
I 

I 
I 
I 

I 
I 

I 
I 
I 

Apple® lle Technical Reference Manual 

Includes R(l I Listi11gs. 

., 



CQpyright 

~ manual is copyrighted by Apple or by Apple's 
suppliers, with all rights reserved. Under the copyright 
mws. this manual may not be copied, in whole or in 
pan, without the written consent of Apple. This 
exception does not allow copies to be made for others, 
whether or not sold, but all of the material purchased 
may be sold, given, or lent to another person. Under the 
law, copying includes translating into another language. 

©Apple Computer, Inc., 1985 
20525 Mariani Avenue 
Cupertino, California 95014 

Apple, the Apple logo, ProDOS, ProFile, and Disk II are 
trademarks of Apple Computer, Inc. 

CP A is a registered trademark of Digital Research, Inc. 

SOITCARD is a registered trademark of Microsoft 
Corporation. 

Z-80 is a registered trademark of Zilog, Inc. 

Z-Engine is a trademark of Advanced Logic Systems, Inc. 

Simultaneously published in the United States and 
Canada. 

Limited Warranty on Media and Replacement 

If you discover physical defects in the manuals 
distributed with an Apple product or in the media on 
which a software product is distributed, Apple will 
replace the media or manuals at no charge to you, 
provided you return the item to be replaced with proof 
of purchase to Apple or an authorized Apple dealer 
during the 90-day period after you purchased the 
software. In addition, Apple will replace damaged 
software media and manuals for as long as the software 
product is included in Apple's Media Exchange Program. 
While not an upgrade or update method, this program 
offers additional protection for up to two year:s or more 
from the date of your original purchase. See your' 
authorized Apple dealer for Program coverage and 
details. ln some countries the replacement period may 
be different; check with your authorized Apple dealer. 

ALL IMPLIED WARRANTIES ON THE MEDIA 
AND MANUALS, INCLUDING IMPLIED 
WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE, ARE 
LIMITED IN DURATION TO NINETY (90) DAYS 
FROll THE DATE OF THE ORIGINAL RETAIL 
POlCHASE OF THIS PRODUCT. 

Even though Apple has tested the software and ~:d 
the documentation, APPLE !\fAKES NO W' A&Jl.\.'lf 
OR REPRESENTATION, EITHER EXPRESS 0& 
IMPLIED, WITH RESPECT TO SOFTWARE. rn 
QUALITY, PERFORMANCE, MERCHANTABILITY. 
OR FITNESS FOR A PARTICULAR PURPO E. AS 
A RESULT, THIS SOFTWARE IS SOLD "AS IS.
AND YOU THE PURCHASER ARE ASSL'MIXG THE 
ENTIRE RISK AS TO ITS QUALITY AND 
PERFORMANCE. 

IN NO EVENT WILL APPLE BE LIABLE FOR 
DIRECT, INDIRECT, SPECIAL, INCIDENTAL. OR 
CONSEQUENTIAL DAMAGES RESULTING FR.Olf 
ANY DEFECT IN THE SOFTWARE OR ITS 
DOCUMENTATION, even if advised of the possiDility 
of such damages. In particular, Apple shall have no 
liability for any programs or data stored in or used '1\-!t:
Apple products, including the costs of recovering such 
programs or data. 

THE WARRANTY AND REMEDIES SET FORTH 
ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL 
OTHERS, ORAL OR WRITTEN, EXPRESS OR 
IMPLIED. No Apple dealer, agent, or employee is 
authorized to make any modification, extension. or 
addition to this warranty. 

Some states do not allow the exclusion or lirn1tatkm oi 
implied warranties or liability for incidental or 
consequential damages, so the above limitation or 
exclusion may not apply to you. This warrant) ghes 
specific legal rights, and you may also have other r~ 
which vary from state to state. 

Warning 

This equipment has been certified to comply i\'Uh •· :. 
limits for a Class B computing device pursuaru. w 
Subpart J of Part 15 of FCC rules. Only periphe."a!S 
(computer inputjoutput devices, terminals, prrn:c 
certified to comply with Class B lirn1ts may be E:t:iid:iid 
to this computer. Operation with non-certified peri;t.e~ 
is likely to result in interference tQ radio and ~*rom-.,.., 
reception. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Apple® lie Technical 
Reference Manual 

Addison-Wesley Publishing Company, Inc. 
Reading, Massachusetts Menlo Park, California 
Don Mills, Ontario Wokingham, England Amsterdam 
Sydney Singapore Tokyo Mexico City Bogota 
Santiago San Juan 



Copyright© 1985 by Apple Computer, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, phot.ocop)1n~ 
recording, or otherwise, without the prior written permission of the publisher. Printed in the II 
United States of America. Published simultaneously in Canada. 

lSB~ 0-201-17720-X 

ABCDEFGHIJ-00-898765 
First printing, July 1985 

II 

• 
II 

II 



t. 

I • . 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Apple® lie Technical 
Reference Manual 



Contents 

II 
List of Figures and Tables xvili II 
Radio and Television Interference XXV 

II 
PREFACE About This Manual xxvii II Contents of This Manual xxvii 

The Enhanced Apple Ile xxix 
Physical Changes xxix 
Startup Drives xxix 
Video Firmware xxx 
Video Enchancements xxx 
Applesoft 80-Column Support XXX 

Applesoft Lowercase Support xxxi 
Apple II Pascal xxxi 
System Monitor Enhancements xxxi 
Interrupt Handling xxxi 

Symbols Used in This Manual xxxii II 
CHAPTER! Introduction 1 II 

Removing the Cover 2 
The Keyboard 3 II The Speaker 3 
The Power Supply 4 

II The Circuit Board 4 
Connectors on the Circuit Board 6 
Connectors on the Back Panel 8 II 

Contents 



I 
I CHAPTER2 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Built-in I/0 Devices 
The Keyboard 10 

Reading the Keyboard 12 
The Video Display Generator 16 

Text Modes 18 
Text Character Sets 19 
40-Colurnn Versus 80-Colurnn Text 20 

Graphics Modes 22 
Low-Resolution Graphics 22 
High-Resolution Graphics 23 
Double-High-Resolution Graphics 25 

Video Display Pages 26 
Display Mode Switching 28 
Addressing Display Pages Directly 30 

Secondary Inputs and Outputs 37 
The Speaker 37 
Cassette Input and Output 38 
The Hand Control Connector Signals 39 

Annunciator Outputs 40 
Strobe Output 40 
Switch Inputs 41 
Analog Inputs 42 

Summary of Secondary I/0 Locations 42 

Contents 

9 

v 



CHAPTER 3 

\'i 

Built-in I/0 Firmware 
Using the IjO Subroutines 47 

Apple II Compatibility 48 
The 80-Column Firmware 49 
The Old Monitor 50 

The Standard I/0 Links 50 
Standard Output Features 51 

COUT Output Subroutine 51 
Control Characters With COUTl and BASICOUT 52 
The Stop-List Feature 54 
The Text Window 54 
Inverse and Flashing Text 56 

Standard Input Features 57 
RDKEY Input Subroutine 57 
KEYIN Input Subroutine 58 

Escape Codes 58 
Cursor Motion in Escape Mode 58 

GETLN Input Subroutine 60 
Editing With GETLN 61 

Cancel Line 61 
Backspace 61 
Retype 62 

Monitor Firmware Support 62 
BASICOUT 63 
CLREOL 63 
CLEOLZ 64 
CLREOP 64 
CLRSCR 64 

Contents 

45 -

-
II 

II 

II 
II 

II 

-
II 
II 
II 



Cont.ents vii 



CHAPTER4 

viii 

Memory Organization 
Main Memory Map 72 
RAM Memory Allocation 7 4 

Reserved Memory Pages 75 
Page Zero 75 
The 65C02 Stack 75 
The Input Buffer 76 
Link-Address Storage 76 
The Display Buffers 76 

Bank-Switched Memory 79 
Setting Bank Switches 80 
Reading Bank Switches 83 

Auxiliary Memory and Firmware 84 
Memory Mode Switching 86 
Auxiliary-Memory Subroutines 88 

Moving Data to Auxiliary Memory 89 
Transferring Control to Auxiliary Memory 90 

The Reset Routine 91 
The Cold-Start Procedure 92 
The Warm-Start Procedure 92 
Forced Cold Start 93 
The Reset Vector 93 
Automatic Self-Test 95 

Contents 

71 

I 

-
II 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 



I 
I 
I 
I CHAPTER5 Using the Monitor 97 

Invoking the Monitor 98 

I Syntax of Monitor Commands 99 
Monitor Memory Commands 100 

I 
Examining Memory Contents 100 
Memory Dump 100 

Changing Memory Contents 103 

I Changing One Byte 103 
Changing Consecutive Locations 104 

I 
ASCII Input Mode 104 
Moving Data in Memory 105 
Comparing Data in Memory 107 

I Searching for Bytes in Memory 108 
Examining and Changing Registers 108 

I Monitor Cassette Tape Commands 109 
Saving Data on Tape 109 

I 
Reading Data From Tape 110 

Miscellaneous Monitor Commands 112 
Inverse and Normal Display 112 

I Back to BASIC 112 
Redirecting Input and Output 113 

I 
Hexadecimal Arithmetic 114 

Special Tricks With the Monitor 114 
Multiple Commands 114 

I Filling Memory 115 
Repeating Commands 116 

I Creating Your Own Commands 117 

I 
Contents ix 



CHAPTER6 

Machine-Language Programs 118 
Running a Program 118 
Disassembled Programs 119 

The Mini-Assembler 121 
Starting the Mini-Assembler 121 
Restrictions 121 
Using the Mini-Assembler 122 
Mini-Assembler Instruction Formats 124 

Summary of Monitor Commands 125 
Examining Memory 125 
Changing the Contents of Memory 126 
Moving and Comparing 126 
The Examine Command 126 
The Search Command 126 
Cassette Tape Commands 126 
Miscellaneous Monitor Commands 127 
Running and Listing Programs 127 
The Mini-Assembler 128 

Programming for Peripheral Cards 
Peripheral-Card Memory Spaces 130 

Peripheral-Card 1/ 0 Space 130 
Peripheral-Card ROM Space 131 
Expansion ROM Space 132 
Peripheral-Card RAM Space 134 

Cont.ents 

I 
II 
II 

--
II 

-
II 

--
II 

: :?& II 
II 
II 

--
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

1/0 Programming Suggestions 135 
Finding the Slot Number With ROM Switched In 136 
1/0 Addressing 136 
RAM Addressing 138 
Changing the Standard 1/0 Links 139 

Other Uses of l/0 Memory Space 140 
Switching 1/0 Memory 141 

Developing Cards for Slot 3 143 
Pascall.l Firmware Protocol 144 

Device Identification 144 
1/0 Routine Entry Points 145 

Interrupts on the Enhanced Apple lie 146 
What Is an Interrupt? 147 
Interrupts on Apple lie Series Computers 148 
Rules of the Interrupt Handler 149 
Interrupt Handling on the 65C02 and 6502 150 

The Interrupt Vector at SFFFE 150 
The Built-in Interrupt Handler 151 

Saving the Apple lle's Memory Configuration 152 
Managing Main and Auxiliary Stacks 152 
The User's Interrupt Handler at S3FE 154 
Handling Break Instructions 155 
Interrupt Differences: Apple Ile Versus Apple lie 156 

Contents xi 



• -
II 

CHAPTER 7 Hardware Implementation 157 
Environmental Specifications 158 
The Power Supply 159 -The Power Connector 161 
The 65C02 Microprocessor 161 -65C02 Timing 162 
The Custom Integrated Circuits 164 

The Memory Management Unit 164 -The Input/ Output Unit 166 
The PAL Device 168 -Memory Addressing 168 
ROM Addressing 169 
RAM Addressing 170 II Dynamic-RAM Refreshment 170 

Dynamic-RAM Timing 171 

II The Video Display 173 
The Video Counters 17 4 
Display Memory Addressing 175 II 

Display Address Mapping 176 
Video Display Modes 179 II Text Displays 179 

Low-Resolution Display 182 
High-Resolution Display 183 II 
Double-High-Resolution Display 185 

Video Output Signals 186 II 

-
II 

xii Contents 

II 



Built-in I/0 Circuits 187 
The Keyboard 187 

Connecting a Keypad 188 
Cassette I/0 189 
The Speaker 189 
Game I/0 Signals 190 

Expanding the Apple lie 192 
The Expansion Slots 192 

The Peripheral Address Bus 192 
The Peripheral Data Bus 193 
Loading and Driving Rules 193 
Interrupt and DMA Daisy Chains 193 

Auxiliary Slot 197 
80-Column Display Signals 197 

The 65C02 Microprocessor 
Differences Between 6502 and 65C02 206 

Different Cycle Times 206 
Different Instruction Results 207 

Data Sheet 207 

Directory of Built-in Subroutines 

Contents 

205 

217 

xiii 



---
APPENDIX C Apple II Family Differences 225 II 

Keyboard 226 
Apple Keys 226 II Character Sets 226 
80-Column Display 227 

II Escape Codes and Control Characters 227 
Built-in Language Card 227 
Auxiliary Memory 228 II Auxiliary Slot 228 
Back Panel and Connectors 228 

II Soft Switches 228 
Built-in Self-Test 229 
Forced Reset 229 
Interrupt Handling 229 -
Vertical Sync for Animators 229 -Signature Byte 230 
Hardware Implementation 230 

II 
APPENDIX D Operating Systems and Languages 231 II Operating Systems 232 

ProDOS 232 

II DOS 3.3 232 
Pascal Operatiing System 232 
CP/ M 233 II 

II 
II 

Xi\' Contents II 



I 
I 
I 
I 
I 
I APPENDIXE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX F 

APPENDIX G 

Languages 233 
Assembly Language 233 
Applesoft BASIC 233 
lnterger BASIC 233 
Pascal Language 234 
FORTRAN 234 

Conversion Tables 
Bits and Bytes 236 
Hexadecimal and Decimal 238 
Hexadecimal and Negative Decimal 240 
Graphics Bits and Pieces 242 
Eight-Bit Code Conversions 244 

Frequently Used Tables 

Using an 80-Column Text Card 
Starting Up With Pascal or CP/M 268 
Starting Up With ProDOS or DOS 3.3 269 
Using the GET Command 269 
When to S·witch Modes Versus When to Deactivate 270 
Display Features With the Text Card 270 
INVERSE, FLASH, NORMAL, HOME 270 

ContenLS 

235 

253 

267 

X\' 



APPENDIX H 

X\"i 

Tabbing With the Original Apple Ile 271 
Comma Tabbing With the Original Apple lie 271 
HTAB and POKE 1403 272 

Using Control-Characters With the Card 272 
Control Characters and Their Functions 273 
How to Use Control-Character Codes in Programs 274 
A Word of Caution to Pascal Programmers 275 

Programming With the Super Serial Card 
Locating the Card 278 
Operating Modes 278 
Operating Commands 279 

The Command Character 280 
Baud Rate, nB 280 
Data Format, nD 281 
Parity, nP 281 
Set Time Delay, nC, nL, and nF 282 
Echo Characters to the Screen, E_Ej D 283 
Automatic Carriage Return, C 283 
Automatic Line Feed, LE/ D 284 
Mask Line Feed In, M-E/ D 284 
Reset Card, R 284 
Specify Screen Slot, S 284 
Translate Lowercase Characters, nT 284 
Suppress Control Characters, Z 285 
Find Keyboard, F _Ej D 285 
XOFF Recognition, X_ EjD 286 
Tab in BASIC, T _Ej D 286 

Contents 

277 

II 
II 
II 

II 
II 
II 

-
II 
II 
II 

-
II 





II 
Figures and Tables -

II 
CHAPTER 1 Introduction 1 II 

Figure 1-1 Removing the Cover 2 
Figure 1-2 The Apple Ile With the Cover Off 2 -Figure 1-3 The Apple lie Keyboard 3 
Figure 1-4 The Circuit Board 5 

II Figure 1-5 The Expansion Slots 7 
Figure 1-6 The Auxiliary Slot 7 
Figure 1-7 The Back Panel Connectors 8 II 

CHAPTER 2 Built-in I/0 Devices 9 II 
Figure 2-1 The Keyboard 11 
Table 2-1 Apple Ile Keyboard Specifications 11 II 
Table 2-2 Keyboard Memory Locations 12 
Table 2-3 Keys and ASCII Codes 14 -Table 2-4 Video Display Specifications 17 
Table 2-5 Display Character Sets 20 

II Figure 2-2 40-Column Text Display 21 
Figure 2-3 80-Column Text Display 21 
Table 2-6 Low-Resolution Graphics Colors 23 -Figure 2-4 High-Resolution Display Bits 24 
Table 2-7 High-Resolution Graphics Colors 25 II Table2-8 Double-High-Resolution Grahics Colors 26 
Table2-9 Video Display Page Locations 28 
Table2-10 Display Soft Switches 29 II 
Figure2-5 Map of 40-Column Text Display 32 
Figure2-6 Map of 80-Column Text Display 33 II Figure 2-7 Map of Low-Resolution Graphics Display 34 

II 
:wiii Figures and Tables II 



I 
I 

I 

I 
I 
I 

CHAPTER3 

I 
I 
I 
I 
I 

I CHAPTER4 

I 
I 

I 

Figure 2-8 
Figure 2-9 
Table 2-11 
Table 2-12 

Map of High-Resolution Graphics Display 35 
Map of Double-High-Resolution Graphics Display 36 
Annunciator Memory Locations 40 
Secondary ljO Memory Location 43 

Built-in I/0 Firmware 45 
Table 3-1 Monitor Firmware Routines 46 
Table 3-2 Apple II Mode 48 
Table 3-3a 
Table 3-3b 
Table 3-4 
Table 3-5 
Table 3-6 
Table 3-7 
Table 3-8 
Table 3-9 
Table 3-10 

Control Characters With 80-Column Firmware Off 52 
Control Characters With 80-Column Firmware On 52 
Text Window Memory Locations 55 
Text Format Control Values 56 
Escape Codes 59 
Prompt Characters 60 
Video Firmware Routines 62 
Port 3 Firmware Protocol Table 67 
Pascal Video Control Functions 68 

Memory Organization 71 
Figure 4-1 System Memory Map 73 
Figure 4-2 RAM Allocation Map 74 
Table 4-1 Monitor Zero-Page Use 77 
Table 4-2 Applesoft Zero-Page Use 77 
Table 4-3 Integer BASIC Zero-Page Use 78 
Table 4-4 DOS 3.3 Zero-Page Use 78 
Table 4-5 ProDOS MLI and Disk-Driver Zero-Page Use 79 

Figures and Tables xix 



CHAPTER5 

CHAPTER6 

XX 

Figure 4-3 Bank-Switched Memory Map 80 
Table 4-6 Bank Select Switches 82 
Figure 4-4 Memory Map With Auxiliary Memory 
Table 4-7 Auxiliary-Memory Select Switches 87 
Table4-8 48K RAM Transfer Routines 88 
Table4-9 Parameters for AUXMOVE Routine 89 
Table 4-10 Parameters for XFER Routine 90 
Table 4-11 Page 3 Vectors 94 

Using the Monitor 
Table 5-1 Mini-Assembler Address Formats 124 

85 

II 
II 

II 

II 

II 

II 
97 II 

II 
Programming for Peripheral Cards 129 

II 
II 

II 

Table 6-1 Peripheral-Card 1/0 Memory Locations Enabled by 
DEVICE SELECT' 131 

Table 6-2 

Figure 6-1 
Figure 6-2 
Table6-3 
Table 6-4 
Figure 6-3 
Table 6-5 
Table 6-6 
Table 6-7 

Figures and Tables 

Peripheral-Card ROM Memory Locations Enabled by 
1/ 0 SELECT' 132 
Expansion ROM Enable Circuit 133 
ROM Disable Address Decoding 133 
Peripheral-Card RAM Memory Locations 134 
Peripheral-Card 1/0 Base Addresses 137 
1/0 Memory Map 141 
1/0 Memory Switches 142 
Perpheral-Card Device-Class Assignments 144 
1/0 Routine Offsets and Registers Under 
Pascall.l Protocol 146 

II 

II 

II 

II 
II 





APPENDIX A 

APPENDIX E 

xxii 

Table 7-13 Memory Address Bits for Display Modes 178 
Figure 7 -11a 7 MHz Video Timing Signals 180 
Figure 7-llb 14 MHz Video Timing Signals 181 
Table 7-14 Character-Generator Control Signals 182 
Table 7-15 Internal Video Connector Signals 186 
Table 7-16 Keyboard Connector Signals 188 
Table 7-17 Keypad Connector Signals 188 
Table 7-18 Speaker Connector Signals 189 
Table 7-19 Game 1/0 Connector Signals 191 
Figure 7-12 Peripheral-Signal Timing 194 
Table 7-20 Expansion Slot Signals 195 
Table 7-21 Auxiliary Slot Signals 198 
Figure 7-13 Schematic Diagram 200 

The 65C02 Microprocessor 205 
Table A-1 Cycle Time Differences 206 

Conversion Tables 235 
Table E-1 What a Bit Can Represent 236 
Figure E-1 Bits, Nibbles, and Bytes 237 
Table E-2 Hexadecimal/Decimal Conversion 238 
Table E-3 Hexadecimal to Negative Decimal Conversion 240 
Table E-4 Hexadecimal Values for High-Resolution Dot Patterns 

242 
Table E-5 
Table E-6 

Figures and Tables 

Control Characters, High Bit Off 245 
Special Characters, High Bit Off 246 

II 
II 
II 

-
II 
II 

II 
II 
II 
II 

-
II 

II 
II 
II 

II 
II 



I 
I 
I 
I 

I 
I 

I APPENDIX F 

I 

I 
I 
I 

I 
I 
I 
I 
I 

Table E-7 
Table E-8 
Table E-9 
Table E-10 
Table E-ll 
Table E-12 

Uppercase Characters, High Bit Off 247 
Lowercase Characters, High Bit Off 248 
Control Characters, High Bit On 249 
Special Characters, High Bit On 250 
Uppercase Characters, High Bit On 251 
Lowercase Characters, High Bit On 252 

Frequently Used Tables 253 
Table 2-3 Keys and ASCII Codes 254 
Table 2-2 
Table 2-4 
Table 2-8 
Table 2-9 
Table 2-10 
Table 3-1 
Table3-3a 
Table 3-3b 
Table 3-5 
Table 3-6 
Table 3-10 
Table 4-6 
Table 4-7 
Table4-8 
Table6-5 
Table 6-6 

Figures and Tables 

Keyboard Memory Location 255 
Video Display Specifications 256 
Double-High-Resolution Graphics Colors 257 
Video Display Page Locations 257 
Display Soft Switches 258 
Monitor Firmware Routines 259 
Control Characters With 80-Colurnn Firmware Off 260 
Control Characters With 80-Column Firmware On 260 
Text Format Control Values 261 
Escape Codes 262 
Pascal Video Control Functions 263 
Bank Select Switches 264 
Auxiliary-Memory Select Switches 265 
48K RAM Transfer Routines 265 
I/0 Memory Switches 266 
I/0 Routine Offsets and Registers Under 
Pascall.l Protocol 266 

xxiii 



I 

II 
APPENDIX G Using an 80-Column Text Card 267 II Table G-1 Control Characters With 80-Column Firmware On 273 

-APPENDIX H Programming With the Super Serial Card 277 
Table H-1 Baud Rate Selections 280 -TableH-2 Data Format Selections 281 
TableH-3 Parity Selections 281 -TableH-4 Time Delay Selections 282 
Table H-5 Lowercase Character Display Options 285 -TableH-6 STSBYTE Bit Definitions 287 
TableH-7 Error Codes and Bits 288 
TableH-8 Memory Use Map 289 -Table H-9 Zero-Page Locations Used by the SSC 290 
Table H-10 Address Register Bits Interpretation 291 

II Table H-11 Scratch pad RAM Locations Used by the SSC 292 

--
II 
II 

II 
II 

xxh Figures and Tables 

II 



I 
I 
I 
I 
I 
I 

I 

I 

I 
I 
I 

I 
I 
I 
I 
I 

A shielded cable is a cable that uses a 
metallic wrap around the wires to reduce 
the potential effects of radio frequency 
interference. 

Radio and Television Interference 

The equipment described in this manual generates and uses 
radio-frequency energy.lf it is not installed and used properly-that is, in 
strict accordance with our instructions- it may cause interference with 
radio and television reception. 

This equipment has been tested and complies with the limits for a Class B 
computing device in accordance with the specifications in Subpart J, 
Part 15, of FCC rules. These rules are designed to provide reasonable 
protection against such interference in a residential installation. However, 
there is no guarantee that the interference will not occur in a particular 
installation, especially if a "rabbit ear" television antenna is used. (A "rabbit 
ear" antenna is the telescoping-rod type usually contained on television 
receivers.) 
You can determine whether your computer is causing interference by 
turning it off. If the interference stops, it was probably caused by the 
computer or its peripherals. To further isolate the problem, disconnect the 
peripheral devices and their input/ output cables one at a time. If the 
interference stops, it was caused by either the peripheral device or the 1/0 
cable. These devices usually require shielded 1/0 cables. For Apple 
peripherals, you can obtain the proper shielded cable from your dealer. 
For non-Apple peripl\eral devices, contact the manufacturer or dealer for 
assistance. 
If your computer does cause interference to radio or television reception, 
you can try to correct the interference by using one or more of the following 
measures: 
o Turn the television or radio antenna until the interference stops. 
o Move the computer to one side or the other of the television or radio. 
o Move the computer farther away from the television or radio. 

Radio and Tele\·ision Interference XX\' 



xxvi 

o Plug the computer into an outlet that is on a different circuit than the 
television or radio. (That is, make certain the computer and the radio or 
television set are on circuits controlled by different circuit breakers or 
fuses.) 

o Consider installing a rooftop television antenna with coaxial cable lead-in 
between the antenna and television. 

If necessary, you should consult your Apple-authorized dealer or an 
experienced radio/ television technician for additional suggestions. 

Radio and Telerision Interference 

II 
II 

II 

• -
II 
II 
II 

II 

-
II 
II 
II 
II 
II 



I 
I 

I 
I 
I 
I 

I 
I 
I 
I 

I 

Preface About This Manual 

This is the reference manual for the Apple Ile personal computer. It 
contains detailed descriptions of all of the hardware and firmware that 
make up the Apple Ile and provides the technical information that 
peripheral-card designers and programmers need. 

This manual contains a lot of information about the way the Apple Ile 
works, but it doesn't tell you how to use the Apple lie. For this, you should 
read the other Apple lie manuals, especially the following: 

o Apple fie Owner's Manual 
o TheApplesoft Tutorial 

Contents of This Manual 

The material in this manual is presented roughly in order of increasing 
intimacy with the hardware; the farther you go in the manual, the more 
technical the material becomes. The main subject areas are 

o introduction: Preface and Chapter 1 
o use of built-in features: Chapters 2 and 3 
o how the memory is organized: Chapter 4 
o information for programmers: Chapters 5 and 6 
o hardware implementation: Chapter 7 
o additional information: appendixes, glossary, and bibliography. 

Chapter 1 identifies the main parts of the Apple lie and tells where in the 
manual each part is described. 

The next two chapters describe the built-in input and output features of the 
Apple lie. This part of the manual includes information you need for 
low-level programming on the Apple lie. Chapter 2 describes the built-in I/0 
features and Chapter 3 tells you how to use the firmware that supports 
them. 

Contents of This ~lanual xxvii 



xxviii 

Chapter 4 describes the way the Apple lie's memory space is organized, 
including the allocation of programmable memory for the video display 
buffers. 

Chapter 5 is a user manual for the Monitor that is included in the built-in 
firmware. The Monitor is a system program that you can use for program 
debugging at the machine level. 

Chapter 6 describes the programmable features of the peripheral-card 
connectors and gives guidelines for their use. It also describes interrupt 
programming on the Apple Ile. 

Chapter 7 is a description of the hardware that implements the features 
described in the earlier chapters. This information is included primarily for 
programmers and peripheral-card designers, but it will also help you if you 
just want to understand more about the way the Apple Tie works. 

Additional reference information appears in the appendixes. Appendix A is 
the manufacturer's description of the Apple He's microprocessor. 

Appendix B is a directory of the built-in 1/0 subroutines, including their 
functions and starting addresses. 

Appendix C describes differences among Apple II family members. 

Appendix D describes some of the operating systems and languages 
supported by Apple Computer for the Apple Ile. 

Appendix E contains conversion tables of interest to programmers. 

Appendix F contains additional copies of some of the tables that appear in 
the body of the manual. The ones you will need to refer to often are 
duplicated here for easy reference. 

Appendix G contains information about using Apple Ile 80-colwnn i.ext 
cards with the Appla.Ile and high level languages. 

Appendix H discusses programming on the Apple lie with the Apple Super 
Serial Card. 

Appendix I contains the source listing of the Monitor fl.rmware You can 
refer to it to find out more about the operation of the Monitor subroutines 
listed in Appendix B. 

Following Appendix I is a glossary defining many of the technical terms 
used in this manual. Some terms that describe the use of the Apple fie are 
defined in the glossaries of the other manuals listed earlier. 

Following the glossary, there is a selected bibliography of sources of 
additional information. 

Preface: About This Manual 

II 

II 
II 

-
II 

II 
II 

• 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Opcode is short for operation code and is 
used to describe the basic instructions 
performed by the central processing unit of 
a computer. 

The Enhanced Apple lie 

Changes have been made in the Apple lie since the original version was 
introduced. The new version is called the enhanced Apple lie and is 
described in this manual. Where there are differences in the original 
Apple lie compared with the enhanced Apple lie, they will be called out in 
the manual. Otherwise, the two machines operate identically. 

You can tell whether you have an original or enhanced Apple lie when you 
start up the system. An original Apple lie will display App 1 e l c at the top 
of the monitor screen, while an enhanced Apple lie will display 
App l e // e . 

The changes embodied in the enhanced Apple lie are described in the 
following sections of this preface. 

Physical Changes 

The enhanced Apple lie includes the following changes from the original 
Apple lie: 

o The 65C02 microprocessor, which is a new version of the 6502 
microprocessor found in the original Apple lie. The 65C02 uses less 
power, has 27 new opcodes, and runs at the same speed as the 6502. 
(See Chapter 7 and Appendix A.) 

o A new video ROM containing the same MouseText characters found in 
the Apple lie. (See Chapter 2.) 

o New Monitor ROMs (the CD and EF ROMs) containing the enhanced 
Apple lie firmware. (See Chapter 5.) 

o The identification byte at $FBCO has been changed. ln the original 
Apple lie it was $EA ( decimal234), in the enhanced Apple lie it is $EO 
(decimal 224). 

Startup Drives 

You can use startup (boot) devices other than a Disk II to start up ProDOS 
on the enhanced Apple lie. 

Apple II Pascal versions 1.3 and later may start up from slots 4, 5, or 6 on a 
Disk II, ProFile, or other Apple II disk drive. Apple II Pascal versions 1.0 
through 1.2 must start up from a Disk II in slot 6. 

DOS 3.3 may be started from a Disk II in any slot. 

The Enhanced Apple lle xxix 



XXX 

When you turn on your Apple lie, it searches for a disk drive controller oo 
start up from, beginning with slot 7 and working down toward slot 1. As 
soon as a disk controller card is found, the Apple lie will try to load and 
execute the operating system found on the disk. If the drive is not a Disk II, 
then the operating system of the startup volume must be either Pro DOS or 
Apple II Pascal (version 1.3 or later). If it is a Disk II, then the startup 
volume may be any Apple II operating system. 

Video Firmware 

The enhanced Apple IIe has improved SO-column firmware: 

o The enhanced Apple lie now supports lowercase input. 
o I ESC II coNTROL H]J passes most control characters to the screen. 
o I ESC I~ traps most control characters before they get to the 

screen. 
o I ESC I[]] was removed because uppercase characters are no longer 

required by Applesoft. 

Video Enhancements 

Both SO-column Pascal and 80-column mode Applesoft output are faster 
than before and scrolling is smoother. 40-column Pascal performance is 
unchanged. 

In the original Apple lie, characters echoed to COUTl during 80-column 
operation were printed in every other column; the enhanced Apple Ile 
firmware now prints the characters in each column. 

Applesoft SO-Column Support 

The following Applesoft routines now work in SO-column mode: 

o HTAB 
o TAB 
o SPC 
o Comma tabbing in PRINT statements 

Preface: About This ~lanual 

II 
II 

II 
II 
II 

• 
II 

II 
II 

II 
II 

• 
II 
II 
II 



I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

To find out more, see the Pascal ProFile 
Manager Manual. 

Applesoft Lowercase Support 

Applesoft now lets you do all your programming in lowercase. \Vhen you list 
your programs, all Applesoft keywords and variable names automatically 
are in uppercase characters; literal strings and the contents of DATA and 
REM statements are unchanged. 

Apple II Pascal 

Apple II Pascal"( version 1.2 and later) can now use a ProFile hard disk 
through the Pascal ProFile Manager. 

The Pascall.l firmware no longer supports the control character that 
switches from 80-column to 40-column operation. This control character is 
no longer supported because it can put Pascal in a condition where the 
exact memory configuration is not known. 

System Monitor Enhancements 

Enhancements to the Apple lie's built-in Monitor (described in Chapter 5 in 
this manual) include the following: 

o lowercase input 
o ASCII input mode 
o Monitor Search command 
o the Mini-Assembler 

Interrupt Handling 

Interrupt handler support in the enhanced Apple lie firmware now handles 
any Apple lie memory configuration. 

The Enhanced Apple lie xxxi 



.A. Warning 

Important! 

Definitions, cross-references, and other 
short items appear in marginal glosses like 
this. 

Symbols Used in This Manual 

Special text in this manual is set off in several different ways, as shown in 
these examples. 

Important warnings appear in red like this. These flag potential danger to 
t.he Apple lie, its soft,Yare. or you. 

The information here is important, but non-threatening. The ways in 
which the original Apple lie differs from the enhanced Apple lie are 
called out this way with the tag Original lie in the margin. 

By the Way: Information that is useful but is incidental to the text is set 
off like this. You may want to skip over such information and return to it 
later. 

Terms that are defined in a marginal gloss or in the glossary appear in 
boldface. 

Preface: About This Manual 

II 

-
II 
II 
II 

• 
II 
II 
II 
II 

II 
II 
II 
II 
II 





Figure 1-1. Removing the Cover 

•} 

This first chapter introduces you to the Apple Ile itself. It shows you what 
the inside looks like, identifies the major components that make up the 
machine, and tells you where to find information about each one. 

Removing the Cover 

Remove the cover of the Apple Ile by pulling up on the back edge until the 
fasteners on either side pop loose, then move the cover an inch or so toward 
the rear of the machine to free the front of the cover, as shown in Figure 1-1. 
What you will see is shown in Figure 1-2. 

Figure 1-2. The Apple lie With the Cover Off 

---,.... ----------·--

Chapter 1: Introduction 

II 
II 
II 

II 

II 
II 
II 

II 
II 
II 
II 
II 

II 
II 
II 



I 
I 
I 

I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 

.A Warning 

ASCII stands for A me ric an Code for 
Information Interchange. 

There is a red LED (light-emitting diode) inside the Apple lie, in the left 
rear corner of the circuit board. If the LED is on, it means that the power 
is on and you must turn it off before you insert or remove anything. To 
avoid damaging the Apple lie, don't even think of changing anything 
inside it without first turning off the power. 

The Keyboard 

The keyboard is the Apple lie's primary input device. As shown in 
Figure 1-3, it has a normal typewriter layout, uppercase and lowercase, with 
all of the special characters in the ASCII character set. The keyboard is 
fully integrated into the machine; its operation is described in the first part 
of Chapter 2. Firmware subroutines for reading the keyboard are described 
in Chapter 3. 

Figure 1-3. The Apple lie Keyboard 

The Speaker 

The Apple lie has a small loudspeaker in the bottom of the case. The 
speaker enables Apple lie programs to produce a variety of sounds that 
make the programs more useful and interesting. The way programs control 
the speaker is described in Chapter 2. 

The Speaker 3 



.A Warning 

4 

The Power Supply 

The power supply is inside the flat metal box along the left side of the 
interior of the Apple Ile. It provides power for the main board and for any 
peripheral cards installed in the Apple Tie. 

The power supply produces four different voltages: +5V, -5V, + 12V, and 
-12V. It is a high-efficiency switching supply; it includes special circuits that 
protect it and the rest of the Apple lie against short circuits and other 
mishaps. Complete specifications of the Apple lie power supply appear in 
Chapter7. 

• -
II 

The power switch and the socket for the power cord are mounted directly -
on the back of the power supply's metal case. This mounting ensures that 
all the circuits that carry dangerous voltages are inside the power supply. 
Do not defeat this design feature by attempting to open the power supply. 

The Circuit Board 

All of the electronic parts of the Apple lie are attached to the circuit board, -
which is mounted flat in the bottom of the case. 

Figure 1-4 shows the main integrated circuits (ICs) in the Apple Ile. They II 
are the central processing unit (CPU), the keyboard encoder, the keyboard 
read-only memory (ROM), the two interpreter ROMs, the video ROM, and 
the custom integrated circuits: the Input/ Output Unit (IOU), the Memory II 
Management Unit (MMU), and the Programmed Array Logic (PAL) device. 

Chapter 1: Introduction 

-
II 
II 
II 



I Figure 1-4. The Circuit Board 

I 
I 
I 
I 
I 

CPU 

I 
I PAL 

I 
MMU 

IOU 

I Interpreter ROMs 

I 

I 
Keyboard ROM 

I Keyboard Encoder 

I 
I 

The Circuit Board 5 



6 

The CPU is a 65C02 microprocessor. The 65C02 is an enhanced version of 
the 6502, which is an eight-bit microprocessor with a sixteen-bit address 
bus. It uses instruction pipelining for faster processing than comparable 
microprocessors. In the Apple lie, the 65C02 runs at 1.02 MHz and performs 
up to 500,000 eight-bit operations per second. The specifications of the 
65C02 and its instruction set are given in Appendix A. 

The original version of the Apple lie uses the 6502 microprocessor. You can 
tell which version of Apple lie that you have by starting up your machine. 
An original Apple lie displays A p p 1 e 1 £ at the top of the screen during 
startup, while an enhanced Apple lie displays App 1 e 11 e . This manual 
will call out specific areas where the two versions of the Apple lie are 
different. 

Original lie The 6502 is very similar to the 65C02, but lacks 10 instructions and 2 
addressing modes found on the 65C02. The 6502 is an NMOS device and 
so uses more power than the CMOS 65C02. Except for the differences 
listed above, and some minor differences in the number of clock cycles 
used by some instructions, the two microprocessors are identical. 

The keyboard is decoded by an AY-3600-type integrated circuit and a 
read-only memory (ROM). These devices are described in Chapter 7. 

The interpreter ROMs are integrated circuits that contain the Applesoft 
BASIC interpreter. The ROMs are described in Chapter 7. The Applesoft 
language is described in theApplesojt Tutorial and theApplesoft BASIC 
Programmer's Reference Manual. 

Two of the large ICs are custom-made for the Apple lie: the MMU and the 
IOU. The MMU IC contains most of the logic that controls memory 
addressing in the Apple lie. The organization of the memory is described in 
Chapter 4; the circuitry in the MMU itself is described in Chapter 7. 

The IOU IC contains most of the logic that controls the built-in input/ output 
features of the Apple lie. These features are described in Chapter 2 and 
Chapter 3; the IOU circuits are described in Chapter 7. 

Connectors on the Circuit Board 

The seven slots lined up along the back of the Apple lie circuit board are the 
expansion slots, sometimes called peripheral slots. (See Figure 1-5.) These 
slots make it possible to attach additional hardware to the Apple Ile. 
Chapter 6 tells you how your programs deal with the devices that plug into 
these slots; Chapter 7 describes the circuitry for the slots themselves. 

Chapter 1: Introduction 

II 
II 
II 
II 
II 
II 
II 
II 

II 

-
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 1-5. The Expansion Slots 

The large slot next to the left-hand side of the circuit board is the auxiliary 
slot (Figure 1-6). If your Apple lie has an Apple lle 80-column text card, it 
will be installed in this slot. The 80-column display option is fully integrated 
into the Apple lle; it is described along with the other display features in 
Chapter 2. The hardware and firmware interfaces to this card are described 
in Chapter 7. 

Figure 1-6. The Auxiliary Slot 

There are also smaller connectors for game 1/0 and for an internal RF 
(radio frequency) modulator. These connectors are described in Chapter 7. 

C<>nnectors on the Circuit Board 7 



8 

Connectors on the Back Panel 

The back of the Apple lie has two miniature phone jacks for connecting a 
cassette recorder, an RCA-type jack for a video monitor, and a 9-pin D-type 
miniature connector for the hand controls, as shown in Figure 1-7. In 
addition to these, there are spaces for additional connectors used with the 
peripheral cards installed in the Apple lie. The installation manuals for the 
peripheral cards contain instructions for installing the peripheral 
connectors. 

Figure 1-7. The Back Panel Connectors 

Chapter 1: Introduction 

II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 



Built-in 1/ 0 Devices 

9 



For descriptions of the built-in I/0 
hardware refer to Chapter 7. 

Built-in 1/0 firmware routines are 
described in Chapter 3. 

10 

This chapter describes the input and output (I/0) devices built into the 
Apple lie in terms of their functions and the way they are used by 
programs. The built-in I/0 devices are 

o the keyboard 
o the video-display generator 
o the speaker 
o the cassette input and output 
o the game input and output. 

At the lowest level, programs use the built-in I/0 devices by reading and 
writing to dedicated memory locations. This chapter lists these locations for 
each I/0 device. It also gives the locations of the internal soft-switches that 
select the different display modes of the Apple lie. 

Built-in 1/0 Routines: This method of input and output-loading and 
storing directly to specific locations in memory-is not the only method 
you can use. For many of your programs, it may be more convenient to 
call the built-in I/0 routines stored in the Apple lie's firmware. 

The Keyboard 

The primary input device of the Apple lie is its built-in keyboard. The 
keyboard has 63 keys and is similar to a typewriter keyboard. The Apple lle 
keyboard has automatic repeat on all keys: hold the key down to repeat. It 
also has N-key rollover, which means that you can hold down any number 
of keys while typing another. Of course, if you hold the keys down much 
longer than the length of time you would hold them down during normal 
typing, the automatic-repeat function will start repeating the last key you 
pressed. 

The keyboard arrangement shown in Figure 2-1 is the standard one used in 
the United States. The specifications for the keyboard are given in 
Table 2-1. Apple lie's manufactured for sale outside the United States have 
a slightly different standard keyboard arrangement and include provisions 
for switching between two different arrangements. 

Chapter 2: Built-in I/0 Devices 

II 
II 
II 
II 
II 

II 

II 

II 
II 
II 
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 2-1. The Keyboard 

Table 2-1. Apple Ile Keyboard Specifications 

Number of keys: 

Character encoding: 

Number. of codes: 

pr-;atures: 

Special function keys: 

63 

ASCII 

128 

Automatic repeat, two-key rollover 

I RESET b@], [!) 

Cursor movement keys: B B ITJ, [!],I RETURN~ I DELETE I, I TAB I 

Modifier keys: 

Electrical Interface: 

I CONTROL b I SHIFT I, I CAPS LOCK b I ESC I 

AY-5-3600 keyboard encoder 

In addition to the keys normally used for typing characters, there are four 
cursor-control keys with arrows: left, right, down, and up. The 
cursor-control keys can be read the same as other keys; their codes are $08, 
$15, $0A, and $0B. (See Table 2-3.) 

Three special keys, I coNTROL b I SHIFT band I CAPS LOCK I, change the 
codes generated by the other keys. The I CONTROL I key is similar to the 
ASCII CTRL key. 

Three other keys have special functions: the I RESET I key, and two keys 
marked with apples, one outlined, or open(@]), and one solid, or closed 
([!)). Pressing the I RESET I key with the I coNTROL I key depressed resets 
the Apple lie, as described in Chapter 4. The Apple keys are connected to 
the one-bit game inputs, described later in this chapter. 

The Keyboard 11 



See Chapter 7 for a complete description of The electrical interface between the Apple lie and the keyboard is a ribbon 
the elecrtical interface to the keyboard. cable with a 26-pin connector. This cable carries the keyboard signals to the 

encoding circuitry on the main board. 

Hexadecimal refers to the base-16 number 
system, which uses the digits 0 through 9 
and the six letters A through F to represent 
values from 0 to 15. 

Reading the Keyboard 

The keyboard encoder and ROM generate all128 ASCII codes, so all of the 
special character codes in the ASCII character set are available from the 
keyboard. Machine-language programs obtain character codes from the 
keyboard by reading a byte from the keyboard-data location shown in 
Table 2-2. 

Table 2-2. Keyboard Memory Locations 

T.ocation 
Hex .lleclmal Description 

scooo 49152 -1~~ Keyboard data and strobe 

$COlO 49168 -16368 fu...v-key-down flag and clear-strobe switcll 

Your programs can get the code for the last J.:~y pressed by reading the 
keyboard-data location. Table 2-2 gives this location in three different 
forms: the hexadecimal value used in assembly tMJguage, indicated by a 
preceding dollar sign ($); the decimal value used in App.lesoft BASIC and 

I 

the complementary decimal value used in Apple Integer b~SIC. (Integer 
BASIC requires that values greater than 32767 be written as t;he number 
obtained by subtracting 65536 from the value. These are the d&cimal 
numbers shown as negative in tables in this manual; refer to the.4pple JI 
BASIC Programming Manual.) The low-order seven bits of the nyte at 
the keyboard location contain the character code; the high-order bitt>£ this 

II 
II 
II 
II 
II 

II 
byte is the strobe bit, described later in this section. --

Your program can find out whether any key is down, except the 1 RESET L • 

12 

I coNTROL I. I SH 1FT b I CAPS LOCK b @), and~ keys by reading from 
location 49168 (hexadecimal $COlO or complementary decimal-16368). The 
high-order bit (bit 7) of the byte you read at this location is called 
any-key-down; it is 1 if a key is down, and 0 if no key is down. The value of 
this bit is 128; if a BASIC program gets this information with a PEEK, the 
value is 128 or greater if any key is down, and less than 128 if no key is 
down. 

Chapter 2: Built-in 1/0 Devices 



I 
I 
I 

I 
I 

I 
I 
I 

I 
I 

I 

I 
I 
I 
I 

I 
I 

The [Q) and[!) keys are connected to switches 0 and 1 of the game I/0 
connector inputs. If [Q) is pressed, switch 0 is "pressed," and if[!] is 
pressed, switch 1 is "pressed." 

The strobe bit is the high-order bit of the keyboard-data byte. After any key 
has been pressed, the strobe bit is high. It remains high until you reset it by 
reading or writing at the clear-strobe location. This location is a combination 
flag and switch; the flag tells whether any key is down, and the switch 
clears the strobe bit. The switch function of this memory location is called a 
soft switch because it is controlled by software. In this case, it doesn't 
matter whether the program reads or writes, and it doesn't matter what 
data the program writes: the only action that occurs is the resetting of the 
keyboard strobe. Similar soft switches, described later, are used for 
controlling other functions in the Apple lie. 

Important! Any time you read the any-key-down flag, you also clear the keyboard 
strobe. If your program needs to read both the flag and the strobe, it must 
read the strobe bit first. 

The reset routine is described in Chapter 4. 

After the keyboard strobe has been cleared, it remains low until another key 
is pressed. Even after you have cleared the strobe, you can still read the 
character code at the keyboard location. The data byte has a different 
value, because the high-order bit is no longer set, but the ASCII code in the 
seven low-order bits is the same until another key is pressed. Table 2-3 
shows the ASCII codes for most of the keys on the keyboard of the 
Apple lie. 

There are several special-function keys that do not generate ASCII codes. 
For example, you cannot read the I coNTROL b [SBiFf), and I CAPS LOCK I 
keys directly, but pressing one of these keys alters the character codes 
produced by the other keys. 

Another key that doesn't generate a code is I RESET Llocated at the 
upper-right corner of the keyboard; it is connected directly to the Apple lie's 
circuits. Pressing I RESET I with I coNTROL I depressed normally causes the 
system to stop whatever program it's running and restart itself. This 
restarting process is called the reset routine. 

Two more special keys are the Apple keys,@) and [!], located on either 
side of the 1 sPACE I bar_ These keys are connected to the one-bit game 
inputs, which are described later in this chapter in the section "Switch 
Inputs. n Pressing them in combination with the I CONTROL I and I RESET I 
keys causes the built-in firmware to perform special reset and self-test 
cycles, described with the reset routine in Chapter 4. 

The Keyboard 13 



Table 2·3. Ke;ts and ASCII Codes • Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer 
to Table E·2. II 

Normal Control Shift Both 
Key Code Char Code Char Code Char Code Char 

II I DELETE I 7F DEL 7F DEL 7F DEL 7F DEL 
G 08 BS 08 BS 08 BS 08 BS 
I TAB I 09 HT 09 HT 09 HT 09 HT II (I] OA LF OA LF OA LF OA LF 
[!] OB VT OB VT OB VT OB VT -I RETURN I OD CR OD CR OD CR OD CR 
G 15 NAK 15 NAK 15 NAK 15 NAK 
I ESC I 1B ESC 1B ESC lB ESC 1B ESC II I SPACE I 20 SP 20 SP 20 SP 20 SP 

27 27 22 22 
,< 2C 2C 3C < 3C < II 

2D IF us 5F 1F us 
.> 2E 2E 3E > 3E > II I? 2F I 2F I 3F ? 3F ? 
0) 30 0 30 0 29 ) 29 ) 
1 ! 31 1 31 1 21 21 II 2@ 32 2 00 NUL 40 @ 00 NUL 
3# 33 3 33 3 23 # 23 # 

II 4$ 34 4 34 4 24 $ 24 $ 
5% 35 5 35 5 25 % 25 % 
6 36 6 1E RS 5E 1E RS -7& 37 7 37 7 26 & 26 & 
g• 38 8 38 8 2A • 2A • 
9( 39 9 39 9 28 ( 28 ( II .. 3B 3B 3A 3A ,. 
= + 3D 3D 2B + 2B + II l{ 5B 1B ESC 7B { 1B ESC 
\I 5C \ 1C FS 7C I 1C FS 
J} 5D I lD GS 7D } 1D GS II 

60 60 7E 7E 

II 
II 

14 Chapter 2: Built-in 1/0 Devices 



I Table 2-3- Continued. Keys and ASCII Codes 
Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer 

I to Table E-2. 

Normal Control Shift Both 

I 
Key Code Char Code Char Code Char Code Char 

A 61 a 01 SOH 41 A 01 SOH 
B 62 b 02 STX 42 B 02 STX 

I c 63 c 03 ETX 43 c 03 ETX 
D 64 d 04 EOT 44 D 04 EOT 

I 
E 65 e 05 ENQ 45 E 05 ENQ 
F 66 f 06 ACK 46 F 06 ACK 
G 67 g 07 BEL 47 G 07 BEL 

I H 68 h 08 BS 48 H 08 BS 
I 69 09 HT 49 I 09 HT 

I 
J 6A j OA LF 4A J OA LF 
K 6B k OB VT 4B K OB VT 
L 6C oc FF 4C L oc FF 

I M 60 m OD CR 40 M OD CR 
N 6E n OE so 4E N OE so 
0 6F 0 OF SI 4F 0 OF SI 

I p 70 p 10 OLE 50 p 10 OLE 
Q 71 q 11 DCl 51 Q 11 DC1 

I 
R 72 r 12 DC2 52 R 12 DC2 
s 73 s 13 OC3 53 s 13 OC3 
T 74 14 DC4 54 T 14 OC4 

I u 75 u 15 NAK 55 u 15 NAK 
v 76 v 16 SYN 56 v 16 SYN 

I 
w 77 w 17 ETB 57 w 17 ETB 
X 78 X 18 CAN 58 X 18 CAN 
y 79 y 19 EM 59 y 19 EM 

I z 7A z 1A SUB 5A z lA SUB 

I 

The Keyboard 15 



Important! 

Original lie 

For a full description of the video signal 
and the connections to the Molex-type pins, 
refer to the section "Video Output Signals" 
in Chapter 7. 

16 

The Video Display Generator 

The primary output device of the Apple Ile is the video display. You can use 
any ordinary video monitor, either color or black-and-white, to display video 
information from the Apple lie. An ordinary monitor is one that accepts 
composite video compatible with the standard set by the NTSC (National 
Television Standards Committee). If you use Apple lie color graphics with a 
black-and-white monitor, the display will appear as black and white (or 
green or amber or ... ) and various patterns of these two shades mixed 
together. 

If you are using only 40-column text and graphics modes, you can use a 
television set for your video display. If the TV set has an input connector for 
composite video, you can connect it directly to your Apple lie; if it does not, 
you'll need to attach a radio frequency (RF) video modulator between the 
Apple lie and the television set. 

With the 80-column text card installed, the Apple lie can produce an 
80-column text display. However, if you use an ordinary color or 
black-and-white television set, 80-column text will be too blurry to read. 
For a clear 80-column display, you must use a high-resolution video 
monitor with a bandwidth of 14 MHz or greater. 

The specifications for the video display are summarized in Table 2-4. 

I 
Note that MouseText characters are not included in the original version 
of the Apple lie. 

The video signal produced by the Apple lie is NTSC-compatible composite 
color video. It is available at three places: the RCA-type phono jack on the 
back of the Apple lie, the single Molex-type pin on the main circuit board 
near the back on the right side, and one of the group of four Molex-type pins 
in the same area on the main board. Use the RCA-type phono jack to 
connect a video monitor or an external video modulator; use the Molex pins 
to connect the type of video modulator that fits inside the Apple lie case. 

Chapter 2: Built-in 1/0 Devices 

• 
II 

II 

-
II 

II 
II 
II 

II 
II 

-
II 

II 

-
II 



I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

Table 2·4. Video Display Specifications 

Display modes: 

Text capacity: 

Character set: 

Display formats: 

Low-resolution graphics: 

High-resolution graphics: 

Double-high-resolution 
graphics: 

40-column text; map: Figure 2-5 
80-column text; map: Figure 2-6 

Low-resolution color graphics; map: Figure 2-7 

High-resolution color graphics; map: Figure 2-8 

Double-high-res. color graphics; map: Figure 2-9 

24 lines by 80 columns (character positions) 

96 ASCII characters (uppercase and lowercase) 

Normal, inverse, flashing, Mouse Text (Table 2-5) 

16 colors (Table 2-6) 40 horizontal by 48 vertical; 
map: Figure 2-7 

6 colors (Table 2-7) 140 horizontal by 192 vertical 
(restricted) 

Black-and-white: 280 horizontal by 192 vertical; 
map: Figure 2-8 

16 colors (Table 2-8) 140 horizontal by 192 vertical 
(no restrictions) 

Black-and-white: 560 horizontal by 192 vertical; 
map: Figure 2-9 

The Apple lie can produce seven different kinds of video display: 

o text, 24lines of 40 characters 
o text, 24 lines of 80 characters (with optional text card) 
o low-resolution graphics, 40 by 48, in 16 colors 
o high-resolution graphics, 140 by 192, in 6 colors 
o high-resolution graphics, 280 by 192, in black and white 
o double high-resolution graphics, 140 by 192, in 16 colors (with optional 

64K text card) 
o double high-resolution graphics, 560 by 192, in black and white (with 

optional64K text card) 

The two text modes can display all 96 ASCII characters: the uppercase and 
lowercase letters, numbers, and symbols. The enchanced Apple lie can also 
display MouseText characters. 

The Video Dis pia) Generator 17 



18 

Any of the graphics displays can have 4lines of text at the bottom of the 
screen. The text may be either 40-column or 80-column, except that 
double-high-resolution graphics may only have 80-column text at the 
bottom of the screen. Graphics displays with text at the bottom are called 
mixed-mode displays. 

The low-resolution graphics display is an array of colored blocks, 40 wide by 
48 high, in any of 16 colors. In mixed mode, the 4lines of text replace the 
bottom 8 rows of blocks, leaving 40 rows of 40 blocks each. 

The high-resolution graphics display is an array of dots, 280 wide by 192 
high. There are 6 colors available in high-resolution displays, but a given dot 
can use only 4 of the 6 colors. In mixed mode, the 4lines of text replace the 
bottom 32 rows of dots, leaving 160 rows of 280 dots each. 

The double-high-resolution graphics display uses main and auxiliary 
memory to display an array of dots, 560 wide by 192 high. All the dots are 
visible in black and white. If color is used, the display is 140 dots wide by 
192 high with 16 colors available. In mixed mode, the 4lines of text replace 
the bottom 32 rows of dots, leaving 160 rows of 560 (or 140) dots each. In 
mixed mode, the text lines can be 80 columns wide only. 

Text Modes 

The text characters displayed include the uppercase and lowercase letters, 
the ten digits, punctuation marks, and special characters. Each character is 
displayed in an area of the screen that is seven dots wide by eight dots high. 
The characters are formed by a dot matrix five dots wide, leaving two blank 
columns of dots between characters in a row, except for MouseText 
characters, some of which are seven dot wide. Except for lowercase letters 
with descenders and some Mouse Text characters, the characters are only 
seven dots high, leaving one blank line of dots between rows of characters. 

The normal display has white (or other single color) dots on a black 
background. Characters can also be displayed as black dots on a white 
background; this is called inverse format. 

Chapter 2: Built -in 1/0 Devices 

II 
II 

II 

II 

I 
II 

II 
II 
II 

II 

II 

-
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

Text Character Sets 

The Apple lie can display either of two text character sets: the primary set 
or an alternate set. The forms of the characters in the two sets are actually 
the same, but the available display formats are different. The display 
formats are 

o normal, with white dots on a black screen 
o inverse, with black dots on a white screen 
o flashing, alternating between normal and inverse. 

With the primary character set, the Apple lie can display uppercase 
characters in all three formats: normal, inverse, and flashing. Lowercase 
letters can only be displayed in normal format. The primary character set is 
compatible with most software written for the Apple II and Apple II Plus 
models, which can display text in flashing format but don't have lowercase 
characters. 

The alternate character set displays characters in either normal or inverse 
format. In normal format, you can get 

o uppercase letters 
o lowercase letters 
o numbers 
o special characters. 

In inverse format, you can get 

o MouseText characters (on the enhanced Apple lie) 
o uppercase letters 
o lowercase letters 
o numbers 
o special characters. 

The MouseText characters that replace the alternate uppercase inverse 
characters in the range of $40-$5F in the original Apple Ile are inverse 
characters, but they don't look like it because of the way that they have 
been constructed. 

You select the character set by means of the alternate-text soft switch, 
ALTCHAR, described later in the section "Display Mode Switching." 
Table 2-5 shows the character codes in hexadecimal for the Apple lie 
primary and alternate character sets in normal, inverse, and flashing 
formats. 

The Video Display Generator 19 



20 

Each character on the screen is stored as one byte of display data. The 
low-order six bits make up the ASCII code of the character being displayed. 
The remaining two (high-order) bits select inverse or flashing format and 
uppercase or lowercase characters. In the primary character set, bit 7 
selects inverse or normal format and bit 6 controls character flashing. In the 
alternate character set, bit 6 selects between uppercase and lowercase, 
according to the ASCII character codes, and flashing format is not available. 

Table 2-5. Display Character Sets 

Note: To identify particular characters and values, refer to Table 2·3. 

Hex Primary Character Set Alternate Character Set 
Values Character Type Format Character Type Format 

$00-$1F Uppercase letters Inverse Uppercase letters Inverse 

$20-$3F Special characters Inverse Special characters Inverse 

$40-$5F Uppercase letters Flashing MouseText 

$60-$7F Special characters Flashing Lowercase letters Inverse 

$80-$9F Uppercase letters Normal Uppercase letters Normal 

$AO-$BF Special characters Normal Special characters Normal 

$CO-$DF Uppercase letters Normal Uppercase letters Normal 

$EO-$FF Lowercase letters Normal Lowercase letters Normal 

Original lie I In the alternate character set of the original Apple lie, characters in the 
range $40-$5F are uppercase inverse. 

40-Column Versus SO-Column Text 

The Apple lie has two modes of text display: 40-column and 80-column. 
(The 80-colurnn display mode described in this manual is the one you get 
with the Apple lie 80-Column Text Card or other auxiliary-memory card 
installed in the auxiliary slot.) The number of dots in each character does 
not change, but the characters in 80-column mode are only half as wide as 
the characters in 40-column mode. Compare Figure 2-2 and Figure 2-3. On 
an ordinary color or black-and-white television set, the narrow characters in 
the 80-column display blur together; you must use the 40-column mode to 
display text on a television set. 

Chapter 2: Built-in 1/0 Devices 

I 
II 

I 

II 

II 

-
II 

I 
II 



I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

Figure 2·3. 80·Column Text Display 

lLI ST 

Figure 2-2. 40-Column Text Display 

lLIST ll , H'lll 

11! REM APPLESOFT CHARACTER DEMO 

21! TEXT : HOME 
31! PRII'IT : PRIHT "Appli!!!oft char 

ectl!r Dl!mo" 
41! PRIHT : PRIHT "Which cherectl! 

r !!l!t--" 
51! PRIHT : IHPUT "Primary <P> or 

Altl!rneh <A> ?";AS 
61! IF LEH CAS> < 1 THEH Sll 
65 LET AS • LEFT$ CA$ , 1) 
71! IF A$ • " P" THEH POKE 49 166, 

ll 
Bll IF A$ • " A" THEH POKE 49167, 

ll 
91! PRIHT PRIHT " · .. pri n ting th 

I! !!&ml! l i n!! , fir!!t" 
11lll PR I HT " in HORMAL, thi!n I liVE 

RSE ,th i! n FLASH:": PRIIiT 

11l REM APPLESOFT CHARACTE R DEMO 
21! TEXT : HOME 
31! PRIIiT PRIIiT "Appli!!!oft Cherecti!r Di!mo" 
41! PRIIiT : PRIIiT "Which che rec tl!r !!l!t-- " 
51! PRI liT : I liPUT "Pr imery CP> or Alti!rnetl! <A> ?" ;A$ 
61! IF LE~i CAS> < 1 THE~i 51! 
65 LET A$ • LEFT$ CA$,1) 
71! IF A$ • "P" THE~i POKE 49166 , 1! 
Bll IF A$ • "A" THE~i POKE 49167,1! 
91! PR I IiT : PR I ~iT " ... printing thi! !!&mi! lin!!, fir!!t " 
11lll PRIIiT" in liORMAL , thl!n IliVERSE ,thi!n FLASH : ": PRI~iT 

151! liORMAL : GOSUB 11lllll 
161! IliVERSE : GOSUB 11lllll 
171! FLASH : GOSUB 11lllll 
181! liORMAL : PR I HT : PRIHT PRIHT " Pri!!!!! eny ki!y to ri!p!!et. " 
19 1! GET A$ 
21lll GOTO 1ll 
11l llll PRIIiT : PRIHT " SA MPLE TEXT: How i!! thi! timl!--12:1lll" 
111!1! RETURH ]. 

The \'ideo Display Generator 21 



Graphics Modes 

The Apple lie can produce video graphics in three different modes. All the 
graphics modes treat the screen as a rectangular array of spots. Normally, 
your programs will use the features of some high-level language to draw 
graphics dots, lines, and shapes in these arrays; this section describes the 
way the resulting graphics data are stored in the Apple lie's memory. 

Low-Resolution Graphics 

In the low-resolution graphics mode, the Apple lie displays an array of 48 
rows by 40 columns of colored blocks. Each block can be any one of sixteen 
colors, including black and white. On a black-and-white monitor or 
television set, these colors appear as black, white, and three shades of gray. 
There are no blank dots between blocks; adjacent blocks of the same color 
merge to make a larger shape. 

Data for the low-resolution graphics display is stored in the same part of 
memory as the data for the 40-column text display. Each byte contains data 
for two low-resolution graphics blocks. The two blocks are displayed one 
atop the other in a display space the same size as a 40-column text 
character, seven dots wide by eight dots high. 

Half a byte-four bits, or one nibble-is assigned to each graphics block. 
Each nibble can have a value from 0 to 15, and this value determines which 
one of sixteen colors appears on the screen. The colors and their 
corresponding nibble values are shown in Table 2-6. In each byte, the 
low-order nibble sets the color for the top block of the pair, and the 
high-order nibble sets the color for the bottom block. Thus, a byte 
containing the hexadecimal value $08 produces a brown block atop a 
yellow block on the screen. 

Chapter 2: Built·in ljO De1 ices 

I 

II 
I 
II 

I 

-
II 
II 

-
II 
I 

-



I 
I 

I 
I 

I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 

Table 2-6. Low-Resolution Graphics Colors 
Note: Colors rnay t•ary, depending upon the controls on the monitor o1· TV set. 

Nibble Value Nibble Value 
Dec Hex Color Dec Hex Color 

0 $()() Black 8 $08 Brown 

SOl Magenta 9 $09 Orange 

2 $02 Dark Blue 10 $0A Gray 2 

3 $03 Purple 11 $0B Pink 

4 $04 Dark Green 12 $0C Light Green 

5 $05 Gray 1 13 $00 Yellow 

6 $06 Medium Blue 14 SOE Aquamarine 

7 $07 Light Blue 15 SOF White 

As explained later in the section "Display Pages," the text display and the 
low-resolution graphics display use the same area in memory. Most 
programs that generate text and graphics clear this part of memory when 
they change display modes, but it is possible to store data as text and 
display it as graphics, or vice-versa. All you have to do is change the mode 
switch, described later in this chapter in the section "Display Mode 
Switching," without changing the display data. This usually produces 
meaningless jumbles on the display, but some programs have used this 
technique to good advantage for producing complex low-resolution graphics 
displays quickly. 

High-Resolution Graphics 

In the high-resolution graphics mode, the Apple lie displays an array of 
colored dots in 192 rows and 280 columns. The colors available are black, 
white, purple, green, orange, and blue, although the colors of the individual 
dots are limited, as described later in this section. Adjacent dots of the same 
color merge to form a larger colored area. 

Data for the high-resolution graphics displays are stored in either of two 
8192-byte areas in memory. These areas are called high-resolution Page 1 
and Page 2; think of them as buffers where you can put data to be 
displayed. Normally, your programs will use the features of some high-level 
language to draw graphics dots, lines, and shapes to display; this section 
describes the way the resulting graphics data are stored in the Apple lie's 
memory. 

The \'ideo Display Generator 23 



Figure 2-4. High-Resolution Display 
Bits 

Bits in Data Byte 

Dots on Graphics Screen 

For more details about the way the 
Apple lie produces color on a TV set, see 
the section "Video Display Modes" in 
Chapter 7. 

2-1 

The Apple lie high-resolution graphics display is bit-mapped: each dot on 
the screen corresponds to a bit in the Apple lie's memory . The seven 
low-order bits of each display byte control a row of seven adjacent dots on II 
the screen, and forty adjacent bytes in memory control a row of 280 
(7 times 40) dots. The least significant bit of each byte is displayed as the 
leftmost dot in a row of seven, followed by the second-least significant bit, I 
and so on, as shown in Figure 2-4. The eighth bit (the most significant) of 
each byte is not displayed; it selects one of two color sets, as described later. 

On a black-and-white monitor, there is a simple correspondence between II 
bits in memory and dots on the screen. A dot is white if the bit controlling it 
is on (1), and the dot is black if the bit is off (0). On a black-and-white 
television set, pairs of dots blur together; alternating black and white dots I 
merge to a continuous grey. 

On an NTSC color monitor or a color television set, a dot whose controlling II 
bit is off (0) is black. If the bit is on, the dot will be white or a color, 
depending on its position, the dots on either side, and the setting of the 
high-order bit of the byte. 

Call the left-most column of dots column zero, and assume (for the moment) 
that the high-order bits of all the data bytes are off (0). If the bits that 
control dots in even-numbered columns (0, 2, 4, and so forth) are on, the 
dots are purple; if the bits that control odd-numbered columns are on, the 
dots are green-but only if the dots on both sides of a given dot are black. If 
two adjacent dots are both on, they are both white. • 

You select the other two colors, blue and orange, by turning the high-order 
bit (bit 7) of a data byte on (1). The colored dots controlled by a byte with • 
the high-order bit on are either blue or orange: the dots in even-numbered 
columns are blue, and the dots in odd-numbered columns are orange
again, only if the dots on both sides are black. Within each horizontal line of 
seven dots controlled by a single byte, you can have black, white, and one 
pair of colors. To change the color of any dot to one of the other pair of 
colors, you must change the high-order bit of its byte, which affects the 
colors of all seven dots controlled by the byte. 

In other words, high-resolution graphics displayed on a color monitor or 
television set are made up of colored dots, according to the following rules: 

o Dots in even columns can be black, purple, or blue. 
o Dots in odd columns can be black, green, or orange. 
o If adjacent dots in a row are both on, they are both white. 
o The colors in each row of seven dots controlled by a single byte are either 

purple and green, or blue and orange, depending on whether the 
high-order bit is off (0) or on (1). 

Chapter 2: Built-in I/0 Devices 

II 

• 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

For information about the way NTSC color 
television works, see the magazine articles 
listed in the bibliography. 

These rules are summarized in Table 2-7. The blacks and whites are 
numbered to remind you that the high-order bit is different. 

Table 2-7. High-Resolution Graphics Colors 

Note: Colors may vary depending upon the controls on the monitor or television 
set. 

Bits0·6 Bit 7 Off Bit 7 On 

Adjacent columns off Black 1 Black 2 

Even columns on Purple Blue 

Odd columns on Green Orange 

Adjacent columns on White 1 White 2 

The peculiar behavior of the high-resolution colors reflects the way NTSC 
color television works. The dots that make up the Apple lie video signal are 
spaced to coincide with the frequency of the color subcarrier used in the 
NTSC system. Alternating black and white dots at this spacing cause a 
color monitor or TV set to produce color, but two or more white dots 
together do not. 

Double-High-Resolution Graphics 

Double-high-resolution graphics is a bit-mapping of the low-order seven bits 
of the bytes in the main-memory and auxiliary-memory pages at 
$2000-$3FFF. The bytes in the main-memory and auxiliary-memory pages 
are interleaved in exactly the same manner as the characters in 80-column 
text: of each pair of identical addresses, the auxiliary-memory byte is 
displayed first, and the main-memory byte is displayed second. Horizontal 
resolution is 560 dots when displayed on a monochrome monitor. 

Unlike high-resolution color, double-high-resolution color has no restrictions 
on which colors can be adjacent. Color is determined by any four adjacent 
dots along a line. Think of a 4-dot-wide window moving across the screen: at 
any given time, the color displayed will correspond to the 4-bit value from 
Table 2-8 that corresponds to the window's position (Figure 2-9). Effective 
horizontal resolution with color is 140 (560 divided by four) dots per line. 

To use Table 2-8, divide the display column number by 4, and use the 
remainder to find the correct column in the table: abO is a byte residing in 
auxiliary memory corresponding to a remainder of 0 (byte 0, 4, 8, and so on); 
mbl is a byte residing in main memory corresponding to a remainder of 1 
(byte 1, 5, 9 and so on), and similarly for ab3 and mb4. 

The Video Displa~ Generator 25 



Table 2-8. Double-High-Resolution Graphics Colors II 
Color abO mbl ab2 

Repeated -mb3 Bit Pattern 

Black $00 soo soo soo 0000 

Magenta $08 $11 $22 $44 0001 II 
Brown $44 $08 $11 $22 0010 

Orange $4C $19 $33 $66 0011 II 
Dark Green $22 $44 $08 $11 0100 

Gray 1 $2A $55 $2A $55 0101 -Green $66 S4C $19 $33 0110 

Yellow $6E $50 S3B $77 0111 II 
Dark Blue S11 $22 $44 $08 1000 

Purple S19 S33 $66 $4C 1001 -Gray2 $55 S2A $55 S2A 1010 

Pink $50 S3B $77 S6E 1011 • Medium Blue $33 $66 $4C $19 1100 

Light Blue S3B $77 S6E $50 1101 I 
Aqua $77 S6E $50 $38 1110 

White $7F $7F $7F $7F 1111 II 

Video Display Pages II 
The Apple lie generates its video displays using data stored in specific areas II in memory. These areas, called display pages, serve as buffers where your 
programs can put dat.a to be displayed. Each byte in a display buffer 

II controls an object at a certain location on the display. In text mode, the 
object is a single character; in low-resolution graphics, the object is two 
stacked colored blocks; and in high-resolution and double-high-resolution • modes, it is a line of seven adjacent dots. 

26 Chapter 2: Built-in 1/0 Devices 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The 40-column-text and low-resolution-graphics modes use two display 
pages of 1024 bytes each. These are called text Page 1 and text Page 2, and 
they are located at 1024-2047 (hexadecimal $0400-$07FF) and 2048-3071 
(S0800-$0BFF) in main memory. Normally, only Page 1 is used, but you can 
put text or graphics data into Page 2 and switch displays instantly. Either 
page can be displayed as 40-column text, low-resolution graphics, or 
mixed-mode (four rows of text at the bottom of a graphics display). 

The 80-column text mode displays twice as much data as the 40-column 
mode-1920 bytes- but it cannot switch pages. The 80-column text display 
uses a combination page made up of text Page 1 in main memory plus 
another page in auxiliary memory located on the 80-column text card. This 
additional memory is not the same as text Page 2- in fact, it occupies the 
same address space as text Page 1, and there is a special soft switch that 
enables you to store data into it. (See the next section "Display Mode 
Switching.") The built-in firmware I/0 routines described in Chapter 3 take 
care of this extra addressing automatically; that is one reason to use those 
routines for all your normal text output. 

The high-resolution graphics mode also has two display pages, but each 
page is 8192 bytes long. In the 40-column text and low-resolution graphics 
modes each byte controls a display area seven dots wide by eight dots high. 
In high-resolution graphics mode each byte controls an area seven dots wide 
by one dot high. Thus, a high-resolution display requires eight times as 
much data storage, as shown in Table 2-9. 

The double-high-resolution graphics mode uses high-resolution Page 1 in 
both main and auxiliary memory. Each byte in those pages of memory 
controls a display area seven dots wide by one dot high. This gives you 560 
dots per line in black and white, and 140 dots per line in color. A 
double-high-resolution display requires twice the total memory as 
high-resolution graphics, and 16 times as much as a low-resolution display. 

The Video Display Generator 27 



28 

Table 2-9. Video Display Page Locations 

Display Lowest Address Highest Address 
Display Mode Page Hex Dec Hex Dec 

40-column text, $0400 1024 $07FF 2047 
low-resolution graphics 2* $0800 2048 $0BFF 3071 

80-column text $0400 1024 $07FF 2047 
2* $0800 2048 SOBFF 3071 

High-resolution 1 $2000 8192 $3FFF 16383 
graphics 2 $4000 16384 $5FFF 24575 

Double-high- 1 t $2000 8192 $3FFF 16383 
resolution graphics 2t $4000 16384 $5FFF 24575 

• This is not supported by firmware; for instructions on how to switch pages, refer to the 
next section "Display Mode Switching." 

t See the section "Double-High-Resolution Graphics," earlier in this chapter. 

Display Mode Switching 

You select the display mode that is appropriate for your application by 
reading or writing to a reserved memory location called a soft switch. In the 
Apple He, most soft switches have three memory locations reserved for 
them: one for turning the switch on, one for turning it off, and one for 
reading the current state of the switch. 

Table 2-10 shows the reserved locations for the soft switches that control 
the display modes. For example, to switch from mixed-mode to full-screen 
graphics in an assembly-language program, you could use the instruction 

STA SC852 

To do this in a BASIC program, you could use the instruction 

POKE 49234,8 

Some of the soft switches in Table 2-10 must be read, some must be written 
to, and for some you can use either action. When writing to a soft switch, it 
doesn't matter what value you write; the action occurs when you address 
the location, and the value is ignored. 

Chapter 2: Built-in [/0 Oe1ires 

-
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 
II 

II 
II 



I Table 2-10. Display Soft Switches 

I 
Note: W means write anything to the location, R means read the location, R/W 
means read or write, and R7 means read the location and then check bit 7. 

Name Action Hex Function 

I ALTGHAR w $COOE Off: display text using primary character set 
ALTGHAR w $GOOF On: display text using alternate character set 
RDALTGHAR R7 $COlE Read ALTGHAR switch (1 =on) 

I 80GOL w $COOG Off: display 40 columns 
80GOL w $GOOD On: display 80 columns 
RD80GOL R7 $GOlF Read BOGOL switch (1 = on) 

I 80S TORE w $GOOO Off: cause PAGE2 on to select auxiliary RAM 
80S TORE w SGOOl On: allow PAGE2 to switch main RAM areas 

I 
RD80STORE R7 SC018 Read BOSTORE switch (1 =on) 

PAGE2 R/ W SG054 Off: select Page 1 
PAGE2 R/W SC055 On: select Page 2 or, if 80S TORE on, Page 1 in 

I auxiliary memory 
RDPAGE2 R7 SCOlC Read PAGE2 switch (1 =on) 

I 
TEXT R/W SC050 Off: display graphics or, if MIXED on, mixed 
TEXT R/W SC051 On: display text 
RDTEXT R7 SCOlA Read TEXT switch (1 =on) 

I 
MIXED R/W SC052 Off: display only text or only graphics 
MIXED R/ W $C053 On: if TEXT off, display text and graphics 
RDMIXED R7 $C01B Read MlXED switch (1 =on) 

I HIRES R/ W $C056 Off: if TEXT off, display low-resolution graphics 
HIRES R/W SG057 On: if TEXT off, display high-resolution or, if 

DHIRES on, double-high-resolution graphics 

I RDHIRES R7 SCOlD Read HIRES switch (1 =on) 

IOU DIS w SC07E On: disable IOU access for addresses $C058 to 
$G05F; enable access to DHIRES switch • 

I IOU DIS w $G07F Off: enable IOU access for addresses SG058 to 
$G05F; disable access to DHIRES switch • 

RDIOUDIS R7 SG07E Read IOUDIS switch (1 =off) t 

I DHIRES R/W SG05E On: if IOU DIS on, turn on double-high-res. 
DHIRES R/W SG05F Off: if IOU DIS on, turn off double-high-res. 
RDDHIRES R7 $G07F Read DHIRES switch (1 =on) t 

I • The firmware normally leaves IOU DIS on. See also t. 

tReading or writing any address in the range $C070-$C07F also triggers the paddle timer 
and resets VB LINT (Chapter 7). 

The Video Display Generator 29 



For a full description of the way the 
Apple lie handles its display memory, refer 
to the section "Display Memory 
Addressing" in Chapter 7. 

30 

By the Way: You may not need to deal with these functions by reading 
and writing directly to the memory locations in Table 2-10. Many of the 
functions shown here are selected automatically if you use the display 
routines in the various high-level languages on the Apple lie. 

Any time you read a soft switch, you get a byte of data. However, the only 
information the byte contains is the state of the switch, and this occupies 
only one bit-bit 7, the high-order bit. The other bits in the byte are 
unpredictable. If you are programming in machine language, the switch 
setting is the sign bit; as soon as you read the byte, you can do a Branch 
Plus if the switch is off, or Branch Minus if the switch if on. 

If you read a soft switch from a BASIC program, you get a value between 0 
and 255. Bit 7 has a value of 128, so if the switch is on, the value will be 
equal to or greater than 128; if the switch is off, the value will be less 
than 128. 

Addressing Display Pages Directly 

Before you decide to use the display pages directly, consider the 
alternatives. Most high-level languages enable you to •.vrite statements that 
control the text and graphics displays. Similarly, if you are programming in 
assembly language, you may be able to use the display features of the 
built-in 1/0 firmware. You should store directly into display memory only if 
the existing programs can't meet your requirements. 

The display memory maps are shown in Figures 2-5, 2-6, 2-7, 2-8, and 2-9. 
All of the different display modes use the same basic addressing scheme: 
characters or graphics bytes are stored as rows of 40 contiguous bytes, but 
the rows themselves are not stored at locations corresponding to their 
locations on the display. Instead, the display address is transformed so that 
three rows that are eight rows apart on the display are grouped together and 
stored in the first 120 locations of each block of 128 bytes ($80 
hexadecimal). By folding the display data into memory this way, the 
Apple lie, like the Apple II, stores all960 characters of displayed text within 
lK bytes of memory. 

Chapter 2: Built-in IjO DeYices 

II 
II 
II 
II 

• 
II 
II 
II 

II 

II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

The high-resolution graphics display is stored in much the same way as 
text, but there are eight times as many bytes to store, because eight rows of 
dots occupy the same space on the display as one row of characters. The 
subset consisting of all the first rows from the groups of eight is stored in 
the first 1024 bytes of the high-resolution display page. The subset 
consisting of all the second rows from the groups of eight is stored in the 
second 1024 bytes, and so on for a total of 8 times 1024, or 8192 bytes. In 
other words, each block of 1024 bytes in the high-resolution display page 
contains one row of dots out of every group of eight rows. The individual 
rows are stored in sets of three 40-byte rows, the same way as the text 
display. 

All of the display modes except 80-column mode and double-high-resolution 
graphics mode can use either of two display pages. The display maps show 
addresses for each mode's Page 1 only. To obtain addresses for text or 
low-resolution graphics Page 2, add 1024 ($400); to obtain addresses for 
high-resolution Page 2, add 8192 (52000). 

The 80-column display and double-high-resolution graphics mode work a 
little differently. Half of the data is stored in the normal text Page-l 
memory, and the other half is stored in memory on the 80-column text card 
using the same addresses. The display circuitry fetches bytes from these 
two memory areas simultaneously and displays them sequentially: first the 
byte from the 80-column text card memory, then the byte from the main 
memory. The main memory stores the characters in the odd columns of the 
display, and the 80-column text card memory stores the characters in the 
even columns. 

For more details about the way the displays To store display data on the 80-column text card, first turn on the 80STORE 
are generated, see Chapter 7. soft switch by writing to location 49153 (hexadecimal $COOl or 

complementary -16383). With 80STORE on, the page-select switch, PAGE2, 
selects between the portion of the 80-column display stored in Page I of 
main memory and the portion stored in the 80-column text card memory. To 
select the 80-column text card, turn the PAGE2 soft switch on by reading or 
writing at location 49237. 

The Video Display Generator 31 



Figure 2-5. Map of 40-Column Text Display 

Row 

0 $400 1024 
1 $480 1152 
2 $500 1280 
3 $580 1408 
4 $600 1536 
5 $680 1664 
6 $700 1792 
7 $780 1920 
8 $428 1064 
9 S4A8 1192 

10 $528 1320 
11 $5A8 1448 
12 $628 1576 
13 $6A8 1704 
14 S728 1832 
15 $7A8 1960 
16 $450 1104 
17 $400 1232 
18 S550 1360 
19 $500 1488 

20 $650 1616 
21 $600 1744 
22 $750 1872 
23 S700 2000 

32 Chapter 2: Built-in 1/0 Devices 

I 
II 
II 
II 
II 
II 
II 
II 

II 
II 

II 
II 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 2-6. Map of 80-Column Text Display 

Main Memory I 
$00 $01 $02 $03 $04 $05 $06 I 

Row ._ 0 ,.- 1 ,.- 2 ,.- 3 - 4 ,.- 5 r- 6 ,.- ,\ 

0 $400 1024 ' 1 $480 1152 

2 $500 1280 

3 $580 1408 

4 $600 1536 

5 $680 1664 

6 $700 1792 

7 $780 1920 

8 $428 1064 

9 $4A8 1192 

10 $528 1320 

11 $5A8 1448 

12 $628 1576 

13 $6A8 1704 

14 $728 1832 

15 $7A8 1960 

16 $450 1104 

17 $400 1232 l 
18 $550 1360 

19 $500 1488 -20 $650 1616 

21 $600 1744 

22 $750 1872 

23 $700 2000 
~~ ~ ~ ~ ~ ~ ~ $01 $02 $03 $04 $05 $06 $07 

12 3 4 56 7 
Auxiliary Memory 1 

The Video Display Generator 

\ $20 $21 $22 $23 $24 $25 $26 $27 J 
r- 32.-- 33.-- 34_ 35_ 36- 37r- 38,.- 39 

\ 

f 

J 
I 

I 
\ 

\ ~ ~ ~ ~ ~ ~ ~ ~ 
$20 $21 522 $23 $24 $25 $26 $27 
32 33 34 35 36 37 38 39 

33 



Figure 2-7. Map of Low-Resolution Graphics Display II 

Row 

8o~8388~~~~5g§~~s ~ ~~ ~ ~~~~ ~~~ s ~ ~~ ~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

o-N~~~~~~~8 =~~~~~~~~~~~~~~~~~~g~~~~~~~~~ 
II 

0 $400 1024 
2 $480 1152 
4 $500 1280 
6 S580 1408 
8 $600 1536 

10 $680 1664 
12 $700 1792 
14 $780 1920 
16 $428 1064 
18 $4A8 1192 II 
20 S528 1320 
22 $5A8 1448 
24 $628 1576 II 
26 $6A8 1704 
28 $728 1832 II 
30 S7A8 1960 
32 $450 1104 
34 $400 1232 II 
36 $550 1360 
38 $500 1488 

40 $650 1616 
II 

42 $6[)() 1744 
44 $750 1872 II 
46 $700 2000 

II 

34 Chapter 2: Built-in 1/0 Devices 



I Figure 2-8. Map of High-Resolution Graphics Display 

I 
I 
I 
I 

I 

I 
I 

I 
I 
I 

I 
I 
I 
I 

Row 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

16 

17 
18 

19 

20 

21 
22 

23 

52000 8192 

S2080 8320 

$2100 8448 
$2180 8576 

$2200 8704 

$2280 8832 

$2300 8960 

$2380 9088 

$2028 8232 

$20A8 8360 

$2128 8488 

$21A8 8616 
$2228 8744 

$22A8 8872 

$2328 9000 

$23A8 9128 

$2050 8272 

$20DO 8400 
$2150 8528 

$2100 8656 

$2250 8784 

$2200 8912 
$2350 9040 

S23DO 9168 

~-
\ I I 

1\ I 
\ I 
\ I \ 

I 
'\ I \ 
\ I \ 
1 I 

The Video Display Generator 

........ .._.._ ---.... 
I I j + 0 +$0000 

I I I I +1024 +$0400 

I I I I +2048 +$0800 

I I I I +3072 +$0COO 

I I I I +4096 +$1000 

I I I I +5120 +$1400 

I I I I +6144 +$1800 

l I 1 +7168 +SICOO 

35 



Figure 2-9. Map of Double-High-Resolution Graphics Display 

Main Memory I --- --
$00 $01 $02 $03 $04 $05 $06 l \ 

Row 1- 0 r- 1 ,...... 2 ,...... 3 r- 4 ,...... 5 r- 6 r-t\ 

0 $2000 8192 ' 1 $2080 8320 

2 $2100 8448 I 
3 $2180 8576 

4 $2200 8704 

5 $2280 8832 

6 $2300 8960 

7 $2380 9088 

8 $2028 8232 

9 $20A8 8360 

~ 10 $2128 8488 -
11 $21A8 8616 

--\ I 12 $2228 8744 I I 
13 $22A8 8872 

14 $2328 9000 
15 $23A8 9128 

16 $2050 8272 

17 $2000 8400 

18 $2150 8528 

19 $21[)() 8656 --
20 $2250 8784 I I 21 $2200 8912 

I I 22 $2350 9040 

23 $2300 9168 

1 I I ~ ~ sol 102-103-104-105-so6101 
12 3 4 5 6 7 -- -- _\ Auxiliary Memory 1 

36 Chapter 2: Built-in I/0 DeYices 

$20 $21 $22 $23 $24 $25 $26 SZ7J 
r:- 32= 33r-- 34= 35r- 36, 37,...... 38,...... 39 

-....... ._ 
-~ 

I I I + 0 +$0000 
1-

I I I I +1024 +$0400 I-

I I I I 
1-

+2048 +$0800 r-

I I I I r-
+3072 +$0COO 

-I-

I I I I +4096 +$1000 -1-

I I I I 
-~ 

+5120 +$1400 - 1-

I I I I 
-I-

+6144 +$1800 
-1--

l l l +7168 +$!COO -t::: 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Important! 

Electrical specifications of the speaker 
circuit appear in Chapter 7. 

Secondary Inputs and Outputs 

In addition to the primary I/0 devices- the keyboard and display-there 
are several secondary input and output devices in the Apple Ile. These 
devices are 

o the speaker (output) 
o cassette input and output 
o annunciator outputs 
o strobe output 
o switch inputs 
o analog (hand control) inputs. 

These devices are similar in operation to the soft switches described in the 
previous section: you control them by reading or writing to dedicated 
memory locations. Action takes place any time your program reads or 
writes to one of these locations; information written is ignored. 

Some of these devices toggle- change state-each time they are 
accessed. If you write using an indexed store operation, the Apple lie's 
microprocessor activates the address bus twice during successive clock 
cycles, causing a device that toggles each time it is addressed to end up 
back in its original state. For this reason, you should read, rather than 
write, to such devices. 

The Speaker 

The Apple Ile has a small speaker mounted toward the front of the bottom 
plate. The speaker is connected to a soft switch that toggles; it has two 
states, off and on, and it changes from one to the other each time it is 
accessed. (At low frequencies, less than 400Hz or so, the speaker clicks 
only on every other access.) 

If you switch the speaker once, it emits a click; to make longer sounds, you 
access the speaker repeatedly. You should always use a read operation to 
toggle the speaker. If you write to this soft switch, it switches twice in rapid 
succession. The resulting pulse is so short that the speaker doesn't have 
time to respond; it doesn't make a sound. 

Secondary Inputs and Outputs 37 



BELLI is described in Appendix B. 

Detailed electrical specifications for the 
cassette input and output are given in 
Chapter 7. 

WRITE is described in Appendix B. 

38 

The soft switch for the speaker uses memory location 49200 (hexadecimal 
SC030). From Integer BASIC, use the complementary address -16336. You 
can make various tones and buzzes with the speaker by using combinations 
of timing loops in your program. There is also a routine in the built-in 
firmware to make a beep through the speaker. This routine is called BELL!. 

Cassette Input and Output 

There are two miniature phone jacks on the back panel of the Apple lie. You 
can use a pair of standard cables with miniature phone plugs to connect an 
ordinary cassette tape recorder to the Apple lie and save programs and data 
on audio cassettes. 

The phone jack marked with a picture of an arrow pointing towards a 
cassette is the output jack. It is connected to a toggled soft switch, like the 
speaker switch described above. The signal at the phone jack switches from 
zero to 25 millivolts or from 25 millivolts tD zero each time you access the 
soft switch. 

If you connect a cable from this jack to the microphone input of a cassette 
tape recorder and switch the recmder to record mode, the signal changes 
you produce by accessing this soft switch will be recorded on the tape. The 
cassette output switch uses memory location 49184 (hexadecimal SC020; 
complementary value -16352). Like the speaker, this output will toggle 
twice if you write to it, so you should only use read operations to control the 
cassette output. 

The standard method for writing computer data on audio tapes uses tones 
with two different pitches to represent the binary states zero and one. To 
store data, you convert the data into a stream of bits and convert the bits 
inlo the appropriate tones. To save you the trouble of actually programming 
the tones, and to ensure consistency among all Apple II cassette tapes, there 
is a built-in routine called WRITE for producing cassette data output. 

Chapter 2: Built-in 1/0 Oerices 

II 
II 
II 

II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 
I 

READ is described in Appendix B. 

Complete electrical specifications of these 
inputs and outputs are given in Chapter 7. 

The phone jack marked with a picture of an arrow corning from a cassette is 
the input jack. It accepts a cable from the cassette recorder's earphone jack. 
The signal from the cassette is 1 volt (peak-to-peak) audio. Each time the 
instantaneous value of this audio signal changes from positive to negative, 
or vice-versa, the state of the cassette input circuit changes from zero to one 
or vice-versa. You can read the state of this circuit at memory location 
49248 (hexadecimal $C060, or complementary decirnal-16288). 

When you read this location, you get a byte, but only the high-order bit 
(bit 7) is valid. If you are programming in machine language, this is the sign 
bit, so you can perform a Branch Plus or Branch Minus immediately after 
reading this byte. BASIC is too slow to keep up with the audio tones used for 
data recording on tape, but you don't need to write the program: there is a 
built-in routine called READ for reading data from a cassette. 

The Hand Control Connector Signals 

Several inputs and outputs are available on a 9-pin D-type miniature 
connector on the back of the Apple lie: three one-bit inputs, or switches, 
and four analog inputs. These signals are also available on the 16-pin IC 
connector on the main circuit board, along with four one-bit outputs and a 
data strobe. You can access all of these signals from your programs. 

Ordinarily, you connect a pair of hand controls to the 9-pin connector. The 
rotary controls use two analog inputs, and the push-buttons use two one-bit 
inputs. However, you can also use these inputs and outputs for many other 
jobs. For example, two analog inputs can be used with a two-axis joystick. 
Table 7-19 shows the connector pin numbers. 

Secondary Inputs and Outputs 39 



For electrical specifications of the 
annunciator outputs, refer to Chapter 7. 

40 

Annunciator Outputs 

The four one-bit outputs are called annunciators. Each annunciator can be 
used to tum a lamp, a relay, or some similar electronic device on and off. 

Each annunciator is controlled by a soft switch, and each switch uses a pair 
of memory locations. These memory locations are shown in Table 2-11. 
Any reference to the first location of a pair turns the corresponding 
annunciator off; a reference to the second location turns the annunciator 
on. There is no way to read the state of an annunciator. 

Table 2-11. Annunciator Memory Locations 

Annunciator 
No. Pin• State 

0 15 

14 

2 13 

3 12 

off 
on 

off 
on 

off 
on 

off 
on 

Address 
Decimal 

49240 -16296 
49241 -16295 

49242 -16294 
49243 -16293 

49244 -16292 
49245 -16291 

49246 -16290 
49247 -16289 

Hex 

$C058 
$C059 

SC05A 
SC05B 

$C05C 
$C05D 

$C05E 
$C05F 

• Pin numbers given are for the 16-pin IC connecror on the circuit board. 

Strobe Output 

The strobe output is normally at +5 volts, but it drops to zero for about half 
a microsecond any time its dedicated memory location is accessed. You can 
use this signal to control functions such as data latching in external devices. 
If you use this signal, remember that memory is addressed twice by a write; 
if you need only a single pulse, use a read operation to activate the strobe. 
The memory location for the strobe signal is 49216 (hexadecimal $C040 or 
complementary -16320). 

Chapter 2: Built-in 1/0 Devices 

II 

II 

II 

II 

II 

II 

II 
II 

II 

-
II 
II 

II 
II 



I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

A. Warning 

Switch Inputs 

The three one-bit inputs can be connected to the output of another 
electronic device or to a pushbutton. When you read a byte from one of 
these locations, only the high-order bit-bit 7-is valid information; the rest 
of the byte is undefined. From machine language, you can do a Branch Plus 
or Branch Minus on the state of bit 7. From BASIC, you read the switch with 
a PEEK and compare the value with 128. If the value is 128 or greater, the 
switch is on. 

The memory locations for these switches are 49249 through 49251 
(hexadecimal $C061 through $C063, or complementary -16287 through 
-16285), as shown in Table 2-12. Switch 0 and switch 1 are permanently 
connected to the@] and ~ keys on the keyboard; these are the ones 
normally connected to the buttons on the hand controls. Some software for 
the older models of the Apple II uses the third switch, switch 2, as a way of 
detecting the shift key. This technique requires a hardware modification 
known as the single-wire shift-key mod. 

You should be sure that you really need the shift-key mod before you go 
ahead and do it. It probably is not worth it unless you have a program that 
requires the shift-key mod that you cannot either replace or modify to work 
without it. 

If you make the shift-key modification and connect a joystick or other 
hand control that uses switch 2, you must be careful never to close the 
switch and press I SHIFT I at the same time: doing so produces a short 
circuit that causes the power supply to turn off. When this happens, any 
programs or data in the computer's internal memory are lost. 

Shift-Key Mod: To perform this modification on your Apple lie, all you 
have to do is solder across the broken diamond labelled X6 on the main 
circuit board. Remember to turn off the power before changing anything 
inside the Apple lie. Also remember that changes such as this are at your 
own risk and may void your warranty. 

Secondary Inputs and Outputs 41 



Analog Inputs II 
The four analog inputs are designed for use with 150K ohm variable 
resistors or potentiometers. The variable resistance is connected between II 
the +5V supply and each input, so that it makes up part of a timing circuit. 

Refer to the section "Game 1/0 Signals" in The circuit changes state when its time constant has elapsed, and the time II 
Chapter 7 for details. constant varies as the resistance varies. Your program can measure this 

time by counting in a loop until the circuit changes state, or times out. 

PREAD is described in Appendix B. 

Before a program can read the analog inputs, it must first reset the timing 
circuits. Accessing memory location 49264 (hexadecimal $C070 or 
complementary -16272) does this. As soon as you reset the timing circuits, 
the high bits of the bytes at locations 49252 through 49255 (hexadecimal 
$C064 through $C067 or complementary -16284 through -16281) are set to 1. 
If you PEEK at them from BASIC, the values will be 128 or greater. Within 
about 3 milliseconds, these bits will change back to 0-byte values less 
than 128-and remain there until you reset the timing circuits again. The 
exact time each of the four bits remains high is directly proportional to the 
resistance connected to the corresponding input. If these inputs are open
no resistances are connected- the corresponding bits may remain high 
indefinitely. 

To read the analog inputs from machine language, you can use a program 
loop that resets the timers and then increments a counter until the bit at the 
appropriate memory location changes to 0, or you can use the built-in 
routine called PREAD. High-level languages, such as BASIC, also include 
convenient means of reading the analog inputs: refer to your language 
manuals. 

Summary of Secondary 1/0 Locations 

Table 2-12 shows the memory locations for all of the built-in l/0 devices 
except the keyboard and display. As explained earlier, some soft s~itches 
should only be accessed by means of read operations; those switches are 
marked. 

Chapter 2: Built-in l/0 Devices 

- ~---

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



I Table 2-12. Secondary 1/0 Memory Locations 

I 
For connector identification and pin aumbers, refer to Tables 7-18 aad 7-19. 

Address 
Function Decimal Hex Access 

I Speaker 49200 -16336 $C030 Read only 

Cassette out 49184 -16352 $C020 Read only 

I 
Cassette in 49248 -16288 $C060 Read only 

Annunciator 0 on 49241 -16295 SC059 
Annunciator 0 off 49240 -16296 SC058 

I Annunciator 1 on 49243 -16293 SC05B 
Annunciator 1 off 49242 -16294 $C05A 

I Annunciator 2 on 49245 -16291 $C05D 
Annunciator 2 off 49244 -16292 $C05C 

Annunciator 3 on 49247 -16289 SC05F 

I Annunciator 3 off 49246 -16290 SC05E 

Strobe output 49216 -16320 $C040 Read only 

I Switch input 0 (@]) 49249 -16287 SC061 Read only 
Switch input 1 Crn) 49250 -16286 $C062 Read only 
Switch input 2 49251 -16285 $C063 Read only 

I Analog input reset 49264 -16272 SC070 

Analog input 0 49252 -16284 SC064 Read only 

I Analog input 1 49253 -16283 SC065 Read only 
Analog input 2 49254 -16282 $C066 Read only 
Analog input 3 49255 -16281 SC067 Read only 

I 

II 

I 

I 

Secondary Inputs and Outputs 43 



II 
II 

II 

II 
II 
II 
II 
II 

II 
II 

-
II 
II 
II 
II 

-
II 



1 --
I 

I 

I 
I 

I 
I 
I 

I 
I 

I 

I 
I 
I 

Chapter 3 Built-in I/ 0 Firmware 

45 



The Monitor, or System \1onitor, is a 
computer program that is used t~ operate 
the computer at the machine language 
level. 

Important! 

46 

Almost every program on the Apple lie takes input from the keyboard and 
sends output to the display. The Monitor and the Applesoft and Integer 
BASICs do this by means of standard 1/0 subroutines that are built into the 
Apple lie's firmware. Many application programs also use the standard 1/0 
subroutines, but Pascal programs do not; Pascal has its own 1/ 0 
subroutines. 

This chapter describes the features of these subroutines as they are used by 
the Monitor and by the BASIC interpreters, and tells you how to use the 
standard subroutines in your assembly-language programs. 

High-level languages already include convenient methods for handling 
most of the functions described in this chapter. You should not need to 
use the standard 1/0 subroutines in your programs unless you are 
programming in assembly language. 

Table 3-1. Monitor Firmware Routines 

Location Name Description 

SC305 BASICI:--l With 80-column dirmware active, displays solid, 
blinking cursor. Accepts character from keyboard. 

SC307 BASlliOUT Displays a character on the screen; used when the 
80-column firmware is active (Chapter 3). 

SFC9C CLREOL Clears t{) end of line from current cursor position. 

SFC9E CLEOLZ Clears to end of line using contents of Y register as 
cursor position. 

$FC42 CLREOP Clears to bott{)m of window. 

$F832 CLRSCR Clears the low-resolution screen. 

$F836 CLRTOP Clears top 40 lines of low-resolution screen. 

$FDED GOUT Calls output routine whose address is stored in CSW 
(normally COGTl. Chapter 3). 

$FDFO COUTl Displays a character on the screen (Chapter 3). 

$FD8E CROUT Generates a carriage return character. 

$FD8B CROUT! Clears to end of line, then generates a carriage return 
character. 

$FD6A GETLN Displays the prompt character; accepts a string of 
characters by means of RDKEY. 

$F819 HLINE Draws a horizontal line of blocks. 

$FC58 HOME Clears the window and puts cursor in upper-left 
corner of window. 

Chapter 3: Built-in 1/0 Firmware 

II 
II 

II 

II 

II 

II 
II 
II 
II 

II 

II 

-
II 
II 

II 

II 



II 
I 

I 

I 
I 

I 
I 
I 

I 
I 
I 

I 
I 

AUXMOVE and XFER are described in the 
section ·'Auxiliary-Memory Subroutines" in 
Chapter 4. 

Table 3-1 - Continued. Monitor Firmware Routines 

Location Name Description 

£FD1B KEYIN With 80-column firmware inactive, displays 
checkerboard cursor. Accepts character from 
keyboard. 

$F800 PLOT Plots a single low-resolution block on the screen. 

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device. 

$FDDA PRBYTE Prints a hexadecimal byte. 

$FF2D PRERR Sends ERR and Control-G to the output device. 

$FDE3 PRHEX Prints 4 bits as a hexadecimal number. 

$F941 PRNTAX Prints contents of A and X in hexadecimal. 

$FDOC RDKEY Displays blinking cursor; goes to standard input 
routine, normally KEYIN or BASI GIN. 

$F871 SCRN Reads color value of a low-resolution block. 

$F864 SETCOL Sets the color for plotting in low-resolution. 

$FC24 VTABZ Sets cursor vertical position. 

$F828 VLINE Draws a ve1ticalline of low-resolution blocks. 

The standard 1/0 subroutines listed in Table 3-1 are fully described in this 
chapter. The Apple lie firmware also contains many other subroutines that 
you might find useful. Those subroutines are described in Appendix B. Two 
of the built-in subroutines, A UXMOVE and XFER, can help you use the 
optional auxiliary memory. 

Using the 1/0 Subroutines 

Before you use the standard 1/0 subroutines, you should understand a little 
about the way they are used. The Apple lie firmware operates differently 
when an option such as an 80-column text card is used. This section 
describes general situations that affect the operation of the standard 1/0 
subroutines. Specific instances are described in the sections devoted to the 
indjvidual subroutines. 

Using the 1/0 Subroutines 47 



Original lie 

The primary and alternate character sets 
are described in Chapter 2 in the section 
"Text Character Sets." 

