSR
TAXY
INX
ENE
INY
TYA
JER
TXA
JMP
LDX
LDA
JSR
DEX
BNE
RTS
SEC
LDA
LDY
TAX
BPL
DEY
ADC
BCC
INY
RTS
DFEB
DFB
DFB
DFB
DFBE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFR
DFB
DFE
DFB
DFR
DFE
DFB
DFB
DFB
DFB
DFB

(PCL), Y
PRADR4

PCADJZ

PRNTYX

PRBYTE

PRBYTE
#$03
#$A0
couT

PRBLZ2

LENGTH
PCH

PCADJ4

PCL
RTS2

$04
$20
$54
$30
$0D
$80
$04
$90
$03
$22
$54
$33
$0D
$80
$04
$50
$04
$20
$54
$33
$0D
$80
$04
$90
$04
$20
$54
$3B
$0D
$80
$04
$50
$00
$22
$44
$33
$0D
$C8
$44
$00
$11
$22
$44
$33
$0D

140

MEl TE1 (El1 IE. TIEl

1

1E

E] |E1T IE] [E! [El IE

1

B} IE] 'E} 'E) JEl I|E] IEl E

FE!

LR VO VI VI VO VO e e e

F98F:
F920:
F991:
Fog2:
F993:
Fe24:
F?95:
Fo96&:
Fo97:
Foe8:
F99%:
F99A:
F99B:
FoeC:
Fe9D:
FO9E:
F99F:
FRAD:
FoAl:
FA2:
F9A3:
Foa4d:
F9AS:
FRA&:
FoA7:
FAB:
FoA9:
FAA:
F9AB:
Foac:
F9AD:
FoAE:
FoAF:
F?BO:
F9B1:
F9B2:
F9B3:
FIPB4.
F9BS:
F9B6:
F9B7:
F9BE:
F9B%:
F9BA:
F9BB:
F9BC:
FIBD:
FQBE:
F9BF:
FoCO:
FeC1:
Feca:
FoC2:
FoCc4:
FRC5:
FeC6:

Foc7

Foce:
FoCs:

FaCaA

F9CB:
FoCC:
F9CD:
FeCE:
FSCF:
F9DO:
FoD1:
FoD2:
FoD2:
F9D4:
FoDS:
F9Dé&:
FoDn7:

23

23

361
362
363
364
345
366
367
3568
369
376
371
372
373
374
37%
376
377
378
379
380
381
382
3e3
384
38%5
3Bs
387
288
389
390
391
292
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

i2
412
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
4321
432
433

FMT2

CHAR1

CHARZ2

MNEML

DFB
DFBE
DFB
DFB
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFR
DFB
DFB
DFB

DFB
DFB

DFB
DFE
DFB
DFE
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB

$C8
$44
$AF
$01
$22
$44
$33
$0D
$80
$04
$90
01
$20
%44
$33
$0D
$80
$04
$90
26
$31
$87
$94
$00
$21
81
$82
$00
$00
%59
$4D
$91
$52
86
$44
$85
$9D
$AC
$A9
$AC
$A3
$AB
$A4
$D9
$00
$D8
$A4
$A4

$00
$1C

$£8A
$1C
$23
$5D
$8B
$1B
$A1
$9D
$8A
$1D
%23
$9D
$8B
$1D
A1
%00
$29
$19
$AE
$69
$AB
$19
$23

141

F9D8:
F9D9:
F9DA:
F9DB:
FeDC:
F9DD:
F9DE:
F9DF:
FQEO:
FREL:
FRE2:
FRE3:
F9E4:
FRES:
FREG&:
FRE7:
FQES:
FRES:
FEA:
FQEB:
FQEC:
FRED:
FREE:
FREF:
F9FO:
FoF1:
FoFa:
FIF3:
F9F4:
FF5:
FQF6:
FoF7:
FIF8:
FoF9:
FOFA:
FFB:
FOFC:
FQFD:
FoFE:
FOFF:
FAOOQ:
FAO1:
FAQZ2:
FAD3:
FAO4-
FAOS:
FAO&:
FAO7:
FAOE:
FAO9:
FAOA:
FAOE:
FAQC:
FAOD:
FACE:
FAOF:
FA10:
FALL:
FAal2:
FA13:
FAal4:
FA1S:
FAlG:
FA17:
FAal8:
FA19:
FAlA:
FALB:
FA1C:
FA1D:
FA1E:
FALF:
FA20:

24
52
1B
23
24
53
19
A1
00
1A
5B
SP
AS
&9
24
24
AE
AE
AB
AD
29
00
7¢
00
15
C
&D
9C
AS
&9
29
53
84
13
34
1
AS
&9
23
AO
DE
62
54
48
26
62
94
8e
54
44
ce
54
&8
a3
E8
94
00
B4
oe
84
74
B4
28
&E
74
Fa
cc
4n
72
F2
AG
8A
00

434
43s
436
437
438
439
440
441
442
443
444
445
446
447
448
439
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
47¢
477
a7e
479
48C
481
482
483
484
485
485
ag7
age
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
s05
50&

MNEMR

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFLD
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFE
DFE
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFR
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$24
$£53
$1B
$23
$24
53
$19
$A1
$00
$1A
$5B
$5B
$AS
69
$24
$24
$AE
$AE
$A8
$AD
$29
$00
$7C
$£00
$15
$9C
$6D
$5C
$AS5
$69
$29
$53
$84
$13
$34
$11
$A5
$69
$23
$A0
$DE
$62
£5A
$48
$26
$62
$94
$88
$54
$44
$CB
$54
$68
$44
$EB
$94
$00
$B4
%08
84
$74
$B4
$28
$6E
74
$F4
$CC
$44
$72
$F2
$A4
$8A
$00

142

1

TE. E1 IE TEl TEl Bl TEl 1Bl [E

E1l

v
i

[E

) |E1 'E} |E} [|E} |E] |E)

I'E

LR R RO VR A A

FAZ21:
FaAz22:
FA23:
FA24:
FA25:
FA26:
FAZ27:
FA28:
FA29:
FA2A:
FA2B:
FA2C:
FAZ2D:
FA2E:
FAZF:
FA30:
FA31:
FA32:
FA33:
FA34:
FA3S:
FA36G:
FA37:
FA3B:
FAR9:
FA3A:
FA3B:
FA3C:
FAGD:
FA3E:
FAZF:
FA40:
FA40:
FA4Z:
FA43:
FA44:
FA4S:
FAd4sL:
FA47:
FA49:
FA4C:
FAA4D:
FAS50:
FAS1:
FAS3:
FAS54:
FAS6:
FA59:
FASC:
FASF:
FA62:
Fa&3:
FALS:
FAasL9:
FA&C:
FALF:
FA72:
FA7S:
FA78:
FA7B:
FA7E:
FABL:
FAB2:
FABS:
FABS8:
FABA:
FABD:
FABF:
FA92:
FA94:
FA96:
FA99:
FA9B:

AR
A2
A2
74
74
74
72
44
68
B2
32
B2
00
22
00
1A
1A
26
26
72
72
88
lof:]
c4
cA
26
48
44
4a
az
ce

85
68
48
04
oA
0A
30
&C
28
20
68
85
68
es
6C
20
20
4c
pe
20
20
20
20
AD
AD
AD
AD
AD
2c
D8
20
AD
49
cD
DO
AD
DO
A9
cD
DO
AO

45

03
FE

4c

3A

3B
FO
82
DA
&5

84
oF
93
89
58
sA
5D
5F
FF
10

3A
F3
AS
F4
17
F2
OF
EO
F3
08
03

03

FF

03
F8
FA
FF

FE
FD
FE
FE
co
co
co
co
CF
co

FF
03

03

03

03

507
508
509
510
Si1
512
513
514
515
516
517
518
519
520
S21
sa2
523
524
Sa2%
S26
527
528
529
530
531
532
532
534
535
536
537
53z
539 IRQ
540
541
542
543
544
545
S4&
547 BREAK
548
549
S50
551
552
553
554 OLDBRK
555
55&
557 RESET
55¢
559
560
561
562 INITAN
563
564
565
566
567
568 NEWMON
569
570
571
572
S73
574
575
57&
577
578
579 FIXSEV

DFB $AA

DFB $AZ2

DFB $A2

DFB 74

DFB %74

DFB 74

DFB $72

DFB %44

DFB $68

DFB $B2

DFB $32

DFB $B2

DFBE %00

DFB %22

DFB 00

DFE $1A

DFB $1A

DFB 26

DFB $26

DFB $72

DFE %72

DFB $88

DFB $C8

DFB $C4

DFB #%CA

DFB €2&

DFB $48

DFB %44

DFB $44

DFB $A2

DFB $C8

PAGE

STA ACC

PLA

PHA

ASL A

ASL A

ASL A

BMI BREAK

JMP (IRQLOC)

PLFP

JSR SAV1

PLA

STa PCL

PLA

STA PCH

JMP (BRKV) ; BRKV WRITTEN OVER BY DISK BOOT
JSR INSDS1
JSR RGDSP1
JMP MON

CLD i
JSR SETNORM
JSR INIT
JSR SETVID
JSR SETKBD
LDA SETANO
LDA SETAN1
LDA CLRANZ ANZ TTL LO

LDA CLRAN3 AN3 TTL LO

LDA CLRROM ; TURN OFF EXTNSN ROM
BIT KBDSTRB ; CLEAR KEYBOARD

DO THIS FIRST THIS TIME

ANO
AN1

TTL HI
TTL HI

nwowu

CLD

JSR BELL ; CAUSES DELAY IF KEY BOUNCES
LDA SOFTEV+1 ;IS RESET HI

EOR #$A5 ; A FUNNY COMPLEMENT OF THE
CMP PWREDUP ; PWR UP BYTE 777

BNE PWRUP i NO SO PWRUP

LDA SOFTEV ; YES SEE IF COLD START

BNE NOFIX ; HAS BEEN DONE YET?

LDA #$EO FEcars

CMP SOFTEV+1 ;i 7?7
BNE NOFIX ; YES SO REENTER SYSTEM
LDY #3 i NO SO POINT AT WARM START

143

FASD:
FAAO:
FAAS:
FAAGL:
FAAGL:
FAAG:
FAAT:
FAAB:
FAAE:
FAB1:
FABZ2:
FAB4:
FAB&:
FABS8:
FABA:
FABC:
FABE:
FACO:
FACD:
FAC4:
FAC7:
FACS:
Face:
FACE:
FACF:
FADO:
FADZ:
FADS:
FAD&:
FAD7:
FAD7:
FADA:
FADC:
FADE:
FAEOQ:
FAER:
FAE4:
FAE&L:

FAES

FAEC:
FAEF:
FAF1:
FAF4:
FAF4:
FAFS:
FAFS:
FAFA:
FAFC:
FAFD:
FAFF:
FBO2:
FBOS:
FBO&:
FBO%:
FBOC:
FBOF:
FB11:
FB11:
FB14:
FB16:
FB19:
FB19:
FB1C:
FB1E:
FB21:
FB21:
FB23:
FB24:
FB25:
FB28:
FB2A:
FB2B:
FB2D:

8c
4C
6C

A2
BD
9D
cA
DO
AQ
86
85
AD
cé
AS
(o)
FO
8D
B1
D%
oo
88
88
10
&C
EA
EA

20
AT
es
a9
85
Az
A
20
ED
20
A
20

BS
20
ES
30
60
59
00
20
FF
03
c1
cc
DD

ca
FE
FF

Cc1
DO
AD

AD
EA
EA
BD
10
c8
DO
88

Fa
00
F2

60

05
FC
EF

F7
c8
00
01
07
o1
01
co
D7
Fe
Cco
01
EC

FS
00

BE
45
40
00
41
FB
AQ
ED
1E
ED
BD
ED

aa
DA

EB

FA
EO
FF

FF
DO
o
DB

c2
ca
FF
D8
D3
70
00
64
04

F8

03
EO
03
FB

FaA
03

07

FB

00

FD

FD
Fa
FD

FD

FO

45
00

3c
DO
A0
c1
FF
D%

Cco

co

580
581
582
583
584
585
58&
587
588
589
590
591
592
593
594
595
5986
597
598
599
&00
601
&02
602
&04
605
&06&
607
&08
609
610
611
&le
613
&14
615
616
617
&l
619
&2

621
&22
623
624
625
626
627
628
629

630
631
632
633
&34
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

STY SOFTEV ;i FOR NEXT RESET
JMP BASIC ; AND DO THE COLD START
NOFIX JMP (SOFTEV) ; SOFT ENTRY VECTOR
S B33 3330 36 36 36 36 3 360 3 3 0 33 9 H
PWRUP JSR APPLEIIL
SETPG3 EQU # i SET PAGE 3 VECTORS
LDX #5
SETPLP LDA PWRCON-1,X ;i WITH CNTRL B ADRS
STA BRKV-1,X ; OF CURRENT BASIC

DEX

BNE SETPLP

LDA #3$CB LOAD HI SLOT +1

STX LOCO SETPG3 MUST RETURN X=0

STA LOC1 i SET PTR H
SLooP LDY #7 i Y IS8 BYTE PTR

DEC LOC1

LDA LOC1

CMP #sCO i AT LAST SLOT YET?

BEQ FIXSEV ; YES AND IT CANT BE A DISK
STA MSLOT

NXTBYT LDA (LOCO),Y . FETCH A SLOT BYTE
CMP DISKID-1,Y ; IS IT A DISK 77
BNE SLOOP ; NO SO NEXT SLOT DOWN
DEY
DEY i YES S0 CHECK NEXT BYTE
BPL NXTBYT ;i UNTIL 4 CHECKED
JMP (LOCO)
NOP
NOP
REGDSP MUST ORG $FAD7
REGDSP JSR CROUT
RGDSP1 LDA #%$45
STA A3L
LDA #3$00
STA A3H
LDX #$FB
RDSP1 LDA #$A0
JSR COUT
LDA RTBL-251, X
JSR COUT
LDA #$BD
JER COUT
LDA ACC+5, X
DFB $B5S, $4A
JSR PRBYTE
INX
BMI RDSP1
RTS
PWRCON DW OLDBRK
DFB $00, $EO, $45

DISKID DFB %20, $FF, $00, $FF
DFB $03, $FF, $3C
TITLE DFB %C1, $DO, $DO
DFB $CC, $C5, A0
DFB DD, $DB
XLTBL EQU
DFE $C4, $C2, $C1
DFB $FF, $C3
DFB $FF, $FF, $FF
#* MUST ORG $FB19
RTBL DFB $C1, D8, $D?
DFB $DO, $D3
PREAD LDA PTRIG
LST ON
LDY #%00
NOP
NOP
FREAD2 LDA PADDLO, X
BPL RTS2D
INY
BNE PREADZ2
DEY

144

1
1

=y (el Bl 181 IE1 O O1E]OIED O/E1OIEL O IBOIB OIEOIEY O OIE. OE] OIELOIEY OIEOIEY OIEl OIEl OIE IE

sF

R VT VO A A

FB2E: &0 652 RTS2D RTS

FB2F: A% 00 2 INIT LDA #3$00

FB31: €5 4B a3 STA STATUS

FB33: AD 56 CC 4 LDA LORES

FB3&: AD 54 CO S LDA LOWSCR

FB3%9: AD 51 CO &6 SETTXT LDA TXTSET

FB3C: A% 00 7 LDA #$00

FB3E: FO OB =] BEG SETWND

FB40C: AD 50 CO 9 SETGR LDA TXTCLR

FB43: AD 53 CO 10 LDA MIXSET

FB4&: 20 3& F8 11 JSR CLRTOP

FB4%: A9 14 12 LDA #%14

FB4B: 85 22 12 SETWND STA WNDTOP

FB4D: A9 00 14 LDA #3$00

FB4F: 85 20 i35 STA WNDLFT

FB51: A9 28 16 LDA #328

FB53: 85 21 17 STA WNDWDTH

FBSS: A9 18 18 LDA #318

FBS7: 85 23 1% STA WNDBTM

FB5%: A9 17 20 LDA #3$17

FB5B: 8% 25 21 TABV STA CV

FBSD: 4C 22 FC 22 JMP VTAB

FB&O: 20 88 FC 23 APPLEII JSR HOME i CLEAR THE SCRN
FB63: AO 08 24 LDY #8

FB&S: BY 08 FB 25 STITLE LDA TITLE-1,Y i GET A CHAR
FB&B: 99 OE 04 26 STA LINE1+14,Y

FB&R: 88 27 DEY

FB&4C: DO F7 28 BNE STITLE

FB&E: 60 29 RTS

FB&F: AD F3 03 30 SETPWRC LDA SOFTEV+1

FB72: 4% A5 1 EOR #%A5

FB74: 8D F4 03 32 STA PWREDUP

FB77: 60 32 RTS

FB78. 34 VIDWAIT EQU * ; CHECK FOR A PAUSE
FB78. C9 8D 35 CMP #%8D i ONLY WHEN I HAVE A CR
FB7A: DO 18 36 BNE NOWAIT ; NOT SO, DO REGULAR
FB7C: AC 00 CO 7 LDY KBD i 1S KEY PRESSED?
FB7F: 10 13 38 BPL NOWAIT ; NO

FB81: CO 93 39 CPY #$93 i IS IT CTL 8 7
FB83: DO OF 40 BNE NOWAIT ; NO SO IGNORE

FBBS: 2C 10 CO 41 BIT KBDSTRB i CLEAR STROBE
FBB8: AC 00 CO 42 KBDWAIT LDY KBD i WAIT TILL NEXT KEY TO RESUME
FBBB: 10 FB 3 BPL KBDWAIT ; WAIT FOR KEYPRESS
FB8D: CO 83 44 CPY #$83 i IS8 IT CONTROL C 7
FBBF: FO 03 S BEQ NOWAIT i YES SO0 LEAVE IT
FB?1: 2C 10 CO 46 BIT KBDSTRB i CLR STROBE

FB?4: 4C FD FB 47 NOWAIT JMP VIDOUT i DO AS BEFORE

FB97: 48 PAGE

FB97: 38 49 ESCOLD SEC i INSURE CARRY SET
FB?8: 4C 2C FC S0 JMP ESC1

FBYE: A8 51 ESCNOW TAY i USE CHAR AS INDEX
FB9C: B9 48 FA 52 LDA XLTBL-%C9, Y ; XLATE IJKM TO CBAD
FB9F: 20 97 FB 53 JSR ESCOLD ; DO THIS CURSDR MOTION
FBA2: 20 OC FD 54 JSR RDKEY i AND GET NEXT

FBAS: C9 CE 55 ESCNEW CMP #%CE i IS THIS AN N 2
FBA7: BO EE 56 BCS ESCOLD ; N OR GREATER DO IT
FBA9: C9 C9 57 CMP #3C9 i LESS THAN I 7
FBAB: 90 EA 58 BCC ESCOLD ; YES SO OLD WAY
FBAD: C% CC 59 CMP #%CC i IS IT AL 7

FBAF. FO Eé&6 60 BEG ESCOLD i DO NORMAL

FBE1l: DO EB &1 BNE ESCNOW ;5 GO DO IT

FBB3: EA 62 NCP

FBB4: EA &2 NOP

FBBS: EA b4 NOP

FBB&: EA 65 NOP

FBB7: EA 66 NOP

FBB8: EA &7 NOP

FBB?: EA &8 NOP

FBBA: EA 69 NOP

145

FBBB:
FBBC:
FBBD:
FBBE:
FBBF:
FBCO:
FBC1:
FBC1:
FBC2:
FBC3:
FBCS:
FBC7:
FBCY:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD4:
FBD&:
FBDS8:
FBD?:
FBDB:
FBDD:
FBDF:
FBE2:
FBE4:
FBEG:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
FBFO:
FBF2:
FBF4:
FBFé&:
FBFE:
FBFA:
FBFC:
FBFD:
FBFF:
FCO1:
FCo2:
FCO4:
FCO6&:
Fcos:
FCOA:
FCOC:
FCOE:
FC10:
FCi2:
FC14:
FCié:
FC18:
FC1A:
FC1C:
FCLE:
FC20:
Fcaz2:
FC24:
FCa7:
FC29:
FC2B:
Fcac:
FC2E:
FC30:
FC3z:
FC34:
FC36:
FC38:
FC3A:

EA
EA
EA
EA
EA
EA

48
aa
29
09
e5
68
29
20
&9
85
0A
0A

85
60
ce
DO
A9
20
AO
A9
20
AD
88
DO
60

a4
21
E6
A5
cs
BO
650
cs
BO
A8
10
co
FO
ce
FO
co
DO
ce
10
AS
85
cé
A5
cs
BO
co
AS
20
65
85
60
49
FO
&9
90
FO
69
90
FO

03
04

29

18
o2
7F
28

28
28

87
12
40
AB
co
oc
AB
30

F5

24
28
24
24

21

bbb

AQ
EF

EC
8D
SA
84
5A
88
ce
24
EB
21
24
24
22
25
0oB
25
25
Cc1
20
28

co
28
FD
co
DA
FD
2C
DE

FC

FC
co

FB

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
a7
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

NOP
NCOP
NOP
NOP
NOP
NOP
* MUST OR
BASCALC PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
BASCLC2 STA
ASL
ASL
ORA
STA
RTS
BELL1 CcMP
BNE
LDA
JSR
LDY
BELLZ2 LDA
JSR
LDA
DEY
BNE
RTS2B RTS
PACE
STORADV LDY
STA
ADVANCE INC
LDA
CMP
BCS
RTS3 RTS8
VIDOUT CMP
BCS
TAY
-BPL
cMP
BEQ
cMP
BEG
cMP
BNE
BS DEC
BPL
LDA
STA
DEC
UP LDA
CMP
BCS
DEC
VTAB LDA
VTABZ JER
ADC
STA
RTS4 RTS
ESC1 EOR
BEQ
ADC
BCC
BEG
ADC
BCC
BEQ

G $FBC1

A

#$03
#$04
BASH

#$18
BASCLC2
#$7F
BASL

A

A

BASL
BASL

#4587
RTS2B
#$40
WAIT
#$CO
#$0C
WAIT
SPKR

BELL2

CH
(BASL), Y
CH
CH
WNDWDTH
CR

#$A0
STORADV

STORADY
#$8D

CR

#$8A

LF

#$88
BELL1
CH

RTS3
WNDWDTH
CH

CH
WNDTOP
cv

RTS4

cv

cv
BASCALC
WNDLFT
BASL

#$CO i
HOME i
#$FD i
ADVANCE
BS i
#$FD i
LF i
UP i

146

ESC e ?