Apple II Compatibility II 
Compared to older Apple II models, the Apple IIe has some additional 
keyboard and display features. To run programs that were written for the II 
older models, you can make the Apple IIe resemble an Apple II Plus by 
turning those features off. The features that you can turn off and on to put II 
the Apple lie into and out of Apple II mode are listed in Table 3-2. 

Table 3-2. Apple II Mode -

Apple lie Apple II Mode 

Keyboard Uppercase and lowercase Uppercase only 

Display characters Inverse and normal only Flashing, inverse, and 
normal 

Display size 40-column; also 80·column 40·column only 
with optional card 

If the Apple lie does not have an 80-column text card installed in the 
auxiliary slot, it is almost in Apple II mode as soon as you turn it on or reset 
it. One exception is the keyboard, which is both uppercase and lowercase. 

On an original Apple lie, DOS 3.3 commands and statements in Integer 
BASIC and Applesoft must be typed in uppercase letters. To be 
compatible with older software, you should switch the Apple lie keyboard 
to uppercase by pressing I CAPS LOCK ~ 

Another feature that is different on the Apple lie as compared to the 
Apple II is the displayed character set. An Apple II displays only uppercase 
characters, but it displays them three ways: normal, inverse, and flashing. 
The Apple Ile can display uppercase characters all three ways, and it can 
display lowercase characters in the normal way. This combination is called 
the primary character set. When the Apple lle is first turned on or reset, 
it displays the primary character set. 

The Apple lie has another character set, called the alternate character 

-
II 

II 
II 

II 

II 

-
II 

set, that displays a full set of normal and inverse characters, with the II 
inverse uppercase characters between $40 and $5F replaced on enhanced 
Apple lie's with MouseText characters. 

Original lie I In the original Apple lie, uppercase inverse characters appear in place of II 
the MouseText characters of the enhanced Apple lie and the Apple lie. 

The AL TCHAR soft switch is described in 
Chapter 2. 

48 

You can switch character sets at any time by means of the ALTCHAR soft 
switch. 

Chapter 3: Built-in l/0 Firmware 

II 
II 

-



I 
I 

I 

I 
I 
I 
I 
I 
I 
I 

-
I 
I 
I 
I 

See the section "Switching 1/0 Memory" in 
Chapter 6 for details. 

Important! 

SLOTC3ROM is described in Chapter 6 in 
the section "Switching 1/0 Memory." 

For more information about interrupts, see 
Chapter6. 

The 80-Column Firmware 

There are a few features that are normally available only with the optional 
80-column display. These features are identified in Table 3-3b and 
Table 3-6. The firmware that supports these features is built into the 
Apple lie, but it is normally active only if an 80-column text card is installed 
in the auxiliary slot. 

When you turn on power or reset the Apple lie, the 80-column firmware is 
inactive and the Apple lie displays the primary character set, even if an 
80-column text card is installed. When you activate the 80-column 
firmware, it switches to the alternate character set. 

The built-in 80-column firmware is implemented as if it were installed in 
expansion slot 3. Programs written for an Apple II or Apple II Plus with an 
80-column text card installed in slot 3 usually will run properly on a 
Apple lie with an 80-column text card in the auxiliary slot. 

If the Apple lie has an 80-column text card and you want to use the 
80-column display, you can activate the built-in firmware from BASIC by 
typing 

PRI'3 

To activate the 80-column firmware from the Monitor, press[]], then 
1 coNTROL fill. Notice that this is the same procedure you use to activate a 
card in expansion slot 3. Any card installed in the auxiliary slot takes 
precedence over a card installed in expansion slot 3: 

Even though you activated the 80-column firmware by typing PR#3, you 
should never deactivate it by typing PR#O, because that just disconnects 
the firmware, leaving several soft switches still set for 80-column 
operation. Instead, type the sequence I Esc 1~. (See 
Table 3-6.) 

If there is no 80-column text card or other auxiliary memory card in your 
Apple lie, you can still activate the 80-column firmware and use it with a 
40-column display. First, set the SLOTC3ROM soft switch located at $COOA 
( 49162). Then type PR#3 to transfer control to the firmware. 

When the 80-column firmware is active without a card in the auxiliary slot, 
it does not work quite the same as it does with a card. The functions that 
clear the display (CLREOL, CLEOLZ, CLREOP, and HOME) work as if the 
firmware were inactive: they always clear to the current color. Also, 
interrupts are supported only with a card installed in the auxiliary slot. 

Using the 1/0 Subroutines 49 



£Warning 

50 

If you do not have an interface card in either the auxiliary slot or slot 3, • 
don't try to activate the firmware with PR#3. Typing PR#3 with no card 
installed transfers control to the empty connector, with unpredictable • 
results. 

Programs activate the 80-column firmware by transferring control to 
address $C300. If there is no card in the auxiliary slot, you must set the 
SLOTC3ROM soft switch first. To deactivate the 80-column firmware from a 
program, write a Control-U character via subroutine GOUT. 

The Old Monitor 

II 

• 
Apple II's and Apple II Pluses used a version of the System Monitor -
different from the one the Apple lie uses. It had the same standard 1/0 
subroutines, but a few of the features were different; for example, there 
were no arrow keys for cursor motion. If you start the Apple lie with a DOS II 
or BASIC disk that loads Integer BASIC into the bank-switched area in 
RAM, the old Monitor (sometimes called the Autos tart Monitor) is also 
loaded with it. When you type INT from Applesoft to activate Integer • 
BASIC, you also activate this copy of the old Monitor, which remains active 
until you either type FP to switch back to Applesoft, which uses the new 
Monitor in ROM, or type • 

PR#3 

to activate the 80-column firmware. Part of the firmware's initialization 
procedure checks to see which version of the Monitor is in RAM. If it finds 
the old Monitor, it replaces it with a copy of the new Monitor from ROM. 
After the firmware has copied the new Monitor into RAM, it remains there 
until the next time you start up the system. 

The Standard l/0 Links 

When you call one of the character 1/0 subroutines (GOUT and RDKEY), 
the first thing that happens is an indirect jump to an address stored in 
programmable memory. Memory locations used for transferring control to 
other subroutines are sometimes called vectors; in this manual, the 
locations used for transferring control to the 1/0 subroutines are called 1/ 0 
links. In a Apple lie running without a disk operating system, each 1/0 link 
is normally the address of the body of the subroutine (CO UTI or KEYIN). If 
a disk operating system is running, one or both of these links hold the 
addresses of the corresponding DOS or ProDOS 1/0 routines instead. (DOS 
and Pro DOS maintain their own links to the standard 1/0 subroutines.) 

Chapter 3: Built· in 1/0 Firmware 

-
II 

-• 
II 
II 
II 



I 

I 
I 
I 

I 
I 

I 
I 
I 
I 

I 
I 
I 

I 

For more information about the 1/0 links, 
see the section "Changing the Standard 1/0 
Links" in Chapter 6. 

By calling the I/0 subroutines that jump to the link addresses instead of 
calling the standard subroutines directly, you ensure that your program will 
work properly in conjunction with other software, such as DOS or a printer 
driver, that changes one or both of the I/0 links. 

For the purposes of this chapter, we shall assume that the I/0 links contain 
the addresses of the standard I/0 subroutines-GOUT! and KEYIN if the 
80-column firmware is off, and BASICOUT and BASICIN if it is on. 

Standard Output Features 

The standard output routine is named COUT, pronounced C-out, which 
stands for character out. COUT normally calls CO UTI, which sends one 
character to the display, advances the cursor position, and scrolls the 
display when necessary. COUTl restricts its use of the display to an active 
area called the text window, described below. 

COUT Output Subroutine 

Your program makes a subroutine call to COUT at memory location SFDED 
with a character in the accumulator. COUT then passes control via the 
output link CSW to the current output subroutine, normally CO UTI (or 
BASICOUT), which takes the character in the accumulator and writes it 
out. If the accumulator contains an uppercase or lowercase letter, a number, 
or a special character, COUTl displays it; if the accumulator contains a 
control character, CO UTI either performs one of the special functions 
described below or ignores the character. 

Each time you send a character to COUTl, it displays the character at the 
current cursor position, replacing whatever was there, and then advances 
the cursor position one space to the right. If the cursor position is already at 
the right-hand edge of the window, CO UTI moves it to the left-most position 
on the next line down. If this would move the cursor position past the end of 
the last line in the window, CO UTI scrolls the display up one line and sets 
the cursor position at the left end of the new bottom line. 

The cursor position is controlled by the values in memory locations 36 and 
37 (hexadecimal $24 and $25). These locations are named CH, for cursor 
horizontal, and CV, for cursor vertical. COUTl does not display a cursor, but 
the input routines described below do, and they use this cursor position. If 
some other routine displays a cursor, it will not necessarily put it in the 
cursor position used by COUTl. 

Standard Output Features 51 



Control Characters With COUT1 and BASICOUT • COUTl and BASICOUT do not display control characters. Instead, the I control characters listed in Tables 3-3a and 3-3b are used to initiate some 
action by the firmware. Other control characters are ignored. Most of the 
functions listed here can also be invoked from the keyboard, either by • typing the control character listed or by using the appropriate escape code, 
as described in the section "Escape Codes With KEYIN" later in this 
chapter. The stop-list function, described separately, can only be invoked II from the keyboard. 

Table 9-3a. Control Characters With 80-Column Firmware Off II 
Control ASCII Apple lie 
Character Name Name Action Taken by CO UTI • Control-G BEL bell Produces a 1000 Hz tone for 0.1 second. 

Control-H BS backspace Moves cursor position one space to the • left; from left edge of window, moves to 
right end of line above. 

Control-J LF line feed Moves cursor position down to next line in • window; scrolls if needed. 

Control-M CR return Moves cursor position to left end of next II line in window; scrolls if needed. 

Table 3-3b. Control Characters With 80-Column Firmware On II 
Control ASCII Apple lie -Character Name Name Action Taken by BASICOUT 

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second. 

II Control-H BS backspace Moves cursor position one space to the 
left; from left edge of window, moves to 
right end of line above. 

II Control-J LF line feed Moves cursor position down to next line in 
window; scrolls if needed. 

Control-Kt VT clear EOS Clears from cursor position to the end of • the screen. 

Control-Lt FF home Moves cursor position to upper-left corner II and clear of window and clears window. 

II 
5~ Chapter 3: Built· in 1/0 Firmware II 



I Table 3-3b- Continued. Control Characters With 80-Column Firmware On 

I 
Control ASCII Apple He 
Character Name Name Action Taken by BASICOUT 

Control-M CR return Moves cursor position to left end of next 

I line in window; scrolls if needed. 

Control-Nt so normal Sets display format normal. 

I Control-Ot SI inverse Sets display format inverse. 

Control-Qt DCl 40-column Sets display to 40-column. 

I Control-Rt DC2 80-column Sets display to 80-column. 

Control-s• DC3 stop-list Stops listing characters on the display 

I Control-U t NAK 

until another key is pressed. 

quit Deactivates 80-column video firmware. 

I 
Control-V t SYN scroll Scrolls the display down one line, leaving 

the cursor in the current position. 

Control-Wt ETB scroll-up Scrolls the display up one line, leaving the 

I 
cursor in the current position. 

Control-X CAN disable Disable MouseText character display; use 
Mouse Text inverse uppercase. 

I Control-Y t EM home Moves cursor position to upper-left comer 
of window (but doesn't clear). 

I Control-Z t SUB clear line Clears the line the cursor position is on. 

Control-[ ESC enable Map inverse uppercase characters to 
MouseText MouseText characters. 

I Control-\ t FS forward Moves cursor position one space to the 
space right; from right edge of window, moves it 

I 
to left end of line below. 

Control-It GS clearEOL Clears from the current cursor position to 
the end of the line (that is, to the right 

I edge of the window). 

Control-_ us up Moves cursor up a line, no scroll. 

I • Only works from the keyboard. 

t Doesn't work from the keyboard. 

Standard Output Features 53 



The Stop-List Feature 

When you are using any program that displays text via CO UTI (or 
BASICOUT), you can make it stop updating the display by holding down 
1 coNTROL I and pressing[§]. Whenever COUTl gets a carriage return from 
the program, it checks to see if you have pressed~ If you 
have, COUTl stops and waits for you to press another key. When you want 
COUTl to resume, press another key; COUTl will send the carriage return it 
got earlier to the display, then continue normally. The character code of the 
key you pressed to resume displaying is ignored unless you pressed 
~- CO UTI passes Control-C back to the program; if it is a 
BASIC program, this enables you to terminate the program while in stop-list 
mode. 

The Text Window 

After starting up the computer or after a reset, the flrmware uses the entire 
display. However, you can restrict video activity to any rectangular portion 
of the display you wish. The active portion of the display is called the 
text window. COUTl or BASICOUT puts characters into the window only; 
when it reaches the end of the last line in the window, it scrolls only the 
contents of the window. 

You can set the top, bottom, left side, and width of the text window by 
storing the appropriate values into four locations in memory. This enables 
your programs to control the placement of text in the display and to protect 
other portions of the screen from being written over by new text. 

Memory location 32 (hexadecimal $20) contains the number of the leftmost 
column in the text window. This number is normally 0, the number of the 
leftmost column in the display. In a 40-column display, the maximum value 
for this number is 39 (hexadecimal $27); in an 80-column display, the 
maximum value is 79 (hexadecimal $4F). 

Memory location 33 (hexadecimal $21) holds the width of the text window. 
For a 40-column display, it is normally 40 (hexadecimal $28); for an 
80-column display, it is normally 80 (hexadecimal $50). 

Original lie I COUTl truncates the column width to an even value on the original 
Apple lie. 

Chapter 3: Built-in 1/0 Firmware 

II 

• • 
II 
II 

-
II 

I 
II 
II 
II 
II 

II 



I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 

• Warning On an original Apple Ile, be careful not to let the sum of the window 
width and the leftmost position in the window exceed the width of the 
display you are using ( 40 or 80). If this happens, it is possible for COUT1 
to put characters into memory locations outside the display page, possibly 
into your current program or data space. 

Memory location 34 (hexadecimal $22) contains the number of the top line 
of the text window. This is normally 0, the topmost line in the display. Its 
maximum value is 23 (hexadecimal $17). 

Memory location 35 (hexadecimal $23) contains the number of the bottom 
line of the screen, plus 1. It is normally 24 (hexadecimal $18) for the bottom 
line of the display. Its minim urn value is 1. 

After you have changed the text window boundaries, nothing is affected 
until you send a character to the screen. 

•Warning Any time you change the boundaries of the text window, you should 
make sure that the current cursor position (stored at CH and CV) is inside 
the new window. If it is outside, it is possible for COUT1 to put characters 
into memory locations outside the display page, possibly destroying 
programs or data. 

Table 3-4 summarizes the memory locations and the possible values for the 
window parameters. 

Table 3-4. Text Window Memory Locations 

Window Location Minimum Normal Values Maximum Values 
Parameter Value 40 col. 80 col. 40 col. 80 col. 

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex 

Left Edge 32 $20 ()() $()() ()() soo 00 soo 39 $27 79 S4F 

Width 33 $21 ()() $()() 40 S28 80 $50 40 $28 80 $50 

Top Edge 34 $22 ()() $()() ()() soo 00 soo 23 $17 23 $17 

Bottom Edge 35 $23 01 $01 24 $18 24 518 24 $18 24 $18 

Standard Output Features 55 



56 

Inverse and Flashing Text 

Subroutine COUTl can display text in normal format, inverse format, or, 
with some restrictions, flashing format. The display format for any 
character in the display depends on two things: the character set being used 
at the moment, and the setting of the two high-order bits of the character's 
byte in the display memory. 

As it sends your text characters to the display, COUTl sets the high-order 
bits according to the value stored at memory location 50 (hexadecimal $32). 
If that value is 255 (hexadecimal SFF), COUTl sets the characters to 
display in normal format; if the value is 63 (hexadecimal $3F), COUTl sets 
the characters to inverse format. If the value is 127 (hexadecimal $7F) and 
if you have selected the primary character set, the characters will be 
displayed in flashing format. Note that flashing format is not available in 
the alternate character set. 

Table 9-5. Text Fonnat Control Values 
Note: These mask values apply only to the primary character set (see text). 

Mask Value 
Dec Hex Display Format 

255 $FF Normal, uppercase, and lowercase 

127 $7F Flashing, uppercase, and symbols 

63 $3F Inverse, uppercase, and lowercase 

To control the display format of the characters, routine COUTl uses the 
value at location 50 as a logical mask to force the setting of the two 
high-order bits of each character byte it puts into the display page. It does 
this by performing the logical AND function on the data byte and the mask 
byte. The result byte contains a 0 in any bit that was 0 in the mask_ 
BASI GOUT, used when the 80-column firmware is acti\'e, changes only the 
high-order bit of the data. 

Important! If the 80-column firmware is inactive and you store a mask value at 
location 50 with zeros in its low-order bits, COUTl will mask out those 
bits in your text. As a result, some characters will be transformed into 
other characters. You should set the mask to the values given in Table 3-5 
only. 

Chapter 3: Built· in l/0 Firmware 

-• • -
II 

II 
II 

• -
II 
II 

II 
II 
II 
II 

II 



I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 

Switching between character sets is 
described in the section "Display Mode 
Switching" in Chapter 2. 

If you set the mask value at location 50 to 127 (hexadecimal S7F), the 
high-order bit of each result byte will be 0, and the characters will be 
displayed either as lowercase or as flashing, depending on which character 
set you have selected. Refer to the tables of display character sets in 
Chapter 2. In the primary character set, the next-highest bit, bit 6, selects 
flashing format with uppercase characters. With the primary character set 
you can display lowercase characters in normal format and uppercase 
characters in normal, inverse, and flashing formats. In the alternate 
character set, bit 6 selects lowercase or special characters. With the 
alternate character set you can display uppercase and lowercase characters 
in normal and inverse formats. 

Original lie I On the original Apple lie, the MouseText characters are replaced by 
uppercase inverse characters. 

For more information on GETLN, see the 
section "Editing With GETLN," later in this 
chapter. 

Standard Input Features 

The Apple lie's firmware includes two different subroutines for reading 
from the keyboard. One subroutine is named RDKEY, which stands for 
read key. It calls the standard character input subroutine KEYIN (or 
BASICIN when the 80-column firmware is active) which accepts one 
character at a time from the keyboard. 

The other subroutine is named GETLN, which stands for get line. By 
making repeated calls to RDKEY, GETLN accepts a sequence of characters 
terminated with a carriage return. GETLN also provides on-screen editing 
features. 

RDKEY Input Subroutine 

A program gets a character from the keyboard by making a subroutine call 
to RDKEY at memory location $FDOC. RDKEY sets the character at the 
cursor position to flash, then passes control via the input link KSW to the 
current input subroutine, which is normally KEYIN or BASICIN. 

RDKEY displays a cursor at the current cursor position, which is 
immediately to the right of whatever character you last sent to the display 
(normally by using the GOUT routine, described earlier). The cursor 
displayed by RDKEY is a flashing version of whatever character happens to 
be at that position on the screen. It is usually a space, so the cursor appears 
as a blinking rectangle. 

Standard Input Features 57 



Escape mode is described in the next 
section, "Escape Codes." 

58 

KEVIN Input Subroutine 

KEYlN is the standard input subroutine when the 80-column firmware is 
inactive; BASICIN is used when the 80-column firmware is active. When 
called, the subroutine waits until the user presses a key, then returns with 
the key code in the accumulator. 

If the 80-column firmware is inactive, KEYIN displays a cursor by 
alternately storing a checkerboard block in the cursor location, then storing 
the original character, then the checkerboard again. If the firmware is 
active, BASICIN displays a steady inverse space (rectangle), unless you are 
in escape mode, when it displays a plus sign (+)in inverse format. 

KEYIN also generates a random number. While it is waiting for the user to 
press a key, KEYIN repeatedly increments the 16-bit number in memory 
locations 78 and 79 (hexadecimal $4E and $4F). This number keeps 
increasing from 0 to 65535, then starts over again at 0. The value of this 
number changes so rapidly that there is no way to predict what it will be 
after a key is pressed. A program that reads from the keyboard can use this 
value as a random number or as a seed for a random number routine. 

When the user presses a key, KEYlN accepts the character, stops displaying 
the cursor, and returns to the calling program with the character in the 
accumulator. 

Escape Codes 

KEYIN has special functions that you invoke by typing escape codes on the 
keyboard. An escape code is obtained by pressing I ESC I, releasing it, and 
then pressing some other key. See Table 3-6; the notation in the table means 
press I Esc I, release it, then press the key that follows. 

Table 3-6 includes three sets of cursor-control keys. The first set consists of 
I Esc I followed by A, B, C, or D. The letter keys can be either uppercase or 
lowercase. These keys are the standard cursor-motion keys on older 
Apple II models; they are present on the Apple lie primarily for 
compatibility with programs written for old machines. 

Cursor Motion in Escape Mode 

The second and third set of cursor-control keys are listed together because 
they activate escape mode. In escape mode, you can keep using the 
cursor-motion keys without pressing 1 ESC 1 again. This enables you to 
perform repeated cursor moves by holding down the appropriate key. 

Chapter 3: Built-in I/0 Firmware 

• • 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I Table 3-6. Escape Codes 

Escape Code 

I IEsci[ID 

I I Esc 10 or[!] 

I Esc I [[] or [I] 

I I Esc I@] or[£) 

I ESC I[[) or@] 

I I ESC I [I] or~ 

I Esc I [I] or [I) 

I I Esc I [IJ or [I] or I ESC I[!] 

I Esc I QJ or ITJ or I Esc I G 

I I Esc I[]] or [I] or I Esc I G 

I Esc I [0 or [!ij] or I Esc I [IJ 

I IEsclm 

I 
I ESC )[[) 

)ESC)~ 

) ESC)~ 

l Ese)~ 

When the 80-column firmware is active, you can tell when BASICIN is in 
escape mode: it displays a plus sign in inverse format as the cursor. You 
leave escape mode by typing any key other than a cursor-motion key. 

The escape codes with the directional arrow keys are the standard 
cursor-motion keys on the Apple lie. The escape codes with the I, J, K, and 
M keys are the standard cursor-motion keys on the Apple II Plus, and are 
present on the Apple lie for compatibility with the Apple II Plus. On the 
Apple lie, the escape codes with the I, J, K, and M keys function with either 
uppercase or lowercase letters. 

Function 

Clears window and homes cursor (places it in upper-left corner of screen), then exits from 
escape mode. 

Moves cursor right one line; exits from escape mode. 

Moves cursor left one line; exits from escape mode. 

Moves cursor down one line; exits from escape mode. 

Moves cursor up one line; exits from escape mode. 

Clears to end of line; exits from escape mode. 

Clears to bottom of window; exits from escape mode. 

Moves the cursor up one line; remains in escape mode. See text. 

Moves the cursor left one space; remains in escape mode. See text. 

Moves the cursor right one space; remains in escape mode. See text. 

Moves the cursor down one line; remains in escape mode. See text. 

If 80-colurnn firmware is active, switches to 40-colurnn mode; sets links to BASICIN and 
BASICOUT; restores normal window size; exits from escape mode. 

If 80-colurnn firmware is active, switches to 80-colurnn mode; sets links to BASICIN and 
BASICOUT; restores normal window size; exits from escape mode. 

Disables control characters; only carriage return, line feed, BELL, and backspace have an 
effect when printed. 

Reactivates control characters. 

If 80-colurnn firmware is active, deactivates 80-colurnn firmware; sets links to KEYIN and 
COUTl; restores normal window size; exits from escape mode. 

Standard Input Features 59 



60 

GETLN Input Subroutine 

Programs often need strings of characters as input. While it is possible to 
call RDKEY repeatedly to get several characters from the keyboard, there is 
a more powerful subroutine you can use. This routine is named GETLN, 
which stands for get line, and starts at location $FD6A. Using repeated 
calls to RDKEY, GETLN accepts characters from the standard input 
subroutine- usually KEYJN-and puts them into the input buffer located 
in the memory page from $200 to $2FF. GETLN also provides the user with 
on-screen editing and control features, described in the next section 
"Editing With GETLN.n 

The first thing GETLN does when you call it is display a prompting 
character, called simply a prompt. The prompt indicates to the user that 
the program is waiting for input. Different programs use different prompt 
characters, helping to remind the user which program is requesting the 
input. For example, an INPUT statement in a BASIC program displays a 
question mark (?)as a prompt. The prompt characters used by the 
different programs on the Apple lie are shown in Table 3-7. 

GETLN uses the character stored at memory location 51 (hexadecimal $33) 
as the prompt character. ln an assembly-language program, you can change 
the prompt to any character you wish. ln BASIC, changing the prompt 
character has no effect, because both BASIC interpreters and the Monitor 
restore it each time they request input from the user. 

Table 3-7. Prompt Characters 

Prompt Character 

? 

> 

Program Requesting Input 

User's BASIC program (INPUT statement) 

Applesoft BASIC (Appendix D) 

Integer BASIC (Appendix D) 

Firmware Monitor (Chapter 5) 

As you type the character string, GETLN sends each character to the 
standard output routine- normally COUTl-which displays it at the 
previous cursor position and puts the cursor at the next available position 
on the display, usually immediately to the right. As the cursor travels across 
the display, it indicates the position where the next character will be 
displayed. 

Chapter 3: Built-ln 1/0 Firmware 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 

II 
II 
II 
II 



I 
I 
I 
I 
I Important! 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

GETLN stores the characters in its buffer, starting at memory location $200 
and using the X register to index the buffer. GETLN continues to accept and 
display characters until you press I RETURN I; then it clears the remainder of 
the line the cursor is on, stores the carriage-return code in the buffer, sends 
the carriage-return code to the display, and returns to the calling program. 

The maximum line-length that GETLN can handle is 255 characters. If the 
user types more than this, G ETLN sends a backslash ( \ ) and a carriage 
return to the display, cancels the line it has accepted so far, and starts over. 
To warn the user that the line is getting full, GETLN sounds a bell (tone) at 
every keypress after the 248th. 

In the Apple ll and the Apple II Plus, the GETLN routine converts all 
input to uppercase. GETLN in the Apple lie does not do this, even in 
Apple II mode. To get uppercase input for BASIC, use I CAPS LOCK 1. 

Editing With GETLN 

Subroutine GETLN provides the standard on-screen editing features used 
by the BASIC interpreters and the Monitor. For an introduction to editing 
with these features, refer to theApplesoft Tutorial. Any program that uses 
GETLN for reading the keyooard has these features. 

Cancel Line 

Any time you are typing a line, pressing I coNTROL fill causes GETLN to 
cancel the line. GETLN displays a backslash ( \ ) and issues a carriage 
return, then displays the prompt and waits for you to type a new line. 
GETLN takes the same action when you type more than 255 characters, as 
described earlier. 

Backspace 

When you press G, GETLN moves its buffer pointer back one space, 
effectively deleting the last character in its buffer. It also sends a backspace 
character to routine GOUT, which moves the display position and the cursor 
back one space. If you type another character now, it will replace the 
character you backspaced over, both on the display and in the line buffer. 
Each time you press G, it moves the cursor left and deletes another 
character, until you reach the beginning of the line. If you then press G 
one more time, you have cancelled the line, and GETLN issues a carriage 
return and displays the prompt. 

Standard Input Features 61 



Retype II 
EJ has a function complementary to the backspace function. When you -press EJ, GETLN picks up the character at the display position just as if it 
had been typed on the keyboard. You can use this procedure to pick up 
characters that you have just deleted by backspacing across them. You can 

II use the backspace and retype functions with the cursor-motion functions to 
edit data on the display. (See the earlier section "Cursor Motion in Escape 
Mode.") 

II 
Monitor Firmware Support II 
Table 3-8 summarizes the addresses and functions of the video display 

II support routines the Monitor provides. These routines are described in the 
subsections that follow. 

Table 3-8. Video Firmware Routines II 
Location Name Description 

II $C307 BASICOUT Displays a character on the screen when 
80-column firmware is active. 

$FC9C CLREOL Clears to end of line from current cursor II position. 

$FC9E CLEOLZ Clears to end of line using contents of Y register II as cursor position. 

$FC42 CLREOP Clears to bottom of window. 

$F832 CLRSCR Clears the low-resolution screen. II 
$F836 CLRTOP Clears top 40 lines of low-resolution screen. 

$FDED COUT Calls output routine whose address is stored in II 
CSW (normally COUTl, Chapter 3). 

$FDFO COUTl Displays a character on the screen (Chapter 3). II 
$FD8E CROUT Generates a carriage return character. 

$FD8B CROUT I Clears to end of line, then generates a carriage -return character. 

$F819 HLINE Draws a horizontal line of blocks. 

II 
II 

62 Chapter 3: Built-in 1/ 0 Firmware II 
--·------



I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

Table 3-8-Continued. Video Firmware Routines 

Location Name Description 

SFC58 HOME Clears the window and puts cursor in upper-left 
corner of window. 

$F800 PLOT Plots a single low-resolution block on the screen. 

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device 
whose address is in CSW. 

$FDDA PRBYTE Prints a hexadecimal byte. 

$FF2D PRERR Sends ERR and Control-G to the output device 
whose output routine address is in CSW. 

$FDE3 PRHEX Prints 4 bits as a hexadecimal number. 

$F941 PRNTAX Prints contents of A and X in hexadecimal. 

SF871 SCR Reads color value of a low-resolution block on 
the screen. 

SF864 SETCOL Sets the color for plotting in low-resolution. 

SFC24 VTABZ Sets cursor vertical position. (Setting CV at 
location $25 does not change vertical positon 
until a carriage return.) 

SF828 VLINE Draws a vertical line of low-resolution blocks. 

BASICOUT, $C307 

BASICOUT is essentially the same as COUTl-BASICOUT is used instead 
of COUTl when the 80-column finnware is active. BASICOUT displays the 
character in the accumulat()r on the display screen at the current cursor 
position and advances the cursor. It places the character using the setting of 
the inverse mask Oocation S32). BASICOUT handles control characters; see 
Table 3-3b. When it returns control to the calling program, all registers are 
intact. 

CLREOL, $FC9C 

CLREOL clears a text line from the cursor position to the right edge of the 
window. This routine destroys the contents of A andY. 

Monitor Firmware Support 63 



See the section "Control Characters With 
COUTl and BASICOUT," earlier in this 
chapter for more information on COUTl. 

64 

CLEOLZ, $FC9E 

CLEOLZ clears a text line to the right edge of the window, starting at the 
location given by base address BASL, which is indexed by the contents of 
theY register. This routine destroys the contents of A andY. 

CLREOP, $FC42 

CLREOP clears the text window from the cursor position to the bottom of 
the window. This routine destroys the contents of A andY. 

CLRSCR, $F832 

CLRSCR clears the low-resolution graphics display to black. If you call this 
routine while the video display is in text mode, it fills the screen with 
inverse-mode at-sign(@) characters. This routine destroys the contents 
of A andY. 

CLRTOP, $F836 

CLRTOP is the same as CLRSCR, except that it clears only the top 40 rows 
of the low-resolution display. 

COUT, $FDED 

COUT calls the current character output subroutine. (See the section 
"COUT Output Subroutine" earlier in this chapter.) The character to be sent 
to the output device should be in the accumulator. COUT calls the 
subroutine whose address is stored in CSW (locations $36 and $37), which 
is usually the standard character output subroutine CO UTI (or BASICOUT). 

COUT1, $FDFO 

CO UTI displays the character in the accumulator on the display screen at 
the current cursor position and advances the cursor. It places the character 
using the setting of the inverse mask (location $32). It handles these control 
characters: carriage return, line feed, backspace, and bell. When it returns 
control to the calling program, all registers are intact. 

CROUT, $FD8E 

CROUT sends a carriage return to the current output device. 

Chapter 3: Built-in ljO Firmware 

II 

II 

II 

II 
II 
II 



I 

I 
I 

I 

I 

I 

I 
I 
I 
I 
I 

I 

I 

CROUT1 , $FD8B 

CROUTl clears the screen from the current cursor position to the edge of 
the text window, then calls CROUT. 

HLINE, $F819 

HLINE draws a horizontal line of blocks of the color set by SETCOL on the 
low-resolution graphics display. Call HLINE with the vertical coordinate of 
the line in the accumulator, the leftmost horizontal coordinate in the 
Y register, and the rightmost horizontal coordinate in location $2C. HLINE 
returns with A andY scrambled and X intact. 

HOME, $FC58 

HOME clears the display and puts the cursor in the upper-left corner of the 
screen. 

PLOT, $F800 

PLOT puts a single block of the color value set by SETCOL on the 
low-resolution display screen. Call PLOT with the vertical coordinate of the 
line in the accumulator, and its horizontal position in theY register. PLOT 
returns with the accumulator scrambled, but X and Y intact. 

PRBL2, $F94A 

PRBL2 sends from 1 to 256 blanks to the standard output device. Upon 
entry, the X register should contain the number of blanks to send. If 
X = $00, then PRBLANK will send 256 blanks. 

PRBYTE,$FDDA 

PRBYTE sends the contents of the accumulator in hexadecimal to the 
current output device. The contents of the accumulator are scrambled. 

PRERR, $FF2D 

PRERR sends the word ERR , followed by a bell character, to the standard 
output device. On return, the accumulator is scrambled. 

Monitor Firmware Support 65 



PRHEX, $FDE3 II 
PRHEX prints the lower nibble of the byte in the accumulator as a single 

II hexadecimal digit. On return, the contents of the accumulator are 
scrambled. 

PRNTAX, $F941 II 
PRT AX prints the contents of the A and X registers as a four-digit 

II hexadecimal value. The accumulator contains the first byte printed, and 
the X register contains the second. On return, the contents of the 
accumulator are scrambled. 

II 
SCRN, $F871 

SCRN returns the color value of a single block on the low-resolution display. II Call it with the vertical position of the block in the accumulator and the 
horizontal position in theY register. The block's color is returned in the 

II accumulator. No other registers are changed. 

SETCOL, $F864 II SETCOL sets the color used for plotting in low-resolution graphics to the 
value passed in the acumulator. The colors and their values are listed in 

II Table2-6. 

VTABZ, $FC24 II VT ABZ sets the cursor vertical position. Unlike setting the position at 
location $25, change of cursor position doesn't wait until a carriage return 

II character has been sent. 

VLINE, $F828 II VLINE draws a vertical line of blocks of the color set by SETCOL on the 
low-resolution display. Call VLINE with the horizontal coordinate of the line 

II in theY register, the top vertical coordinate in the accumulator, and the 
bottom vertical coordinate in location $2D. VLINE returns with the 
accumulator scrambled. 

II 
II 

II 
66 Chapter 3: Built-in r;o Firmware 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1/0 Firmware Support 

Apple lie video firmware conforms to the I/0 firmware protocol of Apple II 
Pascall.l. However, it does not support windows other than the full 
80-by-24 window in 80-column mode, and the full40-by-24 window in 
40-column mode. The video protocol table is shown in Table 3-9. 

Table 3-9. Slot 3 Firmware Protocol Table 

Address Value Description 

$C30B $01 Generic signature byte of firmware cards 

$C30C $88 80-column card device signature 

SC30D $ii $C3ii is entry point of initialization routine (PI NIT). 

SC30E $rr SC3rr is entry point of read routine (PREAD). 

$C30F Sww $C3ww is entry point of write routine (PWRITE). 

$C310 $ss $C3ss is entry point of the status routine (PSTATUS). 

PINIT, $C300 

PINIT does the follo\ving: 

o Sets a full 80-column window. 
o Sets 80STORE ($COOl). 
o Sets 80COL ($GOOD). 
o Switches on AL TCHAR (SCOOF). 
o Clears the screen; places cursor in upper-left corner. 
o Displays the cursor. 

PREAD,$C30E 

PREAD reads a character from the keyboard and places it in the 
accumulator with the high bit cleared. It also puts a zero in the X register to 
indicate IORESULT = GOOD. 

1/0 Firmware Support 67 



68 

PWRITE, $C30F 

PWRITE should be called after placing a character in the accumulator with 
its high bit cleared. PWRITE does the following: 

o Turns the cursor off. 
o If the character in the accumulator is not a control character, turns the 

high bit on for normal display or off for inverse display, displays it at the 
current cursor position, and advances the cursor; if at the end of a line, 
does carriage return but not line feed. (See Table 3-10 for control 
character functions.) 

When PWRITE has completed this, it 

o turns the cursor back on (if it was not intentionally turned off) 
o puts a zero in the X register (IORESULT = GOOD) and returns to the 

calling program. 

Table 3-10. Pascal Video Control Functions 

Control- Hex Function Performed 

E ore $05 Turns cursor on (enables cursor display). 

For f $06 Turns cursor off (disables cursor display). 

Gorg $07 Sounds bell (beeps). 

Horh $08 Moves cursor left one column. If cursor was at beginning of 
line, moves it to end of previous line. 

J or j $0A Moves cursor down one row; scrolls if needed. 

Kork $08 Clears to end of screen. 

Lor I $0C Clears screen; moves cursor to upper-left of screen. 

Morm $0D Moves cursor to column 0. 

N orn $0E Displays subsequent characters in normal video. (Characters 
already on display are unaffected.) 

Chapter 3: Built· in 1/0 Firmware 

II 
II 

II 
II 
II 
II 
II 
II 
II 

II 
II 
II 

II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 3-1 0- Continued. Pascal Video Control Functions 

Control· Hex Function Performed 

Ooro $OF Displays subsequent characters in inverse video. 
(Characters already on display are unaffected.) 

Vorv $16 Scrolls screen up one line; clears bottom line. 

Worw $17 Scrolls screen down one line; clears top line. 

Yory $19 Moves cursor to upper-left (home) position on screen. 

Z or z $1A Clears entire line that cursor is on. 

lor\ $1C Moves cursor right one column; if at end of line, does 
Control-M. 

} or I $1D Clears to end of the line the cursor is on, including current 
cursor position; does not move cursor. 

or 6 $1E GOTOxy: initiates a GOTOxy sequence; interprets the next 
two characters as x+32 and y+32, respectively. 

$1F If not at top of screen, moves cursor up one line. 

PSTATUS, $C31 0 

A program that calls PST A TUS must first put a request code in the 
accumulator: either a 0, meaning "Ready for output?" or a 1, meaning "Is 
there any input?" PSTATUS returns with the reply in the carry bit: 0 (No) 
or 1 (Yes). 

PSTATUS returns with a 0 in the X register (IORESUL T = GOOD), unless 
the request was not 0 or 1; then PSTATUS returns with a 3 in the X register 
(IORESUL T = ILLEGAL OPERATION). 

l/0 Firmware Support 69 



- -- - --------"-

II 
II 
II 
II 
II 
II 

-
II 
II 
II 

-
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Chapter 4 Memory Organization 

71 



Original lie 

For details of the built-in 1/0 features, refer 
to the descriptions in Chapters 2 and 3. 

For information about 1/0 operations with 
peripheral cards, refer to Chapter 6. 

72 

The Apple lie's microprocessor can address 65,536 (64K) memory locations. 
All of the programmable storage (RAM and ROM) and input and output 
devices are allocated locations in this 64K address space. Some functions 
share the same addresses-but not at the same time. 

For information about these shared address spaces, see the section 
"Bank-Switched Memory" in this chapter and the sections "Other Uses of 
1/0 Memory Space" and "Expansion ROM Space" in Chapter 6. 

The original version of the Apple Ile, as well as the Apple II Plus and 
Apple II, use the 6502 microprocessor. The 6502lacks ten instructions 
and two addressing modes found on the 65C02 of the enhanced Apple lie, 
but is otherwise functionally similar. For more information about the 
differences between the two processors, see Appendix A. In this manual, 
unless otherwise stated, the two processors are effectively the same. 

All input and output in the Apple lie is memory mapped. This means that 
all devices connected to the Apple Ile appear to be memory locations to the 
computer. In this chapter, the 1/0 memory spaces are described simply as 
blocks of memory. 

Programmers often refer to the Apple lie's memory in 256-byte blocks called 
pages. One reason for this is that a one-byte address counter or index 
register can specify one of 256 different locations. Thus, page 0 consists of 
memory locations from 0 to 255 (hexadecimal $00 to $FF), inclusive. Page 1 
consists of locations 256 to 511 (hexadecimal $0100 to $01 FF); note that the 
page number is the high-{)rder part of the hexadecimal address. Don't 
confuse this kind of page with the display buffers in the Apple Ile, which 
are sometimes referred to as Page 1 and Page 2. 

Main Memory Map 

The map of the main memory address space in Figure 4-1 shows the 
functions of the major areas of memory. For more details on the 1/0 space 
from 48K to 52K ($COOO through $CFFF), refer to Chapter 2 and Chapter 6; 
the bank-switched memory in the memory space from 52K to 64K ($0000 
through $FFFF) is described in the section "Bank-Switched Memory" later 
in this chapter. 

Chapter 4: Memory Organization 

II 

II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 
I 

Figure 4-1. System Memory Map 

FFFF 

ROM 

0000 
CFFF I cooo 
BFFF 

8000 
7FFF 

4000 
3FFF 

<XKXl 

Main Memory Map 

Bank-

Switched 

RAM 

1/0 I 

Main 

RAM 

73 



74 

RAM Memory Allocation 

As Figure 4-1 shows, the major portion of the Apple lie's memory space is 
allocated to programmable storage (RAM). Figure 4-2 shows the areas 
allocated to RAM. The main RAM memory extends from location 0 to 
location 49151 (hex SBFFF), and occupies pages 0 through 191 
(hexadecimal $BF). There is also RAM storage in the bank-switched space 
from 53248 to 65535 (hexadecimal $DOOO to $FFFF), described in the 
section "Bank-Switched Memory" later in this chapter, and auxiliary RAM, 
described in the section" Auxiliary Memory and Firmware" later in this 
chapter. 

Figure 4-2. RAM Allocation Map 

BFFF 

8000 
7FFF 

6000 
5FFF 

4000 
3FFF 

2000 
lFFF 

Page 2 ) 

Page l 

High-Resolution 
Graphics 
Display Buffers 

Page 2 } Text and Low-Resolution 
Page 1 Graphics Display Buffers 

~OOOO~ _ _J•••IIIIII ~--- Reserved Pages 

Chapter 4: Memory Organization 

II 
II 

II 

II 

II 

II 

II 

II 

II 
II 

II 
II 

II 
II 



I 

I 

I Important! 

I 

I 

I 
I 

I 

I 

I 
I 

I 

I 

I 

I 

Reserved Memory Pages 

Most of the Apple lie's RAM is available for storing your programs and data. 
However, a few RAM pages are reserved for the use of the Monitor firmware 
and the BASIC interpreters. The reserved pages are described in the 
following sections. 

The system does not prevent your using these pages, but if you do use 
them, you must be careful not to disturb the system data they contain, or 
you will cause the system to malfunction. 

Page Zero 

Several of the 65C02 microprocessor's addressing modes require the use of 
addresses in page zero, also called zero page. The Monitor, the BASIC 
interpreters, DOS 3.3, and ProDOS all make extensive use of page zero. 

To use indirect addressing in your assembly-language programs, you must 
store base addresses in page zero. At the same time, you must avoid 
interfering with the other programs that use page zero-the Monitor, the 
BASIC interpreters, and the disk operating systems. One way to avoid 
conflicts is to use only those page-zero locations not already used by other 
programs. Tables 4-1 through 4-5 show the locations in page zero used by 
the Monitor, Applesoft BASIC, Integer BASIC, DOS 3.3, and ProDOS. 

As you can see from the tables, page zero is pretty well used up, except for a 
few bytes here and there. It's hard to find more than one or two bytes that 
aren't used by either BASIC, ProOOS, the Monitor, or DOS. Rather than 
trying to squeeze your data into an unused corner, you may prefer a safer 
alternative: save the contents of part of page zero, use that part, then 
restore the previous contents before you pass control to another program. 

The 65C02 Stack 

The 65C02 microprocessor uses page 1 as the stack- the place where 
subroutine return addresses are stored, in last-in, first-out sequence. Many 
programs also use the stack for temporary storage of the registers (via push 
and pull operations). You can do the same, but you should use it sparingly. 
The stack pointer is eight bits long, so the stack can hold only 256 bytes of 
information at a time. When you store the 257th byte in the stack, the stack 
pointer repeats itself, or wraps around, so that the new byte replaces the 
first byte stored, which is now lost. This writing over old data is called stack 
overflow, and when it happens, the program continues to run normally until 
the lost information is needed, whereupon the program terminates 
catastrophically. 

RAM Memory Allocation 75 



For more information about links, see the 
section "Changing the Standard IjO Links" 
in Chapter 6. 

See Chapter 6 for information on the 
memory locations that are reserved for 
peripheral cards. 

For more information about the display 
buffers, see the section "Video Display 
Pages" in Chapter 2. 

76 

The Input Buffer 

The GETLN input routine, which is used by the Monitor and the BASIC 
interpreters, uses page 2 as its keyboard-input buffer. The size of this buffer 
sets the maximum size of input strings. (Note: Applesoft uses only the first 
237 bytes, although it permits you to type in 256 characters.) If you know 
that you won't be typing any long input strings, you can store temporary 
data at the upper end of page 2. 

Link-Address Storage 

The Monitor, Pro DOS, and DOS 3.3 all use the upper part of page 3 for link 
addresses or vectors. 

BASIC programs sometimes need short machine-language routines. These 
routines are usually stored in the lower part of page 3. 

The Display Buffers 

The primary text and low-resolution-graphics display buffer occupies 
memory pages 4 through 7 (locations 1024 through 2047, hexadecimal $0400 
through $07FF). This entire 1024-byte area is called text Page 1, and it is not 
usable for program and data storage. There are 64locations in this area that 
are not displayed on the screen; these locations are reserved for use by the 
peripheral cards. 

Text Page 2, the alternate text and low-resolution-graphics display buffer, 
occupies memory pages 8 through 11 (locations 2048 through 3071, 
hexadecimal $0800 through $0BFF). Most programs do not use Page 2 for 
displays, so they can use this area for program or data storage. 

The primary high-resolution-graphics display buffer, called high-resolution 
Page 1, occupies memory pages 32 through 63 (locations 8192 through 
16383, hexadecimal $2000 through $3FFF). If your program doesn't use 
high-resolution graphics, this area is usable for programs or data. 

High-resolution Page 2 occupies memory pages 64 through 95 (locations 
16384 through 24575, hexadecimal $4000 through $5FFF). Most programs 
use this area for program or data storage. 

The primary double-high-resolution-graphics display buffer, called 
double-high-resolution Page 1, occupies memory pages 32 through 63 
(locations 8192 through 16383, hexadecimal $2000 through 53FFF) in both 
main and auxiliary memory. If your program doesn't use high-resolution or 
double-high-resolution graphics, this area of main memory is usable for 
programs or data. 

Chapter 4: Memory Organization 

-
II 

--
II 
II 
II 
II 

II 
II 

-
II 

-
II 
II 
II 

• 



I 

I 

I 

I 

I 

I 
I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

Table 4-1. Monitor Zero-Page Use 

High Nibble 
of Address 

$()() 
$10 
$20 
$30 
$40 
$50 
$60 
$70 
$80 
$90 
$AO 
$80 
$CO 
$00 
$EO 
$FO 

Low Nibble of Address 
SO Sl S2 S3 S4 S5 S6 S7 $8 S9 SA SB SC SD SE SF 

•• 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • 
• • • • • • 

• Byte used in original Apple Ile Rmfs, now free. 

Table 4-2. Applesoft Zero-Page Use 

High Nibble 
of Address 

$()() 
$10 
$20 
$30 
S40 
S50 
$60 
$70 
S80 
$90 
SAO 
SBO 
$CO 
$00 
$EO 
$FO 

Low Nibble or Address 
SO Sl $2 SS $4 S5 $6 S7 $8 S9 SA SB SC SD SE SF 

• • • • • • • • • • • • 
• • • • • • • • • • • • • • 

• • • • • 
• • • • • • • 

• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • 

RA~ Memory Allocation 77 



IS 

Table 4-3. Integer BASIC Zero-Page Use 

High Nibble 
of Address 

soo 
SlO 
S20 
$30 
$40 
$50 
$60 
$70 
$80 
$90 
SAO 
SBO 
sco 
SDO 
SEO 
SFO 

Low Nibble of Address 
SO $1 S2 S3 $4 S5 $6 $7 S8 $9 SA SB SC SD SE SF 

• 

• • • • 
• • • • • • • • • • • 

• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • 

• • 

Table 4-4. DOS 3.3 Zero-Page Use 

High Nibble Low Nibble of Address 
of Address $0 $1 $2 $3 $4 55 56 S7 $8 S9 SA SB SC SD SE SF 

$00 
$10 
$20 • • • • • • • • 
$30 • • • • • • • 
$40 • • • • • • • • • • • • • 
$50 
$60 • • • • • 
$70 • 
$80 
S90 
SAO • 
$80 • 
$CO • • • • 
$00 • 
$EO 
$FO 

Chapter 4: Memory Organization 

II 

II 
II 

II 
II 

II 

II 
II 

II 
II 

II 
II 

II 
II 



I 

I 
I 

I 
I 

I 
I 
I 

I 

I 
I 

I 

I 

Table 4-5. ProDOS MLI and Disk-Driver Zero-Page Use 

High Nibble Low Nibble of Address 
of Address $0 Sl $2 $3 $4 $5 S6 $7 $8 $9 SA $8 SC $D SE SF 

• • 

• • • • • • 

$()() 

SlO 
520 
530 
$40 
$50 
$60 
$70 
$80 
$90 
SAO 
$80 
$CO 
SDO 
SEO 
SFO 

• • • • • • • • • • • • • • • 

Bank-Switched Memory 

The memory address space from 52K to 64K (hexadecimal $DOOO through 
$FFFF) is doubly allocated: it is used for both ROM and RAM. The 12K bytes 
of ROM (read-only memory) in this address space contain the Monitor and 
the Applesoft BASIC interpreter. Alternatively, there are 16K bytes of RAM 
in this space. The RAM is normally used for storing either the Integer 
BASIC interpreter or part of the Pascal Operating System (purchased 
separately). 

You may be wondering why this part of memory has such a split 
personality. Some of the reasons are historical: the Apple lie is able to run 
software written for the Apple II and Apple II Plus because it uses this part 
of memory in the same way they do. It is convenient to have the Applesoft 
interpreter in ROM, but the Apple lie, like an Apple II with a language card, 
is also able to use that address space for other things when Applesoft is not 
needed. 

Bank-Switched Memory 79 



.A Warning 

You may also be wondering how 16K bytes of RAM is mapped into only 12K -
bytes of address space. The usual answer is that it's done with mirrors, and 
that isn't a bad analogy: the 4K-byte address space from 52K to 56K • 
(hexadecimal $0000 through SOFFF) is used twice. • 

Switching different blocks of memory into the same address space is called 
bank switching. There are actually two examples of bank switching going -
on here: first, the entire address space from 52K to 64K ($0000 through 
$FFFF) is switched between ROM and RAM, and second, the address space 
from 52K to 56K ($0000 to $0FFF) is switched between two different II 
blocks of RAM. 

Figure 4·9. Bank·Switched Memory Map -

FFFF 

EOOO 
DFFF 
!XXX) 

ROM 

Setting Bank Switches 

RAM 

RAM RAM 

II 
You switch banks of memory in the same way you switch other functions in II 
the Apple lie: by using soft switches. Read operations to these soft switches 
do three things: select either RAM or ROM in this memory space; enable or II 
inhibit writing to the RAM (write-protect); and select the first or second 
4K-byte bank of RAM in the address space $0000 to $0FFF. 

Do not use these switches without careful planning. Careless switching 
between RAM and ROM is almost certain to have catastrophic effects on 
your program. 

Chapter 4: Memory Organization 

II 
II 

II 



I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

Table 4-6 shows the addresses of the soft switches for enabling all 
combinations of reading and writing in this memory space. All of the 
hexadecimal values of the addresses are of the form SC08x. Notice that 
several addresses perform the same function: this is because the functions 
are activated by single address bits. For example, any address of the form 
$C08x with a 1 in the low-order bit enables the RAM for writing. Similarly, 
bit 3 of the address selects which 4K block of RAM to use for the address 
space $DOOO-$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3 
is 1, the second bank is used. 

When RAM is not enabled for reading, the ROM in this address space is 
enabled. Even when RAM is not enabled for reading, it can still be written to 
if it is write-enabled. 

When you turn power on or reset the Apple lie, it initializes the bank 
switches for reading the ROM and writing the RAM, using the second bank 
of RAM. Note that this is different from the reset on the Apple II Plus, which 
didn't affect the bank-switched memory (the language card). On the 
Apple lie, you can't use the reset vector to return control to a program in 
bank-switched memory, as you could on the Apple II Plus. 

Reset With Integer BASIC: When you are using Integer BASIC on the 
Apple lie, reset works correctly, restarting BASIC with your program 
intact. This happens because the reset vector transfers control to DOS, 
and DOS resets the switches for the current version of BASIC. 

Bank·Switched Memory 81 



Table 4-6. Bank Select Switches II 
Note: R means read the location, W means write anything to the location, RjW 
means read or write, and R 7 means read the location and then check bit 7. II Name Action Hex Function 

R $0080 Read RAM; no write; use $])()()() bank 2. II RR $C081 Read ROM; write RAM; use$])()()() bank 2. 

R $C082 Read ROM; no write; use $0000 bank 2. II RR $C083 Read and write RAM; use $0000 bank 2. 

R $C088 Read RAM; no write; use $0000 bank 1. II RR $C089 Read ROM; write RAM; use $0000 bank 1. 

R $C08A Read ROM; no write; use $])()()() bank 1. II RR $C08B Read and write RAM; use $])()()() bank 1. 

ROBNK2 R7 $0011 Read whether $0000 bank 2 (1) or bank 1 (0). II ROLCRAM R7 $0012 Reading RAM (1) or ROM (0). 

ALTZP w $0008 Off: use main bank, page 0 and page 1. II ALTZP w $C009 On: use auxiliary bank, page 0 and page 1. 

ROALTZP R7 $0016 Read whether auxiliary (1) or main (0) bank. II 
Reading and Writing to RAM Banks: Note that you can't read one 

II RAM bank and write to the other; if you select either RAM bank for 
reading, you get that one for writing as well. 

Reading RAM and ROM: You can't read from ROM in part of the II bank-switched memory and read from RAM in the rest: specifically, you 
can't read the Monitor in ROM while reading bank-switched RAM. If you 
want to use the Monitor firmware with a program in bank-switched RAM, II copy the Monitor from ROM (locations $F800 through $FFCB) into 
bank-switched RAM. You can't do this from Pascal or ProDOS. 

II 
II 
II 
II 

" Chapter 4: Memory Organization 



I 
I AD 83 ce LDA 

AD 83 ce LDA 

I A9 De 
85 01 

LDA 
STA 

A9 FF LDA 
85 02 STA 

I 20 97 C9 JSR 

AD 8B ce LDA 

I 
20 97 C9 

AD 83 ce 

JSR 

LDA 
A9 80 LDA 

I E6 10 
20 58 C9 

INC 
JSR 

I 
AD 80 ce 
E6 10 
A9 01 

LDA 
INC 
LDA 

20 58 C9 JSR 

I AD 8B ce 
AD 8B ce 

LDA 
LDA 

E6 0E INC 

I E6 10 
A9 08 

INC 
LDA 

20 58 C9 JSR 

I 
I 

I 
I 

SC083 
SC083 
#$D0 
BEGIN 
"SFF 
END 
RAMTST 

SCB8B 
RAMTST 

sce88 
#$80 
TSTNUM 

To see how to use these switches, look at the following section of an 
assembly-language program: 

*SELECT 2ND 4K BANK & READ/WRITE 
*BY TWO CONSECUTIVE READS 
*SET UP ... 
• ... NEW ... 
• ... MA I 1'1 -MEMORY ... 
• ... PO I tiTERS ... 
• ... FOR 12K BANK 

*SELECT 1ST 4K BANK 
*USE ABOVE POINTERS 

*SELECT 1ST BANK & WRITE PROTECT 

WPTSINIT 

SCB8B *SELECT 2ND BANK & WRITE PROTECT 
TSTNUM 
#PAT12K 
WPTSINIT 

SCB8B 
$CB8B 
RWMODE 
TSTNUM 
#PAT4K 

*SELECT 1ST BANK & READ/WRITE 
*BY TWO CONSECUTIVE READS 
*FLAG RAM IN READ/WRITE 

WPTSINIT 

The LDA instruction, which performs a read operation to the specified 
memory location, is used for setting the soft switches. The unusual 
sequence of two consecutive LDA instructions performs the two 
consecutive reads that write-enable this area of RAM; in this case, the data 
that are read are not used. 

Reading Bank Switches 

You can read which language card bank is currently switched in by reading 
the soft switch at $COil. You can find out whether the language card or 
ROM is switched in by reading $C012. The only way that you can find out 
whether the language card RAM is write-enabled or not is by trying to write 
some data to the card's RAM space. 

Bank ·Switched Memory 83 



84 

Auxiliary Memory and Firmware 

By installing an optional card in the auxiliary slot, you can add more 
memory to the Apple lie. One such card is the Apple He 80-Column Text 
Card, which has 1K bytes of additional RAM for expanding the text display 
from 40 columns to 80 columns. 

Another optional card, the Apple lie Extended 80-Column Text Card, has 
64K of additional RAM. A 1K-byte area of this memory serves the same 
purpose as the memory on the 80-Column Text Card: expanding the text 
display to 80 columns. The other 63K bytes can be used as auxiliary 
program and data storage. If you use only 40-column displays, the entire 
64K bytes is available for programs and data . 

.&. Warning Do not attempt to use the auxiliary memory from a BASIC program. The 
BASIC interpreter uses several areas in main RAM, including the stack 
and the zero page. If you sv;ritch to auxiliary memory in these areas, the 
BASIC interpreter fails and you must reset the system and start over. 

As you can see by studying the memory map in Figure 4-4, the auxiliary 
memory is broken into two large sections and one small one. The largest 
section is switched into the memory address space from 512 to 49151 ($0200 
through $BFFF). This space includes the display buffer pages: as described 
in the section "Text Modes" in Chapter 2, space in auxiliary memory is used 
for one half of the 80-column text display. You can switch to the auxiliary 
memory for this entire memory space, or you can switch just the display 
pages: see the next section, "Memory Mode Switching." 

Soft Switches: If the only reason you are using auxiliary memory is for 
the 80-column display, note that you can store into the display page in 
auxiliary memory by using the 80STORE and PAGE2 soft switches 
described in the section "Display Mode Svtritching" in Chapter 2. 

The other large section of auxiliary memory is switched into the memory 
address space from 52K to 64K ($DOOO through $FFFF). This memory space 
and the switches that control it are described earlier in this chapter in the 
section "Bank-Switched Memory." If you use the auxiliary RAM in this 
space, the soft switches have the same effect on the auxiliary RAM that 
they do on the main RAM: the bank switching is independent of the 
auxiliary-RAM switching. 

Chapter 4: Memory Organization 

II 
II 
II 

• 
II 

-
II 
II 
II 

II 

-• 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

Figure 4-4. Memory Map With Auxiliary Memory 

FFFF 

ROM 

8000 
7FFF 

6000 
5FFF 

4000 
3FFF 

2000 
lFFF 

0000 

Main 
Bank· 

.-----f Switched 
RAM 

High·Resolution 
Graphics Display Buffers 

Main 
RAM 

Auxiliary 
Bank· 
Switched 

r-----f RAM 

t------1 Auxiliary 
RAM 

Bank Switches: Note that the soft switches for the bank-switched 
memory, described in the previous section, do not change when you 
switch to auxiliary RAM. In particular, if ROM is enabled in the 
bank-switched memory space before you switch to auxiliary memory, the 
ROM will still be enabled after you switch. Any time you switch the 
bank-switched section of auxiliary memory in and out, you must also 
make sure that the bank switches are set properly. 

When you switch in the auxiliary RAM in the bank-switched space, you also 
switch the first two pages, from 0 to 511 ($0000 through $01FF). This part 
of memory contains page zero, which is used for important data and base 
addresses, and page one, which is the 65C02 stack. The stack and zero page 
are switched this way so that system software running in the 

Auxiliary Memory and Firmware 85 



86 

bank-switched memory space can maintain its own stack and zero page 
while it manipulates the 48K address space (from $0200 to $BFFF) in either 
main memory or auxiliary memory. 

Memory Mode Switching 

Switching the 48K section of memory is performed by two soft switches: the 
switch named RAMRD selects main or auxiliary memory for reading, and 
the one named RAMWRT selects main or auxiliary memory for writing. As 
shown in Table 4-7, each switch has a pair of memory locations dedicated to 
it, one to select main memory, and the other to select auxiliary memory. 
Enabling the read and write functions independently makes it possible for a 
program whose instructions are being fetched from one memory space to 
store data into the other memory space. 

~Warning Do not use these switches without careful planning. Careless switching 
between main and auxiliary memories is almost certain to have 
catastrophic effects on the operation of the Apple lie. For example, if you 
switch to auxiliary memory with no card in the slot, the program that is 
running will stop and you will have to reset the Apple lie and start over. 

Writing to the soft switch at location $C003 turns RAMRD on and enables 
auxiliary memory for reading; writing to location $C002 turns RAMRD off 
and enables main memory for reading. Writing to the soft switch at location 
SC005 turns RAMWRT on and enables the auxiliary memory for writing; 
writing to location $C004 turns RAMWRT off and enables main memory for 
writing. By setting these switches independently, you can use any of the 
four combinations of reading and writing in main or auxiliary memory. 

Auxiliary memory corresponding to text Page 1 and high-resolution graphics 
Page 1 can be used as part of the address space from $0200 to $BFFF by 
using RAMRD and RAMWRT as described above. These areas in auxiliary 
RAM can also be controlled separately by using the switches described in 
the section "Display Mode Switching" in Chapter 2. Those switches are 
named 80STORE, PAGE2, and HIRES. 

AB shown in Table 4-7, the 80STORE switch functions as an enabling 
switch: with it on, the PAGE2 switch selects main memory or auxiliary 
memory. With the HIRES switch off, the memory space switched by PAGE2 
is the text Page 1, from $0400 to $07FF; with HIRES on, PAGE2 switches 
both text Page 1 and high-resolution graphics Page 1, from $2000 to S3FFF. 

If you are using both the auxiliary-RAM control switches and the 
auxiliary-display-page control switches, the display-page control switches 
take priority: if 80S TORE is off, RAMRD and RAMWRT work for the entire 

Chapter 4: Memory Organization 

• 
II 
II 

• 
I 
II 
II 

II 
II 
II 

-
II 
II 

• 
II 

II 
II 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

The next section," Auxiliary-Memory 
Subroutines," describes firmware that you 
can call to help you switch between main 
and auxiliary memory. 

memory space from $0200 to $BFFF, but if 80STORE is on, RAMRD and 
RAMWRT have no effect on the display page. Specifically, if 80S TORE is on 
and HIRES is off, PAGE2 controls text Page 1 regardless of the settings of 
RAMRD and RAMWRT. Likewise, if 80STORE and HIRES are both on, 
PAGE2 controls both text Page 1 and high-resolution graphics Page 1, again 
regardless of RAMRD and RAMWRT. 

A single soft switch named ALTZP (for alternate zero page) switches the 
bank-switched memory and the associated stack and zero page area 
between main and auxiliary memory. As shown in Table 4-7, writing to 
location $C009 turns AL TZP on and selects auxiliary-memory stack and 
zero page; writing to the soft switch at location $C008 turns AL TZP off and 
selects main-memory stack and zero page for both reading and writing. 

Table 4-7. Auxiliary-Memory Select Switches. 

Name Function Location Notes 
Hex Decimal 

RAMRD Read auxiliary memory $C003 49155 -16381 Write 
Read main memory $C002 49154 -16382 Write 
Read RAMRD switch $C013 49171 -16365 Read 

RAMWRT Write auxiliary memory $C005 49157 -16379 Write 
Write main memory $C004 49156 -16380 Write 
Read RAMWRT switch $C014 49172 -16354 Read 

80S TORE On: access display page $COOl 49153 -16383 Write 
Off: use RAMRD, RAMWRT $COOO 49152 -16384 Write 
Read 80STORE switch $C018 49176 -16360 Read 

PAGE2 Page-2 on (aux. memory) $C055 49237 -16299 • 
Page 2 off (main memory) $C054 49236 -16300 • 
Read PAGE2 switch SCOlC 49180 -16356 Read 

HIRES On: access high-res. pages SC057 49239 -16297 t 
Off: use RAMRD, RAMWRT $C056 49238 -16298 t 
Read HIRES switch $COlD 49181 -16355 Read 

ALTZP Auxiliary stack & z.p. $C009 49161 -16373 Write 
Main stack & zero page $C008 49160 -16374 Write 
Read AL TZP switch SC016 49174 -16352 Read 

• When 80S TORE is on, the PAGE2 switch selects main or auxiliary display memory. 

t When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch 
between the high-resolution Page-l area in main memory or auxiliary memory. 

Auxiliary Memory and Firmware 87 



When these switches are on, auxiliary 
memory is being used; when they are off, 
main memory is being used. 

There are three more locations associated with the auxiliary-memory 
switches. The high-order bits of the bytes you read at these locations tell 
you the settings of the three soft switches described above. The byte you 
read at location $C013 has its high bit set to 1 if RAMRD is on (auxiliary 
memory is read-enabled), or 0 if RAMRD is off (the 48K block of main 
memory is read-enabled). The byte at location SC014 has its high bit set to 1 
if RAMWRT is on (auxiliary memory is write-enabled), or 0 if RAMWRT is 
off (the 48K block of main memory is write-enabled). The byte at location 
$C016 has its high bit set to 1 if A1 TZP is on (the bank-switched area, stack, 
and zero page in the auxiliary memory are selected), or 0 if ALTZP is off 
(these areas in main memory are selected). 

Sharing Memory: In order to have enough memory locations for all of 
the soft switches and remain compatible ·with the Apple II and 
Apple II Plus, the soft switches listed in Table 4-7 share their memory 
locations with the keyboard functions listed in Table 2-2. The 
operations-read or write-shown in Table 4-7 for controlling the 
auxiliary memory are just the ones that are not used for reading the 
keyboard and clearing the strobe. 

II 

I 
II 
II 
I 
II 
I 

Auxiliary-Memory Subroutines I 

88 

If you want to write assembly-language programs that use auxiliary 
memory but you don't want to manage the auxiliary memory yourself, you -
can use the built-in auxiliary-memory subroutines. These subroutines make 
it possible to use the auxiliary memory without having to manipulate the 
soft switches described in the previous section. II 

Important! The subroutines described below make it easier to use auxiliary memory, 
but they do not protect you from errors. You still have to plan your use of 
auxiliary memory to avoid catastrophic effects on your program. 

You use these built-in subroutines the same way you use the 1/0 
subroutines described in Chapter 3: by making subroutine calls to their 
starting locations. Those locations are shown in Table 4-8. 

Table 4-8. 48K RAM Transfer Routines 

Name Action Hex Function 

AUXMOVE JSR $C312 Moves data blocks between main and 
auxiliary 48K memory. 

XFER JMP $C314 Transfers program control between main and 
auxiliary 48K memory. 

Chapter 4: Memory Organization 

II 

I 
II 
I 
II 

• 
II 



I 
I 
I 

I A Warning 

I 
I 
I 
I 
I 
I 
I 

I 
I 

Moving Data to Auxiliary Memory 

In your assembly-language programs, you can use the built-in subroutine 
named AUXMOVE to copy blocks of data from main memory to auxiliary 
memory o~ from auxiliary memory to main memory. Before calling this 
routine, you must put the data addresses into byte pairs in page zero and set 
the carry bit to select the direction of the move- main to auxiliary or 
auxiliary to main. 

Don't try to use AUXMOVE to copy data in page zero or page one (the 
65C02 stack) or in the bank-switched memory ($0000-SFFFF). 
AUXMOVE uses page zero all during the copy, so it can't handle moves in 
the memory space switched by ALTZP. 

The pairs of bytes you use for passing addresses to this subroutine are 
called Al, A2, and A4, and they are used for parameter passing by several of 
the Apple lie's built-in routines. The addresses of these byte pairs are 
shown in Table 4-9. 

Table 4-9. Parameters for AUXMOVE Routine 

Note: The X, Y, andA registers are preserved byAUXMOVE. 

Name 

C~rry 

AlL 
AlH 

A2L 
A2H 

A4L 
A4H 

Location 

S3C 
$3D 

$3E 
$3F 

$42 
$43 

Parameter Passed 

1 = Move from main to auxiliary memory 
0 = Move from auxiliary to main memory 

Source starting address, low-order byte 
Source starting address, high-order byte 

Source ending address, low-order byte 
Source ending address, high-order byte 

Destination starting address, low-order byte 
Destination starting address, high-order byte 

Put the addresses of the first and last bytes of the block of memory you 
want to copy into Al and A2. Put the starting address of the block of 
memory you want to copy the data to into A4. 

The AUXMOVE routine uses the carry bit to select the direction to copy 
the data. To copy data from main memory to auxiliary memory, set the 
carry bit; to copy data from auxiliary memory to main memory, clear the 
carry bit. 

Auxiliary Memory and Firmware 89 



90 

When you make the subroutine call to AUXMOVE, the subroutine copies the 
block of data as specified by the A byte pairs and the carry bit. When it is 
finished, the accumulator and the X and Y registers are just as they were 
when you called AUXMOVE. 

Transferring Control to Auxiliary Memory 

You can use the built-in routine named XFER to transfer control to and from 
program segments in auxiliary memory. You must set up three parameters 
before using XFER: the address of the routine you are transferring to, the 
direction of the transfer (main to auxiliary or auxiliary to main), and which 
page zero and stack you want to use. 

Table 4-10. Parameters for XFER Routine 
Note: The X, Y, and A parameters are preserved by XFER. 

Name or 
Location 

Carry 

Overflow 

$03ED 

Parameter Passed 

1 = Transfer from main to auxiliary memory 
0 = Transfer from auxiliary to main memory 

1 = Use page zero and stack in auxiliary memory 
0 = Use page zero and stack in main memory 

Program starting address, low-order byte 

$03EE Program starting address, high-order byte 

Put the transfer address into the two bytes at locations $03ED and $03EE, 
with the low-order byte first, as usual. The direction of the transfer is 
controlled by the carry bit: set the carry bit to transfp,r to a program in 
auxiliary memory; clear the carry bit to transfer to a program in main 
memory. Use the overflow bit to select which page zero and stack you want 
to use: clear the overflow bit to use the main memory; set the overflow bit to 
use the auxiliary memory. 

After you have set up the parameters, pass control to the XFER routine by a 
jump instruction, rather than a subroutine call. XFER saves the 
accumulator and the transfer address on the current stack, then sets up the 
soft switches for the parameters you have selected and jumps to the new 
program. 

Chapter 4: Memory Organization 

I 

• 
II 

• • 
I 
I 
II 
II 
II 

-
II 
II 

• 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

.&Warning 

For information about the 1/0 links, see the 
section "Changing the Standard 1/0 Links" 
in Chapter 6. 

For more information about peripheral-card 
ROM, see the section "Peripheral-Card ROM 
Space" in Chapter 6. 

It is the programmer's responsibility to save the current stack pointer at 
$0100 in main memory and the alternate stack pointer at $0101 in 
auxiliary memory before calling XFER and to restore them after regaining 
control. Failure to do so will cause program errors. 

The Reset Routine 

To put the Apple lie into a known state when it has just been turned on or 
after a program has malfunctioned, there is a procedure called the reset 
routine. The reset routine is built into the Apple lie's firmware, and it is 
initiated any time you turn power on or press I RESET I while holding down 
I CONTROL 1. The reset routine puts the Apple lie into its normal operating 
mode and restarts the resident program. 

When you initiate a reset, hardware in the Apple lie sets the 
memory-controlling soft switches to normal: main board RAM and ROM are 
enabled, and, if there is an 80-column text card in the auxiliary slot, 
expansion slot 3 is allocated to the built-in 80-column firmware. Auxiliary 
RAM is disabled and the bank-switched memory space is set up to read from 
ROM and write to RAM, using the second bank at $DOOO. 

The reset routine sets the display-controlling soft switches to display 
40-column text Page 1 using the primary character set, then sets the 
window equal to the full 40-column display, puts the cursor at the bottom of 
the screen, and sets the display format to normal. 

The reset routine sets the keyboard and display as the standard input and 
output devices by loading the standard I/0 links. It turns annunciators 0 
and 1 off and annunciators 2 and 3 on, clears the keyboard strobe, turns off 
any active peripheral-card ROM and outputs a bell (tone). 

The Apple lie has three types of reset: power-on reset, also called cold-start 
reset; warm-start reset; and forced cold-start reset. The procedure described 
above is the same for any type of reset. What happens next depends on the 
reset vector. The reset routine checks the reset vector to determine whether 
it is valid or not, as described later in this chapter in the section "The Reset 
Vector." If the reset was caused by turning the power on, the vector will not 
be valid, and the reset routine will perform the cold-start procedure. If the 
vector is valid, the routine will perform the warm-start procedure. 

The Reset Routine 91 



For more information about Pro DOS and 
the startup procedure, see the Pro DOS 
Technical Reference Manual. 

Important! 

92 

The Cold-Start Procedure 

If the reset vector is not valid, either the Apple lie has just been turned on 
or something has caused memory contents to be changed. The reset routine 
clears the display and puts the string A p p 1 e 1 1 e (A p p 1 e H on an 
original Ile) at the top of the display. It loads the reset vector and the 
validity-check byte as described below, then starts checking the expansion 
slots to see if there is a disk drive controller card in one of them, starting 
with slot 7 and working down. 

If it finds a controller card, it initiates the startup (bootstrap) routine that 
resides in the controller card's firmware. The startup routine then loads 
DOS or ProDOS from the disk in drive 1. When the operating system has 
been loaded, it displays other messages on the screen. If there is no disk in 
the disk drive, the drive motor just keeps spinning until you press 
I CONTROL H RESET ~ 

If the reset routine doesn't find a controller card, or if you press 
1 coNTROL H RESET I again before the startup procedure has been completed, 
the reset routine will continue without using the disk, and pass control to 
the built-in Applesoft interpreter. 

The Warm-Start Procedure 

Whenever you press I coNTROL H RESET I when the Apple Ile has already 
completed a cold-start reset, the reset vector is still valid and it is not 
necessary to reinitialize the entire system. The reset routine simply uses the 
vector to transfer control to the resident program, which is normally the 
built-in Applesoft interpreter. If the resident program is indeed Applesoft, 
your Applesoft program and variables are still intact. If you are using DOS, 
it is the resident program and it restarts either Applesoft or Integer BASIC, 
whichever you were using when you pressed I CONTROL H RESET 1. 

A program in bank-switched RAM cannot use the reset vector to regain 
control after a reset, because the Apple He hardware enables ROM in the 
bank-switched memory space. If you are using Integer BASIC, which is in 
the bank-switched RAM, you are also using DOS, and it is DOS that 
controls the reset vector and restarts BASIC. 

Chapter 4: Memory Organization 

• 
I 
II 
II 
II 
II 

• 
II 

II 
II 

II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 

I 

I 
I 
I 
I 

Forced Cold Start 

If a program has loaded the reset vector to point to the beginning of the 
program, as described in the next section, pressing I coNTROL H RESET 1 

causes a warm-start reset that uses the vector to transfer control to that 
program. If you want to stop such a program without turning the power off 
and on, you can force a cold-start reset by holding down (ill and 1 coNTROL I, 
then pressing and releasing I RESET 1. 

Unconditional Restart: When you want to stop a program 
unconditionally-for example, to start up the Apple Tie with some other 
program- you should use the forced cold-start reset, 
@}i CONTROL H RESET I, instead of turning the power off and on. 

Whenever you press I coNTROL H RESET I, firmware in the Apple lie always 
checks to see whether either Apple key is down. If the[!] key is down, with 
or without the (ill key, the firmware performs the self-test described later in 
this chapter. If only the [ill key is down, the firmware starts a forced 
cold-start reset. First, it destroys the program or data in memory by writing 
two bytes of arbitrary. data into each page of main RAM. The two bytes that 
get written over in page 3 are the ones that contain the reset vector. The 
reset routine then performs a normal cold-start reset. 

The Reset Vector 

When you reset the Apple lie, the reset routine transfers control to the 
resident program by means of an address stored in page 3 of main RAM. 
This address is called a vecoor because it directs program control to a 
specified destination. There are several other vector addresses stored in 
page 3, as shown in Table 4-11, including the interrupt vectors described in 
the section "Interrupts on the Enhanced Apple lie" in Chapter 6, and the 
ProDOS and DOS vectors described in the ProDOS Technical Reference 
Manual and the Apple U DOS Programmer's Manual. 

The cold-start reset routine stores the starting address of the built-in 
Applesoft interpreter, low-order byte first, in the reset vector address at 
locations 1010 and 1011 (hexadecimal S03F2 and $03F3). It then stores a 
validity-check byte, also called the power-up byte, at location 1012 
(hexadecimal $03F4). The validity-check byte is computed by performing 
an exclusive-OR of the second byte of the vector with the constant 165 
(hexadecimal SA5). Each time you reset the Apple Ile, the reset routine uses 
this byte to determine whether the reset vector is still valid. 

The Reset Routine 93 



You can change the reset vector so that the reset routine will transfer 
control to your program instead of to the Applesoft interpreter. For this to 
work, you must also change the validity-check byte to the exclusive-OR of 
the high-order byte of your new reset vector with the constant 165 ($A5). If 
you fail to do this, then the next time you reset the Apple lie, the reset 
routine will determine that the reset vector is invalid and perform a 
cold-start reset, eventually transferring control to the disk startup routine or 
to Applesoft. 

The reset routine has a subroutine that generates the validity-check byte 
for the current reset vector. You can use this subroutine by doing a 
subroutine call to location -1169 (hexadecimal $FB6F). When your program 
finishes, it can return the Apple Tie to normal operation by restoring the 
original reset vector and again calling the subroutine to fix up the 
validity-check byte. 

Table 4-11. Page 3 Vectors 

Vector 
Address 

$3FO 
$3Fl 

$3F2 
$3F3 

Vector Function 

Address of the subroutine that handles BRK requests (normally 
$59, SPA). 

Reset vector (see text). 

$3F4 Power-up byte (see text). 

$3F5 
S3F6 
$3F7 

$3F8 
$3F9 
$3FA 

$3FB 
$3FC 
$3FD 

Jump instruction to the subroutine that handles Applesoft & 
commands (normally S4C, S58, SFF). 

Jump instruction to the subroutine that handles user 
~commands. 

Jump instruction to the subroutine that handles non-maskable 
interrupts. 

See "The User's Interrupt Handler at $3FE" $3FE 
in Chapter 6. $3FF 

Interrupt vector (address of the subroutine that handles 
interrupt requests). 

9-t Chapter 4: Memory Organization 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I 
I 
I .A Warning 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

Automatic Self-Test 

If you reset the Apple lie by holding down [!] and 1 coNTROL 1 while 
pressing and releasing I RESET I, the reset routine will start running the 
built-in self-test. Successfully running this test assures you that the 
Apple IIe is operational. 

The self-test routine tests the Apple lie's programmable memory by 
writing and then reading it. All programs and data in programmable 
memory when you run the self-test are destroyed. 

The self-test takes several seconds to run. The screen will display some 
patterns in low resolution mode which will change rapidly just before the 
self-test finishes. If the test finishes normally, the Apple lie displays 
Sy5 tem OK and waits for you to restart the system. 

If you have been running a program, some soft switches might be on when 
you run the self-test. If this happens, the self-test will display a message 
such as 

IO U FLAG ES:1 

Turn the power off for several seconds, then turn it back on and run the 
self-test again. If it still fails, there is really something wrong; to get it 
corrected, contact your authorized Apple dealer for service. 

The Reset Routine 95 



II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I Chapter 5 Using the Monitor 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

97 



The starting addresses for all of the 
standard subroutines are listed in 
Appendix B. 

98 

The System Monitor is a set of subroutines in the Apple He firmware. The II 
Monitor provides a standard interface to the built-in I/0 devices described 
in Chapter 2. The I/0 subroutines described in Chapter 3 are part of the II 
System Monitor. 

ProDOS, DOS 3.3, and the BASIC interpreters use these subroutines by 
direct calls to their starting locations, as described for the I/0 subroutines 
in Chapter 3. 

If you wish, you can call the standard subroutines from your programs in 
the same fashion. 

You can perform most of the Monitor functions directly from the keyboard. 
This chapter tells you how to use the Monitor to 

o look at one or more memory locations 
o change the contents of any location 
o write programs in machine language to be executed directly by the 

Apple lie's microprocessor 
o save blocks of data and programs onto cassette tape and read them back 

in again 
o move and compare blocks of memory 
o search for data bytes and ASCII characters in memory 
o invoke other programs from the Monioor 
o invoke the Mini-Assembler. 

Invoking the Monitor 

The System Monitor starts at memory location $FF69 ( decimal65385 
or -151). To invoke the Monitor, you make a CALL statement to this location 
from the keyboard or from a BASIC program. When the Monitor is running, 
its prompting character, an asterisk(*), appears on the left side of the 
display screen, followed by a blinking cursor. 

To use the Monitor, you type commands at the keyboard. When you have 
finished using the Monitor, you return to the BASIC language you were 
previously using by pressing I CONTROL H RESET I, by pressing 
~then I RETURN I, or by typing 3DllG, which executes the 
resident program-usually Applesoft-whose address is stored in a jump 
instruction at location $3DO. 

Chapter 5: Using the Monitor 

II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I 

I 

I 

I 

I 

I 

I 
I 
I 
I 
I 

I 
I 

I 
I 

See "Summary of Monitor Commands" at 
the end of this chapter. 

Syntax of Monitor Commands 

To give a command to the Monitor, you type a line on the keyboard, then 
press I RETURN 1. The Monitor accepts the line using the standard I/0 
subroutine GETLN, described in Chapter 3. A Monitor command can be up 
to 255 characters in length, ending with a carriage return. 

A Monitor command can include three kinds of information: addresses, data 
values, and command characters. You type addresses and data values in 
hexadecimal notation. Hexadecimal notation uses the ten decimal digits 
(0-9) and the first six letters (A-F) to represent the sixteen values from 
0 to 15. A pair of hexadecimal digits represent values from 0 to 255, 
corresponding to a byte, and a group of four hexadecimal digits can 
represent values from 0 to 65,536, corresponding to a word. Any address in 
the Apple lie can be represented by four hexadecimal digits. 

When the command you type calls for an address, the Monitor accepts any 
group of hexadecimal digits. If there are fewer than four digits in the group, 
it adds leading zeros; if there are more than four hexadecimal digits, the 
Monitor uses only the last four digits. It follows a similar procedure when 
the command syntax calls for two-digit data values. 

Each command you type consists of one command character, usually the 
first letter of the command name. When the command is a letter, it can be 
either uppercase or lowercase. The Monitor recognizes 23 different 
command characters. Some of them are punctuation marks, some are 
letters, and some are control characters. 

I 
Note: Although the Monitor recognizes and interprets control characters 
typed on an input line, they do not appear on the screen. 

This chapter contains many examples of the use of Monitor commands. In 
the examples, the commands and values you type are shown in a normal 
typeface and the responses of the Monitor are in a computer typeface. Of 
course, when you perform the examples, all of the characters that appear 
on the display screen will be in the same typeface. Some of the data values 
displayed by your Apple Ile may differ from the values printed in these 
examples, because they are variables stored in programmable memory. 

Syntax of Monitor Commands 99 



Monitor Memory Commands II 
When you use the Monitor to examine and change the contents of memory, II it keeps track of the address of the last location whose value you inquired 
about and the address of the location that is next to have its value changed. 
These are called the last opened location and the next changeable location. II 
Examining Memory Contents 

When you type the address of a memory location and press I RETURN I, the 
II 

Monitor responds with the address you typed, a dash, a space, and the value 
II stored at that location, like this: 

• EOOO 
EIHlS-

•33 

2S II 
1Hl33- AA 

II • 
Each time the Monitor displays the value stored at a location, it saves the 
address of that location as the last opened location and as the next II changeable location. 

Memory Dump II 
When you type a period(.) followed by an address, and then press II 1 RETURN 1. the Monitor displays a memory dump: the data values stored at 
all the memory locations from the one following the last opened location to 
the location whose address you typed following the period. The Monitor II saves the last location displayed as both the last opened location and the 
next changeable location. In these examples, the amount of data displayed 
by the Monitor depends on how much larger than the last opened location II the address after the period is. 

II 
II 
II 
II 

100 Chapter 5: Using the Monitor II 



I 

I 

I 

I 

I 

I 

I 
I 
I 
I 
I 

I 
I 
I 

•20 
8828- 88 

• .2B 
8821 - 28 88 18 8F 8C 88 88 
8828- A8 86 08 87 

•300 
8388- 99 

•.315 
8381- B9 88 88 8A 8A 8A 99 
8388- 88 88 C8 08 F4 A6 2B A9 
8318 - 89 85 27 AD CC 83 

•.32A 
8316- 85 41 
8318- 84 48 8A 4A 4A 4A 4A 89 
8328- C8 85 3F A9 50 85 3E 28 
8328- 43 83 28 

• 
When the Monitor performs a memory dump, it starts at the location 
immediately following the last opened location and displays that address 
and the data value stored there. It then displays the values of successive 
locations up to and including the location whose address you typed, but 
only up to eight values on a line. When it reaches a location whose address 
is a multiple of eight-that is, one that ends with an 8 or a 0-it displays 
that address as the beginning of a new line, then continues displaying more 
values. 

After the Monitor has displayed the value at the location whose address you 
specified in the command, it stops the memory dump and sets that location 
as both the last opened location and the next changeable location. lf the 
address specified on the input line is less than the address of the last 
opened location, the Monitor displays only the address and value of the 
location following the last opened location. 

~lonitor Memory Commands 101 



You can combine the two commands, opening a location and dumping II 
memory, by simply concatenating them: type the first address, a period, and 
the second address. This combination of two addresses separated by a II period is called a memory range. 

•300.32F 
II il31!11- 99 89 ilil il8 ilA ilA ilA 99 

il3il8- ilil il8 ca Dil F4 A6 28 A9 
il3lil- il9 85 27 AD cc il3 85 41 

II il3l8- 84 4il SA 4A 4A 4A 4A il9 
il32il- Cil 85 3F A9 SD 85 3E 2il 

il328- 43 il3 2il 46 il3 AS 3D 4D 

II •30.40 
ilil3il- AA ilil FF AA ilS C2 ilS C2 

ilil38- 18 FD Dil il3 3C ilil 4il ilil II ilil4il- 3il 

•E015.E025 

II Eil16- 4C ED FD 
Eil18- A9 2il cs 24 Bil ilC A9 80 
Eil2il- Ail il7 2il ED FD A9 

II • 
Pressing I RETURN I by itself causes the Monitor to display one line of a 
memory dump; that is, a memory dump from the location following the last II opened location to the next multiple-of -eight boundary. The Monitor saves 
the address of the last location displayed as the last opened location and the 
next changeable location. II 
•5 
ilililS- ilil -•I RETURN I 
ilil ilil 

•I RETURN I II ililil8- ilil ilil ilil ilil ilil ilil ilil ilil 
•32 
1!1132- FF II •I RETURN I 
AA ilil C2 ilS C2 

•I RETURN I II 
ilil38- 18 FD Oil il3 3C ilil 3F ilil 

• 
II 
II 

102 Chapter 5: Using the Monitor -



I 
I 
I 
I 

.A. Warning 

I 
I 
I 

I 
I 
I 
I 

I 

Changing Memory Contents 

The previous section showed you how to display the values stored in the 
Apple lie's memory; this section shows you how to change those values. 
You can change any location in RAM-programmable memory-and you 
can also change the soft switches and output devices by changing the 
locations assigned to them . 

Use these commands carefully. If you change the zero-page locations 
used by Applesoft, ProDOS, or DOS, you may lose programs or data stored 
in memory. 

Changing One Byte 

The previous commands keep track of the next changeable location; these 
commands make use of it. In the next example, you open location 0, then 
type a colon(:) followed by a value. 

•0 

lllli!JII- "" 
•:5F 

The contents of the next changeable location have just been changed to the 
value you typed, as you can see by examining that location: 

•0 

llllllll- SF 

• 
You can also combine opening and changing into one operation by typing an 
address followed by a colon and a value. In the example, you type the 
address again to verify the change. 

•302:42 

•302 

ll31l2- 42 

• 
When you change the contents of a location, the value that was contained 
in that location disappears, never to be seen again. The new value will 
remain until you replace it with another value. 

Changing Memory Contents 103 



104 

Changing Consecutive Locations 

You don't have to type a separate command with an address, a colon, a 
value, and I RETURN 1 for each location you want to change. You can change 
the values of up to 85 consecutive locations at a time (or even more, if you 
omit leading zeros from the values) by typing only the initial address and 
colon followed by all the values separated by spaces, and ending with 
I RETURN 1. The Monitor will duly store the consecutive values in 
consecutive locations, starting at the location whose address you typed. 
After it has processed the string of values, it takes the location following the 
last changed location as the next changeable location. Thus, you can 
continue changing consecutive locations without typing an address on the 
next input line by typing another colon and more values. In these examples, 
you first change some locations, then examine them to verify the changes. 

•300:69 0120 ED FD 4C 0 3 

•300 

ll391l- 69 

*I RETURN I 
ll1 21l ED FD 4C 91l ll3 

•10:0 12 3 

• :4 56 7 

•10.17 

ll911l - 99 ll1 ll2 ll3 94 llS 96 97 
• 

ASCII Input Mode 

The enhanced Apple lie has an ASCII input mode that lets you enter ASCTI 
characters just as you can their hexadecimal ASCII equivalents by 
preceding the literal character with an apostrophe('). This means that 'A is 
the same as $C1 and 'B is the same as $C2 to the Monitor. The ASCII value 
for any character following an apostrophe is used by the Monitor. 

Chapter 5: Using t.he Monitor 

II 
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Important! 

Original lie 

Each character to be placed in memory should be delimited by a leading 
apostrophe(') and a trailing space. The only exception to this rule is that 
the last character in the line is followed with a return character instead of a 
space. The following example would enter the string "Hooray for sushi!" at 
$0300 in memory. 

*300:'H 'o 'o 'r 'a 'y ' 'f 'o 'r ' 's 'u 's 'h 'i '! 

ASCII input mode sets the high bit of the code for a character that you 
enter. So 'A will equal $Cl, not $41. 

The original Apple lie does not have an ASCII input mode. 

Moving Data in Memory 

You can copy a block of data stored in a range of memory locations from one 
area in memory to another by using the Monitor's MOVE command. To 
move a range of memory, you must tell the Monitor both where the data is 
now situated in memory (the source locations) and where you want the 
copy to go (the destination locations). You give this information to the 
Monitor by means of three addresses: the address of the first location in the 
destination and the addresses of the first and last locations in the source. . 
You specify the starting and ending addresses of the source range by 
separating them with a period. You separate the destination address from 
the range addresses with a less-than character (<), which you may think 
of as an arrow pointing in the direction of the move. Finally, you tell the 
Monitor that this is a MOVE command by typing the letter M (in either 
lowercase or uppercase). The format of the complete MOVE command looks 
like this: 

jdestinationl < lstartl . 1endl M 

When you type the actual command, the words in braces should be replaced 
by hexadecimal addresses, and the braces and spaces should be omitted. 

Changing ~!emory Contents 105 



See the section "Special Tricks With the 
Monitor" later in this chapter for an 
interesting application of this feature. 

106 

Here are some examples of Monitor commands, including some memory 
moves. First, you examine the values stored in one range of memory, then 
store several values in another range of memory; the actual MOVE 
commands end with the letter M. 

•O.F 

Bllllll- SF Bll BS B7 llB llll llll llll 
BllBB- "" "" "" "" "" "" "" "" 
• 300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03 

•300.30C 

ll 3 llB- A9 BD 2B ED FD A9 45 2ll 
ll3llB- DA FD 4C "" ll3 

•0<300.30CM 

•O.C 

""""- A9 BD 2ll ED FD A9 45 28 
llll8B - DA FD 4C ll8 ll3 

•310<8.AM 

•310.312 

83 18- DA FD 4C 

•2<7.9M 

•O.C 

llllll8 - A9 BD 2B DA FD A9 45 28 
8llllB- DA FD 4C 88 B3 
• 
The Monitor moves a copy of the data stored in the source range of locations 
to the destination locations. The values in the source range are left 
undisturbed. The Monitor remembers the last location in the source range 
as the last opened location, and the first location in the source range as the 
next changeable location. If the second address in the source range 
specification is less than the first, then only one value (that of the first 
location in the range) will be moved. 

If the destination address of the MOVE command is inside the source range 
of addresses, then strange (and sometimes wonderful) things happen: the 
locations between the beginning of the source range and the destination 
address are treated as a sub-range and the values in this sub-range are 
replicated throughout the source range. 

Chapter 5: Using the Monitor 

II 

-
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I 

I 

I 

I 

I 
I 
I 

I 

I 
I 

I 
I 

I 

See the section "Special Tricks With the 
Monitor" later in this chapter. 

Comparing Data in Memory 

You can use the VERIFY command to compare two ranges of memory using 
the same format you use to move a range of memory from one place to 
another. In fact, the VERIFY command can be used immediately after a 
MOVE command to make sure that the move was successful. 

The VERIFY command, like the MOVE command, needs a range and a 
destination. The syntax of the VERIFY command is 

{destination} < {start} . {end} V 

The Monitor compares the values in the source locations with the values in 
the locations beginning at the destination address. If any values don't 
match, the Monitor displays the address at which the discrepancy was 
found and the two values that differ. In the example, you store data values 
in the range of locations from 0 to $D, copy them to locations starting at 
$300 with the MOVE command, and then compare them using the VERIFY 
command. When you use the VERIFY command after you change the value 
at location 6 to $E4, it detects the change. 

•O:D7 F2 E9 F4 F4 E5 EE AO E2 F9 AO C3 C4 C5 

•300<0.DM 

•300<0.DV 

•6:E4 

•300<0.DV 

1Hl86- E4 <EE> 

• 
If the VERIFY command finds a discrepancy, it displays the address of the 
location in the source range whose value differs from iLs counterpart in llie 
destination range. If there is no discrepancy, VERIFY displays nothing. The 
VERIFY command leaves the values in both ranges unchanged. The last 
opened location is the last location in the source range, and the next 
changeable location is the first location in the source range, just as in the 
MOVE command. If the ending address of the range is less than the starting 
address, the values of only the first locations in the ranges will be 
compared. Like the MOVE command, the VERIFY command also does 
unusual things if the destination address is within the source range. 

Changing ~femory Contents 107 



108 

Searching for Bytes in Memory 

The SEARCH command lets you search for one or two bytes (either 
hexadecimal values or ASCII characters) in a range of memory. You must 
type in the ASCII string (or hexadecimal number or numbers) in reverse of 
the order that they appear in memory. Think of the SEARCH command as 
looking for items in a last-in, first-out queue. 

The syntax of the SEARCH command is 

jvalue or ASCII}< jstartj. jend}S 

If the byte (or two byte sequence) that you specify is in the specified 
memory range, the Monitor will return with a list of the addresses where 
that byte (or byte sequence) occurs. If the byte (or byte sequence) is not in 
the range, the Monitor just displays the prompt. 

The following example looks for the character string LOin memory 
between $0300 and $03FF. 

*'O'L <300.3FFS 

I 
High Bit Set: Remember that ASCII input mode sets the high-order bit of 
each character that you enter. 

The next example searches for the two-byte sequence $FF11. 

*llFF < 300.3FFS 

You can't search for a two-byte sequence with a high byte of 0. The Monitor 
ignores the high byte and searches for the low byte only. The sequence 
OOFF is seen by the Monitor SEARCH command as FF. 

Original lie I The Monitor in the original Apple lie does not recognize the SEARCH 
command. 

Examining and Changing Registers 

The microprocessor's register contents change continuously whenever the 
Apple He is running any sort of program, such as the Monitor. The Monitor 
lets you see what the register contents were when you invoked the Monitor 
or a program that you were debugging stopped at a break (BRK). The 
Monitor also lets you set 65C02 register values before you execute a 
program with the GO command. 

Chapter 5: [sing the Monitor 

II 
II 
II 

II 

II 

II 
II 

II 

II 

II 

II 
II 
II 
II 



I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

When you call the Monitor, it stores the contents of the microprocessor's 
registers in memory. The registers are stored in the order A, X, Y, P 
(processor status register), and S (stack pointer), starting at location $45 
( decimal69). When you give the Monitor a GO command, the Monitor loads 
the registers from these five locations before it executes the first instruction 
in your program. 

Pressing I CONTROL fill and then I RETURN I invokes the Monitor's EXAMINE 
command, which displays the stored register values and sets the location 
containing the contents of the A register as the next changeable location. 
After using the EXAMINE command, you can change the values in these 
locations by typing a colon and then typing the new values separated by 
spaces. In the following example, you display the registers, change the first 
two, and then display them again to verify the change. 

•1 CONTROL fill 
A•BA X•FF Y•DS P• BB S•FS 
•:B002 

•1 CONTROL fill 
A·BB X•82 Y•DS P• BB S• FS 
• 

Monitor Cassette Tape Commands 

The Apple lie has two jacks for connecting an audio cassette tape recorder. 
With a recorder connected, you can use the Monitor commands described 
later in this section to save the contents of a range of memory onto a 
standard cassette and recall it for later use. 

Saving Data on Tape 

The Monitor's WRITE command saves the contents of up to 65,536 memory 
locations on cassette tape. To save a range of memory on tape, give the 
Monitor the starting and ending addresses of the range, followed by the 
letter W (for WRITE), like this: 

jstart}. jend} W 

Monitor Cassette Tape Commands 109 



110 

Don't press I RETURN I yet: first, put the tape recorder in record mode and let II 
the tape run for a second, then press I RETURN 1. The Monitor will write a 
ten-second tone onto the tape and then write the data. The tone acts as a II 
leader: later, when the Monitor reads the tape, the leader enables the 
Monitor to get in step with the signal from the tape. When the Monitor is 
finished writing the range you specified, it will sound a bell (beep) and • 
display a prompt. You should rewind the tape and label it with the memory • 
range that's on the tape and what it's supposed to be. 

Here's a small example you can save and use later to try out the READ II 
command. Remember that you must start the cassette recorder in record 
mode before you press I RETURN I after typing the WRITE command. 

II •O:FF FF AD 30 CO 88 DO 04 C6 01 FO 08 CA 
DO F6 A6 00 4C 02 00 60 

•0.14 II 
""""- FF FF AD 3B CB 88 DB B4 
B81l8- C6 B1 FB B8 CA DB F6 A6 

""18- "" 4C B2 "" 6B II 
•0.14W 

. II 
It takes about 35 seconds total to save the values of 4,096 memory locations 
preceded by the ten-second leader onto tape. This works out to an average II 
data transfer rate of about 1,350 bits per second. 

The WRITE command writes one extra value on the tape after it has 
written the values in the memory range. This extra value is the checksum, II 
which is the eight-bit partial sum of all values in the range. When the 
Monitor reads the tape, it uses this value to determine if the data has been II 
written and read correctly. (See the next section.) 

Reading Data From Tape II 
Once you've saved a memory range onto tape with the Monitor's WRITE 
command, you can read that memory range back into the computer by II 
using the Monitor's READ command. The data values you've stored on the 
tape need not be read back into the same memory range from whence they 
came; you can tell the Monitor to put those values into any memory range in II 
the computer's memory, provided that it's the same size as the range you 
saved. 

II 

Chapter 5: Csing the Monitor 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

The format of the READ command is the same as that of the WRITE 
command, except that the command Jetter is R: 

{start} . {end} R 

Once again, after typing the command, don't press 1 RETURN 1. Instead, start 
the tape recorder in play mode and wait a few seconds. Although the 
WRITE command puts a ten-second leader tone on the beginning of the 
tape, the READ command needs only three seconds of this leader to lock on 
to the signal from the tape. You should let a few seconds of tape go by before 
you press 1 RETURN I to allow the tape recorder's output to settle down to a 
steady tone. 

This example has two parts. First, you set a range of memory to zero, verify 
the contents of memory, and then type the READ command, but don't press 
I RETURN I. 

•0:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

•0.14 

llll8B- "" "" "" "" "" "" "" "" 8llll8- "" 88 88 1!8 88 88 1!8 81! 
8811!- 88 88 88 1!8 "" 
•0.14R 

Now start the cassette running in play mode, wait a few seconds, and press 
I RETURN ~ After the Monitor sounds the bell (beep) and displays the prompt, 
examine the range of memory to see that the values from the tape were 
read correctly: 

•0.14 

81!88- FF FF AD 31! C8 88 DB 84 
81lll8- C6 81 F8 88 CA D8 F6 A6 
llll11l - llll 4C 82 1!8 61! 
• 
After the Monitor has read all the data values on the tape, it reads the 
checksum value. It computes the checksum on the data it read and 
compares it to the checksum from the tape. If the two checksums differ, the 
Monitor sends a beep to the speaker and displays ERR. This warns you that 
there was a problem reading the tape and that the values stored in memory 
aren't the values that were recorded on the tape. If the two checksums 
match, the Monitor will just send out a beep and display a prompt. 

Monitor Cassette Tape Commands 111 



Miscellaneous Monitor Commands II 
These Monitor commands enable you to change the video display format • 
from normal to inverse and back, and to assign input and output to • 
accessories in expansion slots. 

Inverse and Normal Display 

You can control the setting of the inverse-normal mask location used by the 
COUT subroutine (described in Chapter 3) from the Monitor so that all of 
the Monitor's output will be in inverse format. The INVERSE command, I, 
sets the mask such that all subsequent inputs and outputs are displayed in 
inverse format. To switch the Monitor's output back to normal format, use 
the NORMAL command, N. 

•O.F 

0000 - BA BB BC BD BE BF DB 04 
BBB8 - CS 01 FB 08 CA DB FS AS 
• I 

•O.F 

BBBB - BA BE BC BD BE BF DB 04 
BBB8 - CS 0 1 FB 08 CA DB FS AS 
•N 
•O.F 

BBBB - BA BE BC BD BE BF DB 04 
BBB8 - CS 01 FB 08 CA DB FS AS 
• 

Back to BASIC 

Use the BASIC command, I CONTROL roo. to leave the Monitor and enter the 
BASIC that was active when you entered the Monitor. Normally, this is 
Applesoft BASIC, unless you deliberately switched to Integer BASIC. Any 
program or variables that you had previously in BASIC will be lost. If you 
want to reenter BASIC with your previous program and variables intact, use 
the CONTINUE BASIC command,~· 

Chapter 5: Using the Monitor 

II 
II 
II 
II 
II 
II 
II 

II 

II 

II 
II 
II 



I 
I 

I 
I 
I 
I 
I 
I 

I 
.A. Warning 

I 
I 

I 
I 

I 
I 
I 
I 

If you are using DOS 3.3 or Pro DOS, press I CONTROL H RESET 1 or type 

3D8G 

to return to the language you were using, with your program and variables 
intact. 

That's a Number Not a Letter: If you use 3DOG, make sure that the 
third character you type is a zero, not a letter 0. The letter G is the 
Monitor's GO command, described in the section "Machine-Language 
Programs" later in this chapter. 

Redirecting Input and Output 

The PRINTER command, activated by a~ diverts all output 
normally destined for the screen to an interface card in a specified 
expansion slot, from 1 to 7. There must be an interface card in the specified 
slot, or you will lose control of the computer and your program and variables 
may be lost. The format of the command is 

jslot number}~ 

A PRINTER command to slot number 0 will switch the stream of output 
characters back to the Apple lie's video display. 