IF SO DO HOME AND CLEAR
ESC-A OR B CHECK

Ay
B,

ESC-C OR D CHECK

C.
D,

ADVANCE
BACKSPACE

DOWN
G0 up

Ml ORIl IEl O IEl] O IEI 121 I®1 B 1El (B O I1®1 (B M®E O OIE el O IEO1ElOIElOBEYOIEYOBEY OB

R VIR I O L

FC3C:
FC3E:
FC40:
FC42:
FCa44:
FC4é4:
FCA47:
FC4A:
FC4D:
FCAF:
FCS0:
FCS2:
FC54:
FCS6:
FCS58:
FCSA:
FCS5C:
FCSE:
FC&60:
FC&a:
FC62:
FC&4:
FCbb:
FC&8:
FCoA:
FC&C:
FC&E:
FC70:
FC72:
FC73:
FC76:
FC78:
FC7A:
FC7C:
FC7E:
FCBO:
FC81:
Fca2:
FC84:
FCB&:
FC88:
FC89:
FCBC:
FCBE:
FCR0:
FC91:
FCI3:
FC95:
FC97:
FCPA:
FC9C:
FCIE:
FCAO:
FCA2:
FCA3:
FCAS:
FCA7:
FCAB:
FCAT:
FCAA:
FCAC:
FCAE:
FCAF:
FCB1:
FCB3:
FCB4:
FCB&:
FCB8:
FCBA:
FCBC:
FCBE:
FCCO:
Fcca:

&9
?0
DO
AL
AS
48
20
20
AO
68
69
cS
90
BO
AS
8%
AO
84
FO

A9
85
Eé6
AD
CcS
90
Cé6
AS
48
20
AS
85
AS
e5
Ad
88
68
&9
CcS
BO
48
20
B1
91
88
10
30
AO
20
BO
AL
A9
1
cs
Cc4
90
&0
38
48
E?
DO
68
E?
DO
60
E&
DO
E6
AS
CcS
AS
ES
E6

FD
5C
E?
24
25

24
9E
00

00
a3
FO
CcA
22
25
0o
24
E4

00
24
25
25
23
Bé&
25

22

24
28
2A
29
2B
21

01
23
oD

24
28
2A

Fo
El
00
9E
86
24
AO
28

21
Fo

01
FC

01
Fé

42

43
3C
3E
3D
3F
3C

FC
FC

FC

FC

FC

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
i62
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CLREOP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ
CLEOL2

WAIT
WAIT2
WAIT3

NXTA4

NXTA1

ADC
BCC
BNE
LDY
LDA
PHA
JSR
JSR
LDY
PLA
ADC
CMP
BCC
BCS
LDA
STA
LDY
STY
BEG

#$FD ;
CLREOL
RTS4 ;
CH i
cv

VTABZ
CLEOLZ
#$00

#$00
WNDBTM
CLEOP1
VTAB
WNDTOP
cv
#$00
CH
CLEOP1

PAGE

LDA
STA
INC
LDA
cMP
BCC
DEC
LDA
PHA
JSR
LDA
STA
LDA
STA
LDY
DEY
PLA
ADC
CcMP
BCS
PHA
JSR
LDA
STA
DEY
BPL
BMI
LDY
JSR
BCS
LDY
LDA
STA
INY
CPY
BCC
RTS
SEC
PHA
SBC
BNE
PLA
SBC
BNE
RTS
INC
BNE
INC
LDA
CMP
LDA
SBC
INC

#$00
CH

cv

cv
WNDBTM
VTABZ
cv
WNDTOP

VTABZ
BASL
BAS2L
BASH
BAS2H
WNDWDTH

#$01
WNDBTM
SCRL3

VTABZ
(BASL), Y
(BAS2L) . Y

SCRL2
SCRL1
#$00
CLEOLZ
VTAB

CH

#$A0
(BASL), Y

WNDWDTH
CLEOL2

#$01
WAIT3

#$01
WAIT2

AL
NXTA1L
AdH
AlL
A2L
AlH
A2H
AlL

147

ESC—-E OR F CKECK

E, CLEAR TO END OF LINE
ELSE NOT F,RETURN

ESC F IS CLR TO END OF PAGE

FCC4:
FCC6:
FCc8:
FCCY:
FCCY:
FCCB:
FCCE:
FCDO:
FCcDa2:
FCD4:
FCDé&:
FCD®%:
FCDA:
FCDB:
FCDC:
FCDE:
FCEO:
FCE2:
FCE3:
FCES:
FCEB:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCF2:
FCF3:
FCF4:
FCFé&:
FCF7:
FCF9:
FCFA:
FCFD:
FCFE:
FDO1:
FDO3:
FDOS:
FDO7:
FDO%:
FDOB:
FDOC:
FDOE:
FD10:
FD11:
FD13:
FD15:
FD17:
FD18:
FD1B:.
FD1D:
FD1F:
FD21:
FD24:
FD264:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:

DO
E&
60

AO
20
DO
69
BO
AO
20
ce
ce
88
DO
20
AO
88
DO
AC
AO
CcA
60
A2
48
20
&8
2A
AO
cA
jale]
60
20
88
AD
45
10
45
85
co
&0
Al
B1
48
29
09
91
68
&C
E6
DO
Eé6
2c
10
91
AD
2c
60
20
20
20
ce
FO
&0

AS
48
A9
85
BD
20
68
85

o2
3D

4B
DB
Fo
FE
Fs
21

DB

FD
05
32

FD
20

),
=

08

FA

3A
F5
FD

60
2F
F8
aF
2F
80

24
28

3F
40
28

38
4E
oz
4F
00
FS

-
=4

00
10

ocC
AS
ocC
@B
F3

FF
32

ED

32

FC

FC

Cco

FC

FC

co

00

co

co
co

FD
FB
FD

o2

FD

216
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
259
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

RTS4B

HEADR

WRBIT

ZERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT2

RD2BIT
RDBIT

RDKEY

KEYIN

KEYIN2

ESC

RDCHAR

NOTCR

BNE
INC
RTS
PAGE
LDY
JSR
BNE
ADC
BCS
LDY
JSR
INY
INY
DEY
BNE
BCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSR
PLA
ROL
LDY
DEX
BNE
RTS
JSR
DEY
LDA
EOR
BPL
EOR
STA
CPY
RTS
LDY
LDA
PHA
AND
ORA
STA
PLA
JMP
INC
BNE
INC
BIT
BPL
STA
LDA
BIT
RTS
JSR
JSR
JSR
CMP
BEQ
RTS
PAGE
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA

RTS4B
AlH

#$4B
ZERDLY
HEADR
#$FE
HEADR
#5221
ZERDLY

ZERDLY
WRTAPE
#$32

ONEDLY
TAPEOUT
#$2C

#308
RD2BIT

A
#$3A

RDBYT2
RDBIT

TAPEIN
LASTIN
RDBIT
LASTIN
LASTIN
#$80

CH
(BASL). Y

#$3F
#$40
(BASL), Y

(KSWL)
RNDL
KEYIN2
RNDH
KBD i
KEYIN

(BASL)., Y
KBD
KBDSTRB

RDKEY
ESCNEW
RDKEY
#$9B
ESC

INVFLG
HEFF
INVFLG
IN, X
couT

INVFLG

148

READ KEYBOARD

IEFl1 'E! 1El |EL 'E] 1E. 1B}l 1E. [F] IE [EFl IE [El IF]l I1F1 IFlL IF.

1E]

Fl IEF} 'El 1Fl

'E

LU VBB VOV O O O O

FD4D:
FD50:
FDS2:
FD54:
FD5é:
FD58:
FD5A:
FD5C:
FD5F:
FD&O:
FD&2:
FD&4:
FD&7:
FD6A:
FD&C:
FD&F :
FD71:
FD72:
FD74:
FD75:
FD78:
FD7A:
FD7C:
FD7E:
FDBO:
FD82:
FD84:
FD87:
FD89:
FD8B:
FDEE:
FD90:
FD92:
FD%94:
FD96&:
FD99:
FD9C:
FD9E:
FDAO:
FDAZ:
FDAZ:
FDAS:
FDA7:
FDAS:
FDAB:
FDAD:
FDAF:
FDB1:
FDB3:
FDBé&:
FDB8:
FDEB:
FDBD:
FDCO:
FDC3:
FDCS:
FDCé6:
FDC7:
FDCY:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDDé&:
FDD9:
FDDA:
FDDB:
FDDC:
FDDD:
FDDE:

00
88
iD
o8
0A
F8
03
3A

i3
DC
ED
8E
33
ED
o1

F3

35
95
o2
28
EO

-
<

DF
00
8D
B2
?C
8D
SB
3D
3C
8E
40
00
AD
ED

3C
07
3E
3D
3F
3C
07
03
92
AO
ED
3C
DA
BA
ES

EA

3E
o2
FF
3c

BD
ED

oz

FF

FD
FD

FD

FD

FC

FD

F?

FD

FD

FD

FD
FC

FD

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
219
320
321
322
323
324
325
326
327
328
329
330
331
232
333
334
335
3386
337
338
339
340
341
342
343
344
345
344
347
34
349
350
351
352
353
354
355
356
357
358
359
360
361

NOTCR1

CANCEL

GETLNZ

GETLN

BCKSPC

NXTCHAR

CAPTST

ADDINP

CROUT

PRA1

PRYX2

XAMB

MOD8CHK

XAM
DATAOUT

RTS4C
XAMPM

ADD

PRBYTE

LDA
cMP
BEQ
cMP
BEG
CPX
BCC
JSR
INX
BNE
LDA
JER
JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
BNE
LDA
CMP
BCC
AND
STA
CMP
BNE
JER
LDA
BNE
LDY
LDX
JSR
JER
LDY
LDA
JMP
PAGE
LDA
ORA
STA
LDA
sSTA
LDA
AND
BNE
JSR
LDA
JSR
LDA
JSR
JSR
BCC
RTS
LSR
BCC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JER
PLA
PHA
LSR
LSR
LSR
LSR

IN, X
#3$88
BCKSPC
#$98
CANCEL
#$F8
NOTCR1
BELL

NXTCHAR
#$DC
couT
CROUT
PROMPT
couTt
#$01

GETLNZ

RDCHAR
#$95
CAPTST
(BASL), Y
#$EO
ADDINP
#$DF i
IN, X
#$8D
NOTCR
CLREOL
#$8D
couT
ALH

AlL
CROUT
PRNTYX
#£00
#$AD
couT

AlLL
#3807
AL

AlH

A2H

AlL
#$07
DATAQUT
PRA1
#5A0
couT
(ALIL), Y
PRBYTE
NXTAL
MOD8CHK

A
XAM
A

A
A2L
ADD
#SFF
AlL

#$BD
couT

>>>>

149

SHIFT TO UPPER CASE

FDDF:
FDEZ2:
FDE3:
FDES:
FDE7:
FDE®:
FDEB:
FDED:
FDFO:
FDF2:
FDF4:
FDFé&:
FDF8:
FDF9:
FDFC:
FDFD:
FDFF:
FEOO:
FEGG:
FEO2:
FEO4:
FEOS:
FEO7:
FEO9:
FEOB:
FEOD:
FEOF:
FE11:
FE13:
FE1S5:
FEL17:
FE18:
FE1A:
FE1D:
FELF:
FE20:
FE22:
FE24:
FE26:
FE28:
FE29:
FE2B:
FE2C:
FE2E:
FE3O0:
FE33:
FE35:
FE36:
FE38:
FE3A:
FE3C:
FE3F:
FE41:
FE44:
FE46:
FE49:
FE4B:
FE4E:
FESO:
FES53:
FESS:
FES8:
FESB:
FESD:
FESE:
FE61:
FE&3:
FE&4:
FE&L7:
FE&A:
FE&C:
FEGE:
FE&F:

20
68
29
09
co
20
69
6C
ce
{0
25
84
48
20
68
A4
60

co
Fo
cA
Do
)
Do
85
AS
91
E6
DO
E6
60
A4
B9
8s
60
A2
BS
95
95
cA
10
50
31
91
20
50
60
B1
D1
FO
20
B1
20
A9
20
A9
20
B1
20
)
20
20
90
&0
20
A9
a8
20
20
85
84
68
as

ES

OF
BO
BA
o2
06
36
AD
02
32
35

78

35

34
SF

16
BA
BB
31
3E
40
40
o2
41

34
FF
31

o1
3E
42
44

F7

3C
42
B4
F7

3C
42
icC
92
3C
DA
AO
ED
AB
ED
42
DA
AQ
ED
B4
D%

75
14

Lo
53
3A
3B

FD

o¢

FB

01

FC

FD

FD

FD

FD

FD

FD

FC

FE

F8
F9

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
280
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

PRHEX
PRHEXZ

couT
CoOuT1

couTz

BL1

BLANK

STOR

RTSS
SETMODE

SETMDZ

LT
LT2

MOVE

VFY

VFYOK

LIST

LIsT2

JSR
PLA
AND
ORA
cMP
BCC
ADC
JMP
CMP
ECC
AND
sTY
PHA
JSR
PLA
LDY
RTS
PAGE
DEC
BEQ
DEX
BNE
cMpP
BNE
STA
LDA
STA
INC
BNE
INC
RTS
LDY
LDA
STA
RTS
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
STA
JSR
cc
RTS
LDA
CcMP
BEG
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JER
LDaA
JSR
JSR
BCC
RTS
JER
LDA
PHA
JSR
JSR
STA
STY
PLA
SEC

=
Y

PRHEXZ

1
L

IE

#$0F
#$BO
#$BA
couT
#$06
(CSWL)
H$AO
couTz
INVFLG
YSAV1

E]1 [E)

ME1

VIDWAIT i GO CHECK FOR PAUSE

1
'

IE

YSAV1

1

YSAV
XAMB

E

i

SETMDZ
#$BA
XAMPM
MODE
A2L
(A3L), Y
A3L
RTSS
A3H

El IE

1E

YSAV
IN-1,Y
MODE

IE]

IE

#301

A2L, X
AdL, X
ASL, X

NE}

LT2

(A1L), Y
(A4L), Y
NXTA4
MOVE

1E}

(ALL), Y
(A4L), Y
VFYOK
PRA1
(ALL) Y
PRBYTE
#$A0
couT
#$A8
couT
(A4L), Y
PRBYTE
#$A9
couT
NXTA4
VFY

'EFl1 |E, 'Ei1 E|

T1E]

A1PC
#814

El

INSTDSP
PCADJ
PCL
PCH

El IE]

150

LS A T 4 A M M A A H

FE70: E9 O1 435 SBC #$01

FE72: DO EF 43& BNE LISTZ2
FE74: &0 437 RTS

FE75: 432 PAGE

FE75: BA 439 ALPC TXA

FE7&: FO 07 440 BEQ A1PCRTS
FE78: BS 3C 441 ALPCLP LDA AlL, X
FE7A: 95 3A 442 STA PCL, X
FE7C: CA 443 DEX

FE7D: 10 F9 444 BPL A1PCLP
FE7F: &0 445 A1PCRTS RTS

FEBO: AO 3F 446 SETINV LDY #$3F

FE8B2: DO 02 447 BNE SETIFLG
FEB4: AO FF 448 SETNORM LDY #$FF

FEB&: 84 32 449 SETIFLG STY INVFLG
FEBB: &0 450 RTS

FEB?: A9 00 451 SETKBD LDA #3$00

FEBB: 85 3E 452 INPORT STA A2L

FEBD: A2 3B 453 INPRT LDX #KSWL
FEBF: AOQ 1B 454 LDY #KEYIN
FE?1: DO 08 455 BNE IOPRT
FE93: A9 00 4546 SETVID LDA #%00

FE®5: 85 3E 457 OUTPORT STA A2L

FE?7: A2 36 458 OUTPRT LDX #CSWL
FE?9: AQ FO 459 LDY #COUT1
FE9B: AS 3E 460 IOPRT LDA A2L

FE®D: 29 OF 461 AND #$0F

FE9F: FO 06 462 BEQ IOPRT!
FEALl: 09 CO 463 ORA #I0ADR/256
FEA3: A0 00 464 LDY #$00

FEAS: FO 02 465 BEG IOPRT2
FEA7: A9 FD 466 IOPRT1 LDA #COUT1/256
FEAZ: 467 I0PRT2 EQGQU #

FEAS: 94 00 468 STY LOCO, X i %94, $00
FEAB: 95 01 469 STA LOCL1, X ; %95, %01
FEAD: 60 470 RTS

FEAE: EA 471 NOP

FEAF: EA 72 NOP

FEBO: 4C 00 EO 473 XBASIC JMP BASIC
FEB3: 4C 03 EO 474 BASCONT JUMP BASIC2

FEB&: 20 75 FE 475 GO JER A1PC
FEBY: 20 3F FF 476 JSR RESTORE
FEBC: &C 3A 00 477 JMP (PCL)
FEBF: 4C D7 FA 478 REGZ JMP REGDSP
FEC2: &0 479 TRACE RTS

FEC3: 480 # TRACE IS GONE
FEC3: EA 481 NOP

FEC4: 60 482 STEPZ RTS i STEP IS GONE
FECS: EA 483 NOP

FEC6: EA 484 NOP

FEC7: EA 485 NOP

FECB: EA 486 NOP

FEC?: EA 487 NOP

FECA: 4C F8 03 488 USR JMP USRADR
FECD: 489 PAGE

FECD: A% 40 490 WRITE LDA #$40
FECF: 20 C% FC 491 JSR HEADR
FED2: A0 27 492 LDY #327
FED4: A2 00 493 WR1 LDX #%00
FED&é: 41 3C 434 EOR (AlL, X}
FEDB: 48 495 PHA

FED?: Al 3C 496 LDA (AlL., X)
FEDB: 20 ED FE 497 JSR WRBYTE
FEDE: 20 BA FC 498 JSR NXTA1
FEE1l: A0 1D 499 LDY #$1D
FEE3: 68 500 PLA

FEE4: 90 EE 501 BCC WR1
FEE6: AO 22 502 LDY #322
FEEB: 2C ED FE 503 JSR WRBYTE
FEEB: FO 4D 504 BEG BELL
FEED: A2 10 505 WRBYTE LDX #%$10
FEEF: 0A 506 WRBYT2 ASL A

FEFO: 20 D& FC 507 JSR WRBIT

151

FEF3:
FEFS:
FEFé&:
FEF9:
FEFA:
FEFB:
FEFD:
FFOO:
FFo2:
FFOS5:
FFO7:
FFOA:
FFOC:
FFOF:
FF11:
FF14:
FF16:
FF19:
FF1B:
FF1D:
FF1F:
FFa22:
FF24:
FF26:
FF29:
FFaB:
FF2D:
FFaF:
FF32:
FF34:
FF37:
FF3A:
FF3C:
FF3F:
FF3F:
FF41:
FFa42:
FF44:
FFa6:
FF48:
FFa9:
FF4A:
FFa4cC:
FF4E:
FF50:
FFS1:
FFS2:
FF54:
FFS55:
FFS7:
FFS58:
FFS9:
FFSC:
FFSF:
FF62:
FF&S:
FF&5:
FF&6:
FF&9:
FF6B:
FF&D:
FF70:
FF73:
FF76:
FF78:
FF7A:
FF7B:
FF7D:
FF80:
FFB2:
FFB85:
FF87:
FFBA:

DO
&0
20
68
68
DO
20
A9
20
85
20
AO
20
BO
20
AO
20
81
45
85
20
AO
90
20
o3+
FO
AQ
20
A9
20
20
%4
4C

AS
48
AS
A&
A4

-
<

&0
85
86
84
o8
68
85
BA
86
oe
&0
20
20
20
20

D8
20
A9
85
20
20
20
84
AQ
88
30
D
DO
20
AL
4C
A2

FA

00

6C
FA
16
co
2E
Fa
24
FD
Fo
FD
3B
EC
ac
2E
2E
BA
35
FO
EC
26
oD
cs
ED
D2
ED

87
ED

48

45
46
47

45
46
47

48

49

84
2F
93
89

3A
AA
33
&7
c7
A7
34
17

E8
cc
F8
BE
34
73
03

FE

FC

FC

FC

FC

FC

FC

FC

FC

FD

FD
FD

FD

FE
FB
FE
FE

FF

FD
FF
FF

FF

FF

FF

508
509
510
511

512
513
514
515
516
517
518
519
520
521

Saz
S22
Sa4
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
5432
544
545
546
547
548
549
550
551
552
5523
554
555
556
557
558
559
560
561
S62
563
564
565
566
567
568
569
57C
571
572
573
574
575
57&
577
578
579
580

CRMON

READ

RD3

PRERR

BELL

RESTORE

RESTR1

SAVE
SavV1

OLDRST

MON

MONZ

NXTITM

CHRSRCH

DIG

BNE
RTS
JSR
PLA
PLA
BNE
JSR
LDA
JSR
STA
JSR
LDY
JER
BCS
JSR
LDY
JSR
STA
EOR
STA
JER
LDY
BCC
JSR
CcMP
BEQ
LDA
JSR
LDA
JSR
JER
LDA
JMP

WRBYT2

BL1

MONZ
RD2BIT
#$16
HEADR
CHKSUM
RD2BIT
#$24
RDBIT
RD2
RDBIT
#€3B
RDBYTE
(AlL, XD
CHKSUM
CHKSUM
NXTAL
#$35
RD3
RDBYTE
CHKSUM
BELL
#$CS
couT
#8D2
couT
CouT
#$87
couT

PAGE

LDA
PHA
LDA
LDX
LDY
PLP
RTS
STA
STX
sTY
PHP
PLA
STA
TSX
STX
CLD
RTS
JSR
JSR
JSR
JSR

PAGE

cLD
JSR
LDA
STA
JSR
JSR
JSR
STY
LDY
DEY
BMI
CcmpP
BNE
JSR
LDY
JMP
LDX

STATUS

ASH
XREG
YREG

ASH
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKBD

BELL
#EAA
PROMPT
GETLNZ
ZMODE
GETNUM
YSAYV
#$17

MON
CHRTBL., Y
CHRSRCH
TOSUB
YSAY
NXTITM
#3$03

152

Al
A

[E1 [E1 [F] [F.

1
i1

IE

1 [F]

IE

[E]

L

1

El B [El [E [F] [E

1
i

Bl |E] [Fl |E

E)

¥l IF)

[] 4
¥

O A A e e

FFB8C:
FFB8D:
FFBE:
FFBF:
FF<Q0:
FF91:
FF93:
FF95:
FFQ6:
FFe8:
FF9A:
FFaC:
FFeC:
FF9E:
FF9E:
FFAO:
FFAO:
FFAZ2:
FFA3:
FFAS:
FFA7:
FFAS:
FFAB:
FFAD:
FFBO:
FFB1:
FFB3:
FFBS:
FFB7:
FFBY:
FFBB:
FFBD:
FFBE:
FFCO:
FFC1:
FFC4:
FFCS:
FFC7:
FFC%:
FFCB:
FFCC:
FFCC:
FFCD:
FFCE:
FFCF:
FFDO:
FFD1:
FFD2:
FFD23:
FFD4:
FFDS:
FFDé&:
FFD7:
FFD8:
FFD9:
FFDA:
FFDB:
FFDC:
FFDD:
FFDE:
FFDF:
FFEO:
FFEL:
FFE2

FFE3:
FFE4:
FFES:
FFE6:
FFE7:
FFEB:
FFE®:
FFEA:
FFEB:

oA
OA
0A
0A
0A
26
26
Ca
10
AS
DO

BS

95

95
==
Fo
DO
A2
86
86
B9
c8
49
oL
90
69
o]
BO
&0
A9
48
B9
48
AS
A0
84
60

BC
B2
BE
B2
EF
c4

fe)
2

A9
BE
a6
a4
06
95
07
o2
05
Fo
00
EB
53
A7
co
9%

-
=4

ce
BE
Cct
35
8c
ca
96
AF

3E
3F

F8
31
06

3F

3D

41

F3
06
00
3E
3F
00

BO
0A
D3
88
Fa
CcD

FE
E3
31

00
31

FF

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
&02
603
604
605
606
607
608
609
610
611
&12
613
614
615
&16
617
&18
619
620
621
622
623
624
625
626
627
628
629
630
&31
632
&332
634
635
636
&37
638
639
&40
641
642
642
644
645
646
647
648
649
650
651
&52
653

NXTBIT

NXTBAS

3*

¥*

3*

NXTBS2

GETNUM

NXTCHR

TOSUB

ZMODE

CHRTBL

SUBTBL

ASL
ASL
ASL
ASL
ASL
ROL
ROL
DEX
BPL
LDA
BNE

LDaA

STA

STA
INX
BEQ
BNE
LDX
STX
STX
LDA
INY
EOR
cMP
BCC
ADC
CcMP
BCS
RTS
LDaA
PHA
LDA
PHA
LDA
LDY
STY
RTS
PAGE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

>>>DPD

A2L
A2H

NXTBIT

MODE

NXTBS2

AZ2H, X

AlH, X

A3H, X

NXTBAS
NXTCHR

#$00
A2L
A2H
IN, Y

#$BO
#$0A
DI¢
#$88
#EFA
DIe

#60/256

SUBTBL., Y

MODE
#$00
MODE

$BC
$B2
$BE
$B2
$EF
$C4
$B2
$A%
$BB
$AL
$A4
$06&6
%95
$07
$02
$05
$FO
$00
$EB
$92
A7
$C6
$95
$B2
*C9
$BE
$C1
$35
$8C
$C4
$96
$AF

P

i

153

T CMD NOW LIKE USR

S CMD NOW LIKE USR

FFEC:
FFED:
FFEE:
FFEF:
FFFO:
FFF1:
FFF2:
FFF3:
FFFa4:
FFFS:
FFF&:
FFF7:
FFF8:
FFF9:
FFFA:
FFFC:
FFFE:

ENDASM

17
17
2B
1F
83
7F
5D
cc
BS
Fe
17
17
F5
03
FB 03
62 FA
40 FA

DFB
DFB
DFB
DFEB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DW

DW

Du

$17
%17
$2B
$1F
%83
$7F
$5D
$CC
$BS
$FC
$17
$17
sFS
$03
NMI
RESET
IRQ

154

e

IE TE] TE: (E] E IE) IE [EY IE TEY 1E) IE)

) E) 'EFI EI 'E) 1E E) E |E

mr

.

OO VR I O R N A A

MONITOR ROM LISTING

POV UL W N

el el e S S SRV

oo ULTLUVI LU
W RGOS Ul

oo
o\

oo o
o~

Akkhkkkkkkk kR kA X AKX KKK KA X Kk *

L N A

*

"APPLE II SYS

* APPLE II
* SYSTEM MONITCR
*
* COPYRIGHT 1977 BY
* APPLE COMPUTER, INC.
*
* ALL RIGHTS RESERVED
*
* S. WOZNIAK
* A. BAUM
*
kAKX hkhk kA hkhhhkrhkhhkhhhkhkkhhhkhhh
TITLE
LCCu EPZ $Q0
LCC1 EPZ $01
WNDLFT EPZ $20
WNDWDTH EPZ $21
WNDTCP EPZ $22
WNDBTM EPZ $23
CH P2 $24
cv EPZ $25
GBASL EFZ $26
GBASH EPZ $27
BASL EPZ $28
S3ASH EPZ $29
3AS2L EPZ $2A
BAS 2H $28B
H2 $2C
LMNEM $2C
RTNL $2¢C
| $2D
$2D
$2D
MASK $2E
CHKSUM $2E
FORMAT S$2E
LASTIN $2F
LENGTH $2F
SIGN $2F
COLOR $30
MCDE $31
INVFLG 332
PROMPT $33
YSAV $34
YSAVL $35
CSWL $36
CSWH $37
XSWL $38
$39
$3A
S3B
$3C
$3C
$3D
$3E
$3F
$40
$41
$42
$43
$44
$45
cC $45
XREG $46
YREG $47
STATUS $48

155

MONITOCI

ol

<

Fguiu:
Fgul:
Fsu2:
F3u5:
FBU6:
Fgugd:
FusoaA:
F30C:
FS80E:
F810:
F812:
Fgl4:
F3l6:
F818:
F819:
F81C:
F8lE:
F820:
Fg821:
F824:
F826:
Fg828:
F829:
F82C:
F82D:
F82F:
Fg3l:
F832:
F834:
F836:
F838:

F83A:
F383C:
F83E:
F840:
Fg843:
F844:
Fg46:
F847:
F848:

4A
U3
20
28
AS
S0
69
85
Bl
45
25
51
91
60
20
Cc4
BO
Cc8
20
90
69
48
20
68
C5
90
60
AU
DO
AQ
84

A0
A9
85
20
88
10
60
48
4A

0o

2D
F5

2F
02
27
2D

27
00
30
28

F6

F8

F8

F8

F8

69
70
71

73
74
75
70
77
78
79
80
81
82
83
84
85
86
87
88
89
9J
91
92
93
94
95
96
97
98

1Cu
10l
102
1u3
1u4
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
12v
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

SPNT
RNDL
RNDH
ACL
ACH
XTNDL
XTNDH
AUXL
AUXH
PICK
IN
USRADR
NMI
IRQLOC
ICADR
KBD
KBDSTRB
TAPEOUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LCRES
HIRES
TAPEIN
PADDLO
PTRIG
3A5IC
BASIC2

PLOT

RTMASK
PLOTI1

HLINE
HLINE1

VLINEZ
VLINE

RTS1
CLRSCR

CLRTOP
CLRSC2

*

CLRSC3

GBASCALC

$49
S4E
$4F
$50
$51
$52
$53
$54
$55
595
$0200
SO03Fs
S03FB
$03FE
$C000
sCuuo
sCo10
$C020
$CO030
$SCU50
$CO51
$C052
$CO53
$C054
$C055
SCu56
$C057
$CCoeu
5C064
$CO70
SECO0
SEQU3
SF800
A

GBASCALC

#SC0F
RTMASK
#SEU
MASK
(GBASL) ,
CCOLOR
MASK
(GBASL) ,
(GBASL) ,

PLOT
H2
RTS1

PLOT1
HLINE1
#501

PLOT

v2
VLINEZ

#$2F
CLRSC2
#$27
v2

#9527
#$0
COLOR
VLINE

CLRSC3

156

ROM START ADDRESS
Y-COORD/2

SAVE L3B IN CARRY

CALC BASE ALR IN GBASL,H
RESTORE.LSB FRCM CARRY
MASK $OF IF EVEN

MASK $FO IF ODD

Y DATA
XOR CCLOR
AND MASK
Y XOR DATA
Y TO DATA

PLOT SQUARE
DONE?

YES, RETURN

NO, INCR INDEX (X-COORD)
PLOT NEXT SQUARE
ALWAYS TAKEN
NEXT Y-COORD

SAVE ON STACK

PLOT SQUARE

DONE?
NO, LOOP.

MAX Y, FULL SCRN CLR
ALWAYS TAKEN
MAX Y, TOP SCRN CLR
STORE AS BOTTOM COORD

FOR VLINE CALLS
RIGHTMOST X-COORD (COLUMN)
TOP COORD FOR VLINE CALLS
CLEAR COLOR (BLACK)
DRAW VLINE
NEXT LEFTMOST X-COORD
LOOP UNTIL DONE.

FOR INPUT O0OODEFGH

1 1Ei 1E 1E 1E e e 1¥ 1= IF i 2 1= 1= e

"El 1¥) iy 7] 1F1 1} 71 19 i 2

P
— F849: 29 03 143 AND #503
o o- FE48: 09 U4 144 ORA 4504 GENERATE GBASH=000001FG
- F84D: 85 27 145 STA GBASH
F84F: 68 146 PLA AND GBASL=HDEDE000
— F850: 29 18 147 AND 4518
- F352: 90 02 148 BCC GBCALC
F854: 69 7F 149 ADC #S7F
— F856: 85 26 150 GBCALC STA GBASL
minil F858: UA 151 ASL A
F859: 0A 152 ASL A
e F85A: 05 26 153 ORA GBASL
iy F85C: 85 26 154 STA GBASL
- F85E: 60 155 RTS
Fd5F: A5 34 156 NXTCOL LDA COLOR INCREMENT COLOR BY 3
——] F86l: 18 157 CLC
il Fd62: 69 U3 158 ADC 4503
F&64: 29 OF 159 SETCOL AND $$0F SETS COLOR=17*A MOD 16
_— F866: 35 30 160 STA COLOR
- F863: UA 161 ASL A BCTH HALF BYTES OF COLOR EQUAL
- F869: UA 162 ASL A
F86A: UA 163 ASL A
E F86B: UA 164 ASL A
F86C: US 30 165 CRA COLOR
F86E: 85 30 166 STA COLOR
F870: 60 167 RTS
E F371: 4A 168 SCRN LSR A READ SCREEN Y-COORD/2
F872: 08 169 PHP SAVE LSB (CARRY)
F873: 20 47 F8 170 JSR GBASCALC CALC BASE ADDRESS
:::i F876: Bl 26 171 LDA (GBASL),Y GET BYTE
- F878: 28 172 PLP RESTORE LSB FRCM CAKRY
F379: 90 04 173 SCRN2 BCC RTMSKZ IF EVEN, USE LO H
F87B: 4A 174 LSR A
E F87C: 4A 175 LSR A
F87D: 4A 176 LSR A SHIFT HIGH HALF BYTE DCWN
FB7E: 4A 177 LSR A
E F37F: 29 OF 178 RTHUSKZ AND $SOF MASK 4-BITS
F83l: 60 179 RTS
F382: A6 3A 180 INSDS1 LDX PCL PRINT PCL,H
% F884: A4 3B 181 LDY PCH
F866: 20 96 FD 182 JSR PRYX2
F889: 20 48 F9 183 JSR PRBLNK FOLLOWED BY A BLANK
F88C: Al 3A 184 LDA (PCL,X) GET OP CGDE
oM F43E: A 185 INSDS2 TAY
F33F: 4A 136 LSR A EVEN/ODD TEST
F890: 90 09 187 BCC IEVEN
F892: 62 188 ROR A 3IT 1 TEST
F893: BO 10 189 BCS ERR XXXXXX11 INVALID OP
F895: CG A2 190 CMP #$A2
- F§97: FO UC 191 BEQ ERR OPCODE $89 INVALID
F899: 29 37 192 AND #$87 MASK BITS
F89B: 4A 193 IEVEN LSR A LSB INTO CARRY FCR L/R TEST
F89C: AA 194 TAX
F§9D: BD 62 F9 195 LDA FMTI,X GET FORMAT INDEX BYTE
F8AG: 2U 79 F& 196 JSR SCRN2 R/L H-BYTE ON CARRY
F8A3: DO 04 197 BNE GETFMT
- F8AS: A0 8U 198 ERR LDY #$80 SUBSTITUTE $80 FCR INVALID OPS
F8A7: A9 (U 199 LDA #50 SET PRINT FORMAT INDEX TO 0
F8A9: AA 200 GETFMT TAX
F8AA: BD A6 F9 201 LDA FHT2,X INDEX INTO PRINT FORMAT TABLE
FBAD: 85 2E 202 STA FCRMAT SAVE FOR ADR FIELD FORMATTING
F8AF: 29 03 203 AND $$03 MASK FOR 2-BIT LENGTH
204 * (P=1 BYTE, 1=2 BYTE, 2=3 BYTE)
F8Bl: 85 2F 205 STA LENGTH
F8B3: 98 206 TYA OPCCDE
F8B4: 29 8F 207 AND 4S8F MASK FOR 1XXX10lu TEST
F3B6: AA 208 TAX SAVE IT
F8B7: 98 209 TYA OPCODE TO A AGAIN
F8B8: AU U3 210 LDY $S03
F8BA: EQ BA 211 CEX #SB8A
F8BC: FO UB 212 BEQ MNNDX3
FS8BE: 4A 213 MNNDX1 LSR A
F&BF: 90 U8 214 3CC MNNDX3 FORM INDEX INTO MNEMONIC TABLE
F8Cl: 4A 215 LSR A

L%I

FsC2:
F8C3:
F8C5:
F8Co:
FB8C8:
F8C9Y:
FgCA:
F8CC:
F8CD:
F8DO:
F8D3:
F8D4:
F8D6:
F8D9:
F8DB:
F8DE:
F8EO:
F8E1l:
FBES:
FBES:
FBET7:
FBE9:
FBEA:
FBEB:
F8EE:
F3F0:
F8F3:
F8F5:
F8F7:
F8F9:
FZFB:
F8FD:
FYFE:
F8FF:
F901:
F903:
F906:
F907:
F909:
F90C:
F9UE:
F310:
F912:
F914:
F9l6:
F918:
F91B:
FY1E:
F921:
F523:
F920:
F927:
F929:
F92A:
F9z3:
F32D:
F930:
F932:
F934:
F9306:
F9338:
F93B:
F93C:
F93D:
F93F:
F94u:
F941:
F944:
F945:
F943:
F94A:
F94C:
F94F:

4A
09
88
Do
C3
88
DO
60
FF
20
48
Bl
20
A2
20
Cé4
C8
94
A2
Co
90
68
A3
BY
&5
B9
85
AY
AQ
uo
26
2a
83
DU
69
20
CAa
Lu
20
A4
A2
Eu
FO
b
90
8D
20
BD
Fo
2u
ca
Do
oU
38
30
20
AS
(03]
Bl
90
20
AA
Eg
DU
Cs
98
29
8A
4C
A2
A9
20
(@:%

20

FA

F2

FF
82

3A
DA
0l
4A
2F

Fl
03
04
F2

Cu
2C
uu
2D
BIY
U5
2D
2C

Fz
3F
ED

EC
4y
2F
06
G3

2E
VE
B3
ED
39
u3
ED

o)
DA
2E
E3
3A
F2
56

01

DA

DA
u3
AQ
ED

FF
F8

FD

F9

FY

FA

FD

FD

F9

FD

FD

FD

216
217
218
219
220
221
222
223
224
225
226
2217
228
229
230

247
248
249

MNNDX2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

PRMN1

PRMN2

PRADR1

PRADR2

PRADR3

PRADR4

PRADRS

RELADR

PRNTYX
PRNTAX
PRNTX

PRBLNK
PRBL2
PRBL3

LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
JSR
PHA
LDA
JSR
LDX
JSR
CPY
INY
BCC
LDX
CFrY
BCC
PLA
TAY
LDA
STA
LDA
5TA
LCA
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JSR
DEX
BNE
JSR
LDY
LDX
CPX
BEQ
ASL
3CC
LDA
JSR
LDA
8EQ
JSR
DEX
BNE
RTS
DEY
3MI
JSR
LDA
CMP
LDA
BCC
JSR
TAX
INX
3NE
INY
TYA
JSR
TXA
JMP
LDX
LDA
JSR
DEX

A
#$20

“NNDX2

MNNDX1

$FF,SFF,SFF
INSDS1

(PCL) , ¥
PRBYTE
#$01
PRBL2
LENGTH

PRNTOP
#3503
#504
PRNTBL

MNEML, Y
LMNEM
MNEMR, Y
RMNEM
#$00
#S05
RMNEM
LMNEM

A

PRMN2
#SBF
CouT

PRMN1
PRBLNK
LENGTH
#SU6

#$03
PRACRS
FCRMAT
PRADR3
CHARI1-1,X
cout
CHAR2-1,X
PRADR3
CoalT

PRADR1

FRADR2
PRBYTE
FORMAT
4#SE8
(PCL),Y
FPRADR4
PCADJ3

PRNTYX

PRBYTE
PRBYTE
#S03
#$A0
cour

158

1) 1XXX1010=>001U1XXX

2) XXXYYYUl=>uUlllXXX
3) XXXYYYL1G=>UUl1lUXXX

4) XXXYY100U=>0UluUOXXX
5) XXXXX0ud=>U00XXXXX

GEN FMT, LEN BYTES
SAVE MNEMONIC TABLE INDEX
PRINT 2 BLANKS

PRINT INST (1-3 BYTES)
IN A 12 CHR FIELD

CHAR COUNT FOR MNEMONIC PRINT
RECOVER MNEMONIC INDEX

FETCH 3-CHAR MNEMONIC
(PACKED IN 2-BYTES)

SHIFT 5 BITS CF
CHARACTER INTC A
(CLEARS CARRY)

ADD "?" OFFSET
OUTPUT A CTHAR OF MNEY
OUTPUT 3 BLANKS
CNT FOR 6 FORMAT BITS

IF X=3 THEN ADDR.