Don't give the PRINTER command with slot number 0 to deactivate the 
80-column firmware, even though you used this command to activate it in 
slot 3. The command works, but it just disconnects the firmware, leaving 
some of the soft swit.ches set for 80-column display. 

In much the same way that the PRINTER command switches the output 
stream, the KEYBOARD command substitutes the interface card in a 
specified expansion slot for the Apple lie's normal input device, the 
keyboard. The format for the KEYBOARD command is 

{slot number}~ 

A slot number of 0 for the KEYBOARD command directs the Monitor to 
accept input from the Apple lie's built-in keyboard. 

The PRINTER and KEYBOARD commands are the exact equivalents of the 
BASIC commands PR# and IN#. 

Miscellaneous Monitor Commands 113 



Hexadecimal Arithmetic II 
The Monitor will also perform one-byte hexadecimal addition and 

II subtraction. Just type a line in one of these formats: 

~valuej + !value! 
1 value1 - Jvaluei 

The Apple lie performs the arithmetic and displays the result, as shown in 
II 

these examples: 
II •20+13 

•33 

•4A-C II •3E 

•FF+4 
• 83 II •3-4 
•FF 
.. II 

Special Tricks With the Monitor -
This section describes some more complex ways of using the Monitor II commands. 

Multiple Commands II 
You can put as many Monitor commands on a single line as you like, as long II as you separate them with spaces and the total number of characters in the 
line is less than 254. Adjacent single-letter commands such as L, S, I, and N 
need not be separated by spaces. -You can freely intermix all of the commands except the STORE (:) 
command. Since the Monitor takes all values following a colon and places 

II them in consecutive memory locations, the last value in a STORE must be 
followed by a letter command before another address is encountered. You 
can use the NORMAL command as the required letter command in such 

II cases; it usually has no effect and can be used anywhere. 

II 
II 

ll -! Chapter 5: Using the Monitor 



I 
I 
I 

I 

I 
I 
I 

I 

I 
I 
I 

I 

In the following example, you display a range of memory, change it, and 
display it again, all with one line of commands. 

•300.307 300:18 69 1 N 300.302 

0300- 00 00 00 00 00 00 00 00 
0300- 18 69 01 
• 

If the Monitor encounters a character in the input line that it does not 
recognize as either a hexadecimal digit or a valid command character, it 
executes all the commands on the input line up to that character, then 
grinds to a halt with a noisy beep and ignores the remainder of the input 
line. 

Filling Memory 

The MOVE command can be used to replicate a pattern of values 
throughout a range of memory. To do this, first store the pattern in the first 
locations in the range: 

• 300:11 22 33 

• 
Remember the number of values in the pattern: in this case, it is 3. Use the 
number to compute addresses for the MOVE command, like this: 

jstart+numberf < jstartJ. jend-numberl M 

This MOVE command will first replicate the pattern at the locations 
immediately following the original pattern, then replicate that pattern 
following itself, and so on until it fills the entire range. 

•303<300.32DM 

•300.32F 

0300- 11 22 33 11 22 33 11 22 
0308- 33 11 22 33 11 22 33 11 
8310- 22 33 11 22 33 11 22 33 
8318- 11 22 33 11 22 33 11 22 
0320- 33 11 22 33 11 22 33 11 
8328- 22 33 11 22 33 11 22 33 
• 

Special Tricks With the Monitor 115 



116 

You can do a similar trick with the VERIFY command to check whether a 
pattern repeats itself through memory. This is especially useful to verify 
that a given range of memory locations all contain the same value. In this 
example, you first fill the memory range from $0300 to $0320 with zeros and 
verify it, then change one location and verify again, to see the VERIFY 
command detect the discrepancy: 

•300:0 

•301 <300.31FM 

•301 <300.31FV 

•304:02 

•301 <300.31FV 

ll31l3-llll Cll2> 
ll31l4-ll2 Cllll> 
• 

Repeating Commands 

II 
II 
II 

II 

• 
II 

II 
You can create a command line that repeats one or more commands over II 
and over. You do this by beginning the part of the command line that you 
want to repeat with a letter command, such as N, and ending it with the II 
sequence 34:n, where n is a hexadecimal number that specifies the position 
in the line of the command where you want to start repeating; for the first 
character in the line, n=O. The value for n must be followed with a space in II 
order for the loop to work properly. 

This trick takes advantage of the fact that the Monitor uses an index 
register to step through the input buffer, starting at location $0200. Each II 
time the Monitor executes a command, it stores the value of the index at 
location $34; when that command is finished, the Monitor reloads the index 
register with the value at location $34. By making the last command change • 
the value at location $34, you change this index so that the Monitor picks up • 
the next command character from an earlier point in the buffer. 

Chapter 5: Using the Monitor 

II 

II 



I 

I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

I 
I 

The only way to stop a loop like this is to press I CONTROL H RESET t that is 
how this example ends. 

• N 300 302 34:0 

1381l - 11 

1312- 33 

1311- 11 

1312- 33 

1311- 11 

1312- 33 

1311- 11 

1312- 33 

1311- 11 
1312- 33 

1381l- 11 

1312- 33 

131 

• 

Creating Your Own Commands 

The USER command,~ forces the Monitor to jump to memory 
location $03F8. You can put a JMP instruction there that jumps to your own 
machine-language program. Your program can then examine the Monitor's 
registers and pointers or the input buffer itself to obtain its data. For 
example, here is a program that displays everything on the input line after 
the~· The program starts at location $0300; the command line 
that starts with $03F8 stores a jump to $0300 at location $03F8. 

•300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF 

• 3F8:4C 00 03 

., CONTROL KYJ THIS IS A TEST 
THIS IS A TEST 

• 

Special Tricks With the Monitor 117 



118 

Machine-Language Programs 

The main reason to program in machine language is to get more speed. A 
program in machine language can run much faster than the same program 
written in high-level languages such as BASIC or Pascal, but the 
machine-language version usually takes a lot longer to write. There are 
other reasons to use machine language: you might want your program to do 
something that isn't included in your high-level language, or you might just 
enjoy the challenge of using machine language to work directly on the bits 
and bytes. 

Boning Up on Machine Language: If you have never used machine 
language before, you'll need to learn the 65C02 instructions listed in 
Appendix A. To become proficient at programming in machine language, 
you'll have to spend some time at it and study at least one of the books on 
6502 programming listed in the bibliography. With the books and 
Appendix A, you'll have the needed information to program the 65C02. 

You can get a hexadecimal dump of your program, move it around in 
memory, or save it on tape and recall it using the commands described in 
the previous sections. The Monitor commands in this section are intended 
specifically for you to use in creating, writing, and debugging 
machine-language programs. 

Running a Program 

The Monitor command you use to start execution of your machine-language 
program is the GO command. When you type an address and the letter G, 
the Apple lie starts executing machine language instructions starting at the 
specified location. If you just type the G, execution starts at the last opened 
location. The Monitor treats this program as a subroutine: it should end with 
an RTS (return from subroutine) instruction to transfer control back to the 
Monitor. 

Chapter 5: Using the \ lonitor 

• 
II 
II 
II 

• 
II 
II 
II 

---• 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The word mnemonic comes from the same 
root as memory and refers to 
abbreviations that are easier to remember 
than the hexadecimal operation codes 
themselves: for example, for clear carry 
you write CLC instead of $18. 

The Monitor has some special features that make it easier for you to write 
and debug machine-language programs, but before you get into that, here is 
a small machine-language program that you can run using only the simple 
Monitor commands already described. The program in the example merely 
displays the letters A through Z: you store it starting at location $0300, 
examine it to be sure you typed it correctly, then type 300G to start it 
running. 

•300:A9 Cl 20 ED FD 18 69 1 C9 DB DO F6 60 

•300.30C 

8388 - A9 C1 28 ED FD 18 69 8 1 
8388- C9 DB 08 F6 68 

•300G 
ABCDEFGHIJKLMHOPQRSTUVWXYZ 

• 

Disassembled Programs 

Machine-language code in hexadecimal isn't the easiest thing in the world 
to read and understand. To make this job a little easier, machine-language 
programs are usually written in assembly language and converted into 
machine-language code by programs called assemblers. 

Since programs that translate assembly language into machine language are 
called assemblers, a program like the Monitor's LIST command that 
translates machine language into assembly language is called a 
disassembler. 

The Monitor's LIST command displays machine-language code in 
assembly-language form. Instead of unformatted hexadecimal gibberish, the 
LIST command displays each instruction on a separate line, with a 
three-letter instruction name, or mnemonic, and a formatted hexadecimal 
operand. The LIST command also converts the relative addresses used in 
branch instructions to absolute addresses. 

The Monitor LIST command has the format 

pocationl L 

Machine· Language Programs 119 



The LIST command starts at the specified location and displays as much I 
memory as it takes to make up a screenfull (20 lines) of instructions, as 
shown in the following example: II •300L 

8388- A9 C1 LOA ISC 1 • 8382- 28 ED FD JSR SF OED 
8386- 18 CLC 
13116- 69 " 1 ADC ISII1 • 1318- C9 DB CMP I SOB 
131A- 08 F6 BME Sll382 
131C- 68 RTS • 1310- II BRK 
131E- .. BRK 
131F- .. BRK • 1311- II BRK 
1311- .. BRK 
1312- .. BRK II 8313- Ill BRK 
8314- Ill BRK 
1316- 88 BRK II 1316- 88 BRK 
8317- 88 BRK 
8318- 88 BRK II 8319- "" BRK 
• 
The first seven lines of this example are the assembly-language form of the II program you typed in the previous example. The rest of the lines are BRK 
instructions only if this part of memory has zeros in it: other values will be 

II disassembled as other instructions. 

The Monitor saves the address that you specify in the LIST command, but 
not as the last opened location used by the other commands. Instead, the • Monitor saves this address as the program counter, which it uses only to 
point to locations within programs. Whenever the Monitor performs a LIST 
command, it sets the program counter to point to the location immediately 

II following the last location displayed on the screen, so that if you type 
another LIST command it will display another screenful of instructions, 
starting where the previous display left off. 

II 

• 
II 

120 Chapter 5: using the Monitor II 



I 
I 
I 

I 
I 
I 
I 

' I 
I 
I 
I 
I 
I 
I 

Original lie 

The Mini-Assembler 

Without an assembler, you have to write your machine language program, 
take the hexadecimal values for the opcodes and operands, and store them 
in memory using the commands covered in the previous sections. That is 
exactly what you did when you ran the previous examples. 

The Monitor includes an assembler called the Mini-Assembler that lets you 
enter machine-language programs directly from the keyboard of your Apple. 
ASCII characters can be entered in Mini-Assembler programs, exactly as 
you enter them in the Monitor. Note that the Mini-Assembler doesn't accept 
labels; you must use actual values and addresses. 

Starting the Mini-Assembler 

To start the Mini-Assembler first invoke the Monitor by typing CAL L - 151 

I RETURN b and then from the Monitor, type ! followed by I RETURN 1. The 
Monitor prompt character then changes from • to ! . 

When you finish using the Mini-Assembler, press I RETURN 1 from a blank 
line to return to the Monitor. 

Restrictions 

The Mini-Assembler supports only the subset of 65C02 instructions that are 
found on the 6502. 

Before you can use the Mini-Assembler on the original Apple lie, you have 
to be running Integer BASIC. When you start up the computer using DOS 
or either BASIC, the Apple lie loads the Integer BASIC interpreter from 
the file named INTBASIC into the bank-switched RAM. Here's how to 
start the Mini-Assembler on an original Apple lie: 

1. Start Integer BASIC from DOS 3.3 by typing 1 HT I RETURN 1. 
2. After the Integer prompt character(>) and a cursor appear, enter 

the Monitor by typing CALL -151 1 RETURN I. 
3. Now start the Mini-Assembler by typing F666G 1 RETURN 1. 

The Mini-Assembler 121 



Formats for operands are listed in Table 
5-1. 

122 

Using the Mini-Assembler 

The Mini-Assembler saves one address, that of the program counter. Before 
you start to type a program, you must set the program counter to point to 
the location where you want the Mini-Assembler to store your program. Do 
this by typing the address followed by a colon. 

After the colon, type the mnemonic for the first instruction in your program, 
followed by a space and the operand of the instruction. Now press 
1 RETURN 1. The Mini-Assembler converts the line you typed into 
hexadecimal, stores it in memory beginning at the location of the program 
counter, and then disassembles it again and displays the disassembled line. 
It then displays a prompt on the next line. 

Now the Mini-Assembler is ready to accept the second instruction in your 
program. To tell it that you want the next instruction to follow the first, 
don't type an address or a colon: just type a space and the next instruction's 
mnemonic and operand, then press I RETURN J. The Mini-Assembler 
assembles that line and waits for another. 

! 300:LDX #02 

83 iHl- A2 82 LDX 1$82 

! LDA $0,X 

8 3 82 - 85 88 LDA $88, X 

! STA $10,X 

8384 95 1B STA $ 18, X 

! DEX 

8386 - CA DE X 

! STA SC030 

8 3 87- BD 39 ce STA SC938 

! BPL $302 

838A - 1B F6 BPL $8382 

! BRK 

838 C- 88 BR K 

If the line you type has an error in it, the Mini-Assembler beeps loudly and 

II 

• • • 
• 
II 

' II 
II 
II 

II 
II 

displays a caret ( ~) under or near the offending character in the input line. II 
Most common errors are the result of typographical mistakes: misspelled 
mnemonics, missing parentheses, and so forth. The Mini-Assembler also 
rejects the input line if you forget the space before or after a mnemonic or II 

II 
Chapter 5: Using the ~ionitor 



I 
I 
I 

I Original lie 

I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

include an extraneous character in a hexadecimal value or address. If the 
destination address of a branch instruction is out of the range of the branch 
(more than 127locations distant from the address of the instruction), the 
Mini-Assembler flags this as an error. 

There are several different ways to leave the Mini-Assembler and reenter 
the Monitor. On an enhanced Apple lie only, simply press I RETURN I at a 
blank line. 

I On an original Apple Ile, type the Monitor command $FF69G. 

On any Apple lie, you can press I coNTROL H RESET I, which warm starts 
BASIC, then type 

CALL -151 

Your assembly-language program is now stored in memory. You can display 
it with the LIST command: 

*3001 

11381!1 - A2 112 LOX #$il2 

113112 - BS 1111 LOA U 11 , X 

113114 - 95 1il STA $1il ,X 

83116- CA OEX 
113117 - 80 311 Cl1 STA $CI1311 

1138A- 1 11 F6 BPL U382 

11311C- 1111 BRK 

113110 - 118 BRK 
8311E- 1111 BRK 

11311F - 1111 BRK 

83111- 118 BRK 
11311 - 1111 BRK 
11312- 1111 ERK 

11313- 811 BRK 
11314 - 1111 BRK 

11316- 1111 BRK 

11316- 118 BRK 
1131 7- 88 BRK 
11318- 1111 BRK 
11319- il8 BRK 
• 

The Mmi-Assembler 123 



Mini-Assembler Instruction Formats 

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing 
See Appendix A for more information about formats. These constitute the 6502 subset of the 65C02 instruction set. The 
65C02 (and 6502) instructions. mnemonics are standard, as used in the SynertekProgramming Manual 

(Apple part number A2L0003), but the addressing formats are somewhat 
different. Table 5-1 shows the Apple standard address-mode formats for 
6502 assembly language. 

124 

Table 5·1. Mini-Assembler Address Formats 

Addressing Mode Format 

Accumulator 

Implied • 

Immediate #${value} 

Absolute ${address} 

Zero page S{address} 

Indexed zero page ${address ~,X 
$address ,Y 

Indexed absolute ${address~,X 
$ address ,Y 

Relative ${address} 

Indexed indirect (${address} ,X) 

Indirect indexed (${address}),Y 

Absolute indirect (${address}) 

• These instructions have no operands. 

An address consists of one or more hexadecimal digits. The Mini-Assembler 
interprets addresses the same way the Monitor does: if an address has fewer 
than four digits, the Mini-Assembler adds leading zeros; if the address has 
more than four digits, then it uses only the last four. 

Dollar Signs: In this manual, dollar signs ($)in addresses signify that 
the addresses are in hexadecimal notation. They are ignored by the 
Mini-Assembler and may be omitted when typing programs. 

Chapter 5: Using the Monitor 

II 

• • • 
II 
II 
II 

• 
II 
II 
II 

• 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

There is no syntactical distinction between the absolute and zero-page 
addressing modes. If you give an instruction to the Mini-Assembler that can 
be used in both absolute and zero-page mode, the Mini-Assembler assembles 
that instruction in absolute mode if the operand for that instruction is 
greater than $FF, and it assembles it in zero-page mode if the operand is less 
than $0100. 

Instructions in accumulator mode and implied addressing mode need no 
operands. 

Branch instructions, which use the relative addressing moae, require the 
target address of the branch. The Mini-Assembler calculates the relative 
distance to use in the instruction automatically. If the target address is more 
than 127locations distant from the instruction, the Mini-Assembler sounds 
a bell (beep), displays a caret ( ~) under the target address, and does not 
assemble the line. 

If you give the Mini-Assembler the mnemonic for an instruction and an 
operand, and the addressing mode of the operand cannot be used with the 
instruction you entered, the Mini-Assembler will not accept the line. 

Summary of Monitor Commands 

Here is a summary of the Monitor commands, showing the syntax for each 
one. 

Examining Memory 

{adrsl 

(adrsl f.{adrs2} 

I RETURN I 

Summary of Monitor Commands 

Examines the value contained in 
one location. 
Displays the values contained in all 
locations between {adrsl} and 
{adrs2}. 
Displays the values in up to eight 
locations following the last opened 
location. 

125 



Changing the Contents of Memory II 
jadrsf:jval) jval) ... Stores the values in consecutive 

memory locations starting at jadrsJ . II 
:jvai JjvaiJ ... Stores values in memory starting at 

the next changeable location. • 
Moving and Comparing -jdestJ < istartJ .jendJM Copies the values in the range 

jstart j.jend) into the range II beginning at jdestj . 
jdest j < jstartJ.jend JV Compares the values in the range 

jstart j.jendf to those in the range II beginning at jdestJ. 

The Examine Comma,nd II 
Displays the locations where the • I CONTROL H:IJ 
contents of the 65C02's registers are 
stored and opens them for changing. -The Search Command 

jvaiJ < jstartJ. jendJS Displays the address of the first II 
occurrence of jval f in the specified 
range beginning at jstartj. II 

Cassette Tape Commands II 
jstartf.jend jW Writes the values in the memory 

range jstartj.jendJ onto tape, II preceded by a ten-second leader. 
jstartJ.jendJR Reads values from tape, storing 

II them in memory beginning at Jstart] 
and stopping at jendJ. Prints ERR if 
an error occurs. 

II 
II 

126 Chapter 5: [sing the ~1onitor 

II 



I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

Miscellaneous Monitor Commands 

N 
I CONTROL I[[) 

I CONTROL I[£] 

jval j+jvalj 

/slot! I coNTROL I [f] 

I CONTROL IIYJ 

Sets inverse display mode. 
Sets normal display mode. 
Enters the language currently active 
(usually Applesoft). 
Returns to the language currently 
active (usually Applesoft). 
Adds the two values and prints the 
hexadecimal result. 
Subtracts the second value from the 
first and prints the result. 
Diverts output to the device whose 
interface card is in slot number 
Jslot/. lf jslotj=O, accepts input from 
the keyboard. 
Jumps to the machine-language 
subroutine at location $3F8. 

Running and Listing Programs 

jadrsiG 

JadrsJL 

Summary of ~1 •nitor Commands 

Transfers control to the machine 
language program beginning at 
Jadrsj. 
Disassembles and displays 20 
instructions, starting at jadrsj. 
Subsequent LIST commands 
display 20 more instructions. 

121 



The Mini-Assembler 

Original lie I The Mini-Assembler is available on an original Apple lie only when 
Integer BASIC is active. See the earlier section "The Mini-Assembler." 

F666G Invokes the Mini-Assembler on the 
original Apple lie. 

$jcommandJ 

$FF69G 

I RETURN I 

Chapter 5: Using the Monitor 

Invokes the Mini-Assembler on the 
enhanced Apple lie. 
Executes a Monitor command from 
the Mini-Assembler on the original 
Apple lie. 
Leaves the Mini-Assembler on the 
original Apple lie. 
Leaves the Mini-Assembler on the 
enhanced Apple lie. 

II 
II 

II 

II 
II 

• 
II 
II 
II 
II 

II 

II 
II 
II 
II 



I 
Chapter 6 Programming for Peripheral Cards 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 129 



130 

The seven expansion slots on the Apple lie's main circuit board are used for 
installing circuit cards containing the hardware and firmware needed to 
interface peripheral devices to the Apple Ile. These slots are not simple I/ 0 
ports; peripheral cards can access the Apple lie's data, address, and control 
lines via these slots. The expansion slots are numbered from 1 to 7, and 
certain signals, described below, are used to select a specific slot. 

II Plus, II The Apple II and Apple II Plus have an eighth expansion slot: slot 
number 0. On those models, slot 0 is normally used for a language card or 
a ROM card; the functions of the Apple II Language Card are built into the 
main circuit board of the Apple Ile. 

Interrupt support on the enhanced Apple Ile requires that special attention 
be paid to cards designed to be in slot 3. A description of what you need to 
watch for is given at the end of this chapter. 

Original lie I The interrupt support built into the enhanced Apple Ile is an enhanced 
and expanded version of the interrupt support in the original Apple lie. 

Peripheral-Card Memory Spaces 

Because the Apple lie's microprocessor does all of its I/0 through memory 
locations, portions of the Apple lie's memory space have been allocated for 
the exclusive use of the cards in the expansion slots. In addition to the 
memory locations used for actual I/0, there are memory spaces available 
for programmable memory (RAM) in the main memory and for read-only 
memory (ROM or PROM) on the peripheral cards themselves. 

The memory spaces allocated for the peripheral cards are described below. 
Those memory spaces are used for small dedicated programs such as IjO 
drivers. Peripheral cards that contain their own driver routines in firmware 
like this are called intelligent peripherals. They make it possible for you to 
add peripheral hardware to your Apple lle without having to change your 
programs, provided that your programs follow normal practice for data 
input and output. 

Peripheral-Card l/0 Space 

Each expansion slot has the exclusive use of sixteen memory locations for 
data input and output in the memory space beginning at location $0090. 
Slot 1 uses locations $0090 through $C09F, slot 2 uses locations $COAO 
through $COAF, and so on through location $GOFF, as shown in Table 6-1. 

Chapter 6: Programming for Peripheral Cards 

II 

-
II 

II 
II 
II 

II 
II 
II 

II 

II 
II 

II 



I 
I Signals for which the active state is low are 

marked with a prime ('). 

I 

I 

I 

I 

I 

I 

I 
I 
I 

I 
I 

These memory locations are used for different I/0 functions, depending on 
the design of each peripheral card. Whenever the Apple lie addresses one of 
the sixteen I/0 locations allocated to a particular slot, the signal on pin 41 
of that slot, called DEVICE SELECT', switches to the active (low) state. 
This signal can be used to enable logic on the peripheral card that uses the 
four low-order address lines to determine which of its sixteen I/0 locations 
is being accessed. 

Table 6-1. Peripheral-Card 1/0 Memory Locations Enabled by DEVICE SELECT' 

Slot Locations Slot Locations 

$C090-$C09F 5 $CODO-SCODF 

2 $COAO-$COAF 6 $COEO-$COEF 

3 $COBO-$COBF 7 $COFO-$COFF 

4 $COCO-$COCF 

Peripheral-Card ROM Space 

One 256-byte page of memory space is allocated to each accessory card. 
This space is normally used for read-only memory (ROM or PROM) on the 
card with driver programs that control the operation of the peripheral 
device connected to the card. 

The page of memory allocated to each expansion slot begins at location 
$Cn00, where n is the slot number, as shown in Table 6-2 and Figure 6-3. 
Whenever the Apple lie addresses one of the 256 ROM memory locations 
allocated to a particular slot, the signal on pin 1 of that slot, called I/0 
SELECT', switches to the active (low) state. This signal enables the ROM or 
PROM devices on the card, and the eight low-order address lines determine 
which of the 256 memory locations is being accessed. 

Peripheral-Card Memory Spaces 131 



Table 6-2. Peripheral-Card ROM Memory Locations Enabled by 1/0 SELECT' 

Slot Locations Slot Location 

SC100-$ClFF 5 SC500-$C5FF 

2 SC200-$C2FF 6 SC600-$C6FF 

3 SC300-SC3FF 7 $C700-SC7FF 

4 SC400-SC4FF 

Expansion ROM Space 

In addition to the small areas of ROM memory allocated to each expansion 
slot, peripheral cards can use the 2K-byte memory space from $C800 to 
SCFFF for larger programs in ROM or PROM. This memory space is called 
expansion ROM space. (See the memory map in Figure 6-3). Besides being 
larger, the expansion ROM memory space is always at the same locations 

See the section "I/O Programming regardless of which slot is occupied by the card, making programs that 
Suggestions" later in this chapter. occupy this memory space easier to write. 

This memory space is available to any peripheral card that needs it. More 
than one peripheral card can have expansion ROM on it, but only one of 
them can be active at a time. 

Each peripheral card that uses expansion ROM must have a circuit on it to 
enable the ROM. The circuit does this by a two-stage process: first, it sets a 
flip-flop when the 1/0 SELECT' signal, pin 1 on the slot, becomes active 
(low); second, it enables the expansion ROM devices when the IjO 
STROBE' signal, pin 20 on the slot, becomes active (low). Figure 6-1 shows 
a typical ROM-enable circuit. 

The 1/0 SELECT' signal on a particular slot becomes active whenever the 
Apple lie's microprocessor addresses a location in the 256-byte ROM address 
space allocated to that slot. The 1/0 STROBE' signal on all of the expansion 
slots becomes active (low) when the microprocessor addresses a location in 
the expansion-ROM memory space, $C800-$CFFF. The 1/0 STROBE' signal 
is used to enable the expansion-ROM devices on a peripheral card. (See 
Figure 6-1.) 

Important! If there is an 80-column text card installed in the auxiliary slot, some of 
the functions normally associated with slot 3 are performed by the 
80-column text card and the built-in 80-column firmware. With the 
80-column text card installed, the l/0 STROBE' signal is not available on 
slot 3, so firmware in expansion ROM on a card in slot 3 will not run. 

132 Chapter 6: Programming for Peripheral Cards 

II 
II 
II 

II 
II 
II 

II 

II 
II 
II 
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

Figure 6-1. Expansion ROM Enable Circuit 

( 1/0 SELECT'}-- s ENABLE I 
Latch 

( $CFFF' )-- R 2K Byte 

(1/0 STROBE') 
ENABLE 2 

ROM 

(Address ' AO to AIO 
..1 

A program on a peripheral card can get exclusive use of the expansion ROM 
memory space by referring to location $CFFF in its initialization phase. This 
location is special: all peripheral cards that use expansion ROM must 
recognize a reference to $CFFF as a signal to reset their ROM-enable 
flip-flops and disable their expansion ROMs. Of course, doing so also 
disables the expansion ROM on the card that is about to use it, but the next 
instruction in the initialization code sets the flip-flop in the expansion-ROM 
enable circuit on the card. 

A card that needs to use the expansion ROM space must first insert its slot 
address ($Cn) in $07F8 before it refers to $CFFF. This allows interrupting 
devices to reenable the card's expansion ROM after interrupt handling is 
finished. Once its slot address has been inserted in S07F8, the peripheral 
card has exclusive use of the expansion memory space and its program can 
jump directly into the expansion ROM. 

Figure 6-2. ROM Disable Address Decoding 

Peripheral·Card Ylemory Spaces 

To RESET, ROM Enable 
Flip-Flop 

133 



13-1 

As described earlier, the expansion-ROM disable circuit resets the enable 
flip-flop whenever the 65C02 addresses location SCFFF. To do this, the 
peripheral card must detect the presence of $CFFF on the address bus. You 
can use the 1/0 STROBE' signal for part of the address decoding, since it is 
active for addresses from SC800 through SCFFF. If you can afford to 
sacrifice some ROM space, you can simplify the address decoding even 
further and save circuitry on the card. For example, if you give up the last 
256 bytes of expansion ROM space, your disable circuit only needs to detect 
addresses of the form $CFxx, and you can use the minimal disable-decoding 
circuitry shown in Figure 6-2. 

Important! Applesoft addresses two locations in the $CFxx space, thereby resetting 
the enable flip-flop. If your peripheral device is going to be used with 
Applesoft programs, you must either use the full address decoding or else 
enable the expansion ROM each time it is needed. 

Peripheral-Card RAM Space 

There are 56 bytes of main memory allocated to the peripheral cards, eight 
bytes per card, as shown in Table 6-3. These 56 locations are actually in the 
RAM memory reserved for the text and low-resolution graphics displays, 
but these particular locations are not displayed on the screen and their 
contents are not changed by the built-in output routine COUTl. Programs in 
ROM on peripheral cards use these locations for temporary data storage. 

Table 6-3. Peripheral-Card RAM Memory Locations 

Slot Number Base 
Address 1 2 3* 4 5 6 

$0478 $0479 $047 A $0478* $047C $0470 S047E 

$04F8 

$0578 

S05F8 

$0678 

S06F8 

S04F9 

$0579 

$05F9 

$0679 

$06F9 

$04FA 

$057A 

S05FA 

S067A 

$06FA 

S04F8* S04FC 

S0578* S057C 

S05F8* S05FC 

S0678* S067C 

S06FB* S06FC 

$04FO S04FE 

S0570 S057E 

$05FO S05FE 

$0670 $067E 

$06FO $06FE 

$0778 50779 $077 A $0778* $077C $0770 $077E 

S07F8 $07F9 $07F A $07FB* $07FC $07FO $07FE 

• If there is a card in the auxiliary slot, it takes over these locations. 

Chapter 6: Programming for Peripheral Cards 

7 

S047F 

S04FF 

S057F 

$05FF 

$067F 

$06FF 

$077F 

$07FF 

II 

II 
II 

II 

II 
II 

II 
II 
II 
II 
II 

II 
II 

II 
II 
II 

-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

A program on a peripheral card can use the eight base addresses shown in 
the table to access the eight RAM locations allocated for its use, as shov.'TI in 
the next section, "I/O Programming Suggestions." 

.6. Warning I The Apple lie firmware sets the value of $04FB to $FF on a reset, even if 
there is no 80-colwun card installed. 

1/0 Programming Suggestions 

A program in ROM on a peripheral card should work no matter which slot 
the card occupies. If the program includes a jwup to an absolute location in 
one of the 256-byte memory spaces, then the card will work only when it is 
plugged into the slot that uses that memory space. If you are writing the 
program for a peripheral card that will be used by many people, you should 
avoid placing such a restriction on the use of the card. 

Important! To function properly no matter which slot a peripheral card is installed 
in, the program in the card's 256-byte memory space must not make any 
absolute references to itself. Instead of using jwup instructions, you 
should force conditions on branch instructions, which use relative 
addressing. 

The first thing a peripheral-card used as an 1/0 device must do when called 
is to save the contents of the Apple lie's microprocessor's registers. 
(Peripheral cards not being used as 1/0 devices do not need to save the 
registers.) The device should save the register's contents on the stack, and 
restore them just before returning control to the calling program. If there is 
RAM on the peripheral card, the information may be stored there. 

Most single-character 1/ 0 is done via the microprocessor's accumulator. A 
character being output U1rough your subroutine will be in Lite a(;cumulaLor 
with its high bit set when your subroutine is called. Likewise, if your 
subroutine is performing character input, it must leave the character in the 
accumulator with its high bit set when it returns to the calling program. 

1/0 Programming Suggestions 135 



136 

Finding the Slot Number With ROM Switched In 

The memory addresses used by a program on a peripheral card differ 
depending on which expansion slot the card is installed in. Before it can 
refer to any of those addresses, the program must somehow determine the 
correct slot number. One way to do this is to execute a JSR Uump to 
subroutine) to a location with an RTS (return from subroutine) instruction 
in it, and then derive the slot number from the return address saved on the 
stack, as shown in the following example. 

PHP 
SE I 
J SR K~OWNRTS 

TSX 
LOA $1l 10B , X 
A~O 1$ 1l F 
PLP 

s a ve stat us 
inhib i t in t errupts 
-> a known RT S ins t r uc t ion .. . 
.. . that you se t up 
get hi g h byt e of t he . . . 
. .. retu rn addr ess from st a c k 
l ow- order di g it is slo t no . 
re s t o re s t atu s 

The slot number can now be used in addressing the memory allocated to the 
peripheral card, as shown in the next section. 

l/0 Addressing 

Once your peripheral-card program has the slot number, the card can use 
the number to address the 1/0 locations allocated to the slot. Table 6-4 
shows how these locations are related to sixteen base addresses starting 
with $C080. Notice that the difference between the base address and the 
desired 1/0 location has the form SnO, where n is the slot number. Starting 
with the slot number in the accumulator, the following example computes 
this difference by four left shifts, then loads it into an index register and 
uses the base address to specify one of sixteen 1/0 locations. 

ASL 
ASL 
ASL 
ASL 
TAX 
LOA $Cil 8 1l ,X 

get n i n to .. . 

.. . hi gh- o rder nybble ... 

... o f index reg is t e r . 
load from f i rst 1/ 0 locat ion 

Chapter 6: Programming for Peripheral Cards 

II 
II 
II 
II 
II 

II 

II 
II 
II 

II 
II 
II 
II 
II 
II 



I Selecting Your Target: You must make sure that you get an 
appropriate value into the index register when you address 1/0 locations 

I this way. For example, starting with 1 in the accumulator, the 
instructions in the above example perform an LOA from location $C090, 
the first 1/0 location allocated to slot 1. If the value in the accumulator 

I See the section "S£'tting Bank Switches" in had been 0, the LOA would have accessed location SC080, thereby setting 
Chapter .j for more information. the soft switch that selects the second bank of RAM at location SOOOO 

and enables it for reading. 

I Table 6-4. Peripheral-Card 1/0 Base Addresses 

I Base Connector Number 
Address 2 3 4 5 6 7 

I 
SC080 $C090 SCOAO SCOBO scoco SCODO SCOEO $COFO 

$C081 SC091 .$COAl SCOBl SCOCl SCOOt SCOEl SCOFl 

I 
$C082 SC092 $COA2 SCOB2 SCOC2 SCOD2 SCOE2 SCOF2 

$C083 SC093 SCOA3 SCOB3 SCOC3 SCOD3 SCOE3 SCOF3 

I 
SC084 SC094 SCOA4 SCOB4 SCOC4 SCOD4 SCOE4 SCOF4 

SC085 SC095 SCOA5 SCOB5 SCOC5 SCOD5 $COE5 $COF5 

I 
SC086 SC096 SCOA6 SCOB6 SCOC6 SCOD6 $COE6 $COF6 

SC087 $C097 SCOA7 SCOB7 SCOC7 SCOD7 SCOE7 $COF7 

I 
$C088 SC098 $COA8 $COB8 SCOC8 SCOD8 SCOE8 SCOF8 

$C089 SC099 $COA9 $COB9 SCOC9 SCOD9 SCOE9 $COF9 

I 
$C08A SC09A SCOAA $COBA SCOCA SCODA SCOEA SCOFA 

SC08B SC09B SCOAB SCOBB SCOCB SCODB SCOEB SCOFB 

I 
SC08C SC09C SCOAC SCOBC scocc SCODC SCOEC SCOFC 

SC08D SC09D SCOAD SCOBD SCOCD SCODD SCOED SCOFD 

I 
SC08E SC09E SCOAE SCOBE SCOCE SCODE SCOEE SCOFE 

SC08F SC09F $COAF SCOBF SCOCF SCODF SCOEF SCOFF 

I 

l/0 Programming Suggestions 1:37 



£.Warning 

138 

RAM Addressing 

A program on a peripheral card can use the eight base addresses shown in 
Table 6-3 to access the eight RAM locations allocated for its use. The 
program does this by putting its slot number into the Y index register and 
using indexed addressing mode with the base addresses. The base 
addresses can be defined as constants because they are the same no matter 
which slot the peripheral card occupies. 

If you start with the correct slot number in the accumulator (by using the 
example shown earlier), then the following example uses all eight RAM 
locations allocated to the slot. 

TA Y 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 

$9478,Y 
S84F8,Y 
S8578,Y 
SB SF8 ,V 
$0678 , v 
S86F8, Y 
$8 778,V 
$9 7F8,V 

You must be very careful when you haYe your peripheral-card program 

II 
II 
II 
II 
II 
II 

II 
store data at the base-address locations themselves since they are II 
temporary storage locations; the RAM at those locations is used by the 
disk operating system. Always store the first byte of the ROM location of 
the expansion slot that is currently active (SCn) in location $7F8, and the II 
first byte of the ROM location of the slot holding the controller card for 
the startup disk drive in location $5F8. 

Chapter 6: Programming for Peripheral Cards 

II 
II 
II 
II 
II 
II 
II 



I 
I 
I 
I See "The Standard 1/0 Links" in Chapter 3. 

I 
I 

GOUT! and BASICOUT are described in 

I 
Chapter 3. 

I 
I 
I 
I 
I KEYI and BASICIN are described in 

Chapter 3. 

Changing the Standard 1/0 Links 

There are two pairs of locations in the Apple lie that are used for controlling 
character input and output. They are called the 1/0 links. In a Apple lie 
running without a disk operating system, the I/0 links normally contain the 
starting addresses of the standard input and output routines-KEYIN and 
COUTl if the 80-column firmware is not active, BASI GIN and BASI GOUT if 
the 80-column is active. If a disk operating system is running, one or both of 
the links will hold the addresses of the operating system input and output 
routines. 

The link at locations $36 and $37 (decimal 54 and 55) is called CSW, for 
character outp1tt switch. Individually, location $36 is called CSWL (CSW 
Low) and location $37 is called CSWH (CSW High). CSW holds the starting 
address of the subroutine the Apple Ile is currently using for 
single-character output. This address is normally $FDFO, the address of 
routine COUTl, or $C307, the address of BASICOUT. 

When you issue a PR#n from BASIC or an n I c o NTROL 1-0 from the 
Monitor, the Apple lie changes this link address to the first address in the 
ROM memory space allocated to slot number n. That address has the form 
SCnOO. Subsequent calls for character output are thus transferred to the 
program on the peripheral card. That program can use the instruction 
sequences given above to find its slot number and use the I/0 and RAM 
locations allocated to it. When it is finished, the program can execute an 
RTS (return from subroutine) instruction to return control to the calling 
program, or jump to the output routine COUTl at location $F'DFO to display 
the output character (which must be in the accumulator) on the screen, 
then let COUTl return to the calling program. 

A similar link at locations $38 and $39 (decimal 56 and 57) is called KSW, 
for keyboard input switch. lndivionally, location $3R is called KSWL (for 
KSW low) and location $39 is called KSWH (KSW high). KSW holds the 
starting address of the routine currently being used for single-character 
input. This address is normally SFDlB, the starting address of KEYIN, or 
$C305, the address of BASICIN. 

1/0 Programming Suggrstions 139 



Important! 

See the ProDOS Technical Reference 
Manual for more about using link 
addresses. 

Refer to the section on input and output 
link registers in the DOS Programmer's 
Manual and the ProDOS Technical 
Reference Manual for further details. 

1-10 

When you issue an IN#n command from BASIC or an n 1 coNTROL rCRJ from 
the Monitor, the Apple lie changes this link address to SCnOO, the beginning 
of the ROM memory space that is allocated to slot number n. Subsequent 
calls for character input are thus transferred to the program on the 
accessory card. That program can use the instruction sequences given 
above to find its slot number and use the 1/0 and RAM locations allocated 
to it. The program should put the input character, with its high bit set, into 
the accumulator and execute an RTS instruction to return control to the 
program that requested input. 

When a disk operating system (Pro DOS or DOS 3.3) is running, one or both 
of the standard 1/0 links hold addresses of the operating system's input and 
output routines. The operating system has internal locations that hold the 
addresses of the character input and output routines that are currently 
active. 

If a program that is running with ProOOS or DOS 3.3 changes the 
standard link addresses, either directly or via IN# and PR# commands, 
the operating system is disconnected. 

To avoid disconnecting the operating system each time a BASIC program 
initiates 1/0 to a slot, it should use either an IN# or aPR# command from 
inside a PRINT statement that starts with a Control·D character. For 
assembly-language programs, there is a DOS 3.3 subroutine call to use when 
changing the link addresses. After changing CSW or KSW, the program calls 
this subroutine at location $03EA ( decimall002). The subroutine transfers 
the link address to a location inside the operating system and then restores 
the operating system address in the standard link location. 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Other Uses of 1/0 Memory Space II 
The portion of memory space from location SCOOO through $CFFF (decimal 
49152 through 53247) is normally allocated to 1/0 and program memory on -
the peripheral cards, but there are two other functions that also use this 
memory space: the built-in self-test firmware and the 80-column display II 
firmware. The soft switches that control the allocation of this memory 
space are described in the next section. 

II 
II 

Chapter 6: Programming for Peripheral Cards 



II 
II 
I 

I 

I 

I 
I 

I 

I 

I 
II 

I 

II 
I 

Figure 6-3. I/0 Memory Map 

CFFF 

C800 

C700 

C600 

C500 

C400 

C300 

C200 

ClOO 

cooo 

Internal 
Peripheral 

ROM and 
Expansion 

ROM 
Peripheral 

Expansion ROM 

Slot 7 ROM 

Slot 6 ROM 

Slot 5 ROM 

Slot 4 ROM 

Slot 3 ROM Internal ROM 

Slot 2 ROM 

Slot l ROM 

Internal Soft Switches and Peripheral 1/0 

Switching 1/0 Memory 

Internal 

ROM 

The built-in firmware uses two soft switches to control the allocation of the 
1/0 memory space from $COOO to $CFFF. The locations of these soft 
switches, SLOTCXROM and SLOTCSROM, are given in Table 6-5. 

Note: Like the display switches described in Chapter 2, these soft 
switches share their locations with the keyboard data and strobe 
functions. The switches are activated only by writing, and the states can 
be detem1ined only by reading, as indicated in Table 6-5. 

Other Cses of 1/0 Memory Space 141 



1-12 

Table 6-5. l/0 Memory Switches 

Location 
Name Function Hex Decimal Notes 

SLOTC3ROM Slot ROM at $C300 $COOB 49163 -16373 Write 
Internal ROM at $C300 $COOA 49162 -16374 Write 
Read SLOTC3ROM switch $C017 49175 -16361 Read 

SLOTCXROM Slot ROM at $Cx00 $C006 49159 -16377 Write 
Internal ROM at $Cx00 SC007 49158 -16378 Write 
Read SLOTCXROM switch SC015 49173 -16363 Read 

When SLOTC3ROM is on, the 256-byte ROM area at $C300 is available to a 
peripheral card in slot 3, which is the slot normally used for a terminal 
interface. If a card is installed in the auxiliary slot when you turn on the 
power or reset the Apple Ile, the SLOT3ROM switch is turned off. Turning 
SLOTC3ROM off disables peripheral-card ROM in slot 3 and enables the 
built-in 80-column firmware , as shown in Figure 6-3. The 80-colurnn 
firmware is assigned to slot-3 address space because slot 3 is normally used 
with a terminal interface, so the built-in firmware will work with programs 
that use slot 3 this way. 

The bus and 1/0 signals are always available to a peripheral card in slot 3, 
even when the 80-column hardware and firmware are operating. Thus it is 
always possible to use this slot for any 1/0 peripheral that does not have 
built-in firmware. 

When SLOTCXROM is active (high), the 1/0 memory space from SClOO to 
$C7FF is allocated to the expansion slots, as described previously. Setting 
SLOTCXROM inactive (low) disables the peripheral-card ROM and selects 
built-in ROM in all of the I/0 memory space except the part from $COOO to 
$COFF (used for soft switches and data I/0), as shown in Figure 6-3. In 
addition to the 80-column firmware at $C300 and $C800, the built-in ROM 
includes firmware that performs the self-test of the Apple lie's hardware. 

Note: Setting SLOTCXROM low enables built-in ROM in all of the 1/0 
memory space (except the soft-switch area), including the $C300 space, 
which contains the 80-column firmware. 

Chapter 6: Programming for Peripheral Cards 

II 
II 
II 

II 
II 
II 
II 
II 
II 

II 
II 
II 

II 
II 
II 



I 

I 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

Original lie 

For more information about the SC300 
fi rmware, see the Monitor ROM listing in 
Appendix I of this manual. Especially note 
the ponion from SC300 through SC420. 

Developing Cards for Slot 3 

In the original Apple lie firmware, the internal slot 3 firmware was 
always switched in if there was an 80-column card (either lK or 64K) in 
the auxiliary slot. This means that peripheral cards with their own ROM 
were effectively switched out of slot 3 when the system was turned on. 

With the enhanced Apple lie Monitor ROM, the rules are different. A 
peripheral card in slot 3 is now switched in when the system is started up or 
when 1 RESET 1 is pressed if the card's ROM has the following ID bytes: 

$C305 = $38 
$C307 = $18 

The enhanced Apple lie firmware requires that interrupt code be present in 
the SC3 page (either external or internal). A peripheral card in slot 3 must 
have the following code to support interrupts. After this segment, the code 
continues execution in the internal ROM at SC400. 

SC3F 4 : I RQDOtiE STA SC081 ; Read ROM , wr i te RAM 
JM P SFC7A ; Jump t o SF8 ROM 

IRQ 
BIT $C015 ; 5 1 0 t o r int er na l ROM 
STA SCil ll7 ;for c e in i n terna l ROM 

When programming for cards in slot 3: 

o You must support the AUXMOVE and XFER routines at $C312 and 
$C314. 

o Don't use unpublished entry points into the internal $Cn00 firmware, 
because there is no guarantee that they will stay the same. 

o If your peripheral card is a character 1/0 device, you must follow the 
Pascall.l firmware protocol, described in the next section. 

Developing Cards for Slot 3 143 



Pascal 1.1 Firmware Protocol 

The Pascall.l firmware protocol was originally developed to be used with 
Apple Pascall.l programs. The protocol is followed by all succeeding 
versions of Apple II Pascal, and can be used by programmers using other 
languages as well. 

The Pascall.l fi rmware protocol provides Apple lie programmers with 

o a standard way to uniquely identify new peripheral cards 
o a standard way to address the firmware routines in peripheral cards. 

Device Identification 

The Pascall.l firmware protocol uses four bytes near the beginning of the 
peripheral card's firmware to identify the peripheral card. 

Address Value 

SCs05 S38 (like the old Apple II Serial Interface Card) 
SCs07 Sl8 (like the old Apple II Serial Interface Card) 
SCsOB SOl (the generic signature of new cards) 
SCsOC Sci (the de,·ice signature) 

The first hexadecimal digit, c, of the device signature byte identifies the 
device class and the second hexadecimal digit, i, of the device signature 
byte is a unique identifier for the card, used by some manufacturers for 
their cards. Table 6-6 shows the device class assignments. 

Table 6·6. Peripheral-Card De\' ice-Class Assignment 

Digit Device Class 

$0 Reser\'ed 
$1 Printer 
$2 Joystick or other X· Y input de\' ice 
$3 Serial or parallrl 1/0 card 
$4 ~1odem 
S5 Sound or speech de\'ice 
S6 Clock 
S7 Mass storage device 
S8 80-colurnn card 
S9 l\et \\'Ork or bus interface 
SA Special purpose (none of the above) 
SB-P Reser\'ed for future expansion 

Chaptrr 6: Programming fnr Pf'ri pheral Card~ 

II 

II 
II 
II 

II 
II 

II 
II 

-
II 
II 
II 
II 
II 

II 



I 

I 

I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

I 

For example, the Apple II Super Serial Card has a device signature of $31: 
the 3 signifies that it is a serial or parallel 1/0 card, and the 1 is the 
low-order digit supplied by Apple Technical Support. 

Although version 1.1 of Pascal ignores the device signature, applications 
programs can use them to identify specific devices. 

l/0 Routine Entry Points 

Indirect calls to the firmware in a peripheral card are done through a 
branch table in the card's firmware. The branch table of 1/0 routine entry 
points is located near the beginning of the CsOO address space (s being the 
slot number where the peripheral card is installed). 

The branch table locations that Pascall.l firmware protocol uses are as 
follows: 

Address Contains 

$CsOD 
$CsOE 
$CsOF 
$Cs10 
$Csll 
$Cs12 
$Cs13 

Initialization routine offset (required) 
Read routine offset (required) 
Write routine offset (required) 
Status routine offset (required) 
$00 if optional offsets follow; non-zero if not 
Control routine offset (optional) 
Interrupt handling routine offset (optional) 

Notice that $Cs11 contains $00 only if the control and interrupt handling 
routines are supported by the firmware. (For example, the SSC does not 
support these two routines, and so location $Csll contains a non-zero 
firmware instruction.) Apple II Pascall.O and 1.1 do not support control and 
interrupt requests, but such requests are implemented in Pascal1.2 and 
later versions and in ProOOS. 

Pasrall.l Firmware Protocol 145 



For more about interrupt support in 
Pro DOS, see the ProDOS Technical 
Reference Manual. 

For information about interrupt handling 
with Apple Pascall.2, see the Device and 
Interrupt Support Tools Manual which 
is part of the Apple II Device Support Tools 
package (A2W0014). 

146 

Table 6-7 gives the entry point addresses and the contents of the 65C02 
registers on entry to and on exit from Pascall.l I/0 routines. 

Table 6-7. IjO Routine Offsets and Registers Under Pascall.l Protocol 

Addr. 

$Cs0D 

$CsOE 

$CsOF 

$Cs l0 

Offset for 

Initialization 
On entry 
On exit 

Read 
On entry 
On exit 

Write 
On entry 
On exit 

Status 
On entry 
On exit 

X Register YRegister 

$Cs $sO 
Error code (unchanged) 

$Cs ~sO 
Error code (unchanged) 

$Cs $sO 
Error code (unchanged) 

$Cs $sO 
Error code (changed) 

Interrupts on the Enhanced Apple lie 

A Register 

(unchanged) 

Character read 

Char. to write 
(unchanged) 

Request (0 or 1) 
(unchanged) 

The original Apple lie offered little firmware support for interrupts. The 
enhanced Apple lie's firmware provides improved interrupt support, very 
much like the Apple He's interrupt support. Neither machine disables 
interrupts for extended periods. 

Interrupts work on enhanced Apple lie systems with an installed 80-column 
text card (either lK or 64K) or a peripheral card with interrupt-handling 
ROM in slot 3. Interrupts are easiest to use with Pro DOS and Pascall.2 
because they have interrupt support built in. DOS 3.3 has no built-in 
interrupt support. 

The new interrupt handler operates like the Apple Ilc interrupt handler, 
using the same memory locations and operating protocols. The main 
purpose of the interrupt handler is to support interrupts in any memory 
configuration. This is done by saving the machine's state at the time of the 
interrupt, placing the Apple in a standard memory configuration before 
calling your program's interrupt handler, then restoring the original state 
when your program's interrupt handler is finished. 

Chapter 6: Programming for Peripheral Cards 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



I 

I 

I 
I 

I 
I 
I 

I 
I 

I 
I 

I 

I 

What Is an Interrupt? 

An interrupt is a hardware signal that tells the computer to stop what it is 
currently doing and devote its attention to a more important task. Print 
spooling and mouse handling are examples of interrupt use, things that 
don't take up all the time available to the system, but that should be taken 
care of promptly to be most useful. 

For example, the Apple Ile mouse can send an interrupt to the computer 
every time it moves. If you handle that interrupt promptly, the mouse 
pointer's movement on the screen will be smooth instead of jerky and 
uneven. 

Interrupt priority is handled by a daisy-chain arrangement using two pins, 
INT IN and !NT OUT, on each peripheral-card slot. As described in 
Chapter 7, each peripheral card breaks the chain when it makes an 
interrupt request. On peripheral cards that don't use interrupts, these pins 
should be connected together. 

The daisy chain gives priority to the peripheral card in slot 7: if this card 
opens the connection between INT IN and !NT OUT, or if there is no card in 
this slot, interrupt requests from cards in slots 1 through 6 can't get 
through. Similarly, slot 6 controls interrupt requests (IRQ) from slots 1 
through 5, and so on down the line. 

When the IRQ' line on the Apple fie's microprocessor is activated (pulled 
low), the microprocessor transfers control through the vector in locations 
$FFFE-$FFFF. This vector is the address of the Monitor's interrupt handler, 
which determines whether the request is due to an external IRQ or a BRK 
instruction and transfers control to the appropriate routine via the vectors 
stored in memory page 3. The BRK vector is in locations $03F0-$03F1 and 
Pro DOS uses the IRQ vector in locations $03FE-$03FF. (See Table 4-11.) 
The Monitor normally stores the address of its reset routine in the IRQ 
vector; you should substitute the address of your program's 
interrupt-handling routine. 

Apple Pascal doesn't use the BRK vector at $03F0-$03F1, but it does use the 
IRQ vector at $03FE-$03FF. 

Interrupts on the Enhanced Apple lie 147 



148 

Interrupts on Apple II Series Computers 

The interrupt handler built in to the enhanced Apple lie's firmware saves 
the contents of the accumulator on the stack. (The original Apple lie saves 
the contents of the accumulator at location $45.) DOS 3.3, as well as the 
Monitor, rely on the integrity of location $45, so this change lets both 
DOS 3.3 and the Monitor continue to work with active interrupts on the 
enhanced Apple lie. 

Original lie Since the built-in interrupt handler on the original Apple Ile uses location 
$45 to save the contents of the accumulator, the operating system fails 
when an interrupt occurs under DOS 3.3 on the original Apple lie. 

If you want to write programs that use interrupts while running on the 
original Apple lie, Apple II Plus, or Apple II, you must use either ProDOS 
or Apple II Pascal1.2 (or later versions). Both these operating systems 
give you full interrupt support, even though these versions of the Apple II 
don't include interrupt support in their firmware. (Versions of Pascal 
before 1.2 do not work with interrupts enabled on an original Apple lie.) 

Some other manufacturer's hardware, such as co-processor cards, don't 
work properly in an interrupting environmenllf you are trying to develop 
an application and encounter this problem, check with the manufacturer of 
the card to see if a later version of the hardware or its software will operate 
properly with interrupts active. You may not be able to use interrupts if an 
interrupt-tolerant version isn't available. 

Interrupts are effective only if they are enabled most of the time. Interrupts 
that occur while interrupts are disabled will not be serviced. 

Pascal, DOS 3.3, and Pro DOS tum off interrupts while performing disk 
operations because of the critical timing of disk read and write operations. 
Some peripheral cards used in the Apple lie disable interrupts while reading 
and writing. 

Original lie Although the enhanced Apple lie firmware never disables interrupts 
during screen handling, the original Apple lie periodically turns 
interrupts off while doing 80-column screen operations. The effect is most 
noticeable while the screen is scrolling. 

Chapter 6: Programming for Peripheral Cards 

II 

II 
II 
II 

II 

-
II 
II 
II 
II 

II 
II 
II 

II 



I Important! 

I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 

Important! 

I 
See the section "Developing Cards for 

I Slot 3" earlier in this chapter. 

I 
I 
I 

Don't use PR#6 to restart your Apple lie while running ProDOS with 
interrupts enabled since PR#6 doesn't disable interrupts. If you try it, 
ProDOS will fail as it starts up since its interrupt handlers aren't yet set 
up. If you have to restart, use I CONTROL H RESET I, or make sure that your 
program disables interrupts before it ends. 

Rules of the Interrupt Handler 

Unlike the Apple llc, the enhanced Apple lie's interrupt handling firmware 
is not always switched in. Here are the reasons why this is so and the 
implications that necessarily follow. 

There is no part of memory in the Apple lie that is always switched in. 
Thus, there is no location for an interrupt handler that works for all 
memory configurations. However, the $C3 page of firmware is present on all 
systems that have 80-column text cards in their auxiliary slots, so it was 
selected as the starting location of the built-in interrupt handling routine. 

There are two factors that determine if the $C3 firmware is switched in and 
therefore whether or not interrupts will be usable: 

o Is there an 80-column text card in the auxiliary slot? 
o If not, is there a peripheral card in slot 3 with built-in ROM with bytes 

$C305 = $38 and SC307 = 518? 

The Apple lie's memory is switched according to the following rules at both 
powerup and reset: 

o If there is a ROM card in slot 3, but no text card in the auxiliary slot, the 
firmware on the ROM card is switched in. This is necessary for Pascal to 
work. 

o If there is a text card in the auxiliary slot, but no ROM card in slot 3, the 
internal $C3 firmware is switched in. 

o If there is both a text card in the auxiliary slot and a ROM card in slot 3, 
the firmware on the ROM card is switched in. 

These rules mean that systems without 80-column text cards in the 
auxiliary slot do not have their internal $C3 firmware switched in. Such 
systems cannot handle interrupts or breaks (the software equivalent of 
interrupts). An application program must swap in the $C3 firmware both 
on initialization and after reset to make interrupts function properly on 
such a machine configuration. (ProDOS versions 1.1 and later do this for 
you during startup.) 

Interrupts on the Enhanced Apple lie 149 



Another implication of the decision to have interrupt code in the $C3 page II 
affects the shared $C800 space in the Apple lie. When the $C3 page is 
referenced, the lie hardware automatically switches in its own SC800 II space. When the interrupt handler finishes, it restores the SC800 space to 
the original owner using MSLOT (S07F8). This means that it is very 
important for a peripheral card to place its slot address in MSLOT to support II interrupts while code is being executed in its SC800 space. 

Interrupt Handling on the 65C02 and 6502 II 
There are three possible con<litions that will allow interrupts on the 65C02 II and 6502: 

o The IRQ line on the microprocessor is pulled low after a CLI instruction 

II has been used (interrupts are not masked). This is the standard 
technique that devices use when they need imme<liate attention. 

o The microprocessor executes a break instruction (BRK = opcode $00). 

II o A non-maskable interrupt (NMI) occurs. The microprocessor services 
this interrupt whether or not the CLI instruction has been used. An NMI 
is completely independent of the interrupts discussed in this manual. 

II The microprocessor saves the current program counter and status byte on 
the stack when an interrupt occurs and then jumps to the routine whose 
address is stored in SFFFE and SFFFF. The sequence of operations -performed by the microprocessor is as follows: 

1. It finishes executing the current instruction if an IRQ is encountered. (If 

II a BRK instruction is encountered, the current instruction is already 
finished.) 

2. It pushes the high byte of the program counter onto the stack. 
II 3. It pushes the low byte of the program counter onto the stack. 

4. It pushes the processor status byte onto the stack. 
5. It executes a JMP ($FFFE) instruction. II 
The Interrupt Vector at $FFFE 

II Three separate regions of memory contain address $FFFE in an Apple lie 
with an Extended 80·Column Text Card: the built-in ROM, the 
bank-switched memory in main RAM, and the bank-switched memory in II auxiliary RAM. The vector at $FFFE in the ROM points to the built-in 
interrupt handling routine. You must copy the ROM's interrupt vector to the 
other banks yourself if you plan to use interrupts with the bank-switched II memory switched in. 

II 
150 Chapter 6: Programming for Peripheral Cards 



I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

Interrupt handler installation is described 
in the Pro DOS TPchnical RejerencP 
Manual and the De11ice and Interrupt 
Support Tools Manual, which is part of 
the Apple lie Device Support Tools package 
(A2W0014). 

The Built-in Interrupt Handler 

The enhanced Apple lie's built-in interrupt handler records the computer's 
current memory configuration, then sets the computer's memory 
configuration to a standard state so that your program's interrupt handler 
always begins running in the same memory configuration. 

Next the built-in interrupt handler checks to see if the interrupt was caused 
by a break instruction, and handles it as just described under "Interrupt 
Handling on the 65C02 and 6502." If it was not a break, it passes control to 
the interrupt handling routine whose address is stored at $3FE and $3FF of 
main memory. Normally, that would be the operating system's interrupt 
handler, unless you have installed one of your own. 

After your program's interrupt handler returns (with an RTI), the built-in 
interrupt handler restores the memory configuration, and then does another 
RTI to return to where it was when the interrupt occurred. Figure 6-4 
illustrates this entire process. Each of these steps is explained later in this 
chapter. 

Figure 6-4. Interrupt-Handling Sequence 

Interrupted 
Program Processor Built-in Handler 

Program _ ___,.,.~ Push Address 
Push Status 
JMP ($FFFE) -----.. Save old and set new 

memory configuration 

User's Handler 

If BRK, then go to break 
handler (SFA47). ------.. 

Our interrupt? 
NO: Push Address 

Push Status 
JMP (S3FE) ~Handle interrupt 

YES: Handle it. 

Restore memory...._ RTI 
configuration 

Pull Status .,.,.t--- RTI 
Program ...... 1---- Pull Address 

Interrupts on the Enhanced Apple lie 151 



152 

Saving the Apple lie's Memory Configuration 

The built-in interrupt handler saves the Apple lie's memory configuration 
and then sets it to a known state according to these rules: 

o Text Page 1 is switched in (PAGE2 off) so that main screen holes are 
accessible if 80STORE and PAGE2 are on. 

o Main memory is switched in for reading (RAMRD off). 
o Main memory is switched in for writing (RAMWRT off). 
o $DOOO-$FFFF ROM is switched in for reading (RDLCRAM off). 
o Main stack and zero page are switched in (ALTZP off). 
o The auxiliary stack pointer is preserved, and the main stack pointer is 

restored. (See the next section, "Managing Main and Auxiliary Stacks.") 

Important! I Because main memory is switched in, all memory addresses used later in 
this chapter are in main memory unless otherwise specified. 

Managing Main and Auxiliary Stacks 

Apple has adopted a convention that allows the Apple lie to be run with two 
separate stack pointers since the Apple lie with an Extended 80-Column 
Text Card has two stack pages. Two bytes in the auxiliary stack page are 
used as storage for inactive stack pointers: $0100 for the main stack pointer 
when the auxiliary stack is active, and $0101 for the auxiliary stack pointer 
when the main stack is active. 

When a program using interrupts switches in the auxiliary stack for the 
first time, it must place the value of the main stack pointer at $0100 (in the 
auxiliary stack) and initialize the auxiliary stack pointer to $FF (the top of 
the stack). When it subsequently switches from one stack to the other, it 
must save the current stack pointer before loading the pointer for the other 
stack. 

The current stack pointer is stored at $0101, and the main stack pointer is 
retrieved from $0100 when an interrupt occurs while the auxiliary stack is 
switched in. Then the main stack is switched in for use. The stack pointer 
is restored to its original value after the interrupt has been handled. 

Chapter 6: Programming for Peripheral Cards 

II 
II 
II 

• 
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 



I 

I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 

Important! 

• 

The built-in XFER routine does not support this procedure. If you are 
using XFER to swap stacks, you must use code like the following to set up 
the stack pointers and stack . 

• Th is example transfers control from a code segment running 
• using the main stack to one running using the aux stack . 
• 

1 
2 
3 
4 
5 
6 
7 
8 
9 
11! 

11 
12 
13 
14 
15 
16 
17 

5 
6 
7 

16 

XFERALT PHP 
PLA 
SEI 
TSX 
STA SETALTZP 
STX $11!8 
LOX $181 
TXS 
PHA 
PLP 

LOA #OESTL 
STA S3EO 
LOA #OESTH 
STA S3EE 
SEC/CLC 
BIT RTS 
JMP XFER 

STX $181 
LOX $188 
STA SETSTOZP 

CLV 

;preserve interrupt status in A 

;disable interrupts 
;save main stack pointer at $188 
;and swap zero pages 

;now restore aux stack pointer 

;and interrupt status 

;set destination address 

;set direction of transfer 
;V•1 for alt zero page <RTS•$68) 
;do transfer 

To transfer control the other direction, change the following lines 

;V•8 for main zp 

Interrupts on the Enhanced Apple lie 153 



154 

The User's Interrupt Handler at $3FE 

If your program has an interrupt handler, it must place the entry address of 
that handler at $03FE. After it sets the machine to a standard state, the lie's 
internal interrupt handler transfers control to the routine whose address is 
in the vector at S03FE. 

It is very important for a peripheral card to place its slot address in MSLOT 
to support interrupts whenever it is executing code in its $C800 space. 
Whenever the $C3 page is referenced, the lie automatically switches in its 
own $C800 ROM space. When the interrupt handler finishes, it restores the 
$C800 space to the original owner using MSLOT ($07F8). 

.A Warning Be careful to install interrupt handlers according to the rules of the 
operating system that you are using. Placing the address of your 
program's interrupt handler at S03FE disconnects the operating system's 
interrupt handler. 

The S03FE interrupt handler must do these things: 

1. Verify that the interrupt came from the expected source. 
2. Handle the interrupt as desired. 
3. Clear the appropriate interrupt soft switch. 
4. Return with an RTI. 

II 
II 

-
I 

• 
II 
II 

-Here are some things to remember if you are dealing with programs that II 
must run in an interrupt enviroment: 

o There is no guaranteed maximum response time for interrupts because 
the system may be doing a disk operation that lasts for several seconds. -

o Once the built-in interrupt handler is called, it takes at least 150 to 
200 microseconds for it to call your interrupt handling routine. After your 
routine returns, it takes 40 to 140 microseconds to rest.ore memory and II 
return to the interrupted program. 

o If memory is in the standard state when the interrupt occurs, the total 
overhead for interrupt processing is about 150 microseconds less than if II 
memory is in the worst state. (The worst state is one that requires the 
most work to set up for: 80STORE and PAGE2 on; auxiliary memory 
switched in for reading and writing; bank-switched memory page 2 in the II 
auxiliary bank switched in for reading and writing; and internal $Cn00 
ROM switched in). 

o Interrupt overhead will be greater if your interrupt handler is installed II 
through an operating system's interrupt dispatcher. The length of delay 
depends on the operating system, and on whether the operating system 
dispatches the interrupt to other routines before calling yours. I 

II 
Chapter 6: Programming for Peripheral Cards 

II 



I 
I 
I 

I 
I 

I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

Handling Break Instructions 

The 65C02 treats a break instruction (BRK, opcode $00) just like a hardware 
interrupt. After the interrupt handler sets the memory configuration, it 
checks to see if the interrupt was caused by a break (bit 4 of the status byte 
is set), and if it was, jumps to a break handling routine. This routine saves 
the state of the computer at the time of the break as shown in Table 6-8. 

Table 6-8. BRK Handler Information 

Information Location 

Program counter (low byte) $3A 
Program counter (high byte) $3B 
Encoded memory state $44 
Accumulator $45 
X register $46 
Y register $47 
Status register $48 

Finally the break routine jumps to the routine whose address is stored at 
$3FO and $3Fl. 

The encoded memory state in location $44 is interpreted as shown in 
Table 6-9. 

Table 6-9. Memory Configuration Information 

Bit 7 = 1 
Bit 6 = 1 
Ritfi = 1 
Bit 4 = 1 
Bit 3 = 1 
Bit 2 = 1 
Bit 1 = 1 
Bit 0 = 1 

if auxiliary zero page and auxiliary stack are switched in 
if 80STORE and PAGE2 both on 
if auxiliary RAM switched in for reading 
if auxiliary RAM switched in for writing 
if bank-switched RAM being read 
if bank-switched $0000 Page 1 switched in and RAMREAD set 
if bank-switched $0000 Page 2 switched in and RAMREAD set 
if internal Cs ROM was switched in (lie only) 

Interrupts on the Enhanced Apple lie 155 



156 

Interrupt Differences: Apple lie Versus Apple lie 

If you are writing software for both the Apple lie and the Apple lie, you II 
should know that there are several important differences between the 
interrupts on the enhanced Apple lie and those on the Apple lie. They are 

o In the lie ROM, $FFFE points to $C803; in the lie ROM, to $C3FA. To II 
ensure that the proper interrupt vectors are placed into the Language 
Card RAM space, always copy them to the RAM from the ROM. (When 
you initialize built-in devices on the lie, these vectors are automatically • 
updated). 

o There is no shared $C800 ROM in the lie. Peripheral cards share this 
space in the lie. Thus it is crucial that the slot address of the peripheral -
card using the SC800 space is stored in MSLOT ($07F8). When the 
interrupt handler goes to the internal $C3 space, the lle hardware 
switches in its own SC800 space. When the interrupt handler finishes, it II 
restores the SC800 space w the slot whose address is in MSLOT. 

o The Ilc SC800 space is always switched in. The enhanced lie's interrupt II 
handler preserves the state of the SC8QO-space switch and then switches 
in the slot l/0 space. This means that when restoring the state of the 
system using the value placed in location $44, break handling routines must 
restore one more value on the Apple lie than on the Apple lie. • 

Chapter 6: Programming for Peripheral Cards 

II 

-
II 
II 
II 

• 
II 
II 
II 



Chapter 7 Hardware Implementation 

I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 

157 



158 

Most of this manual describes functions-what the Apple lie does. This 
chapter, on the other hand, describes objects: the pieces of hardware the 
Apple lie uses to carry out its functions. If you are designing a piece of 
peripheral hardware to attach to the Apple lie, or if you just want to know 
more about how the Apple lie is built, you should study this chapter. 

Environmental Specifications 

The Apple Ile is quite sturdy when used in the way it was intended. 
Table 7-1 defines the conditions under which the Apple Ile is designed to 
function properly. 

Table 7-1. Summary of Environmental Specifications 

Operating Temperature: 

Relative Humidity: 

Line Voltage: 

oo to 45° C (30° to 115° F) 

5% to85% 

107 to 132 V AC 

You should treat the Apple Ile with the same kind of care as any other 
electrical appliance. You should protect it from physical violence, such as 
hammer blows or defenestration. You should protect the mechanical 
keyboard and the electrical connectors inside the case from spilled liquids, 
especially those with dissolved contaminants, such as coffee and cola 
drinks. 

In normal operation, enough air flows through the slots in the case to keep 
the insides from getting too hot, although some of the parts inside the 
Apple lie normally get rather warm to the touch. If you manage to overheat 
your Apple lie, by blocking the ventilation slots in the top and bottom for 
example, the first symptom will be erratic operation. The memory devices 
in the Apple lie are sensitive to heat: when they get too hot, they 
occasionally change a bit of data. The exact result depends on what kind of 
program you are running and on just which bit of memory is affected. 

Chapter 7: Hardll'are Implementation 

II 
II 
II 
II 
II 
II 

• • 
II 
II 
II 
II 
II 
I 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

The Power Supply 

The power supply in the Apple lie operates on normal household AC power 
and provides enough low-voltage electrical power for the built-in electronics 
plus a full complement of peripheral cards, including disk controller cards 
and communications interfaces. The basic specifications of the power 
supply are listed in Table 7-2. 

The Apple lie's power cord should be plugged into a three-wire 110- to 
120-volt outlet. You must connect the Apple lie to a grounded outlet or to a 
good earth ground. Also, the line voltage must be in the range given in 
Table 7-2.lf you try to operate the Apple lie from a power source with more 
than 140 volts, you will damage the power supply. 

Table 7-2. Power Supply Specifications 

Line voltage: 

Maximum power consumption: 

Supply voltages: 

Maximum supply currents: 

Maximum case temperature: 

107V to 132V AC 

60W continuous 
80W intermittent* 

+5V ±3% 
+11.8V ±6% 
-5.2V ± 10% 
-12V ± 10% 

+5V: 2.5A 
+ 12V: 1.5A continuous, 

2.5A intermittent* 
-5V:250mA 
-12V: 250mA 

55° C (130° F) 

• Intermittent operation: The Apple lie can safely operate for up to twenty minutes at the 
higher load if followed by at least ten minutes at normal load. 

The Power Supply !59 



A Warning 

160 

The Apple lie uses a custom-designed switching-type power supply. It is 
small and lightweight, and it generates less heat than other types of power 
supplies do. 

The Apple He's power supply works by converting the AC line voltage to DC 
and using this DC voltage to power a variable-frequency oscillator. The 
oscillator drives a small transformer with many separate windings to 
produce the different voltages required. A circuit compares the voltage of 
the +5-volt supply with a reference voltage and feeds an error signal back 
to the oscillator circuit. The oscillator circuit uses the error signal to control 
the frequency of its oscillation and keep the output voltages in their normal 
ranges. 

The power supply includes circuitry to protect itself and the other 
electronic parts of the Apple lie by turning off all four supply voltages 
whenever it detects one of the following malfunctions: 

o any supply voltage short-circuited to ground 
o the power-supply cable disconnected 
o any supply voltage outside the normal range 

Any time one of these malfunctions occurs, the protection circuit stops the 
oscillator, and all the output voltages drop to zero. After about half a second, 
the oscillator starts up again. If the malfunction is still occurring, the 
protection circuit stops the oscillator again. The power supply will continue 
to start and stop this way until the malfunction is corrected or the power is 
turned off. 

If you think the power supply is broken, do not attempt to repair it 
yourself. The power supply is in a sealed enclosure because some of its 
circuits are connected directly to the power line. Special equipment is 
needed to repair the power supply safely, so see your authorized Apple 
dealer for service. 

Chapter 7: Hardware Implementation 

II 

--
II 
II 
II 

• 
II 

• 
II 
II 
II 
II 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

See Appendix A for a description of the 
65C02's instruction set and electrical 
characteristics. 

The Power Connector 

The cable from the power supply is connected to the main circuit board by a 
six-pin connector with a strain-relief catch. The connector pins are 
identified in Table 7-3 and Figure 7-13d. 

Table 7-3. Power Connector Signal Specifications 

Pin Number Name Description 

1,2 Ground Common electrical ground 

3 +5V +5V from power supply 

4 +l2V + l2V from power supply 

5 -l2V -12V from power supply 

6 -5V -5V from power supply 

The 65C02 Microprocessor 

The enhanced Apple He uses a 65C02 microprocessor as its central 
processing unit (CPU). The 65C02 in the Apple Ile runs at a clock rate of 
1.023 MHz and performs up to 500,000 eight-bit operations per second. You 
should not use the clock rate as a criterion for comparing different types of 
microprocessors. The 65C02 has a simpler instruction cycle than most other 
microprocessors and it uses instruction pipelining for faster processing. The 
speed of the 65C02 with a lMHz clock is equivalent to other types of 
microprocessors with clock rates up to 2.5MHz. 

The 65C02 has a sixteen-bit address bus, giving it an address space of 64K 
(2 to the sixteenth power or 65536) bytes. The Apple lle uses special 
techniques to address a total of more than 64K: see the sections 
"Bank-Switched Memory" and "Auxiliary Memory and Firmware" in 
Chapter 4 and the section "Switehing 1/0 Memory" in Chapter 6. 

The 65C02 Ylicroprocessor 161 



162 

Table 7-4. 65C02 Microprocessor Specifications 

Type: 

Register Complement: 

Data Bus: 

Address Bus: 

Address Range: 

Interrupts: 

Operating Voltage: 

Power Dissipation: 

65C02 Timing 

65C02 

8-bit Accumulator (A) 
8-bit Index Registers (X,Y) 
8-bit Stack Pointer (S) 
8-bit Processor Status (P) 
16-bit Program Counter (PC) 

Eight bits wide 

Sixteen bits wide 

65,536 (64K) 

IRQ (maskable) 
NMI (non-maskable) 
BRK (programmed) 

+5V (± 5%) 

5 mW (at 1 MHz) 

The operation of the Apple lie is controlled by a set of synchronous timing 
signals, sometimes called clock signals. In electronics, the word clock is 
used to identify signals that control the timing of circuit operations. The 
Apple lie doesn't contain the kind of clock you tell time by, although its 
internal timing is accurate enough that a program running on the Apple lie 
can simulate such a clock. 

The frequency of the oscillator that generates the master tinting signal is 
14.31818 MHz. Circuitry in the Apple lie uses this clock signal, called 14M, 
to produce all the other timing signals. These timing signals perform two 
major tasks: controlling the computing functions, and generating the video 
display. The timing signals directly involved with the operation of the 
65C02 (and 6502 on the original version of the Apple lie) are described in 
this section. Other timing signals are described in this chapter in the 
sections "RAM Addressing," "Video Display Modes," and "The Expansion 
Slots." 

The main 65C02 timing signals are listed in Table 7-5, and their 
relationships are diagrammed in Figure 7- 1. The 65C02 clock signals are ¢1 
and ¢0, complementary signals at a frequency of 1.02273 MHz. The 
Apple lie signal named ¢0 is equivalent to the signal called ¢2 in the 
hardware manual. (It isn't identical: it's a few nanoseconds early.) 

Chapter 7: Hardware Implementation 

II 
II 
II 
II 
II 
II 

II 
II 
II 

• 
II 
II 

II 



I 

I 

I 

I 

I 

I 
I 
I 

I 

I 
I 

I 

I 
I 
I 
I 
I 

Table 7-5. 65C02 Timing Signal Descriptions 

Signal 
Name Description 

14M Master oscillator, 14.318 MHz; also 80-column dot clock 

VID7M 

Q3 

Intermediate timing signal and 40-column dot clock 

Intermediate timing signal, 2.045 MHz with asymmetrical duty 
cycle 

¢0 

cpl 

Phase 0 of 65C02 clock, 1.0227 MHz; complement of cp 1 

Phase 1 of 65C02 clock, 1.0227 MHz; complement of ¢0 

Figure 7-1. 65C02 Timing Signals 

14M 

7M 

CPU Phase 

ADDR 
f--140 ns (Max.) 30 ns (Min.)--11----

From 65C02 I 60 ns (Min.)-, I 
100 ns (Max.)--j 1- L.J I-

DATA From 65C02 (Write) X ><==: 
50 ns (Min.) --j f--

DATA to 65C02 (Read) ====><=>C 
10 ns (Min.) --JI-

The 65C02 Microprocessor 163 



The operations of the 65C02 are related to the clock signals in a simple way: II 
address during ¢1, data during ¢0. The 65C02 puts an address on the 
address bus during ¢1. This address is valid not later than 140 nanoseconds II after ¢1 goes high and remains valid through all of ¢0. The 65C02 reads or 
writes data during ¢0. If the 65C02 is writing, the read/write signal is low 
during ¢0 and the 65C02 puts data on the data bus. The data is valid not II later than 75 nanoseconds after ¢0 goes high. If the 65C02 is reading, the 
read/write signal remains high. Data on the data bus must be valid no later 
than 50 nanoseconds before the end of ¢0. II 
The Custom Integrated Circuits II 
Most of the circuitry that controls memory and I/0 addressing in the II Apple He is in three custom integrated circuits called the Memory 
Management Unit (MMU), the Input/ Output Unit (IOU), and the 
Programmed Array Logic device (PAL). The soft switches used for II controlling the various I/0 and addressing modes of the Apple lie are 
addressable flags inside the MMU and the IOU. The functions of these two 
devices are not as independent as their names suggest; working together, II they generate all of the addressing signals. For example, the MMU generates 
the address signals for the CPU, while the IOU generates similar address 
signals for the video display. II 
The Memory Management Unit II 
The circuitry inside the MMU implements these soft switches, which are 
described in the indicated chapters in this manual: II o Page 2 display (PAGE2): Chapter 2 
o High resolution mode (HIRES): Chapter 2 

II o Store to SO-column card (80STORE): Chapter 2 
o Select bank 2: Chapter 4 
o Enable bank-switched RAM: Chapter 4 II o Read auxiliary memory (RAMRD): Chapter 4 
o Write auxiliary memory (RAMWRT): Chapter 4 

II o Auxiliary stack and zero page ( AL TZP): Chapter 4 
o Slot ROM for connector #3 (SLOTC3ROM): Chapter 6 
o Slot ROM in I/0 space (SLOTCXROM): Chapter 6 

II 
II 

I!H Chapter 7: Hardware Implementation II 



I 
I 
I 

Figure 7-2. The MMU Pinouts 

I GND I \.._,/ 40 A1 
AO 2 39 A2 

I cf>O 
Q3 

PRAS' 

3 38 
4 37 
5 36 

A3 
A4 
A5 

RAO 6 35 A6 

I RA1 
RA2 

7 34 
8 33 

A7 
AS 

RA3 9 32 A9 

I 
RA4 
RA5 
RA6 

10 31 
11 30 
12 29 

AlO 
All 
A12 

RA7 13 28 A13 

I R/W' 
INH' 

DMA' 

I4 27 
15 26 
16 25 

A14 
A15 
+5V 

I 
EN80' 
KBD' 

ROMEN2' 

17 24 
18 23 
19 22 

Cxxx 
RAMEN' 
R/W' 245 

ROMEN1' 20 21 MD7 

I 
I 

I 

I 

I 
I 

The 64K dynamic RAMs used in the Apple lie use a multiplexed address, as 
described later in this chapter in the section "Dynamic-RAM Timing." The 
MMU generates this multiplexed address for memory reading and writing 
by the 65C02 CPU. The pinouts and signal descriptions of the MMU are 
shown in Figure 7-2 and Table 7-6. 

Table 7-6. The MMU Signal Descriptions 

Pin 
Number Name Description 

1 GND Power and signal common 
2 AO 65C02 address input 
3 r/>0 Clock phase 0 input 
4 Q3 Timing signal input 
5 PRAS' Memory row-address strobe 
6-13 RAO-RA7 Multiplexed address output 
14 R/ W' 65C02 read-write control signal 
15 INH' Inhibits main memory (tied to +5 V) 
16 DMA' Controls data bus for DMA transfers 
17 EN80' Enables auxiliary RAM 
18 KBD' Enables keyboard data bits 0-6 
19 ROMEN2' Enables ROM (tied to ROMENl') 
20 ROMENl' Enables ROM (tied to ROMEN2') 
21 MD7 State of MMU flags on data bus bit 7 
22 RW'245 Controls 7 4LS245 data-bus buffer 
23 RAMEN' Enables main RAM 
24 Cxxx Enables peripheral-card memory 
25 +5V Power 
26-40 A15-A1 65C02 address input 

The Custom Integrated Circuits 165 



too 

The Input/Output Unit 

The circuitry inside the Input/Output Unit (IOU) implements the following 
soft switches, all described in Chapter 2 in this manual: 

o Page 2 display (PAGE2) 
o High resolution mode (HIRES) 
o Text mode (TEXT) 
o Mixed mode (MIXED) 
o 80-column display (80COL) 
o Text display mode select (ALTCHAR) 
o Any-key-down 
o Annunciators 
o Vertical blanking (VBL) 

The 64K dynamic RAMs used in the Apple lie require a multiplexed 
address, as described later in this chapter in the section "Dynamic-RAM 
Timing." The IOU generates this multiplexed address for the data transfers 
required for display and memory refresh during clock phase 1. The way this 
address is generated is described later in this chapter in the section "Display 
Address Mapping." The pinouts and signal descriptions for the IOU are 
shown in Figure 7-3 and Table 7-7. 

Chapter 7: Hardware Implementation 

II 

-
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 
II 
II 
II 



I Figure 7-3. The IOU Pinouts Table 7-7. The IOU Signal Descriptions 

I GND 
GR 

1 '-./ 40 
2 39 

Pin 
HO Number Name Description 
SYNC' 

I 
SEGA 
SEGB 

vc 
BOVID' 

3 38 
4 37 
5 36 
6 35 

WNDW' 1 GND Power and signal common 
CLRGAT' 2 GR Graphics mode enable 
RAlO' 3 SEGA In text mode, works with VC (see pin 5) and SEGB 
RA9' to determine character row address 

I 
CASSO 

SPKR 
MD7 
ANO 

I ANI 
AN2 
AN3 

I 
R/ W' 

RESET' 
(n.c.) 

7 34 
8 33 
9 32 

10 31 
11 30 
12 29 
13 28 
14 27 
15 26 
16 25 

VID6 4 SEGB In text mode, works with VC (see pin 5) and SEGA; 
VID7 in graphics mode, selects high-resolution when low, 
KSTRB 
AKD 

low-resolution when high 

COxx 5 vc Display vertical counter bit: in text mode, SEGA, 

A6 SEGB and VC determine which of the eight rows of 
+5V a character's dot pattern to display; in 
Q3 low-resolution, selects upper or lower block defined 
¢0 by a byte. 
PRAS' 6 80VlD' 80-column video enable 

RAO 

I RAl 
RA2 
RA3 

17 24 
18 23 
19 22 
20 21 

RA7 7 CASSO Cassette output signal 
RA6 8 SPKR Speaker output signal 
RA5 9 MD7 Internal IOU flags for data bus (bit 7)3 
RA4 10-13 ANO-AN3 Annunciator outputs 

I 14 R/ W' 65C02 read-write control signal 
15 RESET' Power on and reset output 
16 Nothing is connected to this pin. 

I 
17-24 RAO-RA7 Video refresh multiplexed RAM address (phase 1) 
25 PRAS' Row-address strobe (phase 0) 
26 ct>O Master clock phase 0 

I 
27 Q3 Intermediate timing signal 
28 +5V Power 
29 A6 Address bit 6 from 65C02 
30 COxx 1/0 address enable 

I 31 AKD Any-key-down signal 
32 KSTRB Keyboard strobe signal 
33,34 VIDD7,VIDD6 Video display data bits 

I 
35,36 RA9',RA10' Video display control bits 
37 CLRGAT' Color-burst gate (enable) 
38 WNDW' Display blanking signal 

I 
39 SYNC' Display synchronization signal 
40 HO Display horizontal timing signal (low bit of 

character counter) 

I 
I 

I 
I The Custom Integrated Circuits 167 



Figure 7-4. The PAL Pinouts 

14M 1 \.J 20 +5V 
7M 2 19 PRAS' 

3.58M 3 18 (n.c.) 
HO 4 17 PCAS' 

VID7 5 16 Q3 
SEGB 6 15 ¢0 

GR 7 14 c/Jl 
RAMEN' 8 13 VlD7M 

80VlD' 9 12 LOPS' 
GND 10 11 ENTMG 

168 

The PAL Device 

A Programmed Array Logic device, type PAL 16R8, generates several timing 
and control signals in the Apple lie. These signals are listed in Table 7-8. 
The PAL pinouts are given in Figure 7-4. 

Table 7-8. The PAL Signal Descriptions 

Pin 
Number Name Description 

1 14M 14.31818 MHz master timing signal 
2 7M 7.15909 MHz timing signal 
3 3.58M 3.579545 MHz timing signal 
4 HO Horizontal video timing signal 
5 VID7 Video data bit 7 
6 SEGB Video timing signal 
7 GR Video display graphics-mode enable 
8 RAMEN' RAM enable (CAS enable) 
9 80VID' Enable 80-column display mode 
10 GND Power and signal common 
11 ENTMG Enable master timing 
12 LOPS' Video shift-register load enable 
13 VID7M Video dot clock, 7 or 14 MHz 
14 c/Jl Phase 1 system clock 
15 ¢0 Phase 0 system clock 
16 Q3 Intermediate timing and strobe signal 
17 PCAS' RAM column-address strobe 
18 N.C. (This pin is not used.) 
19 PRAS' RAM row-address strobe 
20 +5V Power 

Memory Addressing 

The Apple He's microprocessor can address 65,536locations. The Apple lie 
uses this entire address space, and then some: some areas in memory are 
used for more than one function. The following sections describe the 
memory devices used in the Apple lie and the way they are addressed. 
Input and output also use portions of the memory address space; refer to the 
section UPeripheral-Card Memory Spaces" in Chapter 6 for information. 

Chapter i: Hardware Implementation 

II 
II 

-
II 

II 
II 
II 

II 
II 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 7-5. The 2364 ROM Pinouts 

+5V 1 '-' 2S +5V 
Al2 2 27 +5V 
A7 3 26 +5V 
A6 4 25 AS 
A5 5 24 A9 
A4 6 23 All 
A3 7 22 ROMENx' 
A2 s 21 AIO 
AI 9 20 CE' 
AO 10 19 MD7 

MOO 11 IS MD6 
MDI 12 17 MD5 
MD2 13 16 MD4 
GND 14 15 MD3 

Figure 7-6. The 2316 ROM Pinouts 

A7 1 '-' 24 +5V 
A6 2 23 AS 
A5 3 22 A9 
A4 4 21 +5V 
A3 5 20 KBD' 
A2 6 19 GND 
AI 7 IS ENKBD' 
AO s 17 (n.c.) 

MOO 9 16 MD6 
MDI 10 15 MD5 
MD2 11 14 MD4 
GND 12 13 MD3 

Figure 7-7. The 2333 ROM Pinouts 

VID4 1 '-' 24 +5V 
VID3 2 23 VID5 
VID2 3 22 RA9 
VIOl 4 21 GR 
VIOO 5 20 WNDW' 

vc 6 19 RAlO 
SEGB 7 IS ENVID' 
SEGA s 17 07 

DO 9 16 06 
Dl 10 15 05 
02 11 14 04 

GND 12 13 03 

ROM Addressing 

In the Apple lie, the following programs are permanently stored in two type 
2364 8K by 7-bit ROMs (read-only memory): 

o Applesoft editor and interpreter 
o System Monitor 
o 80-column display firmware 
o self-test routines 

These two ROMs are enabled by two signals called ROMENl and ROMEN2. 
The ROM enabled by ROMENl, sometimes called the Diagnostics ROM, 
occupies the memory address space from $C100 to $DFFF. The address 
space from $C300 to $C3FF and from $C800 to $CFFF contains the 
80-column display firmware. Those address spaces are normally assigned to 
ROM on a peripheral card in slot 3; for a discussion of the way the 
80-column firmware overrides the peripheral card, see the section "Other 
Uses of 1/0 Memory Space" in Chapter 6. The pinouts of the 2364 ROMs are 
given in Figure 7-5. 

Two other portions of the Diagnostics ROM, addressed from $C100 to $C2FF 
and from SC400 to SC7FF, contain the built-in self-test routines. These 
address spaces are normally assigned to the peripheral cards; when the 
self-test programs are running, the peripheral cards are disabled. 

The remainder of the Diagnostics ROM, addressed from $DOOO to $DFFF, 
contains part of the Applesoft BASIC interpreter. 

The ROM enabled by ROMEN2, sometimes called the Monitor ROM, 
occupies the memory address space from $EOOO to $FFFF. This ROM 
contains the rest of the Applesoft interpreter, in the address space from 
SEOOO to 5EFFF, and the Monitor subroutines, from SFOOO to $FFFF. 

The other ROMs in the Apple He are a type 2316 ROM used for the keyboard 
character decoder and a type 2333 ROM used for character sets for the video 
display. This 2333 ROM is rather large because it includes a section of 
straight-through bit-mapping for the graphics modes. This way, graphics 
display video can pass through the same circuits as text without additional 
switching circuitry. The 2316's pinout is given in Figure 7-6, and the 2333's 
pinout is given in Figure 7-7. 

~emory Addressing 169 



Figure 7-8. The 64K RAM Pinouts 

+5V 
MDx 

R/ W' 
RAS' 
RA7 
RA5 
RA6 
+5V 

170 

1 
2 
3 
4 
5 
6 
7 
8 

\...../ 16 
15 
14 
13 
12 
11 
10 
9 

GND 
CAS' 
MDx 
RA1 
RA4 
RA3 
RA2 
RAO 

RAM Addressing 

The RAM (programmable) memory in the Apple lie is used both for program 
and data storage and for the video display. The areas in RAM that are used 
for the display are accessed both by the 65002 microprocessor and by the 
video display circuits. In some computers, this dual access results in 
addressing conflicts (cycle stealing) that can cause temporary dropouts in 
the video display. This problem does not occur in the Apple Ile, thanks to 
the way the microprocessor and the video circuits share the memory. 

The memory circuits in the Apple Ile take advantage of the two-phase 
system clock described earlier in this chapter in the section "65002 Timing" 
to interleave the microprocessor memory accesses and the display memory 
accesses so that they never interfere \vith each other. The microprocessor 
reads or writes to RAM only during ¢0, and the display circuits read data 
only during ¢1. 

Dynamic-RAM Refreshment 

The image on a video display is not permanent; it fades rapidly and must be 
refreshed periodically. To refresh the video display, the Apple lie reads the 
data in the active display page and sends it to the display. To prevent 
visible flicker in the display, and to conform to standard practice for 
broadcast video, the Apple lie refreshes the display sixty times per second. 

The dynamic RAM devices used in the Apple lie also need a kind of refresh, 
because the data is stored in the form of electric charges which diminish 
with time and must be replenished every so often. The Apple lie is designed 
so that refreshing the display also refreshes the dynamic RAMs. The next 
few paragraphs explain how this is done. 

-
II 

II 

• 
II 

II 
II 
II 

The job of refreshing the dynamic RAM devices is minimized by the II 
structure of the devices themselves. The individual data cells in each RAM 
device are arranged in a rectangular array of rows and columns. When the 
device is addressed, the part of the address that specifies a row is presented -
first, followed by the address of the column. Splitting information into parts 
that follow each other in time is called multiplexing. Since only half of the 
address is needed at one time, multiplexing the address reduces the number II 
of pins needed for connecting the RAMs. 

Different manufacturers' 64K RAMs have cell arrays of either 128 rows by II 
512 columns or 256 rows by 256 columns. Only the row portion of the 
address is used in refreshing the RAMs. 

Chapter 7: Hardware Implementation 

II 

-
II 



II 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 

Now consider how the display is refreshed. As described later in this 
chapter in the section "The Video Counters," the display circuitry generates 
a sequence of 8,192 memory addresses in high-resolution mode; in text and 
low-resolution modes, this sequence is the 1,024 display-page addresses 
repeated eight times. The display address cycles through this sequence 
60 times a second, or once every 17 milliseconds. The way the low-order 
address lines are assigned to the RAMs, the row address cycles through all 
256 possible values once every two milliseconds. (See Figure 7-9.) This 
more than satisfies the refresh requirements of the dynamic RAMs. 

Table 7-9. RAM Address Multiplexing 

Mux'd Row Column 
Address Address Address 

RAO AO A9 

RAl Al A6 

RA2 A2 AlO 

RA3 A3 All 

RA4 A4 Al2 

RA5 A5 Al3 

RA6 A7 Al4 

RA7 A8 Al5 

Dynamic-RAM Timing 

The Apple lie's microprocessor clock runs at a moderate speed, about 
1.023 MHz, but the interleaving of CPU and display cycles means that the 
RAM is being accessed at a 2 MHz rate, or a cycle time of just under 
500 nanoseconds. Data for the CPU is strobed by the falling edge of ¢0, and 
display data is strobed by the falling edge of ¢1, as shown in Figure 7-9. 

Memory Addressing 171 



Figu1·e 7-9. RAM Timing Signals • 
14M -I -7M 

I -Q3 

I 
</>0 -I 

I -</>1 I Video Phase 

I • 
RAS' • I I I 
CM' I I I i I I i I I II 

RAO-RA7 -d6-&b-cx= II 

MDO-MD7 d d II 

II 

• 
II 
II 

-J-? I ~ Chapter 7: Hardware Implementation II 



I 
I 

I 

I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

The RAM timing looks complicated because the RAM address is 
multiplexed, as described in the previous section. The MMU takes care of 
multiplexing the address for the CPU cycle, and the IOU performs the same 
function for the display cycle. The multiplexed address is sent to the RAM 
!Cs over the lines labelled RA0-RA7. Along with the other timing signals, the 
PAL device generates two signals that control the RAM addressing: 
row-address strobe (RAS) and column-address strobe (CAS). 

Table 7-10. RAM Timing Signal Descriptions 

Signal Name Description 

¢0 Clock phase 0 (CPU phase) 

¢1 Clock phase 1 (display phase) 

RAS Row-address strobe 

CAS Column -address strobe 

Q3 Alternate RAM/column-address strobe 

RAO-RA7 Multiplexed address bus 

MDO-MD7 Internal data bus 

The Video Display 

The Apple He produces a video signal that creates a display on a standard 
video monitor or, if you add an RF modulator, on a black-and-white or color 
television set. The video signal is a composite made up of the data that is 
being displayed plus the horizontal and vertical synchronization signals that 
the video monitor uses to arrange the lines of display data on the screen. 

Video Standards: Apple lie's manufactured for sale in the U.S. 
generate a video signal that is compatible with the standards set by the 
NTSC (National Television Standards Committee). Apple He's 
manufactured for sale in European countries generate video that is 
compatible with the standard used there, which is called P.A.L. (for 
phase alternating lines). This manual describes only the NTSC version of 
the video circuits. 

The Video Display 173 



17-l 

The display portion of the video signal is a time-varying voltage generated 
from a stream of data bits, where a 1 corresponds to a voltage that generates 
a bright dot, and a 0 to a dark dot. The display bit stream is generated in 
burstS that correspond to the horizontal lines of dots on the video screen. 
The signal named WNDW' is low during these bursts. 

During the time intervals between bursts of data, nothing is displayed on 
the screen. During these intervals, called the blanking intervals, the display 
is blank and the WNDW' signal is high. The synchronization signals, called 
sync for short, are produced by making the signal named SYNC' low during 
portions of the blanking intervals. The sync pulses are at a voltage 
equivalent to blacker-than-black video and don't show on the screen. 

The Video Counters 

The address and timing signals that control the generation of the video 
display are all derived from a chain of counters inside the IOU. Only a few 
of these counter signals are accessible from outside the IOU, but they are all 
important in understanding the operation of the display generation process, 
particularly the display memory addressing described in the next section. 

The horiwntal counter is made up of seven stages: HO, H1, H2, H3, H4, H5, 
and HPE'. The input to the horizontal counter is the 1 MHz signal that 
controls the reading of data being displayed. The complete cycle of the 
horiwntal counter consists of 65 states. The six bits HO through H5 count 
normally from 0 to 63, then start over at 0. Whenever this happens, HPE' 
forces another count with HO through H5 held at zero, thus extending the 
total count to 65. 

The IOU uses the forty horizontal count values from 25 through 64 in 
generating the low-order part of the display data address, as described later 
in this chapter in the section "Display Address Mapping." The IOU uses the 
count values from 0 to 24 to generate the horizontal blanking, the horiwntal 
sync pulse, and the color-burst gate. 

Chapter 7: Hardware Implementation 

II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I 

I 

I 

I 

I 

I 
I 

I 
I 
I 
I 

I 

I 
I 
I 

When the horizontal count gets to 65, it signals the end of a line by 
triggering the vertical counter. The vertical counter has nine stages: VA, 
VB, VC, VO, Vl, V2, V3, V4, and V5. When the vertical count reaches 262, 
the IOU resets it and starts counting again from zero. Only the first 192 
scanning lines are actually displayed; the IOU uses the vertical counts from 
192 to 261 to generate the vertical blanking and sync pulse. Nothing is 
displayed during the vertical blanking interval. (The vertical line count is 
262 rather than the standard 262.5 because, unlike normal television, the 
Apple lie's video display is not interlaced.) 

Smooth Animation: Animation displays sometimes have an erratic 
flicker caused by changing the display data at the same time it is being 
displayed. You can avoid this on the Apple lie by reading the 
vertical-blanking signal (VBL) at location $C019 and changing display 
data while VBL is low only (data value less than 128). 

Display Memory Addressing 

As described in Chapter 2 in the section "Addressing Display Pages 
Directly," data bytes are not stored in memory in the same sequence in 
which they appear on the display. You can get an idea of the way the 
display data is stored by using the Monitor to set the display to graphics 
mode, then storing data starting at the beginning of the display page at 
hexadecimal $400 and watching the effect on the display. If you do this, you 
should use the graphics display instead of text to avoid confusion: the text 
display is also used for Monitor input and output. 

If you want your program to display data by storing it directly into the 
display memory, you must first transform the display coordinates into the 
appropriate memory addresses, as shown in the section "Video Display 
Pages" in Chapter 2. The descriptions that follow will help you understand 
how this address transformation is done and why it is necessary. They will 
not (alas!) eliminate that necessity. 

The address transformation that folds three rows of forty display bytes into 
128 contiguous memory locations is the same for all display modes, so it is 
described first. The differences among the different display modes are then 
described in the section "Video Display Modes." 

The Video Display 175 



The requirements of the RAM refreshing 
are discussed earlier in this chapter in the 
section "Dynamic-RAM Refreshment." 

176 

Display Address Mapping 

Consider the simplest display on the Apple lie, the 40-column text mode. To 
address forty columns requires six bits, and to address twenty-four rows 
requires another five bits, for a total of eleven address bits. Addressing the 
display this way would involve 2048 (2 to the eleventh power) bytes of 
memory to display a mere 960 characters. The 80-column text mode would 
require 4096 bytes to display 1920 characters. The leftover chunks of 
memory that were not displayed could be used for storing other data, but 
not easily, because they would not be contiguous. 

Instead of using the horizontal and vertical counts to address memory 
directly, the circuitry inside the IOU transforms them into the new address 
signals described below. The transformed display address must meet the 
following criteria: 

o Map the 960 bytes of 40-column text into only 1024 bytes. 
o Scan the low-order address to refresh the dynamic RAMs. 
o Continue to refresh the RAMs during video blanking. 

The transformation involves only horizontal counts H3, H4, and H5, and 
vertical counts V3 and V 4. Vertical count bits VA, VB, and VC address the 
lines making up the characters, and are not involved in the address 
transformation. The remaining low-order count bits, HO, Hl, H2, VO, Vl, and 
V2 are used directly, and are not involved in the transformation. 

The IOU performs an addition that reduces the five significant count bits to 
four new signals called SO, Sl, 82, and 83, where S stands for sum. 
Figure 7-10 is a diagram showing the addition in binary form, with V3 
appearing as the carry in and H5 appearing as its complement H5'. 
A constant value of 1 appears as the low-order bit of the addend. The carry 
bit generated with the sum is not used. 

Table 7-11. Display Address Transformation 

H5' 

V4 

S3 

V3 

H5' 

S2 

H4 

V4 

Sl 

Chapter i : Hardware lmplememalion 

V3 Carry in 

H3 Augend 

1 Addend 

SO Sum 

II 
II 
II 
II 
II 

II 

II 
II 

II 

II 
II 
II 

II 

II 
II 
II 
II 



I 

I 
I 

I 

I 

I 
I 
I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

If this transformation seems terribly obscure, try it with actual values. For 
example, for the upper-left corner of the display, the vertical count is 0 and 
the horizontal count is 24: HO, H1, H2, and H5 are O's and H3, and H4 are 1's. 
The value of the sum is 0, so the memory location for the first character on 
the display is the first location in the display page, as you might expect. 

Horizontal bits HO, H1, and H2 and sum bits SO, S1, and S2 make up the 
transformed horizontal address (AO through A6 in Table 7-12). As the 
horizontal count increases from 24 to 63, the value of the sum 
(S3 S2 S1 SO) increases from 0 to 4 and the transformed address goes from 0 
to 39, relative to the beginning of the display page. 

The low-order three bits of the vertical row counter are VO, V1, and V2. 
These bits control address bits A7, A8, and A9, as shown in Table 7-12, so 
that rows 0 through 7 start on 127 -byte boundaries. When the vertical row 
counter reaches 8, then VO, V1, and V2 are 0 again, and V3 changes to 1. If 
you do the addition in Table 7-11 with H equal to 24 (the horizontal count 
for the first column displayed) and V equal to 8, the sum is 5 and the 
horizontal address is 40: the first character in row 8 is stored in the memory 
location 40 bytes from the beginning of the display page. 

Figure 7-10. 40·Column Text Display Memory 

Memory locations marked u·ith an asterisk(") are reserved for use by peripheral 
1/0 firmware: refer to the section 'Peripheral·Card RAM Space• in Chapter 6. 

$400 

S4!!0 

5500 

$580 

S600 

S680 

$700 

S780 

1~---------------- 1~8~--------------~~ 

- 40 Bytes-1-40 Bytes-1-40 Bytes-1.1...
Bytes 

row 0 row 8 row 16 • 

row 1 row 9 row 17 • 

row 2 row 10 row 18 • 

row 3 row 11 row 19 • 

row 4 row 12 row 20 • 

row 5 row 13 row 21 • 

row 6 row 14 row 22 • 

row 7 row 15 row 23 . 

The Video Oisp1aj 177 



1/ i':S 

Figure 7-10 shows how groups of three forty-character rows are stored in 
blocks of 120 contiguous bytes starting on 127-byte address boundaries. 
This diagram is another way of describing the display mapping shown in 
Figure 2-5. Notice that the three rows in each block of 120 bytes are not 
adjacent on the display. 

Table 7-12 shows how the signals from the video counters are assigned to 
the address lines. HO, Hl, and H2 are horizontal-count bits, and VO, V1, and 
V2 are vertical-count bits. SO, 81, 82 and 83 are the folded address bits 
described above. Address bits marked with asterisks (*) are different for 
different modes: see Table 7-13 and the four subsections under the section 
"Video Display Modes." 

Table 7-12. Display Memory Addressing 

Memory Display Memory Display 
Address Bit Address Bit Address Bit Address Bit 

AO HO AS Vl 
Al Hl A9 V2 
A2 H2 AlO ** 
A3 so All .. 
A4 Sl Al2 ** 
A5 S2 Al3 ** 
A6 S3 Al4 ** 
A7 vo Al5 GND 

•• For these adclress bits. see text and Table 7·13. 

Table 7·13. Memory Address Bits for Display Modes 
. means togicnJ AND; 'men fiS Logical NOT. 

Display Modes 
Address Text and High·Resolution and 
Bit Low· Resolution Double-High-Resolution 

AlO 80STORE+PAGE2' VA 

All 80STORE' .PAGE2 VB 

Al2 0 vc 
Al3 0 80STORE+ PAGE2' 

Al4 0 80STORE'.PAGE2 

Chaptrr 7: Hard11are Implementation 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



I 
II 

II 
I 
I 
I 
I 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 

Video Display Modes 

The different display modes all use the address-mapping scheme described 
in the previous section, but they use different-sized memory areas in 
different locations. The next four sections describe the addressing schemes 
and the methods of generating the actual video signals for the different 
display modes. 

Text Displays 

The text and low-resolution graphics pages begin at memory locations 
$0400 and $0800. Table 7-13 shows how the display-mode signals control 
the address bits to produce these addresses. Address bits AlO and All are 
controlled by the settings of PG2 and 80STORE, which are set by the 
display-page and 80-column-video soft switches. Address bits Al2, Al3, and 
Al4 are set to 0. Notice that 80S TORE active inhibits PG2: there is only one 
display page in 80-column mode. 

The bit patterns used for generating the different characters are stored in a 
32K ROM. The low-order six bits of each data byte reach the character 
generator ROM directly. \ia the video data bus VIDO-VID5. The two 
high-order bits are modified by the IOU to select between the primary and 
alternate character sets and are sent to the character generator ROM on 
lines RA9 and RAlO. 

The data for each row of characters are read eight times, once for each of 
the eight lines of dots making up the row of characters. The data bits are 
sent to the character generator ROM along with VA, VB, and VC, the 
low-order bits from the vertical count.er. For each character being displayed, 
the character generator ROM puts out one of eight stored bit patterns 
selected by the three-bit number made up of VA, VB, and VC. 

The bit patterns from the character generator ROM are loaded into the 
74166 parallel-to-serial shift register and output as a serial bit stream that 
goes to the video output circuit. The shift register is controlled by signals 
named LDPS' (for load parallel-to-serial shifter) and V1D7M (for video 
7 MHz). In 40-column mode, LDPS' strobes the output of the character 
generator ROM into the shift register once each microsecond, and bits are 
sent to the screen at a 7 MHz rate. 

The Video Display 179 



The addressing for the 80-column display is exactly the same as for the 
40-column display: the 40 columns of display memory on the 80-column 
card are addressed in parallel with the 40 columns in main memory. The 
data from these two memories reach the video data bus (lines VIDO-VID7) 
via separate 7 41837 4 three-state buffers. These buffers are loaded 
simultaneously, but their outputs are sent to the character generator ROM 
alternately by ¢0 and ¢1. In 80-column mode, LDPS' loads data from the 
character generator ROM into the shift register twice during each 
microsecond, once during ¢0 and once during ¢1, and bits are sent to the 
screen at a 14 MHz rate. Figures 7-lla and 7-llb show the video timing 
signals. 

Figure 7·11 a. 7 MHz Video Timing Signals 

14M 

7M 

¢0 I I 
I <f CPU Phase ~ 
I I 

¢1 .J Video Phase I I 
~ 

j DATA BUS ><==X 
i 

VIDEO LATCH X 
LOPS' and EN80' I 

l 
VIDEO BUS Into CHARGEN X ----~---------X 
OUTPUT BUS Into SPI (Shift Register) 

SPI Serial Output (VID7M and 14M) 

180 Chapter 7: Hardware Implementation 

II 

II 
II 

II 

II 

II 
II 
II 
II 

II 
II 
II 

II 
II 
II 



I Figure 7-11 b. 14 MHz Video Timing Signals 

I 14M 

$0 ~ I 
I 

p CPU Phase 

I I 
I $ 1 

_j Video Phase I 
! 

DATA BUS >CQLX 
I l 

VIDEO LATCH X 
I ~ 

ALTERNATE BUS>CmL)< 

I ! 
80 LATCH X 

I LDPS' 
(EN80' Always On) 

I VlDEO BUS lnt.o CHARGE~ 

I OUTPUT BUS Into SPI (Shift Register) 

II SPI Serial Output (14M Clock) 

I 
I 

I 
I 
I 

~ 
I 
I 

I 
ALT0 

I 
1 
X 

I The \"ideo Display 

G 

><:::::[: 

I 
~ 
I 

u ! u u-
l ~ 

D, X XQL 

181 



Low-Resolution Display 

In the graphics modes, VA and VB are not used by the character generator, 
so the IOU uses lines SEGA and SEGB to transmit HO and HIRES', as shown 
in Table 7-14. 

Table 7-14. Character-Generator Control Signals 

Display 
Mode SEGA 

Text VA 

Graphics HO 

SEGB 

VB 

HIRES' 

SEGC 

vc 
vc 

The low-resolution graphics display uses VC to divide the eight display lines 
corresponding to a row of characters into two groups of four lines each. 
Each row of data bytes is addressed eight times, the same as in text mode, 
but each byte is interpreted as two nibbles. Each nibble selects one of 16 
colors. During the upper four of the eight display lines, VC is low and the 
low-order nibble deterntines the color. During the lower four display lines, 
VC is high and the high-order nibble determines the color. 

The bit patterns that produce the low-resolution colors are read from the 
character-generator ROM in the same way the bit patterns for characters 
are produced in text mode. The 7 4166 parallel-to-serial shift register 
conYerts the bit patterns to a serial bit stream for the video circuits. 

The video signal generated by the Apple Ile includes a short burst of 
3.58 MHz signal that is used by an NTSC color monitor or color TV set to 
generate a reference 3.58 MHz color signal. The Apple lie's video signal 
produces color by interacting with this 3.58 MHz signal inside the monitor or 
TV set. Different bit patterns produce different colors by changing the duty 
cycles and delays of the bit stream relative to the 3.58 MHz color signal. To 
produce the small delays required for so many different colors, the shift 
register runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz 
data clock. To generate a stream of fourteen bits from each eight-bit pattern 
read from the ROM, the output of the shift register is connected back to the 
register's serial input to repeat the same eight bits; the last two bits are 
ignored the second time around. 

Chapter 7: Hard1ran.> Implementa tion 

• 
II 

II 

II 
II 
II 

• 
II 
II 
II 

II 

-
II 

-
II 



I 
I 
I 

I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

Each bit pattern is output for the same amount of time as a character: .98 
microseconds. Because that is exactly enough time for three and a half 
cycles of the 3.58 MHz color signal, the phase relationship between the bit 
patterns and the signal changes by a half cycle for each successive pattern. 
To compensate for this, the character generator ROM puts out one of two 
different bit patterns for each nibble, depending on the state of HO, the 
low-order bit of the horizontal counter. 

High-Resolution Display 

The high-resolution graphics pages begin at memory locations $2000 and 
S4000 (decimal8192 and 16384). These page addresses are selected by 
address bits A13 and A14. In high-resolution mode, these address bits are 
controlled by PG2 and 80S TORE, the signals controlled by the display-page 
(PAGE2) and 80-column-video (80COL) soft switches. As in text mode, 
80S TORE inhibits addressing of the second page because there is only one 
page of 80-column text available for mixed mode. 

In high-resolution graphics mode, the display data are still stored in blocks 
like the one sh0\-\11 in Figure 7-10, but there are eight of these blocks. As 
Table 7-12 and Table 7-13 show, vertical counts VA, VB, and VC are used 
for address bits AlO, All, and Al2, which address eight blocks of 1024 bytes 
each. Remember that in the display, VA, VB, and VC count adjacent 
horizontal lines in groups of eight. This addressing scheme maps each of 
those lines into a different 1024-byte block. It might help to think of it as a 
kind of eight-way multiplexer: it's as if eight text displays were combined to 
produce a single high-resolution display, with each text display providing 
one line of dots in turn. instead of a row of characters. 

The high-resolution bit patterns are produced by the character-generator 
ROM. In this mode. the bit patterns simply reproduce the eight bits of 
display data. The low-order six bits of data reach the ROM via the video 
data bus VIDO-VID5. The IOU sends the other two data bits to the ROM via 
RA9 and RAlO. 

The high-resolution colors described in Chapter 2 are produced by the 
interaction between the video signal the bit patterns generate and the 
3.58 MHz color signal generated inside the monitor or TV set. The 
high-resolution bit patterns are always shifted out at 7 MHz, so each dot 
corresponds to a half-cycle of the 3.58 MHz color signal. Any part of the 
video signal that produces a single white dot between two black dots, or 
vice versa, is effecth·ely a short burst of 3.58 MHz and is therefore displayed 
as color. In other words, a bit pattern consisting of alternating 1 's and O's 

'fhe \'ideo Displa~ 183 



184 

gets displayed as a line of color. The high-resolution graphics subroutines 
produce the appropriate bit patterns by masking the data bits with 
alternating 1 'sand O's. 

To produce different colors, the bit patterns must have different phase 
relationships to the 3.58 MHz color signal. If alternating 1 's and O's produce 
a certain color, say green, then reversing the pattern toO's and 1 'swill 
produce the complementary color, purple. As in the low-resolution mode, 
each bit pattern corresponds to three and a half cycles of the color signal, so 
the phase relationship between the data bits and the color signal changes by 
a half cycle for each successive byte of data. Here, however, the bit patterns 
produced by the hardware are the same for adjacent bytes; the color 
compensation is performed by the high-resolution software, which uses 
different color masks for data being displayed in even and odd columns. 

To produce other colors, bit patterns must have other timing relationships 
to the 3.58 MHz color signal. In high-resolution mode, the Apple Ile produces 
two more colors by delaying the output of the shift register by half a dot 
(70 ns ), depending on the high-order bit of the data byte being displayed. 
(The high-order bit doesn't actually get displayed as a dot, because at 7 MHz 
there is only time to shift out seven of the eight bits.) 

As each byte of data is sent from the character generator to the shift 
register, high-order data bit D7 is also sent to the PAL device. If D7 is off, the 
PAL device transmits shift-register timing signals LDPS' and VID7M 
normally. If D7 is on, the PAL device delays LDPS' and VID7M by 70 
nanoseconds, the time corresponding to half a dot. The bit pattern that 
formerly produced green now produces orange; the pattern for purple now 
produces blue. 

A Note A bout Timing: For 80-column text, the shift register is clocked 
at twice normal speed. When 80-column text is used with graphics in 
mixed mode, the PAL device controls shift-register timing signals LDPS' 
and VID7M so that the graphics portion of the display works correctly 
even when the t.ext window is in 80-column mode. 

Chapter i: Hardware Implementation 

II 
II 

-• -
II 
II 

II 
II 
II 

-
II 

-
II 

II 



I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

Double-High-Resolution Display 

Double-high-resolution graphics mode displays two bytes in the time 
normally required for one, but uses high-resolution graphics Page 1 in both 
main and auxiliary memory instead of text or low-resolution Page 1. 

I 
Note: There is a second pair of pages, high-resolution Page 2, which can 
be used to display a second double-high-resolution page. 

Double-high-resolution graphics mode displays each pair of data bytes as 14 
adjacent dots, seven from each byte. The high-order bit (color-select bit) of 
each byte is ignored. The auxiliary-memory byte is displayed first, so data 
from auxiliary memory appears in columns 0-6, 14-20, and so on, up to 
columns 547-552. Data from main memory appears in columns 7-13,21-27, 
and so on, up to 553-559. 

As in 80-column text, there are twice as many dots across the display 
screen, so the dots are only half as wide. On a TV set or low-bandwidth 
monitor (less than 14 MHz), single dots will be dimmer than normal. 

Note: Except for some expensive RGB-type monitors, any video monitor 
with a bandwidth as high as 14 MHz will be a monochrome monitor. 
Monochrome means one color: a monochrome video monitor can have a 
screen color of white, green, orange, or any other single color. 

The main memory and auxiliary memory are connected to the address bus 
in parallel, so both are activated during the display cycle. The rising edge of 
¢0 clocks a byte of main memory data into the video latch, and a byte of 
auxiliary memory data into the 80 latch. 

Phi 1 (q,l) enables output from the (auxiliary) 80 latch, and ¢0 enables 
output from the (main) video latch. Output from both latches goes to 
CHARGE!\, where GRand SEGB' select high-resolution graphics. LDPS 
operates at 2 MHz in this mode, alternatRly gating the auxiliary byte and 
main byte into the parallel-to-serial shift register. VlD7M is active (kept 
true) for double-high-resolution display mode, so when it is ANDed with 
14M, the result is still 14M. The 14M serial clock signal gate shift register 
then outputs to VID, the video display hybrid circuit, for output to the 
display device. 

The \'ideo Dis pia: 185 



1 '\13 

Video Output Signals 

The stream of video data generated by the display circuits described above 
goes to a linear summing circuit built around transistor Ql where it is mixed 
with the sync signals and the color burst. Resistors R3, R5, R7, RlO, Rl3, 
and Rl5 adjust the signals to the proper amplitudes, and a tank circuit (L3 
and C32) resonant at 3.58 MHz conditions the color burst. 

The resulting video signal is an NTSC-compatible composite-video signal 
that can be displayed on a standard video monitor. The signal is similar to 
the EIA (Electronic Industries Association) standard positive composite 
video (see Table 7-15). This signal is available in two places in the Apple lie: 

o At the phono jack on the back of the Apple lie. The sleeve of this jack is 
connected to ground and the tip is connected to the video output through 
a resistor network that attenuates it to about 1 volt and matches its 
impedance to 75 ohms. 

o At the internal video connector on the Apple lie circuit board near the 
RCA jack, Jl3 in Figure 7-13c. It is made up of four Molex-type pins, 
0.25 inches tall, on 0.10 inch centers. This connector carries the video 
signal, ground, and two power supplies, as shown in Table 7-1 5. 

Table 7-15. Internal Video Connector Signals 

Note: Pi,lf is thP pin closPst to thP kPyboar-d; pin 4 is at the back. 

Pin 

2 

3 

4 

Name 

GROUND 

VIDEO 

-5V 

+12V 

Description 

System common ground 

NTSC-compatible positive composite \'ideo. White 
level is about 2.0 volts, black level is about 0.75 
volts, and sync level is 0.0 volts. This output is not 
protected against short-circuits. 

-5 volt power supply 

+ 12 ,·oJt power supply 

Chapter i : Hard1rare Implementation 

II 
II 
II 
II 

II 
II 

-
II 

II 
II 
II 
II 
II 
II 

• 



I 
I 
I 
I 

I 
I 
I 

I 

I 
I 
I 

I 
I 
I 
I 

I 
I 

----

Built-in 1/0 Circuits 

The use of the Apple lie's built-in 1/0 features is described in Chapter 2. 
This section describes the hardware implementation of all of those features 
except the video display described in the previous sections. 

The IOU (Input/Output Unit) directly generates the output signals for the 
speaker, the cassette interface, and the annunciators. The other 1/0 
features are handled by smaller ICs, as described later in this section. 

The addresses of the built-in 1/0 features are described in Chapter 2 and 
listed in Table 2-2, Table 2-11, and Table 2-12. All of the built-in 1/0 
features except the displays use memory locations between $COOO and 
$C070 (decimal49152 and 49264). The I/0 address decoding is performed 
by three !Cs: a 74LS138, a 74LS154, and a 74LS251. 

The 74LS138 decodes address lines A8, A9, AlO, and All tD select address 
pages on 256-byte boundaries starting at SCOOO ( decimal49152). When it 
detects addresses between $COOO and $COFF, it enables the IOU and the 
74LS154. The 74LS154 in turn decodes address lines A4, A5, A6, and A7 to 
select 16-byte address areas between $COOO and $COFF. Addresses between 
SC060 and $C06F enable the 74LS251 that multiplexes the hand control 
switches and paddles: addresses between $C070 and $C07F reset the NE558 
quadruple timer that interfaces to the hand controls, as described later in 
the section "Game 1/0 Signals." 

The Keyboard 

The Apple lie's keyboard is a matrix of keys witches connected to an 
AY-3600-type keyboard decoder via a ribbon cable and a 26-pin connector. 
The AY-3600 scans the array of keys over and over to detect any keys 
pressed. The scanning rate is set by the external resistor-capacitor network 
made up of C70 and R32. The debounce time is also set externally, by C71. 

The A Y-3600's outputs include five bits of key code plus separate lines for 
I coNTROL~ I SHIFT I, any-key-down, and keyboard strobe. The 
any-key-down and keyboard-strobe lines are connected to the IOU, which 
addresses them as soft switches. The key-code lines, along with I CONTROL I 
and 1 SHIFT~ are inputs to a separate 2316 ROM. The ROM translates them 
to the character codes that are enabled onto the data bus by signals named 
KBD' and ENKBD'. The KBD' signal is enabled by the MMU whenever a 
program reads location $COOO, as described in the section "Reading the 
Keyboard" in Chapter 2. 

Built-in I/0 Circuits 187 



188 

Table 7-16. Keyboard Connector Signals 

Pin Number Name Description 

1,2,4,6,8,10, YO·Y9 Y-direction key-matrix connections 
23,25,12,22 

3 +5 +5 volt supply 

5,7,9,15 n.c. 

LCNTL' Line from 1 CONTROL I key 

13 GND System common ground 

14,16,20,21, XO-X7 X-direction key-matrix connections 
19,26,17 

24 LSHFT' Line from I SHIFT I key 

Connecting a Keypad 

There is a smaller connector wired in parallel with the keyboard connector. 
You can connect a ten-key numeric pad to the Apple Ile via this connector. 

Table 7-17. Keypad Connector Signals 

Pin Number Name Description 

1,2,5,3,4,6 YO·Y5 Y·direction key-matrix connections 

7 n.c. 

9,11,10,8 X4-X7 X·direction key-matrix connections 

Chapter 7: Hardware Implementat.ion 

II 
II 

II 

II 
II 
II 
II 
II 
II 
II 

-
II 

• 
II 



• 
I 
II 
I 

I 
I 
I 
I 

I 
I 
I 

I 
I 

I 
I 

I 
I 

Cassette l/0 

The two miniature phone jacks on the back of the Apple Ile are used to 
connect an audio cassette recorder for saving programs. The output signal 
to the cassette recorder comes from a pin on the IOU via resistor network R6 
and R9, which attenuates the signal to a level appropriate for the recorder's 
microphone input. Input from the recorder is amplified and conditioned by a 
type 741 operational amplifier and sent to one of the inputs of the 74LS251 
input multiplexer. 

The signal specifications for cassette 1/0 are 

o Input: 1 volt (nominal) from recorder earphone or monitor output. Input 
impedance is 12K ohms. 

o Output: 25 millivolts to recorder microphone input. Output impedance is 
100 ohms. 

The Speaker 

The Apple lie's built-in loudspeaker is controlled by a single bit of output 
from the IOU (Input Output Unit). The signal from the IOU is AC coupled to 
Q5, an MPSA13 Darlington transistor amplifier. The speaker connector is a 
Molex KK100 connector, Jl8 in Figure 7-13b, with two square pins 0.25 
inches tall and on 0.10-inch centers. 

A light-emitting diode is connected in parallel across the speaker pins such 
that, when the speaker is not connected, the diode glows whenever the 
speaker signal is on. This diode is used as a diagnostic indicator during 
assembly and testing of the Apple lie. 

Table 7-18. Speaker Connector Signals 

Pin 
Number Name Description 

SPKR Speaker signal. This line will deliver about 
0.5 watts into an.8-ohm speaker. 

2 +5 

Built-in I/0 Circuits 

+5V power supply. Note that the speaker is not 
connected to system ground. 

189 



190 

Game 1/0 Signals 

Several 1/0 signals that are individually controlled via soft switches are 
collectively referred to as the game signals. Even though they are normally 
used for hand controls, these signals can be used for other simple 1/0 
applications. There are five output signals: the four annunciators, 
numbered AO through A3, and one strobe output. There are three one-bit 
inputs, called switches and numbered SWO through SW2, and four analog 
inputs, called paddles and numbered PDLO through PDL3. 

The annunciator outputs are driven directly by the IOU (Input Output Unit). 
These outputs can drive one TTL (transitor-transitor logic) load each; for 
heavier loads, you must use a transistor or a TTL buffer on these outputs. 
These signals are only available on the 16-pin internal connector. (See 
Table 7-19.) 

The strobe output is a pulse transmitted any time a program reads or writes 
to location $C040. The strobe pin is connected to one output of the 74LS154 
address decoder. This TTL signal is normally high; it goes low during ¢0 of 
the instruction cycle that addresses location SC040. This signal is only 
available on the 16-pin internal connector. (See Table 7-19.) 

The game inputs are multiplexed along with the cassette input signal by a 
7 4LS251 eight-input multiplexer enabled by the C06X' signal from the 
74LS1541/0 address decoder. Depending on the low-order address, the 
appropriate game input is connected to bit 7 of the data bus. 

The switch inputs are standard low-power Schottky TTL inputs. To use 
them, connect each one to 560-ohm pull-down resistors connected to the 
ground and through single-pole, momentary-contact pushbutton switches to 
the +5 volt supply. 

The hand-control inputs are connected to the timing inputs of an NE558 
quadruple 555-type analog timer. Addressing $C07X sends a signal from the 
74LS154 that resets all four timers and causes their outputs to go to 
1 (high). A variable resistance of up to 150K ohms connected between one 
of these inputs and. the +5V supply controls the charging time of one of four 
0.022-microfarad capacitors. When the voltage on the capacitor passes a 
certain threshold, the output of the NE558 changes back to 0 (low). 
Programs can determine the setting of a variable resistor by resetting the 
timers and then counting time until the selected timer input changes from 
high to low. The resulting count is proportional to the resistance. 

Chapter 7: llard11·are Implementation 

• • 
II 

II 

• 
II 

-
II 
II 
II 
II 

• 
II 

• 
II 

• 
II 



I 
I 
I 

I 

I 
I 

I 

I 

I 
I 
I 

I 
I 
I 

I 

I 
I 

The game 1/0 signals are all available on a 16-pin DIP socket labelled 
GAME 1/0 on the main circuit board inside the case. The switches and the 
paddles are also available on aD-type miniature connector on the back of 
the Apple lie; see J8 and J15 in Figure 7-13d. 

Table 7-19. Game 1/ 0 Connector Signals 

Internal· Back-Panel-
Connector Connector 
Pin Number Pin Number Signal Name Description 

2 +5V +5V power supply. Total current 
drain from this pin must not 
exceed lOOmA. 

2,3,4 7,1,6 PBO-PB2 Switch inputs. These are 
standard 74LS inputs. 

5 STROBE' Strobe output. This line goes lo\,-
during cj>o of a read or write 
instruction to location SC040. 

6.10,7, II 5,8,4,9 PDLO-PDL3 Hand control inputs. Each of 
these should be connected to a 
150K-ohm variable resistor 
connected to +5V. 

8 3 GND System ground. 

15,14,13,12 ANO-AN3 Annunciators. These are 
standard 7 4LS TTL outputs and 
must be buffered to drive other 
than TTL inputs. 

9,16 n.c. Nothing is connected to these 
pins. 

Built-In I 0 Circuih 



Chapter 6 describes the standards for 
programming peripheral cards for the 
Apple lie. 

Expanding the Apple lie 

The main circuit board of the Apple lie has eight empty card connectors or 
slots on it. These slots make it possible to add features to the Apple Ile by 
plugging in peripheral cards with additional hardware. This section 
describes the hardware that supports them, including all of the signals 
available on the expansion slots. 

The Expansion Slots 

The seven connectors lined up across the back part of the Apple lie's main 
circuit card are the expansion slots, also called peripheral slots or simply 
slots, numbered from 1 to 7. They are 50-pin PC-card edge connectors with 
pins on 0.10-inch centers. A PC card plugged into one of these connectors 
has access to all of the signals necessary to perform input and output and to 
execute programs in RAM or ROM on the card. These signals are described 
briefly in Table 7-20. The following paragraphs describe the signals in 
general and mention a few points that are often overlooked. For further 
details, refer to the schematic diagram in Figures 7 -13a, 7 -13b, 7 -13c, and 
7-13d. 

The Peripheral Address Bus 

The microprocessor·s address bus is buffered by two 74LS244 octal 
three-state buffers. These buffers, along with a buffer in the 
microprocessor's R/ W' line, are enabled by a signal derived from the DMA' 
daisy-chain on the expansion slots. Pulling the peripheral line DMA' low 
disables the address and R/W' buffers so that peripheral DMA circuitry can 
control the address bus. The DMA address and R/ W' signals supplied by a 
peripheral card must be stable all during ¢0 of the instruction cycle, as 
shown in Figure 7-12. 

Another signal that can be used to disable normal operation of the Apple He 
is INH'. Pulling INH' low disables all of the memory in the Apple Tie except 
the part in the IjO space from $COOO to $CFFF. A peripheral card that uses 
either INH' or DMA' must observe proper timing; in order to disable RAM 
and ROM cleanly, the disabling signal must be stable all during ¢0 of the 
instruction cycle (refer to the timing diagram in Figure 7 -12). 

Chapttr 7: Hardware Implementation 

• • 
II 
II 

• • • • • • 
II 

• 
II 
II 
II 
II 
II 



I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

The peripheral devices should use 1/0 SELECT' and DEVICE SELECT' as 
enables. Most peripheral ICs require their enable signals to be present for a 
certain length of time before data is strobed into or out of the device. 
Remember that 1/0 SELECT' and DEVICE SELECT' are only asserted 
during ¢0 high. 

The Peripheral Data Bus 

The Apple He has two versions of the microprocessor data bus: an internal 
bus, MDO-MD7, connected directly to the microprocessor; and an external 
bus, DO-D7, driven by a 74LS245 octal bidirectional bus buffer. The 65C02 is 
fabricated with MOS circuitry, so it can drive capacitive loads of up to about 
130 pF. If peripheral cards are installed in all seven slots, the loading on the 
data bus can be as high as 500 pF, so the 74LS245 drives the data bus for the 
peripheral cards. The same argument applies if you use MOS devices on 
peripheral cards: they don't have enough drive for the fully-loaded bus, so 
you should add buffers. 

Loading and Driving Rules 

Table 7-20 shows the drive requirements and loading limits for each pin on 
the expansion slots. The address bus, the data bus, and the R/ W' line 
should be driven by three-state buffers. Remember that there is 
considerable distributed capacitance on these busses and that you should 
plan on tolerating the added load of up to six additional peripheral cards. 
MOS devices such as PIAs and ACIAs cannot switch such heavy capacitive 
loads. Connecting such devices directly to the bus will lead to possible 
timing and level errors. 

Interrupt and DMA Daisy Chains 

The interrupt requests (IRQ' and NMI') and the direct-memory access 
(DMA') signal are available at all seven expansion slots. A peripheral card 
requests an interrupt or a DMA transfer by pulling the appropriate output 
line low (active). If two peripheral cards request an interrupt or a DMA 
transfer at the same time, they will contend for the data and address 
busses. To prevent this, two pairs of pins on each connector are wired as a 
priority daisy chain. The daisy-chain pins for interrupts are INT IN and INT 
OUT, and the pins for DMA are DMA IN and DMA OUT, as shown for Jl-J7 
in Figure 7-13d. 

Expanding the Apple lie 193 



194 

Each daisy chain works like thls: the output from each connector goes to 
the input of the next higher numbered one. For these signals to be useful for 
cards in lower numbered connectors, all of the higher numbered connectors 
must have cards in them, and all of those cards must connect DMA IN to 
DMA OUT and INT IN to INT OUT. Whenever a peripheral card uses pin 
DMA', it must do so only if its DMA IN line is active, and it must disable its 
DMA OUT line while it is using DMA'. The INT IN and INT OUT lines must 
be used the same way: enable the card's interrupt circuits with INT IN, and 
disable INT OUT whenever IRQ' or NMI' is being used. 

Figure 7-12. Peripheral-Signal Timing 

14M 

7M 

Q3--......o 

¢1--~ 

Address -1 
{ 

AO·Al5, R/ W' } 
INH', DMA' 

Peripheral Select 

( 
1/0 SELECT' ) 
DEVICE SELECT 
1/0 STROBE' 

CPU Phase ._I __ 

I 
Video Phase I 

j-140 ns (Max.) 30 ns (Min.)-11-

Chapter 7: Hardware Implementation 

II 
II 
II 
II 

• 
II 

• -• 
II 

-• 
II 
II 
II 
II 
II 



I Table 7-20. Expansion Slot Signals 

I 
Pin Name Description 

I/0 SELECT Normally high; goes low during ¢0 when the 65C02 
addresses location $Cn.XX, where n is the connector 

I number. This line can drive 10 LS TTL loads.* 
2-17 AO-A15 Three-state address bus. The address becomes 

valid during c/>1 and remains valid during c/>0. Each 

I 
address line can drive 5 LS TTL loads.* 

18 R/W' Three-state read/write line. Valid at the same time 
as the address bus; high during a read cycle, low 

I 
during a write cycle. It can drive 2 LS TTL loads.* 

19 SYNC' Composite horizontal and vertical sync, on 
expansion slot 7 only. This line can drive 2 LS TTL 
loads.* 

I 20 I/0 STROBE' Normally high; goes low during c/>0 when the 65C02 
addresses a location between $C800 and $CFFF. 
This line can drive 4 LS TTL loads. 

I 21 ROY Input to the 65C02. Pulling this line low during ¢1 
halts the 65C02 with the address bus holding the 
address of the location currently being fetched. 

I 
This line has a 3300 ohm pullup resistor to +5V. 

22 DMA' Input to the address bus buffers. Pulling this line 
low during c/>1 disconnects the 65C02 from the 

I 
address bus. This line has a 3300 ohm pull up 
resistor to +5V. 

23 INTOUT Interrupt priority daisy-chain output. Usually 
connected to pin 28 (I NT IN). t 

I 24 DMAOUT DMA priority daisy-chain output. Usually 
connected to pin 22 (DMA IN). 

25 +5V +5-volt power supply. A total of 500mA is available 

I 
for all peripheral cards. 

26 GND System common ground. 
27 DMAIN DMA priority daisy-chain input. Usually connected 

I 
to pin 24 (DMA OUT). 

28 INTTN Interrupt priority daisy-chain input. Usually 
connected to pin 23 (TNT OUT). 

29 NMI' Non-maskable interrupt to 65C02. Pulling this line 

I low starts an interrupt cycle with the 
interrupt-handling routine at location $03FB. This 
line has a 3300 ohm pull up resistor to +5V. 

I 
I 
I 

I 
Expanding the Apple lie 195 



Table 7-20- Continued. Expansion Slot Signals II 
Pin Name Description 

II 30 IRQ' Interrupt request to 65C02. Pulling this line low 
starts an interrupt cycle only if the 
interrupt-disable (I) flag in the 65C02 is not set. II Uses the interrupt-handling routine at location 
$03FE. This line has a 3300 ohm pull up resistor to 
+5V. 

II 31 RES' Pulling this line low initiates a reset routine, as 
described in Chapter 4. 

32 INH' Pulling this line low during cJ> 1 inhibits (disables) 
the memory on the main circuit board. This line • has a 3300 ohm pullup resistor to +5V. 

33 -12V -12 volt power supply. A total of 200mA is available 
for all peripheral cards. II 34 -5V -5 volt power supply. A total of 200mA is available 
for all peripheral cards. 

35 3.58M 3.58 MHz color reference signal, on slot 7 only. This 

II line can drive 2 LS TTL loads.• 
36 7M System 7 MHz clock. This line can drive 2 LS TTL 

loads.+ 

II 37 Q3 System 2 MHz asymmetrical clock. This line can 
drive 2 LS TTL loads.+ 

38 ¢1 65C02 phase 1 clock. This line can drive 2 LS TTL 
loads.* II 39 J.LPSYNC The 65C02 signals an operand fetch by driving this 
line high during the first read cycle of each 
instruction. II 40 ¢0 65C02 phase 0 clock. This line can drive 2 LS TTL 
loads.* 

41 DEVICE Normally high; goes low during ¢0 when the 65C02 

II SELECT' addresses location $COnX, where n is the connector 
number plus 8. This line can drive 10 LS TTL 
loads.* 

42-49 DO-D7 Three-state buffered bi-directional data bus. Data -becomes valid during cf>O high and remains valid 
until ¢0 goes low. Each data line can drive one 
LS TTL load.* II 50 +12V + 12 volt power supply. A total of 250mA is 
available for all peripheral cards. 

• Loading limits are for each card. II 
tOn slot 7 only, this pin can be connected to the graphics-mode signal GR: see text for 

details. II 
II 

196 Chapter 7: Hardware Implementation • 
- ------·-



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

Auxiliary Slot 

The large connector at the left side of the Apple lie's main circuit card is the 
auxiliary slot. It is a 60-pin PC-card edge connector with pins on 0.10-inch 
centers. A PC card plugged into this connector has access to all of the 
signals used in producing the video display. These signals are described 
briefly in Table 7-21. For further details, refer to the schematic diagram in 
Figures 7-13a, 7-13b, 7-13c, and 7-13d. 

Many of the internal signals that are not available on the expansion slots 
are on the auxiliary slot. By using both kinds of connectors, manufacturing 
and repair personnel can gain access to most of the signals needed for 
diagnosing problems in the Apple lie. 

SO-Column Display Signals 

The additional memory needed for producing an 80-column text display is 
on the 80-column text card, along with the buffers that transfer the data to 
the video data bus, as described earlier in this chapter in the section "Text 
Displays." The signals that control the 80-column text data include the 
system clocks ¢0 and ¢1, the multiplexed RAM address RAO-RA7, the RAM 
address-strobe signals PRAS' and PCAS', and the auxiliary-RAM enable 
signals, EN80' and R/ W80. The EN80' enable signal is controlled by the 
80S TORE soft switch described in Chapter 4. Data is sent to the auxiliary 
memory via the internal data bus MDO-MD7; the data is transferred to the 
video generator via the video data bus VIDO-VID7. 

Expanding the Apple lie 197 



Table 7-21. Auxiliary Slot Signals • Pin Name Description II 3.58M 3.58 MHz video color reference signal. This line can 
drive two LS TTL loads. 

2 VID7M Clocks the video dots out of the 74166 II parallel-to-serial shift register. This line can drive two 
LS TTL loads. 

3 SYNC' Video horizontal and vertical sync signal. This line II can drive two LS TTL loads. 
4 PRAS' Multiplexed RAM row-address strobe. This line can 

drive two LS TTL loads. 

II 5 vc Third low-order vertical-counter bit. This line can 
drive two LS TTL loads. 

6 C07X' Hand-control reset signal. This line can drive two LS 

II TTL loads. 
7 WNDW' Video non-blank window. This line can drive two LS 

TTL loads. 
8 SEGA First low-order vertical counter bit. This line can II drive two LS TTL loads. 
51,10,49,48, RAO·RA7 Multiplexed RAM-address bus. This line can drive 
13,14,46,9 two LS TTL loads. II 11,12 ROMENl , Enable signals for the ROMs on main circuit board. 

ROMEN2 
44,43,40,39, MDO-MD7 Internal (unbuffered) data bus. This line can drive 

II 21,20,17,16 two LS TTL loads. 
45,42,41,38, VJDO-VID7 Video data bus. This three-state bus carries video 
22,19,18,15 data to the character generator. 

II 23 ct>O 65C02 clock phase 0. This line can drive two LS TTL 
loads. 

24 CLRGAT' Color-burst gating signal. This line can drive two LS 
TTL loads. -25 80VJD' Enables 80-column display timing. This line can drive 
two LS TTL loads. 

26 EN80' Enable for auxiliary RAM. This line can drive two LS 

II TTL loads. 
27 ALTVID' Alternative video output to the video summing 

amplifier. 

II 28 SEROUT' Video serial output from 74166 parallel-to-serial shift 
register. 

29 ENVJD' Normally low; driving this line high disables the 
character generator such that the video dots from the II shift register are all high (white), and alternative 
video can be sent out via ALTVID'. This line has a 
1000 ohm pull down resistor to ground. II 

II 
198 Chapter 7: Hardware Implementation II 



II Table 7-21-Continued. Auxiliary Slot Signals 

II Pin Name Description 

30 +5 +5 volt power supply. 
31 GND System common ground. - 32 14M 14.3 MHz master clock signal. This line can drive two 

LS TTL loads. 
33 PCAS' Multiplexed column-address strobe. This line can 

II drive two LS TTL loads. 
34 LOPS' Strobe to video parallel-to-serial shift register. This 

signal goes low to load the contents of the video data 

II 
bus into the shift register. This line can drive two LS 
TTL loads. 

35 R/ W80 Read/ write signal for RAM on the card in this slot. 

I 
This line can drive two LS TTL loads. 

36 ¢1 65C02 clock phase 1. This line can drive two LS TTL 
loads. 

37 CAS EN' Column-address enable. This signal is disabled (held 

I high) during accesses to memory on the card in this 
slot. This line can drive two LS TTL loads. 

47 HO Low-order horizontal byte counter. This line can drive 

I two LS TTL loads. 
50 AN3 Output of annunciator number 3. This line can drive 

two LS TTL loads. 

I 
52 R/W' 65C02 read/ write signal. This line can drive two LS 

TTL loads. 
53 Q3 2 MHz asymmetrical clock. This line can drive two LS 

TTL loads. 

I 54 SEGB Second low-order vertical-counter bit. This line can 
drive two LS TTL loads. 

55 FRCTXT' Normally high; pulling this line low enables 14MHz 

I video output even when GR is active. 
56,57 RA9',RA10' Character-generator control signals from the IOU. 

This line can drive two LS TTL loads. 

I 
58 GR Graphics-mode enable signal. This line can drive two 

LS TTL loads. 
59 7M 7 MHz timing signal. This line can drive two LS TTL 

I 
loads. 

60 ENTMG' Normally low; pulling this line high disables the 
master timing from the PAL device. This line has a 
1000 ohm pulldown resistor to ground. 

I 
I 
I 
I Expanding the Apple lie 199 



~ 
~ 

~j ., 
~ ~ . j 
i t ~..b ~ 

. .. . a • . 
~ ~- . 

; · ~ 

200 Chapter 7: Hardware Implementation 

-• 
II 

• 
II 
II 

• 
II 
II 
II 
II 
II 



• 

1:':1 
X 
"0 

"' ::;$ 
0. :;· 
"" :;; 
<I) 

> 
"0 

¥-
~ 

8 

• • • • II • II II II • • II II II II 
Figure 7-13b. Schematic Diagram, Part2 

ll 

m -l!. 

,,,£== 
a. e-t~ 

"' ~J!_____... ~~~~~~::::::.:~=-l! 
.... r. ·: :: .. " 'ii'" 

[. 5 • 

• 1 • "It ' , - .... . ~ .. 
IZ 14 

'" '". '· ,.. ' ,,., " 
"'"::;!i.~:': ::" 

, .. ,.Je-S.J~- 5-!!!!J!..... ___ -t-----r---:~~ 

·s• _ Jt~- s c•> 

.. . ') ........._.,~, ... , 
~J.l-41 
l!._. J l · •t C4 1 
~J4·41 
~J!.-41 
~.,K-41 

D£vr• J7· 4 t 

•• , , II :&~iilcxm ::: :::.~. I 
,,...1!. 
(IJ.!!.K.!

CIJ~ 
, ,, l~•o• 

(4) ( 

A~IC· 

C4 ) JI 3 S 

J!!._ 
f.!I.!!.IW 

JI5·1 ,JI'1-I _.!! 
JI6·2,JI,.._2 -.!1 

Jt6·S, Jt1· 4 _.r 
Jl6 · 3 , Jll-6 _r 
J~·4, JIP-6 ,_!! 
.M6-6,JI7· · __!} 

.JI7-2:l_n.. 
JIJ'·U _:t!. 
J IJ'-12 .....n. 
JIJ'·ZZ~ 
J I J'· t4 _.!i 
J IJ'·II _.!.! 
J I J'-~_.!.1. 
Jl1-ze_.!.l 

JI,·9.JIJ'-Z,~ 
.116--lt, Jl1·•• _.Q... 
A-• . JI7·M _..!i. 
J I6·1,JI1· 17 _.I!. 

.,1 1 7·.14~ 
Jl1·ll CNTl• .. 

t 
, "D(e tl 

.. ~ 
Jlt 

iu 
'1·· 

I~ 

... .... 
IW 

..• 
t 

(3).2!.! 

-· ... 
p~~1'!1 "l!t 

J!18-Hf• 
n• v~ 

- ~()til ) .. ... 
~( 

- "'"") J[ l -71 41 

J ti· ?J4F 

Jt•·n~ , .. , 
J(l-l'14S 

.Ht· rJ44 
-J(I•7J4) 

J( l 7)42. 

lii!O-(]) 
AKO_ UJ 



,------,' ~~-12---, 
I =JJHJ I 
I I 
: j • 11 1 

I i 
L- --- - -----.J 

• 
:!: 

n 
"' ! 
~ ~ • ::< II 

• 
II 

II 
II 
II 
II 

• 
II 
II 
II 

202 Chapter 7: Hardware Implementation 



• 

r<:l 
X 
"0 co 
::0 
0.. ::;· 

()Q 

;. 
"' > 
"0 
"0 
<0 
<e 

~ 
""' 

• • • • • • • • • • • 
Figure 7-14d. Schematic Diagram, Part 4 

Jl 

JIO 

NUMERI C PAD 

JZ 

J l e 
8URN IN 

POWU PAOs 

~ 
~ 
~ 
~ 

J l1 

K!Y~RO 

J> 

~
:-J NC 

' 
' 10 

J O 

,. 

~
,:'11"' 

' 
' • 

J> 

~ ' 
I 

I 

1~6~ 

ll 
-~~-5C 

L2 
-•z~-12c 

L6 
•IZ~•IZC 

L4 

· ~Pe-e=·" 
" ., 

Jl• 
POW(R CONNECTOR 

• • • • • 
J6 Jl 

XI 

"" 

Jl> 

GAME ]/0 



II 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I 
Appendix A The 65C02 Microprocessor 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 205 



206 

This appendix contains a description of the differences between the 6502 
and the 65C02 microprocessors. It also contains the data sheet for the 65C02 
microprocessor. 

The 6502 microprocessor was used in the original Apple lie, Apple II Plus, 
and Apple II. The 65C02 is a 6502 that uses less power and has ten new 
instructions and two new addressing modes. The 65C02 is used in both the 
enhanced Apple lie and the Apple lie. 

In the data sheet tables, execution times are specified in number of cycles. 
One cycle time for the Apple lie equals 0.978 microseconds, giving a system 
clock rate of about 1.02 MHz. 

Note: If you want to write programs that execute on all computers in the 
Apple II series, use only those 65C02 instructions that are also present on 
the 6502. 

Differences Between 6502 and 65C02 

The data sheet lists the instructions and addressing modes of the 65C02. 
This section supplements that information by listing those instructions 
whose execution times or results differ in the 6502 and the 65C02. 

Different Cycle Times 

A few instructions on the 65C02 operate in different numbers of cycles than 
their 65C02 equivalents. These instructions are listed in Table A-1. 

TableA-1. Cycle Time Differences 

6502 65C02 
Instruction/Mode Opcode Cycles Cycles 

ASL Absolute, X IE 7 6 
DEC Absolute, X DE 7 6 
INC Absolute, X FE 7 6 
JMP (Absolute) 6C 5 6 
LSR Absolute, X 5E 7 6 
ROL Absolute, X 3E 7 6 
ROR Absolute, X 7E 7 6 

Appendix A: The 65C02 Microprocessor 

II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 

II 

II 
II 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

Different Instruction Results 

It is important to note that the BIT instruction when used in immediate 
mode (ope ode $89) leaves processor status register bits 7 (N) and 6 (V) 
unchanged on the 65C02. On the 6502, all modes of the BIT instruction have 
the same effect on the status register: the value of memory bit 7 is placed in 
status bit 7, and memory bit 6 is placed in status bit 6. 

Also note that if the JMP indirect instruction (code $6C) references an 
indirect address location that spans a page boundary, the 65C02 fetches the 
high-order byte of the effective address from the first byte of the next page, 
while the 6502 fetches it from the first byte of the current page. For 
example, JMP ($02FF) gets ADL from location $02FF on both processors. 
But on the 65C02, ADH comes from $0300; on the 6502, ADH comes 
from $0200. 

Data Sheet 

The remaining pages of this appendix are copyright 1982, NCR Corporation, 
Dayton, Ohio, and are reprinted with their permission. 

Data Sheet 207 



NCR65C02 

• GENERAL DESCRIPTION 

The NCR CMOS 6502 is an 8-bit microprocessor which is soft · 
ware compat ible with the NMOS 6502 . The NCR65C02 hardware 
interfaces with all 6500 peripherals. The enhancements include 
ten additional instructions, expanded operational codes and 
two new addressing modes. This microprocessor has all of the ad
vantages of CMOS technology: low power consumption, increased 
noise immunity and higher reliability. The CMOS 6502 is a low 
power high performance microprocessor with applications in the 
consumer. business, automotive and communications market. 

• FEATURES 

• Enhanced software performance including 27 additional OP codes 
encompassing ten new instructions and two additional 
addressing modes. 

• 66 microprocessor instructions. 

• 15 addressing modes. 

• 178 operational codes. 

• 1 MHz, 2M Hz operation . 

• PIN CONFIGURATION 

vss l!n 

ROY 02 10 UTI 

C 1IOUTI rn 
!All 0 0 tiNI 

fJl NC 

NMI NC 

SYNC RtW 

voo DO 

AO 0 1 

AI 0 2 .. , OJ 

AJ 0 4 

A4 OS 

AS 0 6 

A6 07 

A7 .,. 
A8 A14 

.... AIJ 

AIO .,, 
A ll VSS 

• Operates at frequencies as low 
as 200 Hz for even lower power • NCR65C02 BLOCK DIAGRAM 
consumption (pseudo-static : stop during 02 high). 

• Compatible wit h NMOS 6500 series 
microprocessors. 

• 64 K-byte addressable memory. 

• Interrupt capability. 

• Lower power consumption. 
4mA@ 1MHz. 

• +5 volt power supply. 

• 8-bit bidirectional data bus. 

• Bus Compatible with M6800. 

• Non-maskable interrupt. 

• 40 pin dual-in-l ine packagi ng. 

• 8-bit parallel processing 

• Decimal and binary arithmetic. 

• Pipel ine architect ure. 

AOOIU SS 
IUS 

•o-1'"1 
.. ~ 
., ._~ 

.. 
"" 

~ RlGISUASt C1'<Q'o: 

Qo lfN] 

~~ tOUTI 

"2 10UTI 

• Programmable stack pointer. 
., 

.-------''-! ~======:::;;: ~"' 
• Variable length stack. 

• Optional i nternal..e!:!!!ups for 
(ROY, IRQ, SO, NMI and ffi) 

• Specifications are subject to 
change without notice. 

'" 

I.E(iE-.0 

1f • I fiT liNE 

I • 1 liT LI NE 

Copyright @1982 by NCR Corporation, Dayton, Ohio, USA 

208 Appendix A: The 65C02 Microprocessor 

II 

II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 
II 
II 



I 
NCR65C02 
• ABSOLUTE MAXIMUM RATINGS: (Voo = 5.0 V ± 5%, Vss = 0 V, TA = 0" to+ 70"C) 

I RATING SYMBOL VALUE UNIT 
SUPPLY VOLTAGE Voo -0.3 to +7.0 v 
INPUT VOLTAGE VJN -0.3 to +7.0 v 
OPERATING TEMP. TA 0 to+ 70 •c 
STORAGE TEMP. TsrG -55 to+ 150 •c I 
• PIN FUNCTION 

I PIN FUNCTION 
AO ·A15 Address Bus 
DO · D7 Data Bus 
mn· Interrupt Request 
RoY• Ready 
1\f"L Memory Lock I 
NMI• Non-Maskable Interrupt 
SYNC Synchronize 
m· Reset 
so· Set Overflow 

I 
NC No Connection 
A!W Read/ Write 
VDD Power Supply (+5V) 
VSS Internal Logic Ground 

I 
0o Clock Input 
01. 02 Clock Output I •This pm has an optiOnal Internal pullup for a No Connect cond•t•on. 

• DC CHARACTERISTICS 

I SYMBOL MIN. TYIP. MAX UNIT 
Input High Voltage 

0o (IN) VIH Vss + 2.4 - Voo v 
Input High Voltage 

RES, NMI, ADY, lAO. Data, S.O. Vss + 2.0 - - v 
Input Low Voltage I 

0o (IN) v.L Vss -0.3 - Vss+ 0.4 v 
RES, NMI, ADY, IRQ, Data, S.O. - - Vss + O.B v 

Input leakage Current 

(V1N z 0 to 5.25V, Voo = 5.25V) liN 
I 

With pullups - 30 - +30 llA 
Without pullups - - +1.0 llA 

Three State (Off State) Input Current II 
(V1N = 0.4 to 2.4V, Vee = 5.25V) 

Data Lines lrSl - - 10 llA 
Output High Voltage 

( loH = - 100 ll Adc, V00 = 4.75V I 
SYNC, Data, AO·A 15, AfW) VoH Vss + 2.4 - - v 

Out Low Voltage 

( loL = 1.6mAdc, Voo = 4.75V 
SYNC, Data, AO-A 15, AfW) VoL - - Vss + 0.4 v 

I 
Supply Current f = 1M Hz loo - - 4 mA 
Supply Current f = 2M Hz loo - - 8 mA 
capacitance c pF 

(VIN ~ 0. TA = 25°C, f = 1MHz) I 
Logic GtN - - 5 
Data - - 10 
AO·A15, R/ W, SYNC Cout - - 10 
0o (IN) ~oONI - - 10 I 

I Data Sheet 209 



NCR65C02 
• TIMING DIAGRAM 

0o 

4 -tOLY1 
\ I 
_j~tR tPH ~r-tf 

tPL 
,., 

ADDR, RtW 
- ~tAOS - .r:_tAH 

X X 
tAcc tosu -l -

READ DATA JIJ /Ill I I II II II II Ill I II I I I I I II r; II I II I I II II II I Ill! !IIIII IN,_ -Jili ;rvi /II 1 ;, 

WRITE DATA 

SYNC 

ROY, iRQ 
NMI, RES 

so 

-
-

r- tSYNC 

X 
t-tML 

X 

-It::. tMDS -
II 
1\ 

-j 

X 
~ 1-- tso 

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts. 

t DHW 
l< 
1 

- tpcs 

• NEW INSTRUCTION MNEMONICS 
HEX 
80 
3A 
1A 
DA 
5A 
FA 
7A 
9C 
9E 
64 
74 
1C 
14 
oc 
04 

MNEMONIC 
BRA 
DEA 
INA 
PHX 
PHY 
PLX 
PLY 
STZ 
STZ 
STZ 
STZ 
TAB 
TAB 
TSB 
T SB 

DESCRIPTION 
Branch relative always [Relative] 
Decrement accumulator (Accum] 
Increment accumulator [Accum] 
Push X on stack [ I mplied] 
PushY on stack [Implied] 
Pull X from stack [Implied] 
Pull Y from stack [Implied] 
Store zero [Absolute] 
Store zero [ABS, X] 
Store zero [Zero page] 
Store zero [ZPG,X l 
Test and reset memory bits w ith accumulator [Absolute] 
Test and reset memory b i ts with accumulator [Zero page ] 
Test and set memory bits with accumulator [Absolute] 
Test and set memory bits w ith accumulator [Zero page] 

• ADDITIONAL INSTRUCTION ADDRESSING MODES 

210 

HEX 
72 
32 
3C 
34 
D2 
52 
7C 
B2 
12 
F2 
92 

MNEMONIC 
ADC 
AND 
BIT 
BIT 
CMP 
EOR 
JMP 
LOA 
ORA 
SBC 
STA 

DESCRI PTION 
Add memory to accumulator with carry [(ZPG)] 
"AND" memory with accumulator [ (ZPG)] 
Test memory bits with accumulator [ABS. X] 
Test memory bits with accumulator [ZPG, X] 
Compare memory and accumulator [(ZPG) ] 
"Exclusive Or" memory with accumulator [(ZPG)] 
Jump (New addressing mode) [ABS(IND,X)] 
Load accumulator with memory [ (ZPG)] 
"OR" memory with accumulator [ (ZPG)] 
Subtract memory from accumulator with borrow [ (ZPG)] 
Store accumulator in memory [(ZPG)] 

Appendix A: The 65C02 Microprocessor 

II 

II 

II 

II 

II 

II 
II 

II 

II 

II 

II 
II 

II 

II 

II 

II 



• MICROPROCESSOR PROGRAMMING MODEL 

II 0 N V 1 B D I 
A ACCUMULATOR A 

1 J INDEX REGISTER Y I y 

II 7 J INDEX REGISTER X I X 
1~ 1 j PROGRAM COUNTER PC I P!;;H I P~L 

I 
r 11 y STACK POl NTER S 

NCR65C02 

0 
OCESSOR STATUS 
G •·p·• 

~ CARRY 1 • TRUE 
ZERO 1 • RESULT ZERO 
11m DISABLE 1 • DISABLE 
DECIMAL MODE 1 • TRUE 
BRK COMMAND 1 • BRK 
OVERFLOW 1 • TRUE 
NEGATIVE 1 • NEG. 

I . FUNCTIONAL DESCRIPTION 

I 
I 

I 

I 

I 
II 

I 

I 

Timing Control 
The timing control unit keeps track of the instruction 
cycle being monitored . The unit is set to zero each time 
an instruction fetch is executed and is advanced at the 
beginning of each phase one clock pulse lor as many 
cycles as is required to complete the instruction. Each 
data transfer which takes place between the registers de· 
pends upon decoding the contents of both the instruc· 
tion register and the timing control unit. 

Program Counter 
The 16-bit program counter provides the addresses which 
step the microprocessor through sequential instructions 
in a program. 

Each time the microprocessor fetches an instruction 
from program memory, the lower byte of the program 
counter (PCLI is placed on the low-order bits of the 
address bus and the h igher byte of the program counter 
(PCH I is placed on the high-order 8 bits. The counter is 
incremented each time an instruction or data is fetched 
from program memory. 

Instruction Register and Decode 
Instructions fetched from memory are gated onto the 
internal data bus. These instructions are latched into the 
instruction register, then decoded, along with timing and 
interrupt signals, to generate control signals lor the var· 
ious registers. 

Arithmetic and Logic Unit (A LUI 
All arithmetic and logic operations take place in the 
ALU including incrementing and decrementing internal 
registers (except the program counter) . The ALU has no 
internal memory and is used only to perform logical and 
transient numerical operations. 

Data Sheet 

Accumulator 
The accumulator is a general purpose 8-bit register that 
stores the results of most arithmetic and logic operations, 
and in addition, the accumulator usually contains one of 
the two data words used in these operations. 

lnde>< Registers 
There are two 8-bit inde>< registers (X and Yl, which 
may be used to count program steps or to provide an 
index value to be used in generating an effective address. 

When e><ecuting an instruction which specifies indexed 
addressing, the CPU fetches the op code and the base 
address, and modifies the address by adding the index 
register to it prior to performing the desired operation. 
Pre· or post-indexing of indirect addresses is possible (see 
addressing modes). 

Stack Pointer 
The stack pointer is an 8-bit register used to control the 
addressing of the variable-length stack on page one. The 
stack pointer is automatically incremented and deere· 
mented under control of the microprocessor to perform 
stack manipulations under d irection ofeither the program 
or interrupts (NMI and IRO). The stack allows simple 
implementation of nested subroutines and multiple level 
interrupts. The stack pointer should be initialized before 
any int errupts or stack operations occur. 

Processor Status Register 
The 8-bit processor status register contains seven status 
flags. Some of the flags are controlled by the program, 
others may be controlled both by the program and the 
CPU. The 6500 instruction set contains a number of 
conditional branch instructions which are designed to 
allow testing of these flags (see microprocessor program
ming model). 

211 

--------------------------------------------------------------------------------------------------------~----



NCR65C02 
• AC CHARACTERISTICS Voo = S.OV! 5%, TA c O"C to 70"C, Load = 1 TTL+ 130 pF 

1M HZ 2M HZ 3M HZ 

Parameter Symbol Min Max Min Max Min Max Unit 

Delay Time, 00 (IN) to 02 (OUT) toLY - 60 - 60 20 60 nS 

Delay Time, 01 (OUT) to 02 (OUT) toLYl -20 20 - 20 20 -20 20 nS 

Cycle Time tcvc 1.0 5000 0.50 5000 0 .33 5000 ~s 

Clock Pu lse Width Low tpL 460 - 220 - 160 - nS 

Clock Pulse Width High tpH 460 - 220 - 160 - nS 

Fall Time, Rise Time tF, tR - 25 - 25 - 25 nS 

Address Hold T ime tAH 20 - 20 - 0 - nS 

Address Setup Time tAos - 225 - 140 - 110 nS 

Access Time tACC 650 - 310 - 170 - nS 

Read Data Hold Time toHR 10 - 10 - 10 - nS 

Read Data Setup Time tosu 100 - 60 - 60 - nS 

Write Data Delay Time tMos - 30 - 30 - 30 nS 

Write Data Hold Time toHW 20 - 20 - 15 - nS 

SO Setup Time tso 100 - 100 - 100 - nS 

Processor Control Setup T ime• • tpcs 200 - 150 - 150 - nS 

SYNC Setup Time tsYNC - 225 - 140 - 100 nS 

ML Setup T ime tML - 225 - 140 - 100 nS 

Input Clock Rise/ Fall Time tFCio ,tRCio - 25 - 25 - 25 nS 

*NCR65C02 can be held static with 0 2 h igh. 

**This parameter must only be met to guarantee that the signal will be recogn ized at the current clock cycle. 

• MICROPROCESSOR OPERATIONAL ENHANCEMENTS 

Function NMOS 6502 Microprocessor NCR65C02 Microprocesso r 

Indexed addressing across page boundary. Extra read of invalid address. Extra read o f last instructio n byte. 

Execution of invalid op codes. So me terminate only by reset. Results All are NOPs (reserved for future use). 
are undefined. Op Code Bytes Cycles 

X2 2 2 
X3, X7, XB, XF 1 1 
44 2 3 
54, 04, F4 2 4 
sc 3 8 
OC,FC 3 4 

Jump ind irect, ope rand = XXFF . Page address does not increment. Page address increments and adds one 
additional cycle. 

Read/ modi fy /wri te instructions at One read and two wri te cycles. Two read and one write cycle. 
effective address. 
Decimal flag . Indeterminate after reset. Init ialized to binary mode (0=0) after 

reset and interrupts. 
Flags after decimal o peratio n. Invalid N, V and Z flags. Valid flag adds one additional cycle. 
Interrupt after fetch o f BR K instruc· Interrupt vector is loaded, BRK vector B R K is executed, then interrupt is 
t ion. is ignored. execu ted. 

• MICROPROCESSOR HARDWARE ENHANCEMENTS 
Function NMOS 6502 NCR65C02 

Assertion o f Ready ROY du ring 
write operations. 

Igno red. Stops processor during 02. 

Unused input ·only p ins (im:l. NNil, Must be connected to low impedance Con nected internally by a high· 
ROY, "Rn, &'5). signal to avoi d noise prob lems. resistance to Voo (appro ximately 250 

K ohm.l 

Appendix A: The 65C02 Microprocessor 

II 

II 

II 

II 

II 

II 

II 
II 
II 

II 

II 
II 
II 
II 
II 



I 
I 
II 

I 
I 
I 

I 
I 

I 
I 
I 

I 
I 
I 

NCR65C02 
• ADDRESSING MODES 
Fifteen addressing modes are available to the user of the 
NCR65C02 microprocessor. The addressing modes are 
described in the following paragraphs: 

Implied Addressing [Implied) 
In the implied addressing mode, the address containing 
the operand is implicitly stated in the operation code of 
the instruction. 

Accumulator Addressing [Accum) 
This form of addressing is represented with a one byte 
instruction and implies an operation on the accumu· 
lator. 

Immediate Addressing [Immediate) 
With immediate addressing, the operand is contained in 
the second byte of the instruction; no further memory 
addressing is required. 

Absolute Addressing [Absolute) 
For absolute addressing, the second byte of the instruc· 
tion specifies the eight low-order bits of the effective 
address, while the third byte specifies the eight high-order 
bits. Therefore , this addressing mode allows access to the 
total 64K bytes of addressable memory. 

Zero Page Addressing (Zero Page) 
Zero page addressing allows shorter code and execution 
times by only fetching the second byte of the instruction 
and assuming a zero high address byte. The careful use 
of zero page addressing can resul t in significant increase 
in code efficiency. 

Absolute Indexed Addressing lABS, X o r ABS, VI 
Absolute indexed addressing is used in conjunction with 
X or Y index register and is referred to as "Absolute, X," 
and "Absolute, Y." The effective address is formed by 
adding the contents of X or Y to the address contained 
in the second and third bytes of the instruction. This 
mode allows the index register to contain the index or 
count value and the instruction to contain the base 
address. This type of indexing allows any location refer· 
encing and the index to modify multiple fields , resulting 
in reduced coding and execution time. 

Zero Page Indexed Addressing [ZPG, X or ZPG, VI 
Zero page absolute addressing Is used In conjunction 
wit h the index register and is referred to as "Zero Page, 
X" or "Zero Page, V ." The effective address is calculated 
by adding the second byte to the contents of the index 
register. Since this is a form of "Zero Page" addressing, 
the content of the second byte references a location in 
page zero. Additionally, due to the "Zero Page" address· 
ing nature of this mode, no carry is added to the high· 
order eight bits of memory, and crossing of page boun· 
daries does not occur. 

Relative Addressing [Relative) 
Relative addressing is used only with branch instructions; 

Data Sheet 

it establishes a destination for the condition•! br•nch. 
The second byte of the instruction becomes the oper•nd 
which is an "Offset" added to the contents of the pro· 
gram counter when the counter is set It the next in· 
struction. The range of the offset is -128 to + 127 
bytes from the next instruction. 
Zero Page Indexed Indirect Addreuing [(IND. X)] 
With zero page indexed indirect lddresd ng (usu1lly re· 
ferred to as indirect X) the second byte ofthe instruction 
is added to the contents of the X index register; the 
carry is discarded . The result of this addition points to a 
memory location on page zero whose contents is the low· 
order eight bits of the effective address. The next mem· 
ory location in page zero contains the high-order eight 
bits of the effective address. Both memory locations 
specifying the high· and low-order bytes of the effective 
addreu must be in page zero. 

•Absolute Indexed l:ndirect Addressing [ABS(IND, X)] 
(Jump Instruction Only) 
With absolute indexed indirect addressing the contents of 
the second and third instruction bytes are added to the 
X register. The result of this addition. points to a memory 
location containing the lower-order eight bits of the 
effective address. The next memory location contains 
the higher-order eight bits of the effective address. 

Indirect Indexed Addressing [(I NO), VI 
This form of addressing is usually referred to u Indirect, 
V. The second byte of the instruction points to a mem· 
ory location in page zero. The contents of this memory 
location are added to the contents of the Y index regis· 
ter, the result being the low-order eight bits of the effec· 
tive 1ddress. The carry from this addition is added to the 
contents of the next page zero memory location, the 
result being the high-order eight bits of the effective 
address. 

•zero P1ge Indirect Addressing [(ZPG)] 
In the zero p1ge ind irect addressing mode, the second 
byte of the instruction points to a memory location on 
page zero containing the low-order byte of the effective 
addreu. The next location on page zero contains the 
high-order byte of the effective address. 

Absolute Indirect Addrening [lABS) I 
(Jump Instruction Only ) 
The second byte of the instruction contains the low-order 
eight bits of a memory location. The high-order eight 
bits of that memory location is contained in the third 
byte of the instruction. The contents of the fully speci· 
tied memory location is the low-order byte of the effec· 
tive address. The next memory location contains the 
high-order byte of the effective address which is loaded 
into the 16 bit program counter. 

NOTE: •: New Address Modes 

213 



• SIGNAL DESCRIPTION 
Adcfreu Bus (AO-A15) 
AO-A15 forms a 16-bit address bus for memory and 1/0 
exchangH on the data bus. The output of each address 
line is TTL compatible, capable of driving one standard 
TTL load and 130pF. 

Clocks IOQ. o,. and 02) 
0o is a TTL le~el input that is used to generate the inter
nal clocks in the 6502 . Two full level output clocks are 
generated by the 6502. The 02 clock output is in phase 
with 0o. The 01 output pin is 180" out of phase with 0o. 
(See timing diagram.) 

Data Bus (00-07) 
The data lines (00·07) constitute an 8-bit bidirectional 
data bus used for data exchanges to and fr om the de~ ice 
and peripherals. The outputs are three-state buffers 
capable of driving one TTL load and 130 pF. 

Interrupt Request (I RO) 
This TTL compatible input requests that an interrupt 
sequence begin within the microprocessor. The m<:l is 
sampled during 02 operation; if the interrupt flag in the 
processor status register is zero, the current onstruction 
is completed and the interrupt sequence begins during 
0 1· T he program counter and processor status register 
are stored 1n the stack. The microprocessor will then set 
the interrupt mask flag high so that no further I ROs 
may occur. At the end of this cycle, the program counter 
low will be loaded from address F F FE, and program 
counter h1gh from location F F F F. transfert~ng program 
control to the memory vector located at these addresses. 
The ROY signal must be in the h igh state for any inter
rupt to be ~ecognized. A 3K ohm external resistor should 
be used for proper wire OR operation. 

Memory Lock (Mll 
In a multiprocessor system, the MI output indicates the 
need to defer the rearbitration of the next bus cycle to 
ensure the integrity of read-modify·write instructions. 
ML goes low during ASL. DEC, INC, LSR, ROL. ROR, 
TAB, TSB memory referencing instructions. This signal 
is low for the modify and write cycles. 

Non-M11kable Interrupt !Nl>lil 
A negative-goong edge on this input requests that a non
mask able interrupt sequence be generated w1th1n the 
microprocessor . The NMl is sampled during 02: the cur
rent onstruct10n is completed and the interrupt sequence 
begins dur~ng 01 - The program counter is loaded with 
the interrupt vector from locations FFFA (low byte) 
and FFFB (high byte), thereby transferri ng program con
trol to the non·maskable interrupt routine. 

Note: Since this interrupt is non-maskable, another NMI 
can occur before the first is finished. Care should be taken 
when using NMl to avoid this . 

NCR65C02 

Ready (ROY) 
This input allows the user to single-cycle the micropro
cessor on all cycles including write cycles. A negative 
transition to the low state, during or coincident with 
phase one 101 1. will halt the microprocessor with the out
put address lines reflecting the current address being 
fetched . This condition will remain through a subsequent 
phase two 102 ) in which the ready signal is low. This fea
ture allows microprocessor interfacing with low-speed 
memory as well as direct memory access (OMA). 

Reset (ffi) 
This input is used to reset the microprocessor. Reset 
must be held low for at least two clock cycles after 
Vo o reaches operating voltage from a power down. A 
positive transistion on this pin will then cause an initiali
zation sequence to begin. Likewise, after the system has 
been ~perating, a low on this line of at least two cycles 
will cease microprocessing activi!:£.__followed by initial
ization after the positive edge on RES. 

When a positive edge is detected, there is an initial iution 
sequence lasting six clock cycles. Then the interrupt 
mask flag is set, the decimal mode is cleared, and the pro
gram counter is loaded with the restart vector from loca
tions FFFC (low byte) and FFFO (high byte). This is 
the start location for program controL This input should 
be high in normal operation. 

Read/Write (RJW) 
This signal is normally in the h igh state indicating that 
the microprocessor is reading data from memory or 1/0 
bus. In the low state the data bus has valid data from the 
microprocessor to be stored at the add ressed memory 
locat ion . 

Set Overflow (SO) 
A negative transition on this line sets the overflow bit in 
the status code register_ The signal is sampled on the trail
Ing edge of 01 . 

Synchronize (SYNC) 
This output line is provided to identify those cycles dur
ing which the microprocessor is doing an OP CODE 
fetch . The SYNC line goes high during 01 of an OP CODE 
fetch and stays high for the remainder of that cycle. If 
the ROY line is pulled low during the 01 clock pulse in 
which SYNC went high, the processor will stop in its 
current state and will remain in the state until the ROY 
line goes h igh. In this manner, the SYNC signal can be 
used to control R DY to cause single instruction execu
t ion. 

214 Appendix A: The 65C02 Microprocessor 

II 

II 
II 

II 

II 

II 
II 

II 
II 

II 
II 



I NCR65C02 
• INSTRUCTION SET - ALPHABETICAL SEQUENCE 

I 

I 

I 
I 

I 
I 

ADC 
AND 
ASL 
BCC 
BCS 
BEO 
BIT 
BMI 
BNE 
BPL 

"BAA 
BAK 
BVC 
BVS 
CLC 
CLD 
CLI 
CLV 
CMP 
CPX 
CPY 

• oeA 
DEC 
oex 
DEY 
EOR 

•INA 
INC 
INX 
INY 
JMP 
JSR 
LOA 

Add Memory to Accumulator wtth Carry 
"AND" Memory wnh Accumulator 
Shift One Bit Left 
Brtnch on Carry Clear 
Branch on Carry Set 
Branch on Result Zero 
Test Memory Bits with Accumulator 
Branch on Result Mmus 
Branch on Result not Zero 
Branch on Result Plus 
S rtnch Always 
Foret Break 
Br1nch on Overflow Clear 
Branch on Overflow Set 
Cltlr C.rry Flag 
Clear Oecirml Mode 
Clear Interrupt D isable Bit 
Clear Overflow flag 
Compare M emory and Accumulator 
Compare Memory and Index X 
CoMPirt Memory 1nd Index Y 
Otcrtmtnt Accumulator 
Decrement by One 
Decrement Index X by One 
Decrement I nde• Y by One 
"E•clus•w-or" Memory wtth Accumul1tor 
Increment Accumulator 
Increment by One 
Increment Index X by One 
Increment lndtiiC V by One 
Jump to New Location 
Jump to New Loc.ation Sav•ng Return Address 
Load Ac~umulator with Memory 

Note: • • New Instruction 

I . MICROPROCESSOR OP CODE TABLE 

I 
I 

I 

I 
I 

s 
0 0 1 2 

0 BAK ORA 
tnd, X 

I BPL ORA OAA•t 
••I lnd, Y lzpgl 

2 JSA ANO 
abs •nd, X 

3 BMI AND ANO "t 
rei .nd, v lzpgl 

4 ATI EOR 
tnd, X 

5 BVC EOA EOA"t 

"' tnd, v lzpgl 
6 RTS ADC 

ond, X 
7 BVS AOC Aoc·t 

<II tnd, v l1pgl 
8 BRA• STA 

<II lnd, X 
9 BCC STA STA•t ,., tnd, Y l1pgl 
A LOY LOA LOX 

omm tnd, X omm 
B BCS LOA LOA"t 

rei tnd, y (zpg) 

c C9Y CMP 
omm trd, X 

0 BNE CMP CMP•t 
<el ond, Y (zpgl 

E C9X SBC 
omm lnd, X 

F sea SBC sBc·t ,., ond, Y lzpgl 

0 1 2 

~: • a New OP Codes 
~- t a New Address Modes 

3 

3 

4 5 6 7 8 
TSB" ORA ASL PHP 
zpg zpg zpg 

TAB" ORA ASL CLC 
zpg zpg, X zpg, X 

BIT AND AOL PLP 
zpg zpg lpg 

BIT" AND ROL SEC 
zpg, X zpg, X zpg, X 

EOA LSR PHA 
zpg IP!I 

EOR LSA CLI 
zpg, X lpt, X 

STZ" ADC ROR Pl.A - lpg lpg 
STZ" AOC ROA SEI 
lpg, X lpg, X lpg, X 
STY STA STX DEY 
zpg lpg lpg 

STY STA STX TVA 
zpg, X 11)9. X 11)9, y 
LOY LOA LOX TAY 
zpg zpg Zpg 
LOY LOA LOX CLV 

zpg, X zpg,X lpg, y 

CPY CMP oec INY 
zpg zpg zpg 

CMP oec CLD 
zpg. X zpg, X 

CPX SBC INC INX 
zpg Zpg Zl)9 

SBC INC SED 
zpg, X Zpg. X 

4 5 6 7 8 

Data Sheet 

LOX 
LOY 
LSA 
NOP 
ORA 
PHA 
PHP 

• PHX 
" PHY 

Pl.A 
PLP 

• PLX 
• PLY 

ROL 
ROR 
ATI 
ATS 
SBC 
sec 
seo 
SEI 
STA. 
STX 
STY 

"STZ 
TAX 
TAY 

"TAB 
"TSB 

TSX 
TXA 
TXS 
TVA 

9 

ORA 
omm 
ORA 

obt,Y 
AND 
omm 
AND 

llbs, V 

EOR 
omm 
EOA 

abs,Y 
AOC 
omm 
AOC 

aln. y 
BIT" 
omm 
STA 

abs. Y 
LOA 
omm 

LOA 
obt,Y 
CMP 
omm 
CMP 

abs, Y 

SBC 
omm 
SBC 

abs, Y 

9 

Lold Index X w•th Memory 
Load Index Y with Memory 
Shift One Bit Right 
No Operation 
"OR" Memory with Accumulator 
Push Accumulltor on Stack 
Push Processor Status on St1ck 
Push Index X on Stack 
Push Index Yon Stack 
Pull Accumulator from Stack 
Putt Processor Status from Stack 
Pull lndtx X from Stack 
Pull I ndtx Y from Stack 
Rotete One B•t Left 
Rotltt One Bit Right 
Return from Interrupt 
Return from Subroutine 
Subtrect Memory from Accumulltor with Borrow 
Set Corry Flag 
Set Oecloml Mode 
Set Interrupt Disable S it 
Store Accumulator in Memory 
Store Index X tn Memory 
Store Index Y tn Memory 
Store Zero 1n Memory 
Tr~nsfer Accumulator to Index X 
Trensfer Accumuletor to Index Y 
Test and RtMt Memory Bits with Accumulator 
Test and Set Memory Biu with Accumuletor 
T ransfer StKk Pointer to Index X 
T ransfer Index X to Accumulator 
T rensfer Index X to Stack Pointer 
T rensfer I ndtx V to Accumuletor 

A B c 0 e 
ASL TsB • ORA ASL 
A abs abs abs 

INA" TRB" ORA ASL 
A abs abs.X abs, X 

AOL SIT AND AOL 
A abs abs abs 

OEA" BIT" t ANO AOL 
A fibs. X lbs, X abs, X 

LSR JMP EOR LSR 
A abs abs abs 

PHY" EOA LSR 
abs,X lbs, X 

ROR JMP AOC ROR 
A labs) obt abs 

PLY" JMP•t AOC ROR 
abs hnd,Xl abo, X obt,X 

TXA STY STA STX 
obt abs abs 

TXS STZ• STA STZ• 
aln M)s, X abs. X 

TAX LOY LOA LOX 
obi obi obi 

TSX LOY LOA LOX 
abs,X abo. X lbs, Y 

oex CPY CMP DEC 
obi obt abo 

PHX" CMP DEC 
abs.X abs,X 

NOP CPX SBC INC 
abs abs abo 

PLX" SBC INC 
abs.X abs. X 

A B c 0 e 

F 

F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

0 

e 

F 

215 



• OPERATIONAL CODES, EXECUTION TIME, AND MEMORY 
REQUIREMENTS 

MNE OPERATION ion f01 n f OP Oll'n iOf'n f '"'O'n i MniO,n l !<>fln i OPn i !Ofln 
AOC A+M•C•A 

:i~~~r·" .... o 
sec lraneh ,, c-o 
BCS 8U1"1Ch tf C • 1 

BEO Br•ncl'l ,r Z •1 
BIT A 1\ M 
BMI Brar.ch tf N• 1 
BNE Brarld'l tf Z•O 
BPL Branch ,r NaO 

BRA Branch AI""'IYt 
BRK Breellt 
BVC Brancl'l tf V*O 
BVS Br..,cl'l tf \1• 1 
CLC O•C 

CLO 0 • 0 
CLI 0•1 
CLV O•V 
CMP A · M 
CPX X · M 

CfiV Y M 
OEA A. I •A 
DEC M -I •M 
OEX X ·I •X 
DEY Y-l•Y 

EOR A¥ M •A 
INA A • t•A 
INC M • 1 •M 
IN)( X •1•:Jt 
IN Y Y • 1 • Y 

JMP Jutr'lp 10 new loc 
JSR J"""P SubrOIIt >nt 
L OA M • A 
L OX M •X 
LOY M •Y 

LSR O·~~ 
NOP PC• t •JJC 
ORA AV M•A 
PMA A • M1 S • I • S 
PMP P •M1 S I • s 
PHXX•M1 S1 •S 
PHY Y•M1 S-1 • S 
PL A S •1 • S M1 •A 
PU1 S• I•S M1 •P 
PL. X S • 1 • S M 1 • X 

:~vL 4:~. · S_]M:b? 
AOR~~ 
RTI Rtturn f,O~t~ lnJtr 
ATS Reru,n ' ' om Slolbr . 

sec A M c · A 
SEC I • C 
SED 1 •o 
SE I I •1 
STA A • M 

STX X • M 
STY Y •M 
STZ OO •M 
TAX A • x 
lAY A •Y 

TAB 1/\ M •M 
TSB AIIM•M 
TSX $ • X 
T XA X•A. 
TXS X •S 

Notes: 

11,31 89 2 60 4 3 65 3 2 61 I 2 71 52 7!5 4 2 
Ill 292220 4 32532 21823152354 2 
Ill OE 6 3 08 5 2 OA 2 1 18 8 2 
!2! 
12) 

121 
14,51 89 2 2C 4 3 24 3 2 
121 
121 
121 

I>! 

I>) 
12! 

111 

Ill 

11 1 

C9 2 cc • cs 3 2 
EO 2 2 EC 4 3 E4 3 2 

C02 CC43C43 2 
3A 2 I 

CE I 3 C6 S 2 

4C 3 3 

00 7 I 

, . 2 1 

oa 2 1 
58 2 I 
81 2 1 

c• 2 1 
88 21 

EB 2 1 
CB 7 I 

Cl I 2 01 5 1 OS • 1 

"". 2 

41 6 2 51 5 2 55 " 2 

F6 6 2 

70 " 3 79 .. 3 
30 4 339 4 3 
1E 8 J 

3C. 3 

00 43 [)1 4 3 

DE 6 3 

5043594 3 

FE & 3 

Ill A 2 ~ : ~A J 2 Al$181 5 2 85 42 80438943 
Ill A1 2 2 AE 4 3 A J 2 86 4 2 BE 4 3 
I l l A 2 2 AC 4 3 A 3 2 8442 8C43 

I ll 4 E 6 3 415 5 2 4A 2 1 S6 6 2 SE 6 3 
u 21 

09 2 2 00 4 3 05 J 2 01 I 2 I 1 5 2 15 4 2 
f4l 3 I 

Ill \0 4 3 19 4 3 

I ll 

"' 
2E 6 3 26 5 2 2A 2 I 
6E 6 l 66 5 2 6A 2 1 

n,JI E9 2 2 EO 4 3 E5 J 2 

141 
141 

80 4 J 85 3 2 

8£438632 
8C 4 3 84l2 
9C 4 J I4 J2 

!!: 6 3 14 5 2 
r-"'- 6Ja.52 

01 3 I 

QA 3 I 
SA 3 1 
68 4 I 
28 4 I 
FA 4 1 

7A 4 1 

40. ' 
60 I 

>0 2 I 
FB 2 1 
78 2 1 

~"" 2 ' 
A.8 2 1 

IIA21 
SA I 
9A71 

98 

36 6 2 
76 6 2 

E162 F t 52 FS 4 2 

816291629542 

... 2 
94 " 2 

JE 6 J 
7E 6 3 

FC 4 3 F9 4 J 

90 53 99 5 3 

74 4 2 9E 5 3 

1, Add l to "n" 1f page boundary is crossed. X Index X 
Y Index Y 2. Add l to "n" if branch occurs to same page. 

Add 2 to "n" if branch occurs to different page. A Accumulator 
3. Add l to "n" if decimal mode. 

!10 2 2 
80 2 2 

FO 2 2 

I~~~ 
10 2 2 

80 2 2 

.. 22 
70 2 2 

6C637C63 

+ Add 
- Subtract 
II And 
V Or 

NCR65C02 

7252NV .. Z C AOC 
32!12N . Z . ANO 

N , l C ASL 

. 0 
02 52 N 

N 

N 
N 
N 
N 
N . 

5252N . 
N 
N . 
N . 

82 52 N 
N . 
N . 

12 52 N 

N V 
N 

N 
N 
N . 
NV 

F2 5 2 NV , 

92 52 

N 
N. 

N 
N . 

. ICC 

. IC$ 

. IEQ 
. Z . liT ... , 

ONE . .,~,. 

IRA 
BRK 

. ave 

. 0 I VS 
• 0 CLC 

0 CLO 
0 • . CLI 

• . CLV 
. Z C CMP 

Z C CPX 

l C CPY 
Z . OEA 
Z . DEC 
Z • OEX 
l DEY 

. EO~ 

. INA. 
l IN C 
Z • INX 
Z INV 

JMP 
JS" 
LOA 
LOX 

Z L.OY 

Z C LSR 
• NOP 
Z ORA 

PMA 
PMP 

. PMX 
, PHY 

Z , PL.A 
1 0 I Z C PL.P 

Z Pi-X 

Z • PI.. Y 
Z RO I.. 
Z ROR 

1 0 I Z RTI 
RTS 

z sac 
t SEC 

SED 
t . SEI 

. STA 

STX 
. STY 
• STZ 

Z • T AX 
l . TAY 

l . TAB 
Z . TSB 
Z . TSX 
l . TX A 

TX$ 

Z TVA 

n No. Cycles 
I No. Bytes 
Ms Memory bit 6 
M7 Memory bit 7 

4. V bit eQ\.Jills memory bi t 6 pr1or to execut1on . 
M Memory per effect ive add nus 

Ms Memory per stack pointer ¥ Exclusive or 
N bit equals memory bit 7 prior to execution. 

•s. The immediate addressing mode of the BIT instruction leaves bits 6 & 7 
(V & N) in the Processor Status Code Register unchanged. 

216 Appendix A: The 65C02 Microprocessor 

II 
II 

• 

II 

II 
II 

II 

II 
II 
II 



Appendix B Directory of Built-in Subroutines 

I 

I 
I 

I 

I 
I 
I 

I 
I 

I 
I 

217 



218 

Here is a Jist of useful subroutines in the Apple lie's Monitor. To use these 
subroutines from machine-language programs, store data into the specified 
memory locations or microprocessor registers as required by the subroutine 
and execute a JSR to the subroutine's starting address. After the subroutine 
performs its function, it returns with the 65C02's registers changed as 
described. 

A. Warning For the sake of compatibility between the Apple II Plus, Apple lie, and 
the Apple lie, do not jump into the middle of Monitor subroutines. The 
starting addresses are the same for all models of the Apple II, but the 
actual code is different. 

BASICIN Read the keyboard $C305 

When the 80-column firmware is active, BASI GIN is used instead of KEYIN. 
BASIC IN operates like KEYIN except that it displays a solid, non-blinking 
cursor instead of a blinking checkerboard cursor. 

BASICOUT Output to screen $C307 

When the 80-column firmware is active, BASICOUT is used instead of 
COUTl. BASI GOUT displays the character in the accumulator on the 
Apple lie's screen at the current output cursor position and advances the 
output cursor. It places the character using the setting of the 
Normal/Inverse location. It handles control codes; see Table 3-3b. 
BASICOUT returns with all registers intact. 

BELL Output a bell character $FF3A 

BELL writes a bell (Control-G) character to the current output device. It 
leaves the accumulator holding $87. 

BELLI Sends a beep to the speaker $FBDD 

BELLI generates a 1 kHz tone in the Apple lie's speaker for 0.1 second. It 
scrambles the A and X registers. 

CLREOL Clear to end of line $FC9C 

CLREOL clears a text line from the cursor position to the right edge of the 
window. CLREOL destroys the contents of A andY. 

Appertdix B: Directory of Built-in Subroutines 

II 

-
II 

• 
II 

• • 
II 

II 
II 
II 
II 
II 
II 

II 
II 
II 



I 
I 
I 
I 

I 
I 
I 

I 
I 

I 
I 

I 
I 
I 
I 
I 
I 

CLEOLZ Clear to end of line $FC9E 

CLEOLZ clears a text line to the right edge of the window, starting at the 
location given by base address BASL, which is indexed by the contents of 
theY register. CLEOLZ destroys the contents of A andY. 

CLREOP Clear to end of window $FC42 

CLREOP clears the text window from the cursor position to the bottom of 
the window. CLREOP destroys the contents of A and Y. 

CLRSCR Clear the low-resolution screen $F832 

CLRSCR clears the low-resolution graphics display to black. If you call 
CLRSCR while tlw video display is in text mode, it fills the screen with 
inverse-mode at-sign (@) characters. CLRSCR destroys the contents of A 
andY. 

CLRTOP Clear the low-resolution screen $F836 

CLRTOP is the same as CLRSCR (above), except that it clears only the top 
40 rows of the low-resolution display. 

COUT Output a character $FDED 

COUT calls the current character output subroutine. The character to be 
output should be in the accumulator. COUT calls the subroutine whose 
address is stored in CSW Qocations $36 and $37), which is usually one of 
the standard character output subroutines, COUTl or BASICOUT. 

COUTl Output to screen $FDFO 

CO UTI displays the character in the accumulator on the Apple Ile's screen 
at the current output cursor position and advances the output cursor. It 
places the character using the setting of the Normal/ Inverse location. It 
handles the codes for carriage return, linefeed, backspace, and bell. It 
returns with all registers intact. 

CROUT Generate a carriage return character $FD8E 

CROUT sends a carriage return character to the current output device. 

CROUT! Generate carriage return, clear rest of line $FD8B 

CROUT I clears the screen from the current cursor position to the edge of 
the text window, then calls CROUT. 

Appendix B: Directory of Built-in Subroutines 219 



220 

GETLN Get an input line with prompt $FD6A • 

GETLN is the standard input subroutine for entire lines of characters, as 
described in Chapter 3. Your program calls GETLN with the prompt 
character in location $33; GETLN returns with the input line in the input 
buffer (beginning at location $0200) and the X register holding the length of 
the input line. 

GETLNZ Get an input line $FD67 

GETLNZ is an alternate entry point for GETLN that sends a carriage return 
to the standard output, then continues into GETLN. 

GETLNI Get an input line, no prompt $FD6F 

GETLNl is an alternate entry point for GETLN that does not issue a prompt 
before it accepts the input line. If, however, the user cancels the input line, 
either with too many backspaces or with a I CONTROL fill, then GETLNl 
will issue the contents of location $33 as a prompt when it gets another line . 

HLINE Draw a horizontal line of blocks $F819 

HLINE draws a horizontal line of blocks of the color set by SETCOL on the 
low-resolution graphics display. Call HLINE with the vertical coordinate of 
the line in the accumulator, the leftmost horizontal coordinate in the 
Y register, and the rightmost horizontal coordinate in location $2C. HLINE 
returns with A andY scrambled, X intact. 

HOME Home cursor and clear $FC58 

HOME clears the display and puts the cursor in the home position: the 
upper-left corner of the screen. 

IOREST Restore all registers $FF3F 

IOREST loads the 65C02's internal registers with the contents of memory 
locations 545 through $49. 

IOSA VE Save all registers $FF4A 

IOSAVE stores the contents of the 65C02's internal registers in locations $45 
through $49 in the order A, X, Y, P, S. The contents of A and X are changed 
and the decimal mode is cleared. 

Appendix B: Directory of Built-in Subroutines 

II 

-
II 

• -• 
II 
II 

• 
II 
II 
II 

• 
II 
II 
II 



I 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

KEY IN Read the keyboard $FD1B 

KEYIN is the keyboard input subroutine. It reads the Apple lie's keyboard, 
waits for a keypress, and randomizes the random number seed at $4E-$4F. 
When a key is pressed, KEYIN removes the blinking cursor from the display 
and returns with the keycode in the accumulator. KEYIN is described in 
Chapter 3. 

MOVE Move a block of memory $FE2C 

MOVE copies the contents of memory from one range of locations to 
another. This subroutine is the same as the MOVE command in the Monitor, 
except that it takes its arguments from pairs of locations in memory, 
low-byte first. The destination address must be in A4 ($42-$43), the starting 
source address in Al ($3C-$3D), and the ending source address in A2 
($3E-$3F) when your program calls MOVE. Register Y must contain $00 
when your program calls MOVE. 

NEXTCOL Increment color by 3 SF85F 

NEXTCOL adds 3 to the current color (set by SETCOL) used for 
low-resolution graphics. 

PLOT Plot on the low-resolution screen $F800 

PLOT puts a single block of the color value set by SETCOL on the 
low-resolution display screen. The block's vertical position is passed in the 
accumulator, its horizontal position in the Y register. PLOT returns with the 
accumulator scrambled, but X and Y intact. 

PRBLNK Print three spaces $F948 

PRBLNK outputs three blank spaces to the standard output device. On 
return, the accumulator usually contains SAO, the X register contains 0. 

PRBL2 Print many blank spaces $F94A 

PRBL2 outputs from 1 to 256 blanks to the standard output device. Upon 
entry, the X register should contain the number of blanks to be output. If 
X=$00, then PRBL2 will output 256 blanks. 

PRBYTE Print a hexadecimal byte $FDDA 

PRBYTE outputs the contents of the accumulator in hexadecimal on the 
current output device. The contents of the accumulator are scrambled. 

Appendi>. B: Directory of Built· in Subroutines 221 



222 

PREAD Read a hand control $FB1E 

PREAD returns a number that represents the position of a hand control. You 
pass the number of the hand control in the X register. If this number is not 
valid (not equal to 0, 1, 2, or 3), strange things may happen. PREAD returns 
with a number from $00 to $FF in theY register. The accumulator is 
scrambled. 

PRERR Print ERR $FF2D 

PRERR sends the word ERR, followed by a bell character, to the standard 
output device. On return, the accumulator is scrambled. 

PRHEX Print a hexadecimal digit $FDE3 

PRHEX prints the lower nibble of the accumulator as a single hexadecimal 
digit. On return, the contents of the accumulator are scrambled. 

PRNT AX Print A and X in hexadecimal $F941 

PRNTAX prints the contents of the A and X registers as a four-digit 
hexadecimal value. The accumulator contains the first byte output, the X 
register contains the second. On return, the contents of the accumulator are 
scrambled. 

RDCHAR Get an input character or escape code $FD35 

RDCHAR is an alternate input subroutine that gets characters from the 
standard input subroutine, and also interprets the escape codes listed in 
Chapter 3. 

RDKEY Get an input character $FDOC 

RDKEY is the character input subroutine. It places a blinking cursor on the 
display at the cursor position and jumps to the subroutine whose address is 
stored in KSW (locations $38 and $39), usually the standard input 
subroutine KEYIN, which returns with a character in the accumulator. 

READ Read a record from a cassette $FEFD 

READ reads a series of tones at the cassette input port, converts them to 
data bytes, and stores the data in a specified range of memory locations. 
Before calling READ, the address of the first byte must be in Al ($3C-$3D) 
and the address of the last byte must be in A2 ($3E-$3F). 

Appendix B: Directory of Built-in Subroutines 

II 
I 
II 
II 

• 
I 

• • 
II 

• 
II 

• 
II 
II 
II 

• 



I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

READ keeps a running exclusive-OR of the data bytes in CHKSUM ($2E). 
When the last memory location has been filled, READ reads one more byte 
and compares it with CHKSUM. If they are equal, READ sends out a beep 
and returns; if not, it sends the string ERR through GOUT, sends the beep, 
and returns. 

SCRN Read the low-resolution graphics screen $F871 

SCRN returns the color value of a single block on the low-resolution 
graphics display. Call it with the vertical position of the block in the 
accumulator and the horizontal position in theY register. Call it as you 
would call PLOT (above). The color of the block will be returned in the 
accumulator. No other registers are changed. 

SETCOL Set low-resolution graphics color $F864 

SETCOL sets the color used for plotting in low-resolution graphics to the 
value passed in the accumulator. The colors and their values are listed in 
Table 2-6. 

SETINV Set in verse mode SFE80 

SETINV sets the dislay format to inverse. COUTl will then display all 
output characters as black dots on a white background. TheY register is set 
to $3F, all others are unchanged. 

SETNORM Set normal mode $FE84 

SETNORM sets the display format to normal. COUTl will then display all 
output characters as white dots on a black background. On return, the 
Y register is set to $FF, all others are unchanged. 

VERIFY Compare two blocks of memory $FE36 

VERIFY compares the contents of one range of memory to another. This 
subroutine is the same as the VERIFY command in the Monitor, except it 
takes its arguments from pairs of locations in memory, low-byte first. The 
destination address must be in A4 ($42-543), the starting source address in 
Al ($3C-$3D), and the ending source address in A2 ($3E-$3F) when your 
program calls VERIFY. 

Appendix B: Directory of Built-in Subroutines 223 



224 

VLINE Draw a vertical line of blocks $F828 

VLINE draws a vertical line of blocks of the color set by SETCOL on the 
low-resolution display. You should call VLINE with the horizontal 
coordinate of the line in the Y register, the top vertical coordinate in the 
accumulator, and the bottom vertical coordinate in location $2D. VLINE will 
return with the accumulator scrambled. 

WAIT Delay $FCA8 

WAIT delays for a specific amount of time, then returns to the program that 
called it. The amount of delay is specified by the contents of the 
accumulator. The delay is 1/ 2(26+27 A +5A A 2) microseconds, where A is 
the contents of the accumulator. WAIT returns with the accumulator 
zeroed and the X and Y registers undisturbed. 

WRITE Write a record on a cassette $FECD 

II 

• --• • WRITE converts the data in a range of memory to a series of tones at the 
cassette output port. Before calling WRITE, the address of the first data • 
byte must be in Al ($3C-$3D) and the address of the last byte must be in A2 
($3E-$3F). The subroutine writes a ten-second continuous tone as a header, • 
then writes the data followed by a one-byte checksum. 

Appendix B: Directory of Built· in Subroutines 

• 
II 
II 

• 
II 
II 
II 

• 



I 
Appendix C Apple II Family Differences 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 

I 

225 



226 

This appendix lists the differences among the Apple II Plus, the original and 
the enhanced Apple lie, and the Apple lie. 

If you're trying to write software to run on more than one version of the 
Apple II, this appendix will help you avoid unexpected problems of 
incompatibility. 

The differences are listed here in approximately the order you are likely to 
encounter them: obvious differences first, technical details later. Each entry 
in the list includes references to the chapters in this manual where the item 
is described. 

Keyboard 

The Apple lie and Apple lie have a full62-key uppercase and lowercase 
keyboard. The keyboard includes fully-operational! SHIFT I and 
1 CAPS LOCK 1 keys. It also includes four directional arrow keys for moving 
the cursor. Chapter 2 includes a description of the keyboard. The 
cursor-motion keys are described in Chapter 3. 

Apple Keys 

The keyboard of the Apple lie and Apple lie have two keys marked with the 
Apple logo. These keys, called the Open-Apple key(@]) and Solid-Apple 
key ([!]), are used with the I RESET 1 key to select special reset functions. 
They are connected to the buttons on the hand controls, so they can be used 
for special functions in programs. 

The Apple II and the Apple II Plus do not have Apple keys. 

Character Sets 

The Apple lie and Apple lie can display the full ASCII character set, 
uppercase and lowercase. For compatibility with older Apple II's, the 
standard display character set includes flashing uppercase instead of 
inverse-format lowercase; you can also switch to an alternate character set 
with inverse lowercase and uppercase, but no flashing. Chapter 2 includes a 
description of the display character sets. Chapter 3 tells you how to switch 
display formats. 

Appendix C: Apple II Family Differences 

II 
II 
II 
II 

• 
II 

• • 
II 
II 
II 

• 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 

The Apple lie and the enhanced Apple lie include a set of "graphic" text 
characters, called MouseText characters, that replace some of the inverse 
uppercase characters in the alternate character set of the original Apple lie. 
MouseText characters are described in Chapter 2. 

SO-Column Display 

With the addition of an 80-column text card, the Apple lie can display 80 
colwnns of text. The 80-column display is completely compatible with both 
graphics modes-you can even use it in mixed mode. (If you prefer, you can 
use an old-style 80-column card in an expansion slot instead.) Chapter 2 
includes a description of the 80-column display. 

The Apple lie has a built-in extended 80-column card. 

Escape Codes and Control Characters 

On the Apple lie and Apple ilc, the display features mentioned above (and 
many others not mentioned) can be controlled from the keyboard by escape 
sequences and from programs by control characters. Chapter 3 includes 
descriptions of those escape codes and control characters. 

Built-in Language Card 

The 16K bytes of RAM you add to the Apple II Plus by installing the 
Language Card is built into the Apple lie and Apple lie, giving the Apple lie 
a standard memory size of 64K bytes. (The Apple lie has a built-in extended 
80-column text card as well, giving it a standard memory size of 128K 
bytes.) In the Apple lie, this 16K-byte block of memory is called the 
bank-switched memory. It is described in Chapter 4. 

Built· in Language Card 227 



Auxiliary Memory 

By installing the Apple lie Extended SO-Column Text Card, you can add an 
alternate 64K bytes of RAM to the Apple lie. Chapter 4 tells you how to use 
the additional memory. (The Extended SO-Column Text Card also provides 
the SO-column display option.) 

The Apple Ilc has a built-in extended SO-column text card. 

Auxiliary Slot 

In addition to the expansion slots on the Apple II Plus, the Apple Ile has a 
special slot that is used either for the SO-Column Text Card or for the 
Extended SO-Column Text Card. This slot is identified in Chapter 1 and 
described in Chapter 7. 

The Apple lie has the functions of the auxiliary slot built in. 

Back Panel and Connectors 

The Apple Ile has a metal back panel with space for several D-type 
connectors. Each peripheral card you add comes with a connector that you 
install in the back panel. Chapter 1 includes a description of the back panel; 
for details, see the installation instructions supplied with the peripheral 
cards. 

The Apple lie back panel has seven built-in connectors. 

Soft Switches 

The display and memory features of the Apple lie and the Apple lie are 
controlled by soft switches like the ones on the Apple II Plus. On the 
Apple lie and the Apple lie, programs can also read the settings of the soft 
switches. Chapter 2 describes the soft switches that control the display 
features, and Chapter 4 describes the soft switches that control the memory 
features. 

Appendix C: .~pplr II Family Differences 

II 
II 
II 

II 

II 
II 
II 
II 
II 
II 
II 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

Built-in Self-Test 

The Apple Ile has built-in firmware that includes a self-test routine. The 
self-test is intended primarily for testing during manufacturing, but you can 
run it to be sure the Apple Ile is working correctly. The self-test is described 
in Chapter 4. 

The Apple Ilc also has built-in diagnostics. 

Forced Reset 

Some programs on the Apple II Plus take control of the reset function to 
keep users from stopping the machine and copying the program. The 
Apple lie and Apple Ilc have a forced reset that writes over the program in 
memory. By using the forced reset, you can restart the Apple Ile (or 
Apple Ilc) without turning power off and on and causing unnecessary stress 
on the circuits. The forced reset is described in Chapter 4. 

Interrupt Handling 

Even though most application programs don't use interrupts, the Apple Ile 
(and Apple lie) provide for interrupt-driven programs. For example, the 
80-colurnn firmware periodically enables interrupts while it is clearing the 
display (normally a long time to have interrupts locked out). Interrupts are 
discussed in Chapter 6. 

Vertical Sync for Animators 

Programs with animation on the Apple Ile and Apple Ilc can stay in step 
with the display and avoid flickering objects in their displays. Chapter 7 
includes a description of the video generation and the vertical sync. 

Vertical Sync for Ani mawr~ 229 



Signature Byte 

A program can find out whether it's running on an Apple lie, Apple lie, 
Apple III (in emulation mode), or on an older model Apple II by reading the 
byte at location $FBB3 in the System Monitor. In the Apple lie Monitor, this 
byte's value is $06; in the Autostart Monitor (the standard Monitor on the 
Apple II Plus), its value is $EA. (Note: if you start up with DOS and switch 
to Integer BASIC, the Autostart Monitor is active and the value at location 
$FBB3 is $EA, even on an Apple lie.) Obviously, there are lots of other 
locations that have different values in the different versions of the Monitor; 
location $FBB3 was chosen because it will have the value $06 even in 
future revisions of the Apple lie Monitor. 

Hardware Implementation 

The hardware implementation of the Apple lie is radically different from 
the Apple II and Apple II Plus. Three of the more important differences are 

All of these features are described in o the custom ICs: the IOU and MMU 
Chapter 7. o the video hardware, which uses ROM to generate both text and graphics 

o the peripheral data bus, which is fully buffered. 

The Apple lie 

For more information about the Apple lie, o shares some of the custom lCs of the Apple lie 
see the Apple lie Reference Manual. 0 has some new ones all its own 

230 

o lacks the slots of the Apple lie, replacing some of them with built-in 1/0 
ports. 

Appendix C: Apple II Family Differences 

II 
II 
II 

-
II 
II 
II 
II 
II 

II 
II 

II 
II 
II 
II 
II 



I 
Appendix D Operating Systems and Languages 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

231 



This appendix is an overview of the characteristics of operating systems 
and languages when run on the Apple lie. It is not intended to be a full 
account. For more information, refer to the manuals that are provided with 
each product. 

Operating Systems 

This section discusses the operating systems that can be used with the 
Apple Ile. 

Pro DOS 

ProOOS is the preferred disk operating system for the Apple lie. It supports 
interrupts, startup from drives other than a Disk II, and all other hardware 
and firmware features of the Apple II e. 

DOS 3.3 

The Apple lie works with DOS 3.3. The Apple lie can also access DOS 3.2 
disks by using the BASICS disk. However, neither version of DOS takes full 
advantage of the features of the Apple lie. DOS support is provided only for 
the sake of Apple II series compatibility. 

Pascal Operating System 

The Apple II Pascal operating system was developed from the UCSD Pascal 
system from the University of California at San Diego. While it shares many 
characteristics of that system, it has been extended by Apple in several 
areas. 

Pascal versions 1.2 and later support interrupts and all the hardware and 
firmware features of the Apple lie. 

The Apple II Pascal system uses a disk format different than either ProOOS 
or DOS 3.3. 

Appendix D: Opera tin~ S\·.,rems and Language~ 

--
II 

-
II 
II 
II 
II 
II 

-
II 
II 



I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 
I 
I 
I 
I 
I 

CP/M -CP j M® is an operating system developed by Digital Research that runs on 
either the Intel 8080 or Zilog Z80® microprocessors. This means that a 
co-processor peripheral card, available from several manufacturers for the 
Apple Ile, is required to run CP/M. Several versions of CP/M from 1.4 
through 3.0 and later can be run on an Apple Ile with an appropriate 
co-processor card. 