HANDLE REL ADR MODE
SPECIAL (PRINT TARGET,
NOT OFFSET)

PCL, PCH+OFFSET+1 TO A,Y
+1 TO Y,X
CUTPUT TARGET ADR

OF BRANCH AND RETURN
BLANK COUNT

LOAD A SPACE
OUTPUT A BLANK

) (E) P} TEY OED OIFDOTEY OTEEL OTEY OTEL OTEY OPEY OIED OIED OMEL OMEL MY T OTEY OB TR TR IR

[] 4

'

I

|

i

I,

i

i

BRI R e

F950: DU F8 289 BNE PRBL2 LOOP UNTIL COUNT=0
F952: 60 290 RTS
F953: 38 291 PCADJ SEC 0=1-BYTE, 1=2-BYTE,
F954: AS 2F 292 PCADJ2 LDA LENGTH 2=3-BYTE
F956: A4 38 293 PCADJ3 LDY PCH
FY958: AA 294 TAX TEST DISPLACEMENT SIGN
F959: 10 01 295 BPL PCADJ4 (FOR REL BRANCEH)
F95B: &3 296 DEY EXTEND NEG BY DECR PCH
F95C: 65 2A 297 PCADJ4 ADC PCL
F95E: 90 01 258 BCC RTS2 PCL+LENGTH(CR DISPL)+1 TO A
F960: Cb& 299 INY CARRY INTC (PCH)
F961: 60 300 RTS2 RTS
301 * FMT1 BYTES: XXXXXXY0 INSTRS
302+ IF ¥Y=0 THEN LEFT HALF BYTE
303 * IF y=1 THEN RIGHT HALF BYTE
304 * (X=INDEX)
F902: U4 20 54
FY65: 30 0D 305 FMT1 DFB $04,520,$54,$
F967: 30 04 9y
F96A: 03 22 306 DFB $80,$04,590,$
F96C: 54 33 UD
F36F: 80 ud 307 DFB $54,$33,30D,5
FY7l: 90 04 20
F974: 54 33 308 DFB $90,504,8520,5%
F976: UD 80 04
FY79: 90 ud 309 DFB SUC,$80,594,3
F978: 20 54 3B
F97E: (C 84U 310 DFB $20,$54,533,$
F980: U4 90 UU
F983: 22 44 311 DFB $04,590,S00,$
F985: 33 UD C8
F9388: 44 uu 312 DFB $33,$0D,S$C8,$
Fysa: 11 22 44
F98D: 33 uD 313 DFB $11,$22,544,53
F98F: C8 44 A9
F992: wul 22 314 DFB $C3,$44,5A3,5
F394: 44 33 UD
F997: 80 04 315 DFB $44,$33,50D,$
F999: 90 vul 22
F99C: 44 33 316 DFB $90,801,522,5
F99E: (D 80 U4
F9Al: 90 317 DFB $0D,$80,S04,5$
F9A2: 26 31 &7
FYAS: 9A 318 DFB $26,$31,$87,S22ZXXXY01 INSTR'S
F9A6: U0 319 FMT2 DFB $00 ERR
F9A7: 21 320 DFB $21 IMM
F9A8: 8l 321 DFB $81 %2-PAG
F9A9: 82 322 DFB $82 ABS
F9AA: 00 323 DFB $00 IMPLIED
F9AB: 00 324 DFB $00 ACCUMULATOR
F9AC: 59 325 DFB $59 (ZPAG, X)
F9AD: 4D 326 DFB $4D (ZPAG) , ¥
F9AE: 91 327 DFB $91 ZBAG, X
FYAF: 92 328 DFB 592 ABS,X
F9BO: 86 329 DFB $86 ABS, Y
FYBLl: 4A 330 DFB $4A (ABS)
FYB2: 85 331 DFB $85 ZPAG, Y
FYB3: 9D 332 DFB S9D RELATIVE
F9B4: AC AY AC
F987: A3 Ab A4 332 CHARL ASC “,),®(S"
FYBA: D9 U0 D3
FYBD: A4 A4 0U 334 CHAR2 DFB $DY,$00,S$D&, S
335 *CHAR2: "Yy",0,"Xs$s",0
336 * MNEML IS OF FORM:
337 0+ (A) XXXXX000
338 * (B) XXXYY1Q0
33y (C) 1XXX1ulo
340 * (D) XXXYYY1Q
341 * (E) XXXYYYO0l
342 * (X=INDEX)
F9C0: 1C 8A 1C
F9C3: 23 SD 8B 343 HMNEML DFB $1C,$83,$1C,S

F9C6b: 1B Al 9D

159

F9C9:
F9CC:
FYCF:
F9D2:
FYD5:
FyD8:
F9DB:
FO9DE:
FO9EU:
F9E3:
F9E6:
FY9EQ:
FYEB:
FYEE:
FYFO:
FOF3:
F9Fo:
F9F8:
F9FB:
F9FE:
FAGO:
FAQ3:
FAQ6:
FAQGY:
FAUC:
FAQF:
FAL2:
FAlS:
FALQ:
FA1B:
FAlE:
FA20:
FA23:
FA26:
FA28:
FA2B:
FA2E:
FA30:
FA33:
FA3a:
FA38:
FA3B:
FA3E:
FA40:
FA43:
FA46:
FA47:
FA49:
FA4A:
FA4C:
FA4E:
FAS51:
FAS3:
FAS4:
FAS6:
FAS8:
FASA:
FASC:
FASE:
FAo6O:
FAG2:
FAb4:
FAb6:
FAG3:
FAoA:
FAoC:
FAoE:
FA70:
FA72:
FA74:
FAT6:
FA78:
FA7A:

8A
9D
Al

19

Ay
24
23
19
00
5B
24
AE
AD
ic
15
£l
29
84
11
23
D8
48
94
44
68
94
03
B4
74
4A
A4
Go
A2
74
44
32
22
1a
206
88
Cca
43
A2
FF
20
68
85
68
85
A2
3C
95
ca
DU
Al
FU
A4
C9
FO
c9
Fu
o8]
FO
Cc9
Fu
c9
FO
29
49
c9
Fo
Bl
93

2C

2D
03
10
3C

F3
3A
42
2F
20
59
50
45
4C
5C
6C
59
40
35
1F
14
u4
02
3A

23
1D
29
69
1B
53
5B
69

B2
Ju

26
72

20
44

FF
F8

FB

344
345
346

347
348

349
350

351
352

353
354

356
357
358
359
360

361
362

363
364

365
366

367
368

369
370
371
372
373
374
375
376
377
378
379
380
38l
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
393
399

3C 00 40v

MNEMR

STEP

XQINIT

XQ1
XQ2

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB
DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB

DFB
DFB
DFB
JSR
PLA
STA
PLA
STA
LDX
LDA
STA
DEX
BNE
LDA
BEQ
LDY
cuMp
BEQ
CMP
BEQ
CHMP
BEQ
CMP
BEQ
CMP
8EQ
AND
ECR
CMP
BEQ
LDA
STA

$1B,$A1,89D,$
$9D, $8B,$1D, $
$19,$AE,$69,$

$24,$53,81B,$
$19,5A1

$00,$1A,858,8§
$24,524

SAE, SAE, $A8, S
$7C, 3500

$15,$9C,$6D0,8
529,353

$84,$13,834,5$
$23,3A0

$D8,$62,$5A,S
$94,$88,554,$
$68,544,8E6,S
$038,584,874,5

$74,8F4,8CC,$
$A4,$8A

$00,5AA,8A2,5
$74,872

$44,568,9B2,$
$22,500

$14,514,826,5
$88,5C8

$C4,$CA,$26,8
$A2,$C8
$FF,$FF, $FF
INSTDSP

RTNL

RTNH

4508
INITBL-1,X
XQT, X

XQINIT
(PCL,X)
XBRK
LENGTH
#$20
XJSR
#$60
XRTS
#54C
XJMP
#$6C
XJIMPAT
#5540
XRTI
#S1F
514
#$04
XQ2
(PCL) , Y
XQTNZ,Y

160

(&) FORMAT ABOVE

(B) FORMAT
(C) FORMAT
(D) FORMAT
(E) FORMAT

(A) FORMAT

(B) FORMAT

(C) FORMAT

(D) FORMAT

(E) FORMAT

DISASSEMBLE ONE INST
AT (PCL,H)

ADJUST TC USER
STACK. SAVE
RTN ADR.

INIT XEQ AREA

USER OPCCDE BYTE
SPECIAL IF BREAK
LEN FROM DISASSEMBLY

HANDLE JSR, RTS, JWE,
JMF (), RTI SPECIAL

COPY USER INST TO XEC AREA
WITH TRALLING NOPS
CHANGE REL BRANCH
DISP TO 4 FOR

',

il

e FL IE /¢l IEl TE] B TE

Bl [EF. [F] TFL [E] TIE [F]

1

FF. 'E) IF) 'E) IE} |E] |E; |FE|

O U I e R R R R e

FATD:
FA7E:
FA80:
FAB3:
FA86:
FAu3:
FA89:
FABA:
FAGBB:
FABC:
FA8D:
FABF:
FA92:
FA93:
FA96:
FA97:
FA99:
FA9A:
FA9C:
FAYF:
FAA2:
FAAS:
FAAG:
FAAT7:
FAA9:
FAAA:
FAAC:
FAAD:
FAAF:
FAB1l:
FAB4:
FABG:
FAB7:
FABY:
FABA:
FABD:
FABE:
FABF:
FACOU:
FACL1:
FAC2:
FAC4:
FACS:
FACT:
FACS:
FACO:
FACB:
FACC:
FACF:
FADL:
FAD3:
FAD4:
FADG6:
FAD7:
FADA:
FADC:
FADE:
FAEO:
FAE2:
FAE4:
FAEG6:
FAE9:
FAEC:
FAEF:
FAF1:
FAF4:
FAF6:
FAF9:
FAFA:
FAFC:
FAFD:
FAFE:
FBOu:

88
10
20
4C
85
68
48
oa
0A
UA
30
6C
28
20
68
85
68
85
20
20
4ac
18
68
85
68
85
68
85
A5
20
34
18
90
18
20
AA
98
48
gA
48
Ay
18
Bl
AA
88
Bl
8%
85
BO
A5
48
AS
48
29
A9
85
AS
85
A2
A9
20
BD
20
A9
29
BS
20
E8
30
60
lg
AU
Bl

F8
3F
3C
45

03
FE

4acC
3A
3B

DA
65

48

3B
2F

38
14

54

02

3A

3A
3B
3a
F3
2D

8E
45
40
00

FB
AQ
ED
1E
ED
BD
ED
4A
DA

E8

0l
3Aa

FF
ud

03

FF

F8
FA
FF

FY

F9

FD

FD
FA
FD
FD

FD

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
41y

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

471

473

IRQ

BREAK

XBRK

XRTI

XRTS

PCINC2
PCINC3

XJSR

XJIMP
XJIMPAT

NEWPCL

RTNJIMP

REGDSP

RGDSP1

RDSP1

BRANCH

DEY
BPL
JSR
JMP
STA
PLA
PHA
ASL
ASL
ASL
BMI
JMP
PLP
JSR
PLA
STA
PLA
STA
JSR
JSR
JMP
CLC
PLA
STA
PLA
STA
PLA
STA
LDA
JSR
STY
CLC
BCC
CLC
JSR
TAX
TYA
PHA
TXA
PHA
LDY
CLC
LDA
TAX
DEY
LDA
STX
STA
BCS
LDA
PHA
LDA
PHA
JSR
LDA
STA
LDA
STA
LDX
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
INX
BMI
RTS
CLC
LDY
LDA

JMP TO BRANCH OR
XQ1 NBRANCH FRCM XEQ.
RESTCRE RESTCRE USER REG CONTENTS.
XQTNZ XEQ USER CP FRCM RAM
ACC (RETURN TC NBRANCH)
**]RQ HANDLER
A
A
A
BREAK TEST FOR BREAK
(IRQLOC) USER ROUTINE VECTOR IN RAM
SAV1 SAVE REG'S ON BREAK
INCLUDING PC
PCL
PCH
INSDS1 PRINT USER PC.
RGDSP1 AND REG'S
MON GO TC MCNITOCR
SIMULATE RTI BY EXPECTING
STATUS STATUS FROM STACK, THEN RTS
RTS SIMULATION
PCL EXTRACT PC FROM STACK
AND UPDATE PC BY 1 (LEN=G)
PCH
LENGTH UPDATE PC BY LEN
PCADJ3
PCH
NEWPCL
PCADJ2 UPDATE PC AND PUSH
ONTGC STACK FOR
JSR SIMULATE
4502
(PCL),Y
LOAD PC FOR JMF,
(JUP) SIMULATE.
(PCL),Y
PCH
PCL
XJIMP
RTNH
RTNL
CROUT DISFLAY USER REG
#ACC CONTENTS WITH
A3L LABELS
#ACC/256
A3H
#SFB
#$A0
cout
RTBL-S$SFB, X
cour
#$BD
cour
ACC+5,X
PRBYTE
RDSP1
BRANCH TAKEN,
#S01 ADD LEN+2 TO PC
(PCL) , Y

161

'Y

]

I

FBO2: 20 56 F9 474 JSR PCADJ3 -

FBUS: 85 3a 475 STA PCL |

FBU7: 98 476 TYA

FBO&: 35 477 SEC —

FBUY: BU A2 478 3CS PCINC2 g

FBUB: 20 4A FF 479 NBRNCH JSR SAVE NORMAL RETURN AFTER

FBUE: 38 480 SEC XEQ USER OF .

FBUF: B0 9E 481 BCS PCINC3 GO UPDATE EC e

FBll: EA 482 INITBL NOP

FB12: EA 433 NOP DUMMY FILL FOR

FB13: 4C UB FB 484 JMP NBRNCH XEC AREA —

FB16: 4C FD FA 485 JMP BRANCH | =

FBlY: C1 486 RTBL DFB sSC1

FB1A: D8 487 DFE $D§ L

FB1B: D9 456 DFB $D9

FBIC: DO 489 DFE $DO

FBID: D3 490 DFB $D3

FBLE: AD 70 Cu 491 PREAD LDA PTRIG TRIGGER PADDLES =

FB2l: AU 00 492 LDY #S00 INIT COUNT f

FB23: EA 493 NOP COMPENSATE FOR 1ST COUNT

FB24: EA 494 NOP p—

FB25: BD 64 CO 495 PREAD2 LDA PADDLO, X COUNT Y-REG EVERY

FB28: 10 u4 496 BPL RTS2D 12 USEC

FB2A: C34 497 INY .

FB2B: DU F& 498 3NE PREAD2 EXIT AT 255 MAX ™

FB2D: 88 499 DEY

FB2E: 60 500 RTS2D RTS N

FE2F: A9 QU 501 INIT LDA $S00 CLR STATUS FCOR DEBUG e

FB31l: 35 48 502 STA STATUS SOFTWARE | —

FB33: AD 56 C0 503 LDA LORES

FB36: AD 54 CO 504 LDA LOWSCR INIT VIDEO MODE .

FB39: AD 51 CO 505 SETTXT LDA TXTSET SET FOR TEXT MODE o

FB3C: A9 Ul 506 LDA #S0u FULL SCREEN WINDOW

FB3E: FU uB 507 BEQ SETWND

FB40: AD 50 CU 508 SETGR LDA TXTCLR SET FOR GRAPHICS MODE =

FB43: AD 53 Cu 509 LDA MIXSET LOWER 4 LINES AS o

FB45: 20 36 F8 510 JSR CLRTCP TEXT WINDOW

FB43: AY 1 511 LDA #$514 —

FB4B: 85 22 512 SETWND STA WNDTOP SET FCR 40 COL WINDOW e

FB4D: A9 00 513 LDA #S00 TOP IN A-REG,

FB4F: 85 20 514 STA WNDLFT BTTM AT LINE 24

FB51: AY 28 515 LDA #$28 ™

FB53: 85 21 516 STA WNDWDTH —_

FB55: A9 18 517 LDA #5138

FBS57: 85 23 518 STA WNDETM VTAB TO ROW 23 —

FB59: A9 17 519 LDA #S17 e

FB5B: 85 25 520 TABV STA CV VTABS TO RCW IN A-REG

FBSD: 4C 22 FC 521 JMP VTAB

FBoU: 20 A4 FB 522 MULPM JSR MD1 ABS VAL OF AC AUX

FB63: AG 10 523 MUL LDY #S10 INDEX FOR 16 SITS

FB65: A5 50 524 MUL2 LDA ACL ACX * AUX + XTND

FB67: 4A 525 LSR A TO AC, XTND —

FB68: 90 uC 526 BCC MUL4 IF NO CARRY, e

FB6A: 18 527 cLC NO PARTIAL PROD.

FB6B: A2 FE 528 LDX #SFE —

FB6D: B5 54 529 MUL3 LDA XTNDL+2,X ADD MPLCND (AUX) o

FB6F: 75 56 530 ADC AUXL+2,X TG PARTIAL PROD -

FB71: 95 54 531 STA XTNDL+2,X (XTND) .

FB73: E8 532 INX =

FB74: DU F7 533 3NE MUL3 =

FB76: A2 U3 554 MUL4 LDX $S03

FB78: 76 535 MULS DFB #575 -~

FB79: 50 536 DFB #$50 i,

FB7A: CA 537 DEX

FB78: 10 FB 538 BPL MULS

FB7D: 3§ 539 DEY s

FB7E: DU ES 540 8NE MUL2 -

FB80: 60 541 RTS

FB8l: 20 A4 FB 542 DIVPM JSR MD1 ABS VAL OF AC, AUX. —

FB84: AU 1u 543 DIV LDY #S$10 INDEX FCR 16 3ITS B,

FB86: U6 50 544 DIV2 ASL ACL

FB&8: 26 51 545 ROL ACH —

FBBA: 26 52 540 ROL XTNDL XTND/AUX !‘
i
[

162

b
—
| FB8C: 20
FBSE: 38
Lood® FESF: AS
== FBYl: ES
| FBS3: AA
oy FB94: A5
e FBY6: ES
I FBY8: 90
. FBYA: &6
™ p9c: 85
FBYE: Eb
L_ FBAU: 44
L FBALl: DU
== FBAZ: 6U
FBA4: AU
- FBAG: 84
FBAB: A2
FBAA: 20
L~ FBAD: A2
low® ppaF: BS
FBBl: 10
FBB3: 33
h_! FBB4: 98
FBBS: F5
I FBB7: 95
FBB9: 98
bee®® :ppA: F5
FBBC: 95
L FBBE: E6
Lol FBCU: 60
FBCl: 48
FBC2: 4A
FBC3: 23
FBCS: 09
| FBC7: &5
FBCY: 68
L™ p3ca: 29
FBCC: 90
FBCE: 69
s F3DU: 85
FBD2: 0A
| FBDZ: 0A
FBD4: 05
bt fEDs: 85
| FBDE: 60
FBDY: C9
W8 FEDB: DO
| FBOD: A9
FBDF: 20
- FBE2: A0
FBE4: A9
L— FBE6: 20
FBEY: AD
8% pREC. g3
FBED: Du
FBEF: 60
smd FBEO: A4
FBF2: 91
| FBF4: Eo
FBF6: AS
FBF&: C5
FBFA: BU
FBFC: 60
sm® FBFD: CY
FBFF: BO
| FCUl: A&
-1 FCO2: 10
FCu4: C39
FCO6: Fu
FCO3: C9
L% £COA: PO
FCOC: C9
FCOE: DU
-
.

U Cc U,
CWwNo UL W

m
w

vl
2F
54
AF
59
vl
0D

00
Qu

ul
Ul
2F

uC
A8
30
F5
24
20

24
24

66

EF
EC

S5A
dA
5A
38
c9

FB

FC

FC
co

617
618
619

DIV3

MD1

MD2

MD3

MDRTS
BASCALC

B3SCLC2

BELL1

BELL2

KTS2B
STOADV

ADVANCE

RTS 3
vibcur

ROL
SEC
LDA
SBC
TAX
LDA
s8C
BCC
5TX
5TA
INC
DEY
BNE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
CMP
BNE
LDA
JSR
LDY
LDA
JSR
LDA
DEY
BNE
RTS
LDY
STA
INC
LDA
CMP
BCS
RTS
CMP
BCS
TAY
BPL
CMP
BEQ
CMP
BEQ
CMP
BNE

XTNDH

XTNDL
AUXL

XTNDH
AUXH
DIV3
XTNDL
XTNDH
ACL

#S03°
#504
BASH

518
BSCLC2
#STF
BASL
A

A
BASL
BASL

#587
RTS2B
#$40
WAIT
#$C0
#$0C
WAIT
SPKR

BELL2

CH
(BASL) ,Y
CH
CH
WNDwWDTH
CR

#SAU
STOADV

STOADV

#S8D
CR

163

TO AC.

MCD TO XTND.

ABS VAL OF AC, AUX
WITH RESULT SIGN
IN LSB CF SIGN.

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF NEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE NO.
0<=LINE NO.<=$17

ARG=00UABCDE, GENERATE
BASH=000001CD
AND
BASL=EABABGOD

BELL CHAR? (CNTRL-G)
NO, RETURN
DELAY .ul SECCNDS

TOGGLE SPEAKER AT
1 KHZ FOR .1 SEC.

CURSER H INCEX TO Y-REG
STOR CHAR IN LINE
INCREMENT CURSER H INDECX
(MOVE RIGHT)
3EYOND WINDOW WIDTH?
YES CR TC NEXT LINE
NO, RETURN
CONTRCOL CHAKR?
NO,0UTPUT IT.
INVERSE VIDEO?
YES, OUTPUT IT.
CR?
YES.
LINE FEED?
IF sO, DO IT.
BACK SPACE? (CNTRL-H)
NO, CHECK FOR BELL.