Languages 

This section discusses special techniques to use, and characteristics to be 
aware of, when using Apple programming languages with the Apple lie. 

Assembly Language 

An aid for assembly-language programming Programs written in assembly language have the potential of extracting the 
is ProDOS Assembler Tools (A2W0013). most speed and efficiency from your Apple Ile, but they also require the 

most effort on your part. 

Applesoft BASIC 

The focus of the chapters in this manual is assembly language, and so most 
addresses and values are given in hexadecimal notation. Appendix E in this 
manual includes tables to help you convert from hexidecimal to the decimal 
notation you will need for BASIC. 

In BASIC, use a PEEK to read a location (instead of the LOA used in 
assembly language), and a POKE (instead of STA) to write to a location. If 
you read a hardware address from a BASIC program, you get a value 
between 0 and 255. Bit 7 holds a place value of 128, so if a soft switch is on, 
its value will be equal to or greater than 128; if the switch is off, the value 
will be less than 128. 

Integer BASIC 

Integer BASIC is not included in the Apple lie firmware. If you want to run 
it on your Apple Ile, you must use DOS 3.3 to load it in to the system. 
ProDOS does not support Integer BASIC. 

233 



234 

Pascal Language 

The Pascal language works on the Apple lie under versions 1.1 and later of 
the Pascal Operating System. However, for best performance, use Pascall.2 
or a later version. 

FORTRAN 

FORTRAN works under version 1.1 of the Pascal Operating System which 
does not detect or use certain Apple lie features, such as auxiliary memory. 
Therefore, FORTRAN does not take advantage of these features. 

Appendix 0: Operating Systems and Languages 

-
II 
II 
II 
II 

II 
II 
II 

II 
II 
II 



I 

I 

I 

I 

I 

I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

Appendix E Con version Tables 

235 



This appendix briefly discusses bits and bytes and what they can represent. II 
It also contains conversion tables for hexadecimal to decimal and negative 
decimal, for low-resolution display dot patterns, display color values, and a II number of 8-bit codes. 

These tables are intended for convenient reference. This appendix is not 

II intended as a tutorial for the materials discussed. The brief section 
introductions are for orientation only. 

II 
Bits and Bytes 

II This section discusses the relationships between bit values and their 
position within a byte. The following are some rules of thumb regarding the 

II 65C02 and 6502. 

o A bit is a binary digit; it can be either a 0 or a 1. 
o A bit can be used to represent any two-way choice. Some choices that a II bit can represent in the Apple lie are listed in Table E-1. 

Table E-1. What a Bit Can Represent II 
Context Representing 0 = 1= 

II Binary number Place value 0 1 x that power of 2 
Logic Condition False 1'rue 

Any switch Position Off On II Any switch Position Clear • Set 

Serial transfer Beginning Start Carrier (no information yet) 
II Serial transfer Data 0 value 1 \'alue 

Serial transfer Parity SPACE MARK 
Serial transfer End Stop bit(s) 

II Serial transfer Communication BREAK Carrier 
state 

P reg. bit N Neg. result? No Yes II P reg. bit V Overflow? No Yes 
P reg .. bit B BRK command? No Yes 
P reg. bit 0 Decimal mode? No Yes 

II P reg. bit I IRQ interrupts Enabled Disabled (masked out) 
P reg. bit Z Zero result? No Yes 
P reg. bit C Carry required? No Yes 

• Sometimes ambiguously termed reset. II 
II 

236 Appendix E: Conversion Tablt>s 
II 



I 

I 

I 

I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

o Bits can also be combined in groups of any size to represent numbers. 
Most of the commonly used sizes are multiples of four bits. 

o Four bits comprise a nibble (sometimes spelled nybble). 
o One nibble can represent any of 16 values. Each of these values is 

assigned a number from 0 through 9 and (because our decimal system 
has only ten of the sixteen digits we need) A through F. 

o Eight bits (two nibbles) make a byte (Figure E-1). 

Figure E-1. Bits, Nibbles, and Bytes 

MSB 
7 

$80 
128 

Binary 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

High Nibble 

6 5 

S40 520 
64 32 

Hex 

$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$0A 
$0B 
$0C 
$0D 
$0E 
$OF 

4 3 

S10 SOB 
16 8 

Dec 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Low Nibble 

2 

S04 $02 
4 2 

LSB 
0 

$01 Hexadecimal 
Decimal 

o One byte can represent any of 16 x 16 or 256 values. The value can be 
specified by exactly two hexadecimal digits. 

o Bits within a byte are numbered from bit 0 on the right to bit 7 on the left. 
o The bit number is the same as the power of 2 that it represents, in a 

manner completely analogous to the digits in a decimal number. 

Bits and Bytes 237 



238 

o One memory position in the Apple lie contains one eight-bit byte of data. 
o How byte values are interpreted depends on whether the byte is an 

instruction in a language, part or all of an address, an ASCII code, or 
some other form of data. 

o Two bytes make a word. The sixteen bits of a word can represent any 
one of 256 x 256 or 65536 different values. 

o The 65C02 uses a 16-bit word to represent memory locations. It can 
therefore distinguish among 65536 (64K) locations at any given time. 

o A memory location is one byte of a 256-byte page. The low-order byte of 
an address specifies this byte. The high-order byte specifies the memory 
page the byte is on. 

Hexadecimal and Decimal 

Use Table E-2 for conversion of hexadecimal and decimal numbers. 

Table E-2. Hexadecimal/Decimal Conversion 

Digit $x000 $0x00 SOOxO $000x 

F 61440 3840 240 15 
E 57344 3584 224 14 
D 53248 3328 208 13 
c 49152 3072 192 12 
B 45056 2816 176 11 
A 40960 2560 160 10 
9 36864 2304 144 9 
8 32768 2048 128 8 
7 28672 1792 112 7 
6 24576 1536 96 6 
5 20480 1280 80 5 
4 16384 1024 64 4 
3 12288 768 48 3 
2 8192 512 32 2 
1 4096 256 16 1 

Appendix E: Con\·ersion Tables 

-
II 
II 

II 
II 
II 

II 
II 



I 
I 
I 
I 
I 
I 
I 

I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

To convert a hexadecimal number to a decimal number, find the decimal 
numbers corresponding to the positions of each hexadecimal digit. Write 
them down and add them up. 

Examples: 

S3C • ? 

$38 • 48 
uc • 12 

S3C • 68 

SFD47 • ? 

SFilllll • 61448 
S Dllll • 3328 
$ 48 • 64 
$ 7 • 7 

SFD47 • 64839 

To convert a decimal number to hexadecimal, subtract from the decimal 
number the largest decimal entry in the table that is less than the number. 
Write down the hexadecimal digit (noting its place value) also. Now 
subtract the largest decimal number in the table that is less than the 
decimal remainder, and write down the next hexadecimal digit. Continue 
until you have zero left. Add up the hexadecimal numbers. 

Example: 

162 15 . $ ? 

16 2 15 - 12288 . 
3927 - 3848 . 

87 - 88 . 
7 

Hexadecimal and Decimal 

3927 
8 7 
7 

12288 • $71lllll 
3848 • s F llll 

88 • $ 58 
7 • s 7 

162 15 • S7F 5 7 

239 



Hexadecimal and Negative Decimal 

If a number is larger than decimal32767, Applesoft BASIC allows and 
Integer BASIC requires that you use the negative-decimal equivalent of the 
number. Table E-3 is set up to make it easy for you to convert a 
hexadecimal number directly to a negative decimal number. 

Table E-3. Hexadecimal to Negative Decimal Conversion 

Digit SxOOO S$0x00 $SOOxO S$000x 

F 0 0 0 -1 
E -4096 -256 -16 -2 
D -8192 -512 -32 -3 
c -12288 -768 -48 -4 
B -16384 -1024 -64 -5 
A -20480 -1280 -80 -6 
9 -24576 -1536 -96 -7 
8 -28672 -1792 -112 -8 
7 -2048 -128 -9 
6 -2304 -144 -10 
5 -2560 -160 -11 
4 -2816 -176 -12 
3 -3072 -192 -13 
2 -3328 -208 -14 
1 -3584 -224 -15 
0 -3840 -240 -16 

To perform this conversion, write down the four decimal numbers 
corresponding to the fou r hexadecimal digits (zeros included). Then add 
their values. The resulting number is the desired negative decimal number. 

Example: 

$C010 = - ? 

$CIHl0 : - 12288 

$ 0B0: - 3840 

$ 1B: 224 

$ 0: 16 

$CB 1B -16368 

Appt>ndix E: Con1·crsion Tablrs 

II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 



I 
I 

I 

I 

I 

I 
I 
I 

I 
I 
I 

I 

I 

I 

I 

I 
I 

To convert a negative-decimal number to a positive decimal number, add it 
to 65536. (This addition ends up looking like subtraction.) 

Example: 

-151 • + ? 

65536 + ( - 15 1) • 65536 - 15 1 • 65385 

To convert a negative-decimal number to a hexadecimal number, first 
convert it to a positive decimal number, then use Table E-2. 

Hexadecimal and ~egative Decimal 241 



Graphics Bits and Pieces -
Table E-4 is a quick guide to the hexadecimal values corresponding to 7-bit -high-resolution patterns on the display screen. Since the bits are displayed 
in reverse order, it takes some calculation to determine these values. 
Table E-4 should make it easy. II 
Table E-4. Hexadecimal Values for High-Resolution Dot Patterns 

II Bits in Data Byte Bit Pattern x=O x=l Bit Pattern x=O x=l 

8 xOOOOOOO $00 $80 x0100000 $02 $82 -xOOOOOOl $40 $CO x0100001 $42 $C2 
x0000010 $20 SAO x0100010 $22 $A2 
xOOOOOll $60 SEO x0100011 $62 $E2 

II x0000100 $10 $90 x0100100 $12 $92 
x0000101 $50 SDO x0100101 $52 $02 
xOOOOl lO $30 S80 x0100110 $32 $82 
xOOOOlll $70 SFO x0100111 $72 $F2 II xOOOlOOO $08 S88 x0101000 $0A S8A 

Dots on Graphics Screen x0001001 $48 SC8 x0101001 $4A SCA 
x0001010 $28 $A8 x0101010 $2A $AA II x0001011 $68 $E8 x0101011 $6A SEA 
xOOOllOO $18 $98 x0101100 $1A $9A 
x0001101 $58 $08 x0101101 $5A SDA 

II x0001110 $38 $88 x0101110 $3A $BA 
xOOOlll l $78 $F8 x0101111 $7A $FA 
xOOlOOOO $04 $84 xOllOOOO $06 $86 
x0010001 $44 $C4 x0110001 $46 $C6 II x0010010 $24 $A4 x0110010 $26 $A6 
x0010011 $64 $E4 x0110011 $66 $E6 
x0010100 $14 $94 x0110100 $16 $96 II x0010101 $54 $04 x0110101 S56 $06 
x0010110 $34 $84 x0110110 $36 $86 
x0010111 $74 SF4 xOllOlll S76 $F6 

II x0011000 soc sse xOlllOOO SOE $8E 
x0011001 S4C sec x0111001 S4E $CE 
x0011010 $2C SAC x0111010 S2E $AE 

II x0011011 S6C SEC x0111011 S6E SEE 
xOOlllOO SIC S9C x0111100 SlE S9E 
x0011101 S5C soc x0111101 $5E $DE 
xOOllllO $3C SBC x0111110 $3E $BE II x0011111 $7C $FC xOllllll $7E $FE 

II 

II 
~42 Appendi>. E: Conversion Tables 

II 



I The x represents bit 7. Zeros represent bits that are off; ones bits that are 
on. Use the first hexadecimal value if bit 7 is to be off, and the second if it is 

I to be on. 

For example, to get bit pattern 00101110, use $3A; for 10101110, use $BA. 

I Table E-4- Continued. Hexadecimal Values for H!gh-Resolution Dot Patterns 

I 
Bit Pattern x=O x=l Bit Pattern x=O x=l 

xlOOOOOO $01 $81 x1100000 $03 $83 
x1000001 $41 SC1 xll00001 $43 $C3 

I xl000010 $21 $A1 xl100010 $23 $A3 
x1000011 $61 SE1 xll00011 $63 $E3 
x1000100 $11 $91 xll00100 $13 $93 

I x1000101 $51 SD1 xll00101 $53 $D3 
xlOOOllO $31 SB1 xll00110 $33 $83 
x1000111 $71 SF1 xll00111 $73 SF3 

I 
xl001000 $09 $89 xll01000 SOB $88 
x1001001 $49 SC9 xl101001 $48 $CB 
xl001010 $29 SA9 xll01010 S2B $AB 
xl001011 $69 SE9 xll01011 S6B $EB 

I xlOOllOO $19 599 xllOllOO SIB $98 
xl001101 $59 SD9 xll01101 $58 $DB 
x1001110 539 SB9 xllOlllO $38 $88 

I xlOOllll $79 SF9 xllOllll S7B $FB 
xlOlOOOO $05 $85 xlllOOOO $07 $87 
xl010001 $45 SC5 x1110001 $47 $C7 

I 
xlOIOOlO $25 $A5 xll10010 $27 $A7 
xl010011 $65 SE5 x1110011 $67 $E7 
xl010100 $15 $95 x1110100 $17 $97 
xlOIOlOI $55 $D5 xlll0101 $57 $D7 

I xl010110 S35 $85 xlllOllO $37 SB7 
x1010lll $75 SF5 xl11011 1 $77 SF7 
xlOllOOO SOD S8D x1111000 $OF $8F 

I xl011001 S4D SCD xlll1001 S4F SCF 
xl011010 $20 SAD xllllOlO S2F SAF 
xl011011 S6D SED xllllOll $6F SEF 

I xlOlllOO $10 S9D xlll1100 S1F S9F 
xl011101 $50 SOD xll11101 S5F SDF 
xl011110 $3D $80 xllllllO S3F SBF 

I 
x1011111 $70 SFD xllllll1 $7F SFF 

I 
I 
I 

Graphics Bits and Pieces 243 



The MouseText characters are shown in 
Table E-7. 

24-! 

Eight-Bit Code Conversions 

Tables E-5 through E-12 show the entire ASCII character set twice: once 
with the high bit off, and once with it on. Here is how to interpret these 
tables. 

o The Binary column has the 8-bit code for each ASCII character. 
o The first 128 ASCII entries represent 7-bit ASCII codes plus a high-order 

bit of 0 (SPACE parity or Pascal)- for example, 010010000 for the II 
letter H. 

o The last 128 ASCII entries (from 128 through 255) represent 7-bit ASCII 
codes plus a high-order bit of 1 (MARK parity or BASIC)-for example, • 
11001000 for the letter H. • 

o A transmitted or received ASCII character will take whichever form is 
appropriate if odd or even parity is selected-for example, 11001000 for • 
an odd-parity H, 01001000 for an even-parity H. • 

o The ASCII Char column gives the ASCII character name. 
o The Interpretation column spells out the meaning of special symbols II 

and abbreviations, where necessary. 
o The What to Type column indicates what keystrokes generate the ASCII II 

character (where it is not obvious). 
o The columns marked Pri andAlt indicate what displayed character 

results from each code when using the primary or alternate display 
character set, respectively. Boldface is used for inverse characters; italic 
is used for flashing characters. 

Note that the values $40 through $5F (and $CO through $DF) in the 
alternate character set are displayed as Mouse Text characters if 
MouseText is turned on. 

Appendix E: Conversion Tables 

-
II 

II 
II 
II 

II 
II 



I Note: The primary and alternate displayed character sets in Tables E-5 
through E-12 are the result of firmware mapping. The character generator 

I ROM actually contains only one character set. The firmware mapping 
procedure is described in the section "Inverse and Flashing Text," in 
Chapter 3. 

I 
Table E-5. Control Characters, High Bit Off 

I ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

I 0000000 0 $00 NUL Blank (null) ~ @ @ 
0000001 1 $01 SOH Start of Header ~ A A 
0000010 2 $02 STX Start of Text I CONTROL H]J B B 

I 
0000011 3 $03 ETX End of Text I CONTROL ~@] c c 
0000100 4 $04 EOT End of Transm. ~ D D 
0000101 5 $05 ENQ Enquiry I CONTROL fill E E 
0000110 6 $06 ACK Acknowledge I CONTROL f{I) F F 

I 0000111 7 $07 BEL Bell ~ G G 
0001000 8 $08 BS Backspace ~orG H H 
0001001 9 $09 HT Horizontal Tab ICONTROLHJ]Or iTAB I I I 

I 0001010 10 SOA LF Line Feed I CONTROL fQ] or [I) J J 
0001011 11 SOB VT Vertical Tab ~or[!] K K 
0001100 12 soc FF Form Feed I CONTROL fill L L 

I 
0001101 13 SOD CR Carriage Return ~Or ! RETURN I M M 
0001110 14 $0E so Shift Out ~ N N 
0001111 15 SOF SI Shift In ~ 0 0 
0010000 16 $10 OLE Data Link Escape ~ p p 

I 0010001 17 $11 DCl Device Control! ~ Q Q 
0010010 18 $12 DC2 Device Control 2 ~ R R 
0010011 19 $13 DC3 Device Control3 I CONTROL fill s s 

I 0010100 20 $14 DC4 Device Control4 I CONTROL fill T T 
0010101 21 $15 NAK Neg. Acknowledge ~orB u u 
0010110 22 $16 SYN Synchronization ~ v v 

I 
0010111 23 $17 ETB End of Text Blk. ~ w w 
0011000 24 $18 CAN Cancel I CONTROL f-ill X X 
0011001 25 $19 EM End of Medium ~ y y 
0011010 26 $1A SUB Substitute I CONTROL !-ill z z 

I 0011011 27 $18 ESC Escape I coNTROL fill or I esc I [ [ 
0011100 28 $1C FS File Separator I CONTROL I{I) \ \ 
0011101 29 $1D GS Group Separator I CONTROL Hil ] ] 

I 0011110 30 $1E RS Record Separator ICONTROLf-B 
0011111 31 $1F us Unit Separator ~ 

I 

I 
II Eight·Bit. Code Conversions 245 



Table E-6. Special Characters, High Bit Off 

ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

0100000 32 $20 SP Space I SPACE I bar 
01()()()()1 33 521 II 0100010 34 $22 " " 
0100011 35 S23 # # # 
0100100 36 $24 $ $ $ II 0100101 37 $25 % % % 
0100110 38 $26 & & & 
0100111 39 $27 Closing Quote 

II 0101000 40 $28 ( ( ( 
0101001 41 $29 ) ) ) 
0101010 42 $2A • • 
0101011 43 $28 + + + -0101100 44 $2C Comma 
0101101 45 $20 Hyphen 
0101110 46 $2E Period II 0101111 47 $2F I I I 
0 11 ()()()() 48 $30 0 0 0 
0110001 49 $31 1 1 1 -0110010 50 $32 2 2 2 
0110011 51 $33 3 3 3 
0110100 52 $34 4 4 4 

II 0110101 53 $35 5 5 5 
0110110 54 $36 6 6 6 
0110111 55 $37 7 7 7 
0111000 56 $38 8 8 8 II 0111001 57 $39 9 9 9 
0111010 58 $3A 
Olll011 59 $38 

' j j II 0111100 60 $3C < < < 
0111101 61 S3D = = 
0111110 62 S3E > > > 

II 0111111 63 $3F ? ? ? 

II 
II 
II 

246 Appendix E: Conversion Tables 



I Table E-7. Uppercase Characters, High Bit Off 

I ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

1000000 64 $40 @ @ • I 1000001 65 $41 A A 0 
1000010 66 $42 B B ..... 
1000011 67 $43 c c X 

I 1000100 68 $44 D D .../ 
1000101 69 $45 E E Ll 
1000110 70 $46 F F ~ 
1000111 71 $47 G G -I "-
1001000 72 $48 H H f-
1001001 73 $49 I I 
1001010 74 $4A J J .J.. 

I 1001011 75 S4B K K 1' 
1001100 76 S4C L L 
1001101 77 $40 M M ..,J 

I 1001110 78 S4E N N I 
1001111 79 $4F 0 0 ~ 
1010000 80 $50 p p ~ 

I 1010001 81 S51 Q Q ....; 
1010010 82 552 R R .. 
1010011 83 553 s s 

I 
1010100 84 554 T T L 
1010101 85 555 u u ~ 
1010110 86 $56 v v • 1010111 87 $57 w w • I 1011000 88 $58 X X c 
1011001 89 $59 y y :=I 
1011010 90 $5A z z I 

I 1011011 91 S5B [ Opening Bracket I • 1011100 !J2 $5C \ Reverse Slant \ 
1011101 93 $50 I Closing Bracket J .n. ,,.. 

I 
1011110 94 $5E Caret :::::J 
1011111 95 $5F Underline I 

I 
I 

I 

I 
I Eight-Bit Code Conversions 247 



Table E-8. Lowercase Characters, High Bit Off 

ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

1100000 96 $60 Opening Quote 
1100001 97 $61 a a II 1100010 98 $62 b b 
1100011 99 $63 c # c 
11 00 1 00 100 $64 d $ d II 1100101 101 $65 e % e 
1100110 102 $66 f & f 
1100111 103 $67 g g 

II 1101000 104 $68 h ( h 
1101001 105 $69 ) i 
1101010 106 $6A j * j 
1101011 107 $6B k + k 
1101100 108 $6C 1 1 
1101101 109 $60 rn m 
1101110 110 $6E n n 
1101111 111 $6F 0 I 0 
1110000 112 $70 p 0 p 
1110001 113 $71 q 1 q 

II 1110010 114 $72 r 2 r 
1110011 115 $73 s 3 s 
1110100 116 $74 t 4 t -1110101 117 $75 u 5 u 
1110110 118 $76 v 6 v 
1110111 119 $77 w 7 w 
1111000 120 $78 X 8 X II 1111001 121 $79 y 9 y 
1111010 122 $7A z z 
1111011 123 $7B { Opening Brace { II 1111100 124 $7C I Vertical Line < I 
1111101 125 $70 } Closing Brace } 
1111110 126 $7E Overline (Tilde) > 

II 1111111 127 $7F DEL Delete/ Rubout ? DEL 

II 

II 

II 

II 
~-t' Appendix E: Com-ersion Tables 

II 



I Table E-9. Control Characters, High Bit On 

I ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

1 ()()()()()()() 128 $80 NUL Blank (null) ~ @ @ 

I 10000001 129 S81 SOH Start of Header ~ A A 
10000010 130 S82 STX Start of Text ~ B B 
10000011 131 $83 ETX End of Text ~ c c 

I 10000100 132 $84 EOT End of Transm. ~ D D 
10000101 133 $85 ENQ Enquiry I CONTROL !ill E E 
10000110 134 $86 ACK Acknowledge I CONTROL HIJ F F 

I 
10000111 135 $87 BEL Bell ~ G G 
10001000 136 $88 BS Backspace ~orG H H 
10001001 137 $89 HT Horizontal Tab I coNTROL fill or I TAB I I I 

I 
10001010 138 $8A LF Line Feed I CONTROL fill or Q] J J 
10001011 139 $8B VT Vertical Tab I coNTROL HKJ or [!] K K 
10001100 140 S8C FF Form Feed I CONTROL fill L L 
10001101 141 S8D CR Carriage Return ~OriRETURNI M M 

I 10001110 142 $8E so Shift Out ~ N N 
10001111 143 $8F SI Shift In ~ 0 0 
10010000 144 $90 OLE Data Link Escape I CONTROL I® p p 

I 10010001 145 $91 DC1 Device Con troll ~ Q Q 
10010010 146 $92 DC2 Device Control2 ~ R R 
10010011 147 $93 DC3 Device Control3 ~ s s 

I 
10010100 148 $94 DC4 Device Control4 ~ T T 
10010101 149 $95 NAK Neg. Acknowledge ~orG u u 
10010110 150 $96 SYN Synchronization ~ v v 
10010111 151 $97 ETB End of Text Blk. ~ w w 

I 10011000 152 $98 CAN Cancel ~ X X 
10011001 153 $99 EM End of Medium ~ y y 
10011010 154 $9A SUB Substitute I CONTROL !-ill z z 

I 10011011 155 $9B ESC Escape I coNTROL KD or I esc I [ [ 
10011100 156 S9C FS File Separator I CONTROL fill \ \ 
10011101 157 S9D GS Group Separator I CONTROL fill I I 

I 
10011110 158 S9E RS Record Separatcr ICONTROLfB 
10011111 159 S9F us Unit Separator ~ 

I 
I 
I 
I 

I Eight · Bit Code Con\'crsions 249 



Table E-10. Special Characters, High Bit On 

ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

10100000 160 $AO SP Space SPACE bar 
10100001 161 SAl II 10100010 162 SA2 
10100011 163 $A3 # # # 

10100100 164 $A4 $ s $ II 10100101 165 $A5 % % % 
10100110 166 SA6 & & & 
10100111 167 SA7 Closed Quote -(acute accent) 
10101000 168 SA8 ( ( ( 
10101001 169 SA9 ) ) ) 
10101010 170 $AA • • • II 10101011 171 $AB + + + 
10101100 172 $AC Comma 
10101101 173 SAD Hyphen II 10101110 174 $AE Period 
10101111 175 $AF I I I 
10110000 176 $BO 0 0 0 

II 10110001 177 SBl 1 1 1 
10110010 178 $B2 2 2 2 
10110011 179 $B3 3 3 3 

II 10110100 180 $B4 4 4 4 
10110101 181 $B5 5 5 5 
10110110 182 SB6 6 6 6 
10110111 183 $B7 7 7 7 II 10111000 184 $B8 8 8 8 
10111001 185 SB9 9 9 9 
10111010 186 SBA II 10111011 187 $BB I I I 

10111100 188 $BC < < < 
10111101 189 $BD 

II 10111110 190 SBE > > > 
10111111 191 $BF ? ? ? 

II 
II 
II 
II 

250 Appendix E: Conversion Tables II 
-- --



I Table E-11. Uppercase Characters, High Bit On 

I ASCII 
Binary Dec Hex Char Interpretation What to Type Pri Alt 

11000000 192 sco @ @ @ 

I 11000001 193 SCI A A A 
11000010 194 SC2 B B 8 
11000011 195 SC3 c c c 

I 11000100 196 SC4 D D D 
11000101 197 $C5 E E E 
11000110 198 $C6 F F F 

I 
11000111 199 $C7 G G G 
11001000 200 $C8 H H H 
11001001 201 $C9 I I I 

I 
11001010 202 $CA J J J 
11001011 203 $CB K K K 
11001100 204 sec L L L 
11001101 205 SCD M M M 

I 11001110 206 SCE N N N 
11001111 207 SCF 0 0 0 
11010000 208 SDO p p p 

I 11010001 209 SD1 Q Q Q 
11010010 210 $02 R R R 
11010011 211 SD3 s s s 

I 
11010100 212 SD4 T T T 
11010101 213 SD5 u u u 
11010110 214 $06 v v v 
11010111 215 SD7 w w w 

I 11011000 216 $08 X X X 
11011001 217 $09 y y y 

11011010 218 SDA z z z 

I 11011011 219 $DB [ Opening Bracket [ [ 
11011100 220 soc \ Reverse Slant \ \ 
11011101 221 SOD l Closing Bracket l l 

I 
11011110 222 SDE Caret . 
11011111 223 SDF Underline 

I 

I 
I 
I 
II Eight -Bit Code Com·Nstons 251 



Table E-12. Lowercase Characters, High Bit On II 
ASCII 

II Binary Dec Hex Char Interpretation What to Type Pri Alt 

11100000 224 SEO Open Quote 
11100001 225 SE1 a a a II 11100010 226 SE2 b b b 
11100011 227 SE3 c c c 
11100100 228 $E4 d d d II 11100101 229 SE5 e e e 
11100110 230 $E6 f f f 
11100111 231 $E7 g g g 

II 11101000 232 $E8 h h h 
11101001 233 $E9 
11101010 234 $EA j j j 
11101011 235 $EB k k k II 11101100 236 $EC 1 1 1 
11101101 237 SED m m m 
11101110 238 SEE n n n -11101111 239 SEF 0 0 0 
11110000 240 SFO p p p 
11110001 241 SF1 q q q 

II 11110010 242 SF2 r r r 
11110011 243 SF3 s s s 
11110100 244 SF4 t t t 

II 11110101 245 $F5 u u u 
11110110 246 $F6 v v v 
11110111 247 $F7 w w w 
11111000 248 $F8 X X X II 11111001 249 $F9 y y y 
11111010 250 $FA z z z 
11111011 251 $FB { Opening Brace { { II 11111100 252 SFC I Vertical Line I I 
11111101 253 SFD } Closing Brace } }_ 
11111110 254 $FE Overline (Tilde) 

II 11111111 255 SFF DEL Delete (Rubout) DELETE DEL DEL 

II 

• -
II 

252 Appendix E: Com·ersion Tables -



I 
Appendix F Frequently Used Tables 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

253 

- -----



This appendix contains copies of the tables you will need to refer to 
frequently, for example, ASCII codes and soft-switch location. The fJgures 
all have their original figure numbers. • Table 2-3. Kevs and ASCII Codes 
Note: Codes are shou·n here in he.mderimal; to find the decimal equivalents, refer II 
to Table E-2. 

Normal Control Shift Both II Key Code Char Code Char Code Char Code Char 

I DELETE I 7F DEL 7F DEL 7F DEL 7F DEL 
G 08 BS 08 BS 08 BS 08 BS -I TAB I 09 HT 09 HT 09 HT 09 HT 
OJ OA LF OA LF OA LF OA LF 
[i] OB VT OB VT OB VT OB VT 
I RETURN I OD CR OD CR OD CR OD CR 
G 15 NAK 15 NAK 15 AK 15 NAK 
I ESC I IB ESC 18 ESC 18 ESC lB ESC 
I SPACE I 20 SP 20 SP 20 SP 20 SP 

27 27 22 22 
,< 2C 2C 3C < 3C < 

2D IF us 5F lF us 
.> 2E 2E 3E > 3E > 
I? 2F I 2F I 3F ? 3F ? 

0) 30 0 30 0 29 29 ) 
I! 31 I 31 1 21 21 
2@ 32 2 ()() NUL 40 @ 00 NUL 
3# 33 3 33 3 23 h 23 # 

II 4S 34 4 34 4 24 s 24 $ 

5% 35 5 35 5 25 % 25 % 
6 36 6 lE RS 5E IE RS II 7& 37 7 37 7 26 & 26 & 
8* 38 8 38 8 2A 2A 
9( 39 9 39 9 28 ( 28 ( II .. 3B 38 3A 3A '. 
= + 3D 3D 28 + 28 + 
[ { 58 [ 18 ESC 78 { 18 ESC II \I 5C \ IC FS 7C I IC FS 
u_ 50 I lD GS 70 t 10 GS 

II 60 60 7E 7E 

II 
, .. 
_;J t AIJPl'nrlix F: f'rpqueruly L~\·d Tables 



I Table 2-3- Continued. Keys and ASCII Codes 
Note: Codes are shown here in hexadecimal; to find the decimal equimlents, refer 

I to Table E-2. 

Normal Control Shift Both 
Key Code Char Code Char Code Char Code Char 

I A 61 a 01 SOH 41 A 01 SOH 
B 62 b 02 STX 42 B 02 STX 

I c 63 c 03 ETX 43 c 03 ETX 
0 64 d 04 EOT 44 0 04 EOT 
E 65 e 05 ENQ 45 E 05 ENQ 

I F 66 f 06 ACK 46 F 06 ACK 
G 67 g 07 BEL 47 G 07 BEL 
H 68 h 08 BS 48 H 08 BS 

I I 69 09 HT 49 09 HT 
J 6A j OA LF 4A J OA LF 

I K 6B k OB VT 4B K OB VT 
L 6C oc IT 4C L oc FF 
M 60 rn 00 CR 40 M 00 CR 

I N 6E n OE so 4E 1\ OE so 
0 6F 0 OF SI 4F 0 OF SI 
p 70 p 10 OLE 50 p 10 OLE 

I Q 71 Q 11 OC1 51 Q 11 OC1 
R 72 r 12 OC2 52 R 12 OC2 
s 73 s 13 OC3 53 s 13 OC3 

I T 74 14 OC4 54 T 14 OC4 
u 75 u 15 NAK 55 u 15 NAK 

I 
v 76 v 16 SYN 56 v 16 SYN 
w 77 \\' 17 ETB 57 w 17 ETH 
X 78 X 18 CAN 58 X 18 CAN 

I 
y 79 y 19 EM 59 y 19 EM 
z 7A z !A SUB 5A z lA SUB 

I Table 2-2. Keyboard Memory Locations 

I Location 
Hex Decimal Description 

$COOO 49152 -16384 Keyboard data and strobe 

I $COlO 49168 -16368 Any-key-down flag and clear-strobe switch 

I 
I 

Appendix F: Frequently used Tables 255 



Table 2-4. Video Display Specifications II 

• Display modes: 

Text capacity: 

Character set: 

Display formats: 

Low-resolution graphics: 

High-resolution graphics: 

Double-high-resolution 
graphics: 

40-column text; map: Figure 2-2 
80-column text; map: Figure 2-3 

Low-resolution color graphics; map: Figure 2-7 

High-resolution color graphics; map: Figure 2-8 

Double-high-resolution color graphics; 
map: Figure 2-9 

24 lines by 80 columns (character positions) 

96 ASCII characters (uppercase and lowercase) 

Normal, inverse, flashing, MouseText (Table 2-5) 

16 colors (Table 2-6) 40 horizontal by 48 vertical; 
map: Figure 2-7 

6 colors (Table 2-7) 140 horizontal by 192 vertical 
(restricted) 

Black-and-white: 280 horizontal by 192 vertical; 
map: Figure 2-8 

16 colors (Table 2-8) 140 horizontal by 192 vertical 
(no restrictions) 

II 
II 

• 
II 
II 

• 
Black-and-white: 560 horizontal by 192 vertical; II 
map: Figure 2-9 

II 
II 

II 

-
II 
II 

Appendix F: Frequently Used Tables 

II 



I Table 2-8. Double-High-Resolution GraJ2hics Colors 

I Repeated 
Color abO mbl ab2 mbS Bit Pattern 

Black soo $00 $00 $00 ()()()() 

I Magenta $08 $11 S22 $44 0001 
Brown $44 $08 $11 $22 0010 
Orange $4C $19 $33 $66 0011 

I Dark Green $22 $44 $08 $11 0100 
Gray 1 $2A $55 $2A $55 0101 
Green $66 $4C $19 $33 0110 

I 
Yellow $6E $5D $38 $77 0111 
Dark Blue $11 $22 $44 $08 1000 
Purple $19 $33 $66 $4C 1001 
Gray2 $55 $2A $55 $2A 1010 

I Pink $5D $38 $77 $6E 1011 
Medium Blue $33 $66 $4C $19 1100 
Light Blue $38 $77 $6E $5D 1101 

I Aqua $77 S6E $5D $38 1110 
White S7F S7F $7F $7F 1111 

I Table 2-9. Video DiSQlal Page Locations 

I Display Lowest Address Highest Address 
Display Mode Page Hex Dec Hex Dec 

I 
40-column text, $0400 1024 $07FF 2047 
low-resolution 2• $0800 2048 $0BFF 3071 
graphics 

I SO-column text $0400 1024 $07FF 2047 
2• S0800 2048 $0BFF 3071 

I 
High-resolution 1 $2000 8192 $3FFF 16383 
graphics 2 $4000 16384 $5FFF 24575 

Double-high- 1t $2000 8192 $3FFF 16383 

I 
resloution graphics 2t $4000 16384 $5FFF 24575 

• This is not supported by firmware; for instructions on how to switch pages, refer to the 
section "Display Mode Switching" in Chapter 2. 

I t See the section "Double·High·Resolution Graphics," in Chapter 2. 

I 
I 
I Appendix F: Frt>quently Used Tables 257 



Table 2·1 0. Display Soft Switches -Note: W means write anything to the location, R means read the location, RjW 
means read or write, and R7 means read the location and then check bit 7. • Name Action Hex Function 

ALTCHAR w SCOOE Off: display text using primary character set II ALTCHAR w SCOOF On: display text using alternate character set 
RDALTCHAR R7 SCOlE Read ALTCHAR switch (1 = on) 

80COL w scooc Off: display 40 columns II 80COL w $GOOD On: display 80 columns 
RD80COL R7 $COIF Read SOCOL switch (1 = on) 

80S TORE w $COOO Off: cause PAGE2 on to select auxiliary RAM II 
80S TORE w $COOl On: allow PAGE2 to switch main RAM areas 
RDSOSTORE R7 $C018 Read 80STORE switch (1 = on) 

II PAGE2 R/W $C054 Off: select Page 1 
PAGE2 R/W $C055 On: select Page 2 or, if 80S TORE on, Page 1 in 

auxiliary memory II RDPAGE2 R7 SCOlC Read PAGE2 switch (1 =on) 

TEXT R/ W $C050 Off: display graphics or, if MIXED on, mixed 
TEXT R/ W SC051 On: display text • RDTEXT R7 SCOlA Read TEXT switch (1 =on) 

MIXED R/W SC052 Off: display only text or only graphics 

II MIXED RjW SC053 On: if TEXT off, display text and graphics 
RDMIXED R7 SCOlB Read MIXED switch (1 = on) 

HIRES R/W SC056 Off: if TEXT off, display low-resolution graphics II HIRES R/ W $C059 On: if TEXT off, display high-resolution or, if 
DHIRES on, double-high-resolution graphics 

RDHlRES R7 SCOlD Read HIRES switch (1 =on) -IOUDIS w SC07E On: disable IOU access for addresses $C058 to 
$C05F; enable access to DHIRES switch • 

IOU DIS w $C07F Off: enable IOU access for addresses $C058 to II $C05F; disable access to DHIRES switch • 
RDIOU DIS R7 $C07E Read IOU DIS switch (1 = off) t 

DHIRES R/W $C05E On: (if IOUDIS on) turn on double-high-res. II DHIRES R/W $C05F Off: (if IOUDIS on) turn off double-high-res. 
RDDHIRES R7 $C07F Read DHIRES switch (1 = on) t 

• The firmware normally leaves IOU DIS on. See also t. II 
t Reading or writing any address in the range $C070-SC07F also triggers the paddle timer 

and resets VB LINT (Chapter 7). II 

258 Appendix F: Frequently Used Tables 



I Table 3·1. Monitor Firmware Routines 

I 
Location Name Description 

$C305 BASICIN With 80-column dirmware active, displays solid, blinking 
cursor. Accepts character from keyboard. 

I $C307 BASICOUT Displays a character on the screen; used when the 
80-column firmware is active (Chapter 3). 

I 
$FC9C CLREOL Clears to end of line from current cursor position. 
$FC9E CLEOLZ Clears to end of line using contents of Y register as cursor 

position. 

I $FC42 CLREOP Clears to bottom of window. 
$F832 CLRSCR Clears the low-resolution screen. 

I 
$F836 CLRTOP Clears top 40 lines of low-resolution screen. 
$FDED COUT Calls output routine whose address is stored in CSW 

(normally COUTl , Chapter 3). 

I $FDFO CO UTI Displays a character on the screen (Chapter 3). 

$FD8E CROUT Generates a carriage return character. 
$FD8B CROUT! Clears to end of line, then generates a carriage return 

I character. 
$FD6A GETLN Displays the prompt character; accepts a string of 

I 
characters by means of RDKEY. 

$F819 HLINE Draws a horizontal line of blocks. 
$FC58 HOME Clears window; puts cursor in upper-left corner of 

I window. 

$FD1B KEYIN With 80-column firmware inactive, displays 
checkerboard cursor. Accepts character from keyboard. 

I $F800 PLOT Plots a single low-resolution block on the screen. 
$F94A PRBL2 Sends 1 to 256 blank spaces to the output device. 

I 
$FDDA PRBYTE Prints a hexadecimal byte. 
$FF2D PRERR Sends ERR and Control·G to the output device. 
$FDE3 PRHEX Prints 4 bits as a hexadecimal number. 

I $F941 PRNTAX Prints contents of A and X in hexadecimal. 

$FDOC RDKEY Displays blinking cursor; goes to standard input routine, 

I 
normally KEYIN or BASICIN. 

$F871 SCRN Reads color value of a low-resolution block. 
$F864 SETCOL Sets the color for plotting in low-resolution. 

I $FC24 VTABZ Sets cursor vertical position. 

$F828 VLINE Draws a vertical line of low-resolution blocks. 

I 
I Appendix F: Frequently Used Tables 259 



Table 3-3a. Control Characters With 80-Column Firmware Off II 
Control ASCII Apple lie • Character Name Name Action Taken by COUTl 

Control·G BEL bell Produces a 1000 Hz tone for 0.1 second. 

Control-H BS backspace Moves cursor position one space to the -left; from left edge of window, moves to 
right end of line above. 

II Control-J LF line feed Moves cursor position down to next line in 
window; scrolls if needed. 

Control-M OR return Moves cursor position to left end of next II line in window; scrolls if needed. 

II 
Table 3-3b. Control Characters With 80-Column Firmware On 

Control ASCII Apple lie II 
Character Name Name Action Taken by BASICOUT 

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second. • Control-H BS backspace Moves cursor position one space to the 
left; from left edge of window, moves to 

II right end of line above. 

Control-J LF line feed Moves cursor position down to next line in 
window; scrolls if needed. II Control·K t VT clear EOS Clears from cursor position to the end of 
the screen. 

Control·L t FF home Moves cursor position to upper-left corner -and clear of window and clears window. 

Control-M OR return Moves cursor position to left end of next II line in window; scrolls if needed. 

Control·N t so normal Sets display format normal. 

II Control-0 t SI inverse Sets display format inverse. 

Control·Q t DOl 40-column Sets display to 40-column. 

II Control·R t DC2 80-column Sets display to 80-column. 

Control-S • DC3 stop-list Stops listing characters on the display 

II until another key is pressed. 

-36(1 Appendix F: Frequentb· Csed Tables 



I Table 3-3b- Continued. Control Characters With 80-Column Firmware On 

I Control ASCII Apple He 
Character Name Name Action Taken by BASICOUT 

I 
Control-U t NAK quit Deactivates 80-column video firmware. 

Control-V t SYN scroll Scrolls the display down one line, leaving 
the cursor in the current position. 

I Control-W t ETB scroll-up Scrolls the display up one line, leaving the 
cursor in the current position. 

I 
Control-X CAN disab)e Disable MouseText character display; use 

MouseText inverse uppercase. 

Control-Y t EM home Moves cursor position tO· upper-left comer 

I of window (but doesn't clear). 

Control-Z t SUB clear line Clears the line the cursor position is on. 

I Control-[ ESC enable Map inverse uppercase characters to 
MouseText MouseText characters. 

I 
Control- \ t FS forward Moves cursor position one space to the 

space right; from right edge of window, moves it 
to left end of line below. 

I Control-It GS clear EOL Clears from the current cursor position to 
the end of the line (that is, to the right 
edge of the window). 

I Control-_ us up Moves cursor up a line, no scroll. 

• Only works from the keyboard. 

I t Doesn't work from the keyboard. 

I Table 3-5. Text Format Control Values 
Note: These mask values apply only to the primary character set (see text). 

I Mask Value 
Dec Hex Display Format 

I 
255 $FF Normal, uppercase, and lowercase 

127 $7F Flashing, uppercase, and symbols 

I 63 $3F Inverse, uppercase, and lowercase 

I 
I Appendix F: Frequently Used Tables 261 



Table 3-6. Escape Codes 

Escape Code 

I Esc I(K]or[!) 

I ESC I[[] or m 
I Esc 1@] or [£] 

I ESC I@] or@] 

I ESC I [I] or~ 

I ESC I [I) or ill 

I ESC IOJorO]or I Esc IOJ 

I Esc IQ]or(]]orl Esc IG 

I Esc I[K)or(IJorl Esc IG 

I Esc l@or~orl Esc IOJ 

1Escl0 

I ESC I~ 

I ESCl~ 

262 

Function 

Clears window and homes cursor (places it in upper-left comer of screen), then exits from 
escape mode. 

Moves cursor right one line; exits from escape mode. 

Moves cursor left one line; exits from escape mode. 

Moves cursor down one line; exits from escape mode. 

Moves cursor up one line; exits from escape mode. 

Clears to end of line; exits from escape mode. 

Clears to bottom of window; exits from escape mode. 

Moves the cursor up one line; remains in escape mode. See text. 

Moves the cursor left one space; remains in escape mode. See text. 

Moves the cursor right one space; remains in escape mode. See text. 

Moves the cursor down one line; remains in escape mode. See text. 

If 80-column firmware is active, switches to 40-column mode; sets links to BASICIN and 
BASICOUT; restores normal window size; exits from escape mode. 

If 80-column firmware is active, switches to 80·column mode; sets links to BASICIN and 
BASICOUT; restores normal window size; exits from escape mode. 

Disables control characters; only carriage return, line feed, BELL, and backspace have an 
effect when printed. 

Reactivates control characters. 

If 80-column firmware is active, deactivates 80-colunm firmware; sets links to KEYIN and 
COUTl; restores normal window size; exits from escape mode. 

Appendix F: Frequently Used Tables 

II 
II 

-
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I Table 3-10. Pascal Video Control Functions 

I Control· Hex Function performed 

Eore $05 Turns cursor on (enables cursor display). 

I For f $06 Turns cursor off (disables cursor display). 

G or g $07 Sounds bell (beeps). 

I Horh $08 Moves cursor left one column. If cursor was at 
beginning of line, moves it to end of previous line. 

J or j SOA Moves cursor down one row; scrolls if needed. 

I K ork SOB Clears to end of screen. 

Lori soc Clears screen; moves cursor to upper-left of screen. 

I Morm SOD ~oves cursor to column 0. 

N orn SOE Displays subsequent characters in normal video. 

I (Characters already on display are unaffected.) 

Ooro SOF Displays subsequent characters in inverse video. 

I 
(Characters already on display are unaffected.) 

Vorv $16 Scrolls screen up one line; clears bottom line. 

I 
Worw $17 Scrolls screen down one line; clears top line. 

Yor y $19 Moves cursor to upper-left (home) position on screen. 

I 
Zorz SlA Clears entire line that cursor is on. 

lor \ SIC Moves cursor right one column; if at end of line, does 
Control-M. 

I for I SID Clears to end of the line the cursor is on, including 
current cursor position; does not move cursor. 

I or6 SlE GOTOxy: initiates a GOTOxy sequence; interprets the 
next two characters as x+32 and y+32, respectively. 

SlF 

I 
If not at top of screen, moves cursor up one line. 

I 

I 
I 

I Appendix F: Frequently Used Tables 263 



Table 4-6. Bank Select Switches 

Note: R means read the location, W means write anything to the location, R/W 
means read or write, and R7 means read the location and then check bit 7. 

Name Action Hex Function 

R $C080 Read RAM; no write; use $0000 bank 2. II 
RR $C081 Read ROM; write RAM; use $0000 bank 2. 

R $C082 Read ROM; no write; use $0000 bank 2. II 
RR $C083 Read and write RAM; use $DOOO bank 2. 

R $C088 Read RAM; no write; use $DOOO bank 1. II 
RR $C089 Read ROM; write RAM; use $0000 bank 1. 

R $C08A Read ROM; no write; use SOOOO bank 1. II 
RR $C08B Read and write RAM; use $0000 bank 1. 

RDBNK2 R7 $C011 Read whether$[)()()() bank 2 (1) or bank 1 (0) II 
RDLCRAM R7 $C012 Reading RAM (1) or ROM (0). 

ALTZP w $C008 Off: use main bank, page 0 and page 1. II 
ALTZP w $C009 On: use auxiliary bank, page 0 and page 1. 

RDALTZP R7 $C016 Read whether auxiliary (1) or main (0) bank 

II 

264 -\ppendix F: Frequently Csed Tables 



I Table 4·7. Auxiliary·Memory Select Switches 

I Location 
Name Function Hex Decimal Notes 

RAMRD Read auxiliary memory SC003 49155 -16381 Write 

I Read main memory $C002 49154 -16382 Write 
Read RAMRD switch $C013 49171 ·16365 Read 

I 
RAMWRT Write auxiliary memory $C005 49157 -16379 Write 

Write main memory $C004 49156 -16380 Write 
Read RAMWRT switch $C014 49172 -16354 Read 

I 80S TORE On: access display page $COOl 49153 ·16383 Write 
Off: use RAMRD, RAMWRT $COOO 49152 -16384 Write 
Read 80STORE switch $C018 49176 -16360 Read 

I PAGE2 Page 2 on (aux. memory) SC055 49237 -16299 
Page 2 off (main memory) $C054 49236 -16300 
Read PAGE2 switch $C01C 49180 -16356 Read 

I HIRES On: access high-res. pages $C057 49239 ·16297 t 
Off: use RMffiD, RA.MWRT SC056 49238 -16298 t 
Read HIRES switch SCOlD 49181 -16355 Read 

I ALTZP Auxiliary stack & z.p. SC009 49161 -16373 Write 
Main stack & zero page SC008 49160 -16374 Write 

I 
Read AL TZP switch $C()l6 49174 -16352 Read 

·When 80S TORE is on, the PAGE2 switch selects main or auxiliary display memory. 

I 
t When 80STORE is on, the HlRE~ switch enables you to use the PAGE2 switch to switch 

between the high· resolution Page·l area in main memory or auxiliary memory. 

I 
Table -*-8. 48K RA.\1 Transfer Routines 

I Name Action Hex Function 

AUXMOVE JSR $0312 ~oves data blocks between main and auxiliary 

I 48Kmemory. 

XFER JMP SC314 Transfers program control between main and 

I 
auxiliary 48K memory. 

I 
I 
I Appendix F: FrequenTly Csed Tables 265 



Table 6-5. I/0 Memory Switches 

Location 
Name Function Hex Decimal 

SLOTC3ROM Slot ROM at $C300 $COOB 49163 -16373 
Internal ROM at $C300 SCOOA 49162 -16374 
Read SLOTC3ROM switch $C017 49175 -16361 

SLOTCXROM Slot ROM at $Cx00 $C006 49159 -16377 
Internal ROM at $Cx00 $C007 49158 -16378 
Read SLOTCXROM switch $C015 49173 -16363 

Table 6-7. I/0 Routine Offsets and Registers Under Pascall.l Protocol 

Addr. Offset for X Register Y Register A Register 

SCsOD Initialization 
On entry $Cs $sO 
On exit Error code (unchanged) (unchanged) 

$Cs0E Read 
On entry SCs SsO 
On exit Error code (unchanged) Character read 

$Cs0F Write 
On entry $Cs $sO Char. to write 
On exit Error code (unchanged) (unchanged) 

$Csl0 Status 
On entry $Cs $sO Request (0 or 1) 
On exit Error code (changed) (unchanged) 

266 Appendix F: Frequently Used Tables 

Notes 

Write 
Write 
Read 

Write 
Write 
Read 

II 
II 
II 
II 
II 
II 
II 
II 
II 

-
II 

II 
II 
II 
II 
II 



I 
I 

Appendix G Using an 80-Column Text Card 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

267 



Refer to the operating system reference 
manual for your version of Apple Pascal for 
more information. 

268 

This appendix explains how to use 80-column text cards with high-level 
languages. Information about using 80-column text cards with assembly 
language programs through the Apple lie Monitor firmware is found in 
Chapter 3 of this manual. The information in this appendix applies to the 
Apple lie 80-Column Text Card and the Apple lie Extended 80-Column Text 
Card. 

If you are using Applesoft, Pro DOS, or OOS you can choose to leave the 
80-colurnn text card inactive after installing it. You will want to do this 
when running software that does not take advantage of the 80-column 
display capability. 

The startup procedure for displaying 80 columns of text on your Apple lie 
depends on which operating system you plan to use. Starting up the system 
with Apple II Pascal or CP j M® is very easy; the operating system does it for 
you; the procedures for starting up with ProOOS or OOS 3.3 are slightly 
more complicated, but not difficult. 

Starting Up With Pascal or CP/M 

Pascal programmers don't have to activate the text card because Pascal 
does it for them. If you use the Pascal language or the CP/M operating 
system, displaying 80 columns of text is automatic once you've instaJJed the 
card. Simply start up your system with any Pascal or CP/ M startup disk. 

CP jM: CP/M (Control Program for Microprocessors) is a trademark of 
Digital Research. To use the CP/M operating system with your Apple He, 
make sure the SOFTCARD® by Microsoft or the Z-Engineno by Advanced 
Logic Systems is correctly installed before you start up the computer. 

Co-Processor Cards and Interrupts: Some co-processor cards that 
were designed for use in the Apple II Plus may not work with an Apple lie 
without some modification. There could be problems if you want to use 
interrupts on the Apple lie. If you are having problems with a coprocessor 
card, check with the card's manufacturer for their recommendations. 

When using Apple II Pascall.l, you'll probably want to run the program 
SETUP to make the[!] and OJ keys functional. SETUP is a 
self-documenting program on the Pascal disk APPLE3. Pascal versions 1.2 
and later are already configured to use the[!] and IT) keys. 

Appendix G: Csing an 80·Column Text Card 

-
II 

-
II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 



I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Starting Up With ProDOS or DOS 3.3 

Pro DOS and DOS 3.3 both look for a startup program on the startup (boot) 
disk as soon as the operating system has been loaded and begins executing. 
If the operating system finds the program, called STARTUP on a ProDOS 
disk and usually called HELLO on a DOS 3.3 disk, it will execute the 
program. 

You can write a customized startup program that will set up the 80-colurnn 
text card in any state you need. Just be sure it is on your startup disk and 
has the startup filename. 

Here is a sample Applesoft startup program that works with both Pro DOS 
and DOS 3.3: 

19 HOME:Dt•CHRt<4> 
29 PRINT Dt;"PRI3" 
39 END 

You can do whatever you wish with the program from line 20 on. Note that 
the screen will have S\vitched to 80-column text mode after line 20. 

I By the Way: If you arrange to have the card active automatically, you 
will still, of course, be able to switch into 40-column mode. 

Using the GET Command 

The presence of an active 80-colurnn text card in the lie requires that 
BASIC programmers use some alternate to Applesoft's INPUT command if 
their programs are to be userproof. Applesoft programmers should use 
either the GET command or the RDKEY or GETLN subroutines. 

This is because the escape sequences used to switch back and forth 
between modes or to deactivate the card sometimes make it necessary to 
accept escape sequences in fNPUT mode when using an 80-column card. 
Because the program accepts escape sequences typed from the keyboard, 
your program will not be userproof against accidental sequences typed in 
response to an INPUT command. 

To get around this problem, you can use the GET command instead. The 
program does not read escape sequences typed from the keyboard in 
response to a GET command. This means that your users can err in their 
responses without endangering the display. 

Using the GET Command 269 



270 

When to Switch Modes Versus When to Deactivate 

When using BASIC, deactivate the text card whenever a previous (BASIC) 
program has left the card active (leaving a solid cursor on the screen) or 
whenever you want to send output to a peripheral device. 

Switch back and forth between 40-column and 80-column displays for 
visual appeal. For full use of the control characters described later, your 
card must be active, although it can display in either 40-colurnn or 
80-colurnn mode. 

Original lie I Tabbing inApplesoft: You must switch to a 40-column display to use 
Applesoft comma tabbing or the HT AB command. 

Display Features With the Text Card 

With an active 80-column card you can issue BASIC and PRO DOS 
commands in lowercase characters. You can also issue commands in 
lowercase from the keyboard, that is, in immediate mode. This is 
particularly convenient because REM statements and data within quotes 
remain in lowercase as they were typed. 

If you are using DOS 3.3, you must issue commands in uppercase whether 
or not your card is active. 

INVERSE, FLASH, NORMAL, HOME 

There are several commands you can give your computer from Applesoft 
BASIC to affect the appearance of text on the screen. All of these features 
are described in theApplesoft BASIC Programmer's Reference Manual. 

o INVERSE tells the computer to display black characters on a white 
background instead of the normal display of white characters on a black 
background. This command is normally only available for uppercase 
characters, but with an active 80-colurnn text card it is available for 
uppercase and lowercase characters. 

o FLASH causes subsequently printed characters to blink quickly between 
inverse and normal characters. You can tum off the FLASH command by 
typing the NORMAL command. The FLASH command is normally 
available only with uppercase characters; it is not available at all while 
the card is active. 

Appendix G: Using an 80-Column Text Card 

II 
II 
II 
II 

II 
II 

II 

II 

II 
II 

II 
II 

II 

II 

II 

II 



I 
I 
I 
I 

Important! 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

o NORMAL tells the computer to tum off the INVERSE or FLASH 
command and to display subsequently printed characters normally. It 
works the same way with the card active or inactive. 

o HOME clears the screen and returns the cursor to the upper-left corner of 
the screen. Both the NORMAL HOME and INVERSE HOME commands 
are available while the card is active, but INVERSE HOME works a little 
differently when the card is active. 

By the Way: The FLASH and INVERSE commands can be used to 
highlight important screen messages within a BASIC program. 

If you are using the FLASH command (which means the 80-column text 
card is inactive) and then type PR#3 to activate the card, the screen 
turns white as the cursor goes to the HOME position. Whatever you type 
appears in black characters on the white screen. If you list or run an 
Applesoft BASIC program, some of the characters will appear as 
MouseText characters. To avoid this, remember to use either the 
NORMAL or INVERSE command before you exit the program. 

Tabbing With the Original Apple lie 

You cannot use conventional40-column tabbing in BASIC with the original 
model Apple lie with an 80-column display. You do not have to turn off your 
card, but you must switch out of 80-column mode to use the HTAB 
command or to use comma tabbing. 

When an original Apple Tie is displaying 80-column text, you should use the 
POKE 1403 command for horizontal tabbing in the right half of the screen 
instead of the HT AB command. 

Comma Tabbing With the Original Apple lie 

In BASIC you can use commas in PRINT statements to instruct the 
computer to display all or part of your output in columns. This is known as 
comma tabbing. You can use this method of tabbing as long as the screen is 
displaying 40 columns (that is with the card inactive or after issuing an 
~command to switch to 40-column mode). You cannot use this 
method of tabbing "'~than 8()-column display. If you try to do so, characters 
will be placed in memory outside the screen area and may change programs 
or data in memory. 

Tabbing With the Original Apple lie 271 



HTAB and POKE 1403 

The VTAB (vertical tab) and HTAB (horizontal tab) statements can be used 
to place the cursor at a specific location on the screen before printing 
characters. The largest value you can use with the VTAB statement is 24; 
the largest for HTAB is 255. The VTAB command works just the same in an 
80-column display as it does in a 40-column display. 

On the original Apple lie, the HTAB command causes the cursor to wrap 
around to the next line after it reaches the 40th column, so you cannot use 
this command to position the cursor in the last 40 columns while the screen 
is displaying 80 columns. 

POKE 1403 is specifically designed to solve this problem. Using the 
POKE 1403 command allows you to tab horizontally across the extra 40 
columns provided by the 80-column text card. 

If you want to tab past column 40 while the card is active and the screen is 
displaying 80 columns, use the following, where n is a number from 0 to 79: 

POKE 1493, n 

When you use the HTAB command, HT AB 1 places the cursor at the 
leftmost position on the screen. When you use the POKE 1403 command, 
POKE 1403,0 places the cursor at the leftmost position on the screen. 

Using Control Characters With the Card 

Using BASIC with an active 80-rolumn text card increases the number of 
functions you can perform with control characters. Originally 

II 
II 
II 
II 
II 
II 
II 

II 

• 
control-character commands were so named because they were given from II 
the keyboard by pressing the I CONTROL I key in conjunction with another key. 
You can perform the same functions from your programs by using an 
equivalent control-character code. Commands based on these two-key II 
combinations are called control-character commands even when they must be 
issued from a program. 

Appendix G: Using an SO-Column Text Card 

II 
II 
II 
II 

-



II Control Characters and Their Functions 

I Table G-llists the control-character commands supported by BASIC with 
an 80-column card. The table includes the corresponding command code, its 
function and whether a given command can be executed from the keyboard 

I as well as from a program. 

Table G-1. Control Characters With 80-Column Firmware On 

I Control ASCII Apple lie 
Character Code Name Action Taken by BASICOUT 

I Control-G BEL bell Produces a 1000 Hz tone for 0.1 second. 

Control-H BS backspace Moves cursor position one space to the 

I left; from left edge of window, moves to 
right end of line above. 

Control-J LF line feed Moves cursor position down to next line in 

I window; scrolls if needed. 

Control-K t VT clearEOS Clears from cursor position to the end of 

I 
the screen. 

Controi-L t FF home Moves cursor position to upper-left corner 
and clear of\\'indow and clears window. 

I Control-M CR return Moves cursor position to left end of next 
line in window; scrolls if needed. 

I Control-N t so normal Sets display format normal. 

Control-0 t SI inverse Sets display format inverse. 

I Control-Q t DCl 40-colwnn Sets display to 40-column. 

Control-R t DC2 80-colunm Sets display to 80-column. 

I Control-S • DC3 stop-list Stops listing characters on the display 
until another key is pressed. 

Control-U t NAK quit Deactivates 80-column video firmware. 

I Control-V t SYN scroll Scrolls the display down one line, leaving 
the cursor in the current position. 

I Control-Wt ETB scroll-up Scrolls the display up one line, leaving the 
cursor in the current position. 

I 
Control-X CAN disable Disable MouseText character display; use 

MouseText inverse uppercase. 

I 

I Csing Control Characters \\'ith the Card 273 



Table G-1-Continued. Control Characters With 80·Column Finn ware On II 
Control ASCII Apple lie 

II Character Code Name Action Taken by BASICOUT 

Control-Y t EM home Moves cursor position to upper-left corner 
of window (but doesn't clear). II 

Control-Z t SUB clear line Clears the line the cursor position is on. 

Control-[ ESC enable Map inverse uppercase characters to II Mouse Text MouseText characters. 

Control-\ t FS forward Moves cursor position one space to the 

II space right; from right edge of window, moves it 
to left end of line below. 

Control-]t GS clear EOL Clears from the current cursor position to 

II the end of the line (that is, to the right 
edge of the window). 

Control-_ us up Moves cursor up a line, no scroll. II 
• Only works from the keyboard. 

t Doesn't work from the keyboard. II 

How to Use Control-Character Codes in Proi rams II 
To issue a control-character command from a program, use the ASCII II decimal code that corresponds to the control-character. (See Table G-1.) 

The following example shows how to use ASCU decimal codes in an 

II Applesoft BASIC program. Type 

HOME [?l 
HEW II 18 PRIHT CHRH1S>: PRIHT "MAKE HAY" 
28 PRIHT CHRH 14): PRIHT "WHILE THE SUH SHIHES" 
RUH II (CHR$ is the Applesoft BASIC command that signifies that a 
control-character function is to be performed.) 

II 
II 

II 
274 Appendix G: Using an 80·Column Text Card II 



I 
I 

I 

I 

I 

I 

I 
I 

I 

I 
I 
I 

I 
I 

See Chapter 3 in this manual for a 
description of control-character functions. 

You will get 

lNEW 

111 PRINT CHRtC15): PRINT "MAKE HAY" 

121 PRINT CHRtC 14>: PRINT "WHILE THE SUH SHIHES" 

1RUN 

MAKE HAY 

WHILE THE SUH SHINES 

The ASCII decimal codes for inverse video (Control-0) and normal video 
(Control-N) are 15 and 14. When the PRINT statements in the example are 
executed, the display switches to inverse and prints MAKE HAY, then 
switches back to a normal display and prints WHILE THE SUN SHINES. 

A Word of Caution to Pascal Programmers 

A void writing Control-U or Control-Q to the console from a Pascal program. 
Either one puts the system into a state that will cause Pascal to eventually 
crash. 

You can't send control characters from the keyboard to the 80-column 
firmware when using Pascal. The only exceptions to this rule are Control-M 
(CR) and Control-G (BEL). 

Using Control Characters With the Card 275 



II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
II 
II 
II 



I ----

I 

I 

I 
I 
I 
I 

I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

Appendix H 
------------

Programming With the Super Serial Card 

277 



For more information about the installation 
and operation of the SSG, see the Super 
Serial Card manual. 

The Pascall.l firmware protocol is 
described in Chapter 6. 

This appendix briefly describes how to use the Apple II Super Serial Card 
(SSC) from programs, how to find the SSC through software, and the 
commands supported by the sse. 
The SCC is one of the most common serial interface cards used with the 
Apple lie, and the Apple lie's serial ports operate very much like the Super II 
Serial Card. This similarity should make it easier for you to write programs 
for both the Apple lie and Apple Ilc. 

Locating the Card 

Locations $Cs05, $Cs07, $CsOB, and $CsOC (where sis the number of the 
slot where the sse is installed) contain the identification bytes for the 
Super Serial Card. The identification byte's values are 

$Cs05 $38 
$Cs07 $18 
$CsOB $01 
$CsOC $31 

Operating Modes 

The Super Serial Card has two main operating modes: printer mode and 
communications mode. There is nothing you can do from software to 
change from one mode to the other since they are set by the position of the 
jumper block. 

Note to Software Developers: If you are writing software that depends 
on the sse being in a given operating mode, make sure that your 
documentation tells the user to set up the sse in the proper way. 

In printer mode, the SSC is set to send data to a printer, local terminal, or 
other serial device. In communications mode, the SSC is set to operate with 
a modem. From communications mode, the SSC can enter a special mode 
called terminal mode. In terminal mode the Apple lie acts like an 
unintelligent terminal. 

Appendix H: Programming With the Super Serial Card 

II 

II 

II 

II 
II 
II 

II 

II 

II 

II 

II 

II 



I 
I 

I 

I 

I 

I 
I 
I 

I 

I 
I 

I Important! 

I 

I 

Operating Commands 

For each of the operating modes, you can control many aspects of data 
transmission such as baud rate, data format, line feed generation, and so 
forth. 

Your program can change these aspects by sending control codes as 
commands to the card. All commands are preceded by a command 
character and followed by a carriage return character ($0D). 

The command character is usually Control-! in printer mode and Control-A 
in communications mode and terminal mode. In the command examples in 
the following sections, Control-I is used unless the command being 
described is available only in communications mode or terminal mode. A 
carriage return character is represented by its ASCII symbol, CR. 

There are three types of command formats: 

o A number, represented by n, followed by an uppercase letter with no 
space between the characters (for example, 4D to set data format 4). 

o An uppercase letter by itself (for example, R to reset the SSG). 
o An uppercase letter followed by a space and then either E to enable or D 

to disable a feature (for example, L D to disable automatic insertion of 
line feed characters). 

The allowable range of n is given in each command description that follows. 

The choice of enable or disable is indicated withE/ D. The underscore 
character C- ) before theE/ Din commands that allow enable/disable is to 
remind you that a space is required there. 

The SSG checks only numbers and the first letters of commands and 
options. (All such letters must be uppercase.) Further letters, which you 
can add to assist your memory, have no effect on the sse. For example, 
XOFF Enable is the same as X E. The SSe ignores invalid commands. 

The spaces in command examples are there for clarity; generally you will 
not use spaces in a command string. Where a space is required in a 
command string, an underscore(_) character will appear in the text as a 
reminder. 

Operating Commands 279 



The Command Character 

The normal command character is Control-I (ASCII 509) in printer mode, or 
Control-A (ASCII $01) in communications mode. If you want to change the 
command character from Control-I to Control-something else, send Control-I 
Control-something else. For example, to change the command character to 
Control-W, send Control-! Control-W. To change back, send Control-W 
Con trol-l. No return character is required after either of these commands. 

You can send the command character itself through the SSG by sending it 
twice in a row: Control-I Control-!; no return character is required after this 
command. This special command allows you to transmit the command 
character without affecting the operation of the sse, and without having to 
change to another command character and then back again later. 

Here is how to generate this character in BASIC and Pascal: 

Applesoft BASIC: PR ItH CHRS cs>; "command" 
Pascal: WR 1 TELH c CHR c 9 >, •command • >; 

Baud Rate, nB 

You can use this command to override the physical settings of switches 
SW1-1 through SW1-4 on the SSG. For example, to change the baud rate to 
135, send Control-1 4B CR to the SSG. 

Table H-1. Baud Rate Selections 

n SSe Baud Rate n SSe Baud Rate 

0 useSW1-I toSWI-4 8 I200 

50 9 I800 

2 75 10 2400 

3 109.92 (110) II 3600 

4 134.58 (135) 12 4800 

5 150 I3 7200 

6 300 14 9600 

7 600 I5 I9200 

Appendix H: Prugramming \\.ith the Super Serial Card 

II 

II 

-
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 



I 

I 

I 
I 

I 
I 

I 

I 
I 

I 

I 
I 

I 
I 
I 

Data Format, nO 

You can override the settings of switch SW2-1 with this command. The 
table below shows how many data and stop bits correspond to each value 
of n. For example, Control-! 2D CR makes the SSC transmit each character 
in the form one start bit (a! ways transmitted), six data bits, and one stop 
bit. 

Table H-2. Data Format Selections 

n Data Bits Stop Bits 

0 8 
1 7 
2 6 
3 5 
4 8 2• 
5 7 2 
6 6 2 
7 5 2t 

• I with Parity options 4 through 7 

t I \1 with Parity options 0 through 3 

Parity, nP 

You can use this command to set the parity that you want to use for data 
transmission and reception. There are five parity options available, 
described in Table H-3. 

Table H-3. Parity Selections 

n Parity to Use 

0, 2, 4 or 6 None (default value) 

Odd parity (odd total number of ones) 

3 Even parity (even total number of ones) 

5 MARK parity (parity bit always 1) 

7 SPACE parity (parity bit always 0) 

Operating Commands 281 



For example, the command string Control-I 1P eR makes the SSe transmit 
and check for odd parity. Odd parity means that the high bit of every 
character is 0 if there is an odd number of 1 bits in that character, or 1 if 
there is an even number of 1 bits in the character, making the total number 
of 1 bits in the character always odd. This is an easy (but not foolproof) way 
to check data for transmission errors. Parity errors are recorded in a status 
byte. 

Set Time Delay, nC, nl, and nF 

Some printers can't keep up with the Apple lie when they are doing certain 
operations. You may need to change default settings on the SSe to give a 
printer the time it needs. 

II 

The ne command overrides the setting of switch SW2-2 on the sse. That II 
switch provides two choices: either no delay or a 250 millisecond delay after 
the sse sends a carriage return character. 

The nL command allows time after a line feed character for a printer platen -
to turn so the paper is vertically positioned to receive the next line. 

The nF command allows time after a form feed character for the printer • 
platen to move the paper form to the top of the next page (typically a longer 
time than a line feed). 

Table H-4. Time Delay Selections 

n Time Delay 

0 none 

32 milliseconds 

2 250 milliseconds (1/4 second) 

3 2 seconds 

Appendix H: Programming With the Super Serial Card 

II 

II 
II 

II 

II 

II 

-
II 

-



I 

I 
I 
I 

I 
I 
I 
I 

I 
I 
I 

I 
Important! 

I 
I 
I 
I 
I 

Consult the user manual for a given printer to find out how much time it 
takes to move its print head and platen so you can determine an appropriate 
set of values for these three delays. The idea is to have at least enough time 
for the printer parts to move the required distance, but not so much time 
that overall printing speed is slowed down drastically. Many printers 
require no delays because they have a buffer built in to keep accepting 
characters even while they are doing form feeds and so on. 

A typical setup for a very slow printer would be Control-! 2C CR, 
Control-! 2L CR, Control-! 3F CR; that is, the SSC waits 250 milliseconds 
after transmitting carriage returns, 250 milliseconds after transmitting line 
feeds, and 2 seconds after transmitting form feed characters. 

Echo Characters to the Screen, LE/D 

For the Apple lie, as for most computers, displaying (echoing) a character 
on the video screen during communications is a separate step from 
receiving it from the keyboard, though we tend to think if these as one step, 
as on a typewriter. For example, if you send Control-A E_D CR, the SSC 
does not forward incoming characters to the Apple lie screen. This can be 
used to hide someone's password entered at a terminal, or to avoid double 
display of characters. 

This command is used in communications mode only. 

Automatic Carriage Return, C 

Sending Control-I C CR to the SSC causes it to generate a carriage return 
character (ASCII CR) whenever the column count exceeds the current 
printer line width limit. This command is used in printer mode only. 

Once this option is on, only clearing the high-order bit at location $578+s 
(where s is the slot the SSG is in) can turn this option back off. This 
option is normally off. 

Operating Commands 283 



Automatic Line Feed, LE/D 

You can use thls command to have the SSC automatically generate and 
transmit a line feed character after each carriage return character. This 
overides the setting of switch SW2-5. For example, send Control-! LE CR 
to your printer to print listings or double-spaced manuscripts for editing. 

Mask Line Feed In, M_EfD 

If you send Con trol-l M_E CR to the SSC, it will ignore any incoming line 
feed character that immediately follows a carriage return character. 

Reset Card, R 

Sending Control-I R CR to the SSC has the same effect as sending a PR#O 
and an IN#O to a BASIC program and then resetting the SSC. This 
command cancels all previous commands to the SSC and puts the physical 
switch settings back into force. 

Specify Screen Slot, S 

In communications mode, you can specify the slot number of the device 
where you want text or listings displayed with this command. (Normally 
this is slot 0, the Apple lie video screen.) This allows chaining of the SSC to 
another card slot, such as an 80-column text card. For the firmware in the 
sse to pass on information to the firmware in the other card, the other card 
must have an output entry point within its 5Cs00 space; this is the case for 
all currently available 80-column cards for the Apple Ue. 

For example, let's say you have the SSC in slot 2 with a remote terminal 
connected to it, and an 80-column card in slot 3. Send Control-A 3S CR to 
cause the data from the remote terminal to be chained through the card in 
slot 3, so that it is displayed on the Apple ne in 80-column format. (Not 
available in Pascal.) 

Translate Lowercase Characters, nT 

The Apple lie Monitor translates all incoming lowercase characters into 
uppercase ones before sending them to the video screen or to a BASIC 
program. The nT command has four options, which are shown in Table H-5. 

Appendix H: Programming With the Super Serial Card 

II 
I 

-
II 
II 

II 
II 

II 

• 
II 



I 
I 

I 
I 
I 

I 
I 
I 

I 
I Important! 

I 

I 
I 
I 
I 

I 
I 

Table H-5. Lowercase Character Display Options 

n Action 

0 Change all lowercase characters to uppercase ones before passing 
them to a BASIC program or to the video screen. This is the way the 
Apple Ile monitor handles lowercase. 

Pass along all lowercase characters unchanged. The appearance of 
the lowercase characters on the Apple II screen is undefined 
(garbage). 

2 Display lowercase characters as uppercase inverse characters (that 
is, as black characters on a white background). 

3 Pass lowercase characters to programs unchanged, but display 
lowercase as uppercase, and uppercase as inverse uppercase (that is, 
as black characters on a white background). 

Suppress Control Characters, Z 

If you issue the Z command described here, all further commands are 
ignored; this is useful if the data you are transmitting, such as graphics 
data, contains bit patterns that the sse can mistake for control characters. 

Sending Control· I Z CR to the SSG prevents it from recognizing any further 
control characters (and hence commands) whether coming from the 
keyboard or contained in a stream of characters sent to the sse. 

The only way to reinstate command recognition after the Z command is 
tD either reinitialize the SSG, Or clear the high-order bit at location 
55F8+s (where sis the number of the slot in which the SSG is installed). 

Find Keyboard, F _EJD 

You can use this command to make the SSG ignore keyboard input. 

For example, you can include Control·! F _D CR in a program, followed by a 
routine that retrieves data through the SSG, followed by Control-IF _E CR 
to tum the keyboard back on. 

D!lPrating Commamls 285 



286 

XOFF Recognition, >LE/0 II 
Sending Control-I LE CR to the SSC causes it to look for any XOFF ($13) 
character coming from a device attached to the sse, and to respono. to it by 1 
halting transmission of characters until the SSC receives an XON ($11) 
from the device, signalling the SCC to continue transmission. In printer 
mode, this function is normally turned off. 

Caution I In printer mode, full duplex communication may not work with XOFF 
recognition turned on, so be careful. 

Tab in BASIC, T E/0 

In printer mode only, if you send Control-I T_E CR to the SSC, the BASIC 
horizontal position counter is left equal to the column count. All tabs work, 
including back-tabs. Tabs beyond column 40 require a POKE to location 36. 
Commas only work as far as column 40, and BASIC programs will be listed 
in 40-column format. 

Note that this use of tabbing is specific to the SSC-it doesn't go through 
the 80-column firmware. 

Terminal Mode 

From communications mode, the sse can enter terminal mode and make 
the Apple lle act like an unintelligent terminal. This is useful for connecting 
the Apple lie to a computer timesharing service, or for conversing with 
another Apple II. 

Entering Terminal Mode, T 

Send Control-AT CR to enter terminal mode. This causes the Apple lie to 
function as a full-duplex unintelligent terminal. You can use this command 
together with the Echo command to simulate the half-duplex terminal mode 
of the old Apple II Communications Card. 

By the Way: If you enter terminal mode and don't see what you type 
echoed on the Apple video screen, probably the modem link has not yet 
been established, or you need to use the Echo Enable command 
(Control-A E_E CR). 

Appendix H: Programming With the Super Serial Card 

II 
II 
I 
I 
II 
II 

II 



I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 

Transmitting a Break, B 

Sending Control-A B CR causes the SSC to transmit a 233-millisecond break 
signal, recognized by most time-sharing systems as a signoff. 

Special Characters, S_EJD 

If you send Control-A S_D CR, the sse will treat the I ESCAPE I key like any 
other key. 

Quitting Terminal Mode, Q 

Send Control-A Q CR to the SSC to exit from terminal mode. 

SSC Error Codes 

The sse uses I/0 scratchpad address $678+s (sis the number of the slot 
that the SSC is in) to record status after a read operation. The firmware 
calls this byte STSBYTE. Table H-6lists the bit definitions of this byte. 

Table H-6. STSBYTE Bit Definitions 

Bit "1" Means 

0 Parity Error occurred. 

1 Framing Error occurred. 

2 Overrun occurred. 

3 Carrier lost. 

5 Error occurred. 

"0" Means 

No Parity Error occurred. 

No Framing Error occurred. 

No Overrun occurred. 

Carrier present. 

No error occurred. 

The terms Parity, Framing Error, and Overrun are defined in the 
glossary. 

Bits 0, 1, and 2 are the same as the corresponding three bits of the ACIA 
Status Register of the SSC. Bit 3 indicates whether or not the Data Carrier 
Detect (DCD) signal went false at any time during the receive operation. 

S SC Error Codes 287 



Bit 5 is set if any of the other bits are set, as an overall error indicator. If 
bit 5 is the only bit set, an unrecognized command was detected. If all bits 

II 
are 0, no error occurred. • These error codes begin with the number 32 to avoid conflicting with 
previously defined and documented system error codes. 

In BASIC, you can check this status byte via a PEEK $678+s (sis the SSC 
slot), and reset it with a POKE command at the same location. 

In Pascal, the IORESUL T function returns the error code value. 

I By the Way: Any character-including the carriage return at the end of 
a WRITELN statement-will cause posting of a new value in IORESULT. 

Table H-7 shows the possible combinations of error bits corresponding to 
these decimal error codes. 

Table H-7. Error Codes and Bits 

Error Carrier Framing Parity 
Code• Lost Overrun Error Error 

0 no error II 32 illegal command 
33 no no no yes 
34 no no yes no 

II 35 no no yes yes 
36 no yes no no 
37 no yes no yes 
38 no yes yes no II 39 no yes yes yes 
40 yes no no no 
41 yes no no yes II 42 yes no yes no 
43 yes no yes yes 
44 yes yes no no 

II 45 yes yes no yes 
46 yes yes yes no 
47 yes yes yes yes 

II • Result of PEEK $678+s in BASIC or IORESUL T in Pascal. 

II 
II 
II 

288 Appendix H: Programming With the Super Serial Card 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

The ACIA 

The Asynchronous Communication Interface Adapter (ACIA) chip is the 
heart of the Super Serial Card. It takes the 1.8432 MHz signal generated by 
the crystal oscillator on the SSC and divides it down to one of the fifteen 
baud rates that it supports. The ACIA also handles all incoming and 
outgoing signals of the RS232-C serial protocol that the ACIA supports. 

The ACIA registers control hardware handshaking and select the baud rate, 
data format, and parity. The ACIA also performs parallel to serial and serial 
to parallel data conversion, and buffers data transfers. 

SSC Firmware Memory Use 

Table H-8 is an overall map of the locations that the SSC uses, both in the 
Apple Ile and in the SSC's own firmware address space. 

Table H-8. Memory Use Map 

Address Name of Area 

$0000-$00FF Page zero 

$04xx-$07xx Peripheral slot 
(selected Scratchpad RAM 
locations) 

Contents 

Monitor pointers, 1/0 hooks, and temporary 
storage. 

Locations (8 per slot) in Apple lie pages $04 
through $07. SSe uses ailS of them. 

Se0(8+s)O
$e0(8+s)F 

Peripheral card 1/0 Locations (16 per slot) for general 1/0; SSe 
space uses 6 bytes. 

SesOO-SesFF Peripheral card 
ROM space 

Se800-$eFFF Expansion ROM 

SSC Firmware Memory Gse 

One 256-byte page reserved for card in slots; 
first page of sse firmware. 

Eight 256-byte pages reserved for 2K ROM or 
PROM; SSe maps its firmware onto 
$e800-$eEFF. 

289 



Zero-Page Locations II 
The SSe uses the zero-page locations described in Table H-9. 

II 
Table H-9. Zero-Page Locations Used by the SSC 

Address Name Description 

$24. CH Monitor pointer to current position of cursor on 
screen 

$26 SLOT16 Usually (slot x 16); that is, $sO 
$27 CHARACTER Input or output character 
$28. BASL Monitor pointer to current screen line 
$2A ZPTMPl Tern porary storage (various uses) 
$2B ZPTMP2 Temporary storage (various uses) 
$35 ZPTEMP Temporary storage (various uses) 
$36. CSWL BASIC output hook (not for Pascal) 
$37. CSWH High byt.e of CSW 
$38. KSWL BASIC input hook (not for Pascal) 

II $39• KSWH High byte of KSW 
$4E • RNDL Random number location, updated when looking for 

a keypress (not used when initialized by Pascal) 

II • Not used when Pascal initializes SSC. 

II 
Peripheral Card l/0 Space 

There are 16 bytes of IjO space allocated to each slot in the Apple lie. Each II 
set begins at address seoso + (slot X 16); for example, if the sse is in slot 3, 
its group of bytes extends from SeOBO to SeOBF. Table H-10 interprets the 6 

II uytes the sse uses. 

II 
II 
II 
II 

-
290 Appendix H: Programming With t.he Super Serial Card 

II 



I Table H-10. Address Register Bits Interpretation 

I 
Address Register Bits Interpretation 

$C081 +sO DIPSW1 0 SW1-6 is OFF when 1, ON when 0 
(SW1-x) 1 SW1-5 is OFF when 1, ON when 0 

I 
4-7 Same as above for SW1-4 through SW1-1 

$C082+s0 DIPSW2 0 Clear To Send (CTS) is true when 0 
(SW2-x) 1-3 Same as above for SW2-5 through SW2-3 

I 5, 7 Same as above for SW2-2 and SW2-1 

$C088+s0TDREG 0-7 ACIA transmit register (write) 

I 
RDREG 0-7 ACIA receive register (read) 

$C089+s0 STATUS ACIA status/reset register 
0 Parity error detected when 1 

I 1 Framing error detected when 1 
2 Overrun detected when 1 
3 ACIA receive register full when 1 

I 
4 ACIA transmit register empty when 1 
5 Data Carrier Detect (DCD) true when 0 
6 Data Set Ready (DSR) true when 0 
7 Interrupt (IRQ) has occurred when 1 

I $C08A +sOCOMMAND ACIA command register (read/write) 
0 Data Terminal Ready (DTR): enable (1) 

I 
or disable (0) receiver and all interrupts 

1 When 1, allow STATUS bit 3 to cause interrupt 
2-3 Control transmit interrupt, Request To Send (RTS) 

I 
level, and transmitter 

4 When 0, normal mode for receiver; when 1, echo 
mode (but bits 2 and 3 must be 0) 

5-7 Control parity 

I $C08B+sOCONTROL ACIA control register (read/write) 
0-3 Baud rat,e: $00 = 16 times external clock; See 

TableH-1. 

I 4 When 1, use baud rate generator; when 0, use 
external clock (not supported) 

5-6 Number of data bits: 8 (bit 5 and 6 = 0) 7 (5 = 1, 

I 6 = 0), 6 (5 = 0, 6 = 1) or 5 (bit 5 and 6 both = 1) 
7 Number of stop bits: 1 if bit 7 = 0; 

if bit 7 = 1, then 1-1/2 (with 5 data bits, no parity), 

I 1 (8 data plus parity), or 2 

I 

I 

I 
SSC Firmware Memory Use 291 



Scratchpad RAM Locations II 
The SSC uses the scratch pad RAM locations listed in Table H-11. -Table H-11. Scratch pad RAM Locations Used by the SSC 

Address Field name Bit Interpretation II 
$0478+s DELAYFLG 0·1 Form feed delay selection 

II 2-3 Line feed delay selection 
4·5 Carriage return delay selection 
6·7 Translate option 

$04F8+s PARAMETE 0-7 Accumulator for firmware's command processor -$0578+s STATEFLG 0-2 Command mode when not 0 
3-5 Slot to chain to (communications mode) 
6 Set to 1 after lowercase input character 
7 Terminal mode when 1 (communications mode) 
7 Enable CR generation when 1 (printer mode) 

$05F8+s CMDBYTE 0-6 Printer mode default is Control-!; communications 
mode default is Control-A 

7 Set to 1 to Zap control commands -$0678+s STSBYTE Status and IORESULT byte 

$06F8+s CHNBYTE 0-2 Current screen slot (communication mode); when 

II slot = 0, chaining is enabled. 
3·7 $Cs00 space entry point (communications mode) 

PWDBYTE 0-7 Current printer width; for listing compensation, 
auto-CR (printer mode) II 

$0778+s BUFBYTE 0-6 One-byte input buffer (communications mode); 
used in conjunction with XOFF recognition 

II 7 Set to 1 when buffer full (communications mode) 
COLBYTE 0-7 Current-column counter for tabbing and so forth 

(printer mode) 

II $07F8+s MISCFLG 0 Generate line feed after CR when 1 
1 Printer mode when 0; cornrninications mode when 1 
2 Keyboard input enabled when 1 
3 Control-S (XOFF), Controi·R, and Control·T input II checking when 1 
4 Pascal operating system when 1; BASIC when 0 
5 Discard line feed input when 1 II 6 Enable lowercase and special character generation 

when 1 (communications mode) 
6 Tabbing option on when 1 (printer mode) 

II 7 Echo output to Apple Ile screen when 1 

II 
AppendiX H: Programmmg With the Super Serial Card 



I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

Appendix I 
-

Monitor ROM Listing 

293 



00: 

0000: 
0000: 
0000: 
0000: 
s 
s 
s 
s 

0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000 : 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 

0000 

0001 
0000 

F800 
ClOO 
C300 
C800 

0006 

cooo 
cooo 
COOl 
C002 
C003 
C004 
r:oos 
C006 
C007 
coos 
C009 
COOA 
COOB 
cooc 
COOD 
COOE 
COOF 
COlO 
COll 
C012 

TEST EQU 0 ;REAL VERSION 

2 LST ON ;DO LISTING AND SYMBOL TABLES 
3 MSB ON ;SET THEM HIBITS 
4 IROTP.ST EQU 1 
5 DO TEST 
6 F80RG EQU $1800 
7 ClORG EQU $2100 
8 C30RG EQU $2300 
9 C80RG EQU $2800 

10 ELSE 
11 F80RG EQU $F800 
12 ClORG EQU $Cl00 
13 C30RG EQU $C300 
14 C80RG EQU $C800 
15 FIN 
16 MSB ON 
17 INCLUDE EQUATES 

1 **************************************** 
2 * 
3 *Apple //e Video Firmware 
4 * 
5 * RICK AURICCHIO 08 / 81 
6 * E. BEERNINK, R. WILLIAMS 1984 
7 * 
8 *(C) 1981,1984 APPLE COMPUTER INC . 
9 * ALL RIGHTS RESERVED 

10 * 
11 **************************************** 
12 • 
13 GOODF8 EOU 6 ;F8 ROM VERSION 
14 • 
15 * HARDWARE EQUATES: 
16 • 
17 KBD EQU $C000 
18 CLR80COL EQU SCOOO 
19 SET80COL EQU $COO l 
20 RDMAINRAM EOU $C002 
21 RDCARDRAM EQU $C003 
22 WRMAINRAH EQU $C004 
23 WRCARDRAM EQU $COOS 
24 SETSLOTCXROM EQU $C006 
25 SETINTCXROM EQU $C007 
26 SETSTDZP EQU SC008 
27 SETALTZP EQU $C009 
28 SETINTC3ROM EQU SCOO A 
29 SETSLOTC3ROM EQU $C00B 
30 CLR80VID EQU $COOC 
31 SET80VID EQU SCOOD 
32 CLRALTCHAR EQU $C00E 
33 SETALTCHAR EQU $COOF 
34 KBDSTRB EQU $COlO 
35 RDLCBNK2 EQU $C011 
36 RDLCRAM EQU $C012 

; Read keyboard 
;Disable 80 column store 
;Enable 80 column store 
;Read from main RAM 
;Read from auxiliary RAM 
;Write to main RAM 
;Write to auxiliary RAM 
;Switch in slot CXOO ROM 
;Switch in internal CXOO ROM 
;Switch in main stack/ zp/lang . card 
;Switch in aux stack/zp/lang . card 
;Switch in internal $C3 ROM 
;Switch in slot $C3 space 
;Disable 80 column video 
;Enable 80 column video 
;Normal Apple II char set 
;Norm/inv LC, no flash 
;Clear keyboard strobe 
;>127 if LC BANK2 in use 
;>127 if LC is read enabled 

Appendix 1: Monitor RO~! Listings 

II 
II 

II 

II 
II 

II 

II 
II 

II 

II 

II 
II 

II 



I 0000 : C013 37 RDRAMRD EQU $C013 ;>127 if main RAM read enabled 
0000: C014 38 RDRAMWRT EQU $C014 ;>127 if main RAM write enabled 
0000: COlS 39 RDCXROM EQU $C015 ;>127 l.f ROM CX space enabled 

I 0000: C0 16 40 RDALTZP EQU $C016 ;)127 if alt. zp & l c e nabled 
0000 : C017 41 RDC3ROM EQU $C017 ;>127 if slot C3 space enabled 
0000: C018 42 RD80COL EQU $C018 ;)127 if 80 column s t ore enabled 
0000: C019 43 RDVBLBAR EQU $C019 ;>127 if not vertical blanking 

I 0000 : COlA 44 RDTEXT EQU $COlA ;>127 if text mode 
0000: COlC 45 RDPAGE2 EQU $C01C ;>127 if pap;e 2 
0000: COlE 46 ALTCHARSET EQU $CO l E ;)127 if alt char set switched in 
0000 : COIF 47 RD80VID EQU $COIF ;)127 if 80 column video enabled 

I 0000: C030 48 SPKR EQU $C030 ; toggle speaker 
0000 : C0 54 49 TXTPAGEl EQU $C054 ;switches in text page 1 
0000: coss 50 TXTPAGE2 EQU $C055 ;switches in text page 2 
0000 : coso 51 CLRAN2 EOU $COSO ;annunciator 2 

I 
0000: COSF 52 CLRAN3 EQU $COSF ;annunciator 3 
0000 : C061 53 BUTNO EQU $C061 ;open-apple key 
0000 : C062 54 BUTNl EQU $C062 ; closed-apple key 
0000 : C081 55 ROM IN EQU SC081 ;swap in 0000-FFFF ROM 

I 
0000: C083 56 LCBANK2 EQU $C083 ; swap in LC bank 2 
0000 : COBB 57 LCBANKI EQU SC08B ;swap in LC bank 1 
0000 : 58 * 
0000: 59 * MONITOR EQUATES: 

I 
0000: 60 * 
0000 : FBB3 61 F8VERSION EQU F80RG+$3B3 ;F8 ROM 10 
0000 : FDlB 62 KEYIN EQU F80RG+$51B ;normal input 
0000 : FOFO 63 COUTl EQU F80RG+$5FO ;normal output 

I 
0000: FF69 64 MONZ EQU F80RG+$769 ;monitor entry point 
0000: 65 * 
0000 : 66 * ZEROPAGE EQUATES: 
0000 : 67 * 

I 
0000: 0000 68 LOCO EQU 0 ;used for doing PR# 
0000: 0001 69 LOCI EQU 1 ;used for doing PR!I 
0000 : 70 OSECT 
0020: 0020 71 ORG $20 

I 
0020 : 0001 72 WNDLFT DS 1 :scrolling window left 
002 1: 0001 73 WNDWOTH OS 1 ;scrolling window width 
0022 : 0001 74 WNDTOP OS 1 ;scrolling window top 
0023 : 0001 75 WNOBTM OS 1 ;scrolling window bottom+l 
0024: 000 1 76 CH OS 1 ;cursor horizontal 

II 0025 : 0001 77 CV OS 1 ;cursor vertical 
0026: 0002 78 DS 2 ;GBASL,GBASH 
0028 : 0002 79 BASL DS 2 ;points to current line of text 
002A : 0029 80 BASH EQU BASL+l 

II 002A: 0002 81 BAS2L OS 2 ; pointer used for scroll 
002C: 002B 82 BAS2H EOU BAS2L+l 
002C : 83 * 
002F: 002F 84 ORG $2F 

I 002F: 0001 85 LENGTH DS 1 ;lenp;th for mnemonics 
0030 : 0002 86 DS 2 
0032 : 0001 87 INVFLG DS 1 ;>127•normal, ( 127=inverse 
0033 : 0001 88 PROMPT DS 1 ;used by monitor upshift 

I 0034 : 0001 89 YSAV DS 1 ;input buffer index for mini 
0035: 000 1 90 SAVY l DS 1 ;for restoring Y 

I 
I 
I Appendix 1: Monitor ROM Listings 295 



0036: 
0038: 
0038: 
003A: 
003C: 
003C: 
003E: 
003E: 
0040: 
0040: 
0042 : 
0044: 
0044 : 
004E: 
004E: 
0050: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000 : 
0000 : 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000: 
0000 : 
0000 : 
0000 : 
0000 : 
0000 : 
0000: 
0000: 
0000 : 
0000: 
0000: 
0000: 
0000 : 
0000 : 

0002 
0037 
0002 
0039 
003C 
0002 
0030 
0002 
003F 
0002 
0002 
0043 
0001 
004E 
0002 
004F 

0200 

07F8 

047B 
04FB 
057 B 
05FB 
0678 
06FB 
077B 
077B 
07FB 
07 FB 

91 CSI.rL 
92 CSWH 
93 KSWL 
94 KSWH 
95 
96 AlL 
97 A1H 
98 A2L 
99 A2H 

100 

OS 2 
EQU CSI.rL+l 
OS 2 
EQU KSWL+1 
ORG $3C 
DS 2 
EQU AlL+1 
OS 2 
EQU A2L+1 
OS 2 

101 
102 
103 
104 

A4L OS 2 
A4H EOU A4L+l 
MACSTAT OS 1 

105 RNDL 
106 RNDH 
107 
108 * 

ORG $4E 
OS 2 
EQU RNDL+l 
DEND 

;hook for output routine 

;hook for input routine 

;Monitor temps for MOVE 

;A3 NOT USED 

;machine state on breaks 

;random number seed 

109 BUF EQU $200 ; input buffer 
11 0 * Permanent data in screenholes 
111 * 
112 *Note: these screenholes are only used by 
113 * the 80 column firmware if an 80 column card 
114 * is detected or if the user explicitly activates 
11 5 * the firmware. If the 80 column card is not 
116 *present, only MODE is trashed on RESET. 
117 * 
118 * The success of these routines rely on the 
119 * fact that if 80 column store is on (as it 
120 * normally is during 80 column operation), that 
121 * text page 1 is switched in. Do not call the 
122 *video firmware if video page 2 is switched in!! 
123 * 
124 MSLOT EQU $7F8 
125 * 
126 OLDCH EQU 
127 !·!ODE EQU 
128 OURCH EQU 
129 OURCV EQU 
130 CHAR EQU 
131 XCOORD EQU 
132 TEMPi EOU 
133 OLDBASL EQU 
134 TEMP2 EQU 
135 OLDJ\ASH EQU 
136 * 

$478+3 
$4F8+3 
$578+3 
$5F8+3 
$678+3 
$6F8+3 
$778+3 
$778+3 
$7F8+3 
$7F8+3 

137 * BASIC MODE BITS 
138 * 

;•$Cn ;n• slot using $C800 

;LAST CH used by video firmware 
;video firmware oper ating mode 
;80 column CH 
;80 column CV 
;character to be printed / read 
:GOTOXY X-coord (oascal onl y) 
:temp 
;last BASL (pascal only) 
;temp 
;last BASH (pascal only) 

139 * 0 ••••••• - BASIC active 
140 * 1 • •••• •• - Pascal active 
141 * .o .. . . .. -
142 * .! • . •• .. -
143 * .. o . .... -Print control characters 
144 * •• 1 ••••• - Don't print ctrl chars. 