FC10:
FC1l2:
FCl4:
FCl6:
FC13:
FC1A:
FC1C:
FCI1E:
FC20:
FC22:
FC24:
FC27:
FC2y:
FC2B:
FC2C:
FC2E:
FC30:
FC32:
FC34:
FC36:
FC33:
FC3A:
FC3C:
FC3E:
FC490:
FC42:
FC44:
FC46:
FC47:
FC4A:
FC4D:
FC4F:
FC5u:
FCH52:
FC54:
FC556:
FCS8:
FCS5A:
FCSC:
FCS5E:
FCb0:

Co2:
FC64:
FCé66:
FCo3d:
FCOBA:
FCoC:
FC6E:
FC70:

FC7

FC73:
FCib:
FC78:
FC7A:
FC7C:
FC7E:
FC8U:
FC81:
FC82:
FC34:
FC36:
FC83:
FC89:
FCaC:
FCYE:
FC90:
FC91:
FC93:
FC95:
FC97:
FCoaA:
FCYC:
FCYE:

85

Fu

FU

AS

68

24
g

21
24
24
22
25
JB
25
25
Cl
20
28

Cco
28
FD
CeC
DA
FD
2C
DE
FD
5C

24
25

24
9E
00

Ju
FU
ca
22
25
v
24
E4
0o
24

9
2

25
23

Bo
25
22

24
28
2A
29
2B
21

01
23
oD

24
28
2A

F9
El
0y
SE
36
24
AQ

FB

FC
FC

FC

FC

FC

620
621

BS

up

VTAB
VTABZ

RTS4
ESC1

CLREOP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ

LDA
STA
LDA
STA
LDY
DEY
PLA
ADC
CMP
BCS
PHA
JSR
LDA
STA
DEY
3PL
BMI
LDY
JSR
BCS
LDY
LDA

CH

TS3
WNDWDTH
CH
CH
WNDTOP

BASCALC
WNDLFT
BASL

#$CO
HOME
#SFD
ADVANCE
BS
#SFD
LF

up
#SFD
CLRECL
RTS4
CH

cv

VTABZ
CLEOLZ
#$00

#$00
WNDBTM
CLECP1
VTAB
WNDTOCP

Ccv
WNDBTM
VTAEZ
Ccv
WNDTOP

VTABZ
BASL
8AS2L
BASH
BAS2H
WNDWDTH

#501
WNDBTM
SCRL3

VTABZ
(BASL),Y
(BAS2L),Y

SCRL2
SCRL1
#$00
CLECLZ
VTAB
CH
#SA0

164

DECREMENT CURSER H INDEX
IF POsS, OK. ELSE #OVE UP
SET CH TO WNDWDTH-1

(RIGHTMCST SCREEN POS)
CURSER V INDEX

IF TOP LINE THEN RETURN
DECR CURSER V-INDEX
GET CURSER V-INDEX
GENERATE BASE ADDR

ADD WINDOW LEFT INDEX
TO BASL

ESC?

IF SO, DC HCHME AND CLEAR

ESC-A CR 8 CHECK
A, ADVANCE
8, BACKSPACE

ESC-C OR D CHECK
C, DOWN
D, GO UP

ESC-E OR F CHECK
E, CLEAR TC END CF LINE
NOT F, RETURN

CURSOR H TO Y INDEX

CURSCR V TO A-REGISTER

SAVE CURRENT LINE CN STK

CALC BASE ADDRESS

CLEAR TO EOL, SET CARRY

CLEAK FROM H INDEX=U FOR REST

INCREMENT CURRENT LINE

(CARRY IS SET)

DONE TO BOTTCM OF wINDOW?
NO, KEEP CLEARING LINES
YES, TAB TO CURRENT LINE

INIT CURSOR V
AND H-INDICES

THEN CLEAR TO ENC OF PAGE

CURSCR TO LEFT CF INDEX
(RET CURSOR H=0U)
INCR CURSCR V (DCWN 1 LINE)

OFF SCREEN?

NO, SET BASE ADCR
DECR CURSOR V(BACK TO BOTTOH)
START AT TGP OF SCRL WNDW

GENERATE BASE ADDRESS
COPY BASL,H
TO BAS2L,H

INIT Y TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMBER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MCVE A CHR UP CN LINE

NEXT CHAR CF LINE

NEXT LINE

CLEAK BOTTOM LINE

GET BASE ADDR FOR BOTTOM LINE
CARRY IS SET

CURSOR H INDEX

1 1E i1E 1 IE 1) 1eE 1El [} 2 [} 2R) & iIe

1El

1¥3 1™ iFl

11

17 21} ™1

O VR R e e

28 093
594
21 695
F9 596
097
598
6399
0l 700
FC 701
702
0l 703
Fé 704
7u5
42 706
02 707
43 708
3 709
SE 710
3D 711
3 712
3C 713
u2 714
3D 715
716
4B 717
DB FC 718
FS 719
FE 720
F5 721
21 722
DB FC 723
724
725
726
FD 727
05 728
32 129
730
FD 731
20 Cu 732
2C 733
734
735
u8 736
737
FA FC 738
739
740
3A 741
742
F5 743
744
FD FC 745
746
60 CU 747
2F 7438
Fg 749
2F 750
2F 751
8u 752
753
24 754
28 755
756
3F 757
40 7538
20 759
760
38 00 7ol
4E 162
02 763
4F 764
uu Cu 765

CLECL2

WAIT
WAIT2
WAIT3

NXTA4

NXTAL

RTS 48
dEADR

WRBIT

ZERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT2

RD2BIT
RDBIT

ROKEY

KEYIN

KEYIN2

STA
INY
CPY
BCC
RTS
SEC
PHA
SBC
BNE
PLA
SBC
BNE
RTS
INC
BNE
INC
LDA
CMP
LDA
SBC
INC
BNE
INC
RTS
LDY
JSR
BNE
ADC
BCS
LDY
JSR
INY
INY
DEY
2NE
BCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSR
PLA
ROL
LDY
DEX
BNE
RTS
JSR
DEY
LDA
ECR
BPL
EOR
STA
CPY
RTS
LDY
LDA
PHA
AND

STA
PLA
JMF
INC
BNE
INC
BIT

(BASL) , Y

WNDWDTH
CLEOL2

#501
WAIT3

#$01
WAIT2

A4L
NXTAlL
AdH
AlL
A2L
AlH
A2H
AlL
RTS48B
AlH

4548
ZERDLY
HEADR
#$SFE
HEADR
#$21
ZERDLY

ZERDLY
WRTAPE
4832

ONEDLY
TAPECUT
#$2C

#$08
RC2BIT

A
#$3A

RDBYT2
RDBIT

TAPEIN
LASTIN
ROBIT
LASTIN
LASTIN
#$80

CH
(BASL) , Y

3§ 3F
#540
(BASL) ,Y

(KSWL)
RNDL
KEYIN2
RNDH
KBD

165

STORE BLANKS FROM 'HERE'
TO END OF LINES (WNDWDTH)

1.0204 USEC
(13+2712*%A+512*A*A)

INCR 2-BYTE A4
AND Al

INCR 2-BYTE Al.
AND COMPARE TO A2

(CARRY SET IF >=)

WRITE A*256 'LONG 1°
HALF CYCLES
(650 USEC EACH)

THEN A 'SHORT ¢
(400 USECQ)

WRITE TWO HALF CYCLES
OF 250 USEC ('0')
OR 500 USEC ('0')

Y IS COUNT FCR
TIMING LOOP

8 BITS TO READ
READ TWO TRANSITIONS
(FIND EDGE)

NEXT BIT
COUNT FCOR SAMPLES

DECR Y UNTIL

TAPE TRANSITICN

SET CARRY ON Y-REG.

SET SCREEN TO FLASH

GO TO USEK KEY-IN
INCR RND NUMBER

KEY DOWN?

FDz4:
FC2o:
FD23:
FD2B:
FD2E:
FD2F:
FD32:
FC35:
FD33:
FD3A:
FD3C:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FC47:
FLC4A:
FD4B:
FCA4D:
FD' J:
FD52:
FD54:
FD5o6:
FDS53:
FL5A:
FD5C:
FDSF:
FD60:
FD62:
FD64:
FC67:
FDoA:
FDoC:
FD6F:
FD71:
FD72:
FD74:
FC75:
FD73:
FDTA:
FLiC:
FDIE:
FDsO:
FLC82:
FDs4:
FCs7:
FbE9:
FDosB:
FDSE:
FD90:
FD9Z:
FDY4:
FD9%:
FLD99:
FDIC:
FDY9E:
FDAU:
FDA3:
FDAS:
FDAT7:
FDAS:
FDAB:
FDAD:
FDAF:
FLB1:
FDB3:
FDB6:
FDBB8:
FDBB:
FDBD:
FDCO:

10
91
AD
2C
60
20
28
20
c9

oU
AS
48
A9
85
BD
20
68
85
BD
CcS
Fu
[oF°]
FO
EC
950
20
E3
DU
A9
20
20
AS
20
A2
8A
FO
CA
20
[oF°]
LU
Bl
(o]
90
29
D
c9
DU
20
aAY
DU
Ad
Ao
20
20
AC
AY
4C
AS
]
85
AS
85
AS
29
DY
20
A9
20
Bl
20
20

F5
20
0y
1u

uC
2C
uC
9B
F3

32

FF
32
Y]
ED

32
0o
33
1D
98
UA
F8
U3
3a

13
DC
ED
88
33
ED
Ul

35
95
)
28

02
DF
00
34D
32
9C
8D
58
3D

<

sE
40
uo
AD
ED

~
C

U/
3E
3D
JF

c

J7

92
A0
ED

DA
BA

Cu

FD
FC
FD

02
FD

02

FF

FD
FD

FD

FD

(]

FD
FS

FD

FD
FD

FD
FC

304
805
3U6
807
308
309
810
811
812
813
8l4
815
6lo
817
818
819
620
8§21
322
823
824

25
326
627
828
829
830
831
832
333
334
835
836
837

ESC

RDCHAR

NOTCR

NOTCRI1
CANCEL
GETLNZ
GETLN

BCKSPC

NXTCHAR

CAPTST

ADDINP

CROUT
PRA1

PRYX2

XAM3

MCOD8CHK

XAM
DATACUT

BEL
STA
LDA
31T
RTS
JSR
JSR
JSR
cMP
BEQ
RTS
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA
LDA
cHMPp
BEQ
CcMP
BEQ
CEX
BCC
JSR
INX
3NE
LDA
JSK
JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
3NE
LDA
CMP
3CC
AND
STA
cMP
3NE
JSR
LDA
BNE
LDY
LDX
JSR
JSR
LDY
LDA
JMP
LDA
ORA
STA
LDA
S3TA
LCA
AND
BNE
JSR
LDA
JSR
LDA
JSR
JSR

KEYIN
(BASL) , Y
KBD
KBDSTRB

RDKEY
ESC1
RDKEY
#$9B
ESC

INVFLG

#SFF
INVF LG
IN,X
CcouT

INVF LG
IN,X
#5838
BCKSPC
#598
CANCEL
#SF8
NOTCR1
BELL

NXTCHAR
#SDC
cour
CRCUT
PROMPT
cour
#$01

GETLNZ

ROCHAR
#PICK
CAPTST
(BASL) , Y
#SEU
ADDINP
#SDF
IN, X
58D
NOTCR
CLREOL
#$8D
cour
AlH
AlL
CRCUT
PRNTYX
#S00
#SAD
CouT
ALL
#$07
A2L
AlH
A2H
AlL
7507
CATAQUT
PRAL
#SA0
cour
(A1L), Y
PRBYTE
NXTAL

166

LoCcP
REPLACE FLASHING SCREEN
GET KEYCODE
CLR KEY STRCBE
GET KEYCODE
HANDLE ESC FUNC.
READ KEY
ESC?
YES, CON'T RETURN

ECHO USER LINE
NON INVERSE

CHECK FCR EDIT KEYS
BS, CTRL-X.
MARGIN?

YES, SOUND BELL
ADVANCE INPUT INDEX

BACKSLASH AFTER CANCELLED LTN
OUTPUT CR
OCUTPUT FERCHUPT CHAR

INIT INPUT INCEX
WILL BACKSPACE TO U

USE SCREEN CHAR
FOR CTRL-U

CCNVERT TO CAPS

ADD TO INPUT BUF

CLR TC EOL IF CR

PRINT CR,Al IN HEX

PRINT '-'

SET TO FINISH AT
MOD 38=7

OUTPUT BLANK

OUTPUT BYTE IN HEX

1

el IE1 TE1T TED TEY TRl TE

1
i

1E

E. TE}

1 TE]

Bl 1Fl I|E

B 'Bl TEI] 1El E]

E}

FF

LU L T AT T A 1T

FDC3:
FDCS:
FDC6:
FDC7:
FDCY:
FLCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDD6:
FDDY:
FDDA:
FODB:
FDDC:
FCDD:
FODE:
FDDF:
FDE2:
FDE3:
FDES:
FCE7:
FDEy:
FDEB:
FDED:
FLFO:
FDF2:
FDF4:
FDF6:
FDF3:
FCFY:
FDFC:
FCFD:
FDFF:
FEUU:
FEU2:
FEU4:
FEUS:
FEUT7:
FEUY:
FE(B:
FEOD:
FEOF:
FE1l1l:
FE13:
FE15:
FE17:
FE13:
FElA:
FEID:
FELF:
FE20:
FE22:
FE24:
FE26:
FE23:
FE29:
FE2B:
FE2C:
FE2E:
FE3u:
FE33:
FE35:
FE36:
FE238:
FE3A:
FE3C:
FE3F:
FE41:
FE44:
FE46:

90
o0
4A
90
4A
4A
AS
9u
49
65
438
AY
20
68
48
4A
4A
4A
43
2u
68
29
09
Cc9
90
by
oC
c9
9l
25
g4
48
2y
08
A4
oU
Co
Fo
ca
DU
C9
Co
85
A5
91
E6
Cu
Eo
60
A4
BY
85
0U
A2
BS
95
95
ca
10
60
Bl
91
20
9v
60
Bl
D1
FO
20
Bl
20
A9
20

ES
EA

3E
02
FF

<

BD
ED

le6
BA
BB
31
3E
40
40
G2
41

FF

FD

FD

FB

1l

FC

FD

FD

838
839
840
841
842
843
844
345
346

g8l
882
883
684

586
887
886
839
890
891
6892
893
894
895
8906
897
898
2899
900
901
902
903
304
305
906
907
308
909
910

RTS4C
XAMPM

ADD

PRBYTE

PRHEX
PRHEXZ

ccur
CouTl

couTz

BL1

BLANK

STOR

RTSS
SETMODE

SETMDZ

LT
LT2

MOVE

VFY

BCC
RTS
LSR
BCC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSR
LSR
JSR
PLA
AND
CRA
CMP
BCC
ADC
JMP
CcMp
3CC
AND
STY
PHA
JSR
PLA
LDY
RTS
DEC
BEQ
DEX
BNE
CMP
BNE
STA
LDA
STA
INC
BNE
INC
RTS
LDY
LDbA
STA
RTS
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
STA
JSR
BCC
RTS
LDA
CMP
BEQ
JSR
LDA
JSR
LDA
JSK

MODBCHK

A
XAM
A

A
A2L
ADD
#SFF
AlL

#$BD
cour

A
A
A
A
PRHEXZ
#SOF
#$B0
#$BA
cour
#0060
(CSWL)
#SA0
COUTZ
INVFLG
YSavl

VIDOUT
YSAV]

YSAV
XAM8

SETMDZ
#SBA
XAMPM
“MCDE
A2L
(A3L),Y
A3L
RTSS
A3d

YSAV
IN-1,Y
MODE

¥501

A2L,X
A4L,X
ASL,X

LT2

(AlL),Y
(A4L) , Y
NXTA4
MOVE

(A1L),Y
(A4L),Y
VF YOK
PRA1
(AlL),Y
PRBYTE
#SAU
cour

167

CHECK IF TIME TO,
PRINT ADDR

DETERMINE IF MCN
MODE IS XAM
ADD, OR SUB

SUB: FCRM 2'S CCMPLEMENT

PRINT '=', THEN RESULT

PRINT BYTE AS 2 HEX
DIGITS, DESTROYS A-REG

PRINT HEX DIG IN A-REG
Ls3's

VECTCR TO USER CUTPUT RCUTINE

DON'T OUTPUT CTRL'S INVERSE
MASK WITH INVERSE FLAG
SAV Y-REG
SAV A-REG
CUTPUT A-REG AS ASCII
RESTCRE A-REG

AND Y-REG

THEN RETURN

BLANK TO MON
AFTER BLANK
CATA STCRE MODE?
NO, XAM, ADD OR SUB
KEEP IN STCRE MCCE

STCRE AS LOW BYTE AS (A3)
INCR A2, RETURN

SAVE CONVERTED ':', '+',
'-', '.' AS MODE.

COPY A2 (2 BYTES) TO
A4 AND AS

MCVE (Al TO A2) TO
(A4)

VERIFY (Al TO A2) WITH
(Ad)

FE49: A9
FE4B: 2V
FE4E: Bl
FES0: 20
FES3: A9
FESS: 20
FES58: 20
FES5B: 90
FESD: ou
FESE: 2V
FE6l: A9
FE63: 48
FE64: 2u
FEoe7: 20
FEbA: &5
FE6C: &4
FE6C: 68
FE6F: 38
FE7J: E9
FE72: Du
FE74: 6U
FE75: 8A
FE76: FU
FE73: BS
FE7A: Y5
FE7C: CA
FE7D: lu
FE7F: 60
FE80: AQ
FE82: DU
FE84: A0
FE86: 84
FE88: 60
FE89: A9
FE8B: 85
FE8D: A2
FE8F: A0
FE91: DU
FE93: A9
FEY5: 85
FE97: A2
FE99: AU
FE9B: AS
FEYD: 29
FESF: FU
FEAl: 9
FEA3: AU
FEAS: Fu
FEA7: A9
FEAY9: 94
FEAB: 95
FEAD: 60
FEAE: EA
FEAF: EA
FEBO: 4C
FEB3: 4C
FEB6: 20
FEBY: 20
FEBC: 6C
FEBF: 4C
FEC2: Cob
FEC4: 20
FEC7: 4C
FECA: 4C
FECD: AY
FECF: 20
FED2: AU
FED4: A2
FEDo: 41
FED8: 48
FEDY: Al

Al
ED
42

n
o

AY
ED
34
oYy

Do
53

38

3E

FD

FDC
FC

FE

F8
F3

EC

FE
FF
[}
FA
FE
FA
03

FC

911
912
913
914
915
916
917
918
919
320
921
922
923
924
925
920
327
328

967
9068
969
970
971
972
973
974
975
976
3717
978
979
980
ygl

VF YOK

LIST

LIST2

AlPC

A1PCLFE

A1PCRTS
SETINV

SETNORM
SETIFLG

SETKBD
INPORT
INPRT

SETVID
OUTPORT
OUTPRT

IOPRT

IOPRT1
IOPRT2

XBASIC
BASCONT
GO

REGZ
TRACE
STEPZ

USR
WRITE

WR1

#SA8
ccur
(A4L), Y
PRBYTE
#SA9
couT
NXTA4
VFY

Al1PC
7514

INSTDSP
FCADJ
ECL

PCH

#S01
LIST

A1PCRTS
AlL,X
PCL, X

AlPCLP

F33F
SETIFLG
#SFF
INVFLG

#3500

A2L

#KSWL
#KEYIN
IOPRT

#500

A2L

#CSWL
#COUT1

A2L

#SUF
10ERT1
#I0ADR/256
#S00
IOPRT2
#COUT1/256
LCCU,X
LOC1,X

BASIC
BASIC2
alpC
RESTCRE
(PCL)
REGDSP
YSAV
AlPC
STEP
USRADR
#540
HEADR
#$27
#SUU
(ALL,X)

(AlL,X)

168

MOVE Al (2 BYTES) TO
PC IF SPEC'D ANC
DISSEMBLE 2J INSTRS

ADJUST PC EACH INSTR

NEXT CF 20 INSTRE

IF USER SFEC'D ADKR
COPY FRCM Al TCO PC

SET FOR INVERSE VID
VIa CCUTlL
SET FCR NORMAL VID

SIMULATE PCRT #0 INPUT

SPECIFIED (KEYIN ROUTINE)

SIMULATE PORT #0 OUTPUT
SPECIFIED (COUT1 ROUTINE)

SET RAM IN/OUT VECTOKS

TC BASIC WITH SCRATCH
CONTINUE BASIC

ADR TC PC IF SPEC'D
RESTORE META REGS

GO TO USER SUBR

TO REG DISPLAY

ADKk TO PC IF SPEC'D
TAKE ONE STEP
TO USR 3UBR AT USRADR

WRITE 19-SEC HEADER

e [E] J1E. [E] IE [El IEl [E! IE. [1El IE]l IEl

[E]

1B}

1E)

Fl [PF] 'Fl TF]

'F

LU L I T\ L L A LA LA L AT LA L 1

FEDB:
FEDE:
FEEL:
FEE3:
FEE4:
FEEo:
FEE3:
FEEB:
FEED:
FEEF:
FEFO:
FEF3:
FEF5:
FEF6:
FEF9:
FEFA:
FEFB:
FEFD:
FFUO0:
FFO2:
FFU5:
FFuU7:
FFUA:
FFUC:
FFOF:
FF1ll:
FF1l4:
FFle:
FF19:
FF1B:
FF1D:
FF1F:
FF22:
FF24:
FF26:
FF29:
FF2B:
FF2D:
FF2F:
FF32:
FF34:
FF37:
FF3A:
FF3C:
FF3F:
FF41:
FF42:
FF44:
FF46:
FF43:
FF49:
FF4A:
FF4C:
FF4E:
FF5u:
FFS1:
FF52:
FF54:
FF55:
FF57:
FF58:
FF53:
FFS5C:
FF5F:
Fro2:
FF65:
FFoo6:
FF69:
FF6B:
FFeD:
FF70:
FF73:
FF76:

29
20
AU
68
94
AU
20
FU
A2
UA
24
DO
60
20
68
68
DU
20
AY
20
85
20
AU
20
BO
20
AU
29
81
45
85
20
Ay
yu
20
Cc5
FO
AY
20
AY
2u
20
A9
4C
AS
43
AS
A6
A4
25
Y]
85
36
54
08
03
65
BA
3o
D8
60
20
20
2V
20
Ds
20
A9
85
20
20
24
84

ED
BA
1D

EE
22
ED
4D
10

D6
FA

Jo

6C
FA
16
C9
2E
FA

FD
FS
FD

eC

4
2F
93
39

3A
AA
33
57
c7
A7
34

FE
FC

FE

FE

FC
FC
FC
FC
FC

FC

FC

FD
FD
FD

FD

FE
FB
FE
FE

FF
FD

FF
FF

WRBYTE
WRBYTZ

CRMON

READ

RD2

RD3

PRERR

3ELL

RESTORE

RESTRI1

SAVE
5AV1

RESET

MON

MONZ

NXTITM

JSR
JSR
LDY
PLA
3CC
LDY
JSR
BEQ
LDX
ASL
JSR
BNE
RTS
JSR
PLA
PLA
BNE
JSR
LDA
JSR
STA
JSR
LDY
JSR
BCS
JSR
LDY
JSR
STA
EOR
3T

JSR
LDY
BCC
JSR
cMP
8EQ
LDA
JSR
LDA
JSR
JSR
LDA
J4p
LDA
PHA
LDA
LDX
LDY
PLP
RTS
STA
STX
STY
PHP
PLA
STA
TSX
STX
CLD
RTS
JSR
JSR
JSR
JSR
CLD
JSR
LDA
STA
JSR
JSR
JSR
STY

WRBYTE
NXTAl
#51D

WR1
#5522
WRBYTE
BELL
#3510

A
WRBIT
WRBYT2

BL1

MONZ
RD2BIT
#S16
HEADR
CHKSUM
RD2BIT
#524
RDBIT
RD2
RDBIT
#$3B
RCBYTE
(ALL,X)
CHKSUM
CHKSUM
NXTAl
#$35
RD3
RDBYTE
CHKSUM
BELL
#$C5
couT
#SD2
couT
ceur
#$87
cour
STATUS

ACC
XREG
YREG

ACC
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKBD

BELL
#SAA
PROMPT
GETLN2Z
ZMODE
GETNUM
YSAV

169

HANDLE CR AS BLANK
THEN POP STACK
AND RTN TC ™MCN

FIND TAPEIN EDGE

DELAY 3.5 SECCNCS
INIT CHXSUM=S$FF
FIND TAPEIN EDCE
LOOK FOR SYNC BIT
(SHORT 0)
LOOP UNTIL FOUND
SKIP SECOND SYNC H-CYCLE
INDEX FOR /1 TEST
READ A BYTE
STORE AT (Al)

UPDATE RUNNING CHKSUM
INCR Al, COMPARE TC A2
COMPENSATE U/1 INDEX
LCCP UNTIL DONE

READ CHKSUM BYTE

GOCD, SCUND BELL AND RETURN

PRINT "ERR", THEN BELL

QUTPUT BELL AND RETURN

RESTORE 6502 REG CCNTENTS
USED BY CEBUG SCFTWARE

SAVE 65U2 REG CCNTENTS

SET SCREEN MODE
AND INIT KBD/SCREEWN
AS I/0 DEV'S

4UST SET HEX MCDE!

'*!' PRCMPT FOR MCN

READ A LINE

CLEAK MON MODE, SCAN IDX

GET ITEM, NON-HEX
CHAR IN A-REG

FF78:
FF7A:
FF7B:
FF7D:
FF30:
FF82:
FF85:
FF&7:
FFB8A:
FFoC:
FFoD:
FFQE:
FFGF:
FF90:
FF91:
FF93:
FF95:
FFY6:
FF93:
FF9A:
FFSC:
FFO9E:
FFAU:
FFA2:
FFAS:
FFAS:
FFAT:
FFAY:
FFAB:
FFAD:
FFBU:
FFB1:
FFB3:
FFBS:
FFB7:
FFBY:
FFBB3:
FFBD:
FFBE:
FFCU:
FFC1:
FFC4:
FFCS:
FFC7:
FFCY:
FFCB:
FFCC:
FFCD:
FFCE:
FFCF:
FFDU:
FFD1:
FFD2:
FFD3:
FFD4:
FFDS:
FFD6:
FFD7:
FFDg:
FFCY9:
FFDA:
FFDB:
FFDC:
FFDD:
FFCE:
FFDF:
FFEU:
FFE1l:
FFE2:
FFE2:
FFE4:
FFES:

AU
88
30
D9
jo1¥]
20
Ad
aC
A2
uA
UA
ua
VA
UA
26
20
ca
10
AS
DU
BS
95
95
E3
Fu
Do
AZ
86
56
89
Cs
49
[oF°]
90
69
(o]
BU
6U
AY
e
B9
48
A5
AU
cd
60
BEC
B2
BE
ED
EF
c4
EC
AY
BB
Ab
A4
Ut
95
07
u2

FQ
uo
EB
93
A7
Co
99
B2
Cc9
BE

E8
cc
F8
BE
34
73
u3

Fo
31
U6
3F
3D
41

F3
Uo
uo
3E
3F
Uy

3u
LA
D3
38

cC

FF
FF

FF

92

1055
1056
1057
1058
1059
1u6u
1061
1062
1063
1064
1u65
1u66
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
10862
1u83
lus4
1u85
luge
10y7
10838
10€9
105u
1u9l
1ug2

1033

1u24
10953
luve
1497
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1119
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

CHRSRCH

DIG

NXTBIT

NXTBAS

NXTBS2

GETNUM

NXTCHR

ZMODE

CHRTBL

SUBTBL

#$17

MON
CHRTBL, Y
CHRSRCH
TCSUB
YSAV
NXTITM
#503

A

A

A

A

A

A2L

A2H

NXTBIT
MCLE

NXTBS2
A2H, X
AlH, X
A3H,X

NXTBAS
NXTCHR
#SUU
A2L
A2H
IN,Y

#$BO
#$0A
DIG

#9588
#SFA

SFO
$00
SEB
$93
SA7
$Cob
$99

#BASCONT-1

#USR-1
#REGZ-1

170

X-REG=0 IF NO HEX INPUT

NCT FCUND, GO TOC MON
FIND CMND CHAR IN TEL

FOUNLC, CALL CCKRRESPONDING
SUBRCUT INE

GOT HEX DIG,
SHIFT INTO A2

LEAVE X=$FF IF DIC

IF MODE IS ZERO
THEN COPY a2 TO
Al AND A3

CLEAR A2

GET CHAR

IF HEX DIG, THEN

PUSH HIGH-ORDER
SUBR ALR Own STK

PUSH LCW ORLER
SUBR ALCR ON STK

CLR 4CDE, OLD MCDE
TO A-REG

GO TO SUBR VIA KTS

F ("CTRL-C")

F("CTRL-Y")
F ("CTRL-E")
F("T"

F("
FUOmLKM
P

F ("CTRL-P")
£ ("CTRL-B")
p(nom)
F("+")
F("M") (F=EX-OR $B0+$89)
Fnem)
PN
F(MIM)
F("L)
B
F("G")
F("R")

F(n

F(".)
F("CR")

F (BLANK)

LT V0 L\t L) Lt LA L A A LA LA LT 1 1 |

FFE®:
FFE7:
FFES:
FFE9:
FFEA:
FFEB:
FFEC:
FFED:
FFEE:
FFEF:
FFFU:
FFF1:
FFF2:
FFF3:
FFF4:
FFFS:
FFFo:
FFF7:
FFF&:
FFFS:
FFFA:
FFFB:
FFFC:
FFFD:
FFFE:
FFFF:

Ccl
35
6C
Cc3
96
AF
17
17
23
1F
83
iF
5D
cC
BS
FC
17
17
FS
U3
FB
03
59
FF
86
FA

1127
1128
1129
113u
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153 XQTNZ

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
DFB
EQU

#TRACE-1
FVFY-1
#INPRT-1
#STEPZ-1
#0UTPRT-1
#XBASIC-1
#SETMODE-1
#SETMODE -1
$MOVE~-1
#LT-1
#SETNORM-1
#SETINV-1
#LIST-1
$WRITE-1
4GOo-1
$READ-1
#SETMODE-1
#SETMODE-1
#CRMON-1
#BLANK-1
FNMI
FNMI/256
#RESET
#RESET/255
#IRQ
4IRQ/256
$3C

171

NMI VECTIOR
RESET VECTCR

IRQ VECTCR

SYMBOL TABLE
(NUMERICAL ORDER)

0000 LOCO
0022 WNDTOP
0026 GBASL
002A BAS2L
002D vz
002E FORMAT
0030 COLOR
0034 YSAV
0038 KSWL
003C AlL
0040 A3L
0044 ASL
0047 YREG
004F RNDH
03F2 SOFTEV
O3FB NMI
CO00 IOADR
CO030 SPKR
CO53 MIXSET
CO57 HIRES
CO5B CLRANI1
COSF CLRAN3
CFFF CLRROM
F80C RTMASK
F826 VLINEZ
F83&6 CLRTOP
F85&6 GBCALC
F87F RTMSKZ
F8A5 ERR
F8C9 MNNDX3
FBFS5 NXTCOL
F?26 PRADR3
F?40 PRNTYX
F94A PRBLZ2
F?56 PCADJ3
Foa&6 FMT2
FAOO MNEMR
FA62 RESET
FAA3 NOFIX
FABA SLOOP
FAE4 RDSP1
FB11 XLTBL
FB2E RTS2D
FB4B SETWND
FB&F SETPWRC
FB?7 ESCOLD
FBDO BASCLCZ2
FBFO STORADV
FC10 BS
FC2B RTS4
FC58 HOME

FC7&
FCPE
FChA
FCC?
FCED
FCFD
FD2F
FD&62
0001

0023
0027

0028

002D
002F
0031

0033
0039
003D
0041

0045
0048
0095
0O3F4
O3FE
CO00
C050
CO54
c0o58
CO5C
C060
EOOO
F80E
Fez28
F838
F8&4
Fgga
F8A%?
F8DO0
F8F9
Fe24
F?41
F?4C
F95C
F?B4
FA40
FALF
FAAL
FAC7
FAFD
FB19
FB2F

SCRL1
CLEOLZ
WAIT3
HEADR
WRTAPE
RDBIT
ESC
CANCEL
LOC1
WNDBTM
GBASH
BAS2H
RMNEM
LASTIN
MODE
YSAV1
KEWH
AlH
A3H
ASH
STATUS
PICK
PWREDUP
IRGLOC
KBD
TXTCLR
LOWSCR
SETANO
SETANZ
TAPEIN
BASIC
PLOT1
VLINE
CLRSC2
SETCOL.
INSDS1
GETFMT
INSTDSP
PRMNZ
PRADR4
PRNTAX
PRBL3
PCADJ4
CHAR1
IRQ
INITAN
PWRUP
NXTBYT
PWRCON
RTBL
INIT

172

FBSB
FB78
FB9D
FBDY
FBF4
FC1A
Fcac
FCo2
Fcac
FCAO
FCB4
FCD6
FCEC
FDOC
FD35
FD&7
0020
0024
0028
002¢
002E
002F
0032
0036
0034
003E
0042
0045
0049
0200
O3F5
0400
co10
co51
CO55
co59
coSD
co64
E003
FB19
FB31
F83c
FB71
FB8C
FBBE
F8D4
F910
F930
F944
F953
F961

TABYV
VIDWAIT
ESCNDOW
BELL1
ADVANCE

AMPERV
LINEL
KBDSTRB
TXTSET
HISCR
CLRANO
CLRANZ
PADDLO
BASIC2
HLINE
RTS1
CLRSC3
SCRN
INSDS2
MNNDX 1
PRNTOP
PRADR1
PRADRS
PRNTX
PCADJ
RTS2

MEl TElL [TEl JEL

TEl

1
'

1
1y

= 1 1 E1 E1 OB OIE] OIELOIEY OTE OME)l OIE

¥ 2}

F?BA
FA4C

FAg1

FAAS
FAD7
FBOZ2
FBI1E
FB39
FB&0O
FBes
FBAS
FBE4
FBFC

Fca2
FC42
FC&6
FC?5
FCAB
FCBA
FCDB
FCEE
FD1B
FD3D
FD&A
0021

0025
0029
o02C
002E
002F
0033
0037
0038
OO3F
0043
0046
004E
03F0
O3F8
07F8
c020
cos2
CO56
coS5A
COSE
c070
F800
F81cC
F832
F847
F87%
F89B
Facz2
FaDB

UV U AL L L

CHARZ
BREAK
NEWMON
SETPG3
REGDSP
DISKID
PREAD
SETTXT
APPLEII
KBDWAIT
ESCNEW
BELLZ2
RTS3
VTAB
CLREOP
LF
SCRL3
WAIT
NXTAL
ZERDLY
RDBYT2
KEYIN
NOTCR
GETLN
WNDWDTH
cv
BASH
LMNEM
CHKREUM
SIGN
PROMPT
CSWH
PCH
AZH
Ad4H
XREG
RINDL
BRKV
USRADR
MSLOT
TAPEQUT
MIXCLR
LORES
SETAN1
SETAN3
PTRIG
PLOT
HLINE1
CLRSCR
GBASCALC
SCRN2
IEVEN
MNNDX2
PRNTBL

F914
Fo38
Fo48
F954
Fooz
F9Co
FA5S9
FA9B
FAAB
FADA
FBO9
FB25
FB40
FB&65
FB94
FBC1
FBEF
FBFD
Fc24
FC46
FC70
FCoC
FCA9
Fcea
FCE2
FCFA
FD21
FDSF
FD71
FD75
FD92
FDB3
FDD1
FDED
FEO4
FELD
FE36
FE75
FEB4
FESD
FE9B
FEB3
FEC4
FEED
FFOA
FF3F
FF59
FF7A
FFA2
FFC7
FD7E
FD96
FDB&
FDDA

PRADRZ
RELADR
PRBLNK
PCADJZ
FMT1
MNEML.
OLDBRK
FIXSEV
SETPLP
RGDSP 1
TITLE
PREADZ
SETGR
STITLE
NOWAIT
BASCALC
RTS2B
VIDOUT
VTABZ
CLEOP1
SCROLL
CLREOL
WAITZ2
RTS4B
ONEDLY
RD2BIT
KEYINZ2
NOTCR1
BCKSPC
NXTCHAR
PRA1
XAM

ADD
couT
BLANK
SETMDZ
VFY
ALlPC
SETMNORM
INPRT
I0PRT
BASCONT
STEPZ
WRBYTE
RD2
RESTORE
OLDRST
CHRSRCH
NXTBS2
ZMODE
CAPTST
PRYX2
DATAQUT
PRBYTE

173

FDFO
FEOB
FE20
FES58
FE78
FEB6
FE93
FEA7
FER6
FECA
FEEF
FF16
FFa4
FF&5
FFEA
FFa7
FFCC
FD84
FDA3
FDCS
FDE3
FDF&
FE17
FE22
FESE
FE7F
FEB9
FE95
FEA9
FEBF
FECD
FEF&
FF2D
FF4A
FF&9
FF90
FFAD
FFE3
FDSE

FDAD

FDC&

FDES
FEOO
FE18
FE2C

FE63
FEB0

FEBB

FE97

FEBO

FEC2

FED4

FEFD

FF3A

COUT1
STOR
LT
VFYOK
AL1PCLP
SETIFLG
SETVID
IOPRT1
G0

USR
WRBYT2
RD3
RESTR1
MON
DIG
GETNUM
CHRTBL
ADDINP
XAM8
RTS4C
PRHEX
couTz
RTSS
LT2
LIST
ALPCRTS
SETKBD
OUTPORT
IOPRT2
REGZ
WRITE
CRMON
PRERR
SAVE
MONZ
NXTBIT
NXTCHR
SUBTBL
CROUT
MODB8CHK
XAMPM
PRHEXZ
BL1
SETMODE
MOVE
LIST2
SETINV
INPORT
OUTPRT
XBASIC
TRACE
WR1
READ
BELL

FF4C
FF73
FF98
FFBE

SAV1
NXTITH
NXTBAS
TOSUB

SYMBOL TABLE
(ALPHABETICAL ORDER)

003D
FE7F
0040
0044
FBF4
0024A
0029
FD71

FEOQO
FC10
FPBA
0024
CO59
FC9C

F83C

FDED
FCé&2
0025
F8A5
FB97
FoAb
0026
FD&A
FCC?
F819
0200
Faga
C0o00
O3FE
C000
0038
0400
0000
FE22
C053
Faca
FF&9
FAB1
FDSF
FF98
FD75
FAS?
FE®7

AlH
ALPCRTS
A3L

ASL
ADVANCE
BAB2L
BASH
BCKSPC
Bl.1

NEWMON
NOTCR1
NXTBAS
NXTCHAR
OLDBRK
OUTPRT

Fo56
0095
F?10
Fe30
FDDA
FDE3
F8DB
0033
03F4
FF1é
FD35
FAD7
FF3F
004F
F87F
F?61
003C
O03F
0043
0045
03F5
FBC1
EOO0O
FBD?
FEO4
FD&2
002E
FCAO
COSB
FC42
Fa3z
FDFO
FEF&
FDBé&
Fcac
FD2F
002E
F856
FFA7
CO57
FCS8
FB2F
F88C

PCADJUS
PICK
PRADR 1
PRADRS
PRBYTE
PRHEX
PRNTBL
PROMPT
PWREDUP
RD3
RDCHAR
REGDSP
RESTORE
RNDH
RTMSKZ
RTS2
AlL
AZH
A4H
ACC
AMPERV
BASCALC
BASIC
BELL1
BLANK
CANCEL
CHKSUM
CLEOLZ2
CLRANI
CLREOP
CLRSCR
CouUT1
CRMON
DATAQUT
ESC1
ESC
FORMAT
GBCALC
GETNUM
HIRES
HOME
INIT
INSDS2

174

FEA7
FA40
FD1B
002F
FESE
0001

FE20
F9CO
Faco
FF65
03FB
FB94
FF90
FFAD
FE59
Co64
F95C

FBOE
Fo14
Fo4A
FB1E
FDES
F8D4
FD96
FAAG
FCFD
FDOC
FEBF
FF44
004E
F831

FBFC

FE78
003E
0042
FDB4
FB&O
FBDO
E003
FBE4
FAA4C
FD7E
FE7A

IOPRTL
IRG
KEYIN
LASTIN
LIST
LOC1
LT
MMNEML.
MNNDX3
MON
NMI
NOWAIT
NXTBIT
NXTCHR
OLDRST
PADDL.O
PCADJ4
PLOTL
PRADRZ2
PRBL2
PREAD
PRHEXZ
PRNTCP
PRYX2
PWRUP
RDBIT
RDKEY
REGZ
RESTR1
RNDL
RTS1
RTS3
ALPCLP
A2l
A4
ADDINP
APPLEIIL
BASCLCZ
BASIC2
BELLZ
BREAK
CAPTST
CHRSRCH

1T Bl e e e I1E e e e I1¥) 1E 1= =

T 21

LU R R

FC9E
CO5D
CFFF
F836
FDF &
0037
FF8A
FBAS
FA?DB
F847
F8A?
FEBé&
CO55
FB9B
FE8BB
F8Do
FEA?
CO10
FD21
002F
FE&3
CO56
002E
FAQO
FDAD
FE2C
FAAZ
FCBA
FFAZ
F8F5
FCEZ
Fo54
003B
F800
Fo26
F?4C
FB25
F8F%
Fo44
C070
FCFA
FCEE
FAE4
F?38
FADA
FB19
FBEF
FCC8
FE75
0041
0045
FDD1
0028
FEB3
ooze

CLEOLZ
CLRANZ
CLRROM
CLRTOP
couTz
CSWH
DIG
ESCNEW
FIXSEV
GBASCAL.C
GETFMT
GO
HISCR
IEVEN
INPORT
INSTDSP
IOPRT2
KBDSTRDB
KEYINZ
LENGTH
LIsST2
LORES
MASK
MNEMR
MODBCHK
MOVE
NOFIX
NXTAL
NXTRS2
NXTCOL.
ONEDLY
PCADJ2
PCH
PLOT
PRADR3
PRBL3
PREADZ2
PRMNZ
PRNTX
PTRIG
RD2ZBIT
RDBYT2
RDSP1
REL.ADR
RGDSP 1
RTBL
RTS2B
RTS4B
ALPC
A3H
ASH
ADD
BAS2H
BASCONT
BASL.