Appendix 1: Momtor Rmf Listings 

II 
II 
II 

II 
II 
II 

II 
II 
II 
II 
II 

II 
II 
II 

II 
II 



I 0000: 145 * .•• o .... -
0000: 146 * ... 1 .... -
0000 : 147 * ... . o ... - Print control characters 

I 0000: 148 * .... 1 ... -Don 't print next ctrl char 
0000: 149 * ..... 1) .. -

0000: 150 * ..... 1 .. -
0000 : 151 * ..... . o. -

I 0000 : 152 * ...... !. -
0000 : 153 * • . ....• o - Mouse text inactive 
0000: 154 * .. ..... 1 - Mouse text active 
0000: 155 * 

I 0000: 0040 156 M.6 EQU $40 
0000: 0020 157 M.CTL2 EQU $20 ;Don't print controls 
0000: 0010 158 M.4 EQU $10 
0000: 0008 159 M.CTL EQU $08 ;Temp ct rl disable 

I 0000: 0004 160 M, 2 EQU $04 
0000: 0002 161 M.1 EQU $02 
0000 : 0001 162 M.MOUSE EQU $01 
0000 : 163 * 

I 0000: 164 * Pascal Mode Bits 
0000 : 165 * 
0000: 166 * o ....... - BASIC active 
0000: 167 * 1 ....... - Pascal active 

I 0000: 168 * .o ...... -
0000: 169 * .1 ...... -
0000: 170 * .. o ..... -
0000: 171 * .. 1 ..... -

I 0000: 172 * ... o .... - Cursor always on 
0000: 173 * .. . 1 .... - Cursor always off 
0000: 174 * .... o ... - GOTOXY n/a 
0000: 17 5 * .... !. .. - GOTOXY i n progress 

I 0000: 176 * ..... o .. - Normal Video 
0000: 177 * .... . 1 .. - Inverse Video 
0000: 178 * .. .... o. - PASCAL 1.1 F/W ACTIVE 
0000: 179 * ...... !. -PASCAL 1.0 INTERFACE 

I 
0000 : 180 * ••. •.•• o - Mouse text inactive 
0000 : 181 * ....... 1 - Mouse text active 
0000: 182 * 
0000: 0080 183 M.PASCAL EQU $80 ;Pascal active 

I 
0000: 0010 184 M.CURSOR EQU $10 ;Don ' t pr i nt cur sor 
0000 : 0008 185 M. GOXY EQU $08 ;GOTOXY IN PROGRESS 
0000: 0004 186 M. VMODE EQU $04 ;PASCAL VIDEO MODE 
0000 : 0002 187 M.PAS1.0 EOU $02 ;PASCAL 1.0 MODE 

I 
0000: 188 * 
0000: 189 * F8 ROM entries 
0000: 190 * 
0000: FA47 191 NEWBREAK EQU F80RG+$247 

I 
0000: FC74 192 !ROUSER EQU F80RG+$474 
0000: FC7A 193 IRQDONE2 EQU F80RG+$47A 
0000: F8B7 194 TSTROM EQU F80RG+$B7 
0000: 18 INCLUDE BFUNC 

I 
NEXT OBJECT FILE NAME IS REFLIST.O 

C100: C100 1 ORG C10RG 
ClOO: C100 2 BFUNCPG EQU * 

I 

I 
Appendix 1: Monitor ROM Listings 



ClOO: FEC5 
ClOD: FCFO 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOD: 
ClOO: 
ClOD: 
ClOD: 
ClOO: 
ClOO: 
ClOO: 
C100: 
ClOD: 
ClOO: 
ClOO: 
ClOO: 
ClOD: 
ClOD : 
ClOO: 
ClOO: 
ClOO: 
C100: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
ClOO: 
Cl00:4C 13 C2 
Cl03: 
Cl03:A4 24 
Cl05: AS 25 
Cl07:48 
Cl08:20 03 CE 
Cl0B:20 F4 Cl 
ClOE:AO 00 
Cll0 : 68 
Clll:69 00 
Cll3:CS 23 
Cll5:90 FO Cl07 

3 FUNCEXIT EQU F80RG+$6C5 ;RETURN ADDRESS 
4 MINI EQU F80RG+$4FO 
5 * 
6 * BASIC FUNCTION HOOK: 
7 * 
8 * $Cl00 is called by the patched $F8 ROM. 
9 * It provides an extension to $F8 routines 

10 * that do not work in 80 columns. 
ll * 
12 * Before jumping here, the $F8 rom disabled 
13 * slot I/O and enabled ROH I/0. This makes 
14 * the entire space from $Cl00 - $CFFF with t he 
15 * exception of the $C300 page available. 
16 * 
17 * On exit slot I/ 0 is restored if necessary. 
18 * 
19 * INPUT: Y=FUNCTION AS FOLLOWS: 
20 * 
21 * 
22 * 
23 * 
24 * 
25 * 
26 * 
27 * 
28 * 
29 * 
30 * 
31 * 
32 * 
33 * 
34 * 
35 * 
36 * 
37 * 
38 * 

l KEY IN 
2 = Fix escape char 
3 BASCALC 
4 
5 

VTAB or VTABZ 
HOME 

6 D SCROLL 
7 CLREOL 
8 CLREOLZ 
9 = RESET 
A = CLREOP 
B • RDKEY 
C = SETWND 
D = Mini Assembler 
E • set 40 columns on PR#O/INHO 
F = Fix pick for monitor 

Stack has PHP for status of internal $CNOO ROM 

39 * Note: If 80 Vid is on and the MODE byte is valid, 
40 * this call will be dispatched to an 80 column routine 
41 *by B.FUNCO. Otherwise it will be dispatched to a 
42 * 40 column routine by B. OLDFUNC . In all cases return 
43 * to the Autostart ROM is done through F.RETURN. 
44 * 
45 B.FUNC JMP DISPATCH ;figure out what to do 
46 * 
47 F. CLREOP LOY CH 
48 LDA CV 
49 CLEOPl PHA 
50 JSR VTABZ 
51 JSR X.CLREOLZ 
52 LOY 11$00 
53 PLA 
54 ADC H$00 
55 CMP WNDBTM 
56 BCC CLEOPl 

; ESC F IS CLR TO END OF PAGE 

; (carry set) 

AppendLx 1: Monitor ROM Listings 

II 

II 
II 

II 
II 

II 

II 

II 
II 
II 
II 



I C117:BO 34 C140 57 BCS GVTZ ;•)al ways to VTABZ 
C119: 58 * 

I 
C119 :AS 22 59 F. HOHE LOA WNOTOP 
C118:85 25 60 STA CV 
C110:AO 00 61 LOY #$00 
C11F:84 24 62 STY CH 
C121 :FO E4 C107 63 BEQ CLEOP1 ; (ALWAYS TAKEN) 

I C123 : 64 * 
C123 :A5 22 65 F. SCROLL LOA WNOTOP 
C125 :48 66 PHA 
Cl26 :20 03 CE 67 JSR VTABZ 

I C129:A5 28 68 SCRL1 LOA BASL 
Cl2B:85 2A 69 STA BAS2L 
C120:A5 29 70 LOA BASH 
C12F:85 28 71 STA BAS2H 

I C13 1: A4 21 72 LOY WNDWDTH 
Cl33:88 73 DEY 
C134:68 74 PLA 
C135:69 01 75 ADC #$01 

I Cl37 : CS 23 76 CHP WNDBTH 
C139:BO OD C148 77 BCS SCRL3 
Cl3B:48 78 PHA 
Cl3C:20 03 CE 79 JSR VTABZ 

I Cl3F:Bl 28 80 SCRL2 LDA ( BASL), Y 
C14 1:91 2A 81 STA ( 8AS2L) , Y 
Cl43:88 82 DEY 
C144 : 10 F9 Cl3F 83 BPL SCRL2 

I Cl46:30 E1 C129 84 BHI SCRL1 
C148:AO 00 85 SCRL3 LDY 0$00 
C14A:20 F4 C1 86 JSR X.CLREOLZ 
C14D:A5 25 87 GVTZ LOA CV 

I C14F:4C 03 CE 88 GVTZ2 JHP VTABZ ;set vertical base 
Cl52: 89 * 
C152: C152 90 F. SETWND EQU * 
C152:A9 28 91 LOA 1140 

I 
C!S4:8S 21 92 STA WNDWDTH 
C156:A9 18 93 LnA /124 
C158 :85 23 94 STA WNDBTM 
C15A:A9 17 95 LDA 1123 

I 
C1SC :8S 25 96 STA CV 
ClSE :DO EF Cl 4F 97 BNE CVTZ2 ;•>go do vt tlb , ex i t 
C160: 98 * 
C160: 99 * Load Y from BAS2L and clear line 

I 
C160 : 100 * 
C160 :A4 2A 101 F. CLREOLZ LOY BAS2L ;set up by $F8 ROH 
C162:4C F4 C1 102 JMP X.CLREOLZ ;and clear line 
C1 65: 103 * 

I 
C165: 104 * 80 column routines begin here 
C165 : 105 * 
C165 :4C EB CB 106 B. SCROLL JHP SCROLLUP ;DO IT FOR CALLER 
C168: 107 * 
Cl68: 108 * Clear to end of line usin!( Y • OURCH 
C168: 109 * 
Cl6i!: 4C 9A CC 110 B. CLREOL JHP X.GS ;clear to end of line 

Appendix 1: Monitor RQ:I.I Listings 299 



CI6B: 
CI6B : 
CI6B: 
CI6B: 
CI6B:A4 2A 
CI6D:4C 90 CC 
Cl70: 
CI70:4C 74 CC 
CI73 : 4C AO C2 
CI76:4C BO C2 
CI79 : 4C F2 C2 
CI7C: 
CI7C:20 90 CC 
CI7F:AD 7B 05 
C182:85 24 
CI84 :8D 7B 04 
CI87:4CFECD 
CI8A: 
CI8A: 
Cl8A: 
C18A: 
CI8A: 
CI8A: CI8A 
CI8A:B4 00 
CI8C:FO OF C19D 
Cl 8E :CO IB 
CI90:FO OE CIAO 
Cl92:20 80 CD 
C195:B4 00 
CI97:FO 04 C19D 
CI99 :A9 FD 
CI 9B:95 01 
C19D : B5 01 
CI9F:60 
C1AO: 
ClAD :AS 37 
CIA2:C9 C3 
C1A4:DO F3 Cl99 
ClA6 : 4C 32 C8 
CIA9: 
ClA9:A4 24 
CIAB :Bl 28 
CIAD:48 
CIAE:29 3F 
CIB0:09 40 
CIB2 :91 28 
CI B4:68 
CIB5 :60 
CIB6: 
CIB6:A8 
CIB7:A5 28 
CIB9:20 BA CA 
CIBC:90 4C C20A 
CIBE : 

Ill * 
112 *Clear to end of l i ne using Y • BAS2L 
113 * which was set up by the $F8 ROM 
114 * 
115 B. CLREOLZ LOY BAS2L ;get Y 
11 6 JMP X.GSEOLZ ;clear to end of line 
117 * 
118 B. CLREOP JMP X. VT ;CLEAR TO EOS 
119 B. SETWND JMP B.SETWNDX 
120 B. RESET JMP B.RESETX ;MUST BE IN BFUNC PAGE 
121 B.RDKEY JMP B.RDKEYX 
122 * 
123 B.HOME JSR X.FF 
124 LOA OURCH 
125 STA CH 
126 STA OLDCH 
127 JMP VTAB 
128 * 

;HOME & CLEAR 

;COPY CH/CV FOR CALLER 
; REMEMBER WHAT WE SET 
;calc base & return 

129 * Complete PRH or INH call. Quit video firmware 
130 * if PRHO and it was active (B.QUIT). Complete call 
131 * if inactive (F. OUIT) . 
132 * 
133 B.QUIT 
134 
135 
136 
137 
138 

EQU 
LDY 
BEQ 
CPY 
BEQ 
JSR 

* 

139 F. QUIT 
140 

LDY 
BEQ 

F8HOOK LOA 141 
142 

LOCO,X 
NOTO 
IIKEYIN 
ISO 
QUIT 
LOCO,X 
NOTO 
D<KEYIN 

143 NOTO 
144 
145 * 
146 ISO 
147 
148 
149 
150 * 

STA LOCI ,X 
LDA LOCI,X 
RTS 

LOA 
CMP 
BNE 
JMP 

CSWH 
II<BASICIN 
F8HOOK 
C3IN 

;was it PR#O/INUO? 
;=>no, not slot 0 
;was it INI!O? 
;•>yes, update high byte 
;quit the firmware 
;get low byte into Y 
;not slot 0 , firmware inactive 
;set high byte to $FD 

;restore accumulator 

;is $C3 in output hook? 

;=>no, set to $FDOC 
;else set to $C305, exit A•$C3 

151 F.RDKEY LOY CH ;else do normal 40 cursor 
152 LOA (BASL),Y ;grab the character 
153 PHA 
154 AND 
155 ORA 
156 STA 
157 F.NOCUR PLA 
158 RTS 
159 * 
160 F. BASCALC TAY 

I/$3F 
IJ$40 
(BASL),Y 

161 LDA BASL 
162 JSR BASCALC 
163 BCC F.RETURN 
164 * 

;set screen to flash 

;and display it 

;return (A•char) 

;restore Y 
;restore A 
;calculate base 
;BASCALC always 

address 
returns 

Appendix 1: ~1onitor ROM Listings 

BCCI 

II 

II 
II 
II 
II 
II 
II 
II 
II 

II 
II 
II 

II 



I 
I 
I 

I 

I 

I 

I 
I 
I 
I 
I 

I 

C1BE: ClBE 
C1BE:20 14 CE 
C1Cl :AO 03 
C1C3: C1C3 
C1C3:D9 EE C2 
C1C6:DO 03 C1CB 
C1C8: B9 A4 C9 
C1CB: C1CB 
C1CB:88 
ClCC: 10 FS C1C3 
C1CE:30 3A C20A 
ClDO: 
C1D0:20 70 C8 
C1D3:4C OA C2 
C1D6: 
C1 D6: 
C1D6: 
C1D6 :8A 
C1D7 : 29 03 
C109:8S 2F 
C1DB :AS 2A 
C1DD:29 SF 
C1DF:4C 71 CA 
C1E2: 
C1E2 :20 FO FC 
C1ES:8A 
C1E6:8S 34 
C1E8:60 
C1E9: 
C1E9: 
C1E9 : 
C1E9:AC 7B OS 
ClEC:20 44 CE 
C1EF:09 80 
C1F1:60 
C1F2 : 
ClF2: 
ClF2: 
C1F2: ClF2 

co 
C201 

ClF2 :A4 24 
ClF4 :A9 AO 
ClF6:2C IE 
C1F9 :1006 
C1FB :24 32 
C1F0:30 02 
C1FF:A9 20 
C201 :4C A8 CC 
C204: 
C204: 
C204: 
C204: 
C204:A8 
C20S:AS 28 
C207 :20 03 CE 

C201 

B. ESCFIX EQU * 165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 * 

JSR UPSHFT 
B.ESCFIXl LDY H4-l 
B.ESCFIX2 EOU * 

CMP ESCIN,Y 
BNE B.ESCFIX3 
LDA ESCOUT,Y 

B.ESCFIX3 EQU * 
DEY 
BPL B.ESCFIX2 
BMI F. RETURN 

;upshift lowercase 
;SCAN FOR A MATCH 

;IS IT? 
;•>NAW 
;YES, TRANSLATE IT 

;RETURN:CHAR IN AC 

177 F.BOUT JSR ROUT ;print the character 
17 8 JMP F. RETURN ; AND RETURN 
179 * 
180 * Do displaced mnemonic stuff 
181 * 
182 MNNDX TXA 
183 
184 
185 
186 
187 
188 * 

AND 
STA 
LOA 
AND 
JMP 

#$03 
LENGTH 
BAS2L 
6$8F 
DOMN 

189 GOMINI JSR MINI 
190 
191 
192 
193 * 

TXA 
STA YSAV 
RTS 

;get old ace 
;make it a length 

;get old Y into A 

;and go to open spaces 

;do mini - assembler 
;X•O. Set mode to 0 , and counter 
;so not CR on new line 

194 * Pick an 80 column character for the monitor 
195 * 
196 FIXPICK LOY OURCH 
197 JSR PICK 
198 ORA #$80 
199 RTS 
200 * 

;get 80 column cursor 
;pick the character 
;always pick as normal 
;and return 

201 * Load CH into Y and clear line 
202 * 
203 F.CLREOL EQU * 
204 X.CLREOL LOY CH ;get horizontal position 
205 X.CLREOLZ LOA #SAO ;store a normal blank 
206 BIT ALTCHARSET ;unless alternate char set 
207 BPL X.CLREOL2 
208 BIT INVFLG 
209 BMI X. CLREOL2 
210 LDA #$20 
211 X.CLREOL2 JMP CLR40 
212 * 

;and inverse 

;use inverse blank 
;clear to end of line 

213 * Call VTAR or VTABZ for 40 or 80 columns. Ace (CV) 
214 * is saved in BASL. 
215 * 
216 F. VTABZ TAY 
217 LOA BASL 
218 JSR VTABZ 

;restore Y 
;and A 
;do VTABZ 

Appendix 1: Monitor ROM Listings 301 



C20A: 
C20A: 
C20A: 
C20A: 
C20A: C20A 
C20A:28 
C20B:30 03 C210 
C20D:4C CS FE 
C210:4C C8 FE 
C213: 
C213: 
C213: 
C213: 
C213:88 
C214:30 BA C1DO 
C2 16:88 
C217:30 AS C1BE 
C219:88 
C21A:30 9A C1B6 
C21C:88 
C21D:30 3D C25C 
C2 1F:88 
C220:30 F.2 C204 
C222: 
C222: 
C222: 
C222:A9 C2 
C224:48 
C225:A9 09 
C227:48 
C228: 
C228: 
C228: 
C228: 
C228:AD FB 04 
C22B :29 D6 
C22D:DO OD C23C 
C22F:98 
C230:18 
C231:69 OC 
C233:48 
C234:20 50 C8 
C237 :20 FE CD 
C23A:68 
C23B:A8 
C23C: 
C23C: 
C23C: 
C23C:A9 Cl 
C23E:48 
C23F:B9 44 C2 
C242:48 
C243: 
C243: 

219 * 
220 * EXIT. EITHER EXIT W1TH OR WITHOUT 
221 * ENABLING I/0 SPACE. 
222 * 
223 F. RETURN EQU * 
224 PLP ;GET PRIOR I/O DISABLE 

F. RET1 ;•)LEAVE IT DISABLED 
FUNCEXIT ;•>EXIT & ENABLE I/O 
FUNCEXIT+3 ;EXIT DISABLED 

225 F. RET2 Bm 
226 JMP 
227 F.RET1 JMP 
228 * 
229 *Do BOUT, ESCFIX, BASr.ALC, and KEYIN immediately 
230 * to avoid destroying Accumulator . 
231 * 
232 DISPATCH DEY 
233 BMI F. BOUT ;code 0 • 80 column output 
234 DEY 
235 BMI B. ESCFIX ;code • ESCFIX 
236 DEY 
237 BMI F.BASCALr. ;code 2 • BASCALC 
238 DEY 
239 BM1 B. KEYIN ;code 3 • KEYIN 
240 DEY 
241 BMI F.VTABZ ;code 4 • VTABZ 
242 * 
243 * First push addresB of generic return routine 
244 * 
245 
246 
247 
248 
249 * 

LDA 
PHA 
LDA 
PHA 

H<F .RETURN ;return to F.RETURN 

O>F. RETURN-1 

250 * If any of 5 bits in $4FB (MODE) is on, then the mode is not 
251 * valid for video firmware. Use old routines. 
252 * 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 * 

LDA MODE ;no, is mode valid? 
AND UM . PASCAL+M.6+M. 4+M . 2+M. 1 
BNE GETFUNC ;•)no, use 40 column routines 
TYA ;80 column routines in 
CLC ;2nd half of table 
ADC 1/TABLEN 
PHA 
JSR CSETUP 
JSR VTAB 
PLA 
TAY 

;set up 80 column cursor 
;calc base 

;restore Y 

265 * Now push address of routine 
266 * 
267 GETFUNC LDA U<BFUNCPG ;stuf f routine address 
268 PHA 
269 LDA F.TABLE,Y 
270 PHA 
271 * 
272 * RTS goes to routine on stack . When the routine 

Appendix 1: ~lonitor R0\1 Listings 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

II 

II 
II 
II 
II 
II 



C243: 
C243: 
C243: 
C243:60 
C244: 
C244: 
C244: 

I C244 : 
C244: C244 
C244: 18 
C245:22 

I C246 :Fl 
C247:5F 
C248:75 

286 

I C249:02 
C24A:A8 
C24B:51 
C24C:E1 

I C240:94 
C24E:E8 
C24F:05 
C250: 

I C250: oooc 
C250: 
C250:7R 
C251:64 

I 
C252:67 
C253:6A 
C254:75 
C255:6F 

I 
C256:78 
C257:72 
C258:E1 
C259:89 

I 
C25A:E8 
C25B :05 
C2SC: 
C25C : C25C 

I 
C25C:2C IF co 
C25F : 10 06 C267 
C261:20 74 C8 
C264:4C OA C2 

I 
C267 : 
C267:A8 
C268:8A 
C269 :48 

I 
C26A:98 
C268 :48 
C26C:48 
C260: 
C26D:68 

I C26E:C9 FF 
C270:FO 04 C276 

I 
I 
I 

273 * does an RTS, it returns to F .RETURN, which restores 
274 * the INTCXROM status and returns . 
275 * 
276 RTS 
277 * 
278 * Table of routines t o call. All routines are 
279 * in the $ClOD page. These are low bytes only . 
280 * 
281 F.TABLE EOU * 
282 OFB 1/) F. HOME-I ; ( 5) 40 column HOME 
283 DFB #>F.SCROLL-1 ;(6) 40 column scroll 
284 DFB 1/)F .CLREOL-1 ;(7) 40 column clear line 
285 DFB lf)F .CLREOLZ-1 ;(8) 40 column clear withY set 

DFB /I)B. RESET-1 
287 DFB 
288 OFB 
289 DFB 
290 DFB 
291 DFB 
292 OFB 
293 DFB 
294 * 
295 TABLEN EOU 
296 * 
297 DFB 
298 DFB 
299 DFB 
300 DFB 
301 PFB 
302 OFB 
303 OFB 
304 OFB 
305 DFB 
306 OFB 
307 DFB 
308 DFB 
309 * 
310 B.KEYIN EQU 
311 BIT 
112 RPL 
313 JSR 
314 GOF . RET JMP 
315 * 
316 B.KEYIN1 TAY 
317 TXA 
318 PRA 
319 TYA 
320 PHA 
321 PHA 
322 * 
323 NEW . CUR PLA 
324 CMP 
325 BEQ 

;(9) 40/80 column reset 
#)F.CLREOP-1 ;(A) 40 column c lear e nd of page 
1/)F.RDKEY- 1 ;(B) readkey w/flashing checkerboard 
lf)F .SETWND-1 ;(C) Set 40 column window 
lf>GOMINI-1 ;(D) Mini-assembler 
#>F . QIJIT- 1 ; (E) quit before INUO,PRIIO 
D>FIXPICK-1 ;(F) fix pick for 80 columns 
ii)MNNOX-1 ; (10) calc mnemonic index 

*- F. TABLE 

#)B .HOME-1 ;(11) 80 column HOME 
#>B.SCROLL- 1 ;(12) 80 column scroll 
#)B .CLREOL-1 ;(13) 80 column clear line 
#)B .CLREOLZ-1 ;(14) 80 column clear with Y set 
#)B .RESET-1 ;(15) 40/80 column reset 
#)B .CLREOP-1 ; (16) 80 column clear end of page 
1/)B .RDKEY-1 ;(17) readkey w/inverse cursor 
#)B,SETWND-1 ;(18) 40/80 column VTAB 
#)GOMINI-1 ;(19) Mini-Assembler 
#)B,QUIT-1 ; (1A) quit before IN#O,PR#O 
#>FIXPICK-1 ;(18) fix pick for 80 columns 
#)MNNDX-1 ;(!C) calc mnemonic index 

* 
RD80VID 
ll.KF:YTNl 
BIN 
F. RETURN 

#$FF 
NEW.CUR1 

;80 columns? 
;•>no, flash the cursor 
;get a keystroke 
;and return 

;preserve A 
;put X on stack 

; restore A 
;save char on stack 
;dummy for cursor/char test 

;p.et last cursor 
;was it checkerboard? 
;•)yes, get old char 

AppendLx 1: ~1onitor ROM Listings 303 



C272:A9 FF 
C274:00 02 
C276:68 
C277:48 
C278:48 
C279:A4 24 
C27B:91 28 
C27D: 
C27D: 
C27D: 
C27D: 

C278 

C27D:E6 4E 
C27F:DO OA C28B 
C281:A5 4F 
C283:E6 4F 
C285 :45 4F 
C287:29 40 
C289:00 E2 
C28B:AD 00 
C28E: 10 ED 
C290: 
C2 90:68 
C291:68 
C292:A4 24 
C294:91 28 
C296:68 
C297:AA 

C26D 
co 

C27D 

C298:AD 00 CO 
C29B:8D 10 CO 
C29E:30 C4 C264 
C2A0: 
C2AO: C2AO 
C2A0:20 52 Cl 
C2A3:2C 1F CO 
C2A6:10 02 C2AA 
C2A8:06 21 
C2AA:A5 25 
C2AC:8D FB 05 
C2AF:60 
C2BO: 
C2 BO: 
C2BO: 
C2BO: 
C2BO:A9 FF 
C2B2 :8D FB 04 
C2BS:AD SD CO 
C2B8 :AD SF CO 
C2BB: 
C2BB: 
C2BB: 
C2BB: 
C2BB: 
C2BB : 
C2BB:AD 62 CO 

C2BO 

326 
327 
328 
329 
330 
33 1 
332 
333 * 

LDA II$FF 
BNE NEW.CUR2 

NEW.CUR1 PLA 
PHA 

NEW.CUR2 PHA 
LDY 
STA 

CH 
(BASL),Y 

;no, g~t checkerboard 
;•>always 

;get character 
;into accumulator 
;save for next cursor check 

;get cursor horizontal 
;and save char/cursor 

334 * Now leave char/cursor for awhile or 
335 * until a key is pressed. 
336 * 
337 WAITKEYI INC RNDL 
338 BNE WAITKEY4 
339 LOA RNDH 
340 INC RNDH 
341 EOR RNDH 
342 AND #$40 
343 BNE NEW.CUR 
344 WAITKEY4 LOA KBD 
345 BPL WAITKEY1 
346 * 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 * 

PLA 
PLA 
LOY 
STA 
PLA 
TAX 

CH 
(BASL),Y 

LDA KBD 
STA KBDSTRB 
BMI GOF.RET 

357 B. SE'fWNDX EQU * 
358 JSR F. SETWND 
359 BIT RD80VID 
360 BPL SKPSHFT 
361 ASL WNDWDTH 
362 SKPSHFT LOA CV 
363 STA OURCV 
364 RTS 
365 * 

;bump random seed 
;•>and check keypress 
;is it time to blink yet? 

;•>yes, blink it 
;Ivories been tickled? 
;no, keep blinking 

;pop char/cursor 
;pop character 
;and cii~play i.t 
;(erase cursor) 
;restore X 

;now retrieve the key 
;clear the strobe 
;•)exit always 

;set 40 column width 
;80 columns? 
;=>no, width ok 
;make it 80 

;update OURCV 

366 * I~NDLE RESET FOR MONITOR: 
367 * 
368 B.RESETX EQU * 
369 LOA #$FF 
370 STA MODE 
371 LOA CLRAN2 
372 LDA CLRAN3 
373 * 

;DESTROY MODE BYTE 

;SETUP 
ANNUNCIATORS 

374 * 
375 * 
376 * 
377 * 
378 * 

IF THE OPEN APPLE KEY 
(ALIAS PADDLE BUTTONS 0) 
DEPRESSED, COLDSTART THE 
AFTER DESTROYING MEMORY: 

IS 
SYSTEM 

379 LDA BUTN1 ;GET BUTTON 1 (SOLID) 

Appendix 1: Monitor ROM Listings 

II 

II 
II 

II 
II 

II 
II 
II 

II 
II 
II 

II 



I C2 BE: l0 03 C2C3 
C2C0:4C: 00 C6 
C2C3:AD 6! co 

I C2C6 : 10 !A C2E2 
C2C8: 
C2C8: 
C2C8 : 

I C2C8: 
C2C8 :AO BO 
C2CA:A9 00 
C2CC :85 3C 

I C2CE :A9 BF 
C2D0:38 
C2Dl: C2Dl 
C2Dl:85 30 

I C203 :48 
C:204:A9 AO 
C2D6 :91 3C 
C208 :88 

I C2D9 : 91 3C 
C2DB:68 
C2DC:E9 01 
C2DE::C9 01 

I C2F.O : DO EF C2D1 
C2E2: 
C21!2: 
C2E2: 

I 
C2E2: 
C2E2: 
C2E2 : 
C2E2 : 

I 
C2E2: 
C2E2: 
C2E2 : 
C2F:2: C2E2 

I 
C2E2 :80 OB CO 
C2eS : 20 89 CA 
C2E8 : DO 03 C2ED 
C2F.A :80 OA CO 

I 
C2ED:60 
r.7EF. : 
C2EE :88 95 8A 8R 
C2F2: 

I 
C2F2 :A4 24 
C2 F4: Bl 28 
C2F6 : 2C I F CO 
C2F9: 30 F2 C2EO 

I 
C2 FB:4C 26 CE 
C2FE: 
C2FE: 0002 
C2FE: 0002 

I 
C300 : 0000 
s 

C300 : 

I 
I 
I 

;•)Up, no diags 380 
381 
382 
383 

BPL NODIAGS 
JMP DIAGS 

NODIAGS LOA BUTNO 
BPL RESF.TRET 

;•)else go do diagnostics 
;GET BUTTON 0 (OPEN) 
;•) NOT JIVE OR DIAGS 

384 * 
385 * BLAST 2 BYTES OF EACH PAGF., 
386 * INCLUDING THE RESET VECTOR: 
387 * 
388 
389 
390 
391 
392 
393 BLAST 
394 
395 
396 
397 
398 
399 

LOY 
LDA 
STA 
LOA 
SEC 
EOU 
STA 
PHA 
LOA 
STA 
DEY 
STA 

IISBO ;LET IT PRECESS DOWN 
fJO 
AlL 
H$ BF ;START FROM BFX.X DOWN 

;FOR SUBTRACT 
* 
A!H 

; save ace to store 
II SAO ;blanks 
(AlL) ,Y 

( A1 L) , Y 
400 PLA ;restore ace for counter 
401 SBC fl ;BACK DOWN TO NEXT PAGE 
402 CMP , l ;STAY AWAY FROM STACK! 
403 BNE BLAST 
404 * 
405 * If there is a ROM card plugged into ~lot 3, 
406 *don't switch in the internal ROM C3 space . 
407 * only switch them in if there is a RAM card 
408 * in the video slot. 
409 * 

If not, 

4!0 *NOTE: The //e powers up with internal $C3 ROM switched 
411 *in . TSTROMCARD s witches it out, RESF.TRET may or may 
4!2 * not switch it back in . 
413 * 
414 RESETRET EOU * 
415 STA SETSLOTC3ROM ;swap in slot 3 
416 JSR TSTROMCRD ;ROM or no card plugged in ? 
417 BNE GORETNl ; •>ROM or no card, leave $C3 slot 
418 STA SETINTC3ROM ;card, enable internal ROM 
419 GORETNl RTS 
420 * 
421 ESC IN OFB $88 ,S95,$RA , S8B 
422 * 

B. RDKEYX LOY CH 423 
424 
425 
426 
427 
428 * 

LOA (BASL),Y 
Bn' R080VID 
BMI GORETN! 
JMP INVERT 

429 ZSPAREC2 EQU C30RG-* 
430 OS C30RG-*,O 
43 1 IFNE *-C30RG 
432 FAIL 2 , ' C300 
433 FIN 

;get cur sor pos ition 
;and characte r 
;80 columns? 
;=)don't display cursor 
;else display cursor, exit 

overflow' 

App~·ndix 1: Monitor Hm1 Listings 305 



C300: 
C300: 
C300 : 
C300: 
C300: 
C300: 
C300: 
C300: 
C300: 
C300: 
C300: 
C300: 
C300: 
C300:2C 43 
C303:70 12 
C305: 
C305: 
C305: 
C305: 
C305: 
C305:38 
C306:90 
C307: 
C307: 
C307: 
C307: 
C307: 
C307: 18 
C308: B8 
C309:50 OC 
C30B: 
C30B: 
C30B: 
C30B: 
C30B: 
C30B: 
C30B: 
C30B: 
C30B:01 
C30C:88 
C30D: 
C30D :4A 
C30E:SO 
C30F :56 
C310:5C 
C311: 
C311: 
C311: 
C311: 

C300 
C300 

CE 
C317 

C305 

C307 

C317 

C311 :4C 76 C3 
C314:4C C3 C3 
C317 : 
C317 : 
C317 :8D 7B 06 

19 INCLUDE C3SPACE 
1 **************************************** 
2 * 
3 * THIS IS THE SC3XX ROM SPACE: 
4 * Note: This page must not be used by any routines 
5 * called by the F8 ROM. When it is referenced, it cl~im$ 
6 * the C800 space (kicking out anyone who was using it). 
7 * This also means that peripheral cards cannot use the AUXMOVE 
8 * and XFER r outines from their C800 space . 
9 * 

10 **************************************** 
11 CNOO EQU * 
12 BASICINT EQU * 
13 BIT SEV ;set vflag (init) 
14 BVS BAS ICE NT ; (ALWAYS TAKEN) 
15 * 
16 * BASIC i nput entry point. After a PR#3, this is the 
17 *address that is called to input each character. 
18 * 
19 BASICIN EQU * 
20 SEC 
21 DFB $90 ; BCC OPCODE (NEVER TAKEN) 
22 * 
23 * BASIC output entry point. After a PR#3, this is the 
24 * address that is called to output each character . 
25 * 
26 BASICOUT EOU * 
27 CLC 
28 CLV ;CLEAR VFLAG (NOT INIT) 
29 BVC B~SICENT ;(ALWAYS TAKE N) 
30 * 
31 *Pascal 1.1 Firmwar e Prot ocol table: 
32 * 
33 *This tables identifies this as an Apple //e 80 column 
34 * card . It points t o the four routines available to 
35 *programs do ing l/0 usinR the Pascal 1.1 Fi r mware 
36 * Protocol. 
37 * 
38 
39 
40 * 

DFB 
DFB 

$0 l 
$88 

;GENERIC SIGNATU~E BYTE 
;DEVICE SIGNATURE BYTE 

41 DFB /I)JPINIT ; P~SCAL INIT 
42 DFB #)JPREAD ;PASCAL READ 
43 DFB /I)J PWRI'fE ; PASCAL WRITF. 
44 DFB #)JPSTAT ;PASCAL STATUS 
45 **************************************** 
46 * 
47 * 128K SUPPORT ROUTINE ENTRIES: 
48 * 
49 JMP MOVE ;liEMORY MOVE ACROSS BANKS 
SO JMP XFER ;TRANSFER ACROSS BANKS 
51 **************************************** 
52 * 
53 BASICENT STA CHAR 

Appendix I ~onilor ROM Listings 

II 

II 
II 
II 
II 
II 
II 

II 
II 

II 
II 
II 
II 



II 
II 
I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

C31A :98 
C31B:48 
C31C:8A 
C31D:48 
C31E:08 
C31F: 
C31F: 
C31F: 
C31F: 
C31F: 
C31F: 
C31F:AD FB 04 
C322:2C F8 07 
C325:30 05 C32C 
C327 :09 08 
C329:8D FB 04 
C32C: 
C32C : C32C 
C32C:20 6D C3 
C32F:28 
C330:70 15 C347 
C332: 
C332: 
C332: 
C332: 
C332: 
C332:90 10 C344 
C334:AA 
C335:10 OD C344 
C337:20 58 CD 
C33A:68 
C33B:AA 
C33C:68 
C33D:A8 
C33E:AD 78 06 
C341:6C 38 00 
C344: 
C344:4C 7C C8 
C347 :4C 03 C8 
C34A: 
C34A: 
C34A: 20 
C34D:4C 
C350 : 
C350 :20 
C353:4C 
C356: 
C356: 20 
C359:4C 
C35C: 
C35C:AA 

C34A 
6D C3 
84 C9 

C350 
6D C3 
D6 C9 

C356 
6D C3 
FO C9 

C35D : FO 08 C367 
C35F:CA 
C360:DO 07 C369 

54 
55 
56 
57 
58 
59 * 

TYA 
PRA 
TXA 
PRA 
PHP 

ANDy 

AND X 

;SAVE CARRY & VFLAG 

60 * If escape mode is allowed, the high bit of MSLOT is 
61 • clear. Set M.CTL to flag that 1) escapes are allowed, and 
62 * 2) that control characters should not be echoed. 
63 * M.CTL is c leared by SPRINT. 
64 • 
65 
66 
67 
68 
69 
70 • 

LDA MODE 
BIT MSLOT 
BMI NOGETLN 
ORA IIM.CTL 
STA MODE 

71 NOGETLN EQU * 
72 JSR SETCS 
73 PLP 
74 BVS JBASINIT 
75 • 

;else esc enable, ct l disable 
;get MSLOT 
;•>Esc disable, ctl char enable 

; SETUP C8 INDICATOR 
;GET VFLAG (INIT) 
;•)DO THE INIT 

76 • If ~ PRHO has been done, input sh~•ld be transferred 
77 • from the video firmware to KF.YIN. This is detected 
78 • if the high bit of the mode byte is set. 
79 • 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 • 

BCC 
TAX 

JC8 

BPL JC8 
JSR SETKEYIN 
PLA 
TAX 
PLA 
TAY 
LOA CHAR 
JMP (KSWL) 

;•>output, no problem 
;test mode 
;video firmware is on 
;else set FD1B as input 
;restore registers 

;go input the character 

91 JC8 JMP C8BASIC ;GET OUT OF CN SPACE 
92 JBASINIT JMP BAStCINIT ;•)GOTO C8 SPACE 
93 • 
94 JPINIT EOU * 
95 JSR SETC8 
96 JMP PINIT 
97 JPREAD EQU * 
98 JSR SETC8 
99 JMP PREAD 

100 JPWRITE EQU * 
101 JSR SETC8 
102 JMP PWRITE 
103 • 
104 JPSTAT TAX 
105 BEQ PIORDY 
106 DEX 
107 BNE PSTERR 

;SETUP C8 INDICATOR 
; XFER TO PASCAL INIT 

; SETUP C8 INDICATOR 
;XFER TO PASCAL READ 

;SETUP C8 INDICATOR 
;XFER TO PASCAL WRITE 

;is request code • 0? 
;=>yes , ready for output 

;check for any input 
;•)bad r~quest, re turn error 

Appendix I: Monitor ROt.! L1stmg~ 307 



C362:2C 00 CO 108 BIT KBO ;look for a key II 
C365: 10 04 C36B 109 BPL PNOTRDY ;a)no keyst r oked 
C367:38 110 PlORDY SEC 
C368:60 111 RTS II C369 : 112 * 
C:169: A2 01 113 PSTERR LDX 113 ;else flag er r or 
C36B:I8 114 PNOTRDY CLC 
C36C:60 115 RTS II C36D: 116 **************************************** 
C36D: 117 * NA.'fE SETC8 
C36D: 118 * FUNCTION: SETUP IRQ $C800 PROTOCOL 
C36D: 119 * INPUT NONE II C360: 120 * OUTPUT NONt: 
C360: 121 * VOLATILE : NOTHI NG 
C36D: 122 * CALLS NOTHI NG 
C36D: 123 **************************************** II C36D: 124 * 
C360 : C36D 125 SETC8 EQU * 
C36D:A2 C3 126 LOX II<C NOO ; SLOT NUMBER 
C36F :8E F8 07 127 STX MSLOT ; STUFF I T 

II C372:AE FF CF 128 LOX $CFFF ;k i ck ou t other SC8 ROMs 
C375 :60 129 RTS 
C376: 130 **************************************** 
C376: 131 * NAME MOVE II C376: 132 * FUNCTION : PERFORM CROSSBANK MEMORY MOVE 
C376: 133 * INPUT A1~SOURCE ADDRESS 
C376: 134 * A2•SOURCE END 
C376: 135 * A4•DESTINATI ON START 

II C376: 136 * CARRY SET•MAIN--)CARD 
C376: 137 * CLR•CARD- -)MAIN 
C376 : 138 * OUTPUT NONE 
C376 : 139 * VOLATILE: NOTHING 

II C376 : 140 * CALLS NOTH ING 
C376 : 14 1 **************************************** 
C376: 142 * 
C376: C376 143 ~lOVE EQU * 
C376 :48 144 PHA ;SAVE AC II C377:98 145 TYA ; AND Y 
C378:48 146 PHA 
C379 : AD 13 co 147 LOA RDRAMRD ;SAVE STATE OF 

II C37C :48 148 PHA ; ~tEMORY FLAGS 
C37D :AD 14 co 149 LOA RDRAMWRT 
C380:48 150 PHA 
C381 : 151 * 

II C381 : 152 * SET FLAGS FOR CROSSBANK MOVE : 
C381: 153 * 
C381 :90 08 C38B 154 BCC MOVEC2M ;•)CARD--)MAI N 
C383:8D 02 CO 155 STA RDMAINRAM ; SET FOR MAIN 
C386:8D OS CO 156 STA WRCARDRAM ; TO CARD II C389 : BO 06 C391 157 BCS MOVESTRT ;•)(ALWAYS TAKEN) 
C38B : 158 * 
C38B : C38B 159 MOVEC2M EQU * 
C38B:80 04 co 160 STA WRMAINRAM ; SET FOR CARD II C38E:80 03 co 161 STA RDCARDRAM ; TO MAIN 

II 

II 
Ap!Jendix 1: :-.1omror Rml Listings II 



I C391: 162 * 
C39 1: C391 163 HOVESTRT EQU * 
C391 :AO 00 164 LDY 110 ;DUMMY INDEX 

I C393: 165 * 
C393: C393 166 MOVELOOP EQU * 
C393 : Bl 3C 167 LOA (A1L),Y ;GET A BYTE 
C395 : 91 42 168 STA (A4L) 'y ;MOVE IT 

I C397 : E6 42 169 INC A4L 
C399 : DO 02 C39D 170 BNE NXTA1 
C39B: E6 43 171 INC A4H 
C390 :AS 3C 172 NXTAl LDA Al L 

I C39F:C5 3E 173 CMP A2L 
C3Al :A53D 174 LDA AlH 
C3A3 : ES 3F 17 5 SBC A2H 
C3AS:E6 3C 176 INC Al L 

I C3A7: DO 02 C3AB 177 BNE COl 
C3A9 : E6 3D 178 INC A1H 
C3AB:90 E6 C393 179 COl BCC MOVELOOP ;•)MORE TO MOVE 
C3AD: 180 * 

I C3AD: 181 * RESTORE ORIGINAL FLAGS: 
C3AD: 182 * 
C3AD:8D 04 co 183 STA WRMAINRAM ;CLEAR FLAG2 
C3B0 :68 184 PLA ;GET ORIGINAL STATE 

I C3 B1: 10 03 C3B6 185 BPL C03 ;•)IT WAS OFF 
C3B3: 80 OS co 186 STA WRCARDRAM 
C3 B6 : C3B6 187 C03 EQU * 
C3B6:8D 02 co 188 STA RDMAINRAM ; CLEAR FLAGl 

I C3B9:68 189 PLA ;GET ORIGINAL STATE 
C3BA:l 0 03 C3BF 190 BPL MOVJ::RET ;•) IT WAS OFF 
C3BC: 8D 03 co 191 STA RDCARDRAM 
C3 BF: C3BF 192 MOVE RET EQU * 

I 
C3 BF:68 1':13 PLA ;RESTORE Y 
C3CO :A8 194 TAY 
C3Cl:68 195 PLA ; AND AC 
C3C2:60 196 RTS 

I 
C3C3 : 197 **************************************** 
C3C3: 198 * NAME XFER 
C3C3: 199 * FUNCTION : TRANSFER CO NTROL CROSS BANK 
C3C3 : 200 * INPUT $03ED•TRANSFER ADDR 

I 
C3C3 : 201 * CARRY SET•XFER TO CARD 
C3C3: 202 * CLR•XFER TO MAIN 
C3C3: 203 * VFLAG CLR•USE STD ZP/STK 
C3C3 : 204 * SET•USE ALT ZP/STK 
C3C3: 205 * OUTPUT NONE 
C3C3: 206 * VOLATILE: $03ED/03EE IN DEST BANK 
C3C3 : 207 * CALLS NOTHING 
C3C3 : 208 * NOTE ENTERED VIA JMP, NOT JSR 
C3C3 : 209 **************************************** 
C3C3 : 210 * 
C3C3: C3C3 211 XFER EQU * 
C3C3 :48 212 PHA ; SAVE AC ON CURRENT STACK 
C3C4: 213 * 
C3C4: 214 * COPY DESTINATION ADDRESS TO THE 
C3C~: 215 * OTHER BANK SO THAT WE HAVE IT 

Appendix 1: Monitor RO~I Listings 309 



C3C4: 
C3C4: 
C3C4:AD ED 03 
C3C7 :48 
C3C8 : AD EE 03 
C3CB:48 
C3CC: 
C3CC: 
C3CC: 
C3CC:90 08 
C3CE:8D 03 
C3D1:8D OS 
C3D4: BO 06 
C3D6: 

C3D6 
co 

C3D6 : 8D 02 
C3D9:8D 04 
C3DC: 

co 
C3DC 
C3D6 

co 
co 

C3DC: 
C3DC:68 
C3DD:8D EE 03 
C3E0:68 
C3E1: 80 ED 03 
C3E4 : 68 

C3DC 

C3E5:70 05 
C3E7 :8D 08 
C3EA:50 03 
C3EC:80 09 
C3EF:6C ED 
C3F2: 

C3EC 
co 

C3EF 
co 
03 

C3F2: 
C3F4: 
C3F4: 
C3F4: 
C3F4: 
C3F4:8D 81 CO 
C3F7:4C 7A FC 
C3FA: 
C3FA: 
C3FA : 
C3FA: 
CJFA: 
C3FA : 
C3FA:2C 15 CO 
C3FD :8D 07 CO 
C400: 
C400: 
C400: 
C400: 
C400: 
C400: 
C400: 
C400: 

0002 

C400: C400 
C400:D8 

310 

216 * IN CASE WE DO A SWAP: 
217 * 
218 
219 
220 
221 
222 * 

LOA 
PHA 
LDA 
PHA 

$03ED 

$03EE 

;GET XFERADDR LO 
;SAVE ON CURRENT 
;GET XFERAnDR HI 
;SAVE IT TOO 

STACK 

223 * SWITCH TO APPROPRIATE BANK: 
224 * 
225 
226 
227 
228 

BCC XFERC2M 
STA RDCARDRAM 
STA WRCARDRAM 
JlCS XFERZP 

XFERC2M EQU * 

;=>CARD--)MAIN 
;SET FOR RUNNING 
; IN CARD RAH 
;=> always taken 

229 
230 
231 

STA RDMAINRAH ; SET FOR RUNNING 
STA WRMAINRAM ; IN MAIN RAM 

232 * 
233 XFERZP EQU * 
234 PLA 
235 STA $03EE 
236 PLA 
237 STA $03ED 
238 PLA 
239 BVS XFERAZP 
240 STA SETSTDZP 
241 BVC JMPDEST 
242 XFERAZP STA SETALTZP 
243 JMPDEST JMP ($03ED) 
244 * 

;SWITCH TO ALT ZP/STK 
; STUFF XFERADDR 

HI AND 

LO 
;RESTORE AC 
;=>switch in alternate zp 
;else force standard zp 
;=)always perfor m transfer 
;switch in alternate zp 
;=)off we go 

245 
246 * 

DS C30RG+$F4-*,0 ;pad to interrupt stuff 

247 * This is where the interrupt routine returns to . 
248 *At this point the ROM is not necessarily switched in so •• • 
249 * 
250 IRQDONE STA $C081 ;read ROM, write RAM 
251 JMP 1RQDONE2 ;and jump to ROM 
252 * 
253 * This is the main entry point for the interrupt 
254 * handler . This switches in the internal ROM and 
255 * jumps to the main part of the interrupt handler 
256 ·" at $C400 . 
257 * 
258 irq 
259 
260 * 

bit 
sta 

rdcxrom ;Test internal or external rom 
setintcxrom ;Force in ROM to get to interrupt handle r 

261 * Fall into $C400 which is now switched in! ! 
262 * 

20 INCLUDE IRQ 
1 * 
2 * Here is the main interrupt handler 
3 * 
4 ************************************* *** 
5 newirq equ * 
6 cld ;make no assumptions!! 

AppendLx I: Monitor ROM Listings 

II 

II 
II 

II 

II 
II 

II 

II 

II 

II 



I 

I 

I 

I 

I 

I 

I 
I 

I 

I 
I 

C401 :31! 
C402:30 01 C405 
C404 : 18 
C405:48 
C406 :48 
C407 :48 
C408 :8A 
C409:BA 
C40A:E8 
C40 B:E8 
C40C : E8 
C40D: E8 
C40E :48 
C40F:98 
C4 10 :48 
C4ll:BD 00 01 
C4 14 : 29 10 
C41 6 :A8 
C4 17 : 
C4 17:AD 18 CO 
C4 1A:2D lC CO 
C41D: 29 80 
C4 1F:FO OS C426 
C42 l:A9 20 
C423: 8D 54 CO 
C426 :2A 
C427: 2C 13 CO 
C42A:l0 OS C431 
C42C : 8D 02 CO 
C42 F:09 20 
C43 1: 2C 14 CO 
C434:1 0 OS C43B 
C4 36 :8D 04 CO 
C439: 09 10 
C43B: C43B 
C43B:2C 12 CO 
C43E:l0 OC C44C 
C440 :09 OC 
C442 :2C 11 CO 
C445: 10 02 C449 
C447 :49 06 
C449 : 8D 81 CO 
C44C : 2C 16 CO 
C44 F:10 OD C4SE 
C451 : BA 
C452:8E 01 0 1 
C4SS:AE 00 0 1 
c .. s8:9A 
CI.59:8D 08 CO 
c ... sc:o9 80 
c .. sE::88 
C SF:30 OC C46D 
C51:8S44 
C- !13:68 

7 
8 

sec 
bmi 

9 clc 
10 irqintcx pha 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 * Now 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

irq2 

irq3 

irq4 
irqS 

irq6 
irq7 

i rq8 

pha 
ph a 
txa 
tsx 
inx 
inx 
inx 
inx 
ph a 
tya 
ph a 
lda 
and 
tay 

test & 

lda 
and 
and 
beq 
lrla 
sta 
r ol 
bit 
bpl 
sta 
o ra 
bit 
bpl 
sta 
ora 
equ 
bit 
bpl 
ora 
bit 
bpl 
eor 
sta 
bit 
bpl 
tsx 
stx 
ldx 
txs 
s ta 
ora 
dey 
bmi 
sta 
pla 

irqintcx 

$100,x 
11$10 

;C•l if internal slot space 

;Save A on stack instead of $45 
;Make room for rts if needed 

; Save X 
;Get stack pointer for BRK bit 
;Can't do add cause we need C 

;and Y 

;Get status for break test 
;A • $10 if break 

; Save it for later 
set the 
rd80col 
rdpage2 
11$80 

state of the machine. Don 't alter Y 
;Test for 80 store and page 2 

irq2 
11 $20 
txtpage1 
A 
rdramrd 
irq3 
rdmainram 
/1 $20 
rdramwrt 
irq4 
wrmainram 
ll$10 

* 
rdlcram 
irq7 
II SOC 
rdlcbnk2 
irq6 
11 $06 
r om in 
rdaltzp 
irq8 

$101 
$100 

setstdzp 
11$1!0 

irq9 
macstat 

;Make it 0 or $RO 
;Branch if no change needed 
;Set shifted page 2 reset bit 
;Set page 1 
;Align bit & shift in slotcx bit 
;Are we reading from aux ram? 
;Branch if main ram read 
;Else, switch main in 
;and rP-cord the event 
;Do the same for ram write 

;Determine if language card active 

;Sets two bits. Second is redundant 
;if INC used to restore. 
;Branch if not pa~e 2 of $0000 
;Set hltR for page 2 
;Enable ROM S1'A leaves write enable alone 
;Last ••• and very important 
;If alternate stack 
;store current stack pointer at $101 

;Retreve main stack pointer from $100 

;Mark stack switched 
;Was it a bre11k? 

;Save state o f machine 
;Restore registers 

AppendLx 1: ~ionitor RO~ Listings 311 



C464:A8 
C465:68 
C466:AA 
C467:68 
C468:68 
C469:68 

66 pla 
C46A:4C 47 FA 
C46D:48 
C46E: AD F8 07 
C471 :48 
C472 :A9 C3 
C474:48 
C475 :A9 F4 
C477 :48 
C478:08 
C479:4C 74 FC 
C47C: 
C47C: 
C47C: 
C47C: 
C47C: 
C:47C: 
C47C: 
C47C: 
C47C: 
C47C:AD 81 CO 
C47F:68 
C480:10 07 C489 
C482 :8D 09 CO 
C485 :AE 01 01 
C488:9A 
C489 :AO 06 
C48B:l0 06 
C48D : BE Cl 
C490:FE 00 
C493:88 
C494:30 03 
C496:0A 
C497 :00 F2 
C499:0A 
C49A:OA 
C49B : 68 
C49C:A8 
C49D:BA 
C49E:A9 40 
C4A0:48 
C4Al :A9 CO 
C4A3:48 
C4A4 :A9 06 
C4A6:69 00 
C4A8:48 
C4A9:A9 8D 
C4AB:48 

312 

C493 
C4 
co 

C499 

C48B 

61 
62 
63 
64 
65 

tay 
pla 
tax 
pla 
pla ;A stored where RTS address would go 

67 jmp newbreak 
68 irq9 pha 
69 lda mslot 

;Go to normal break routine stuff 
;Save state of machine on stack 

;Save mslot 
70 pha 
71 lda #(irqdone ;Save return irq address 
72 pha 
73 lda #>irqdone ; so when interrupt does 

;It returns to irqdone 
;Status for user's RTI 

irquser ;Off to the user 

74 pha 
75 php 
76 jmp 
77 * The user's 
78 * BEWARE 

RTI returns he re 

79 * The rom must be reenabled with a LDA romin 

RTI 

80 * This way if the LC was write protected , it still is 
81 * if it was write enabled, it still is 
82 * if it was being write enabled ( 2 ldas), it still will be 
83 * The restore loop uses an INC because some of the switches are reaoi 
84 * and some are write . It must be an INC abs,x since both the 6502 and 
85 * the 65C02 do two reads before the write . 
86 irqfix lda romin ;Must be lda! 
87 pla ; Recover machine state 
88 bpl i rqdnl ; Branch if main ZP 

89 sta setaltzp 
90 ldx $101 ;Get alt stack pointer 
91 
92 irqdn1 
93 irqdn2 

txs 
ldy 
bpl 
ldx 
inc 
dey 
bmi 
asl 
bne 
asl 
asl 
pla 
tay 
tsx 
lda 
ph a 
lda 
ph a 
lda 
adc 
pha 
lda 
ph a 

11$06 
irqdn3 
irqtble,y 
scooo,x 

;Y • index into table of switch addresses 
;Branch if no change 

94 ;Get soft switch address 
95 ;Hit the switch . NO PAGE CROSS! 
96 irqdn3 
97 irqdn4 
98 A ;Get next bit to check 
99 irqdn2 

100 irqdn4 A ;C • 1 if internal slot space 
101 A 
102 ;Restore the registers 
103 
104 ;Save the stack pointer 
105 #$40 ;RTI opcode 
106 
107 ll<setslotcxrom 
108 
109 ll>setslotcxrom 
110 #0 ;Add 1 if internal slot space 
Ill 
112 #$80 ; STA setslotcxrom 
113 

.1\ pJX'ndix 1: Monitor RO'vt Listings 

II 

II 
II 

II 

II 

II 

II 

II 

II 

II 



I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

I 

I 

I 

C4AC:9A 
C4AD:8A 
C4AE:69 03 
C4BO :AA 
C481:38 
C482:E9 07 
C4B4 :90 00 01 
C4B7:E8 
C4B8:A9 01 
C4BA:9D DO 01 
C48D:68 
C4BE:AA 
C4BF:68 
C4C0:60 

C4C1 :83 8B 88 
C4C4 :05 03 55 
C4C7: 

C600 : 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600: 
C600 : 
C600: 
C600: 
C600: 
C600 : 
C600: 
C600 : 
C600 : 
C600 : 
C600 : 
C600 : 
C600: 
C600 : 
C600 : 
C600 : 
C600 : 
C600: 

NEXT OBJECT 
C600 

C0 51 
0009 
0001 
0588 
cooo 

C600 

114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

129 irqtble 
130 

21 

txs 
txa 
adc #3 
tax 
sec 
sbc 117 
sta SlOO,x 
inx 
lda #$1 
sta $100,x 
pla 
tax 
pla 

;Restore stack pointer 
;Make return address on stack point to code on stack 

;C • 0 from earlier adc 

;Point to where code starts 

rts ;Go to code on stack 

dfb ) l cbank2 ,)lcbank1,>lcbank1 
dfb )wrcardram,)rdcardram,>txtpa~e2 
INCLUDE DIAGS 

FILE NAME IS REFLIST.1 
1 ORG C30RG+$300 
2 * These routines test all 64K RAM, as well as t he 64K on an Auxiliary 
3 *memory card (when present). With the exception of the INTCXROM switch 
4 * of the IOU, all combinations of the IOU switches are tested and ver -
5 * ified. All configurati ons of the MMU switches are also tested . 
6 * 
7 * In the event of any failure , the diagnostic is halted . A mess age 
8 * is written to screen memory indicating t he source of the failure. 
9 * When RAM fails the message is composed of "RAM ZP" (indi cating failure 

10 * detected in the first page of RAM) or "RAM" (meaning t he other 63.75K) , 
11 * followed by a binary representation of the failing bits set to "1" . 
12 * For example, "RAM 0 1 1 0 0 0 0 0" indicates t hat bits 5 and 6 we re 
13 * detected as failing. To represent auxiliary memory, a "*" symbol i.s 
14 * printed preceeding the message. 
15 * 
16 *When the MMU or IOU fail, the message is simply "MMU" or "IOU". 
17 * 
18 * The test will run continuously for as long as the Open and Closed 
19 * Apple keys remain depressed (or no keyboard is connected) and no 
20 * failures are encountered. The message "System OK" will "ppear i.n 
21 * the middle of the screen when a successful cycle has been run and 
22 * either of the Apple keys are no longer depressed. Another cycle 
23 * may be initiated by pressing both Apple keys again while this message 
24 * is on the screen. To exit diagnostics, Control-Rese t must be pressed 
25 * without the Apple keys depressed. 
26 * 
27 TEXT 
28 IOUIDX 
29 MMUIDX 
30 SCREEN 
31 IOSPACE 
32 * 
33 DIAGS 

equ 
equ 
equ 
equ 
equ 

equ 

$C0 51 
$09 
$01 
$588 
$COOO 

* 

Appendix 1: Monitor RO~ Listings 313 

------------------------------------------------------------------------------------------



C600:8D 50 CO 
C603: 
C603: 
C603: 
C603: 

C603:AO 04 
C605:A2 00 
C607:18 
C608 :79 B4 C7 
C60B:95 00 
C60D:E8 
C60E:DO F7 C607 
C610: 18 
C611 :79 B4 C7 
C614 :D5 00 
C616 :DO 10 C628 
C618:EB 
C619:DO F5 C610 
C61B:6A 
C61C:2C 19 CO 
C61F:l0 02 C623 
C621 :49 A5 
C623:88 
C624:10 El C607 
C626:30 06 C62E 

C628 :55 00 
C62A: 18 
C62B:4C CD C6 
C62E: C62E 
C62E:86 01 
C630:86 02 
C632:86 03 
C634:A2 04 
C636 :86 04 
C638:E6 01 
C63A :A8 
C63B:8D 83 CO 
C63E :80 83 CO 
C64l:A5 01 
C643:29 FO 
C645 :C9 CO 
C647:DO OC C655 
C649:AD 8B CO 
C64C:AD 8B CO 
C64F:A5 01 
C651 :69 OF 
C653:DO 02 C657 
C655:A5 01 
C657:85 03 
C659:98 
C65A:AO 00 

3 . .! 

34 sta $COSO 
35 * Test Zero-Page, then all of memory. Report errors when encountered. 
36 * Accumulator can he anything on entry. All registers used, but no stack. 
37 * Addresses between $C000 and $CFFF are mapped to main $0000 bank. 
38 * Auxiliary 64K is also tested if present. 

40 TSTZPG ldy 
41 ldx 
42 zpl clc 
43 adc 
44 sta 
45 inx 
46 bne 
47 zp2 clc 
48 adc 
49 cmp 
50 bne 
51 inx 
52 bne 
53 ror 
54 bit 
55 bpl 
56 eor 
57 zp3 dey 
58 bpl 
59 bmi 

61 ZPERROR eor 
62 clc 
63 jmp 
64 TSTMEM equ 
65 stx 
66 stx 
67 stx 
68 ldx 
69 stx 
70 meml inc 
71 mem2 tay 
72 sta 
73 StA 

74 lda 
75 and 
76 cmp 
77 bne 
78 lda 
79 lda 
80 lda 
81 adc 
82 bne 
83 mem3 lda 
84 mem4 sta 
85 tya 
86 ldy 

11$4 
/10 

ntbl ,y 
$00,x 

zo1 

ntbl,y 
$00,x 
ZPERROR 

zp2 
a 
RDVBLBAR 
zp3 
II$A5 

zpl 
TSTMEM 

$00,x 

BADBITS 

* 
$01 
$02 
$03 
1/4 
$04 
$01 

SC083 
$C083 
$01 
II$ FO 
II$CO 
mem3 
$COBB 
$COBB 
$01 
II SF 
mem4 
$01 
$03 

/1$00 

;fill zero page with a pattern 

;af ter all bytes filled , 
; ACC has original value again . 
;so values can be tested 

;branch if memory failed 

;loop until all 256 bytes tested 
;change ACC so location $FF will change 
; use RDVBLBAR for a little randomness ••• 

;use a different pattern now 
;branch to retest with other value 
;branch always 

;which bits are bad? 
;indicate zero page failure 

;do RAM $100-SFFFF five times 

;point to page 1 first 
;save ACC in Y for now 
;anticipate not SCOOO range •• • 

;~et page address 
;test for $C0-$CF range 

;branch if not ••• 

;select primary $0000 space 

;Plus carry -+$10 
;branch always taken 

;restore pattern to ACC 
;fill this page with the pattern 

Appendix 1: Monitor ROM Listings 

II 
II 

II 

II 
II 

II 
II 
II 
II 
II 



I 
I 
I 
I 

I 
I 

I 

I 
I 
I 

II 

C65C: 18 
C65D:7D 84 C7 
C660 :91 02 
C662:CA 
C663:10 02 C667 
C665:A2 04 
C667:C8 
C668:DO F2 C65C 
C66A :E6 01 
C66C:DO CC C63A 

C66E:E6 01 
C670 :A8 
C671 :AD 83 CO 
C674 : AD 83 CO 
C677:A5 01 
C679:29 FO 
C678 :C9 CO 
C67D :DO 09 C688 
C67F:AD 88 CO 
C682 :A5 01 
C684 : 69 OF 
C686 : 00 02 C68A 
C688:A5 01 
C68A :85 03 
C68C :98 
C61!D :AO 00 
C68F: 18 
C690 :7D 84 C7 
C693 : 51 02 
C695 : no 35 C6CC 
C697 :81 02 
C69 9 :CA 
C69A:10 02 C69E 
C69C:A2 04 
C69E :C8 
C69F :DO EE C68F 
C6A1:E6 01 
C6A3 : DO C8 C670 
C6A5 :6A 
C6A6:2C 19 CO 
C6A9 :1 0 02 C6AD 
C6AB:49 A5 
C6AD :C6 04 
C6AF:IO 87 C638 

87 mem~ 
88 
89 
90 
91 
92 
93 mem6 
94 
95 
96 

98 
99 mem7 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 mem8 
Ill mem9 
112 
113 
114 mernA 
115 
116 
ll7 
118 
ll9 
120 
121 
122 memB 
123 
124 
125 
126 
127 
128 
129 
130 memC 
131 

C6B1 :AA 133 
C6B2:20 8D C9 134 
C6B5:DO 07 C6BE 135 
C6B7 :0E 00 OC 136 
C6BA:OA 137 
C68B:CD 00 OC 138 

cl c 
adc ntbl,x 
sta ($02),y 
dex 
bpl mem6 
ldx 04 
iny 
bne mem5 
inc 1 
bne mem2 

inc $01 
tay 
lda $C083 
lda $C083 
lda $01 
and 11$FO 
cmp II$CO 
bne mem8 
lda $C08B 
lda $01 
adc #$ F 
bne mem9 
lda $01 
sta $03 
tya 
ldy #$00 
clc 
adc ntbl,x 
eor (S02) ,y 
bne }iEHERROR 
lda ($02),y 
dex 
hol memB 
ldx 114 
iny 
bne memA 
inc 1 
bne mem7 
ror a. 
bit RDVBLBAR 
bpl memC 
eor II$A5 
dec $04 
bpl mem1 

TAX 
JSR STAUX 
BNE SWCHTST1 
ASL SCOO 
ASL A 
CMP $COO 

;keep x in the range 0- 4 

;all 256 filled ye t ? 
;branch if not 
; bump page II 
;loop through $0100 to $FFOO 

;point to page 1 again 
;save ACC in Y for now 
;anticipate not $COOO range ••• 

;get page address 
;test for $C0-$CF range 

;branch if not ••• 
;select primary $0000 space 

;Plus carry -+$10 
;branch always taken 

;restore pattern to ACC 
;fill this page with the pattern 

;if any bits a r e different , give up l ll 
;restore correct patte r n 
;keep x in the range 0-4 

;all 256 filled yet? 
; branch if not 
;bump page II 
;loop through $0100 t o $FFOO 
;change ACC for next pass 
; use RDVBLBAR for a little randomness • •• 

;have 5 passes been done yet? 
;branch if not ••• 

;save ace 
;set aux memory & write $EE to $C00 , $800 
;•>not 128K 
;shift test byte 

;check memory 

Appendix I. Monitor ROM Listings 315 



C68E:DO 76 C736 139 SWCHTST1 8NE SWCHTST ;a)not 128K II 
C6C0 :CD 00 08 140 CMP $800 ;look for shadowing 
C6C3 :FO 7l C736 141 BEQ SWCHTST ;=>not 128K 
C6C5:BA 142 txa II C6C6:8D 09 co 143 STA SETALTZP ;swap in alt zero page 
C6C9 :4C 03 C6 144 jmp TSTZPG ; and test it! 
C6CC:38 145 MEMERROR sec ;indicate main ram f~ilure 
C6CD:AA 146 BADBITS tax ;save bit pattern in x for now II C6CE:AD 13 co 147 lda RDRAHRD ;determine if primary or auxillary RAI'I 
C6D1:B8 148 clv ;with V-FLG 
C6D2 :10 03 C6D7 149 bpl bbit s1 ;branch if primary bank 
C6D4 :2C B4 C7 150 bit setv II C6D7 :A9 AO 151 bbits1 lda II SAO ;try to clear video screen 
C6D9 :AO 06 152 ldy 116 
C6D8:99 FE 8F 153 clrsts sta IOSPACE-2,y 
C6DE:99 06 CO 154 sta IOSPACE+6, y II C6E1:88 155 dey 
C6E2:88 156 dey 
C6E3:DO F6 C6DB 157 bne clrsts 
C6E5:8D 51 co 158 sta TEXT II C6E8:8D 54 CO 159 sta TXTPAGE1 
C6EB :99 00 04 160 clrs sta $400,y 
C6EE:99 00 05 161 sta SSOO,y 
C6F1:99 00 06 162 sta $600 , y -C6F4:99 00 07 163 sta $700,y 
C6F7:C8 164 iny 
C6F8: DO F1 C6EB 165 bne clrs 
C6FA:8A 166 txa ;test for switch test failure II C6F8:FO 27 C724 167 beq BADSWTCH ;branch if it was a switch 
C6FD:AO 03 168 ldy 113 
C6FF:BO 02 C703 169 bcs bad main ; branch if ZP ok 
C701 :AO OS 170 ldy /IS II r.703 :A9 AA 171 badmain lda #$AA ;mark aux report with an asterisks 
C705:50 03 C70A 172 bvc bad prim 
C707:8D BO 05 173 sta screen-S 
C70A: 89 EA C7 174 bad prim lda rmess , y 

II C70D:99 1l1 05 175 sta screen-7,y 
C710:88 17 6 dey 
C711:10 F7 C70A 177 bpl bad prim ;message is either "RAH" or "RAH ZP" 
C713:AO 10 178 ldy 11$ 10 ; print bits 

II C715:8A 179 bbits2 txa 
C7l6:4A 180 lsr a 
C717:AA 181 tax 
C7l8 :A9 58 182 lda ll$58 ;bits are printed as ascii 0 or 1 

II C71A:2A 183 rol a 
C71B:99 86 05 -1 84 sta screen-2,y 
C71E:88 185 dey 
C71F :88 186 dey 

II C720:DO F3 C715 187 bne bbits2 
C722:FO FE C722 188 hangx beq hangx ;hang forever and ever 
C724 :AO 02 189 BADSWTCH ldy 112 
C726:89 FO C7 190 bswtch1 lda smess,y 

II C729 :90 03 C72E 191 bee bswtch2 ; branch if MMU in error 
C72B:89 F3 C7 192 lda smess+3 ,y ;else indicate IOU error 

II 
II 

316 Appendix I: Monitor ROM Listings II 



I C72E:99 B8 OS 193 bswtch2 sta screen,y 
C731 :88 194 dey 
C732:1 0 F2 C726 195 bpl bswt chl ;print "MMU" or "IOU" 

I C734:30 FE C734 196 han~y bmi hangy ;branch forever 

C736:AO 01 198 SWCHTST ldy IIMMUIDX 

I C738:A9 7F 199 swtst1 lda US7F 
C73A : 6A 200 swtst2 ror a ;set switches of the I OU/MMU to match Accumulator 
C73B:BE B9 C7 201 ldx SWTBLO ,y 
C73E : FO OF C74F 202 beq swtst4 ;branch if done settin~ switches 

I C740:90 03 C745 203 bee swtst3 ;branch if setting switch to 0- state 
C742:BE C9 C7 204 ldx SWTBL1 ,y ;else ~et index to set switch to 1 
C745:9D FF BF 205 swtst3 sta IOSPACE-1 ,x ;set switch 
C748:C8 206 iny 

I 
C749:DO EF C73A 207 bne swtst2 ; branch always taken •• • 
C74B : 208 * 
C74B:AE 30 co 209 click lclx SC030 
C74E:2A 210 rol a 

I 
C74F:88 211 swtst4 dey 
C750:BE 09 C7 212 ldx RSWTBL,y ;now verify the settin~s just made 
C753:FO 13 C768 213 beq swts t 6 ;branch if done this pass 
C755:30 F4 C74B 214 bmi click ;branch if this switch no t o be verified . 

I 
C757 : 2A 215 rol a 
C758:90 07 C76l 216 bee swtstS 
C75A: LE 00 CO 217 asl IOSPACE ,x 
C75D :90 17 C776 218 bee swerr 

I 
C75F:RO EE C74F 219 bcs swts t4 ;br11nch always 
C761: 1E 00 CO 220 swtstS asl IOSPACE,x 
C764 : BO 10 C776 221 bcs swerr 
C766:90 E7 C74F 222 bee swtst4 ;branch always 

I 
C768: 223 * 
C768:2A 224 swtst6 rol a ;restore original value 
C769:C8 225 iny ; and IOU/MMU index 
C76A :38 226 sec 

I 
C76B:E9 01 227 sbc ill ; try next pattern 
C76D: BO CB C73A 228 bcs swtst2 
C76F:88 229 dey ;was MMU just tested? 
C770 :DO OB C77D 230 bne BIG LOOP ; branch if IOU was j ust tested 
C772 :AO 09 231 ldy IIIOUIDX ;else, go test IOU . 

I C774 : DO C2 C738 232 bne swtst1 ;branch always taken ••• 
C776: 233 * 
C776 : A2 00 234 swerr ldx no ; indicate switch error 
C778:CO OA 235 cpy UIOUIDX+1 ;set carry if IOU was cause 

I C77 A :4C D7 C6 236 j mp bbitsl 
C77D :46 80 237 BIGLOOP lsr $80 
C77F:DO 85 C7 36 238 bne SWCHTST 
C78L: A9 AO 239 blp2 lda II$AO 

I C783:AO 00 240 ldy 1/0 
C785:99 00 04 241 blp3 sta $400,y ; clear screen f or success message 
C788:99 00 OS 242 sta $SOO,y 
C78B:99 00 06 243 sta $600 ,y 

I C78E:99 00 07 24 4 sta $700 ,y 
C791 :C8 245 iny 

I 
I 
I 

,\J·Jk:mhx I: ~lonitor HO~I Listings 317 



C792:DO F1 C785 
C794:AD 61 co 
C797: 20 62 co 
C79A:OA 
C79B:E6 FF 
C79D: A5 FF 
C79F:90 03 C7A4 
C7A1:4C 00 C6 
C7A4: 
C7A4:AD 51 CO 
C7A7:AO 08 
C7A9:89 F6 C7 
C7AC:99 88 05 
C7AF:88 
C7 B0:1 0 F7 C7A9 
C7B2:30 EO C794 
C7B4: 
C784: C7B4 
C7 B4 :53 43 28 29 
C7B9: 00 89 31 03 
C7C9 :00 81 31 04 
C7D9 :00 II FF 13 
C7EA: 
C7EA:D2 C1 CD AO 
C7FO: CD CD DS C9 

C7F6: D3 
C7FF: 
C7 FF : 
C7FF: 
C800: 
C800 : 
C800: 
C800 :4C 
C803: 
C803 : 
C803: 
C803: 
C803: 
C803: 
C803: 
C803: 
C803: 
C803: 
C803 : 
C803 : 
C803: 
C803: 
C803 : 
C803: 
C803:20 
C806:20 
C809:20 

3!~ 

F9 F3 F4 
C7FF 

0001 

BO C9 

C803 
F4 CE 
2A C8 
2E CD 

246 bne blp3 
247 blp4 LDA $C061 test for both Open and Cl osed Apple 
248 AND $C062 pressed 
249 asl a put result in carry 
250 INC $FF 
25 1 LDA $FF 
252 bee dquit 
253 jmp DIAGS 
254 * 
255 dquit lda TEXT ;put success message on the screen 
256 
257 suc2 
258 
259 
260 
26 1 
262 * 
263 setv 
264 ntbl 
265 swtbl O 
266 swtbll 
267 rswtbl 
268 
269 rme ss 
270 smess 

272 success 
273 zzzend 

22 
1 
2 • 

ldy #8 
lda success ,y 
sta SCREEN ,y 
dey 
bpl suc2 
bmi blp4 ;loop forever 

equ * 
dfb 83,67 ,43,41, 7 
rlfb $00 ,$89 , $31,$03,$05,$09,$0b,$01,$00 , $83 , $51,$53 ,$55,$5 7,$0F, 
dfb $00 , $81,$31,S04,S06,$0A,$0C,$02,$00 , $84 , $52,$54 , $56,$58 , $10 , 
dfb $00,$ll,$FF,$13,$14,$16,$17,$18 ,$00 ,$12,$1A,$18 ,$1C ,$10 , $1E, 
MSB ON 
asc " RAM ZP" 
asc "MMUIOU" 

asc "System OK" 
equ * 
INCLUDE C8SPACE 
OS C80RG-*, O ;pad to C800 

3 *This entry point is only used by Pascal 1.0 
4 • 
5 JMP PIN1Tl . O ;PASCAL 1.0 INIT 
6 • 
7 * BASIC initialization: 
8 * 
9 * This is called by the $C3 space only after a PR#3 or 

10 * the equivalent (a JSR $C300) . 
11 • 
12 * It causes a copy of the $F8 ROM to be placed in the 
13 * language card i f the language card is switched i n and 
14 *the ID byte doesn 't match . It sets up all the 
15 * scr eenhole variables to support its operation . If the 
16 * 80 column card is detected, it sets things up for 80 column 
17 * operation, else 40 column operation . Then it clears the 
18 * scr een and prints the character that was in the accumulator 
19 *upon entry . 
20 * 
21 
22 
23 
24 

BASICINIT EQU * 
JSR COPYROH 
JSR C3HOOKS 
JSR 0040 

;If LC in , copy F8 to it 
;out•$C307, in•$C305 
;set full 40-col window 

Appendix 1: Monitor RO~I Listings 

-
II 

• SOD 
$0E II S1F ,$00 

II 
II 

-
II 

-
II 
II 

II 

• 



I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

C80C:A9 01 
C80E:80 FB 04 
C8ll : 
C811: 
C811: 
C811:20 90 CA 
C8 14 :00 08 C81E 
C816:06 21 
C818:80 01 CO 
C81B:80 00 CO 
C81E: 
C81E: 
C81E: 
C81E : C81E 
C81E:80 OF CO 
C821:20 90 CC 
C824: AC 78 OS 
C827:4C 7E C8 
C82A: 
C82A:A9 07 
C82C:85 36 
C82E:A9 C3 
C830:85 37 
C832 : 
C832: 
C832: 
C832:A9 OS 
C834 :85 38 
C836:A9 C3 
C838 :85 39 
C83A:60 
C83B : 
C83B:E6 4E 
C830 : 00 02 C841 
C83F:E6 4F 
C841 :AD 00 CO 
C844:10 FS C83B 
C846:8D 10 CO 
C849 : 60 
C84A: 
C84A: 
C84A: 
C84A : 
C84A: 
C84A: 0003 
C84D: 0000 
s 

C84D: 
C84D:4C 50 C3 
C850: 
C850 : 
C850 : 
C850: 
C850: 

25 
26 
27 * 

LOA #M .MOUSE 
STA MODE 

28 * IS THERE A CARD? 
29 * 
30 
31 
32 
33 
34 
35 * 

JSR TF.STCARD 
BNE CLEARIT 
ASL WNDWDTH 
STA SET80COL 
STA SET80VID 

36 * HOME & CLEAR: 
37 * 
38 CLEARIT EQU * 

;init with mouse text off 
;Set BASIC video mode 

;SEE IF CARD PLUGGED IN 
;•>IT'S 40 
;SET 80-cOL WINDOW 
;ENABLE 80 STORE 
; AND 80 VIDEO 

39 STA SETALTCHAR ;SET NORM/INV LCASE 
40 JSR X.FF ;CLEAR IT 
41 LOY OURCH ;set up cursor for store 
42 JMP BPRINT ;always print a character 
43 * 
44 C3HOOKS LDA #)BASICOUT ;set output hook first 
45 STA CSWL 
46 LOA H<CNOO 
47 STA CSWH 
48 * 
49 * C3I N is called by INCO if CSWH • U$C3 
so * 
51 C3IN 
52 
53 
54 
55 
56 * 

LOA 
STA 
LOA 
STA 
RTS 

1/)BASICIN 
KSWL 
II<CNOO 
KSWH 

57 GETKEY INC RNDL 
58 BNE GETK2 
59 
60 GETK2 
61 
62 
63 
64 * 

INC RNDH 
LOA KBD 
BPL GETKEY 
STA KBDSTRB 
RTS 

;set Input hook 

;exit with A•$C3 for INHO stuff 

;BUMP RANDOM SEED 

;KEYPRESS? 
;•)NOPE 
; CLEAR STROBE 

65 **************************************** 
66 * 
67 * PASCAL 1.0 INPUT HOOK: 
68 * 
69 OS C80RG+$4D-* ,O ;pad to 1 .0 books 
70 IFNE *-c80RG-S4D ; ERR IF WRONG ADDR 
71 FAIL 2 ,'C84D HOOK ALIG~~NT' 
72 FIN 
73 JMP JPREAD ;•>GO TO STM'DA.RD READ 
74 **************************************** 
75 * 
76 * CSETUP compensates for everything that the user 
77 * can do to change the cursor status: poke CV , CH, 
78 * OURCH, WNDWOTH . It up~ates the video firmware's 

Appendix I: ~lonuor ROM Listings 319 



C850: 
C850: 
C850: 
C850: 
C850:A5 
C852:8D 

25 
FB 05 
24 
78 04 

C855 :A4 
C857:CC 
C85A:FO 
C85C:8C 

03 C85F 
7B 05 
21 

C86C 

C85F: A5 
C861:18 
C862:ED 78 05 
C86S: 80 05 
C867:AO 00 
C869:8C 7B OS 
C86C:AC 78 OS 
C86F:60 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870: 
C870:A4 3S 
C872: 18 
C873:BO FE 
C874: 
C874 :38 
C87S:8D 78 06 
C878:98 
C879:48 
C87A:8A 
C87B:48 
C87C: 
C87C:BO 5E 
0000: 
C87E: 
C87E: 
C87E: 
C87E: 
C87E: 
C87E: 
C87E: 
C87E:20 50 C8 
C881 :AD 78 06 
C884:C9 80 
C886:00 18 

C873 
C874 

C87C 
C8DC 
0000 

C8AO 

79 * versions of these values for its own use . 
80 * COPY USER'S CURSOR IF IT DIFFERS FROM 
81 * WHAT WE LAST PUT THERE: 
82 * 
83 CSETUP LOA CV 
84 STA OURCV 
85 LDY CH 
86 CPY OLDCH 
87 BEQ CS2 
88 STY OURCH 
89 CS2 LOA WNDWOTH 
90 CLC 
91 SBC OURCH 
92 BCS CS3 
93 LOY 1/0 
94 STY OURCH 
9S CS3 LOY OURCH 
96 RTS 
97 * 

; set up OURCV 

;GET IT 
;IS IT THE SAME? 
;•>YES , USE OUR OWN 
;update our cursor 
;cursor horizontal must not 
;be greater than window width 
;if it is, then put cursor 
;at left edge of window 

;exit with Y • CH 

98 * BIN and BOUT are used when characters are 
99 * input and output by the $F8 ROM while 80VID 

100 * is on. They cannot use the $C3 entry points 
101 * because that switches in the $C8 space, causing 
102 * pos~ible conflict with other $C8 users. 
103 * These routines are only called by the $C100-$C2FF space. 
104 * 
105 * These entry points will only work if the card was 
106 * first initialized using a PR#3. 80 columns will not 
107 * work simply by turning on the 80VID flag. 
108 * 
109 BOUT 
110 
111 
112 
113 BIN 
114 
115 
116 
117 
118 
119 
120 

C8BASIC 

1 TEST 
23 
24 

1 * 

LOY 
CLC 
BCS 
ORG 
SEC 

SAVY1 

* 
*-1 

STA CHAR 
TYA 
PHA 
TXA 
PHA 
EQU * 
BCS BINPUT 
EQU 0 
LST ON,A,V 
INCLUDE BPRINT 

;load Y stuffed hy $F8 RO~I 

;signal an output 
;skip SEC 

;signal an input 
;save the char 
;save Y 

;save X 

;BASIC IN/OUT 
; • )input a character 
;REAL VF.RSION 

2 * This is the place where characters printed usin~ the 
3 * CSW hook are actually printed (o r executed if they are 
4 * control characters) . 
s * 
6 SPRINT 
7 
8 
9 

JSR CSETUP 
LOA CHAR 
CMP /i$80 
BNE NOWAIT 

;setup user cursor 
;GF.T CHARACTER 
;IS IT C/R? 
;•)don't wait, OURCH ok 

Appendix I: ~!onitor RO~I Listings 

II 
II 

II 

• • • • 
II 
II 

II 
II 
II 
II 
II 



I 

I 
I 
I 

I 
I 
I 
I 

I 
I 
I 

I 
I 

C888:AE 00 CO 
C888:10 13 C8AO 
C88D :EO 93 
C88F:DO OF C8AO 
C891 :2C 10 CO 
C894 :AE 00 CO 
C897:10 F8 C894 
C899:EO 83 
C898:FO 03 C8AO 
C89D : 2C 10 CO 
C8A0:29 7F 
C8A2 :C9 20 
C8A4:80 06 C8AC 
C8A6 : 20 02 CA 
C8A9:4C 80 C8 
C8AC: 
C8AC : 
C8AC : 
C8AC: 
C8AC :AD 
C8AF :20 
C882 : 
C882: 
C882 : 
C882:C8 

C8AC 
7B 06 
38 CE 

C883 :8C 78 OS 
C886:C4 21 
C888 :90 03 C88D 
C88A :20 51 C8 
C88D: 
C88D : 
C88D: 
C88D: 
C88D :AD F8 04 
C8C0:29 F7 
C8C2 :8D FB 04 
C8CS:AD 78 OS 
C8C8:2C IF CO 
C8C8 :10 02 C8CF 
C8CD :A9 00 
C8CF:85 24 
C8Dl :8D 7B 04 
C804:68 
C8DS:AA 
C8D6:68 
C8D7 :A8 
C8D8 :AD 7B 06 
C8DB:60 
C8DC: 
CdDC : 
C8DC : 
C8DC: 
C8DC: 
C8DC:A4 24 

10 
11 
12 
13 
14 

LOX KBD 
BPL 
CPX 
BNE 
BIT 

IS KBDWAIT LOX 
16 BPL 
17 CPX 

BEQ 
BIT 

18 
19 
20 NOWAIT AND 
21 CMP 
22 BCS 
23 
24 
25 * 

JSR 
JMP 

NOW AIT 
C$93 
NOW AIT 
K8DSTRB 
KBD 
KBDWAIT 
IJ$83 
NOW AIT 
K8DSTRB 
#$7F 
11$20 
BPNCTL 
CTLCHARO 
CTLON 

; IS KEY PRESSED? 
; NO 
; IS IT CTL-S? 
; NO, IGNORE IT 
;CLEAR STROBE 
;WAIT FOR NEXT KEYPRESS 

;IF CTL-C , LEAVE IT 
; IN THE K8D BUFFER 
;CLEAR OTHER CHARACTER 
;drop possible hi bit 
;IS IT CONTROL CHAR? 
;•>NOPE 
;execute CTL if M.CTL ok 
;•)enable ct l chrs 

26 * NOT A CTL CHAR. PRINT IT. 
27 * 
28 BPNCTL 
29 
30 
31 * 

EQU * 
LOA CHAR 
JSR STORCRAR 

;get char (all 8 bits) 
;and display it 

32 * BUMP THE CURSOR HORIZONTAL : 
33 * 
34 
35 
36 
37 
38 
39 * 

INY 
STY 
CPY 
BCC 
JSR 

OURCH 
WNDWDTH 
CTLON 
X. CR 

;bump it 
;are we past the 
; end of the line? 
;•>NO , NO PROBLEM 
;YES, DO C/R 

40 * M.CTL is set by RDCRAR and c leared here , after each 
41 * character is displayed. 
42 * 
43 CTLON 
44 

LOA 
AND 
STA 

MODE ;enable printing of control char1 
#255-M.CTL 

45 MODE 
46 BIORET LOA 
47 BIT 

OURCH 
RD80VID 
SET ALL 
110 

48 
49 
50 SETALL 
51 

BPL 
LDA 
STA CH 
STA OLDCH 

52 
53 

GETREGS PLA 
TAX 

54 
55 
56 
57 
25 

1 * 

PLA 
TAY 
LOA CHAR 
RTS 
INCLUDE BINPUT 

;get newest cursor position 
;IN 80-MODE? 
;•)no, set other cursor s 
;pin CH to 0 for 80 columns 

;REMEMBER THE SETTING 
;RESTORE 

;X AND Y 

; RETURN TO BASIC 

2 * BASIC input entry point called by entry point in the 
3 * $C3 space . This is the way things normally happen . 
4 * 
5 8INPUT LOY CH 

Appendix 1: Monitor ROJI Listings 3"21 



C8DE:AD 7B 06 
C8El :91 28 
C8E3:20 50 C8 
C8E6:20 26 CE 
C8E9:20 3B C8 
C8EC:8D 78 06 
C8EF: 20 26 CE 
C8F2:A8 
C8F3: 
C8F3: 
C8F3: 
C8F3: 
C8F3: 
C8F3: 
C8F3: 
C8F3: 
C8F3:AD FB 04 
C8F6:29 08 
C8F8:FO CB C8C5 
C8FA:CO 80 
CBFC:DO 08 C906 
CBFE:AD FB 04 
C901:29 F7 
C903:8D FB 04 
C906: C906 
C906:CO 98 
C908 :FO 11 C91B 
C90A: 
C90A: 
C90A: 
C90A:CO 95 
C90C:DO 87 C8C5 
C90E:AC 711 05 
C9ll :20 44 CE 
C914:09 80 
C916:8D 7B 06 
C919 :DO AA C8C5 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B : 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 
C91B: 

6 
7 
8 
9 B.INPUT 

10 
11 
12 
13 
14 * 

LDA 
STA 
JSR 
JSR 
JSR 
STA 
JSR 
TAY 

CHAR 
(BASL),Y 
CSETUP ;get newest cursor 
INVERT ;invert that char 
GETKEY ;GET A KEY 
CHAR ;SAVE IT 
INVERT ;REMOVE CURSOR 

;preserve ace. 

15 *On pure input, an uninterpreted character code should 
16 * be returned . If M.CTL is set, however, escape functions 
17 *are enabled, and CTL-U causes the character under the 
18 * cursor to be picked up from the screen. 
19 * M.CTL is set whenever a character is requested using 
20 * RDCHAR in the $F8 ROM. 
21 * 
22 
23 
24 
25 
26 
27 
28 
29 
30 NOTACR 
31 
32 
33 * 

LOA 
AND 
SEQ 
CPY 
BNE 
LOA 
AND 
STA 
EQU 
CPY 
BEQ 

MODE ;is escape mode enabled? 
#M.CTL 
BIORET ;•>no,return 
II$8D ;was it a CR 
NOTACR ;•>nope, not a CR 
MODE 
#255-M.CTL ;else end of line ••• 
MODE ; disable escape 
* 
#$98 ;ESCAPE KEY? 
ESCAPING ;•)YES IT IS 

34 * Not an escape sequence . Check for control-u . 
35 * 
36 
37 
38 
39 
40 
41 
42 
43 * 

CPY 
BNE 
LDY 
JSR 
ORA 
STA 
BNE 

#$95 
BIORET 
OURCH 
PICK 
11$80 
CHAR 
BIORET 

;is it control-U? 
;no, return to caller 
;get horizontal position 
;and pick up the char 
;always pick as normal 
;save keystroke 
;•>(always) return to caller 

44 * Start an escape sequence. If the next character 
45 * pressed is one of the following, it is executed. 
46 * Otherwise it is ignored . 
47 * 
48 * @ - home & clear 
49 * E - clear to end of line 
50 * F - clear to end of screen 
51 * I - move cursor up 
52 * J - move cursor left 
53 * K - move cursor right 
54 * M - move curso r down 
57 * 4 - enter 40 column mode 
58 * 8 - enter 80 column mode 
59 * CTL-D- disable the printing of control characters 
60 * CTL-E- enable the printing of control characters 
61 * CTL-Q- quit (PR#O/IN~O) 

Appendix I: Monitor ROM Listings 

II 

I 
II 
II 
II 
II 
II 
II 
II 
II 
II 
I 
II 

II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

C91B: 
C91B: 
C91B : 
C91B: C91B 
C91B:20 81 CE 
C91E:20 3B C8 
C921:20 C4 CE 
C924:20 14 CE 
C927:29 7F 
C929:AO 10 
C92B:D9 7C C9 
C92E:FO 05 C935 
C930:88 
C931:10 F8 C92B 
C933:30 OF C944 
C935: 
C935: C935 
C935:B9 6B C9 
C938:29 7F 
C93A:20 06 CA 
C93D:B9 68 C9 
C940:30 09 C91B 
C942:10 A2 C8E6 
C944: 
C944: C944 
C944:A8 
C945:AD FB 04 
C948:CO 11 
C94A:DO OB C957 
C94C:20 40 CD 
C94F:A9 98 
C951:8D 78 06 
C954:4C CS C8 
C957: 
C957:CO OS 
C959:DO 08 C963 
C956:29 DF 
C9SD:8D FB 04 
C960:4C E6 C8 
C963: 
C963:CO 04 
C965:DO F9 C960 
C967:09 20 
C969:DO F2 C95D 
C96B: 
C968 : 
C96B: 
C96B: 
C968: 
C96B: 
C96B: 
C96B: C96B 
C96B :OC 
C96C:1C 

62 * 
63 * 
64 

The four arrow keys (as IJKM) 

MSB OFF 
65 
66 
67 

ESCAPING EQU * 

68 
69 
70 
71 
72 ESC2 
73 
74 
75 
76 
77 * 
78 ESC3 
79 
80 
81 
82 
83 
84 
85 * 
86 ESCSPEC 
87 
88 
89 
90 
91 
92 
93 
94 
95 * 

JSR ESCON 
JSR GP.TKEY 
JSR ESCOFF 
JSR UPSHFT 
MID fi$7F 
LOY /IESCNUM-1 
CMP 
BEQ 
DP.Y 

ESCTAB,Y 
ESC3 

BPL ESC2 
BMI ESCSPEC 

EQU * 
LOA ESCCHAR,Y 
AND II$7F 
JSR CTLCHAR 
LOA 
BMI 
BPL 

EQU 
TAY 
LOA 
CPY 
BNE 

ESCCHAR, Y 
ESCAPING 
B. INPUT 

MODE 
l$11 
ESCSPl 

JSR X.NAK 
LDA 1'$98 
STA CHAR 
JMP BIORET 

;ESCAPE CURSOR ON 
;GET ESCAPE FUNCTION 
;REPLACE ORIGINAL CHARACTER 
;upshift the char 
;DROP HI BIT 
;COUNT/INDEX 
;IS IT A VALID ESCAPE? 
;•>YES 

;TRY 'EM ALL •• • 
;•>MAYBE IT'S A SPECIAL ONE 

;GET CHAR TO "PRINT" 
;DROP HI BIT (FLAG) 
; ElCECUTF. IT 
;GET FLAG 
;•>STAY IN ESCAPE MODE 
;•>QUIT ESCAPE MODE 

;put char here 
;so we can put this here 
;was it Quit? 
;•>no 
;do the qu itting s tuff 
;make it l ook like 
;CTL-X was pressed 
; •>quit the card forever 

96 ESCSP1 
97 

CPY 
BNE 
AND 
STA 
JMP 

U$05 ;was it CTL-E for enable 

98 
99 ESCSP2 

100 ESCSP3 
101 * 
102 ESCSP4 CPY 
103 BNE 
104 
105 
106 * 

ORA 
BNE 

ESCSP4 ;•>no 
#255-M.CTL2 ;yes, enable ctl chars 
MODE ;save new mode 
B.INPUT ;•> exit escape mode 

11$04 
ESCSP3 
IIM.CTL2 
ESCSP2 

;was it CTL-D for disabl~ 
;•>no, exit escape mode 
;disAble ctl chars 
;•> exit escape mode 

107 * This table containR the control characters which, 
108 *when executed, carry out the escape functions . If 
109 *the high bit of the character is set, it means that 
110 * escape mode should not be exited after execution of 
111 * the character. 
112 * 
113 ESCCHAR P.QU * 
114 DFB SOC 
115 DFB $1C 

;@: FORMFEED 
;A: FS 

Appendix 1: Monitor ROM Listings 323 



C96D:08 116 DFB $08 ;B: BS 
C96E:OA 117 DFB SOA ;C: LF 
C96F:1F 118 DFB $1F ;D: us 
C970: 1 D 119 DFB $10 ;E: GS 
C971 :08 120 DFB SOB ;F: VT 
C972:9F 121 DFB $1 F+$80 ;I: us (STAY ESC) 
C973 :88 122 DFB $08+$80 ;J: BS (STAY ESC) 
C974:9C 123 DFB $1C+$80 ;K: FS (STAY ESC) -C975:8A 124 DFB SOA+$80 ;M: LF (STAY ESC) 
C976: 11 125 DFB $11 ;4 :DC1 
C977:12 126 DFB $12 ;8 :DC2 
C978:88 127 DFB $08+$80 ;<-:BS (STAY ESC) 

II C979:8A 128 DFB $0A+$80 ;DN:LF (STAY ESC) 
C97A:9F 129 DFB $1 F+$80 ;UP :US (STAY ESC) 
C97B:9C 130 DFB $1C+$80 ; ->: FS (STAY ESC) 
C97C: 131 * 

II C97C: 13 2 MSB OFF ;high bit already masked 
C97C: C97C 133 ESCTAB EQU * 
C97C:40 134 ASC '@' 

C97D:41 135 ASC 'A' ;HANDLE OLD ESCAPES 

II C97E:42 136 ASC 'B' 
C97F:43 137 ASC ' C' 
C980:44 138 ASC 'D' 
C981 :45 139 ASC ' E' 

II C982:46 140 ASC 'F' 
C983:49 141 ASC I I I 

C984:4A 142 ASC 'J I 
C985 : 4B 143 ASC 'K' • C986:4D 144 ASC 'M' 
C987:34 145 ASC ' 4 I 
C988:38 146 ASC '8' 
C989 :08 147 DFB $08 ;LEFT ARROW 
C98A:OA 148 DFB $0A ;DOWN ARROW II C98B:OB 149 DFB $08 ;UP ARROW 
C98C:l5 150 DFB $15 ;RITE ARROW 
C98D : 0011 151 ESCNUM EQU *-ESCTAB 
C98D: 152 MSR ON • C98D : 153 * 
C98D: 154 * Tack on diag 128K test here 
C98D: 155 * 
C98D:2C 13 co 156 STAUX BIT RDRAMRD ;aux done ye t? II C990:30 11 C9A3 157 BMI XSTAUX ;•)yes, exit 
C992 :A9 EE 158 LOA IiSEE ;get test pattern 
C994:8D 05 CO 159 STA WRCARDRAM ;write AUX RAM 
C997:8D 03 CO 160 STA RDCARDRAM ;read AUX RAM I C99A:8D 00 OC 161 STA $COO ;test this byte 
C99D:8D 00 08 162 STA $800 ;and this is 1K off 
C9AO:CD 00 OC 163 CMP $COO ;has $COO been updated? 
C9A3 :60 164 XSTAUX RTS ;check in main diags . II C9A4: 165 * 
C9A4: 166 * ESCOUT used by ESCFIX in $C1 pa)te 
C9A4: 167 * 
C9A4: 168 MSB ON 
C9A4:CA CB CD C9 169 ESCOUT ASC ' JKMI' ;The arrows 

Appendix 1: Monitor ROM Listings 



I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

C9A8: 
C9A8 : 
C9A8: 
C9A8: 
C9A8 : 
C9A8 : 
C9AA : 
s 

C9AA: 
C9AA:AD 7B 06 
C9AD:4C 56 C3 
C9BO: 
C9BO: 
C9BO: 
C9BO: 
C9BO: 
C9BO : 
C9BO: 
C9BO : A9 83 
C982:DO 02 
C984: 
C9B4 :A9 81 
C9B6: 

0002 
0000 

C9BO 

C9B6 
C9B4 

C9B6: 
C9B6 :48 
C987: 
C9B7: 
C9B7: 

C9B6 

C9B7 :20 90 CA 
C9BA:FO 04 C9CO 
C98C:68 
C9BD:A2 09 
C9BF:60 
C9CO: 
C9CO: C9CO 
C9C0:68 
C9CI :80 FB 04 
C9C4:8D 01 CO 
C9C7 : 80 OD CO 
C9CA:8D OF CO 
C9CD:20 04 CE 
C900 :20 90 CC 
C9D3 :4C IF CA 
C9D6 : 
C9D6 : 
C9D6: 
C9D6: 
C9D6 : 
C9D6: 
C9D6 : C9D6 
C906 : 20 04 CE 
C9D9: 20 38 C8 
C~DC : 29 7F 
C9DE : 8D 78 06 

170 
26 

MSB OFF 
I NCLUDE PASCAL 

1 **************************************** 
2 
3 
4 
5 
6 
7 
8 
9 

* PASCAL 1.0 OUTPUT HOOK : 
**************************************** 

OS C80RG+$1AA-* ,O 
I FNE *-C80RG- $1AA 
FAIL 2 ,'C9AA HOOK AL I GNMENT ' 
FIN 
LOA CHAR 
JMP J PWRITE 

;GET OUTPUT CHARACTER 
;•)USE STANDARD WRITE 

10 **************************************** 
I I * 
12 **************************************** 
13 * PASCAL I NITIALIZATI ON: 
14 * Di sable printing of mouse text 
15 **************************************** 
16 PINITI.O EQU * 
17 LOA #M. PASCAL+M. PASl.O+M.MOUSE 
18 BNE PINIT2 ; •)always 
19 PINIT EQU * 
20 LOA #M.PASCAL+M. MOUSE ;S AY WE ' RE 
21 * 
22 PINIT2 EQU * 
23 PHA ;save ve rsion ID 
24 * 
25 * SEE IF THE CARD'S PLUGGED IN: 
26 * 
27 
28 
29 
30 
31 
32 * 

JSR TESTCARD 
BEQ PIGOOD 
PLA 
LOX 1/9 
RTS 

33 PIGOOD EQU * 

; IS IT THERE? 
;•>YES 
;discard ID byte 
;IORESULT• 'NO DEV ICE ' 

34 PLA ; ~et version I D 
35 STA MODE ; and save i t 
36 STA SET80COL ; ENABLE 80 STORE 
37 STA SET80VID ; AND 80 VI DEO 
38 STA SETALTCHAR ;NORM+INV LCASE 
39 JSR PSETUP ;set window and cursor 
40 JSR X. FF ;HOME & CLEAR IT 
41 JMP DOBASL ;fix OLDBASL/H , display cursor , exit 
42 **************************************** 
43 * PASCAL INPUT: 
44 * 
45 * Character alw~ys returned with high bit clear. 
46 * 
47 **************************************** 
48 PREAD EQU * 
49 JSR PSETUP 
50 JSR GETKEY 
51 AND fi$7F 
52 STA CHAR 

;SETUP ZP STUFF 
; GET A KEYSTROKE 
;DROP HI BIT 
; SAVE THE CHAR 

Appendix 1: Monitor ROM List,ngs 

-----------------------· -----

325 



C9El:A2 00 
C9E3:AD F8 04 
C9E6:29 02 
C9E8:FO 02 C9EC 
C9EA:A2 C3 
C9EC: 
C9EC: C9EC 
C9EC:AD 78 06 
C9EF:60 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: 
C9FO: C9FO 
C9F0:29 7F 
C9F2:AA 
C9F3:20 D4 CE 
C9F6:A9 08 
C9F8:2C F8 04 
C9FB: DO 32 CAlF 
C9FD :8A 
C9FE:2C 2E CA 
CAOl:FO 50 CA53 
CA03:AC 78 OS 
CA06:24 32 
CA08:10 02 CAOC 
CAOA:09 80 
CAOC:20 70 CE 
CAOF:C8 
CA10:8C 7B OS 
CA13:C4 21 
CA15:90 08 CAlF 
CA17:A9 00 
CA19:8D 7B 05 
CAlC : 20 D8 CB 
CAlF:AS 28 
CAll :8D 7B 07 
CA24:A5 29 
CA26: 8D FB 07 
CA29:20 lF CE 
CA2C:A2 00 
CA2E:60 
CAlF: 
CAlF: 
CAlF: 
CA2F:20 lF CE 
CA32 :SA 
CA33:38 
CA34:E9 20 
CA36: 2C FB 06 
CA39:30 30 CA6B 
CA3B: 

53 
54 
55 
56 
57 
58 * 

LDX /10 
LDA MODE 

#M.PASl.O 
PREADRET2 
R<CNOO 

AND 
BEQ 
LDX 

59 PREADRET2 EQU * 
60 LDA CHAR 
61 RTS 
62 * 
63 * PASCAL OUTPUT: 

; IORESULT•'GOOD' 
;ARE WE IN 1.0-MODE? 

;•)NOPE 
;YES, RETURN CN IN X 

; RESTORE CHAR 

64 * Note: to be executed, control characters must 
65 * their high bits cleared . All other characters 
66 * displayed regardless of their high bits. 

have 
a re 

67 * 
68 PWRITE EQU * 
69 AND #$7F 
70 TAX 
71 JSR PSETUP 
72 LOA RH. GOXY 
73 BIT MODE 
74 BNE GETX 
75 TXA 
76 BIT 
77 BEQ 
78 LOY 
79 BIT 
80 BPL 
81 ORA 
82 PWRl JSR 
83 INY 

PRTS 
PCTL 
OURCH 
INVFLG 
PWRl 
0$80 
STORIT 

84 STY OURCH 
85 CPY WNDWDTH 
86 BCC DOBASL 
87 LOA #0 
88 STA OURCH 
89 JSR X.LF 
90 DOBASL LDA BASL 
91 STA OLDBASL 
92 LOA BASH 
93 STA OLDBASH 
94 PWRITERET JSR PASINV 
95 PRET LOX 8$0 
96 PRTS RTS 
97 * 
98 * HANDLE GOTOXY STUFF: 
99 * 

100 GETX 
101 
102 
103 
104 
lOS 
106 * 

JSR 
TXA 
SEC 
SBC 
BIT 
BMI 

PASINV 

1132 
XCOORD 
PSETX 

;clear high bits 
;save character 
;SETUP ZP STUFF, don ' t set ROM 
;ARE WE DOING GOTOXY? 

;•)Doing X or Y? 
;now check for control char 
;is it control? 
;•)yes, do control 
;get horizontal position 
;check for inverse 
;inverse, go store it 

;now store it (erasing cursor) 
; INC CH 

;do carr i age return 

;and linefeed 
;save BASL for pascal 

;display new cursor 
;return with no error 

; turn off cursor 
;get chAracter 

;MAKE BINARY 
;doing X? 
;•)yes, set it 

Appendix I: Monitor ROM Listings 

I 

II 
II 

II 
II 
II 
II 
II 

II 



I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I 

CA3B: 
CA3 B: 
CA3B: 8D FB 05 
CA3E :85 25 
CA40: 20 BA CA 
CA43 : AD FB 06 
CA4 6 :8D 7B OS 
CA49: A9 F7 
CA4B:2D FB 04 
CA4E :8D FB 04 
CASl:DO CC CAlF 
CA53: 
CA53:20 IF CE 
CA56:8A 
CA57:C9 IE 
CA59:FO 06 CA61 
CASB:20 D6 CA 
CA5E:4C IF CA 
CA61: 
CA61: 
CA61: 
CA61: CA61 
CA61 :A9 08 
CA63:0D FB 04 
CA66:8D FB 04 
CA69:A9 FF 
CA6B:8D FB 06 
CA6E:4C 29 CA 
CA71: 
CA71: CA71 
CA71 :AA 
CA72:AS 2A 
CA74 :AO 03 
CA76:EO 8A 
CA78 : FO OB CA85 
CA7A:4A 
CA7B:90 08 CA85 
CA7D:4A 
CA7E:4A 
CA7F:09 20 
CA8l :88 
CA82:DO FA CA7E 
CA84:C8 
CA85:88 
CA86:DO F2 CA7A 
CA88:60 
CA89: 
CA89: 
CA89 : 
CA89: 
CA89: 
CA89 : 
CA89 :20 B7 
CA8C : OO 02 

CA89 
F8 

CA90 

107 * Set Y and do the GOTOXY 
108 * 
109 GETY 
110 
111 
112 

STA OURCV 
STA CV 
JSR BASCALC 
LDA XCOORD 

;calc base addr 

113 STA OURCH ;set cursor horizontal 
114 LDA #255-M.GOXY ;turn off gotoxy 
115 
116 
117 
118 * 
119 PCTL 
120 
121 
122 
123 
124 
125 * 

AND MODE 
STA MODE 
BNE DOBASL 

JSR PASINV 
TXA 
CMP liSlE 
BEQ STARTXY 
JSR CTLCHAR 
JMP DOBASL 

;•)DONE (ALWAYS TAKEN) 

;turn off cur!lor 
;get char 
;is it gotoXY? 
;•)yes, start it up 
;EXECUTE IT lF POSSIBLE 
;•)update BASL/H, cursor, 

126 * START THE GOTOXY SEQUENCE : 
127 * 
128 STARTXY EOU * 
129 LDA #M. GOXY 
130 ORA MODE 
131 STA MODE 
132 LDA IISFF 
133 PSETX STA XCOORD 
134 JMP PWRITERET 
27 INCLUDE SUBS! 