FF3a
0ZF0
FIB4
FFCC
FC46
COSF
Fa3s
0030
FDSE
0036
FROZ
FB9B
Fo&2
0027
FD&7
002¢C
Felic
FALF
FEBD
0032
FE9B
FBS8
0039
FCo6
ooac
co54
cosz
FBBE
0031
07F8
FD3D
FCB4
FAC7
FF73
FE95
Fo53
0034
FD92
Fo2A
Fo48
FF2D
F941
F940
FAFD
FFOA
FCEC
FEFD
FAG2
002D
FBOC
FB2E
FDCS
FE17
FC2B
FC76
FB79

BELL
BRKV
CHAR1
CHRTBL
CLEOP1
CLRANG
CLRSC2
COL.OR
CROUT
CSWL.
DISKID
ESCNOW
FMT1
GBASH
GETLNZ
Ha
HLINE1
INITAN
INPRT
INVFLG
I0PRT
KBDWALT
KEWH
LF
LMNEM
LOWECR
MIXCLR
MNNDX 1
MODE
MSLOT
NOTCR
NXTA4
NXTBYT
NXTITM
OUTPORT
PCADJ
PCL
PRA1
PRADR4
PRBL.NK
PRERR
PRNTAX
PRNTYX
PWRCON
RD2
RDBYTE
READ
RESET
RMNEM
RTMASK
RTS2D
RTS4C
RTES
RTS4
SCRL1
SCRNZ

175

C05C
FEB6&
FE18
FB&F
002F
0049
FEOB
C060
FECZ
FECA
FED8
Fga8
FCAB
o022
FEEF
FDA3
FB11
0034
FC8C
FC70
COS5E
FEBO
FE84
FB39
FABA
0048
FBFO
€020
C050
03F8
FBFD
FC24
FCAA
0021
FEED
FDCé&
004646
FCDB
FF4C
FC95
cos8e
F864
FE89
FAA?
FE?3
03F2
FEC4
FFE3
FBO9
€051
002D
FB78
FCa22
0023
FED4

SETANZ
SETIFLG
SETMODE
SETPWRC
SIGN
SPNT
STOR
TAPEIN
TRACE
USR
VFYOK
VLINE
WAIT
WNDTOP
WRBYT2
XAMB
XLTBL
Ysav
SCRL2
SCROLL
SETAN3
SETINV
SETNORM
SETTXT
sSLOOP
STATUS
STORADV
TAPEQUT
TXTCLR
USRADR
vVIDOUT
VTABZ
WAIT3
WHNDWDTH
WRBYTE
XAMPM
XREG
ZERDLY
Savi
SCRL3
SETANO
SETCOL
SETKBD
SETPG3
SETVID
SOFTEV
STEPZ
SUBTBL
TITLE
TXTSET
va
VIDWAIT
VTAR
WNDBTM
WR1

FECD
FDB3
0047
FFC7
FF4A
F871
CO5A
FB40
FEL1D
FAAB
FB4RB
€030
FB&S
FBSB
FFBE
FC1A
FE36
F826
FCA?
0020
FCD&
FCES
FEBO
0035

SYMBOL. TABLE SIZE
BYTES USED
BYTES REMAINING

2589
2531

WRITE
XAM
YREG
ZMODE
SAVE
SCRN
SETANIL
SETGR
SETMDZ
SETPLP
SETWND
SPKR
STITLE
TABV
TOSUB
Up

VFY
VLINEZ
WAIT2
WNDLFT
WRBIT
WRTAPE
XBASIC
YSAV1

SLIST 44

¥

IEl

" TEl TEL MEl IE. (¥, IE. [EL [TEl TEl TF.

€1 |E([El

g

[l S

ke

176

B D O O I 1O O O 1O 1 1 4 I 7 O 4 I A Il L R T L T T e
SO 0 O 1 5 O O O R O O f S 4 R O Y A A O 1 L 4 A & L § B Y A

177

65602: The manufacturer’s name for the microprocessor at the heart of your Apple.

Address: As a noun: the particular number associated with each memory location. On the
Apple, an address is a number between @ and 65535 (or $00@@ and SFFFF hexadecimal). As a
verb: to refer to a particular memory location.

Address Bus: The set of wires, or the signal on those wires, which carry the binary-encoded
address from the microprocessor to the rest of the computer.

Addressing mode: The Apple’s 6502 microprocessor has thirteen distinct ways of referring to
most locations in memory. These thirteen methods of forming addresses are called addressing
modes.

Analog: Analog measurements, as opposed to digital measurements, use an continuously vari-
able physical quantity (such as length, voltage, or resistance) to represent values. Digital meas-
urements use precise, limited quantities (such as presence or absence of voltages or magnetic
fields) to represent values.

AND: A binary function which is “‘on’” if and only if all of its inputs are “‘on’’.

Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal
computer. 3) Apple Computer, Inc., manufacturer of home and personal computers.

ASCII: An acronym for the American Standard Code for Information Interchange (often called
“USASCII” or misinterpreted as ‘“‘ASC-II’’). This standard code assigns a unique value from @
to 127 to each of 128 numbers, letters, special characters, and control characters.

Assembler: 1) One who assembes electronic or mechanical equipment. 2) A program which
converts the mnemonics and symbols of assembly language into the opcodes and operands of
machine language.

Assembly language: A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs written in assembly language are slightly less difficult to write
and understand than programs in machine language.

BASIC: Acronym for ‘“‘Beginner’s All-Purpose Symbolic Instruction Code’’. BASIC is a higher-
level language, similar in structure to FORTRAN but somewhat easier to learn. It was invented
by Kemney and Kurtz at Dartmouth College in 1963 and has proved to be the most popular
language for personal computers.

Binary: A number system with two digits, ‘@’ and ‘‘1”’, with each digit in a binary number
representing a power of two. Most digital computers are binary, deep down inside. A binary sig-
nal is easily expressed by the presence or absence of something, such as an electrical potential or
a magnetic field.

Binary Function: An operation performed by an electronic circuit which has one or more inputs
and only one output. All inputs and outputs are binary signals. See AND OR, and Exclusive-OR.

Bit: A Binary digIT. The smallest amount of information which a computer can hold. A single
bit specifies a single value: ““0*’ or ““1”. Bits can be grouped to form larger values (see Byte and
Nybble).

Board: See Printed Circuit Board.

178

el EL TEL

MEl TElL TR

IE E

IEl

IE1 IEL [E]l TEL TE]l [F

IE|

e TEpr (P

g

EEF EF)

ke

B U R

Bootstrap (‘‘boot’’): To get a system running from a cold-start. The name comes from the
machine’s attempts to “‘pull itsef off the ground by tugging on its own bootstraps.”

Buffer: A device or area of memory which is used to hold something temporarily. The ‘picture
buffer’” contains graphic information to be displayed on the video screen; the ‘‘input buffer”
holds a partially formed input line.

Bug: An error. A hardware bug is a physical or electrical malfunction or design error. A software
bug is an error in programming, either in the logic of the program or typographical in nature. See
“feature”’.

Bus: A set of wires or races in a computer which carry a related set of data from one place to
another, or the data which is on such a bus.

Byte: A basic unit of measure of a computer’s memory. A byte usualy comprises eight bits.
Thus, it can have a value from @ to 255. Each character in the ASCII can be represented in one
byte. The Apple’s memory locations are all one byte, and the Apple’s addresses of these loca-
tions consist of two bytes.

Call: As a verb: to leave the program or subroutine which is currently executing and to begin
another, usualy with the intent to return to the original program or subroutine. As a noun: an
instruction which calls a subroutine.

Character: Any graphic symbol which has a specific meaning to people. Letters (both upper- and
lower-case), numbers, and various symbols (such as punctuation marks) are all characters.

Chip: See Integrated Circuit.

Code: A method of representing something in terms of something else. The ASCII code
represents characters as binary numbers, the BASIC language represents algorithms in terms of
program statements. Code is also used to refer to programs, usually in low-level languages.

Cold-start: To begin to operate a computer which has just been turned on.

Color burst: A signal which color television sets recognize and convert to the colored dots you
see on a color TV screen. Without the color burst signal, all pictures would be black-and-white.

Computer: Any device which can recieve and store a set of instructions, and then act upon those
instructions in a predetermined and predictable fashion. The definition implies that both the
instruction and the data upon which the instructions act can be changed. A device whose instruc-
tions cannot be changed is not a computer.

Control (CTRL) character: Characters in the ASCI/ character set which usually have no graphic
representation, but are used to control various functions. For example, the RETURN control
character is a signal to the Apple that you have finished typing an input line and you wish the
computer to act upon it.

CRT: Acronym for ‘‘Cathode-Ray Tube’’, meaning any television screen, or a device containing
such a screen.

Cursor: A special symbol which reminds you of a certain position on something. The cursor on

a slide rule lets you line up numbers; the cursor on the Apple’s screen reminds you of where you
are when you are typing.

179

Data (datum): Information of any type.
Debug: To find bugs and eliminate them.
DIP: Acronym for ‘‘Dual In-line Package’, the most common container for an Integrated Cir-
cuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually

come in 14-, 16-, 18-, 20-, 24-, and 40-pin configurations.

Disassembler: A program which converts the opcodes of machine language to the mnemonics of
assembly language. The opposite of an assembler.

Display: As a noun: any sort of output device for a computer, usually a video screen. As a
noun: to place information on such a screen.

Edge connector: A socket which mates with the edge of a printed circuit board in order to
exchange electrical signals.

Entry point: The location used by a machine-language subroutine which contains the first exe-
cutable instruction in that subroutine; consequently, often the beginning of the subroutine.

Excusive-OR: A binary function whose value is ‘‘off”” only if all of its inputs are “off”’, or all of
its inputs are ‘‘on’’.

Execute: To perform the intention of a command or instruction. Also, to run a program or a
portion of a program.

Feature: A bug as described by the marketing department.

Format: As a noun: the physical form in which something appears. As a verb: to specify such a
form.

Graphic: Visible as a distinct, recognizable shape or color.

Graphics: A system to display graphic items or a collection of such items.

Hardware: The physical parts of a computer.

Hexadecimal: A number system which uses the ten digits @ through 9 and the six letters A
through F to represent values in base 16. Each hexadecimal digit in a hexadecimal number

represents a power of 16. In this manual, all hexadecimal numbers are preceded by a dollar sign

(9.
High-level Language: A language which is more intelligible to humans than it is to machines.

High-order: The most important, or item with the highest vaue, of a set of similar items. The
high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byte address. In decimal, the high part of an address is
the quotient of the address divided by 256. In the 6502, as in many other microprocessors, the
high part of an address comes last when that address is stored in memory.

Hz (Hertz): Cycles per second. A bicycle wheel which makes two revolutions in one second is
running at 2Hz. The Apple’s microprocessor runs at 1,023,000Hz.

180

el By IEL (Bl OIEL OMEL

El

IE

E]

El

el

s les w1 iE1r 1l E1

| p—

LI I | I\ L Y

1/0: See Input/Output.
IC: See Integrated Circuit.

Input: As a noun: data which flows from the outside world into the computer. As a verb: to
obtain data from the outside world.

Input/Output (I/0): The software or hardware which exchanges data with the outside word.

Instruction: The smallest portion of a program that a computer can execute. In 6502 machine
language, an instruction comprises one, two, or three bytes; in a higher-level language, instruc-
tions may be many characters long.

Integrated circuit: A small (less than the size of a fingernail and about as thin) wafer of a glassy
material (usually silicon) into which has been etched an electronic circuit. A single IC can con-
tain from ten to ten thousand discrete electronic components. ICs are usually housed in DIPs
(see above), and the term IC is sometimes used to refer to both the circuit and its package.

Interface: An exchange of information between one thing and another, or the mechanisms
which make such an exchange possible.

Interpreter: A program, usualy written in machine language, which understands and executes a
higher-level language. ‘

Interrupt: A physical eftect which causes the computer to jump to a special interrupt-handling
subroutine. When the interrupt has been taken care of, the computer resumes execution of the
interrupted program with no noticeable change. Interrupts are used to signal the computer that a
particular device wants attention.

K: Stands for the greek prefix ‘‘Kilo”’, meaning one thousand. In common computer-reated
usage, “‘K’’ usually represents the quantity 2m, or 1024 (hexadecimal $400).

Kilobyte: 1,024 bytes.

Language: A computer language is a code which (hopefully!) both a programmer and his com-
puter understand. The programmer expresses what he wants to do in this code, and the com-
puter understands the code and performs the desired actions.

Line: On a video screen, a “‘line”” is a horizontal sequence of graphic symbols extending from
one edge of the screen to the other. To the Apple, an input line is a sequence of up to 254 char-
acters, terminated by the control character RETURN. In most places which do not have personal
computers, a line is something you wait in to use the computer.

Low-level Language: A language which is more intelligible to machines than it is to humans.

Low-order: The least important, or item with the least vaue, of a set of items. The low-order bit
in a byte is the bit with the least place vaue.

Low part: The low-order byte of a two-byte address. In decimal, the low part of an address is the
remainder of the address divided by 256, also called the ‘“‘address modulo 256.”” In the 6502, as
in many other microprocessors, the low part of an address comes first when that address is stored
in memory.

Machine language: The lowest level language which a computer understands. Machine

181

languages are usually binary in nature. Instructions in machine language are single-byte opcodes
sometimes followed by various operands.

Memory address: A memory address is a two-byte value which selects a single memory location
out of the memory map. Memory addresses in the Apple are stored with their low-order bytes
first, followed by their high-order bytes.

Memory location: The smallest subdivision of the memory map to which the computer can
refer. Each memory location has associated with it a unique address and a certain value. Memory
locations on the Apple comprise one byte each.

Memory Map: This term is used to refer to the set of all memory locations which the micropro-
cesor can address directly. It is also used to describe a graphic representation of a system’s
memory.

Microcomputer: A term used to described a computer which is based upon a microprocessor.

Microprocessor: An integrated circuit which understands and executes machine language pro-
grams.

Mnemonic: An acronym (or any other symbol) used in the place of something more difficut to
remember. In Assembly Language, each machine language opcode is given a three letter
mnemonic (for example, the opcode $6@ is given the mnemonic RTS, meaning ‘‘ReTurn from
Subroutine™).

Mode: A condition or set of conditions under which a certain set of rules apply.

Modulo: An arithmetic function with two operands. Modulo takes the first operand, divides it by
the second, and returns the remainder of the division.

Monitor: 1) A closed-circuit television receiver. 2) A program which allows you to use your
computer at a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which has many data inputs, a few selector inputs, and one
output. A multiplexer connects one of its many data inputs to its output. The data input it
chooses to connect to the output is determined by the selector inputs.

Mux: See Multiplexer.

Nybble: Colloquial term for half of a byte, or four bits.

Opcode: A machine language instruction, numerical (often binary) in nature.

OR: A binary function whose value is “‘on’” if at least one of its inputs are “‘on’’.

Output: As a noun, data generated by the computer whose destination is the real world. As a
verb, the process of generating or transmitting such data.

Page: 1) A screenfull of information on a video display. 2) A quantity of memory locations,
addressible with one byte. On the Apple, a ‘‘page’’ of memory contains 256 locations.

Pascal: A noted French scientist.

PC board: See Printed Circuit Board.

182

fer | ey 1E; 1Bl [E. (Bl TE! [El IE. (E1 IE. [E\ IEL IEL IEl IEl IE IE

fe

Tz g

ke

R RREEEEEEEEEE e

Peripheral: Something attached to the computer which is not part of the computer itself. Most
peripherals are input and/or output devices.

Personal Computer: A computer with memory, languages, and peripherals which are well-suited
for use in a home, office, or school.

Pinout: A description of the function of each pin on an IC, often presented in the form of a
diagram.

Potentiometer: An electronic component whose resistance to the flow of electrons is propor-
tional to the setting of a dial or knob. Also known as a ““pot’’ or ‘‘variable resistor”’.

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been
applied, then etched away to form traces. Electronic components can then be attatched to the
board with molten solder, and they can exchange electronic signals via the etched traces on the
board. Small printed circuit boards are often called ‘‘cards”, especially if they are meant to con-
nect with edge connectors.

Program: A sequence of instructions which describes a process.

PROM: Acronym for ‘‘Programmable Read-Only Memory””. A PROM is a ROM whose contents
can be altered by electrical means. Information in PROMs does not disappear when the power is
turned off. Some PROMSs can be erased by ultraviolet light and be reprogrammed.

RAM: See Random-Access Memory.

Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM
can be used to refer either to the integrated circuits which make up this type of memory or the
memory itself. The computer can store values in distinct locations in RAM and recall them
again, or alter and re-store them if it wishes. On the Apple, as with most small computers, the
values which are in RAM memory are lost when the power to the computer is turned off.
Read-Only Memory (ROM): This type of memory is usually used to hold important programs
or data which must be available to the computer when the power is first turned on. Information
in ROMs is placed there in the process of manufacturing the ROMs and is unalterable. Informa-
tion stored in ROMs does not disappear when the power is turned off.

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of examin-
ing or altering the contents of a memory location. As a noun, such an action.

Return: To exit a subroutine and go back to the program which called it.
ROM: See Read-Only Memory.

Run: To follow the sequence of instructions which comprise a program, and to complete the
process outlined by the instructions.

Scan line: A single sweep of a cathode beam across the face of a cathode-ray tube.

Schematic: A diagram which represents the electrical interconnections and circuitry of an elec-
tronic device.

Scroll: To move all the text on a display (usually upwards) to make room for more (usually at
the bottom).

183

Soft switch: A two-position switch which can be ‘‘thrown’’ either way by the software of a com-
puter.

Software: The programs which give the hardware something to do.

Stack: A reserved area in memory which can be used to store information temporarily. The
information in a stack is referenced not by address, but in the order in which it was placed on the
stack. The last datum which was ‘‘pushed’’ onto the stack will be the first one to be ‘‘popped”
off it.

Strobe: A momentary signal which indicates the occurrence of a specific event.

Subroutine: A segment of a program which can be executed by a single call. Subroutines are
used to perform the same sequence of instructions at many different places in one program.

Syntax: The structure of instructions in a given language. If you make a mistake in entering an
instruction and garble the syntax, the computer sometimes calls this a “SYNTAX ERROR.”

Text: Characters, usually letters and numbers. ‘‘Text’” usually refers to large chunks of English,
rather than computer, language.

Toggle switch: A two-position switch which can only flip from one position to the other and
back again, and cannot be directly set either way.

Trace: An etched conductive path on a Printed-Circuit Board which serves to electronically con-
nect components.

Video: 1) Anything visual. 2) Information presented on the face of a cathode-ray tube.

Warm-start: To restart the operation of a computer after you have lost control of its language or
operating system.

Window: Something out of which you jump when the power fails and you lose a large program.
Really: a reserved area on a display which is dedicated to some special purpose.

184

=T &7 1 (e el 1F] 1ED (EY IEI 1E] IE. 1IE!

1=

" @) TE3} JIF TP I O 1EY IR T

s

185

Here are some other publications which you might enjoy:

Synertek/MOS Technology 6500 Programming Manual

This manual is an introduction to machine language programming for the MC6502 microproces-
sor. It describes the machine lanuage operation of the Apple’s microprocessor in meticulous
detail. However, it contains no specific information about the Apple.

This book is available from Apple. Order part number A2L0003.

Synertek/MOS Technology 6500 Hardware Manual
This manual contains a detailed description of the internal operations of the Apple’s 6502
microprocessor. It also has much information regarding interfacing the microprocessor to exter-
nal devices, some of which is pertinent to the Apple.

This book is also available from Apple. Order part number A2L0002.

The Apple II Monitor Peeled
This book contains a thorough, well-done description of the operating subroutines within the
Apple’s original Monitor ROM.

This is available from the author:

William E. Dougherty
14349 San Jose Street
Los Angeles, CA 91345

Programming the 6562
This book, written by Rodnay Zaks, is an excellent tutorial manual on machine and assembly-
language programming for the Apple’s 6502 microprocessor.

This manual is available from Sybex Incorporated, 2020 Milvia, Berkeley, CA 94704. It should
also be available at your local computer retailer or bookstore. Order book number C202.

6562 Applications
This book, also written by Rodnay Zaks, describes many applications of the Apple’s 6502
Mmicroprocessor.

This is also available from Sybex. Order book number D302.
System Description: The Apple II
Written by Steve Wozniak, the designer of the Apple computers, this article describes the basic

construction and operation of the Apple II.

This article was originally published in the May, 1977 issue of BYTE magazine, and is available
from BYTE Publications, Inc. Peterborough, NH 30458.

186

TE\

i &1 15 1By IE 1B IED 1R

IE

Yl E! (E) 1

1

e 1 P} O TF1 P IR TEFY P

E

SWEET16: The 6562 Dream Machine
Also written by Steve Wozniak, this article describes the SWEET16® interpretive machine
language enclosed in the Apple’s Integer BASIC ROMs.

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458.

More Colors for your Apple

This article, written by Allen Watson III, describes in detail the Apple High-Resolution Graphics
mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a
modification you can make to update your Revision @ Apple to add the two extra colors available
on the Revision 1 board.

This article appeared in the June, 1979 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458.

Call APPLE (Apple Puget Sound Program Library Exchange)
This is one of the largest Apple user group newsletters. For information, write:

Apple Puget Sound Program Library Exchange
6708 39th Ave. Southwest
Seatte, Wash., 98136

The Cider Press
This is another large club newsletter. For information, write:

The Cider Press

c¢/o The Apple Core of San Francisco
Box 4816

San Francisco, CA 94101

B ERREREREEEEEEEE DL

I;A‘

| 14, 13
Wi lai Wil el Hf lal et & Y& &l &l l&) &l 18 ') 13 1] i8 (&) 14 15

11, 3§

188

1l
TN

i
L L

J L

Ly Y

190 GENERAL INDEX

194 INDEX OF FIGURES

195 INDEX OF PHOTOS

195 INDEX OF TABLES

195 CAST OF CHARACTERS

- im LR LR Y 1y LR ¥ | ¥ L A L L im Lm

]

n

\

4

[

&

AR R R R L B B e B e B B I B e B)

189

GENERAL INDEX

@ boards, Revision.....................cccocoe..
1 board, Revision.......................