1 DOMN EQU * 
2 TAX 
3 LDA 
4 LDY 
5 CPX 
6 BEQ 

; turn on gotoxy 

;set XCOORD to -1 
;set X 
;•)display cursor and exit 

; SAVE IT 
;GET OPCODE AGAIN 

exit 

7 MNNDX1 LSR 
8 BCC 

BAS2L 
ll$03 
II$8A 
MNNDX3 
A 
MNNDX3 ;FORM INDEX INTO MNEMONIC TABLE 

9 
10 MNNDX2 
11 
12 
13 
14 

LSR A 
LSR A 
ORA #$20 
DEY 
BNE MNNDX2 
INY 

15 MNNDX3 DEY 
16 
17 
18 * 

BNE MNNDX1 
RTS 

1) 1XXX1010 •) OOIOIXXX 
2) XXXYYYOl ·> OOlllXXX 
3) XXXYYYIO a) OOllOXXX 
4) XXXYYIOO •> OOIOOXXX 
5} XXXXXOOQ s) OOOXXXXX 

19 * Switch in slot 3, then test for a ROM card. 
20 * If none found, test for 80 column card, 
21 * else return with BNE. 
22 * 
23 TSTROMCRD EQU * 
24 JSR TSTROM ;test for ROM card 
25 BNE TESTCARD ;•)no ROM, check for 80 column card 

Appendix 1: Monitor R0~1 Listings 327 



CASE :C8 
CA8F:60 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: 
CA90: CA90 
CA90:AD lC CO 
CA93 :OA 
CA94 :A9 88 
CA96:2C 18 CO 
CA99:8D 01 CO 
CA9C:08 
CA9D:8D 55 CO 
CAAO:AC 00 04 
CAA3:8D 00 04 
CAA6 :AD 00 04 
CAA9:8C 00 04 
CAAC :28 
CAAD:BO 03 CAB2 
CAAF:8D 54 CO 
CAB2: CAB2 
CA82:30 03 CAB7 
CAB4 : 8D 00 CO 
CAB7 : CAB7 
CAB7:C9 88 
CAB9:60 
CAllA: 

26 
27 
28 * 

INY 
RTS 

;make BNE for return 

29 **************************************** 
30 * NAME TESTCARD 
31 * FUNCTION: SEE IF 80COL CARD PLUGGED IN 
32 * INPUT NONE 
33 * OUTPUT 'BEQ ' IF CARD AVAILABLE 
34 * 'BNE' IF NOT 
35 * VOLATILE: AC,Y 
36 **************************************** 
37 * 
38 TESTCARD EOU * 
39 LDA RDPAGE2 
40 ASL A 
41 LDA 11$88 
42 BIT RD80COL 
43 STA SET80COL 
44 PHP 
45 
46 
47 
48 
49 
50 
51 
52 
53 STAY2 
54 
55 
56 STAY80 
57 
58 
59 * 

STA 
LDY 
STA 
LDA 
STY 
PLP 

TXTPAGE2 
$0400 
$0400 
$0400 
$0400 

BCS STAY2 
STA TXTPAGEl 
EQU * 
BMI STAY80 
STA CLRBOCOL 
EOU * 
CMP ll$88 
RTS 

;REMEMBER CURRENT VIDEO DISPLAY 
; IN THE CARRY 
;USEFUL CHAR FOR TESTING 
;REMEMBER VIDEO MODE IN 'N' 
;ENABLE 80COL STORE 
;SAVE 'N' AND 'C' FLAGS 
;SET PAGE2 
;GET FIRST CHAR 
;SET TO A '*' 
;GET IT BACK FROM RAM 
;RESTORE ORIG CHAR 
;RESTORE 'N' AND 'C' FLAGS 
;STAY IN PAGE2 
;RESTORE PAGEl 

;=>STAY IN 80COL MODE 
;TURN OFF 80COL STORE 

;WAS CHAR VALID? 
;RETURN RESULT AS BEQ/BNE 

CABA: 60 * Do the 
normal monitor ROH BASCALC 

CABA : 61 * 
CABA: 
CABA:48 
CABB:4A 
CABC:29 03 
CABE :09 04 
CAC0:85 29 
CAC2 : 68 
CAC3:29 18 
CAC5:90 02 
CAC7:69 7F 
CAC9 :85 28 
CACB :OA 
CACC:OA 
CACD :05 28 
CACF:85 28 
CAD1 :60 
CAD2: 

CABA 62 BASCALC 
63 
64 
65 
66 
67 
68 
69 

CAC9 70 
71 
72 BSCLC2 
73 
74 
75 
76 
77 
78 * 

EQU * 
PHA 
LSR A 
AND /1$03 
ORA 1/$04 
STA BASH 
PLA 
AND 11$18 
BCC BSCLC2 
ADC IJ$7F 
STA BASL 
ASL A 
ASL A 
ORA BASL 
STA BASL 
RTS 

Appendix 1: Monitor ROM Listings 

II 
II 
II 
II 
II 

II 
II 
II 
II 
II 

II 
II 



I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CAD2 : 
CAD2 : 
CAD2: 
CAD2: 
CA02: 
CAD2: 
CAD2: 
CAD2: 
CAD2: 
CAD2: 
CAD2:2C 
CAD5:50 
CAD6: 
CAD6: 
CAD6: 
CAD6: 
CAD6 : 
CAD6: 
CAD6: 
CAD6: 
CAD6 : 
CAD6: 
CAD6: 
CAD6: 
CAD6: 68 
CAD7:80 
CADA :48 
CADB: 98 
CADC:48 
CADD: 
CADD:AC 
CAEO :CO 
CAE2:90 
CAE4:69 
CAE7 : FO 
CAE9:SO 
CAE6: 
CAE6: 

s 
CAEB: 

06 C6 
FE CADS 

CAD6 

76 07 

76 07 
OS 
13 
64 
OE 
12 

CAF7 
C6 

CAF7 
CAFD 

0000 

CAEB:30 10 CAFD 
CAEO: 
CAED: 
CAED:8D 76 07 
CAFO: AD F6 04 
CAF3 :29 28 
CAF5 :FO 03 CAFA 
CAF7: 
CAF7: CAF7 
CAF7 : 38 
CAF8:60 09 CB03 
CAFA : 
CAFA: AD 7B 07 
CAFD : CAFD 

79 **************************************** 
80 * NAME CTLCHARO 
81 * FUNCTION: Execute CTL char if H.CTI.3 0 
82 * INPUT AC=CHAR 
83 * OUTPUT 'BCS' if not executed 
84 * '6CC ' if executed 
85 * VOLATILE: NOTHING 
86 * CALLS HANY THINGS 
87 **************************************** 
88 * 
89 CTLCHARO BIT SEV1 
90 BVC * 
91 ORG *-1 
92 * 

;set V (use M.CTL) 
;skip CLC 

93 **************************************** 
94 * NAHE CTLCHAR 
95 * FUNCTION: Always execute CTL char 
96 * INPUT AC•CHAR 
97 * OUTPUT '6CS' if not executed 
98 * 'BCC' if ctl executed 
99 * VOLATILE : NOTHING 

100 * CALLS HANY THINGS 
101 **************************************** 
102 * 
103 CTLCHAR CLV ;clear V (i~nore H.CTL) 

;TEMP SAVE OF CHAR 
;SAVE AC 

104 STA TEMPI 
105 
106 
107 
108 * 
109 
110 
111 
112 
113 
114 
115 * 
116 
117 
118 
119 
120 
121 * 

PHA 
TYA 
PHA 

LDY 
CPY 
BCC 
LOA 
BEQ 
6VC 

DO 
6PL 
ELSE 

;SAVE Y 

TEl1Pl ;GET CHAR IN QUESTION 
11$05 ; IS IT NUL • • EOT? 
CTLCHARX ;=>YES, NOT USED 
CTLADH- 5,Y ;Get high byte of address 
CTLCHARX ;=>ctl not implemented 
CTLGOO ;=> CLTCHAR: always execute 

TEST 
CTLGOO ;=>CR,BEL,LF,BS always done 

BMI CTLGOO 
FIN 

;=)CR,BEL,LF,BS always done 

122 STA TEMP! ; save high byte of address 
123 LOA MODE ; if control chars 
124 AND #M.CTL+M. CTL2 ;are enabled 
125 BEQ CTLGO ;=>then go do them 
126 * 
127 CTLCHARX EQU * 
128 SEC ;SAY 'NOT CTL ' 
129 BCS CTLRET ;=)DONE 
130 * 
131 CTLGO LOA TEMP! ;get address back 
132 CTLGOO EQU * 

Appendix I: Monitor ROM Listings 329 



CAFD: 0000 133 DO TEST II 
s 134 AND #$7F ;for test, hi bit clear 

CAFD: 135 ELSE 

II CAFD:09 80 136 ORA 8$80 ;hi bit always set 
CAFF: 137 FIN 
CAFF :20 07 CB 138 JSR CTLXFER ;EXECUTE SUBROUTINE 
CB02: 139 * 

II CB02: 18 140 CLC ;SAY 'CTL CHAR EXECUTED' 
CB03: CB03 141 CTLRET EQU * 
CB03:68 142 PLA ;RESTORE 
CB04 :A8 143 TAY y 

II CB05:68 144 PLA AND AC 
CB06:60 145 SEV1 RTS 
CB07: 146 * 
CB07: CB07 147 CTLXFER EQU * 
CB07 :48 148 PHA ;PUSH ONTO STACK FOR II CB08: B9 99 CB 149 LOA CTLADL-5,Y ; TRANSFER TRICK 
CBOB:48 150 PHA 
CBOC:60 151 RTS ;XFER TO ROUTINE 
CBOD: 152 * II CBOD: 153 * Turn cursor on for Pascal only 
CBOD: 154 * 
CBOD:AD FB 04 155 X.CUR.ON LDA MODE ;get mode byte 
CB10:10 05 CB17 156 BPL CURON.X ;•>not pascal, don't do it II CB12:29 EF 157 AND #255-M.CURSOR ;clear cursor bit 
CB14:8D FB 04 158 SAVCUR STA MODE ;save it 
CBL7:60 159 CURON.X RTS ;and exit 
CB18: 160 * II CB18: 161 * Turn cursor off for Pascal only . 
CB18: 162 * Cursor is not displayed during call. 
CB18: 163 * 
CB18:AD FB 04 164 X.CUR.OFF LOA MODE ;get mode byte II CB1B:10 FA CB17 165 BPL CURON.X ;•>not pasc~l, don't do it 
CB1D:09 10 166 ORA #M.CURSOR ;turn on cursor bit 
C81F:DO F3 CB14 167 BNE SAVCUR ;save and exit 
CB21: 168 * 

II CB21: 169 * EXECUTE BELL: 
CB21: 170 * 
CB21: CB21 171 X.BELL EQU * 
CB21:A9 40 172 LDA 11$40 ;RIPPED OFF FROM ~!ONITOR 

II CB23: 20 34 CB 173 JSR WAIT 
CB26:AO CO 174 LOY nsco 
CB28:A9 OC 175 BELL2 LDA 8$0C 
CB2A:20 34 CB 176 JSR WAIT 

II CB2D:AD 30 co 177 LOA SPKR 
CB30:88 178 DEY 
CB31 :DO F5 CB28 179 BNE BELL2 
CB33:60 180 RTS 

II CB34: 181 * 
CB34: CB34 182 WAIT EQU * ;RIPPED OFF FROM MONITOR ROM 
CB34:38 183 SEC 
CB35:48 184 WAIT2 PHA 

II CB36:E9 01 185 WAIT3 SBC #1 
CB38:DO FC CB36 186 BNE WAIT3 

II 
II 

:D) Appendix 1: Monitor ROM Listings -
--- -



I 
I 
I 
I 
I 
I 
I 

I 

I 

I 

I 

I 

I 

I 

I 
I 
I 

CB3A:68 
CB3B:E9 01 
CB3D:DO F6 CB3S 
CB3F:60 
CB40 : 
CB40: 
CB40: 
CB40 : 
CB40 :CE 7B 
CB43 :1 0 08 
CB4S :AS 21 

CB40 
OS 

CBSO 

CB47 :80 7B OS 
CB4A :CE 78 OS 
CB4D :20 79 CB 
CBSO : CBSO 
CBS0:60 
CBS!: 
CBS !: 
CBS !: 
CBS!: CBS! 
CBS!: A9 00 
CBS3 :80 78 OS 
CBS6 :AD FB 04 
CBS9:30 03 CBSE 
CBSB: 20 08 CB 
CBSE : CBSE 
CBSE: 60 
CBSF : 
CBSF: 
CBSF: 
CBSF: CBSF 
CBSF :AS 22 
CB61:8S 2S 
CB63 :A9 00 
CB6S :8D 78 OS 
CB68: 4C FE CD 
CB6B : 
CB6B : 
CB6B : 
CB6B : 
CB6B :EE 
CB6E:AD 
CB71 :CS 
CB73 :90 
CB75:20 
CB78 : 

CB6B 
78 us 
7B OS 
21 
03 CB78 
51 CB 

CB78 : 
CB78:60 
CB79: 
CB79: 
CB79: 
CB7 9 :AS 22 
CB7B:CS 25 
CB7D :BO lE 

CB78 

CB9D 

187 
188 
189 
190 
191 * 

PLA 
sse 111 
BNE WAIT2 
RTS 

192 * EXECUTE BACKSPACE: 
193 * 
194 X.BS 
19S 
196 
197 
198 
199 
200 
201 BSDONE 
202 
203 * 

EQU * 
DEC OURCH 
BPL BSDONE 
LDA WNDWDTH 
STA OURCH 
DEC OURCH 
JSR X.US 
EQU * 
RTS 

; BACK UP CH 
;=)DONE 
; BACK UP 
;SET CH 

TO PRIOR LINE 

;NOW DO REV LINEFEED 

204 * EXECUTE CARRIAGE RETURN: 
205 * 
206 x .cR 
207 
208 
209 
210 
211 

EQU * 
LDA 110 
STA OURCH 
LDA MODE 
BMI X.CRRET 
JSR X.LF 

212 X. CRRET EOU * 
213 RTS 
214 * 
21S * EXECUTE HOME: 
216 * 
217 X.EM 
218 
219 
220 
221 
222 
223 * 

EQU * 
LOA WNOTOP 
STA CV 
LOA 110 
STA OURCH 
JMP VTAB 

;BACK UP CH TO 
; BEGINNING OF LINE 
;ARE WE IN BASIC? 
;•> Pascal, avoid auto LF 
; EXECUTE AUTO LF FOR BASIC 

;STUFF CH 
;set base for OURCV 

224 * EXECUTE FORWARD SPACE: 
22S * 
226 X. FS 
'1.'27 
228 
229 
230 
231 
232 * 

EQU * 
INC OURCH 
LOA OURCH 
CMP WNDWDTH 
BCC X. FSRET 
JSR X. CR 

233 X. FSRET EQU * 
234 RTS 
23S * 

;BUMP CH 
;GET THE POSIT ION 
; OFF THE RIGHT SIDE? 
;=>NO , GOOD 
;=)YES , WRAP AROUND 

236 * EXECUTE REVERSE LINEFEED: 
237 * 
238 x.us 
239 
240 

LDA WNDTOP 
CMP CV 
BCS X. USRET 

;are we at top? 

;=)yes , stay there 

331 



C87F:C6 25 241 DEC CV ;else go up a line 
CB81 :4C FE CD 242 JMP VTAB ;exit thru VTAB (update OURCV) 
CB84: 243 * 
CB84 : 244 * EXKCUTE " NORMAL VIDEO" 
CB84: 245 * 
CB84 : CB84 246 x.so EQU * 
CB84:AD FB 04 247 LDA MODE ; SET MODE BIT 
CB87 : 10 02 CB8B 248 BPL X.S01 ;don't set mode for BASIC 
CB89:29 FB 249 AND 1/255- M.VMODE ; SET ' NORMAL' 
CB8B : AO FF 250 x . so1 LDY #255 
CB8D:DO 09 CB98 251 BNE STUFF! NV ;(ALWAYS) 
CB8F : 252 * 
CB8F : 253 * EXECUTE " INVERSE VIDEO" 
CB8F: 254 * 
CB8F: CB8F 255 X.SI EQU * 
CB8F : AD FB 04 256 LDA MODE ; SET MODE BIT 
CB92: 10 02 CB96 257 BPL x . sn ;don ' t set mode for BASIC 
CB94 :09 04 258 ORA OM. VI-lODE ;SET ' INVERSE' 
CB96:AO 7F 259 X. Sll LOY 11127 
CB98 :8D FB 04 260 STUFFINV STA MODE ;SET MODE 
CB98:84 32 261 STY INVFLG ;STUFF FLAG TOO 
CB9D :60 262 X. USRET RTS 
CB9E: 263 * 
CB9E : CB9E 264 CTLADL EQU * 
CB9E :OC 265 DFB #)X .CUR.ON-1 ;ENQ 
CB9F:17 266 DFB /J)X. CUR. OFF- 1 ;ACK 
CBA0:20 267 DFB li>X.BELL- 1 ;BEL 
CBA1 :3F 268 DFB II>X. BS-1 ; BS 
CBA2:00 269 IJFB 0 ;!IT 
CBA3 : 07 270 DFB II>X.LF- 1 ;LF 
CBA4:73 271 DFB #)X .VT-1 ;VT 
CBA5 :8F 272 DFB II>X. FF- 1 ;FF II CBA6 :50 273 DFB II>X .CR-1 ;CR 
CBA7:83 274 DFB #)X . S0-1 ;SO 
CBA8:8E 275 DFB /I)X . SI-1 ;SI 
CBA9 :00 276 DFB 0 ;ou: 
CBAA :E9 277 DFB /i)X .DC1-1 ;DC! 
CBAB : FB 278 DFB /I)X . DC2 - l ; DC2 
CBAC:OO 279 DFB 0 ;DC3 
CBAD:OO 280 DFB 0 ;DC4 II CBAE :4C 281 DFB /I)X.NAK- 1 ;NAK 
CBAF :D3 282 DFB II)SCROLLDN- 1 ;SYN 
CBBO:EA 283 DFB 1/)SCROLLUP-1 ;ETII 
CBBI :3C 284 DFB /I)MOUSEOFF-1 -CBB2 :5E 285 DFB /I)X . EM- 1 ;EM 
CBB3:95 286 DFB 4)X . SUB- 1 ;SUB 
CBB4:43 287 DFB I· )MOUSEON- 1 
CBB5:6A 288 DFB /I)X . FS- 1 ;FS 
CBB6 :99 289 DFII /I)X .GS- 1 ;GS 
CBB7:00 290 DFB 0 ;RS 
CBB8:78 291 DFB //)X . US- 1 ;US 
CBB9: 292 * 
CBB9: CBB9 293 CTLADH EQU * 
CBB9:4B 294 DFB IF<X.CUR . ON- $8001 ;ENQ 

II 
\ppt>rd1x I \lom\or R0\1 Listing, 



I CBBA:4B 
CBBil:CB 
CBBC :CB 

I CBBD:OO 
CBBE:Cll 
CBBF:4C 
CBCO: 4C 

I CBC1 :CB 
CBC2:4B 
CBC3:4B 
CBC4 :00 

I 
CBCS :4C 
CBC6 :4C 
CBC7:00 
CBC8 :00 

I 
CBC9: 4D 
CBCA:4B 
CBCB:4B 
CBCC: 4D 

I 
CBCD:48 
CBCE:4C 
CBCF:4D 
CBD0:4B 

I 
CBD1 :4C 
CBD2:00 
CBD3:4B 
CBD4: 
CBD4: 
CBD4: 
CBD4: 
CBD4: 

I 
CBD4: 
CBD4: 
CBD4:AO 00 
CBD6:FO 1S CBED 

I 
C8D8: 
CBD8: 
CBI.l8: 
CBD8: CBD8 
CBD8:E6 2S 
CBDA:AS 2S 
CBDC :80 FB OS 
CBDF:CS 23 
CBE1 :'130 03 CBE6 

I CBE3:4C 03 CE 
CBE6 : 
CB£6: CBE6 
CBE6 :CE FB OS 

I CBE9 :C6 25 
CBEB : 
CBEB: AO 01 
CBED:8A 

I CBEE:48 
CSEF:8C 78 07 

I 
I 

I 

29S DFB fl(X.CUR.OFF-$8001 ; ACK 
296 DFB II<X . BELL-1 ;BEL 
297 OFil 1/(X . BS-1 ;BS 
298 DFB 0 ;liT 
299 DFB it(X . LF-1 ;LF 
300 DFB U<X . VT-$8001 ;VT 
301 DFB I'<X .FF-$8001 ;FF 
302 DFB /I(X .CR- 1 ;CR 
303 DFB /(X . S0-$8001 ; SO 
304 DFB /I(X . SI-$8001 ;SI 
305 DFB 0 ;DLE 
306 DFB I/(X.DC1-$8001 ;DC1 
307 DFB /i(X.DC2-S8001 ;DC2 
308 DFB 0 ;DC3 
309 DFB 0 ;DC4 
310 DFB /I(X . NAK-$8001 ;NAK 
311 DFB #(SCROLLDN-$8001 ;SYN 
312 DFB II<SCROLLUP- $8001 ;ETB 
313 DFB II<MOUSEO FF-$800 1 
314 DFB II<X . EM-$8001 ;EM 
315 DFB II<X.SUB-$8001 ;SUB 
316 DFB II<MOUSEON- $800 1 
317 DFB /I(X .FS-58001 ;FS 
318 DFB #(X .GS-$8001 ;GS 
319 DFB 0 ; RS 
320 DFB /.i(X . US-$8001 ;US 

28 INCLUDE SUBS2 
1 * 
2 * SCROLLIT scrolls the screen either up or down , dependin~ 
3 * on the value of X. It scrolls within windows with even 
4 * or odd edges for both 40 and 80 columns . It can scroll 
S * windows down to 1 characters wide. 
6 * 
7 SCROLLDN LOY /10 ;direction = down 
8 SEQ SCROLLIT ;=>go do scroll 
9 * 

10 * EXECUTE LINEFEED : 
11 * 
12 X. LF EQU * 
13 INC CV 
14 LDA CV ;SEE IF OFF BOTTOM 
15 STA OURCV 
16 CMP WNDBTM ;OFF THE END? 
17 BCS X.LF2 ;•>yes, scroll screen 
18 JMP VTABZ ;exit t hru VTABZ 
19 * 
20 X. LF2 EQU * 
21 DEC OURCV ;back up to bottom 
22 DEC cv ;and fall into scr oll 
23 * 
24 SCROLLUP LOY Ill ;direction = up 
2S SCROLLIT TXA ;save X 
26 PHA 
27 STY TEMPI ;save direction 

-\pJX•rdtx 1: Mon11or ROM Ltstmgs 333 



CBF2:AS 21 
CBF4:48 
CBF5:2C lF CO 
CBF8:10 1C CC16 
CBFA:8D 01 CO 
CBFD:4A 
CBFE :AA 
CBFF:A5 20 
CC01 :4A 
CC02: 88 
CC03:90 03 CC08 
CC05:2C 06 CB 
CC08:2A 
CC09:45 21 
CCOB:4A 
CCOC:70 03 CC11 
CCOE:BO 01 CC11 
CClO:CA 
CC11:86 21 
CC13:AD lF CO 
CC16:08 
CC17:A6 22 
CC19:98 
CClA:DO 03 CClF 
CC1C:A6 23 
CClE:CA 
CClF: 
CC1F:8A 
CC20:20 03 CE 
CC23: 
CC23 :AS 28 
CC25:85 2A 
CC27:A5 29 
CC29:85 2B 
CC2B: 
CC2B:AD 7B 07 
CC2E:FO 32 CC62 
CC30 :E8 
CC31 :E4 23 
CC33:BO 32 
CC35:8A 
CC36:20 03 CE 
CC39:A4 21 
CC3B:28 
CC3C:08 

CC67 

CC3D:l0 lE CC5D 
CC3F:AD 55 CO 
CC42:98 
CC43:FO 07 
CC45:Bl 28 
CC47:91 2A 
CC49:88 
CC4A:DO F9 
CC4C:70 04 

CC4C 

CC45 
CC52 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 CHKRT 
41 
42 
43 
44 
45 

LDA WNDWDTH 
PHA 
BIT RD80VID 
BPL GETSTl 
STA SET80COL 
LSR A 
TAX 
LDA WNDLFT 
LSR A 
CLV 
BCC 
BIT 

CHKRT 
SEVl 

ROL A 
EOR WNDWDTH 
LSR A 
BVS GETST 
BCS 
DEX 

GETST 

46 GETST STX WNDWDTH 
47 LOA RD80VID 
48 GETSTl PHP 
49 
50 
51 
52 
53 
54 * 

LDX WNDTOP 
TYA 
BNE SETDBAS 
LDX WNDBTM 
DEX 

55 SETDBAS TXA 
56 JSR VTABZ 
57 * 
58 SCRLIN LDA BASL 
59 STA BAS2L 
60 LDA BASH 
61 STA BAS2H 
62 * 
63 
64 
65 
66 
67 

LDA TEMPi 
BEQ SCRLDN 
INX 
CPX WNDBTM 
BCS SCRLL3 

68 SETSRC 
69 

TXA 
JSR VTABZ 
LDY WNDWDTH 70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

PLP 
PHP 
BPL 
LDA 
TYA 

SKPRT 
TXTPAGE2 

BEQ SCRLFT 
SCRLEVEN LDA (BASL),Y 

STA (BAS2L),Y 
DEY 
BNE SCRLEVEN 

81 SCRLFT BVS SKPLFT 

;get width of screen window 
;save original width 
;in 40 or 80 columns? 
;=>40, determine starting line 
;make sure this is enabled 
;divide by 2 for 80 column index 
;and save 
;test oddity of right edge 
;by rotatin~ low bit into carry 
;V•O if left edge even 
;=>check right edge 
;V•l if left edge odd 
;restore WNDLFT 
;get oddity of right edge 
;C=l if right edge even 
;if odd left, don't DEY 
;if even right, don't DEY 
;if right edge odd, need one less 
;save window width 
;N• l if 80 columns 
;save N,Z,V 
;assume scroll from top 
;up or down? 
;=)up 
;down, start scrolling a t bottom 
;really need one less 

;get current line 
;calculate base with window width 

;current line is destination 

;test direction 
; • >do the downer 
;do next line 
;done yet? 
;=)yup, all done 
;set new line 
;get base for new current line 
;get width for scroll 
;get status for scroll 
;N=l if 80 columns 
;=>only do 40 columns 
;scroll aux page first (even bytes) 
; test Y 
;if Y=O, only scroll one byte 

;do all but last even byte 
;odd left edge, skip this byte 

\r . d1x I \lrr H r ROM Listings 

II 

II 
II 
II 
II 



-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 

I 

I 

CC4E:B1 28 
CCS0:91 2A 
CCS2:AD 54 CO 
CCSS : A4 21 
ccs7:BO 04 ccsn 
CCS9:B1 28 
CCSB:91 2A 
CCSD:88 
CC5E:10 F9 CCS9 
CC60 :30 C1 CC23 
CC62: 
CC62:CA 
CC63:E4 22 
CC6S:10 CE CC3S 
CC67: 
CC67:28 
CC68 :68 
CC69:8S 21 
CC6B:20 96 CC 
CC6E: 20 FE CD 
CC71 :68 
CC72:AA 
CC73 :60 
CC74: 
CC74: 
CC74: 
CC74:20 9A CC 
CC77: AS 25 
CC79:48 
CC7A:10 06 CC82 
CC7C:20 03 CE 
CC7F:20 96 CC 
CC82:E6 25 
CC84:AS 2S 
CC86:CS 23 
CC88 :90 F2 CC7C 
CC8A:68 
CC8B:85 2S 
CC8D :4C FE CD 
CC90: 
CC90: 
CC90: 
CC90 : CC90 
CC90 :20 SF CB 
CC93:4C 74 CC 
CC96: 
CC96: 
CC96: 
CC96 : AO 00 
CC98:FO 03 CC9D 
CC9A : 
CC9A: 
CC9A: 
CC9A :AC 78 OS 

82 
83 
84 

LDA (BASL) , Y 
STA (BAS2L),Y 

SKPLFT LDA TXTPAGE1 
8S LDY WNDWDTH 

SKPRT 
{BASL),Y 
(BAS2L),Y 

86 BCS 
87 SCRLODD LDA 
88 STA 
89 SKPRT DEY 
90 
91 
92* 

BPL SCRLODO 
BMI SCRLI N 

93 SCRLDN DEX 
94 CPX WNDTOP 
95 BPL SETSRC 
96 * 
97 SCRLL3 PLP 
98 
99 

100 
101 
102 
103 
104 
105 * 

PLA 
STA WNOWDTH 
JSR X.SUB 
JSR VTAB 
PLA 
TAX 
RTS 

106 * EXECUTE CLR TO EOS : 
107 * 
108 X.VT 
109 
110 

JSR l(.GS 
LDA CV 
PHA 

Ill 
112 
113 
114 
115 

BPL X.VTNEXT 
X. VTLOOP JSR VTABZ 

JSR X. SUB 
X. VTNEXT INC CV 

LOA CV 
116 CMP WNDBTM 
117 BCC X. VTLOOP 
118 PLA 
119 STA CV 
120 JMP VTAB 
121 * 
122 * EXECUTE CLEAR: 
123 * 
124 X. FF 
12S 
126 
127 * 

EQU * 
JSR X.EM 
JMP X.VT 

128 * EXECUTE CLEAR LINE 
129 * 
130 X. SUB LOY #0 
131 BEO X.GSEOLZ 
132 * 
133 * EXECUTE CLEAR TO EOL: 
134 * 
135 X.GS LOY OURCH 

now do main pa~e (odd bytes) 
restore width 
even right enge , skip this by t e 

;•> always scroll next line 

;do next line 
;done yet 
;·>nope, not yet 

;pull status off stack 
;restore window width 

;clear current line 
;restore original cursor line 
;and X 

;done!! I 

;CLEAR TO EOL 
;SAVE CV 

;DO NEXT LINE (ALWAYS TAKEN) 
;set base address 
;CLEAR LINE 

; OFF SCR&EN? 
;=)NO , KEEP GOING 
;RESTORE 
; CV 
;return vi a VTAB (blech) 

;HOME THE CURSOR 
;RETURN VIA CLREOS (UGH!) 

;start at left 
;and clear to end of line 

;get CH 

c .x 1: Monitor RO~I Lis' ne.s 335 



CC9D:A5 32 136 X. GSEOLZ LOA INVFLG ;mask blank 
CC9F:29 80 137 AND H$80 ;with hi~h bit of invfl~ 
CCAI :09 20 138 ORA D$20 ;make it a blank 
CCA3:2C IF co 139 BIT RD80VID ;is it 80 columns? 
CCA6 : 30 IS CCBD 140 SMI CLR80 ;•>yes do quick clear 
CCA8:91 28 141 CLR40 STA (SASL) ,Y 
CCAA:CB 142 INY 
CCAS:C4 21 143 CPY WNDWDTH 
CCAD:90 F9 CCA8 144 sec CLR40 
CCAF :60 145 RTS 
CCSO : 146 " 
CCSO: 147 " CleAr ri~ht half of screen fo r 40 to 80 
CCSO: 148 * scr een conversion 
CCSO: 149 * 
CCS0:86 2A 150 CLRHALF STX SAS2L ; save X 
CCB2 :A2 DB 151 LOX ll$08 ;set hor izontal count er 
CCB4 : AO 14 152 LOY 1/20 
CCS6: AS 32 153 LOA INVFLG ;set (inve r se) bl ank 
CCB8:29 AO 154 AND II$AO 
CCSA: 4C 05 CC 155 JMP CLR2 
CCBO : 156 * 
CCSD : 157 * Clear to end of line for 80 columns 
CCSD: 158 * 
CCB0 :86 2A 159 CLR80 STX SAS2L ;save X 
CCSF: 48 160 PHA ;and blank 
CCC0:98 161 TYA ;get count for CH 
CCC1 :48 162 PHA ;save fo r lef t edge check 
CCC2 :38 163 SEC ;count•WNDWDTH- Y- 1 

II CCC3:E5 21 164 sse WNDWDTH 
CCC5 : AA 165 TAX ; save CH count er 
CCC6:98 166 TYA ;div CH by 2 fo r half pages 
CCC7 :4A 167 LSR A 

II CCC8:A8 168 TAY 
CCC9 : 68 169 PLA ;r estore or ig i nal ch 
CCCA:45 20 170 EOR WNDLFT ;get s t arting page 
CCC:C : 6A 171 ROR A 

II CCCD : SO 03 CCD2 172 SCS CLRO 
CCCF :IO 01 CCD2 173 BPL CLRO 
CC01 :C8 174 INY ;iff WNDLFT odd, start ing byte odd 
CCD2:68 175 CLRO PLA ;get bl ank 

II r.r.n3 : SO OB r.cEO 176 BCS CLRl ;startin~ page is 1 (default) 
CCD5 : 2C 55 co 177 CLR2 BIT TXTPAGE2 ;else do page 2 
CCD8:9 1 28 178 STA ( SASL) , Y 
CCDA:2C 54 co 179 BIT TXTPAGE1 ;now do page 

II CCDD:E8 180 INX 
CCDE: FO 06 CCE6 181 SEQ CLR3 ;all done 
CCE0:91 28 182 CLR1 STA (SASL),Y 
CCE2:C8 183 !NY ;forward 2 columns 
CCE3 : E8 184 INX ;next ch 
CCE4:DO EF CCD5 185 SNE CLR2 ;not done yet 
CCE6: A6 2A 186 CLR3 LDX BAS2L ;restore X 
CCE8:38 187 SEC ;~ood exit cnndition 
CCE9:60 188 RTS ;and return 
CCEA : 189 * 

II 
\pp<:r :hx I \!on tcr HOM L1stmgs II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

CCEA: 
CCEA: 
CCEA: 
CCEA:AD 
CCE0:30 

C03C 
CCP.F:20 
CCF2 :2C 
CCFS:IO 
CCF7:20 
CCFA : 90 
CCFC : 
CCFC: 
CCFC: 
CCFC: 

CCEA 
FB 04 
40 
194 
31 CD 
lF CO 
12 C009 
91 en 
00 C009 

CCFC 
CA 

CD3C 
co 

CD09 

CCF'C : 20 90 
CCFF:DO 3B 
COOl :2C IF 
CD04 :30 03 
cD06:20 c4 en 
CD09: 
CD09:AD 7B OS 
COOC: 18 
C000:65 20 
CDOF:2C IF CO 
C012:30 06 COlA 
C014:C9 28 
CD16:90 02 COlA 
CD18:A9 27 
CD IA:8D 78 OS 
COID :8S 24 
CDIF :AS 2S 
C02 I :20 BA CA 
C024:2C IF CO 
CD27:10 OS C02E 
CD29 : 
CD29:20 71 C:D 
CD2C: FO 03 C03 1 
C02E: 
C02E:20 60 CD 
CD31: A9 00 
C033 : 2C 1\ C:O 
CD36:30 02 C03A 
C038 :A9 14 
C03A:8S 22 
C03C:60 
C030: 
C030 : 
CD3D : 
C030 :-\D FR (14 
CD40:09 01 
CD42 :DO 05 C049 
CD~~: 

co:.4: 

190 *EXECUTE '40COL MODE': 
191 * 
192 X. DC1 EQU * 
193 LOA MODE ;don'·t convert if Pascal 

BMI X.DClRTS ;=)it's Pascal 
19S X.DClA JSR SETTOP ;set top of window (0 or 20) 
196 BIT RD80VIO ;are we in 80 columns? 
197 BPL x.nC:1B ;a)no , no convert needed 
198 JSR SCRN84 ;else convert 80 to 40 
199 BCC X.DC1B ;•) always set new window 
200 * 
201 * Set 80 column mode 
202 * 
203 X. DC2 
204 
205 
206 
207 
208 
209 * 

EQU * 
JSR TESTCARD 
BNE 
BIT 
BMI 
JSR 

X. DC1RTS 
R080VtD 
X. DC1 B 
SCRN48 

210 X. DCIB LOA OURCH 
211 CLC 
212 
213 
214 
215 
216 
217 
218 X.DC1C 
219 
220 
221 
222 
223 
224 * 
225 0080 
226 
227 * 

ADC 
BIT 

WNDLFT 
RD80VID 

BMI x.nctc 
CMP 1'40 
BCC X. DCIC 
LDA 1139 
STA OURCH 
STA CH 
LDA CV 
JSR BASCALC 
BIT R080VID 
BPL 0040 

JSR 
BF.Q 

FULL80 
SETTOP 

228 0040 JSR FULL40 
229 SETTOP LOA #0 
230 BIT RDTEXT 
231 BMI D040A 
232 LOA P20 
233 D040A STA WNDTOP 
234 X. DCIRTS RTS 
235 * 

;is there an 80 col umn ca rd? 
;•>no, can't do this 
;are we in 40 columns? 
;•>no, no convert needed 
;else convert 40 to 80 

;get cursor 
;since new window lef t 
;NEWCH~OLDCH+OLDWNDLFT 

;in 80 columns? 
; ~>yes, CH is ok 
;elsP if CH is too big, 
;!'et it to 39 

;save new CH 

;base 

;in 80 column-s? 

- 0 

; •>no, set forty column window 

;set RO column window 
;a)always branch 

;set 40 column window 
;assume nor~~l window 
; text or mixed? 
; z)text . a 11 ok 

;set new top 

236 * EXECun; MOUSE TF:XT OFF 
237 * 
238 MOUSEOFF LDA MODE 
239 ORA IIM. MOUSE ;s~>t mouse bit 
240 BNE SMOUSE ;to disable mouse chars 
241 * 
242 * F.XECUTE ~OUSE TEXT ON 



CD44: 243 * 
CD44 :AD FB 04 244 MOUSEON LOA MODE 
CD47:29 FE 245 AND 11255-H.MOUSE ;clear mouse bit 
CD49: 80 FB 04 246 SMOUSE STA MODE ;to enable mouse chars 
CD4C:60 247 RTS 
CD4D: 248 * 
CD4D: 249 *EXECUTE 'QUIT': 
CD4D: 250 * 
CD4D: CD4D 251 X. NAK EQU * 
CD4D:AD FB 04 252 LOA MODE ;ONLY VALID IN BASIC 
CD50:30 lA CD6C 253 BMI SKRTS ;ignore if pascal 
CD52:20 2E CD 254 JSR 0040 ;force 40 column window 
CD55:20 80 CD 255 JSR QUIT ;do stuff used by PR#O 
CD58:20 64 CD 256 JSR SETCOUTl ;set output hook 
CD5B: 257 * 
CD5B:A9 FD 258 SETKEYIN LOA II<KEYIN ;set input hook 
CD5D:85 39 259 STA KSWH 
CD5F:A9 18 260 LOA //)KEYIN 
CD61:85 38 261 STA KSWL 
CD63:60 262 RTS 
CD64: 263 * 
CD64:A9 FD 264 SETCOUTl LOA II<COUTl ;set output hook 

II 
CD66:85 37 265 STA CSWH 
CD68:A9 FO 266 LOA #)COUTl 
CD6A:85 36 267 STA CSWL 
CD6C:60 268 SKRTS RTS 

II 
CD6D: 269 * 
CD6D: 270 **************************************** 
CD6D: 271 * NAME FULL40 
CD6D: 272 * FUNCTION: SET FULL 40COL WINDOW II 
CD6D: 273 * INPUT NONE 
CD6D: 274 * OUTPUT WINDOW PARAMET~RS, A2 0 
CD6D: 275 * VOLATILE: AC 
CD6D: 276 **************************************** II 
CD6D: 277 * 
CD6D: CD6D 278 FULL40 EQU * 
CD6D:A9 28 279 LOA 1140 ;set window width to 40 
CD6F :DO 02 CD73 280 BNE SAVWDTH ;•>(always taken) II 
CD71: 281 * 
CD71: 282 **************************************** 
CD71: 283 * NAME FULL80 
CD71: 284 * FUNCTION: SET FULL 80COL WINDOW 
CD71: 285 * INPUT NONE 
CD71: 286 * OUTPUT WINDOW PARAMETERS, A•O 
CD71: 287 * VOLATILR: AC 
CD71: 288 **************************************** 
CD71: 289 * 
CD7l: A9 50 290 FULL80 LOA 080 ;set full 80 column window 
CD73:85 21 291 SAVWDTH STA WNDWDTH 
CD75:A9 18 292 LOA 1124 
CD77 :85 23 293 STA WNDBTM 
CD79:A9 00 294 LOA 110 
CD7B:85 22 295 STA WNDTOP 
CD7D:85 20 296 STf. WNDLFT II 

II 
II 

·\ppendlX 1: Momtor ROM Lt'tmg~ II 



II 
II 
II 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

CD7F:60 
COSO: 
COSO: 
COSO: 
CD80: CD80 
CDS0:2C If CO 
CDS3:10 03 CDS8 
CDS5: 20 EF CC 
CDS8: SD OE CO 
CDBB:A9 FF 
CDBD: SD FB 04 
CD90:60 
CD91: 
CD91: 
CD91: 
CD91: 
CD91: 
C091 :SA 
CD92 :4S 
CD93:A2 17 
CD95:80 01 CO 
CD9S:SA 
CD99:20 BA CA 
CD9C:AO 27 
CD9E:84 2A 
CDAO :98 
COAl :4A 
CDA2:BO 03 CDA7 
CDA4: 2C 55 CO 
CDA7:A8 
CDAS:B1 2S 
CDAA:2C 54 CO 
CDAD:A4 2A 
CDAF:91 2S 
CDB1:SS 
CDB2:10 EA CD9E 
CDB4:CA 
CDB5:30 04 COBB 
CDB7 : E4 22 
CDB9:B0 DO CD9S 
COBB: 80 00 C':O 
CDBE:SD OC CO 
CDCl :4C F8 CD 
CDC4: 
CDC4:SA 
CDC5 :4S 
CDC6:A2 17 
CDCS:SA 
CDC9:20 BA CA 
CDCC:AO 00 
CDCE:SD 01 CO 
CDD1:Bl 2S 
CDD3:84 2A 
CDD5:4S 

297 RTS 
29S * 
299 * QUIT is used by PRUO to turn off Pverything 
300 * 
30 l QUIT 
302 
303 
304 
305 QUIT2 
306 
307 
308 
309 * 

EQU * 
BIT RDSOVID ;were we in SO columns? 
BPL QUIT2 ;•> not a chance 
JSR X.DClA ;switch to 40 columns 
STA CLRALTCHAR ;don't u~e lower case 
LDA #$FF ;DESTROY THE 
STA MODE ; MODE BYTE 
RTS 

310 * SCRNS4 and SCRN4S convert screPns between 40 & 80 cols . 
311 * WNDTOP must be set up to indica t e the last line to 
312 * be done. All registers are trashed. 
313 * 
314 SCRNS4 TXA 
315 PHA 
316 
317 
318 SCR1 
319 
320 
321 SCR2 
322 
323 
324 
325 
326 SCR3 
327 
32S 
329 
330 
331 
332 
333 
334 
335 
336 
'3'37 SCR4 
338 
339 
340 * 

LOX 
STA 
TXA 

/123 
SETSOCOL 

JSR BASCALC 
LOY 1/39 
S'fY BAS2L 
TYA 
LSR A 
BCS SC:R3 
BIT TXTPAGE2 
TAY 
LOA 
BIT 
LOY 
STA 
DEY 
BPL 
DEX 
SMI 
CPX 
BCS 
STA 
STA 
JMP 

( BASL) I y 
TXTPAGEl 
BAS2L 
( BASL), Y 

SCR2 

SCR4 
WNDTOP 
SCRl 
CLRSOCOL 
CLRSOVID 
SCRNRET 

341 SCRN4S TXA 
342 PHA 
343 
344 SCR5 
345 
346 
347 
34S SCR6 
349 SCRS 
350 

LOX 
TXA 
JSR 
LOY 
STA 
LOA 
STY 
PHA 

1123 

BASCALC 
110 
SETSOCOL 
(BASL),Y 
BAS2L 

;save X 

;start at bottom of screen 
;allow page 2 access 
;calc base for line 

;start at right of screen 
;save 40 index 
;div by 2 for SO column index 

;even column , 
;get SO index 
;get SO char 
;restore pagel 
;get 40 index 

do page 2 

;do next 40 byte 
;do next line 
;•>done with setup 
;at top yet? 

;clear SOSTORE for 40 columns 
;clear 80VID for 40 columns 
;calc base, restore X, exit 

;save X 

;start at bottom of screen 
;set base for current line 

;start at left of screen 
;enable page2 store 
;get 40 column char 
;save 40 column index 
;save char 

AppendiX 1: ~lomtor ROM LlstmJS 



CDD6:98 
CDD7:4A 
CODB:BO 03 CDDD 
CDDA:8D 55 CO 
CDDD:A8 
CDDF.:68 
CDDF:91 28 
CDE1:8D 54 CO 
coe4:A4 2A 
CDE6:C8 
CDE7 :CO 28 
CDE9:90 E6 COOl 
CDEB:20 SO CC 
CORE :CA 
CUEF:30 04 CDFS 
CDFl :E4 22 
CDF3:BO 03 CDC8 
COFS:8D 00 CO 
COF8: 20 FE CO 
CDFB:68 
COFC:AA 
CDFD:60 
CDFE: 
CDFE:AS 25 
C£00:80 FB OS 
o:03: 20 l!A CA 
CE06: AS 20 
CE08:2C lF CO 
CEOB:LO DL CEOE 
CEOD:4A 
CEOE:l8 
CEOF: 65 28 
CEll :85 28 
c~~l3:60 
C£14: 
CE14 :C9 1::1 
CEI6:90 06 CEIE 
C~: 18 :C9 FB 
CElA:BO 02 CEIE 
CELC:29 OF 
Ct:lt::60 
CEIF: 
CE!F: 
CElF: 
CE!F: 
CE!F: 
CE!F: 
CE!F: 
CE!F: 
CF.lF: 
CEIF: 
CElF: 
CE!F:AD Fll 04 
CE22 :29 10 

351 
352 
353 
354 
355 SCR7 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 

TYA 
LSR A 
BCS SCR7 
STA TXTPAGE2 
TAY 
PLA 
STA 
STA 
LOY 
!NY 
CPY 
ace 

( BASL), Y 
TXTPAGEl 
BAS2L 

1140 
SCR6 

JSR CLRHALF 
DEX 
BMI SCR9 
CPX WNDTOP 
BCS SCRS 

368 SCR9 STA SET80VID 
369 SCRNRET JSR VTAB 
370 PLA 
371 TAX 
372 RTS 
373 * 
374 VTAB LOA CV 
375 STA OURCV 
376 VTABZ JSR BASCALC 
377 LOA WNDLFT 
378 BIT RDBOVID 
379 BPL VTAB40 
380 LSR A 
381 VTAB40 CLC 
382 ADC BASL 
383 STA BASL 
384 VTABX RTS 

29 INCLUDE SUBS3 
1 UPSHFT CMP liSE! 
2 BCC UPSHFT2 
3 CMP #$FB 
4 BCS UPSHFT2 
5 AND li$DF 
6 UPSKFTZ RTS 

7 * 

;div 2 for 80 column indPx 

;silve on pa)!;e1 

;get 80 column index 
;now save character 

;flip pagel 
;restore 40 column index 
;move to the right 
;at ri!!ht yet? 
;=>no, do next column 
;clear half of screen 
;else do next line of screen 
;s)done with top line 
;at top yet? 

;convert to 80 columns 
;update hasP 
; restore X 

;get 80 column CV 
;copy to OURCV 
;calc base addr ess 
;and add window left to it 
;is it 80 columns? 
;window width ok 
;else divide width by 2 
; prepare to add 
;ildd in window left 
;and update base 
;and exit 

;is it lowercase? 
;s)nope 
;lowercase? 
;=>nope 
;else upshift 

8 **************************************** 
9 * NAME INVERT 

10 * FUNCTION: INVERT CHAR AT CH/CV 
11 * Unless Pascal and M.CURSORsl 
12 * INPUT NOTHING 
13 * OUTPUT CHAR AT CH/CV INVERTED 
14 * VOLATILE: NOTHING 
15 * CALLS PICK, STORCHAR 
16 **************************************** 
17 * 
18 PASINV LOA 
19 AND 

MODE ;check pascal cursor flag 
#M. CURSOR ;before displaying cursor 

\pJX'ntlix I \ lumtor 1(0\1 L:~tin~' 

II 
II 
II 

II 

II 
II 
II 
II 
II 



I CE24:DO 11 CE37 20 BNE INVX =>cursor off , don't invert 
CE26:48 21 INVERT PHA save AC 

II 
C£27:98 22 TYA ANn Y 
CE28 :48 23 PHA 
CE29:AC 7B OS 24 LOY OURCH ;GET CH 
CE2C:20 44 CE 25 JSR PICK ;GF.T CHARACTER 

I 
CE2F:49 80 26 EOR /1$80 ;FLIP INVERSE/NORMAL 
CE31 :20 70 CE 27 JSR STORIT ; ONTO SCREEN 
CE34: 68 28 PLA ;RESTORE Y 
CE3S:A8 29 TAY ; AND AC 
CE36 :68 30 PLA 

I CE37:60 31 INVX RTS 
CE38: 32 **************************************** 
CE38: 33 * NAME STORCHAR 
CE38: 34 * FUNCTION: STORE A CHAR ON SCREEN 

I CE38: 35 * INPUT AC=CHAR 
CE38: 36 * Y~CH POSITION 
CE38: 37 * OUTPUT CHAR ON SCREEN 
CE38: 38 * VOLATILE: NOTHING 

I CE38: 39 * CALLS SCREE NIT 
CID8: 40 **************************************** 
CE38: 41 * 
CE38: CE38 42 STORCHAR EQU * 
CE38:48 43 PHA ;SAVE AC 
CE39:24 32 44 BIT INVFLG ;NORHAL OR INVERSE? 
CE3B:30 02 CE3F 45 BMI STORZ ;=> NORMAL 
CE3D:29 7F 46 AND /IS7F ; inverse it 

I CE3F: CE3F 47 STORZ EQU * 
CE3F:20 70 CE 48 JSR STORIT ;=>do it!! 
CE42:68 49 PLA ;RESTORE AC 
CE43:60 50 SEV RTS 

I CE44 : 51 **************************************** 
CE44: 52 * NAME PICK 
CE44: 53 * FUNCTION: GET A CHAR FROM SCREEN 
CE44: 54 * INPUT Y=CH POSITION 

I CE44: 55 * OUTPUT AC=CHARACTER 
CE44: 56 * VOLATILE: NOTHING 
CE44: 57 * CALLS SCREENIT 
CE44 : 58 **************************************** 

I CE44: 59 * 
CE44: Bl 28 60 PICK LDA (BASL) , Y ;Jl:et 40 column character 
CE46:2C 1F co 61 BIT RD80VID ;80 columns? 
CE49 : 10 19 CE64 62 BPL PICK3 ;=>no, <!o text shift 

I CE4B:8D 01 CO 63 STA SET80COL ; force SO STORE for 80 columns 
Ct::4E:84 2A 64 STY BAS2L ;temp store for pos ition 
CE50:98 65 TYA ;divide CH by two 
CES1 :45 20 66 EOR WNDLFT ;C=l if char in main RAM 

I 
CE53:6A 67 ROR A ;get low bit into carry 
CE54 : BO 04 CESA 68 BCS PICK! ;=>store in main memory 
CES6:AD 55 CO 69 LOA TXTPAGE2 ;else switch in page 2 
C£59:C8 70 INY ; for odd l eft , aux bytes 

I 
CESA:98 71 PICK! TYA ;divide position by 2 
CESB:4A 72 LSR A ;and use carry as 
CESC:A8 73 TAY ;page indicator 

I 

I 
I App1 n<hx I. Momtnr RO~! Lt~iiEg~ 341 



CE5D:B1 28 
CE5F:2C 54 CO 
CE62 :A4 2A 
CE64:2C lE CO 
CE67:10 06 CE6F 
CE69:C9 20 
CE6B:BO 02 
CE6D:09 40 
CE6F:60 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
CE70: 
C~70: 

CE70:48 

CE6F 

CE71 :29 FF 
CE73:30 16 CE88 
CE75:AD FB 04 
CE78:6A 
CE79:68 
CE7A:48 

CE8B 
co 

CE8B 

CE7B:90 DE 
CE7D : 2C lE 
CE80:10 09 
CE82:49 40 
CE84:2C AC CE 
CE87 :FO 02 CE8B 
CE89:49 40 
CE8B: 
CE8B:2C lF CO 
CE8E:l0 lD CEAD 
CE90:8D 01 CO 
CE93:48 
CE94 :84 2A 
CE96:98 
CE97: 45 20 
CE99:4A 
CE9A:BO 04 CEAO 
CE9C:AD 55 CO 
CE9F:C8 
CEA0:98 
CEAl :4A 
CEA2:A8 
CEA3 :68 
CEA4:91 
CEA6:AD 
CEA9 :A4 

'" 

28 
54 co 
2A 

74 PICK2 
75 
76 

LOA ( BASL) , Y 
BIT TXTPAGE1 
LOY BAS2L 

;get that char 
;flip to page 1 

77 
78 
79 

PICK3 BIT 
BPL 
CMP 
BCS 
ORA 
RTS 

ALTCHARSET ;only allow mouse text 
PICK4 ; if alternate character 
11$20 

80 
81 
82 PICK4 
83 • 

PICK4 
11$40 

84 •••••••••••••••••••••••••••••••••••••••• 
85 * NAME STORIT 
86 * FUNCTION: STORE CHAR 
87 * INPUT AC~char for store 
88 * Z•high bit of char 
89 * Y*CH POSITION 
90 * OUTPUT ACaCHAR (PICK) 
91 * VOLATILE: NOTHING 
92 * CALLS NOTHING 

93 ··························•••*********** 94 • 
95 STORIT PHA 
96 AND II$FF 

BMI STORE! 
LOA MODE 

97 
98 
99 ROR A 

PLA 

STORE! 

;s"'ve char 
;if high bit set • •• 
;=>not mouse text 
;is mouse text enabled? 
;use carry as flag 

;and res t o re char 
;need t o save it too PHA 

BCC 
BIT ALTCHARSET ;only do mouse text if 

set 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 • 

BPL STORE! ;alt char set switched in 
EOR 
BIT 
BEQ 
EOR 

110 STORE! BIT 
111 BPL 
112 STA 
113 PHA 
114 STY 
115 TYA 
116 EOR 
117 LSR 
118 BCS 
119 LOA 
120 !NY 
121 STORE2 TYA 
122 LSR 
123 TAY 
124 STORIT2 PLA 
125 STA 
126 LOA 
127 LOY 

#$40 ;do mouse shift 
HEX60 ;is it in proper range? 
STORE! ;a)yes, leave it 
#$40 ;else shift it back 

RD80VID 
STOR40 
SET80COL 

11AS2L 

WNOLFT 
A 
STORE2 
TXTPAGE2 

A 

( BASL) , Y 
TXTPAr.E 1 
BAS2L 

;80 columns? 
;=>no, 40 columns 
;force 80STORE for 80 columns 
;save shifted character 
; temp storage 
;get position 
;C•l if char in main RAM 

;=)yes , main RAM 
;else flip in main RAM 
;do this for odd left bytes 
;get position 
;and divide it by 2 

;restore ace 
;save to screen 
;flip to page 1 

-\ppendix I ~-lomtor Rmt Ltstmgs 

II 

II 

• 
II 

II 

II 

II 



CEAB:68 128 PLA ;restore true Ace 
CEAC:60 129 HEX60 RTS ;and exit 
CEAD : 130 * 

I CEAD :91 28 131 STOR40 STA (BASL),Y ;quick 40 column store 
CEAF:68 132 PLA ;restore real char 
CEB0:60 133 RTS 
CEB1: 134 ************************************"'*** 

I CEB1: 135 "' NAME ESCON 
CEB1: 136 "' FUNCTION: TURN ON 'ESCAPE' CURSOR 
CEBl : 137 "' INPUT NONE 
CEB1: 138 * OUTPUT 'CHAR'~ORIGINAL CHAR 

I CEBl : 139 * VOLATELE: NOTHING 
CEB1: 140 * CALLS PICK, STORCHAR 
CEBl: 141 *******"'"'"'"'*****"'"'******"'"'"'"'"'*"'*"'******* 
CEB1: 142 * 

I CEBl: CEB1 143 ESC ON EQU "' CEB1:48 144 PHA ;SAVE AC 
CEB2:98 145 TYA ; ANDY 
CEB3:48 146 PHA 

I 
CEB4: AC 7B OS 147 LDY OURCH ;GET CH 
CEB7:20 44 CE 148 JSR PICK ;GET ORIGINAL CHARACTER 
CEBA:8D 7B 06 149 STA CHAR ; AND REMEMBER FOR ESCOFF 
CEBD:29 80 150 AND 11$80 ;SAVE NORMAL/INVERSE BIT 

I 
CEBF:49 AB 151 EOR II$AB ;MAKE IT AN INVERSE '+' 
CEC1:4C CD CE 152 JMP ESCRET ; RETURN VIA SIMILAR CODE 
CEC4 : 153 **************************************"'* 
CEC4: 154 * NMIE ESCOFF 

I 
CEC4 : 155 * FUNCTION: TURN OFF ' ESCAPE' CURSOR 
CEC4: 156 * INPUT ' CHAR'•ORIGINAL CHAR 
CEC4: 157 * OUTPUT NONE 
CEC4: 158 * VOLATILE : NOTHING 

I 
CEC4: 159 * CALLS STORCHAR 
CEC4: 160 ***************"'************************ 
CEC4: 161 * 
CEC4 : CEC4 162 ESCOFF EQU * 

I 
CEC4:48 163 PHA ;SAVE AC 
CEC5:98 164 TYA ; AND Y 
CEC6:48 165 PHA 
CEC7 :AC 7B OS 166 LOY OURCH ;GET CH 

I 
CECA :AD 7B 06 167 LOA CHAR ;GET ORIGINAL CHARACTER 
CECD: CECD 168 ESC RET EQU * ;USED BY ESCON 
CECD:20 70 CE 169 JSR STORIT EXACTLY AS IT WAS 
CEOO :68 170 PLA ;RESTORE Y 
CED1:A8 1 71 TAY 

I CED2:68 172 PLA ; AND AC 
C!::D3:60 173 RTS 
CED4: 174 **************************************** 
CED4: 175 * NAME PSETUP 
CED4: 176 * FUNCTION: SETUP ZP FOR PASCAL 
CED4 : 177 * INPUT NONE 
CED4 : 178 * OUTPUT NONE 
CEO.:.: 179 * VOLATILE: AC 

I CEDi.: 180 * CALLS NOTHING 
CSY.: 181 **************************************** 

\pp~nctix I· ~lonitor ROM Listings 343 



CED4: 
CED4: CED4 

71 CD CED4:20 
CED7:A9 FF 
CED9:85 32 
CEDB: 
CEDB:AD ~'B 04 
CEDE:29 04 
CEEO:FO 02 CEE4 
CEE2:46 32 
CEE4: 
CEE4: CEE4 
CEE4 :AD 78 07 
CEE7:85 28 
CEE9:AD FB 07 
CEEC:85 29 
CEEE:AD FB 05 
CEF1:85 25 
CEF3 :60 
CEF4: 
CEF4: 
CEF4 : 
CEF4: 
CEF4: 
CEF4: 
CEF4: 
CEF4: 
CEF4 :2C 12 CO 
CEF7:10 3D CF36 
CEF9:A9 06 
CEFB:CD 113 FB 
CEFE:FO 36 CF36 
CFOO: A2 03 
CF02:2C 11 CO 
CF05 : 30 02 CF09 
CF07: A2 OB 
CF09:8D 83 FB 
CFOC:2C 80 CO 
CFOF:AD 83 FB 
CF12:C9 06 
CF14:FO 01 CF17 
CF16: E8 
CF17:2C 81 CO 
CF1A :2C 81 CO 
CFlD :AO 00 
CFlF:A9 F8 
CF21:85 37 
CF23:84 36 
CF25:B1 36 
CF27:91 36 
CF29:C8 
CF2A:D0 F9 CF25 
CF2C:E6 37 
CF2E:DO F5 CF25 
CF30:BD 80 CO 
CF33:BD 80 CO 
CF36:60 

182 * 
183 PSETUP EQU * 
184 JSR FULL80 ;SET FULL BOCOL WINDOW 
185 IS80 LOA #255 
186 STA INVFLG ;ASSUHE NORMAL MODE 
187 * 

LOA MODE 
AND liM. VHODE 

188 
189 
190 
191 
192 * 

BEQ 
LSR 

PSETUPRET ;=>IT ' S NORMAL 
INVFLG ;MAKE IT INVERSF. 

193 PSETUPRET EQU * 
194 LDA OLDBASL 
195 STA BASL 
196 LDA OLDBASH 
197 STA BASH 
198 LDA OURCV 
199 STA CV 
200 RTS 

;SET UP BASE ADDRESS 

;get user's cursor vertical 
; and set it up 

201 **************************************** 
202 * 
203 * COPYROM is called when the video firmware is 
204 * initialized. If the language card is switched 
205 * in for reading, it copies the F8 ROM to the 
206 * language card and restores the state of the 
207 * language card . 
208 * 
209 COPYROM BIT RDLCRAM 
210 BPL 
211 LOA 
212 CMP 
213 BEQ 
214 LDX 
215 BIT 
216 IIMI 
217 LDX 
218 BANK2 STA 
219 BIT 
220 LDA 
221 CMP 

ROMOK 
IIGOODFB 
F8VERSION 
ROMOK 
113 
RDLCBNK2 
BANK2 
I1$B 
F8VERSION 
$C080 
FBVERSION 
IIGOODF8 

222 BI!:Q WRTENBL 

223 INX 
224 WRTENBL BIT $C081 
225 BIT $C081 
226 LOY lf$0 
227 LDA #$F8 
228 STA CSWH 
229 STY CSWL 

;is the LC switched in? 
;~>no , do nothing 
;yes, check $F8 RAM 
;does it match? 
;%> assum ROM is there 
;indicate bank 2, RAM write enabled 
;is it bank 2? 
;=)yes , we we r e right 
;no , bank 1, RAM write enabled 
;write to see if LC is 
;write protected (read RAM) 
;did it change? 

;=)yes, write enahled 
;else indicate write protect 
;read ROM, write RAM 
;twice is nice 
;now copy ROM to RAM 

;hooks set later 

230 COPYROM2 LOA ( CSWL), Y ;get a byte 
231 STA (CSWL),Y ;and move it 
232 INY 
233 BNE COPYROM2 
234 INC CSWH 
235 BNE COPYROM2 
236 LDA $C080,x 
237 LDA $C080 , x 
238 ROMOK RTS 

;next page 
;finish copy 
; read RAM 

; done with ROM copy 

II 

II 
II 

II 

II 
II 
II 



I 0000: 0000 Tl::ST EQU 0 

0000: 2 LST On,A, V 

I 0000: 0001 3 IRQTEST EQU 1 
0000: 4 MSB ON ; SgT THEM HIBITS 
0000: 0000 5 DO TEST 

s 6 F80RG EQU $1800 

I s 7 IOADR EQU $2000 ;For set ting PR# hooks 
s 8 C10RG EQU $2100 
s 9 C30RG EQU $2300 
s 10 C80RG EQU $2800 

I 0000: 11 ELSE 
0000: F800 12 F80RG EOU $Fil00 
0000: C100 13 ClORG EQU $Cl00 
0000: C300 14 C30RG EQU $C300 

I 0000: C800 15 C80RG EQU SC800 
0000: 16 FIN 

0000: 2 ******************************** 

I 0000: 3 * 
0000: 4 * APPLE II 
0000: 5 * MONITOR II 
0000: 6 * 

I 0000: 7 * COPYRIGHT 1978, 1981, 1984 BY 
0000: 8 * APPLE COMPUTER , INC . 
0000: 9 * 
0000: 10 * ALL RIGHTS RESERVED 

I 0000: 11 * 
0000: 12 * S. WOZNIAK 1977 
0000: 13 * A. BAUM 1977 
0000 : 14 * JOHN A NOV 1978 

I 
0000: 15 * R. AURICCHIO SEP 1981 
0000: 16 * E. REERNlNK 1984 
0000: 17 * 
0000: 0001 18 APPLE2F. EQU ;COND ASSM/RRA0981 

I 
0000: 19 * 
0000 : 20 ******************************** 
F800: F800 21 ORG F80RG 
F800: 2000 22 OBJ $2000 

I 
F800: 23 ******************************* 
F800: 24 * 
F800: 25 * Zero Page Equates 
F800 : 26 * 

I 
F800 : 0000 27 LOCO EQU $00 ;vec t o r for autos t from disk 
F800: 0001 28 LOC1 EQU $01 
F800: 0020 29 WNDLFT EQU $20 ;left edge of text wind ow 
F800: 0021 30 WNDWDTH EQU $21 ;width of text window 
F800: 0022 31 WNDTOP EQU $22 ;top of text window 
F800 : 0023 32 WNDBTM EQU $23 ;bottom+1 of text window 
F800: 0024 33 CH EQU $24 ;cursor horizontal position 
F800: 0025 34 cv EQU $25 ;cursor vertical position 

I 
F800: 0026 35 GBASL EQU $26 ;lo-res graphics base addr. 
F800: 0027 36 GBASH EQU $27 
F800: 0028 37 BASL EQU $28 ;text base address 

I 

I \ppend..x I Monitor Jt0~1 LI<' ngs 345 



FllOU: 0029 38 BASH EQU $29 ( 
F800: 002A 39 BAS2L EQU S2A ;temp base for scrolling 
F800: 002B 40 BAS2H EQU $26 
F800: 002C 41 H2 EQU $2C ;temp for la-res graphics 
F800 : 002C 42 LMNEM E()U $2C ;temp for ~nemonic decoding 
F800: 0020 43 V2 EOU $20 ;temp for la-res graphics 
F800: 0020 44 RMNEM EQU $20 ;temp for mnemonic decoding 
F800: 002E 45 MASK F:QU S2E ;color mask for la-res gr. 
F800: 002E 46 CHKStl)i EQU $2E ;temp for opcode decode 
F800: 002E 47 FORMAT EOU $2E ;temp for opcode decode 
F800: 002F 48 LAS TIN EQU S2F ;temp for tape read csum 
F800: 002F 49 LENGTH EQU $2F ;temp for opcode decode 
F800: 0030 50 COLOR EQU $30 ;color for lo-res graphics 
F800: 0031 51 MODE EQU $31 ;Monitor mode 
F800: 0032 52 INVFLG EQU $32 ;normal/inverse(/flash) 
F800: 0033 53 PROMPT EQU $33 ;prompt character 
F800: 0034 54 YSAV EOU $34 ;position in Monitor command 
F800: 0035 55 YSAVl EQU $35 ;temp for Y register 
F800: 0036 56 CSWL EQU $36 ;character output hook 
F800: 0037 57 CSWH EQU $37 

II F800: 0038 58 KSWL EQU $38 ;character input hook 
F800: 0039 59 KSWH EQU $39 
F800: 003A 60 PCL F.OU $3A ;temp for program counter 
F800: 003B 61 PCH EQU $38 

II F800: OOJC 62 AlL EOU $3C ;Al-AS are Monitor temps 
F800: 0030 63 AlH EQU $30 
F800: 003E 64 A2L EQU SJE 
F800: 003F 65 A2H EQU $3F 

II F800: 0040 66 A3L EQU $40 
F800: 0041 67 A3H EQU $41 
F800: 0042 68 A4L EQU $42 
F800: 0043 69 A4H EQU $43 -F800: 0044 70 A5L EQU $44 
F800: 0044 71 HACSTAT EQU $44 ;machine state for break 
F800: 0045 72 ASH EQU $45 
F800: 0045 73 ACC EQU $45 ;Ace after break (destroys ASH) 

II F800: 0046 74 XREG EQU $46 ;X reg after break 
F800 : 0047 75 YREG EQU $47 ;Y reg after break 
F800: 0048 76 STATUS EQU $48 ;P reg after break 
F800: 0049 77 SPNT EQU $49 ;SP after break 
F800: 004E 78 RNOL EQU $4E ;random counter low 
F800: 004F 79 KNUH EQU $4F ;random counter high 
F800: 80 * 
F800: 0095 81 PICK EQU $95 ;CONTROL- U character 
F800: 82 * II F800: 0200 83 IN EQU $0200 ;input buffer for GETLN 
F800: 84 * 
F800: 85 * Page 3 vectors 
F800: 86 * 
F800: 03FO 87 BRKV EQU $03FO ;vectors here after break 
F800 : 03F2 88 SOFTEV EQU $03F2 ;vector for warm start 
F800: 03F4 89 PWREDUP EQU $03F4 ;THIS MUST • EOR #$A5 OF SOFTEV+l 
F800 : 03F5 90 AMPERV EQU $03F5 ;APPLESOFT & EXIT VECTOR II F800 : 03F8 91 USRADR EQU $03F8 ;Applesoft USR function vector 

-
II 

Ap~t>ril1x I· ~lomtrr Rmt Listir.gs -



FBOO : 03FB 92 NMI EQU $03FB ; NMI vector 
F800 : 03FE 93 IRQLOC EQU $03FE ;Maskable interrupt vector 
FB OO : 94 * 
F800 : 0400 9S LINE! EOU $0400 ;first line of text Rcreen 
FBOO: 07F8 96 MSLOT EQU $07F8 ;current user of sea space 
FBOO : 97 * 
F800 : 0000 98 DO TEST 
F800 : 99 ELSE 
F800: cooo 100 IOADR EQU scooo 
F800: 101 FIN 
F800: 102 * 

I FBOO: cooo 103 KBO EQU $COOO 
F800 : C006 104 SLOTCXROM EQU $C006 ;enable slots 1-7 
FBOO: C007 lOS INTCXROM EOU $C007 ;swap out slots for firmware 
F800 : COlO 106 KBDSTRB EQU $COlO 

I FBOO: COIF 107 ROBOVIO EQU $COIF 
F800: C020 108 TAPEOUT EQU $C020 
FBOO: C030 109 SPKR EQU $C030 
FBOO: coso 11 0 TXTCLR EQU $COSO 

I FBOO: COSl 111 TXTSET EQU SC051 
F800: COS2 112 MIXCLR EOU SC052 
FBOO: COS3 113 MIXSET EQU $C0 53 
FBOO: COS4 114 LOWSCR EQU $C0 54 

I FBOO: COSS 115 HISCR EQU $C0 55 
FBOO: C0 56 116 LORES EQU $C0 56 
FBOO: C0 57 117 HIRES EOU SC057 
FBOO : C0 58 118 SETANO EOU $C0 58 

I FBOO: C0 59 119 CLRANO EQU $COS9 
F800: COSA 120 SETAN1 EQU SCOSA 
FBOO: COSB 121 CLRAN1 EQU $COSB 
FBOO: cosc 122 SETAN2 EQU $COSC 

I 
F800: coso 123 CLRAN2 EQU $COSO 
F800: COSE 124 SETAN3 EQU $COSE 
F800: COSF 12S CLRAN3 EQU $COSF 
F800: C060 126 TAPE IN EQU $C060 

I 
FBOO: C064 127 PADOLO EQU $C064 
FBOO : C070 128 PTRIG EQU SC070 
FBOO: 129 * 
FBOO: C3FA 130 IRQ EQU C30RG+$FA ;IRQ entry in $C3 page 

I 
F800: C47C 131 IRQ FIX EQU C30RG+$17C ;Restore state at IRQ 
F800: 132 * 
F800 : C567 133 XHEAOER EQU C30RG+$267 
FBOO: CSOl 134 XREAO EQU C30RG+$201 

I 
F800: CSAA 135 WRITE2 EQU C30RG+$2AA 
FBOO: 136 * 
F800: CFFF 137 CLRROM EQU SCFFF 
F800 : EOOO 138 BASIC EQU $EOOO 

I 
FBOO: E003 139 BASIC2 EQU $E003 
FSOO : 140 * 
F800 :4A 141 PLOT LSR A ;Y-COOR0/2 
F801 :08 142 PHP ;SAVE LSII IN CARRY 

I 
F8!"12:20 G7 F8 143 JSR GBASCALC ;CALC BASE ADR IN GBASL ,H 
!80S : 28 144 PLP ;RESTORE LSB FROM CARRY 
F806 :A9 OF 145 LOA U$0F ;MASK $OF IF EVEN 

I 

I A p;>ndix 1: ~lonitor ROM Listmgs 347 



F808:90 02 F80C 146 BCC RTMASK 
F80A:69 EO 147 ADC liS EO ;MASK SFO IF ODD 
F80C:85 2E 148 RTMASK STA MASK 
F80E:B1 26 149 PLOT1 LOA (GBASL), Y ;DATA 
F810:45 30 150 EOR COLOR XOR COLOR 
F812:25 2E 151 AND MASK AND MASK 
F814:51 26 152 EOR ( GBASL), Y XOR DATA 
F816:91 26 153 STA (GBASL) , Y TO DATA 
F818:60 154 RTS 
F819: 155 * 
F819:20 00 F8 156 HLINE JSR PLOT ;PLOT SQUARE 
F81C:C4 2C 157 HLINEl CPY H2 ;DONE? 
F81E:Il0 11 F831 158 BCS RTSI ; YES, RETURN 
F820:C8 159 INY ; NO , !NCR INDEX (X-COORD) 
F82L:20 OE F8 160 JSR PLOT1 ;PLOT NEXT SQUARE 
F824: 90 F6 F81C 161 BCC HLINEl ;ALWAYS TAKEN 
F826:69 01 162 VLINEZ ADC 11$01 ;NEXT Y-COORD 
F828 :48 163 VLINE PHA ; SAVE ON STACK 
f829:20 00 F8 164 JSR PLOT ; PLOT SQUARE 
F82C:68 165 PLA II F82D:C5 20 166 CMP V2 ;DONE? 
F82F:90 F5 F826 167 BCC VLINEZ ; NO, LOOP. 
F831: 60 168 RTS1 RTS 
F832: 169 * 
F832:AO 2F 170 CLRSCR LOY II$2F ;MAX Y, FULL SCRN CLR 
F834:DO 02 F838 171 BNE CLRSC2 ; ALWAYS TAKEN 
F836:AO 27 172 CLRTOP LOY 11$27 ;MAX Y, TOP SCRN CLR 
F838:84 20 173 CLRSC2 STY V2 ;STORE AS BOTTOM COORD 

II F83A: 174 FOR VLINE CALLS 
F83A:AO 27 175 LOY DS27 ;RIGHTMOST X-COORD (COLUMN) 
F83C:A9 00 176 CLRSC3 LOA nsoo ;TOP COORD FOR VLINE CALLS 
F83E:85 30 177 STA COLOR ;CLEAR COLOR (BLACK) 

II F840:20 28 F8 178 JSR VLINE ;DRAW VLINE 
F843 :88 179 OEY ;NEXT LEFTMOST X-GOORD 
F844 : 10 F6 F83C 180 BPL CLRSC3 ;LOOP UNTIL DONE . 
F846:60 181 RTS 

II F847: 182 * 
F847:48 183 GBASCALC PHA ;FOR INPUT OODEFGH 
F848 :4A 184 LSR A 
F849:29 03 185 AND #$03 -F84B:09 04 186 ORA f$04 ;GENERATE GBASH=OOOOOlFG 
F84D:85 27 187 STA GBASH 
F84F:68 188 PLA ;AND GBASL•HDEDEOOO 
F850 : 29 18 189 AND li$18 

II F852 :90 02 F856 190 BCC GBCALC 
F854:69 7F 191 ADC I1$7F 
F856:85 26 192 GBCALC STA GBASL 
F858 :0A 193 ASL A 
F859:0A 194 ASL A 
F85A:05 26 195 ORA GBASL 
F85C:85 26 196 STA GBASL 
F85E:60 197 RTS 
F85F: 198 * 
F85F: AS 30 199 NXTCOL LOA COLOR ;INCREMENT COLOR BY 3 

II 

II 
• ~ pt-"<1 x I· \I· •nil or Rm.1 Listmgs II 

----



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

F861: 18 
F862 :69 03 
F864:29 OF 
F866:85 30 
F868:0A 
F869:0A 
F86A :OA 
F86B:OA 
F86C :05 30 
F86E:85 30 
F870 :60 
F871: 
F871: 4A 
F872 :08 
F873 :20 47 F8 
F876 : Bl 26 
F878:28 
F879:90 04 
F87B:4A 
F87C:4A 
F87D:4A 
F87E:4A 
F87F :29 OF 
F881 :60 
F882: 
F882:A6 3A 
F884 : A4 38 
F886:20 96 FD 
F889: 20 48 F9 
F88C: AI 3A 
F88E:A8 
F88F:4A 
F890 :90 09 
F892 :6A 

F9 

F87F 

F89B 

F8AS 

F8AS 

F893: BO 10 
F895:C9 A2 
F897: FO OC 
F899:29 87 
F89B:4A 
F89C:AA 
F890:RO 62 
F8A0:20 79 
F8A3:DO 04 
F8A5:AO 80 
F8A7:A9 00 
F8A9 :AA 
F8M:BD A6 F9 
F8A0 :85 2E 
F8AF: 

F8 
F8A9 

F8AF: 
F8AF: 
F8AF: 
F8AF: 
F8AF: 

200 CLC 
201 ADC #$03 
202 SETCOL AND #$OF 
203 STA COLOR 
204 ASL A 
205 ASL A 
206 ASL A 
207 
208 
209 
210 
211 * 
212 SCRN 
213 
214 
215 
216 
217 SCRN2 
218 
219 
220 

ASL A 
ORA COLOR 
STA COLOR 
RTS 

LSR A 
PHP 
JSR GBASCALC 
LOA (GBASL),Y. 
PLP 
BCC RTMSKZ 
LSR A 
LSR A 
LSR A 

221 LSR A 
222 RTMSK7. AND II$0F 
223 
224 * 

RTS 

225 INSOS1 LOX PCL 
226 
227 

LOY. PCH 
JSR PRY.X2 

228 JSR PRBLNK 
229 LOA (PCL,X) 
230 INSDS2 TAY. 
231 
232 
233 
234 
235 
236 
237 
238 !EVEN 
239 
240 
241 
242 
243 ERR 
244 

LSR A 
BCC I EVEN 
ROR A 
BCS ERR 
CMP II$A2 
BEQ ERR 
AND 11$87 
LSR A 
TAX 
LOA 
J SR 

FMTl,X 
SCRN2 

BNE GETFMT 
LOY. ll$80 
LOA 11$00 

GETFMT TAX 

;SETS COLOR•17*A MOD 16 

;BOTH HALF BYTES OF COLOR EQUAL 

;READ SCREEN Y-COORD/2 
;SAVE LSB (CARRY) 
;CALC BASE ADDRESS 
;GET BYTE 
;RESTORE LSB FROM CARRY. 
;IF EVEN, USE LO H 

;SHIFT HIGH HALF BY.TE DOWN 

;MASK 4-BITS 

; PRINT PCL, H 

;FOLLOWED BY A BLANK 
;GET OPCOO£ 

;EVEN/OOD TEST 

;BIT 1 TEST 
;XXXXXXII ~~~ALID OP 

;OPCODE $89 INVALID 
;MASK BITS 
;LSB INTO CARRY FOR L/R TEST 

;GET FORMAT INDEX BYTE 
; R/L H-BY.TE ON CARRY 

;SUBSTITUTE $80 FOR INVALID OPS 
;SET PRINT FORMAT INDEX TO 0 

245 
246 LDA FMT2,X ;INDEX INTO PRINT FORMAT TABLE 
247 
248 
249 * 

STA FORMAT ;SAVE FOR ADR FIELD FORMATTING 
(0•1 BYTE, 1=2 BYTF. , 2=3 BYTE) 

250 * Hove code to C:I - C2 because the carle 
251 * that tests for ROM in slot 3 must be in 
252 * the F8 ROM. 
253 * 

\p;lf'nd1x : Monitor ROM Listings 



F8AF:AA 
F8B0:84 2A 
F8B2:AO 10 
F8B4 : 4C B4 FB 
F8B7: 
F8B7: 
F8B7: 
F8B7: 
F8B7: 
F8B7: 
F8B7: 
F8B7:8D 06 CO 
F8BA:A2 02 
F8BC:BD 05 C3 
F8BF:DD 9C FC 
F8C2:DO 07 FBCB 
F8C4:CA 
F8C5:CA 
F8C6:10 F4 F8BC 
F8C8:88 
F8C9:DO EF F8BA 
F8CB:8D 07 CO 
F8CE:60 
F8CF: 
F8CF:EA 
F8DO: 
F8D0:20 82 F8 
F8D3:48 
F8D4:B1 3A 
F8D6: 20 DA FD 
F8D9:A2 01 
FSDB: 20 4A F9 
F8DE:C4 2F 
F8EO:C8 
F8E1:90 F1 F8D4 
F8E3:A2 03 
F8E5:CO 04 
F8E7:90 F2 F8DB 
F8E9:68 
F8EA:A8 
FSEB: B9 CO F9 
F8EE:85 2C 
F8FO: 89 00 FA 
F8F3 :85 2D 
F8F5:A9 00 
F8F7: AO 05 
F8F9:06 2D 
F8FB:26 2C 
F8FD:2A 
F8FE:88 
F8FF :DO F8 F8F9 
F901:69 BF 
F903: 20 ED FD 
F906 :CA 

254 
255 
256 
257 
258 * 

TAX 
STY 
LDY 
JMP 

BAS2L 
11$10 
GOTOCX 

;save ACC in X 
;and Y in scrolling temp 
;call • finish mnemonics 
;off to C100 

259 * Test slot 3 for a card containing ROM. 
260 * If there is one, we'll not switch in our internal 
261 * slot 3 firmware (for 80 columns). 
262 *On entry Y has a high value like $F2, so the 
263 * ROM/bus is read a bunch of times 
264 * 
265 TSTROM STA SLOTCXROM 
266 TSTROMO LDX #2 
267 TSTROM1 LDA $C305,X 
268 CMP CLREOL,X 
269 BNE XTST 
270 DEX 
271 DEX 
272 BPL TSTROM1 
273 DEY 
274 BNE TSTROMO 
275 XTST STA INTCXROM 
276 RTS 
277 * 
278 
279 * 

NOP 

280 INSTDSP JSR INSDS1 
281 PHA 
282 PRNTOP LDA (PCL),Y 
283 JSR PRBYTE 
284 LDX ll$01 
285 PRNTBL JSR PRBL2 
286 CPY LENGTH 
287 INY 
288 BCC PRNTOP 
289 LOX 11$03 
290 CPY #$04 
2 91 BCC PRNTBL 
292 PLA 
293 TAY 
294 LOA MNEML,Y 
295 STA LMNEM 
296 LOA MNEMR, Y 
297 STA RMNEM 
298 PRMNl LOA 11$00 
299 LOY #$05 
300 PRMN2 ASL RMNEM 
301 ROL LMNEM 
302 ROL A 
303 DEY 
304 BNE PRMN2 
305 ADC HSBF 
306 JSR COUT 
307 DEX 

;swap in slots 
;check 2 ID bytes 
;at C305 and $C307 
;with two bytes that 

;check next ID byte 

are same 

;if ROM ok , exit with SEQ 
;swap internal ROM 
;and re turn there 

;line things up 

;GEN FMT, LEN BYTES 
; SAVE MNEMONIC TABLE INDEX 

;PRINT 2 RLANKS 

;PRINT INST (l -3 BYTES) 
;IN A 12 CHR FIELD 

;CHAR COUNT FOR MNEMONIC INDEX 

;RECOVER MNEMONIC INDEX 

;FETCH 3-GHAR MNEMONIC 
(PACKED INTO 2-BYTES) 

;SHIFT 5 BITS OF CHARACTER INTO A 

(CLEARS CARRY) 

;ADD " ?" OFFSET 
;OUTPUT A CHAR OF MNEM 

II 
II 

II 
II 

II 
II 

II 



I F907 :DO EC F8F5 308 BNE PIUIN1 
F909:20 48 F9 309 JSR PRBLNK ;OUTPUT 3 BLANKS 
F9 0C:A4 2F 310 LOY LENGTH 

I F90E:A2 06 311 LOX #$06 ;CNT FOR 6 FORMAT BITS 
F910:E(l 03 312 PRADPl CPX /1$03 
F912: FO lC F930 313 BEQ PRADRS ;IF X•) THEN ADDR. 
F914:06 2E 314 PRADR2 ASL FORMAT 

I F916:90 DE F926 315 BCC PRADR3 
F918 : RD B3 F9 316 LOA CHAR1 -1,X 
F91B:20 ED FD 31 7 JSR COUT 
F91t:::BD B9 F9 318 LOA CHAR2-1,X 

I F921 : FO 03 F926 319 BEQ PRADR3 
F923:20 ED FD 320 .JSR COUT 
F926:CA 321 PRADR3 DEX 
F927: DO E7 F910 322 BNE PRADRl 

I F929 : 60 323 RTS 
F92A :88 324 PRADR4 OEY 
F92B :30 E7 F914 325 BMI PRADR2 
F92D: 20 DA FD 326 JSR PRBYTE 

I F930:AS 2E 327 PRADR5 LOA FORMAT 
F932:C9 E8 328 CMP C$E8 HANDLE REL ADR MODE 
F934 : Bl )A 329 LOA (PCL),Y SPECIAL (PRINT TARGET , 
F936:90 F2 F92A 330 BCC PRADR4 NOT OFFSET) 

I F938:20 56 F9 331 RELADR JSR PCADJ3 
F93B :AA 332 TAX ;PCL,PCH+OFFSET+1 TO A,Y 
F93C:E8 333 INX 
F93D:DO 01 F940 334 BNE PRNTYX ;+1 TO Y,X 

I F93F:C8 335 INY 
F940:98 336 PRNTYX TYA 
F941:20 DA FD 337 PRNTAX JSR PRBYTE ;OUTPUT TARGET ADR 
F944 :8A 338 PRNTX TXA OF BRANCH AND RETURN 

I 
F945:4C DA FD 339 JMP PRBYTE 
F948: 340 * 
F948:A2 03 341 PRBLNK LOX 11$03 ; BLANK COlJNT 
F94A:A9 AO 342 PRRL2 LOA II SAO ; LOAD A SPACE 

I 
F94C:20 ED FD 343 PRBL3 JSR COUT ; OUTPUT A BLANK 
F94F :CA 344 DEX 
F950:00 F8 F94A 345 BNE PRBL2 ;LOOP UNTIL COUNT• O 
F952 :60 346 RTS 

I 
F953: 347 * 
F953:38 348 PCADJ SEC ;O'*l BYTE, 1'*2 BYTE, 
F954:AS 2F 349 PCADJ2 LOA LENGTH 2•3 BYTE 
F956: A4 3B 350 PCADJ3 LOY PCH 

I 
F958:AA 35 1 TAX ;TEST DISPLACEMENT SIGN 
F959:10 01 F95C 352 BPL PCADJ4 (FOR REL BRANCH) 
F95B:88 353 DEY ;EXTEND NEG BY DECR PCH 
F95C: 65 3A 354 PCADJ4 ADC PCL 

I 
F95E:90 01 F961 355 BCC RTS2 ;PCL+LENGTH(OR DISPL)+l TO A 
F960 :C8 356 INY CARRY INTO Y (PCH) 
F961:60 357 RTS2 RTS 
F962 : 358 

I 
F962: 359 FMTl BYTES: XXXXXXYO INSTRS 
F962: 360 I F Y•O THEN LEFT HALF BYTE 
F962 : 361 IF Y•1 THEN RIGHT HALF BYTE 

I 
I 
I <\ pend1x 1: ~lonitor RO~l L1~tmg~ 3.11 



F962: 362 (X=INDEX) 
F962: 363 
F962:04 364 FMTl DF8 $04 
F963 : 20 365 DF8 $20 
F964:54 366 DFB $54 
F965: 30 367 DFB $30 
F966:0D 368 DFB SOD 
F967: 80 369 DF8 $80 
F968:04 370 DFB $04 
F969:90 371 DFB $9() 
F96A:03 372 DF8 $03 
F96B : 22 373 DF8 $22 
F96C :54 374 DF8 $54 
F96D:33 375 DFB $33 
F96E:OD 376 DF8 son 
F96F:80 377 DFB $80 
F970:04 378 DF8 $04 
F97l: 90 379 OFB $90 
F972:04 380 DFB $04 
F973:20 381 Df8 $20 
F974:54 382 DFB $54 
F975 : 33 383 DFB $33 
F976 : 0D 384 Df8 SOD 
F977 :80 3!15 DFB $80 
F978 : 04 386 Dl'B $04 
F979:90 387 DF8 $90 
F97A :04 388 DFB $04 
F97B:20 389 DFB $20 

II F97C:54 390 DFB $54 
F97D: 38 391 DFB $38 
F97E :OD 392 DFB $0D 
F97F:80 393 DF8 $80 

II F980 :04 394 DFB $04 
F981:90 395 DF8 $90 
F982:00 396 DFB $00 
F983:22 397 DFB $22 
F984 :44 398 DFB $44 II F985 : 33 399 DF8 $33 
F986 : 0D 40(1 DFB SOD 
F987 :C8 401 DF8 $C8 
F988:44 402 DFB $44 II F989 :00 403 DFB $00 
F91lA:11 404 DFB $11 
F98B:22 405 f\F8 $22 
F98C : 44 406 OFB $44 II F98D : 33 407 DFB $33 
F98E:OD 408 DFB SOD 
F98F:C8 409 DFB $C8 
F990:44 410 DFB $44 II F991: A9 411 DFB $A9 
F992:0l 412 DFB $01 
F993 : 22 413 DFB $22 
F994:44 414 DF8 $44 II F995:33 415 DFB $33 

ill 



I F996:00 416 OFB $00 
F997 :80 417 OFB $80 
F998 :04 418 OFB $04 

I F999 :90 419 OFB $90 
F99A :Ol 420 DFB $01 
F99B :22 421 OFB $22 
F99C:44 422 OFB $44 

I F990:33 423 OFB $33 
F99E:OO 424 OFB $00 
F99F:80 425 OFB $80 
F9AO :04 426 OFB $04 

I F9Al :90 427 OFB $90 
F9A2 :26 428 OFB $26 
F9A3 :31 429 DFB $31 
F9A4 :87 430 OFB $87 

I F9A5:9A 431 OFB $9A 
F9A6: 432 
F9A6 : 433 ZZXXXYOI INSTR1S 
F9A6: 434 ; 

I F9A6: 00 435 FMT2 DFB soo ;ERR 
F9A7:21 436 OFB $21 ; IMM 
F9A8:81 437 OFB $81 ; Z-PAGE 
F9A9:82 438 DFB $82 ;ABS 

I 
F9AA :OO 439 OFB $00 ;IMPLIED 
F9AB:00 440 DFB $00 ;ACCUMULATOR 
F9AC: 59 441 OFB $59 ;(ZPAG ,X) 
F9AO: 40 442 DFB $40 ; (ZPAG) ,Y 

I 
F9AE:91 443 DFB $91 ;ZPAG ,X 
F9AF :92 444 Ol'B $92 ;ABS , X 
F9B0:86 445 OFB $86 ;ABS,Y 
F961 :4A 446 OFB $4A ; (ABS) 

I 
F9B2:85 447 DFB $85 ; ZPAG ,Y 
F9B3:9D 448 OFB $90 ;RELATIVE 
F9B4:AC 449 CHARI DFB SAC .. I . . 
F9B5 :A9 450 DFB $A9 ; t ) I 
F9B6 :AC 451 OFB $AC . ' ' I 

.. 
F987:A3 452 DFB $A3 ; I /I I 
F988 :AB 453 OFB $AS ; t ( t 

F9B9 : A4 454 DFB $A4 ; r $ ' 

I 
F9BA :D9 455 CHAR2 DFB $09 ; ' Y' 
F9BB:OO 456 OFB $00 
F9BC:08 457 OFB $08 l yt 

F9BO:A4 458 DFB SA4 I$ I 

I 
l'98E:A4 459 OFB SA4 • $1 
F9BF:OO 460 DFB $00 
F9CO: lC 461 MNEML DFB SIC 
F9Cl:BA 462 DFB SBA 

I 
F9C2: IC 463 DFB $1C 
F9C3:23 464 DFB $23 
F9C4 :5D 465 OFB $50 
F9C5:BB 466 OFB $88 

I 
F9C6: 1 B 467 DFB SIB 
F9C7: AI 468 OFB SAl 
F9C8:90 469 DFB $90 

I 

I 

I . ' c\ J \' • r l\l L- r ' :.{[i;! 



F9C9:8A 470 DFB $8A 
F9CA: LD 471 DFB $10 
F9CB:23 472 OFB $23 
F9CC:9D 473 OFB $90 
F9C0:8B 474 DFB $88 
F9CE: L 0 475 DFB $LO 
F9CF:AL 476 DFB $AI 
F9DO:OO 477 OFB $00 
F9DL :29 478 DFB $29 
F902: L9 479 DFB $19 
F9D3: AE 480 OFB SAE 
F904 :69 481 OFB $69 
F9DS:A8 482 DFB $A8 
F9D6:L9 483 DFB $19 
F9D7 :23 484 OFB $23 
F908 : 24 485 OFB $24 
F9D9:53 486 DFB $53 
F9DA:LB 487 DFB $18 
F9DB:23 488 DFB $23 
F9DC: 24 489 DFB $24 
F9DD:53 490 DFB S53 
F9DE: L9 49L DFB $L9 (A) FORMAT ABOVE 
F9DF : AL 492 DFB SAL 
F9EO:OO 493 DFB $00 
F9E1: LA 494 DFB $LA 
F9E2: SB 495 DFB SSB 
F9g3:5B 496 DFB $58 
F9E4:A5 497 DFB $AS 
F9E5:69 498 DFB $69 
F9E6:24 499 DFB $24 (B) FORMAT 
F9E7:24 5(10 DFB $24 
F9E3:AE SOL DFB SAE 
F9E9:AE 502 DFB $AE 
F9~~A: AS 503 OF'S $A8 
F9EB:AD 504 DFB SAD 
F9EC:29 505 OFB $29 
F9ED:OO 506 DFB $00 
F9EE : 7C 507 DFB S7C (C) FORMAT 
F9EF:OO 508 DFB $00 
F9FO: 15 509 OFB $L5 -F9Fl:9C 510 OFB $9C 
F9F'2 :60 5LL OFB $60 
F9F3 :9C 5L2 OFB $9C 
F9F4: AS 513 DFB $AS 

II F9F5:69 514 OFB $69 
F9F6: 29 SLS DFB $29 (D) FORMAT 
F9F7:53 516 DFB $53 
F9F8:84 517 OFB $84 

II F9F9: l3 518 OFB $13 
F9FA:34 5L9 OFB $34 
F9FB: LL 520 OF II SlL 
F9FC:A5 521 OFB SAS • F9:0:69 522 DFB $69 
:9Ft:: 23 523 DFB $23 (E) FORMAT 

II 

-
' , r 1 x , \! tr:~' r 1\~ .... 1 .... : ;,. 

------------------------ ----



I F9FF:AO 524 DFB SAO 
FAOO: DB 525 MNEMR DFB $08 
FAOI :62 526 DFB $62 - FA02:5A 527 DFB $SA 
FA03:48 528 DFB $48 
FA04:26 529 DFB $26 
FA05:62 530 DFB $62 

II FA06:94 531 DFB $94 
FA07 :88 532 DFB $88 
FA08:54 533 DFB $54 
FA09:44 514 DF8 $44 
FAOA:CS 535 DFB SC8 
FAOB:54 536 DFB S54 
FAOC :68 537 DFB $68 
FAOD:44 538 DFB $44 

II FAOE : ES 539 DFB $E8 
FAOF:94 540 DFB $94 
FAIO:OO 541 DFB $00 
FAll :84 542 DFB $84 

II FAI2:08 543 DFB $08 
FA13:84 544 DFB $84 
FA14 :74 545 DFB $74 
FA15: B4 546 DFB $84 

II 
FA16 :28 547 DF8 $28 
FA17:6E 548 DFB $6E 
FA18:74 549 DFB $74 
FA19:F4 550 DFB $F4 

I 
FAlA:CC 551 DFB sec 
FA!B:4A 552 DFB $4A 
FA 1C:72 553 DFB $72 
FA1D:F2 554 DFB $F2 

II 
FA1E:A4 555 DFB $A4 (A) FORMAT 
FAI F:SA 556 DFB S8A 
FA20 :00 557 DFB soo 
FA21: AA 558 DFB SAA 

II 
FA22: A2 559 DFB SA2 
FA23 :A2 560 DFB SA2 
FA24 :74 561 nFB 574 
FA25:74 562 DFB $74 

II 
FA26 :74 563 DFB $74 (B) FORMAT 
FA27:72 %1. DFB $72 
FA28 :44 565 DFB $41~ 

FA29:68 566 DFB $68 

II 
FA2A: 82 

567 DF8 $82 
L\23:32 568 DF8 $32 
F>.~C:B2 569 DFB $82 

I 
FA2D:;)0 570 DFB $00 
FA1£:22 571 DFB $22 (C) FORMAT 
:A2F:;)0 572 DFB $00 
f;J') :l; 573 DFB SlA 
FA31:: .l. 574 DFB Sl A 

II :.!.3::~;- 575 DFB $26 
: :..33: :!:' 576 DFB $26 

II 

-
II \ \ . M• 1 1r ~~0\1 Ll~~ n ~~ l.)f) 



FA34: 72 577 DFB $72 
FA35:72 578 DFB $72 
FA36:88 579 DFB $88 (D) FORMAT 
FA37:C8 580 DFB sea 
FA38:C4 581 DFB $C4 
FA39:CA 582 DFB $CA 
FA3A:26 583 DFB $26 
FA3B:48 584 DFB $48 
FA3C:44 585 DFB $44 
FA3D:44 586 DFB $44 
FA3E:A2 587 DFB $A2 (E) FORMAT 
FA3F:C8 588 DFB $C8 
FA40: 589 * 
FA40: C3FA 590 NEW IRQ EQU $C3FA ;new IRQ entry 
FA40: 591 * 
FA40:85 45 592 OLD IRQ STA $45 ;(should never be used) 
FA42:A5 45 593 LDA $45 ;for those who save A to $45 
FA44:4C FA C3 594 JHP NEWIRQ ;go to interrupt handler 
FA47: 595 * 
FA47:80 06 co 596 NEWBREAK STA SETSLOTCXROM ;force in slots 
FA4A:85 45 597 STA ACC ;save accumulator 
FA4C: 598 * 
FA4C: 28 599 BREAK PLP 
FA4D:20 4C FF 600 JSR SAV1 :SAVE REG'S ON BREAK 
FA50:68 601 PLA i INCLUDING PC 
FA5l :85 3A 602 STA PCL 
FA53:68 603 PLA 
FA54:85 3B 604 STA PCH 
FA56:6C FO 03 605 JMP (BRKV) ;BRKV WRITTEN OVER BY DISK BOOT 
FA59: 606 * 
FA59:20 82 F8 607 OLnBRK JSR INSDSl ;PRINT USER PC 
FA5C :20 DA FA 608 JSR RGDSPl AND REGS 
FASF:4C 65 FF 609 JMP MON ;GO TO MONITOR (NO PASS GO, NO $200!) 
FA62 :D8 610 RESET CLD ;DO THIS FIRST THIS TIME 
FA63:20 84 Fe 611 JSR SETNORM 
FA66:20 2F FB 612 JSR INIT 
FA69: 20 93 FE 613 JSR SETVID 
FA6C:20 89 FE 614 JSR SETKBD 
FA6F:AD 58 CO 615 I NIT AN LDA SETA NO ; ANO = TTL LO 
FA72: AD SA CO 616 LDA SET AN! ; ANI • TTL LO 
FA75:AO 09 617 LDY #9 ;CODE•1N1T/RRA0981 
FA77 :20 B4 FB 618 JSR GOTOCX ;DO APPLE2E INIT/RRA0981 
FA7A:EA 619 NOP ;/RRA0981 
FA7B:AD H CF 620 LDA CLRROM TURN OFF EXTNSN ROM 
FA7E:2C 10 CO 621 BIT KBDSTRB ; CLEAR KEYBOARD 
FA81: D8 622 NEWMON CLD 
FA82:20 3A FF 623 JSR BELL : CAUSES DELAY IF KEY BOUNCES 
FA85:AD F3 03 624 LDA SOFTEV+l ; IS RESET HI 
FA88:49 AS 625 EOR II$A5 ;A FUNNY COMPLEMENT OF THE II FA8A:CD F4 03 626 CMP PWREDUP PWR UP BYTE ??? 
FA8D:DO 17 FM6 627 BNE PWRUP NO SO PWRUP 
FA8F:AD F2 03 628 LDA SOFTEV YES SEE IF COLD START 
FA92 :DO OF FAA3 629 BNE NO FIX HAS BEEN DO~~ YET? 
FA94:A9 F.O 630 LDA #$EO DOES SOFT ENTRY VECTOR POINT AT BASIC? 