2716 type PROMS.............c.......
S0Hz modification, Eurapple .
6502 instruction set......................

6502 internal registers........................... 53, 81
6502 MiCroproCessor........c..ocovveveveeeennn... 3, 88

- A -

Access Memory (RAM), Random 3
address and data buses
address multiplexer, RAM .
addresses and data...................oooceie.
addressing modes.................ooovviiiiiiiiiinnn...
analog inputs
annunciator outputs......................
annunciator special locations 24
Apple Firmware card
Apple Language card
Apple main board, the
Apple Mini-assembler..
Apple, photo of the.............coooviiiii .
Apple power supply, the.......................... 2,92
Apple, setting up the
Apples, varieties ofcooiiiie
ASCII character code..................

ASCII codes, keys and
Autostart ROM listing..................
Autostart ROM Reset...............cooeeviiiiiiinn.
Autostart ROM special locations .
Autostart ROM.........oooooooiiiiii

auxiliary video connectorcccccoeeeveenn.
- B --

backspace character..........................ccooe. 30
backspace Keycoooevviiiiiiiiiiii 34
BASIC, enteringccococeeeeiiiiiinienn. 34, 54
BASIC, reentering.. 34, 54
bell charactercoooiiiiiiiie 31
block pinout, configuration.......................... 71
blocks, RAM configuration 70
board 1/0, peripheral....................cccccooei. 79
board, Revision @....................ccccoeei. 3,26
board, Revision 1...........ccooooiiin, 3,26
board, the Apple main 3, 89
board schematic, main.............ccccoovvvvvvnnn. 110
buffer, picture............ccooeevvieeviiiiiiieeee. 12
buffer, input ... 33
built-in I/O ..o 78, 98

190

buses, address and data......................... 88, 90
byte, power-up

- C -

card, Apple Language.............................. R
card, Apple Firmware.
cassette interface jacks....
cassette interface
cassette tape, saving to............
cassette tape, reading from ..
changing memorycccoooooeiiinii.
character code, ASCII..
character, backspace
character, line-feed...
character, RETURN .
character, bellcc...........
characters, prompting
characters, keyboard.......
characters, controlc...cco....
clearing the keyboard strobe......................... 6
code, ASCII character
COAES, €SCAPE ..vvvvveeeeeiiiireeieee e e 34
codes, keys and ASCIIcccccvvvvviininini, 7
cold start
colors, Low-Res..........coc.ccooviiiiiii
colors, High-Res..............ccc..coooo.
colors, European High-Res
command loops, Monitorccccceen..
commands, creating your Own.....................
commands, summary of Monitor .
COMPATiNG MEMOTY ..o,
configuration block pinout
configuration blocks, RAM ...
configuration, RAM memory
connector pinout, peripheral......................
connector, keyboard .
CONNECLOT, POWET ...vvvvveeeeeeeeiiiieeeeeee e
connector, SpPeaker...........ocvvvvverieeeeiinnnn...
connector, Game 1/0
connector, auxiliary video
connector, VIideo.......ccceveeeeeeiiiiiiiecieiiii
connectors, peripheral
connnector pinouts, keyboard
control charactersccccoevviiiiiiiiieineeeen.
control values, Normal/Inverse
Controllers, Game...............cccccooeen...
COUT, KEYIN switches..........ccocovvveeeieennn.
COUT standard output subroutine ...
creating your own commands .
CSW/KSW switchesccccoeevieiiiiieen, 83

[E} TE} [F] (Bl TE] JEL OTEl TE\ OIEl IEl (El TEL JEL IEL OIEL OTEL TR

IF1

B} E} 'E} TE) [F)

[19}

CUTSOT .ttt 30
CUTSOT, OULPULuviiiiiiiiiiieee e 30
cycle, the RESETccoocoooiiii 36

D --

data buses, address andc............
data, addresses and................cc..cooeeeiinnnn...
debugging programs.................ccccocoevueeeenn...
display special locations, video .
display, Video..........oooviiviiiiiiiiiiee e

.

editing an input lineccoooein. 33
editing features
entering BASIC ..., 34, 54
entering the Monitor.....................ooooenne.. 40
entry vector, soft.........

escape (ESC) codes
Eurapple 50Hz modification 10
European High-Res colors .
eXamining MeEMOTYccceeevvueeeeeneeennn..
expansion ROM....................o

- F --

feature, the Stop-Listoeeeevii.
features, input/outputccoceeevvuneeennnnn..
features, editing...........cccooevviveiiiiiiiiei,
features, keyboard.................

features, microprocessor
features, power Supply........cccoovveeveeeceinen.,
Firmware card, Apple..........c.coovvvvviveeeeann. 73
(““flag’’) inputs, one-bit...... .
format, TeXt SCreenccccovveveveeeeeneaen. 16
format, Low-Res screencccoovvvenn... 18
format, High-Res screenccccoveeeene.. 21
from cassette tape, reading.............c............ 47

-G --

Game Controllers.............oocoooviiiiiinenenn..
Game 1/0 connector ...
generator, the video
GETLN and input lines...
graphics modes................
graphics, High-Res
graphics, Low-Rescocccooiiiiiiiin.

-—-H --

hexadecimal notation.........................c......... 40
High-Res colors, European..

High-Res graphics..............cccooooeiiiiicien.. 19

High-Res screen, the...........c..ooooeveeveiiin 21
High-Res video mode, the19
High-Res colors.........ccccoooiviveviiieii 19, 26
.

input buffer.............ooccooiiii .33
input line, editing an33
input lines, GETLN and. .33
input prompting............ccccevoo...... .32
input subroutine, RDKEY standard .. .32
input/output features....................20
input/output special locations...................... 25
INPUL/OULPUL Lo 78
inputs, data

inputs, one-bit (“‘flag’)........cccceevvniii. 24,78
inputs, analogcc.cooeeeiiiiiiiiieeeee 24
inputs, single-bit pushbutton...................... 78
instruction set, 6502 Appendix A
instructions, Mini-Assembler 66
interface jacks, cassette .
interface, cassettecocovvvviiiviviiireeeeeeen
internal registers, 6502

INLETTUPLS oo

inverse text mode.............c...ooeeieien

I/0 connector, Game

I/0 programming suggestions .

170 special 10cationsccccvuvvvevivieieniiiis,
170, built-in.......ccoooevviiiiiii

1/0, peripheral board

1/0, peripheral slot..............cccocvviiiiiiin..
I

jacks, cassette interface........................ 22,103

jacks, video output
jumper, “USER 17

- K --

Key, baCKSPaCEvvvviviiiiiiiiiiiiiiiiiiiiiiinaas 34
key, retype................34
keyboard characters..... 1,8
keyboard connector 3, 102
keyboard connnector pinouts..................... 103
keyboard featurescooovveeeieiiiinnneecnn. 5
keyboard schematic............ ..101
keyboard special locationscccceeeeenn. 6
keyboard strobe.................. 6, 78, 79, 98, 102
keyboard strobe, clearing the 6
keyboard, review of the............... 4,100
keyboard, reading the...... TR, 6
KEYIN switches, COUT,c.c.covveeennnn. 83

keys and ASCII codes.........cccooviviiiiiiinnnnen. 7
L --

Language card, Apple.........cccovvvvvvvvnenenin. 3, 69
leaving the Mini-Assembler 50
line, editing an input

line-feed character.............cccccoooovvvnineeeeenn,
lines, GETLN and input.............cccecveeeeenn. 33
listing, Autostart ROM.... Appendix C
listing, Monitor ROM.................. Appendix C
listing machine language programs.............. 49
list of special locations.................. Appendix B
locations, list of special................. Appendix B
locations, annunciator special ...

locations, video display special
locations, input/output special....................
locations, text window special

locations, Autostart ROM special

locations, Monitor special......... .
locations, keyboard specialccceeenee.
locations, 1/0 specialccccovvveevecinineennn.
loops, Monitor command
Low-Res colorS.......coovvvviiiiiiiiiiiieceiieee,
Low-Res screen, the..............c.coooc.
Low-Res video mode, the ..

lukewarm start.......................

M --

machine language programs, listing............. 49
main board, the Applecccoveieeeinnn. 3, 89
main board schematic....................coeuven.n. 110
map, system memory68
maps, Zero page memory.... .74
Memory (RAM), Random Access................ 3
Memory (ROM), Read-Only...........cc..cco....... 3
memory configuration, RAM .70
memory map, system68
MEemOry maps, Z€ro PAE........ccoevvverrverreennns 74
MEMOTY PAZES...ecvvveeirieeeieeeeeeeeeeieeeeriaeeeans
memory, examining... .
memory, changing...........................c...c.......
MEMOTY, MOVINEcovvvrrieeiiiireeieeeiiireeeeeeens

memory, comparing...
memory, RAM ...

memory, ROM

microprocessor features...............oeevveeenen.nn 88
microprocessor, 6502c.coeevieeinnn 3, 88
Mini-Assembler instructions66
Mini-Assembler prompt (1) ..o, 50
Mini-Assembler, Apple...............................
Mini-Assembler, leaving the . .
mode, the text video

192

mode, the Low-Res videocoevunnn... 17
mode, the High-Res video .

mode, inverse text.. .32
mode, normal text.. .32
modes, addressingccccooeevveieiieeeennn.. 66
modes, graphics...........ccccvvvvvvviiiviiiiiiiiiiinin, 11
modification, Eurapple 50Hz10
Monitor command 100DPScccevveiviiiinnnn. 56
Monitor commands, summary of 59
Monitor prompt (*)cceeenennn. .40
Monitor ROM RESETcoovviiiiieeiin, 38
Monitor ROM listing....Appendix C
Monitor ROM..........oooviiiiiiciiieee, 25
Monitor special locations..................cceeuunen. 65
Monitor subroutines, some useful
Monitor, entering the
MOVING MEMOTY ...covvviieiiieeeiiiieeeiieaeieeaennens
multiplexer, RAM addressccccvvvvvvnn. 96
N --

normal text mode............c...eeennne .32
Normal/Inverse control values.... 32
notation, hexadecimal.......................coeeenns 40
number, randomM.........ooouviirrieeriiiiiieeeenies 33
O --

one (system Stack), Pagecccccceevvreinnenns 69
one-bit (‘‘flag”) inputs.... 24,25, 78
OULPUL CUTSOT vvvvivieeeeeciiiieeeeeeeeciiireeee e enniees 30
output jacks, Videococceeeiiiiiiiiiiiieeiins 97
output subroutine, COUT standard............. 30

output, utility strobe
outputs, annunciator

Outputs, Strobe..........ccoeeveiiiiiiiiiiiee s
own commands, creating your..................... 57
P -

page Memory maps, ZET0.......ccovvereereeronenenns 74

page one (system stack)
PALE ZETO ..o

PAEES, SCTEEMvvieeerieeeeiieeeeiieeeeiieeeeiaee e e
pages, memory

peripheral board I/0............cccoociiiniiinne.
peripheral connector pinout....................... 106
peripheral connectorsccc.c.ceeeveennns 3, 105
peripheral slot I/Oc....cooooiiiiiii 79
peripheral slot RAM..
peripheral slot ROMccccovvvvviieiiinnns 80
photo of the Appleooovviiiiiiiiiiiiis 2
picture buffer

pinout, peripheral connector...................... 106

!rk 'r\

'y el OTER OTE) OMER OIED OB} OME) OJEl OIEL OJEY OIEL OIE] OVE) OUE] OTEL OTE] OVEL OTEL OIFL OIE)

119]

S L e

pinout, configuration blocK..............ccceveee.. 71
pinout, ROM ... 95

pinout, RAM ...l 96
pinouts, keyboard connnector...103
POWET CONNECLOT ...eeeeuierreeeannann104
power supply features..........cccoeeeeveiireneeeenn. 92
power supply schematic................ccoveeennnnn.. 93
power supply, the Apple2, 28,92
POWET-UP bYte......ooooiiiiiiiiiiiiiiiieeeiecen 37, 65
programming suggestions, 1/0 80
programs, running machine language.......... 48
programs, listing machine language............. 48
programs, debuggingccccceeeriiiennnnen. 51
PROM, peripheral card..............ccoceevviinnnnn. 80

PROM, expansion ROM or...........ccceeeennne 84
PROMS, 2716 tyPe ..uevveeeeiiiiieeeeeiieeeeeeeiie 94
prompt (), MONitor..........c..cccoeevvieivieneennn. 40
prompt (1), Mini-Assembler...............c........ 50
prompting charactersccccooovveeenieeennnen. 33
Prompting, iNPUL........cccceevvvieeeiiiieeiieeeeieeenns 32
pushbutton inputs, single-bit...................... 78

—-R --

RAM address multiplexerccccccoeeueene
RAM configuration blocks.............cccevvrenene
RAM memory configuration .
RAM MeMOTYovvvieiiiiiieiiiiiiiiiecenes
RAM pinoutcccccoeiiiiiiiiiiiiiiieeeieeeeeee
RAM, peripheral slot
random access memory (RAM)
random NUMDETccccuvvveereiiiiiiieeniiiieeeeennn
RDKEY standard input subroutine .
reading from cassette tape.............ccccvveenenn.
reading the keyboard.............cccoooiiiiiinnnnn.
read-only memory (ROM)
reentering BASIC ...,
registers, 6502 internalcccocoee
relationships, timing signals and...
RESET cycle, the ...ccooeeeiiiiiiiiiieiiieeeeee
RESET, Autostart ROM..............cccvveeeeenne
RESET, Monitor ROM..........
return character
Tetype Key ..oovvvvvveeeiiiiiiiiiiinnnn,
review of the keyboard....
Revision @ boards............
Revision 1 board
ROM listing, Autostart....
ROM listing, Monitor......
ROM memory
ROM pinoutcooevveevvrennnn.

ROM RESET, Autostart...............cceeeeeeennnn.
ROM RESET, Monitor..........ccccoovevviveeeennnne 38
ROM special locations, Autostart................ 37

ROM, Autostart .
ROM, Monitor
ROM, peripheral slot.........80
ROM or PROM, expansion.................. .
running machine language programs........... 48

S --

saving to cassette tapeccceevvvveeeeeeinns
schematic, keyboard
schematic, power supply....

schematic, main board....... .

screen format...........ooeeeeeiviiieieeeeiiiieeee e
screen format, TeXtccccoovviiinniiiiiiicnnnn.
screen format, High-Res ...

screen format, Low-Res
SCTEEM PAZES...eeevvrreenrreernrreeaiireeeanreesieeennens
screen soft switches ..
Screen, the teXt....oooveviviuvereriiiiiiiiiiieiiiiverenens
screen, the Low-Res...........cccoiviiiinn.
screen, the High-Res...
set, 6502 instruction

setting up the Apple.......ccoooviiiiiiniiiinnnnns
signals and relationships, timing ..
single-bit pushbutton inputs...........cc....cc.....
slot I/0, peripheralcooovviiveeeiieen.
slot RAM, peripheral
slot ROM, peripheral .
SOft €Ntry VECtOr ..ocouvveiiiiieiiiii i
soft switches
soft switches, screen
speaker connector
special locations, list of
special locations, video display
special locations, input/output
special locations, text window
special locations, Autostart ROM......
special locations, Monitor..

special locations, keyboard U 6
special locations, 1/0......... "L
stack), page one (System...................69

standard input subroutine, RDKEY ..
standard output subroutine, COUT...
start, COld........uuuuuriiiiiiiiiiiriiiiiriiiieeeees
start, lukewarm..
start, warm.............

STEP and TRACE....
Stop-List feature, the
strobe output, utility.......
StrODE OULPULS.....vvveiieeiiiiiieeee e

strobe, clearing the keyboard
subroutine, COUT standard output...
subroutine, RDKEY standard input............ 32
subroutines, some useful Monitor............... 61

suggestions, I/0 programming 80
summary of Monitor commands 59
supply features, POWET........coovvvvieeeereiineneen.

supply schematic, power....

supply, the Apple power
switches, SOft.........oooceiviiiiiiiii

switches, screen soft

switches, toggle. ..o
switches, COUT, KEYINcccccoviiinnn.
switches, CSW/KSW .
SYStEM MEMOTY MAP.....cvvreeeeeeeeieeeieeeeeanes
(system stack), page One...........ccceevveereenne.
SYStEM tIMING c.ovvveeeeeeeiiiieee e
T --

tape, saving to Cassetteccccovvveeeineenn 46
tape, reading from cassette............ .47
text mode, inverse................ .32
text mode, normal.............ccoovvviiieeiiiiiiiennn. 32
text screen, the.......... 11, 16
text video mode, the 14
text window special locations...... 231
text window, the.............ocevveee. 231
timing signals and relationships.. .91
timing, SyStemcccceevineenne90
toggle switches......... .19
TRACE, STEP and..........c.cooovieiiniens 6, 51
- U --

CUSER 177 JUMPET...coiiiiiiieeieceiieeieecee 99
useful Monitor subroutines, some....61
utility strobe output............cccoeeeeiiieiiniiinnnnn. 25
-V --

values, Normal/Inverse control................... 32
varietiesS of ApPpPIeS.......vvvvviiviiiiiiiiiiiiiiieiiees 25
vector, SOft €Nntryoocceeiiiiiiiiiee e 37
video connector

video connector, auxiliarycccoeeeveeenn.
video display..........ccooeiviiiiiiiii
video display special locations . .
video generator, thecccciiiiinin
video mode, the textocooiiiiiiii.
video mode, the Low-Res
video mode, the High-Rescccooei.
video output JACKS.ovvvviiiiiiiiiiiiiiieee

- W --

WATTIL STATT ..o 36
window special locations, textc.ccccee... 31

194

window, the teXt.......ooooeviiiieiiiiiiiiiiiiiinn 31
Y --
your own commands, creating..................... 57
-7 -

Zero page memory maps
ZETO, PAZE <.vvveeeeieeeeeieeeeeieeeeieee e

INDEX OF FIGURES

Figure 1. Map of the Text screen.............. 16
Figure 2. Map of the Low-Res mode.......... 18
Figure 3. Map of the High-Res screen....... 21
Figure 4. Cursor-moving escape codes....... 35
Figure 5. System Memory Map.................. 68
Figure 6. Memory Configurations.............. 71
Figure 7. Configuration Block Pinouts 71
Figure 8. Expansion ROM Enable circuit...85
Figure 9. $SCFXX decodingccccccoueenenne 85
Figure 10. The Apple Main Board.............. 89
Figure 11. Timing Signals...........cccooernnn 91
Figure 12. Power Supply Schematic 93
Figure 13. ROM Pinout.........ccoeoiiiinninns 95
Figure 14. RAM PinoutS.......cccocecveviiinnnnn 96
Figure 15. Auxiliary Video Connector 98

Game 1/0 Connector Pinout...100
Keyboard Schematic Drawing .101
Keyboard connector Pinout.....103
Power Connector............... ...104
Speaker Connector 105
Peripheral Connector Pinout...106
Main Board Schematic...... 110-115

Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

ey I1EL IEL

]
A

4

fEl [E} E] [E| TE} TE. TEl TE\ IEl 'El 1Fl 'E

FE) "B} 'E) OB} OTE) OIR) R

B A L

INDEX OF PHOTOS

Photo 1.
Photo 2.
Photo 3.
Photo 4.
Photo 5.
Photo 6.
Photo 7.
Photo 8.

The Apple I1 ..o, 2
The Apple Power Supply
The Apple Keyboard....

The Video Connectors . .10
Eurapple jumper pads............cccceoveeees 11
The Apple Character Set................... 14
The Game 1/0 Connector................. 23
The USER 1 Jumper.........ccccvveeennne 99

INDEX OF TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.

Keyboard Special Locations................. 6
Keys and their ASCII codes ... i
The ASCII Character Set........... .8
Video Display Memory Ranges . 12
Screen Soft Switches.........ccccveeeeeenne 13
Screen Mode Combinations............... 13
ASCII Screen Character Set............... 15
Low-Resolution Colors................ueee. 17
Annunciator Special Locations 24

Input/Output Special Locations....... 25
Text Window Special Locations....... 31
Normal/Inverse Control Values....... 32
Autostart ROM Special Locations....37
Page Three Monitor Locations 65
Mini-Assembler Address Formats...66

RAM Organization and Usage 69
ROM Organization and Usage 72
Monitor Zero Page Usage................ 74
Applesoft II Zero Page Usage.......... 74
DOS 3.2 Zero Page Usage................ 75
Integer BASIC Zero Page Usage...... 75
Built-In I/0 Locations 79

Peripheral Card 1/0 Locations......... 80
Peripheral Card PROM Locations....81
170 Location Base Addresses........... 82
I/0 Scratchpad RAM Addresses...... 83

Signal Descriptions:

Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.

TiMING cvvveeiiiiiiiieceeccee e 90
Auxiliary Video Output 97

Game 1/0 Connector...........ccee.... 100
Keyboard Connector...................... 102
Power Connectorccceeeeeeennnnns 104
Speaker Connector...........ccceeeevenne 105
Peripheral Connector................... 107ff

CAST OF
CHARACTERS

R 25.35. 54
..... 25,35

CTRL G (bell) ..
CTRL H (—)
CTRL J (line feed) ...ccooevviiiviininnnn. 30

f

il

196

——) stuatet))\ / Al DY S —&

B AV RVE Ry BYRYEYEYEYBYRYERY BYRYEYEY S AV Y MY My My my e

‘qpple computer inc.
10260 Bandley Drive
Cupertino, California 95014