II 
" . -· II 



FA96:CO F3 03 631 CNP SOFTEV+ 1 
FA99:DO 08 FAA3 632 BNE NO FIX YES SO REENTER SYSTEM 
FA9B:AO 03 633 FIXSEV LOY 113 NO SO POINT AT WARI-1 START 

I FA90:8C 1'2 03 634 STY SOFTEV FOR NEXT RESET 
FAA0:4C 00 EO 63S JNP BASIC AND no THE COLD START 
FAA3:6C F2 03 636 NO FIX JMP (SOFTEV) SOFT ENTRY VECTOR 
F.V.6: 637 ****************** 

I FAA6:20 60 FB 638 PWRUP JSR APPLE II 
FAA9: FM9 639 SETPG3 EQU * ; SET PAGE 3 VECTORS 
FAA9: A2 OS 640 LOX /IS 
FMB:ED FC FA 641 SETPLP LOA PWRCON- l,X ; WITH CNTRL B ADRS 

I FAAE:9D EF 03 642 STA BRKV- 1, X ; OF CURRENT BASIC 
FABl:CA 643 nEX 
FAB2:DO F7 FAAB 644 BNE SETPLP 
FAB4:A9 C8 64S LDA I•$C8 LOAD HI SLOT +l 

I FAB6:B6 00 646 STX LOCO SETPG3 MUST RETURN X=O 
FABB: 8S 01 647 STA LOCI SET PTR H 
FABA: 648 * 
FABA: 649 * Check 3 ID bytes instead of 4 . Allows devices 

I FABA: 650 * other than Disk II's to be boatable . 
FABA: 651 * 
FABA:AO OS 652 SLOOP LOY liS ;Y is byte ptr 
FABC:C6 01 653 DEC LOCl 

I 
FABE:A5 01 654 LOA LOCl 
FACO:C9 co 655 CMP II$CO AT LAST SLOT YET? 
FAC2: FO D7 F'A9B 6S6 BEQ FlXSEV YES AND IT CAN ' T BE A DISK 
FAC4: 8D F8 07 657 STA ~lSLOT 

I 
FAC7:Bl 0(1 6S8 NXTBYT LDA (LOCO), Y FETCH A SLOT BYTE 
FAC9: D9 01 FB 659 CMP DlSKID-l ,Y ; IS IT A DISK ?? 
FACC:DO EC FABA 660 BNE SLOOP NO, SO NEXT SLOT DOWN 
FACE:BB 661 DEY 

I 
FACF:88 662 DEY YES, SO CHECK NEXT BYTE 
FADO: 10 FS FAC7 663 BPL NXTBYT UNTIL 3 BYTES CHECKED 
FAD2:6C 00 00 664 JMP (LOCO) GO BOOT ••• 
FADS: 665 * 

I 
FADS:F.A 666 NOP 
FAD6:EA 667 NOP 
FAD7: 668 * 
FAD7:20 8E FD 669 REGDSP JSR CROUT ; DI SPLAY USER REG CONTENTS 

I 
FADA:A9 45 670 RGDSPl LDA 11$45 ;WITH LABELS 
FADC:R~ 40 671 STA A3L 
FADE:A9 00 672 LDA 11$00 
FAE0 :85 41 673 STA A3H 

I 
FAE2:A2 FB 674 LDX II$FB 
FAE4:A9 AO 67S RDSPl LDA 11$AO 
FAE6:20 ED FD 676 JSR COUT 
FA£9: BD lE FA 677 LDA RTBL-2Sl , X 

I 
i'AEC:20 ED FD 678 JSR COUT 
FAEF:A9 BD 679 LDA II$BD 
F.-'.Fl :20 ED FD 680 JSR COUT 
FAF- :85 4A 681 LOA ACC+S,X 
~AFo:20 DA FD 682 JSR PRBYTE 

I ?!.f3 :E8 683 INX 
?.-\:'A: 3.:' EB FA£4 684 BMI RDSPl 

I 

I 

I \l rlt r W\1 '.' • ~s 357 



FAFC:60 685 RTS 
FAFD: 686 * 
FAFD:59 FA 687 PI.'RCON ow OLDBRK 
FAFF:OO EO 45 688 DFB $00,$E0,$45 
FB02:20 FF 00 FF 689 DISKin OFB $20, SFF, SOD, SFF 
FB06 :03 FF 3C 690 DFB $03,$FF,$3C 
FB09:C1 FO FO EC 691 ASC 'Apple> ](' 
FB11: FB11 692 XLTBL EQU * 
FBll :C4 C2 C1 693 DFB SC4,$C2,$Cl 
FB14:FF C3 694 DFB $FF,$C3 
FB16:FF FF FF 695 DFB $FF,$FF ,$ FF 
FB19: 696 * 
FB19:C1 DB 09 697 RTBL OFB sc 1 's 08 's 09 ;REGISTER NAMES FOR REGOSP: 
FB1r.:no 03 698 DFB $DO, $03 ; 'AXYPS' 
FBlE:AD 70 co 699 PRE AD LDA PTRIG ;TRIGGER PAOOLES 
FB21 :AO 00 700 LDY 11$00 ; INIT COUNT 
FB23:EA 701 NOP ;COMPENSATE r'OR 1ST COUNT 
FB24:EA 702 NOP 
FB25: BD 64 co 703 PREAD2 LOA PADDLO,X ; COUNT Y-REG EVERY 12 USEC . 
FB28: 10 04 FB2E 704 BPL RTS2D 
FB2A :C8 705 l~Y 

FB2B:DO FB FB25 706 BN£ PREAD2 ;EXIT AT 255 MAX 
FB2D :88 707 DEY 
Fll2E:60 708 RTS2D RTS 
FB2F: l * 
FB2F :A9 00 2 INIT LOA 11$00 ;CLR STATUS FOR DEBUG SOFTWARE 
FB31: 85 48 3 STA STATUS 
FB33:AD 56 co 4 LDA LORES 
FB36:AD 54 co 5 LDA LOWSCR ;INIT VIDEO MODE 
FB39:AD 51 co 6 SETTXT LOA TXTSET ;SET FOR TEXT MODE 
FB3C:A9 00 7 LOA 11$00 ;FULL SCREEN WINDOW 
FB3E : FO Oil FB48 8 BEQ SETWND 
FB40:AD 50 co 9 SETGR LDA TXTCLR ;SET FOR GRAPHICS MODE 
FB43 : AD 53 co 10 LOA MIX SET ;LOWER 4 LINES AS TEXT WINDOW 
FB46 : 20 36 F8 11 JSR CLRTOP 
FB49: A9 14 12 LOA li$14 
FB4B:85 22 13 SETWND STA WNDTOP ; SET FOR 40 COL \.JINDOW 
FB4D:A9 00 14 LDA ll$00 ;TOP IN A-REG, 
FB4F:85 20 15 STA WNDLFT ' 

BOTTOM AT LINE $24 
FB5l:AO oc 16 LOY f.ISC ;CODE=SETWND /RRA0981 
FRS"\:00 'iF FBB4 17 BNE GOTOCX 
F!l55:A9 18 18 LOA liS 18 
FB57 :85 23 19 STA WNDBTM 
FB59: A9 17 20 LOA 11$17 ;VTAB TO ROW 23 
FB5B :85 25 21 TABV STA CV ;VTABS TO ROW IN A-REG 
FB5D:4C 22 FC 22 JMP VTAB 
FB60: 23 * 
FB60:20 58 FC 24 APPLE II JSR HOME ;CLEAR THE SCRN 
FB63:AO 09 25 LOY 119 
FB65:B9 09 FF 26 STITLE LOA TITLE- !, Y ;GET A CHAR 
FB68:99 DE 04 27 STA LINE1+1 4,Y ;PUT IT AT TOP CENTER OF SCREEN 
FB6B:88 28 DEY 
FB6C:OO F7 FB65 29 BNE STITLE II FB6E:60 30 RTS 

II 

II 
,, I \' .,,. ,r lM L1-·i. ~' II 

----



FB6F: 31 * 
FB6F:AD F3 03 32 SETPWRC LOA SOFTt:V+l ;ROUTINE TO CALCULATE THE I FUNNY 
FB72:49 AS 33 EOR II$A5 ;COMPLEMENT' FOR THE RESET VECTOR 
FB74 :8D F4 03 34 STA PWRt:DUP 
FB77 :60 35 RTS 
FB78: 36 * 
FB78 : FB78 37 VIDI.JAIT EQU * ;CHECK FOR A PAUSE (CONTROL- S) . 
FB78:C9 BD 38 CMP IIS8D ;ONLY WHEN I HAVE A CR 
FB7A:DO 18 FB94 39 BNE NOW AIT ;NOT SO, DO REGULAR 
FB7C:AC 00 co 40 LDY KBD ;IS KEY PRESSED? 
FB7F:10 13 FB94 41 BPL NOW AIT ;NO. 
FB81 :CO 93 42 CPY liS93 ;YES -- IS IT CTRL-S? 
FB83:DO OF FB94 43 BNE NOW AIT ;NOPE - IGNORE 
FB85:2C 10 co 44 BIT KBDSTRB ; CLEAR STROBE 
F888:AC 00 co 45 KBDWAIT LDY KBD ;WAif TILL NEXT U~Y TO RESUME 
FBBB: 10 FB FB88 46 BPL KBDWAIT ;WAIT FOR KEYPRESS 
FBBD :CO 83 47 CPY 11$83 ;IS IT CONTROL- C? 
FBBF:FO 03 FB94 48 BEQ NOW AIT ;YES , SO LEAVE IT 
FB91: ZC 10 co 49 BIT KBDSTRB ;CLR STROBE 
FB94: 4C FD FB 50 NOWAIT JMP VIDOUT ; DO AS BEFORE 
FB97: 51 * 
FB97:38 52 ESCOLD SEC ; INSURE CARRY SET 
FB98:4C zc FC 53 JMP ESC! 
FB9B: A8 54 ESC NOW TAY ; USE CHAR AS INDEX 
FB9C: 89 48 FA 55 LDA XLTBL- $C9,Y ;TRANSLATE IJKM TO CBAD 
FB9F:20 97 FB 56 JSR ESCOLD ;DO THE CURSOR ~OTION 
FBA2 : 20 21 FD 57 JSR RDESC ;GET IJKM, ijkm, ARROWS/ RRA0981 
FBAS:C9 CE 58 ESC NEW Ct1P II$CE ;IS THIS AN 'N' ? 
FBA7: BO EE FB97 59 BCS ESCOLD ; ' N' OR GREATER - DO IT! 
FBA9:C9 C9 60 CMP II$C9 ;LESS THAN 'I' ? 
FBAB:90 EA F897 61 BCC ESC OLD ;YES, SO DO OLD WAY 

I 
FBAD:C9 cc 62 CMP II$CC ;IS IT AN 'L'? 
FBAF : FO E6 FB97 63 BEQ ESC OLD ;DO NORMAL 
FBBl: DO E8 FB9B 64 BNE ESC NOW ;GO DO IT 
FBB3: 65 * 

I 
FBB3 : C006 66 SETSLOTCXROM EQU $C006 ; /RRA0981 
FBB3: C007 67 SETINTCXROH EQU $C007 ; /RRA0981 
FBB3 : cots 68 RDCXROM EQU $C015 ;/RRA0981 
FBB3: 69 * /RRA0981 
FBB3:06 70 VERSION DFB $06 ;FOR IDCHECK/RRA0981 

I FBB4: 71 * 
FBB4 : FBB4 72 GOTOCX EOU * ;/RRA0981 
FBB4:2C 15 co 73 BIT RDCXROM ;GET CURRENT STATE/RRA0981 
FBB7:08 74 PHP ; SAVE ROHBANK STATE/RRA0981 
FBB8: 8D 07 co 75 STA SETI NTCXROM ;SET ROMS ON/RRA0981 
FBBB:4C 00 C1 76 JMP C10RG ;=)OFF TO CXSPACE/RRA0981 
FBBE: 77 * 
FBBE: OO 78 DFB 0 

I FBBF:OO 79 DFB 0 
FBCO : 80 * 
FBCO : EO 81 ZIDBYTE DFB SEO ; / /e ROH rev ID byte 
FBCl: 82 * 

I FSCl : 48 83 BASCALC PHA ;CALC !lASE ADDR IN BASL,H 
FBC2 :4A 84 LSR A ;FOR GIVEN LINE NO. 

I 



F'BC3:29 03 S5 AND 11$03 O<•LINE NO.(a$17 
FBC5:09 04 86 ORA /1$04 ARG a OOOABCDE, GENERATE 
FBC7:S5 29 87 STA BASH BASH "' OOOOOlCD 
F'BC9:68 SB PLA ; AND 
FBCA: 29 18 89 AND ll$18 ; BASL EABABOOO 
FBCC: 90 02 FBDO 90 sec BASCLC2 
FBC£:69 7F 91 ADC II$7F 
FBDO:SS 2S 92 BASCLC2 STA BASL 
FBD2 :OA 93 ASL A 
FBD3 : 0A 94 ASL A 
FBD4:05 2S 95 ORA BASL 
FBD6:85 2S 96 STA BASL 
FBD8:60 97 RTS 
FBD9: 9S * 
FBD9 :C9 S7 99 BELL! CMP 11$87 ;BELL CHAR? (CONTROL-G) 
FBDB: DO 12 FBEF 100 BNE RTS2B ; NO, RETURN. 
FBDD:A9 40 101 LOA 11$40 ; YES ••• 
FBDF:20 AS FC 102 JSR WAIT ;DELAY .01 SECONDS 
FBE2:AO co 103 LOY lisco 
FBE4:A9 oc 104 BELL2 LilA I1$0C ;TOGGLE SPEAKER AT 1 KHZ 
FBE6:20 AS t'C 105 JSR WAIT ; FOR . 1 SEC . 
FBE9:AD 30 co 106 LOA SPKR 
~'BEC :8S 107 DEY 
FBED: DO FS FBE4 108 BNE BELL2 
FBEF:60 109 RTS2B RTS 
FBFO: 110 * 
FBFO:A4 24 lll STORADV LOY CH ;CURSOR H INDEX TO Y-REG 
FBF2:91 28 112 STA (BASL) ,Y ;STORE CHAR IN LINE 
FllF4:E6 24 113 ADVANCE INC CH ;INCREMENT CURSOR H INDEX 
FBF6:A5 24 114 LOA CH ; (MOVE RIGHT) 
FBF8:C5 21 115 CMP WNDWDTH ;BEYOND WINDOW WIDTH? 
FBFA:BO 66 FC62 116 BCS CR ; YES, CR TO NEXT LINE . 
FBFC: 60 117 RTS3 RTS ; NO, RETURN. 
FBFD: 118 * 
Fl!FD:C9 AO 119 VIDOUT CMP II SAO ;CONTROL CHAR? 
FBFF:BO EF FBFO 120 BCS STORADV ; NO, OUTPUT IT. 
FC01: AB 121 TAY ; INVERSE VIDEO? 
FC02:10 EC FBFO 12 2 BPL STORADV ; YES, OUTPUT IT . 
FC04:C9 80 123 O!P IISBD ;CR? 
FC06:FO SA FC62 124 BEQ CR ; YES. 
FC08:C9 8A 125 Ct·!P /ISBA ; LINE FEED? 
FCOA: FO SA FC66 126 BEQ LF 

' 
lF SO, DO IT . 

FCOC:C9 88 127 CMP 11$88 ;BACK SPACE? (CONTROL- H) 
FCOE:DO C9 FBD9 128 BNE BELL! ; NO, CHECK FOR BELL . 
FC10:C6 24 129 BS DEC CH ;DECREMENT CURSOR H INDEX 
FC12: 10 E8 fBFC 130 BPL RTS3 ;IF POSITIVE, OK; ELSE MOVE UP . 
FC14: AS 21 131 LDA WNDWDTH ;SET CH TO WINDOW WIDTH - 1. 
FC16:S5 24 132 STA CH 
FClil :C6 24 133 DEC CH ;(RIGHTMOST SCREEN POS) 
FClA: 1\5 22 134 UP LOA WNDTOP ;CURSOR V INDEX 
FC1C:C5 25 1'35 CMP CV 
FC1t.: BO DC FBFC 136 BCS RTS3 ;IF TOP LINE THEN RETURN 
FC20:C6 25 137 DEC CV ;DECR CURSOR V INDEX II FC22: 13S * 

II 

II 
u: l'•n k 1\1 \ltn)!' II 



- FC22:A5 25 139 VTAB LDA CV ;GET CURSOR V INDEX 
FC2~:t!5 28 140 VTABZ STA BASL ; temporarily save Ace 
FC26:98 141 TIA ;and Y 
FC27 :AO 04 142 LOY 1/$4 ;this is VTABZ call 
FC29:DO 89 FBB4 143 GOTOCX1 BNE GOTOCX ;•) always perf orm call 
FC2B: 144 * 
FC2B:EA 145 NOP 
FC2C: 146 * 
FC2C:49 co 147 ESC! P-OR IJ$CO ;ESC '@'? 
FC2E:FO 28 FC58 148 BEQ HOME ; IF SO DO HOME AND CLEAR 
FC30:69 FD 149 ADC II$FD ;ESC-A OR B CHECK 
FC32:90 CO FBF4 150 sec ADVANCE ; A, ADVANCE 
FC34:FO DA FClO 151 BEQ BS ; B, BACKSPACE 
FC36 :69 FD 152 AnC ~$FD ;ESC-C OR D CHECK 
FC38:90 2C FC66 153 BCC LF ; C, DOWN 

I FC3A:FO DE FC1A 154 BEQ UP ; D, GO UP 
FC3C:69 FD 155 ADC IISFD ;ESC-E OR F CKECK 
FC3E :90 sc FC9C 156 BCC CLREOL ; E, CLEAR TO END OF LINE 
FC40:DO BA FBFC 157 BNE RTS3 ; ELSE NOT F,RETURN 

I FC42: 158 * 
FC42: <C42 159 CLREOP EQU * ;/RRA0981 
FC42: AO OA 160 LDY liSA ;CODE•CLREOP/RRA0981 
FC44: DO E3 f'C29 161 BNE GOTOCX1 ;DO 40/80 /RRA0981 
FC46: 162 * 
FC46: 2C IF co 163 NEWVW BIT RD80VID ;in 80 columns? 
FC49: 10 04 FC4F 164 BPL NEWVW1 ;•>not 80 col umns 
FC4B:A0 00 165 LOY /ISO ;Print a character 

I 
FC4D:FO OB FC5A 166 BEQ GOTOCX3 ;through video f i rmware 
FC4F:98 167 NEWVWI TIA ;get masked character 
FC50:48 168 PHA ;and set up for vidwait 
FC51:20 78 FB 169 JSR VlDWAIT ;print the character 

I 
FC54 :68 170 PLA ;restore Ace 
FC55 :A4 35 171 LOY YSAVI ;and Y 
FC57:60 172 RTS 
FC58: 173 * 

I 
FCS!l: FC58 174 HOME EQU * ;/RRA0981 
FC58:AO 05 175 LDY 115 ;CODE~HOME/RRA0981 

FC5A:4C 84 FB 176 GOTOCX3 JMP GOTOCX ;do 40/80 
FCSD: 177 * 
FCSD:F.A 178 NOP 
FCSf':RA 179 NOP 
FCSF:EA 180 NOP 
FC60: EA 181 NOP 

I 
FC1;1 :EA 182 NOP 
FC62: 183 * 
FC62:A9 00 184 CR LDA 1'$00 ;CURSOR TO LEFT OF INDEX 
FC64 :85 24 185 STA CH ;(RET CURSOR H~O) 

I 
FC6n:E6 25 186 LF INC cv ; !NCR CURSOR V. (DOWN 1 LINE) 
FC68:A5 25 187 LOA cv 
FC6A:C5 23 188 CMP WNDBnl ; OFF SCREEN? 
FC6C:90 86 FC24 189 BCC VTABZ NO, SET BASE ADDR 

I 
?Cb£:Cb 2'> 19(1 DEC CV ; DECR CURSOR V. (BACK TO BOTTO~) 
FC70: 191 * 
ECiC: FC70 192 SCROLL EQU * ;/RRA0981 

I 

I 

I X I If 

' . ,., :lui 



FC70: AO 06 
FC72:DO BS FC29 
FC74: 
FC7 4: 
FC74: 
FC74: 
FC74:8D 06 CO 
FC77: 6C FE 03 
FC7A: 
FC7A: 
FC7A: 
FC7A: 
FC7A:68 
FC7B:8D F8 07 
FC7E:C9 C1 
FC80:90 OD FC8F 
FC82 :80 FF CF 
FC85 :AO 00 
FC87:A6 01 
FC89:85 01 
FC8B:B1 00 
FC80:86 01 
FC8F:8D 07 CO 
FC92:4C 7C C4 
FC95: 
FC95:90 02 FC99 
FC97 :25 32 
FC99:4C F7 FD 
FC9C: 
FC9C: 0000 
FC9C: 
FC9C: 
FC9C : 
FC9C: 
FC9C:38 
FC9D:90 
FC9E : 18 
FC9F:84 2A 
FCAl: o\0 07 
FCA3:BO 78 FOlD 
FCAS :C8 
FCA6 : 00 75 FDID 
FCA8: 
FCA8:38 
FCA9:48 
FCAA:E9 01 
FCAC: DO FC FCAA 
FCAE:68 
FCAF : E9 01 
FCB 1 : DO F6 FCA9 
FCB3:60 
FCB4: 
FCB4:E6 42 
FCB6:00 02 FCBA 

193 
194 
195 * 

LOY 
BNE 

116 
GOTOCX1 

;CODE=SCROLL/RRA0981 
;DO 40/80 /RRA0981 

196 * Jump here to swap out ROMs 
197 * for interrupt handlers in peripheral cards 
198 * 
199 IRQUSER STA SETSLOTCXROM ;switch in slots 
200 
201 * 

JMP ($3FE) ;and jump to user 

202 * IRQDONE (SC3F4) jumps here after interrupt 
203 * because this cannot be done from SCnOO space 
204 * 
205 IRQDONE2 PLA 
206 STA MSLOT 
207 CMP #$C l 
208 BCC IRQNOSLT 
209 STA $CFFF 
210 LOY 110 
211 LOX $1 
212 STA $1 

; Fix SC800 space 
;restore MSLOT 
;valid Cn? 

;Deselect all $C800 

213 LOA (SO), Y ;do SCnOO refe renee 
214 STX $1 ;fix zp location 
215 IRQNOSLT STA SETINTCXROM 
216 JMP IRQFIX ;and restore the machine state 
217 * 
218 DOCOUTl BCC DOCOUT2 
219 AND INVFLG 
220 DOCOUT2 JMP COUTZ1 
221 * 

;don ' t ~ask controls 
;appl y inverse mask 
;go back to GOUT! 

222 
223 * 

DS F80RG+$49C-*, O ;pad to c lreol 

224 *Note: bytes CLREOL anrl CLREOLZ ($38 and $18) 
225 * are used by slot test at $FBB7 . 
226 * 
227 CLREOL 
228 
229 CLREOLZ 
230 
231 
232 
233 
234 
235 * 
236 WAIT 
237 WAIT2 
238 WAIT) 
239 
240 
241 
242 
243 
244 * 
245 NXTA4 
246 

SEC 
DFB 
CLC 
STY 
LOY 
BCS 
INY 
BNE 

SEC 
PHA 
SBC 
BNE 
PLA 
SBC 
BNE 
RTS 

INC 
BNE 

$90 

BAS2L 
117 
GOTOCX2 

GOTOCX2 

11$0 1 
WAIT) 

11$01 
WAIT2 

A4L 
NXTAI 

;say it io; EOL 
; 'BCC' opcode 
; say it is EOL7. 
;save Y in temp 
;code• CLREOL 
;do it 
;code 8=CLREOLZ 

;enter with count in A 
;delay is: 

;13+ll*A+S*A*A cycles 
;@ 1. 023 usee per cycle 

; !NCR 2 -BYTE A4 
; AND AI 

' \1 •• P' J\1 I .'t!S 

II 
II 



FCR8:E6 43 247 INC A4H 
FCBA :A5 3C 248 NXTAI LOA Al L lNCR 2-BYTE Al . 
FCI>C :C5 3E 249 CHP A2L AND COMPARE TO A2 

I FCBE:A5 3D 250 LOA AlH ( CARRY SET IF >~ ) 
FCCO: E5 3F 251 SBC A2H 
FCC2: E6 3C 252 INC ALL 
FCC4: DO 02 FCC8 253 BNE RTS4B 

I FCC6 : E6 3D 254 INC ALH 
FCC8:60 255 RTS4B RTS 
FCC9: 256 * 
FCC9:!1D 07 co 257 HEADR STA SETI NTCXROM ;force internal ROM 

I FCCC:20 67 C5 258 JSR X HEADER ;wri te he ader 
FCCF:4C CS FE 259 .n·IP RETCXL ;force s lo ts and re tu rn 
FCD2: 260 * 
FCD2: 261 * For t he rlisass~mbler to be able to do 1/0 to slots, 

I FCD2: 262 * i t cannot make calls to t he I/O routines with the 
FCll2: 263 * in t e r nal ROM swit ched in . This stuff switches the 
FCD2: 264 * ROM out fo r such ins tances. 
FCD2: 265 * 

I FCD2:8D 06 co 266 ERR3 STA ~ETSLOTCXROM ;force s l o t ROM 
FCD5 :20 4A F9 267 JSR PRBL2 ;tab to t he e rror 
FCD8 : A9 DE 268 LOA /1 $DE ;to print a c a.re t " '"'" 
FCDA:20 EO FD 26 9 JSR COUT ; print it 

I 
FCDD:20 3A FF 270 JSR BELL ;and beep 
FCE0:4C FO FC 271 JMP GETINSTl ;and go get next ins truction 
FCE3: 272 * 
FCE3 :8D 06 co 273 DISLlN STA SETSLOTCXROM ;force slo t ROM 

I 
FCE.6:20 DO F8 274 JSR I NSTDSP ;disassemble t he i nstruc t ion 
FCE9 : 20 53 F~ 275 JSR PCADJ ;calcul a t e new PC 
FCEC:84 38 276 STY PCH ; and upda te PC 
FCEE:8S 3A 277 STA PCL 

I 
FCFO: 278 * 
FCFO: 279 * NOTE: The ent r y poin t GETINSTI is hard- coded in 
FCFO: 280 * BFUNC of t he Video fi rmware. 
FCFO: 281 * 

I 
FCFO:A9 Al 282 GETINSTI LOA 0$A1 ;get mi ni - prompt " !" 
FCF2 :85 33 283 STA PROHPT 
FCF4 : 20 67 FD 284 JSR GETLNZ ;go get a line of input 
FCF7 :80 07 co 285 STA SF.TI NTCXROM ;for ce internal ROM 

I 
FCFA : 4C 9C CF 286 JMP DOINST ;and return t o ex space 
FCFD: 287 * 
FC FD: B9 00 02 288 UP liON LOA IN,Y ;get character 
FDOO :C8 289 !NY ;point to next char 

I 
FOO l :C9 El 290 CMP II$ El ;i s it lowercase? 
FD03: 90 06 FDO B 291 BCC UPMON2 ;z)nope 
F!lOS :C9 FB 292 CMP /1$FB ;lowercase? 
FD07:BO 02 FDOB 293 BCS UPMON2 ;•>nope 
FD09 : 29 OF 294 AND #SDF ;else upshift 

I FOOB : 60 295 UPMON2 RTS 
FDOC: 296 * 
FDOC:AO OB 297 RDKEY LOY IISB ; codesRDKEY 
FDOE: DO 03 FDI3 298 BNE RDKEYO ;allow $FD10 entry 

I FD10:4C 18 FD 299 FDL O JMP RDKEY1 ;if enter here, do not hing 
FDl3:20 84 FB 300 RDKEYO J SR GOTOCX ;display cur sor 

I 
I 

I ' ' • lr l"lNI I ~.s :~1):3 



FD16:EA 
FD17:EA 
FD18:6C 38 00 
FrllB: 
FDl B: FDIB 
FDLB:AO 03 
FDID:4C B4 FB 
FD20:EA 
F021: 
FD21: F021 
F021 :20 OC FO 
FD24:AO 01 
F026:DO FS FOlD 
FD28: 
FD28: 
FD28: 
FD28: 
FD28: 
FD28: 
FD28:4E F8 07 
FD2B:4C OC FD 
FD2E :EA 
FD2F: 
FD2F:20 21 FD 
FD32 :20 A5 FB 
FD35:20 28 FD 
FD38:C9 98 
FD3A:FO F3 FD2F 
FD3C :60 
FD3D: 
FD3D:AO OF 
FD3F :20 B4 FB 
FD42 :A4 24 
FD44:9D 00 02 
FD47: 

FD47 :20 ED FD 
FD4A:EA 
FD4B:EA 
FD4C:EA 
FD4D:BD 00 02 
FD50:C9 88 
FD52:FO 10 FD71 
FD54:C9 98 
FD56:F0 OA FD62 
FD58: EO F8 
FD5A:90 03 FD5F 
FDSC:20 )A FF 
FD5F:E8 
FD60:DO 13 FD75 
FD62: 
FD62 :A9 DC 
F064:20 ED FD 
FD67:20 8E FD 

301 NOP 
302 NOP 
303 RDKEY 1 .JMP ( KSWL) 
304 * 

EOU * 305 KEYIN 
306 LOY #3 

GOTOCX2 JMP GOTOCX 307 
308 
309 * 
310 RDESC 
311 
312 
313 
314 * 

NOP 

EOU * 
JSR RDKEY 
LOY Ill 
BNE GOTOCX2 

;GO TO USER KEY -IN 

;RDKEY/RRA0981 
;/RRA0981 
;/RRA0981 

;GET A KEY 
;CODE~ FIX IT 

;~>always 

315 * Flag to the video firmware that escapes are allowed . 
316 * This routine is called by RDCHAR which is called by 
317 * GETLN . The high bit of MSLOT is set by all cards 
318 * that use the C800 space . 
319 * 
320 NEWP~KEY LSR MSLOT 
321 JXP RDKEY 
322 NOP 
323 * 
324 ESC 
325 

JSR RDI>SC 
JSR ESCNEW 

326 RDCRAR JSR NEWRDKEY 
327 CMP t$98 
328 BEQ ESC 
329 RTS 
330 * 
331 PICKFIX LOY #$F 
332 JSR GOTOCX 
333 LOY CB 
334 STA IN,X 
335 *#03 AUTOST2 

336 NOTCR 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 NOTCRl 
349 
350 * 
351 CANCEL 
352 
353 GETLNZ 

JSR COUT 
NOP 
NOP 
NOP 
LOA IN,X 
CMP 11$88 
BEQ BCKSPC 
CMP 11$98 
BEO CANCEL 
CPX II$F8 
BCC NOTCRl 
JSR BELL 
INX 
BNE NXTCHAR 

LOA #$DC 
JSR COUT 
JSR CROUT 

;<128 means escape ~llowed 
;now read the key 

;/RRA098 1 
;HANDLE ESC FUNCTION. 
;Flag RDCRAR and read 
; ' ESC'? 

YES, DON 'T RETURN. 

;code = fixpick 
;do 80 column pick 
;restore Y 

key 

;and save new character 
Auto-Start ~onitor ROM 27-AUG-84 

;echo typed char 

;CHECK FOR EDIT KEYS 
- BACKSPACE 

- CONTROL-X 

;MARGIN? 
; YES , SOUND BELL 
;ADVANCE INPUT INDEX 

;BACKSLASH AFTER CANCELLED LINE 

; OUTPUT 'CR' 

I \', "t' r RoJV. :...htali,l,~ 

PAGE 20 

II 

II 

II 



FD6A:A5 33 354 GETLN LOA PROMPT ;OUTPUT PROMPT CHAR 
FD6C:20 ED FD 355 JSR COUT 
FD6F: A2 01 356 LOX 11$01 ;INIT INPUT INDEX 
FD71 :SA 357 RCKSPC TXA 
FD72:FO F3 F067 358 BEQ GETLNZ ;WILL BACKSPACE TO 0 
FD74:CA 359 DEX 
FD75:20 35 FD 360 NXTCHAR JSR RDCHAR 
FD78:C9 95 361 CHP ll$95 ;USE SCREEN CHAR 
PD7A:DO 08 FD84 362 BNE ADOINP ; FOR CONTROL-U 
FD7C:Bl 28 363 LOA ( BASL), Y ;do 40 column pick 
FD7E:2C IF co 364 BIT RD80VID ;80 column~? 

II FD81 :30 BA FD3D 365 BMI PICKFIX ; •)yes, fix it 
FD83:EA 366 NOP 
FD84:9D 00 02 367 ADDINP STA IN,X ;ADD TO INPUT BUFFER 
FD87:C9 80 368 CMP 11$80 

II FD89: DO BC FD47 369 BNE NOTCR 
FD8B: 20 9C FC 370 JSR CLREOL ;CLR TO EOL IF CR 
FD8E:A9 80 371 CROUT LOA 1/$80 
FD90:DO 58 FDED 372 BNE COUT ;(ALWAYS) 

II 
FD92: 373 * 
FD92:A4 30 374 PRAl LDY AlH :PRINT CR,Al IN HEX 
FD94:A6 3C 375 LOX AlL 
FD96:20 BE FD 376 PRYX2 JSR CROUT 

II 
FD99:20 40 F9 377 JSR PRNTYX 
FD9C :AO 00 378 LOY li$00 
FD9E:A9 AD 379 LOA II SAD ;PRINT ,_, 

FDAO :4C ED FD 380 JMP COUT 

II 
FDA3: 381 * 
FDA3:AS 3C 382 XAN8 LOA AlL 
FDA5:09 07 383 ORA 11$07 ; SET TO FINISH AT 
FDA7:85 3E 384 STA A2L ; !:OD 8•7 

II 
FDA9:A5 3D 385 LOA AIH 
FDAB:85 3F 386 STA A2H 
FDAD:A5 3C 387 ~0 
D8CHK LOA AIL 

II 
FDAF:29 07 388 AND li$07 
FDBl:DO 03 FDB6 389 BNE DATAOUT 
FDB3 :20 92 FD 390 XAM JSR PRAI 
FDR6: A9 AO 391 DATAOUT LOA 11$AO 

II 
FOBS: 20 ED FD 392 JSR COUT ;OUTPUT BLANK 
FDBB:Bl 3C 393 LOA (AIL),Y 
FDBD:20 DA FD 394 JSR PRBYTE ; OUTPUT J!YTE IN HEX 
FDC0:20 BA FC 395 JSR NXTAl 

II 
FDC3: 90 E8 FDAD 396 BCC MOD8CHK ;NOT DONE YET. GO CHECK MOD 8 
FDC5 :60 397 RTS4C RTS ;DONE . 
FDC6: 398 * 
FDC6 :4A 399 X AM PM LSR A ;DETERMINE IF MONITOR MODE IS 
FDC7 :90 EA FDB3 400 BCC XAM ; EXAMINE, ADD OR SUBTRACT 

II FDC9 :4A 401 LSR A 
FDCA:4A 402 LSR A 
FDCB:AS 3E 403 LOA A2L 
FDCD:90 02 FOOl 404 BCC ADD 

I FDCF: 49 FF 405 EOR II$FF ;FORM 2 ' S CONPLEMENT FOR SUBTRACT . 
FDDI :65 3C 406 ADD ADC AlL 

I 
I 
I \~ .JE 'ldLx I Monn Jr ROM L1~t11g~ :3tifl 



FDD3:48 
FDD4:A9 BD 
FDD6:20 ED FD 
FDD9:68 
FDDA:48 
FDD8:4A 
FDDC:4A 
FDDD:4A 
FDDE:4A 
FDDF:20 ES FD 
FOE2:68 
FnE3:29 OF 
FOES :09 80 
FDE7:C9 SA 
FDE9:90 02 FDED 
FOEB:69 06 
FDED: 
FDED:6C 36 00 
FDFO: 
FDF0:48 
FDFl :C9 AO 
FDF3:4C 95 FC 
FDF6: 
FDF6:48 
FDF7:84 35 
FOF9:A8 
FDFA:68 
FDF8:4C 46 FC 
FDFE:EA 
FOFF:EA 
FEOO: 
FEOO:C6 34 
FE02:FO 9F FDA3 
FE04 :CA 
FE05:DO 16 FE1D 
FE07:C9 BA 
FE09:DO BB FDC6 
Ff:OB:85 31 
HOD:AS 3E 
FEOF:91 40 
FE11:E6 40 
FE13:DO 02 FE17 
FE15:E6 41 
FE17:60 
FE18: 
FE18 :A4 34 
FE1A:B9 FF 01 
FE1D:85 31 
FE1F:60 
FE20: 
FE20 :A2 01 
FE22:85 3E 
FE24:95 42 
FE26:95 44 

407 
408 
409 
410 
411 PRBYTE 
41 2 
413 
414 
415 
416 

PHA 
LOA 1/$80 
JSR COUT 
PLA 
PHA 
LSR A 
LSR A 
LSR A 
LSR A 
JSR PRHEXZ 

417 PLA 
418 PRHEX AND #$OF 
419 PRHEXZ ORA 1/$80 
420 CMP 11$BA 
421 BCC COUT 
422 ADC #$06 
423 * 
424 COUT 
425 * 
426 COUT1 
427 
428 
429 * 

JMP (CSWL) 

PHA 
CMP II$AO 
JMP DOCOUT1 

430 COUTZ PHA 
431 COUTZI STY YSAV1 
432 
433 
434 
435 
436 
437 * 
438 BL1 
439 
440 BLANK 
441 
442 
443 
444 STOR 
445 
446 
447 
448 
449 
450 RTSS 
451 * 

TAY 
PLA 
JMP NEWVW 
NOP 
NOP 

OEC YSAV 
BEQ XAM8 
DEX 
BNE 
CMP 
BNE 
STA 
LOA 
STA 
INC 
BNE 
INC 
RTS 

SETMDZ 
/ISBA 
X AM PM 
MODE 
A2L 
(A3L),Y 
A3L 
RTS5 
A3H 

452 SETMODE LOY YSAV 
453 LOA IN-I ,Y 
454 SETMDZ STA MODE 
455 RTS 
456 * 
457 LT 
458 LT2 
459 
460 

LDX /J$01 
LDA A2L, X 
STA A4L,X 
STA ASL,X 

;PRINT ' •', THEN RESULT 

;PRINT BYTE AS 2 HEX DIGITS 
; (DESTROYS A-REG) 

;PRINT HEX DIGIT IN A-REG 
; LSBITS ONLY. 

; VECTOR TO USER OUTPUT ROUTINE 

;save ori~inal character 
;is it a control ? 

;=>mask if not; retu rn to COUTZ1 

;save ori~inal character 
;save Y 

;save masked character 
;get original char 
;new entry to vidwait 

; BLANK TO MON 
; AFTER BLANK 
;DATA STORE MODE? 
; NO; XAM, ADD, OR SUBTRACT. 
;KEEP IN STORE MODE 

; STORE AS LOW BYTE AT (A3) 

;INCR A3, RETURN. 

;SAVE CONVERTED I ••• '+'' 
'-' '.' AS MODE 

;COPY A2 (2 BYTES) TO 
; A4 AND AS 

x, M r ,\1 I , .• ~~ 

II 
II 
II 
II 

II 
II 



I F'::28:CA 461 DEX 
FE29: 10 F7 FE22 462 SPL LT2 

I 
FE2 B :60 463 RTS 
FE2C: 464 * 
FE2C:Bl 3C 465 MOVE LOA (A1L) ,Y ;MOVE (Al) THRU (A2) TO (A4) 
FE2E:9l 42 466 STA ( A4L), Y 
FE30 :20 B4 FC 467 JSR !IJXTA4 

I FE33:90 F7 FE2C 468 sec HOVE 
FE35:60 469 RTS 
FE36: 470 * 
FE36:Sl 3C 47 1 VFY LOA (A1L),Y ;VERIFY (AI) THRU (A2) 

I FE3S: Dl 42 472 CMP (A4L) , Y ; WITH ( A4) 
FE3A:FO IC FE 58 473 SEQ VFYOK 
FE3C:20 92 FD 474 JSR PRAI 
FE3F:B1 3C 475 LOA (AIL) ,Y 

I FE41 :20 DA FD 476 JSR PRBYTE 
FE44:A9 AO 477 LOA II SAO 
FE46 : 20 ED FD 478 JSR COUT 
FE49 : A9 AS 479 LOA /J$A8 

I FE4B:20 ED FD 480 JSR COUT 
FE4E : 81 42 481 LDA (A4L),Y 
FE50 :20 DA FD 482 JSR PRBYTE 
FE53:A9 A9 483 LDA li$A9 

I FE55 :20 ED FD 484 JSR COUT 
FE58:20 S4 FC 485 VFYOK JSR NXTA4 
FE5B:90 09 FE36 486 sec VFY 
FE5D:60 487 RTS 

I FE5E : 488 * 
FE5E :20 75 FE 489 LIST JSR A1 Pt; MOVE &,.[ ( 2 BYTES) TO 
FE61: A9 14 490 LDA 11$ 14 PC IF SPEC ' D AND 
FE63:48 491 LIST2 PHA DI SASSEMBLE 20 INSTRUCT IONS. 

I FE64 :20 DO FS 492 JSR INSTDSP 
FE67:20 53 F9 493 JSR PCADJ ;ADJUST PC AFTER EACH INSTRUCTION . 
FE6A :85 3A 494 STA PCL 
FE6C :84 38 495 STY PC H. 

I 
FE6E:68 496 PLA 
FE6F : 38 497 SEC 
FE70:E9 01 498 sse 11$0 I ;NEXT OF 20 INSTRUCTIONS 
FE72 : DO EF FE63 499 SNE LIST2 

I 
FE74:60 500 RTS 
FE75 : 501 * 
FE75:8A 502 AI PC TXA ;IF USER SPECIFIED AN ADDRESS , 
FE76:FO 07 FE7F 503 SEQ A1PCRTS ; COPY IT FROM AI TO PC . 

I 
FE78:S5 3C 504 AIPCLP LOA AIL,X ;YEP , SO CO PY IT. 
FE7A:95 3A 505 STA PCL,X 
FE7C:CA 506 DEX 
FE7D:I O F9 FE78 507 BPL AlPCLP 

I 
Ff.7 F: 60 508 AIPCRTS RTS 
:r::BO: 509 * 
?!:8;:\ :AO 3F 510 SET! NV LDY II$3F ;SET FOR INVERSE VID 
?0:8~ : i)() 02 FE86 51 1 SNE SETIFLG ; VIA COUTI 

I 
:::a-' >.) :'F 512 St:TNORM LDY I!$FF ;SET FOR NORMAL VID 
::::~c:e - 32 513 SETIFLG STY INVFLG 
==~ ; : ;,"' 514 RTS 

I 
I 
I •eriix I Mon M RO~I I ~llr g~ :367 



FE89: 
FE89:A9 00 
FE8B:85 3E 
FE8D:A2 38 
FE8F:AO 18 
FE91 :DO 08 FE9B 
FE93: 
FE93:A9 00 
FE95:85 3E 
FE97:A2 36 
FE99:AO FO 
FE9B:A5 3E 
FE90:29 OF 
FE9F:FO 04 FEA5 
FEAI :09 CO 
FEA3:AO 00 
FEA5:94 00 
FEA7:95 01 
FEA9 :AO OE 
FEAB:4C 84 FB 
FEAE: 
FEAE:EA 
FEAF:OO 
Ft::BO: 
FEB0:4C 00 EO 
FEB3:4C 03 EO 
FEB6 : 20 75 FE 
FEB9: 20 3F FF 
FEBC : 6C 3A 00 
FEBF:4C 07 FA 
FEC2:60 
FEC3:EA 
FEC4:60 
FEC5: 
FEC5: 
FEC5: 
FEC5 : 
FEC5 : 
FEC5: 
FEC5:8D 06 CO 
FEC8:60 
FEC9:EA 
FECA: 
FECA : 4C FB 03 
FECD: 
FECD:A9 40 
FECF :8D 07 CO 
FED2: 20 AA C5 
FED5:FO 2C FF03 
FED7 : 
FED7: 
FED7: 
r,-:o7: 
FED7: 

515 * 
516 SETKBD LOA 
517 INPORT STA 
518 INPRT LOX 
519 LOY 
520 BNE 
521 * 

11$00 
A2L 
IIKSWL 
DKEYI N 
IOPRT 

522 SETVID LOA #$00 
523 OUTPORT STA A2L 
524 OUTPRT LOX #CSWL 
525 LOY #COUTI 
526 IOPRT LOA A2L 
527 AND #$OF 
528 BEQ IOPRTl 
529 ORA h<IOADR 
530 LOY #$00 
531 IOPRT1 STY LOCO,X 
532 STA LOC1,X 
533 LOY liSE 
534 GOTOCX4 JMP GOTOCX 
535 * 
536 NOP 
537 CKSUMFIX OFB 0 
538 * ;--)CORRECT CKSUM 
539 XBAS IC JMP BASIC 
540 BASCONT JMP BASIC2 
541 GO JSR Al PC 
542 JSR RESTORE 
543 JMP ( PCL) 
544 REGZ JHP REGDSP 
545 TRACE RTS 
546 NOP 
547 STEPZ RTS 
548 * 

;DO I INIIO I 

; DO 1 IN#AREG 1 

;DO 1 PRit0 1 

; DO I PRII AREG I 

;SET INPUT/OUTPUT VECTORS 

;save l ow byte of hook 
;save ace 
; code=PRII I I Nil 
;perform call 

; /RRA098 t 
AT CREATE TIME . 

;TO BASIC, COLD START 
;TO BASIC, WARM START 
;AODR TO PC IF SPECIFIED 
;RESTORE FAKE REGISTERS 
;AND GO! 
;GO DISPLAY REGISTERS 
; TRACE IS GONE 

; STEP IS GONE 

549 * Return here from GOTOCX 
550 * 
551 * NOTE: ThiR address is hard-coded i n 8FUNC of the 
552 * video firmware 
553 * 
554 RETCX1 STA SETSLOTCXROM ;restore bank 
555 RETCX2 RTS 
556 NOP 
557 * 
558 USR 
559 * 

JMP 

;simpl y return 

USRADR ; JUHP TO CONTROL-Y VECTOR IN RAM 

#$40 560 WRITE 
561 WRT2 
562 

LDA 
STA SETINTCXROH ;set internal ROM 

563 
564 * 

JSR WRITE2 
BEQ RD2 

;write to t!lpe 
; a )always set slots , beep 

565 * SEARCH is callecl with a Monitor command nf the form 
566 * HHLL<ADRl.AOR2 in which AORl < AOR2 and LL precedes HH 
567 *in memory . If HI! i.s 0 , or omitted (LL<ADRl. ADR2) , t hen 
568 * the sin~le byte LL is searched for . You cannot sPa rch for 

II 

II 

II 

II 



I FED7: 569 * a two byte pair with a high byte of O. A lis t of all 
FED7: 570 * adresses containing t he specified pattern is displayed . 
FED7 : 571 * 

I FED7 :AO 01 572 SEARC:H LDY II 1 ;set Y t o 1 
FED9:A5 43 573 LDA A4H ;is hip:h byte 0? 
FEDB:FO 04 FEEl 574 SEQ SRCHl ;u)yes, onlv look fo r low byte 
FEDD: Dl 3C 575 CMP (AlL) ,Y ;check hi gh byte first 
FI::DF:DO OA FEES 576 BNE SRCH2 ;z)no match , try next byte 
FEEl :88 577 SRCHl DEY ;match, now check low byte 
FEE2:A5 42 578 LOA A4L ;get low byte 
FEE4 : Dl 3C 579 CMP (Al L) ,Y ;does it ma t ch? 

I FEE6 : DO 03 FEEB 580 BNE SRCH2 ;=>no match, try next byte 
FEE8:20 92 FD 581 JSR PRAl ;bytes match, print address 
FEEB : 20 BA FC 582 SRCH2 JSR NXTAl ;increment ~ddress 
FEEE :90 E7 FED7 583 BCC SEARCH ; set Y back to l 

I FEF0:60 584 RTS 
FEFl: 585 * 
FEFl:AO OD 586 ~liN I LOY IISn ;dispatch mini- assembler call to 
FEF3 :20 84 FB 587 JSR GOTOCX ;get internal ROM switched in 
FEF6: 588 * 
FEF6:20 00 FE 589 CRMON JSR BLl ;HANDLE CR AS BLANK 
FEF9:68 590 PLA ; THEN POP STACK 
FEFA :68 591 PLA ; AND RETURN TO MON 
FEFB:DO 6C FF69 592 BNE MONZ ;( ALWAYS) 
FEFD: 593 * 
FEFD:8D 07 co 594 READ STA SETINTC:XROH ; set i nternal ROM 
FF00:20 Dl C5 595 JSR X READ ;do tape read 

I FF03:8D 06 CO 596 RD2 STA SETSLOTCXROM ;restor e s l ot CX 
FF06: FO 32 FF3A 597 BEQ BELL ;read (write) ok, beep 
FF08:DO 23 FF2D 598 BNE PRERR ;erro r, print messa~~:e 
FFOA: 599 * 

I 
FFOA :Cl FO FO EC 600 TITLE ASC "Apple //e" 
l'Fl): 601 * 
FF13: 602 * NNBL ~~:ets the next non- blank for the mi ni - assembler 
FF13 : 603 * 

I 
FF13: 20 FD FC 604 NNBL JSR UPI'\ON ;ge t char, upshift , I NY 
FFl6:C9 AO 605 CMP II$ AO ; i s i t bl ank? 
FF18:FO F9 Ffl3 606 BEQ NNBL ;ye s, keP-p looking 
fFlA: 60 607 RTS 
FFIB: 608 * 
FflB:BO 60 FF8A 609 LOOKASC BCS DIG ;it was a digit 

FF1D:C9 AO 610 CMP 11$AO ;check for quot e ( . ) 

FFIF:DO 28 FF49 611 BNE RTS6 ;nope , return char 
FF21: B9 00 02 612 LOA $200,Y ;else ge t next char 
FF2l. :A2 07 613 LDX 117 ;for shifting asc i nto A2L and A2H 
FF26 :C9 80 6lt. CMP /l$ 80 ;was it CR? 
'F28:FO 70 FFA7 615 BEQ GETNUM ;yes, go handle CR 
Ff2A:C8 616 INY ; advance index 
FF2B:DO 63 FF90 617 BNE NXTBIT ;z)(always) into A2L and A2H 
:no: 618 * 
::2::>: -\9 C5 619 PRERR LOA IISC5 ;PRINT ' ERR' , THEN FALL INTO 

I 
:;:;::; :20 ED FD 620 JSR COUT ; FWEEPER. 
::32:>.9 D2 621 LOA 0$ D2 
:;:}- : ZJ ED FD 622 JSR COUT 

I 

I An>end x I Montt >r ROV ... 1st g-. 



FF37:20 ED FD 623 JSR COUT 
FF3A: 624 * 
FF3A: A9 87 625 BELL LOA 11$87 ;~lAKE A JOYFUL NOISE, THI::N RETURN. 
FF3C:4C ED FD 626 JMP COUT 
FF3F: 627 * 
FF3F: A5 48 628 RESTORE LOA STATUS ;RESTORE 6502 REGISTER CONTENTS 
FF41 :48 629 PHA ; USED BY DEBUG SOFTWARE 
FF42:A5 45 630 LDA ASH 
FF44 :A6 46 63 1 RESTRl LOX XREG 
FF46 : A4 47 632 LOY \'REG 
FF48 :28 633 PLP 
FF49: 60 634 RTS6 RTS 
FF4A: 635 * 
FF4A:85 45 636 SAVE STA ASH :SAVE 6502 REGISTER CONTENTS 
FF4C: 86 46 637 SAVl STX XREG ; FOR DEBUG SOFTWARE 
FF4E:84 47 638 STY YREG 
FF50 :08 639 PHP 
FF51:68 640 PLA 
FF52:85 48 641 STA STATUS 
FF54:BA 642 TSX 
FF55 :86 49 643 STX SPNT 
FF57:D8 644 CLD 
FF58:60 645 RTS 
FF59: 646 * 
FF59:20 84 FE 647 OLDRST JSR SETNORM ;SF.T SCREEN t!ODE 
FF5C:20 2F FB 648 JSR !NIT AND !NIT KBD/SCREEN 
FF5F:20 93 FE 649 JSR SETVID ; AS 1/ 0 DEVS . 
FF62:20 89 FE 650 JSR SETKBD 
FF65: 651 * 
FF65:D8 652 MON CLD ;liUST SET HEX MODE! 
FF66:20 3A FF 653 JSR BELL ; FWEEPER. 
FF69:A9 AA 654 MONZ LOA IISAA ; '*I PROMPT FOR MONITOR 
FF6B:85 33 655 STA PROMPT 
FF60:20 67 FD 656 JSR GETLNZ ;READ A LINE OF INPUT 
FF70 :20 C7 FF 657 JSR ZMODE ;CLEAR MONITOR MODE, SCAN lOX 
FF73:20 A7 FF 658 NXTITM JSR GETNUM ;GET ITEH, NON- HEX II FF76:84 34 659 STY YSAV CHAR IN A-REG. 
FF7R: AO 17 660 LOY 11$17 ; X-REG•O IF NO HEX INPUT 
FF7A:88 661 CHRSRCH DEY 
H7B:30 E8 FF65 662 BMI MON ;COM!-lAND NOT FOUND, BE">P & TRY AGAIN. 

II FF70:09 CC FF 663 CMP CHRTBL ,Y ;FIND COHMAND CHAR IN TABLE 
FF80: DO F8 FF7A 664 BNE CHRSRCH ;NOT THIS TIME 
FF82 :20 BE FF 665 JSR TO SUB ;GOT IT! CALL CORRESPONDING SUBROUTINE 
FF85: A4 34 666 LOY YSAV ;PROCESS NEXT ENTRY ON HIS LINE -FF87:4C 73 FF 667 JMP NXTITH 
FF8A: 668 * 
FF8A:A2 03 669 DIG LOX li$0 3 
FF8C:OA 670 ASL A 

II FF8D :OA 671 ASL A ;GOT HEX DIGIT, 
FF8E :OA 672 ASL A ; SHIFT INTO A2 
FF8F:OA 673 ASL A 
FF90 :0A 674 NXTBIT ASL A -FF91 :26 3E 67 5 ROL A2L 
FF93:26 3F 676 ROL A2H 

\ ~,..r ~.x I \I :-~•or POV i.J.o • ~;;s 



I fl'95: CA 677 DEX ;LF.AVE X3 $FF If DIG 
FF96: 10 F8 FF90 678 BPL NXTBIT 
FF98 :AS Jl 679 NXTBAS LDA MODE 

I FF9A:DO 06 FFA2 680 BNE NXTBS2 ;IF MODE IS ZERO, 
FF9C:BS 3F 681 LDA A2H,X ; THEN COPY A2 TO AI AND A3 
FF9F.:95 30 682 STA AIH,X 
FFA0:95 41 683 STA A3H ,X 

I FFA2:E8 684 NXTBS2 INX 
FFA3:FO F3 FF98 685 BEQ NXTBAS 
FFA5 : DO 06 FFAD 686 BNE NXTCHR 
FFA7: 687 * 

I FFA7 :A2 00 688 GETNlll'f LOX 11$00 ;CLEAR A2 
FFA9:86 3E 689 STX A2L 
FFAB:86 3F 690 STX A2H 
FFAD:20 FD FC 691 NXTCHR JSR UPMON ;get char, upshift, INY 

I FFBO: EA 692 NOP ; INY now done in UPMON 
FFB1 :49 BO 693 EOR /i$BO 
FFB3:C9 OA 694 CMP I;$OA 
FFB5:90 D3 FF8A 695 BCC DIG ;BR IF HEX DIGIT 

I FFB7:69 88 696 ADC f/$88 
FFB9:C9 FA 697 CMP IFSFA 
FFBB : 4C 1B FF 698 JNP LOOKASC ;check for ASCII input 
FFBE: 699 * 

I FF8E:A9 FE 700 TO SUB LDA II<GO ;niSPATCH TO SUBROUTINE, BY 
FFC0:48 701 PHA PUSHING THE HI- ORDER SUBR ADDR, 
FFCl: 89 E3 FF 702 LOA SUBTBL,Y THEN THE LO- ORDER SUBR ADDR 
FFC4:48 703 PHA ONTO THE STACK, 

I 
FFCS: AS 31 704 LOA HODE (CLEARING THE MODE, SAVE THE OLD 
FFC7:AO 00 705 ZMODE LDY 11$00 MOD F. IN A-REG) , 
FFC9:84 31 706 STY MODE 
FFCB:60 707 RTS AND I RTS' TO THE SUBROUTINE! 

I 
Ff'CC: 708 * 
FFCC:BC 709 CHRTBL DFB $BC ;·c (BASIC WARM START) 
FFCD:B2 710 DFB $82 ;·Y (USER VECTOR) 
FFCE:BE 711 DFB $BE ;·E (OPEN AND DISPLAY REGISTERS) 

I 
FFCF:9A 712 DFB $9A ; ! (enter mini-assembler) 
FFDO:EF 713 DFB SEF ;V (MEMORY VERIFY) 
FFD1: C4 714 DFB $C4 ;'"'K (IN/I SLOT) 
FFD2:EC 715 DFB SEC ;S (search for 2 bytes) 

I 
FFD1: A9 716 DFB $A9 ;·P (PRirSLOT) 
FFD4:BB 717 DFB $BB :·s (BASIC COLD START) 
FFDS :A6 718 DFB $A6 . ,_, (SUBTRACTION) 

' FFD6:A4 719 DFB $A4 ; '+' (ADDITION) 

I 
FFD7 :06 720 DFB $06 ;M (MENORY MOVE) 
F"Fn8:95 721 DFB $95 ; 1 <' (DELIMITER FOR MOVE, VFY) 
H D9: 07 722 DFB $07 ;N (SET NORMAL VIDEO) 
FFDA: 02 723 DFB $02 ; I (SET INVERSE VIDEO) 

I 
FFDB:OS 724 DFB $05 ;L (DISASSEMBLE 20 INSTRS) 
:me :FO 725 DFB $FO ;W (WRITE 'fO TAPE) 
: r:>D:OO 726 DFB $00 ;G (EXECUTE PROGRAl-1) 
: r::JE: E: B 727 DFB SEB ;R (READ FROM TAPE) 
:r::-::93 728 DFB $93 . '·' (MEMORY FILL) 

I 
' . 

f?!: ~ :Ai' 729 DFB SA7 . I I (ADDRESS DELIMITER) 
' ::::1::6 730 DFB $C6 ; ' CR' (END OF INPUT ) 

I 

I 

I \oper dtx I. \1· om, or ftO~I Lt~t ir g~ 371 



FFE2:99 731 DFB $99 ;BLANK 
FFE3 : 732 * 
FFE3: 733 * Table of low order monitor routine dispatch 
FFE3: 734 * addresses. High byte always $FE 
FFE3: 735 * 
FFE3:B2 736 SUBTBL DFB )BASCONT- 1 ;~C (BASIC warm start) 
FFE4:C9 737 OFB >USR-1 ; ~y ( not used) 
FFE5:BE 738 DFB )REGZ-1 ;""E (open and display registers) 
FFE6 : FO 739 DFB )MINI-I ;mini assembler 
FFE7:35 740 DFB )VFY-1 ;V (memory verify) 
FFE8:8C 741 DFB )INPRT-1 ; ~K (IN#SLOT) 
FFE9:D6 742 DFB )SEARCH-I ;search for pattern 
FFEA:96 743 DFB )OUTPRT-1 ;~P (PRIISLOT) 
FFEB: AF 744 OFB )X BASIC-I ;~B (BASIC cold start) 
FFEC: 17 745 DFB )SETMODE- 1 ; ,_, (subtract ion) 
FF£0 : 17 746 DFB )SETMODE-1 ; '+' (addition) 
FFEE: 2B 747 DFB )MOVE-I ;M (memo ry move) 
FFEF:IF 748 DFB )LT-1 ; ' <' (delim for move,vfy) 
FFF0:83 749 DFB )SETNORM-1 ;N (set normal video) 
FFFI: 7F 750 DFB )SETINV-1 ; I ( set inverse video) 
FFF2:5D 751 nFB )LIST-I ;L (disassemble 20 in~trs ) 
FFF3 :CC 752 DFB )WRITE-I ;W (write to tape) 
FFF4: 85 753 DFB >GO- I ;G (execute program) 
FFF5: FC 754 DFB )READ-I ;R (read from tape) 
FFF6:17 755 DFB )SETMODE-1 • t :' , (memory fill) 
FFF7: 17 756 DFB )SETMODE-1 . ' ' (address delimiter) . 
FFF8: F5 757 DFB )CRMON-1 ; 'CR' (end of input) 
FFF9:03 758 DFB )BLANK-I ;BLANK 
FFFA: 759 * 
FFFA:FB 03 760 OW NMI ;NON-MASKABLE INTERRUPT VECTOR 
FFFC:62 FA 761 OW RESET ; RESET VECTOR 
FH'E : FA C3 762 OW I RQ ;INTERRUPT REQUEST VECTOR 
0000 : 19 INCLUDE MINI 
0000 : I * 
0000: 2 * Apple lie Mini Assembler 
0000 : 3 * II 0000: 4 * Got mnemonic, check address mode 
0000 : 5 * 
C4C8: C4C8 6 ORG C30RG+$1C8 
C4C8 : 7 * 

II C4C8:20 13 FF 8 A.'IOIH JSR NNBL ;get next non-blank 
C4CB:84 34 9 STY YSAV ;save Y 
C4CD :DD 84 F9 10 CMP CHARI,X 
C4DO: DO 13 C4E5 II BNE AMOD2 
C4D2 :20 13 FF 12 JSR NNBL ;get next non-blank 
C405 :DD BA F9 13 CMP CHAR2 ,X 
C4D8 : FO 00 C4E7 14 BEQ AMOD3 
C4DA : BD BA F9 15 LOA CHAR2 ,X ;done yet? -C4DD : FO 07 C4E6 16 BEO AMOD4 
C4DF :C9 A4 17 CMP II$A4 ;if "$" then done 
C4El : FO 03 C4E6 18 BEQ AMOD4 
CLE3 :A4 34 19 LOY YSAV ;restore Y 

II C4::5: 18 20 Al-1002 CLC 
Ci.E6 :88 21 AMOD4 DEY 

II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 

I 
I 

C4E7:26 44 
C4E9:EO 03 
C4EB:DO OD C4FA 
C4ED:20 A7 FF 
C4FO:A5 3F 
C4F2:FO 01 C4F5 
C4F4: E8 
C4F5:86 35 
C4F7 :A2 03 
C4F9:8B 
C4FA:86 3D 
C4FC:CA 
C4F0:10 C9 C4C8 
C4FF:60 
CSOO: 
CF3A: CF3A 
CF3A: 
CF3A: 
CF3A: 
CF3A : E9 81 
CF3C :4A 
CF30:DO 14 CF53 
CF3F:A4 3F 
CF41:A6 3E 
CF43:DO 01 CF46 
CF45:BB 
CF46:CA 
CF47:8A 
CF48:18 
CF49:ES 3A 
CF4B:85 3E 
CF4D:10 01 CF50 
CF4F:C8 
CF50:98 
CF51 :E5 3B 
CF53:DO 40 CF95 
CF55: 
CFSS: 
CF55: 
Cf55:A4 2F 
CF57:B9 3D 00 
CFSA:91 3A 
Cf5C:88 
CF5D:IO FB CF57 
CF5F: 
CF5F: 
CF5F : 
CF5F :20 48 F9 
CF62 :20 !A FC 
CF65:20 lA FC 
CF68:4C E3 FC 
CF6B: 
C!'oil: 
CF6B: 

22 AM003 
23 
24 
25 
26 
27 
28 
29 AMOD5 
30 
31 
32 AMOD6 
33 
34 
35 
36 * 
37 
38 * 

ROL A5L 
CPX 11$03 
BNE AMOD6 
JSR GETNUM 
LDA A2H 
BEQ AMOD5 
INX 
STX YSAV1 
LOX 11$03 
DEY 
STX A1H 
DEX 
BPL 
RTS 

A.'10D1 

ORG C80RG+S73A 

;shift bit into format 

;get high byte of address 
;=> 

39 * Calculate offset byte for relative addresses 
40 * 
41 REL 
42 
43 
44 
45 
46 
47 
48 RELl 
49 
50 
51 
52 
53 
54 
55 REL2 
56 
57 GOERR 
58 * 

SBC 
LSR 
BNE 
LDY 
LOX 
BNE 
DEY 
OEX 
TXA 
CLC 

/F$81 
A 

GO ERR 
A2H 
A2L 
REL1 

SBC PCL 
STA A2L 
BPL REL2 
INY 
TYA 
SBC PCH 
BNE MINH:RR 

;calc r elative address 

;bad branch 

;point to offset 
;displacement -

;subtract current PCL 
;and save as displacement 
;check page 

;get page 
; check page 
;display error 

59 * Move Instruction to memory 
60 * 
61 HOVINST LOY LENGTH 
62 MOVl LDA AlH ,Y 
63 STA (PCL) ,Y 
64 DEY 
65 BPL MOV1 
66 * 
67 * Display instruction 
68 * 
69 
70 
71 
72 
73 * 

JSR PRBLNK 
JSR UP 
JSR UP 
JMP DISLIN 

;get instruction length 
;get a byte 
;and move it 

;print blanks to make ProDOS work 
;move up 2 lines 

;disassemble it, =>DOINST 

74 * Compare disassembly of all known opcodes with 
75 * the one typed in until a match is found 

\pperd1x I: M.mJtor RO:VI LisLmgs 

-----------



CF6B: 
CF6B:A5 30 
CF60:20 BE FS 
CF70:AA 
CF71: BD 00 FA 
CF74: C5 42 
CF76:DO 13 CF8B 
CF7 8 :BD CO F9 
CF7B:C5 43 
CF7D:DO OC CFSB 
CF7F:A5 44 
CFBl :A4 2E 
CF83:CO 90 
CFSS :FO B3 CF3A 
CF87 : CS 2E 
CFB9 :FO CA CFSS 
CFBB:C6 30 
CF8D : DO DC CF6B 
CFBF:E6 44 
CF91 :C6 35 
CF93:FO 06 CF6B 
CF95: 
CF95: 
CF95 : 
CF95: 
CF9S:A4 34 
CF97:9B 
CF98:AA 
CF99: 4C 02 FC 
CF9C : 
CF9C: 
CF9C: 
CF9C: 
CF9C : 
CF9C:20 C7 FF 
CF9F : AD 00 02 
CFA2 : C9 AO 
CFA4 : FO 12 CFBB 
CFA6 :C9 BD 
CFA8 : DO 01 CFAB 
CFAA:60 
CFAB : 
CFAB:20 A7 FF 
CFAE :C9 93 
CFBO :DO ES CF97 
CFB2 :BA 
CFB3:FO E2 CF97 
CFBS : 
CFBS : 20 78 FE 
CFB8 : A9 03 
CFBA : 85 30 
CFBC : 20 13 FF 
CFBF : OA 
CFCO :E9 BE 

,.. 
' 

76 * 
77 GETOP 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
BB 
89 
90 
91 
92 NXTOP 
93 
94 
95 
96 
97 * 

LOA 
JSR 
TAX 

A1H 
INSDS2 

LDA MNEMR,X 
CMP A4L 
BNE 
LOA 
CMP 
BNE 
LOA 
LOY 
CPY 
BEQ 
CMP 
BEQ 
DEC 
BNE 
I NC 
DEC 
BEQ 

NXTOP 
MNEML ,X 
A4H 
NXTOP 
ASL 
FORMAT 
11$90 
REL 
FORMAT 
MOVINSr 
AlH 
GETOP 
ASL 
YSAVl 
GETOP 

;get opcode 
;determine mnemonic index 

;X = index 
;get right half of index 
;does it match entry? 
;=>try next opcode 
;get left half of index 
;does it match entry? 
;=>no , try next opcode 
;found opcode, check address mode 
;ge t addr. mode format for that opcode 
;is it relative? 
;=>yes , calc relative address 
;does mode match? 
;=>yes, move instruction t o memory 
;else try next opcode 
;=)go try i t 
;else t ry next format 

; =>go try next format 

98 * Point to the error with a caret , beep , and fall 
99 * into the mini-assembler. 

100 * 
101 MINI ERR LOY YSAV ;get posit ion 
102 ERR2 TYA 
103 TAX 
104 JMP ERR3 ;display error , =>DOINST 
lOS * 
106 * Read a line of input . If prefaced with " " , decode 
107 * mnemonic. If " $" do monitor command. Otherwise parse 
lOB * hex address before decodin,g mnemonic . 
109 * 
11 0 DOINST JSR ZMODE 

$200 
li$AO 
DOLIN 
IISBD 
GET!l 

111 
112 
113 
114 
115 
116 
117 * 
118 GETil 
119 
120 GOERR2 
121 
122 
123 * 
124 
125 DOLIN 
126 
127 NXTCH 
128 
129 

LOA 
CMP 
BEO 
CMP 
BNE 
RTS 

JSR GETNUN 
CMP 11$93 
BNE ERR2 
TXA 
BEQ ERR2 

JSR Al PCLP 
LOA ll$03 
STA Al H 
JSR NNBL 
ASL A 
SBC II$BE 

;clear mode 
;get f ir st char i n line 
;if blank, 
;=>go a ttemp t disassembly 
;is it return? 
; =>no, continue 
;else return to Monitor 

;parse hexadecimal input 
;l ook for " ADDR: " 
;no 11

:
11

, display error 
;X nonzero i f address ente red 
;no "ADDR", display error 

;move address to PC 
;get starting opcode 
;and save 
;get next non-blank 
;validate entry 

II 

II 



CFC2:C9 C2 130 CMP IISC2 
CFC4:90 01 CF97 131 BCC ERR2 ;•>f lag bad mnemonic 
CFC6 : 132 * 

I CFC6 : 
CFC6: 

133 * Form mnemonic for later comparison 
134 * 

CFC6 : OA 135 ASL A 
CFC7 :OA 136 ASL A 

I CFC8 :A2 04 
CFCA:OA 
CFC B: 26 42 

137 LDX /1$04 
138 NXTMN ASL A 
139 ROL A4L 

CFC0:26 43 140 ROL A4H 

I CFCF :CA 
CFOO : 10 F8 CFCA 
CFD2 : C6 3D 

141 DEX 
142 liPL NXTMN 
143 DEC AlH ;decrement mnemonic count 

CF04:FO F4 CFCA 144 BEQ NXTMN 

I CFD6 :1 0 E4 CF8C 
CF08: A2 OS 
CFOA:20 C8 C4 

14S BPL NXTCH 
146 LOX /ISS ; index into add r ess mode tables 
!47 JSR A.'-IOD1 ;do this elsewhere 

CFOO:A5 44 !48 LDA A5L ;get format 

I CFOF :OA 
CFEO:OA 
CFE 1 : OS 3S 

149 ASL A 
150 ASL A 
151 ORA YSAV1 

CFE3:C9 20 152 CMP 11$20 

I 
CFE5:80 06 CFEn 
CFE7:A6 35 
CFE9 :FO 02 CFEO 

153 BCS A.'-1007 
154 LOX YSAVl ;get our format 
ISS BEQ A.'-1007 

CFE8:09 80 156 ORA 11$80 

I 
CFE0:85 44 
CFEF:84 34 
CFFL: 89 00 02 

!57 A..'IOD7 STA A5L ;update format 
1S8 STY YSAV ;update position 
lS9 LOA $0200 ,Y ;get next character 

CFF4 :C9 88 160 CMP ll$ 88 ;is it a ";"? 

I 
Cf'F6 : FO 04 CFFC 
CFF8:C9 80 
CFFA :DO B4 CFBO 

161 BEQ A.'-1008 ;•)yes , skip comment 
162 CMP 11$80 ;is it carriage return 
163 BNE GOERR2 

CFFC :4C 6B CF 164 A.'-1008 JMP GETOP ;get next opcode 

I 
Cl'FF : 
CFH :OO 

165 * 
166 DF8 $00 ;byte for making CTOO checksum ok 

I 

I 

I 

I 

I 

I 

I ppndix I M('nitor RO~I Ltsting5 375 



~] .I 
II 

II 

II 

II 

II 

II 



Glossary 

accumulator: The register in the range of values. For example, a Apple lie: A transportable 
65C02 microprocessor where most conventionall2-hour clock face is personal computer in the Apple II 
computations are performed. an analog device that represents the family, with a disk drive and 

I ACIA: Acronym for Asychronous time of day in terms of the angles of 80-column capability built in. 

Communications Interface the clock's hands. Compare digital. Apple lie: A personal computer in 
Adapter. The ACIA is a chip that analog data: Data in the form of the Apple II family. 
converts data from parallel to serial continuously Yariable physical Apple lie 80-Column Text Card: form and vice versa. Its internal quantities. Compare digital A peripheral card that plugs into the 
registers control and keep track of data. Apple lie's auxiliary slot and the sending and receiving of data. analog signal: A signal that varies converts the computer's display of Firmware and software set and 
change the status of these internal continuously over time. text from 40-column width to 

I registers. analog-to-digital converter: A 80-column width. 

acronym: A word formed from the device that converts quantities from Apple lie Extended SO-Column 

initial letters of a name or phrase, analog to digital form. For example, Text Card: A peripheral card that 

such as ROM, from read-only hand controls used on Apple II plugs into the Apple lie's auxiliary 
family computers convert the slot and converts the computer's memory. position of the control dial (an display of text from 40-column 

address: A number that specifies a analog quantity) into a discrete width to 80-column width while 
single byte of memory. Addresses number (a digital quantity) that extending its memory capacity by 
can be given as decimal integers or changes abruptly even when the 64K bytes. 
as hexadecimal int.PgPrs. A 64K dial is turned smoothly. Apple II Pascal: A software 
system has addresses ranging from AND: A logical operator that system that lets you create and 0 to 65535 (in decimal) or from 
SOOOO to $FFFF (in hexadecimal). produces a true result if both of its execute programs written in the 

operands are true, a false result if Pascal programming language, 
algorithm: A step-by-step either or both of its operands are adapted by Apple Computer from 

I procedure for solving a problem or false; compare OR, exclusive OR, the UCSD (University of California, 
accomplishing a task. NOT. San Diego) Pascal Operating System 

analog: Represented in terms of a ANSI: Acronym for American and sold for use with the Apple II 

ph~·sical quantity that can vary National Standards Institute, family of computers. 

smoothly and continuously over a which sets standards for many 
fields and is the most common 
standard for terminals. 

3i7 



II 
Applesoft BASIC: An extended to 127 stand for text characters- auxiliary slot: The special 
version of the BASIC programming including the letters of the alphabet, expansion slot inside the Apple lie 
language used with the Apple II the digits 0 through 9, punctuation used for the Apple 80-Column Text 
family of computers. An interpreter marks, special characters, and Card or Extended 80-Column Text 

II for creating and executing programs control characters-used for Card. 
in Applesoft is built into the representing text inside a computer 

base address: In indexed computer's firmware. Compare and for transmitting text between 
addressing, the fixed component of II Integer BASIC. computers or between a computer 
an address. 

application program: A program and a peripheral device. 
that puts the resources and assembler: A language translator BASIC: Acronym for Beginner's 

II capabilities of the computer to use that converts a program written in All-purpose Symbolic Instruction 
for some specific purpose or task, assembly language into an Code. A high-level programming 
such as word processing, data base equivalent program in machine language designed to be easy to 

II management, or graphics. Compare language. learn and use. Two versions of 
BASIC are available from Apple system program. 

assembly language: A low-level Computer for use with all Apple II 
argument: The value on which a programming language in which family systems: Applesoft (built into 
function operates. individual machine-language fi rmware) and Integer BASIC 
arithmetic expression: A instructions are written in a (provided on the ProDOS User's -combination of numbers and symbolic form more easily Disk). 
arithmetic operators (such as understood by a human programmer 

baud: Unit of signaling speed taken 
3 + 5) that indicates some operation than machine language itself. 

from the name Baudot. The speed in 
to be carried out. asserted: Made true (positive in bauds is equal to the number of 
arithmetic operator: An positive-true logic; negatire in discrete conditions or signal events 

negative-true logic). per second regardless of the operator, such as +, that combines 
information content of those signals. numeric values to produce a asynchronous transmission: 

numeric result. Compare Not synchronized by or with a Often equated (though not 
precisely) with bits per second. II relational operator, logical clocking signal. Transmission in 
Compare bit rate. operator . which each information character is 

ASCII: Acronym for American individually synchronized, usually 

II Standard Code for Information by the use of start and stop bits. The 
gap between each character isn't Interchange, pronounced ASK ee. 
necessarily fixed. Compare A code in which the numbers from 0 
synchronous transmission. II 

II 
.~7 '< Glossary 

II 



I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

binary: The representation of 
numbers in terms of powers of two, 
using the two digits 0 and 1. 
Commonly used in computers 
because the values 0 and 1 can 
easily be represented in physical 
form in a variety of ways, such as 
the presence or absence of current, 
positire or negative voltage, or a 
white or black dot on the display 
screen. A single binary digit -a 0 or 
a l-is called a bit. 

binary digit: The smallest unit of 
information in the binary number 
system. Also called a bit. 

binary operator: An operator that 
combines two operands to produce a 
result; for example, + is a binary 
arithmetic operator, <is a binary 
relational operator, and OR is a 
binary logical operator. Compare 
unary operator. 

bit: The smallest item of useful 
information a computer can handle. 
Usually represented as a 1 or a 0. 
Eight bits equal one byte. 

bit rate: The speed at which bits 
are transmitted, usually expressed 
as bps or bits per second. 
Compare baud. 

board: See printed-circuit 
board. 

body: The statements or 
instructions that make up a part of a 
program, such as a loop or a 
subroutine. 

boot: To start up a computer by 
loading a program into memory 
from an external storage medium 
such as a disk. Often accomplished 
by first loading a small program 
whose purpose is to read the larger 
program into memory. The program 
is said to pull itself up by its own 
bootstraps-hence the term 
bootstrapping or booting. 

boot disk: See startup disk. 

bootstrap: See boot. 

bps: See bit rate. 

branch: To send program 
execution to a line or statement 
other than the next in sequence. 

BREAK: A SPACE (0) signal, sent 
over a communication line, of long 
enough duration to interrupt the 
sender. This signal is often used to 
end a session with a time-sharing 
service. 

BRK: An instruction that causes 
the 65C02 microprocessor to halt. 

., Jr\ 

buffer: A memory area that holds 
information until it can be 
processed. 

bug: An error in a program that 
causes it not to work as intended. 

bus: A group of wires that transmit 
related information from one part of 
a computer system to another. 

byte: A sequence of eight bits that 
represents an instruction, a letter, a 
number, or a punctuation mark. 

cable: A group of wires used to 
carry information between two 
devices. How many wires are used 
varies \\ith the type of connection. 

call: To request the execution of a 
subroutine or function. 

card: See peripheral card. 

carriage return: An ASCII 
character ( decimall3) that 
ordinarily causes a printer or 
display de\ ice to place the 
subsequent character on the left 
margin. 

carrier: The background signal on 
a communication channel that is 
modified to carry the information. 
Under RS232-C rules, the carrier 
signal is equivalent to a continuous 
MARK (1) signal; a transition to 0 
then represents a start bit. 

379 



II 
II 
II 

carry flag: A status bit in the code: (1) A number or symbol used computer: An electronic device 
65C02 microprocessor, used to hold to represent some piece of that performs predefined 
the high-order bit (the carry bit) in information in a compact or easily (programmed) computations at high 
addition and subtraction. processed form. (2) The statements speed and with great accuracy. A 

central processing unit: See or instructions making up a machine that is used to store, 

processor. program. transfer, and transform information. 

character: Any symbol that has a cold start: The process of starting computer language: See 
up the Apple II when the power is programming language. widely understood meaning. Some first turned on (or as if the power characters-such as letters, had just been turned on) by loading computer system: A computer II numbers, and punctuation-can be the operating system into main and its associated hardware, 

displayed on the monitor screen and memory, then loading and running a firmware, and software. 
printed on a printer. Others are used program. conditional branch: A branch to control various functions of the 
computer. See control character. column: A vertical arrangement of that depends on the truth of a 

condition or the value of an 
character code: A number used to graphics points or character spaces expression. Compare II represent a text character for on the monitor screen. unconditional branch. 
processing by a computer system. command: A word or character configuration: The hardware and that causes the computer to do II character set: The entire set of something. software arrangement of a system. 
characters that can be either shown 
on a monitor or used to code compiler: A language translator connector: A physical device such 

II as a plug, socket, or jack, used to computer instruction. In a printer, that converts a program written in a connect two devices to one another. the entire set of characters that the high-level programming language 
printer is capable of printing. into an equivalent program in some console: The Apple lie's video II circuit board: A collection of lower-level language (such as display and keyboard together make 

integrated circuits (chips) on a machine language) for later up the console. This is the part of 

board. execution. Compare interpreter. the Apple Ile you communicate with II composite video: A video signal directly. 
Clear To Send: An RS232-C signal that includes both display constant: A symbol in a program from a DCE to a DTE that is II normally kept false until the DCE information and the synchronization that represents a fixed, unchanging 

makes it true, indicating that all (and other) signals needed to value. Compare variable. 

circuits are ready to transfer data display it. 

II out. 

II 
Glossal") II 



I 

I 

I 

I 

I 

I 

I 

I 
I 
I 

I 

I 
I 
I 
I 
I 
I 

I coNTROL 1: A key that when 
pressed in conjunction with another 
key makes that other key behave 
differently. 

I coNTROL H RESET 1: This 
combination of keystrokes usually 
causes an Applesoft program or 
command to stop immediately. If a 
program disables the 
I CONTROL H RESET I feature, you 
need to turn the computer off to get 
the program to stop. 

control character: A non-printing 
character that controls or modifies 
the way information is printed or 
displayed. Control characters have 
ASCII values between 0 and 31, and 
are typed from a keyboard by 
holding down I CONTROL I while 
pressing some other key. For 
example, the character Control-M 
(ASCII code 13) means ~return to 
the beginning of the line" and is 
equivalent to pressing I RETURN 1. 

control code: One or more 
non-printing characters included in 
a text file whose function is to 
change the way a printer prints the 
text. See control character. 

controller card: A peripheral card 
that connects a device such as a 
printer or disk drive to an Apple IIe 
and controls the operation of the 
device. 

copy-protect: To prevent someone 
from duplicating the contents of a 
disk. Compare write-protect. 

CPU: Abbreviation for central 
processing unit. See processor. 

current input device: The source, 
such as the keyboard or a modem, 
from which a program is currently 
receiving its input. 

current output device: The 
destination, such as the display 
screen or a printer, to which a 
program is currently sending its 
output. 

cursor: A symbol displayed on the 
screen that marks where the user's 
next action will take effect or where 
the next character typed from the 
keyboard will appear. 

DAC: See digital-to-analog 
converter. 

data: Information, especially raw 
or unprocessed information, used or 
operated on by a program. 

data bits: The computer sends 
and receives information as a string 
of bits. These are called data bits. 

Data Carrier Detect: An RS232-C 
signal from a DCE (such as a 
modem) to a DTE (such as an 
Apple Ile) indicating that a 
communication connection has 
been established. 

Data Communication 
Equipment: As defined by the 
RS232-C standard, any device that 
transmits or receives information. 
Usually this is a modem. However, 
when a modem eliminator is used, 
the Apple IIe itself looks like a DCE 
to the other device, and the other 
device looks like a DCE to the 
Apple He. 

data set: A device that performs 
the modulation/ demodulation 
control functions necessary to 
provide the compatibility between 
business machines and 
communications facilities. See 
modem. 

Data Set Ready: An RS232-C 
signal from a DCE to a DTE 
indicating that the DCE has 
established a connection. 

381 



Data Terminal Equipment: As 
defined by the RS232-C standard, 
any device that generates or absorbs 
information, thus acting as a 
terminus of a communication 
connection. 

Data Terminal Ready: An 
RS232-C signal from a DTE to a DCE 
indicating a readiness to transmit or 
receive data. 

DCD: See Data Carrier Detect. 

DCE: See Data Communication 
Equipment. 

debug: To locate and correct an 
error or the cause of a problem or 
malfunction in a computer system. 
Typically used to refer to 
software-related problems. Compare 
troubleshoot. 

decimal: The common form of 
number representation used in 
everyday life, in which numbers are 
expressed in terms of powers of ten, 
using the ten digits 0 through 9. 

default: A value, action, or setting 
that is assumed or set in the 
absence of explicit instructions 
othemise. 

deferred execution: The saving 
of an instruction in a program for 
execution at a later time as part of a 
complete program; occurs when the 
statement is typed with a line 
number. Compare immediate 
execution. 

I DELETE 1: A key on the upper-right 
corner of the Apple lie and lie 
keyboards that, when pressed, 
usually erases the character 
immediately preceding the cursor. 

delimiter: A character that is used 
to mark the beginning or end of a 
sequence of characters, and which 
therefore is not considered part of 
the sequence itself. For example, 
Applesoft uses the double quotation 
mark (") as a delimiter for string 
constants: the string DOG consists 
of the three characters D, 0, and G, 
and does not include the quotation 
marks. In written English, the space 
character is used as a delimiter 
between words. 

demodulate: To recover the 
information being transmitted by a 
modulated signal; for example, a 
conventional radio receiver 
demodulates an incoming broadcast 
signal to convert it into sound 
emitted by a speaker. 

device: A piece of computer 
hardware-such as a disk drive, a 
printer, or a monitor-other than 
the computer itself. Devices may be 
built in or peripheral. 

device driver: A program that 
manages the transfer of information 
between the computer and a 
peripheral device. 

device handler: See device 
driver. 

digit: ( 1) One of the characters 0 
through 9, used to express numbers 
in decimal form. (2) One of the 
characters used to express numbers 
in some other form, such as 0 and 1 
in binary or 0 through 9 and A 
through F in hexadecimal. 

digital: Represented in a discrete 
(noncontinuous) form, such as 
numerical digits. For example, 
contemporary digital clocks display 
the time in numerical form (such as 
2:57) instead of using the positions 
of a pair of hands on a clock face. 
Compare analog. 

digital data: Data that can be 
represented by digits-that is, data 
that are discrete rather than 
continuously variable. Compare 
analog data. 

II 

II 

II 

] 

II 
II 

II 

II 

II 

II 

II 

II 

II 

II 



I 

I 

I 

I 

I 
I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

digital-to-analog converter: A 
device that converts quantities from 
digital to analog form. 

DIP: See dual in-line package. 

DIP switch: A bank of tiny 
switches, each of which can be 
moved manually one way or the 
other to represent one of two values 
(usually on and off). 

disassembler: A language 
translator that converts a 
machine-language program into an 
equivalent program in assembly 
language, more easily understood by 
a human programmer. The opposite 
of an assembler. 

disk: An information-storage 
medium consisting of a flat, 
circular, magnetic surface on which 
information can be recorded in the 
form of small magnetized spots, in a 
manner similar to the way sounds 
are recorded on tape. 

disk controller card: A circuit 
board that provides the connection 
between one or two disk drives and 
the Apple lie. 

disk drive: A device that reads 
information from disks into the 
memory of the computer and writes 
information from the memory of the 
computer onto a disk. 

disk envelope: A removable 
protective paper sleeve used when 
handling or storing a disk. It must be 
removed before inserting the disk in 
a disk drive. Compare disk jacket. 

diskette: A term sometimes used 
for the small (5\4-inch), flexible 
disks on which information is 
stored. 

disk jacket: A permanent 
protective covering for a disk, 
usually made of black paper or 
plastic. The disk is never removed 
from the jacket, even when inserted 
in a disk drive. Compare disk 
envelope. 

disk operating system: One of 
several optional software systems 
for the Apple II family of computers 
that enables the computer to control 
and communicate with one or more 
disk drives. 

Disk II drive: One of a number of 
types of disk drive made and sold by 
Apple Computer for use with the 
Apple II family of computers. It uses 
5\4-inch flexible (floppy) disks. 

disk-resident: Stored or held 
permanently on a disk. 

Glossary 

display: v. To exhibit information 
visually. n. (1) Information 
exhibited visually, especially on the 
screen of a display device, such as a 
video monitor. (2) A display device. 

display color: The color currently 
being used to draw high-resolution 
or low-resolution graphics on the 
display screen. 

display device: A device that 
exhibits information visually, such 
as a television set or video monitor. 

DOS 3.2: An early Apple II 
operating system. DOS stands for 
Disk Operating System. 3.2 is the 
version number. 

DOS 3.3: One of the operating 
systems used by the Apple II family 
of computers. OOS stands for Disk 
Operating System. 3.3 is the 
version number. 

drive: See disk drive. 

DSR: See Data Set Ready. 

DTE: See Data Terminal 
Equipment. 

DTR: See Data Terminal Ready. 

383 



-dual in-line package: An emulate: To behave in an identical escape mode: A state of the II integrated circuit packaged in a way. The Apple II 2780/3780 computer, entered by pressing 
narrow rectangular box with a row Protocol Emulator and the Apple II I ESC 1. in which certain keys on the 
of metal pins along each side. Often 3270 BSC Protocol Emulator, for keyboard take on special meanings II referred to as a DIP switch. example, allow your Apple II, II for positioning the cursor and 

Dvorak keyboard: An alternate Plus, or lie, together with the Apple controlling the display of text on the 
Communications Protocol Card screen. II keyboard layout, also known as the (ACPC), to emulate the operations simplified keyboard. of IBM 3278 and 3277 terminals and escape sequence: A sequence of 

effective address: In 327 4 and 3271 control units. keystrokes, beginning with I Esc I, 

II machine-language programming, used for positioning the cursor and 

the address of the memory location end-of-command mark: A controlling the display of text on the 

on which a particular instruction punctuation mark used to separate screen. 
commands sent to a peripheral II actually operates, which may be device such as a printer or plotter. even parity: Use of an extra bit set 

arrived at by indexed addressing or Also called a command to 0 or 1 as necessary to make the 
some other addressing method. terminator. total number of 1 bits (among the II SO-column text card: A circuit data bits plus the parity bit) an even 

board that converts the computer's end-of-line character: Any number. 
character that tells the printer that 

II display of text from 40 columns to the preceding text constitutes a full even/ odd parity check: A check 
80columns. that tests whether the number of line and may now be printed. digits in a group of binary digits is 80/ 40 column switch: A switch, II either hardware or software, that error code: A number or other even (even parity check) or odd 

controls the number of horizontal symbol representing a type of error. (odd parity check). 

columns or characters across your error message: A message exclusive OR: A logical operator II screen. A television can display a displayed or printed to notify the that produces a true result if one of 
maximum of 40 characters across, user of an error or problem in the its operands is true and the other 
while a video monitor can display 80 execution of a program. false, a false result if its operands 

II characters across the screen. Escape character: An ASCII are both true or both false. Compare 

embedded: Contained within. For character that allows you to perform OR, AND, and NOT. 

example, the string special functions when used in execute: To perform the actions II HUMPTY DUMPTY is said to contain combination keypresses. specified by a program command or 
an embedded space. sequence of commands. 

II 
II 

Glossar~· II 



I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 

I 

I 
I 
I 
I 

expansion slot: A connector 
inside the Apple Ile in which a 
peripheral card can be installed. 
Sometimes called a peripheral 
slot. 

expression: A formula in a 
program that describes a calculation 
to be performed. 

FIFO: First in, first out. 

me: An ordered collection of 
information stored as a named unit 
on a peripheral storage medium 
such as a disk. 

firmware: Software stored 
permanently in hardware: programs 
in read-only memory (ROM). Such 
programs (for example, the 
Applesoft Interpreter and the 
Monitor program) are built into the 
computer at the factory. They can 
be executed at any time but cannot 
be modified or erased from main 
memory. Compare hardware, 
software. 

ftxed-point: A method of 
representing numbers inside the 
computer in which the decimal 
point (more correctly, the binary 
point) is considered to occur at a 
fixed position within the number. 
Typically, the point is considered to 

lie at the right end of the number so 
that the number is interpreted as an 
integer. Compare floating-point. 

flag: A variable whose contents 
(usually 1 or 0, standing for true or 
false) indicate whether some 
condition holds or whether some 
event has occurred. Used to control 
the program's actions at some later 
time. 

flexible disk: A disk made of 
flexible plastic. Often called a 
floppy disk. Compare rigid disk. 

floating-point: A method of 
representing numbers inside the 
computer in which the decimal 
point (more correctly, the binary 
point) is permitted to float to 
different positions within the 
number. Some of the bits within the 
number itself are used to keep track 
of the point's position. Compare 
ftxed-point. 

floppy disk: See flexible disk. 

format: n. The form in which 
information is organized or 
presented. v. (1) To specify or 
control the format of information. 
(2) To prepare a blank disk to 
receive information by dividing its 
surface into tracks and sectors. Also 
initialize. 

form feed: An ASCII character 
( decimal12) that causes a printer or 
other paper-handling device to 
advance to the top of the next page. 

FORTRAN: A contraction of the 
phrase FORmula TRANslator. A 
widely used, high-level 
programming language especially 
suitable for applications requiring 
extensive numerical calculations, 
such as in mathematics, 
engineering, and the sciences. A 
version called Apple Il Fortran is 
sold by Apple Computer for use with 
the Apple II Pascal Operating 
System. 

framing error: In serial data 
transfer, absence of the expected 
stop bit(s) at the end of a received 
character. 

frequency: The number of 
complete cycles transmitted per 
second. Usually expressed in hertz 
(cycles per second), kilohertz 
(kilocycles per second), or 
megahertz (megahertz per second). 

full duplex: Capable of 
simultaneous, tw<rway 
communication. Compare half 
duplex. 

385 



function: A pre-programmed 
calculation that can be carried out 
on request from any point in a 
program. An instruction that 
converts data from one form to 
another. 

GAME 1/ 0 connector: A special 
16-pin connector inside the 
Apple lie originally designed for 
connecting hand controls to the 
computer, but also used for 
connecting some other peripheral 
devices. Compare hand-control 
connector. 

graphics: (1) Information 
presented in the form of pictures or 
images. (2) The display of pictures 
or images on a computer's video 
display screen. Compare text. 

half duplex: Capable of 
communication in only one 
direction at a time. Compare full 
duplex. 

hand-control connector: A 9-pin 
connector on the back panel of the 
Apple lie, used for connecting hand 
controls to the computer. Compare 
GAME 1/ 0 connector. 

hand controls: Optional 
peripheral devices, with rotating 
dial and pushbuttons, that can be 
connected to the Apple lie hand 
control connector. Typically used to 
control game-playing programs, but 
can be used in more serious 
applications as well. 

hang: For a program or system to 
spin its wheels indefinitely, 
performing no useful work. 

hardware: The physical 
machinery that makes up a 
computer system. Compare 
firmware, software. 

hertz: The unit of frequency of 
vibration or oscillation, also called 
cycles per second. Named for the 
physicist Heinrich Hertz and 
abbreviated Hz. The 65C02 
microprocessor used in the Apple lie 
operates at a clock frequency of 1 
million hertz, or 1 megahertz (MHz). 

hexadecimal: The representation 
of numbers in terms of powers of 
sixteen, using the ten digits 0 
through 9 and the six letters A 
through F. Hexadecimal numbers 
are easier for humans to read and 
understand than binary numbers, 
but can be converted easily and 
directly to binary form. Each 
hexadecimal digit corresponds to a 

sequence of four binary digits, or 
bits. Hexadecimal numbers are 
preceded by a dollar sign ($). 

high ASCII characters: ASCII 
characters with decimal values of 
128 to 255. Called high ASCI1 
because their high bit (first binary 
digit) is set to 1 (for on) rather than 
0 (for off). 

high-level language: A 
programming language that is 
relatively easy for humans to 
understand. A single statement in a 
high-level language typically 
corresponds to several instructions 
of machine language. High-level 
languages available for the Apple lie 
include BASIC, Pascal, Logo, and 
PILOT. 

high-order byte: The more 
significant half of a memory address 
or other two-byte quantity.ln the 
65C02 microprocessor, the low-order 
byte of an address is usually stored 
first, and the high-order byte 
second. 

high-resolution graphics: The 
display of graphics on a display 
screen as a six-color array of points, 
280 columns wide and 192 rows 
high. When the text window is in 
use, the visible high-resolution 
graphics display is 280 by 160 
points. 

• 
II 
II 

• 
II 
II 
II 
II 
II 

• 
II 
II 
II 
II 

I 
II 
II 



I 
I 

I 
I 
I 
I 
II 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

hold time: In computer circuits, 
the amount of time a signal must 
remain valid after some related 
signal has been turned off. Compare 
setup time. 

Hz: See hertz. 

IC: See integrated circuit. 

immediate execution: The 
execution of an program instruction 
as soon as it is typed. Occurs when 
the line is typed without a line 
number. This means that you can 
try out nearly every statement 
immediately to see how it works. 
Compare deferred execution. 

implement: To realize or bring 
about; for example, a language 
translator implements a particular 
language. 

IN# : This command designates 
the source of subsequent input 
characters. It can be used to 
designate a device in a slot or a 
machine-language routine as the 
source of input. 

index: (1) A number used to 
identify a member of a list or table 
by its sequential position. (2) A list 
or table whose entries are identified 
by sequential position. (3) In 
machine-language programming, 
the variable component of an 

indexed address, contained in an 
index register and added to the base 
address to form the effective 
address. 

indexed addressing: A method of 
specifying memory addresses used 
in machine-language programming. 

index register: A register in a 
computer processor that holds an 
index for use in indexed addressing. 
The 65C02 has two index registers, 
the X register and the Y register. 

index variable: A variable whose 
value changes on each pass through 
a loop. Often called control 
variable or loop variable. 

infinite loop: A section of a 
program that will repeat the same 
sequence of actions indefinitely. 

initialize: (1) To set to an initial 
state or value in preparation for 
some computation. (2) To prepare a 
blank disk to receive information by 
dividing its surface into tracks and 
sectors. Also format. 

initialized disk: A disk that is 
organized into tracks and sectors. 

input: Information transferred into 
a computer from some external 
source, such as the keyboard. a disk 
drive, or a modem. 

input/ output: Abbreviated I/ 0. 
The means by which information is 
transferred between the computer 
and its peripheral devices. 

input routine: A 
machine-language routine that 
performs the reading of characters. 
The standard input routine reads 
characters from the keyboard. A 
different input routine might, for 
example, read them from an 
external terminal. 

instruction: A unit of a 
machine-language or 
assembly-language program 
corresponding to a single action for 
the computer's processor to 
perform. 

integer: A whole number 
represented inside the computer in 
fixed-point form. Compare real 
number. 

Integer BASIC: A version of the 
BASIC programming language used 
by the Apple II family of computers. 
Integer BASIC is older than 
Applesoft and capable of processing 
numbers in integer (flxed·point) 
form only. Compare Applesoft 
BASIC. 

387 



integrated circuit: Networks of 
microfine wire that conduct 
electrical impulses. They are etched 
on silicon wafers and embedded in 
black plastic. 

interface: The devices, rules, or 
conventions by which one 
component of a system 
communicates with another. 

interface card: A peripheral card 
that implements a particular 
interface (such as a parallel or serial 
interface) by which the computer 
can communicate with a peripheral 
device such as a printer or modem. 

interpreter: A language translator 
that reads a program instruction by 
instruction and immediately 
translates each instruction for the 
computer to carry out. Compare 
compiler. 

interrupt: A temporary 
suspension in the execution of a 
program by a computer in order to 
perform some other task, typically 
in response to a signal from a 
peripheral device or other source 
external to the computer. 

.. 

inverse video: The display of text 
on the computer's display screen in 
the form of dark dots on a light (or 
other single phosphor color) 
background, instead of the usual 
light dots on a dark background. 

I/ 0: Input; output. The transfer of 
information into and out of a 
computer. See input, output. 

I/ 0 device: Input/output device. 
A device that transfers information 
into or out of a computer. See input, 
output, peripheral device. 

I/ 0 link: A fixed location that 
contains the address of an 
input/ output subroutine in the 
computer's Monitor program. 

joystick: An accessory that moves 
creatures and objects in game 
programs. 

K: Two to the tenth power, or 1024 
(from the Greek root kilo, meaning 
one thousand); for example, 64K 
equals 64 times 1024, or 65,536. 

keyboard: The set of keys built 
into the Apple lie, similar to a 
typewriter keyboard, used for 
entering information into the 
computer. 

Glossary 

keyboard input connector: The 
special connector inside the 
Apple lie by which the keyboard is 
connected to the computer. 

keystroke: The act of pressing a 
single key or a combination of keys 
(such as~ on the 
keyboard. 

keyword: A special word or 
sequence of characters that 
identifies a particular type of 
statement or command, such as 
RUN or PRINT. 

kilobyte: A unit of information 
consisting of lK (1024) bytes, or 8K 
(8192) bits. See K. 

KSW: The symbolic name of the 
location in the computer's memory 
where the standard input link is 
stored. KSW stands for keyboard 
switch. See 1/ 0 link. 

language: See programming 
language. 

leading zero: A zero occurring at 
the beginning of a number, deleted 
by most computing programs. 

least significant bit: The 
right-hand bit of a binary number as 
written down. Its positional value is 
0 or 1. 

II 

• -
II 
II 

-
II 
II 
II 
II 
II 
II 
II 

• 
II 
II 
II 



I 
I 
I 

I 
I 

I 
I~ 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 

LIFO: Acronym for last in,first 
out. 

line feed: An ASCII character 
( decimall 0) that ordinarily causes 
a printer or video display to advance 
to the next line. 

line number: A number 
identifying a program line in an 
Applesoft program. Line numbers 
are necessary for deferred 
execution. 

line width: The number of 
characters that fit on a line on the 
screen or on a page. 

list: A verb in computer jargon, 
meaning to display on a monitor, or 
print on a printer, the contents of 
the computer memory or a file. 

load: To transfer information from 
a peripheral storage medium (such 
as a disk) into main memory for use; 
for example, to transfer a program 
into memory for execution. 

location: See memory location. 

logic board: See main logic 
board. 

logical operator: An operator, 
such as AND, that combines logical 
values to produce a logical result. 
Compare arithmetic operator, 
relational operator. 

loop: A section of a program that is 
executed repeatedly until a limit or 
condition is met, such as an index 
variable reaching a specified ending 
value. 

loop variable: See index 
variable. 

low-level language: A 
programming language that is 
relatively close to the form that the 
computer's processor can execute 
directly. Low-level languages 
available for the Apple lie include 
6502 machine language and 6502 
assembly language. 

low-order byte: The less 
significant half of a memory address 
or other two-byte quantity. In the 
65C02 microprocessor, the low-order 
byte of an address is usually stored 
first, and the high-order byte 
second. 

low-power Schottkey: A type of 
TTL integrated circuit having lower 
power and higher speed than a 
conventional TTL integrated circuit. 

low-resolution graphics: The 
display of graphics on a display 
screen as a sixteen-color array of 
blocks, 40 columns wide and 48 
rows high. When the text window is 
in use, the visible low-resolution 
graphics display is 40 by 40 blocks. 

LS: See low-power Schottkey. 

machine language: The form in 
which instructions to a computer 
are stored in memory for direct 
execution by the computer's 
processor. Each model of computer 
processor (such as the 65C02 
microprocessor used in the 
Apple lie) has its own form of 
machine language. 

main logic board: A large circuit 
board that holds RAM, ROM, the 
microprocessor, custom-integrated 
circuits, and other components that 
make the computer a computer. 

main memory: The memory 
component of a computer system 
that is built into the computer itself 
and whose contents are directly 
accessible to the computer. 

MARK parity: A bit of value 1 
appended to a binary number for 
transmission. The receiving device 
can then check for errors by looking 
for this value on each character. 

389 



mask: A pattern of bits for use in 
bit-level logical operations. 

memory: A hardware component 
of a computer system that can store 
information for later retrieval. See 
main memory, random-access 
memory, read-only memory, 
read-write memory. 

memory location: A unit of main 
memory that is identified by an 
address and can hold a single item 
of information of a fixed size. In the 
Apple lie, a memory location holds 
one byte, or eight bits, of 
information. 

memory-resident: (1) Stored 
permanently in main memory as 
firmware. (2) Held continually in 
main memory even while not in use. 
DOS is memory resident. 

menu: A list of choices presented 
by a program, usually on the display 
screen, from which the user can 
select. 

MHz: Megahertz; one million hertz. 
See hertz. 

microcomputer: A computer, 
such as any of the Apple II family of 
computers, whose processor is a 
microprocessor. 

.. 

microprocessor: A computer 
processor contained in a single 
integrated circuit, such as the 65C02 
microprocessor used in the 
Apple lie. 

microsecond: One millionth of a 
second. Abbreviated ~s. 

millisecond: One thousandth of a 
second. Abbreviated ms. 

mode: A state of a computer or 
system that determines its behavior. 
A manner of operating. 

modem: Acronym for 
MOdulator/ DEModulator; a 
peripheral device that enables the 
computer to transmit and receive 
information over telephone lines by 
converting digital signals to analog 
signals, and vice-versa. 

modulate: To modify or alter a 
signal so as to transmit information. 
For example, conventional 
broadcast radio transmits sound by 
modulating the amplitude 
(amplitude modulation, or AM) or 
the frequency (frequency 
modulation, or FM) of a carrier 
signal. 

monitor: See video monitor. 

Monitor program: A system 
program built into the firmware of 
the Apple lie, used for directly 
inspecting or changing the contents 
of main memory and for operating 
the computer at the 
machine-language level. 

most significant bit: The 
leftmost bit of a binary number as 
written down. This bit represents 0 
or 1 times 2 to the power one less 
than the total number of bits in the 
b~nary number. For example, in the 
bmary number 10000, which 
contains five digits, the 1 represents 
1 times two to the fourth power-or 
sixteen. 

mouse: A small device that you 
roll around on a flat surface next to 
your Apple II family system. A 
small pointer on the screen tracks 
the movement of the mouse. 

n~nosecond: One billionth (in 
British usage, one thousand
millionth) of a second. Abbreviated 
ns. 

nested loop: A loop contained 
within the body of another loop and 
executed repeatedly during each 
pass through the containing loop. 

II 

• 
II 
II 
II 

II 

-
II 
II 

• 
II 



I 
I 
I 

I 
I 

I 
I 
I 

I 
I 
I 

I 

I 
I 
I 
I 
I 

nested subroutine call: A call to 
a subroutine from within the body 
of another subroutine. 

nibble: A unit of information equal 
to half a byte, or four bits. A nibble 
can hold any value from 0 to 15. 
Sometimes spelled nybble. 

NOT: A unary logical operator that 
produces a true result if its operand 
is false, a false result if its operand 
is true. Compare AND, OR, 
exclusive OR. 

NTSC: (1) Abbreviation for 
National Television Standards 
Committee. The committee that 
defined the standard format used 
for transmitting broadcast video 
signals in the United States. (2) The 
standard video format defined by 
the NTSC. 

object code: See object 
program. 

object program: The translated 
form of a program produced by a 
language translator such as a 
compiler or assembler. Also called 
object code. Compare source 
program. 

odd parity: Use of an extra bit set 
to 0 or 1 as necessary to make the 
total number of 1 bits an odd 
number. 

opcode: See operation code. 

operand: A value to which an 
operator is applied. The value on 
which an opcode operates. 

operating system: The most 
fundamental program in a 
computer. It organizes the actions of 
the various parts of the computer 
and allows it to use other programs. 

operation code: The part of a 
machine-language instruction that 
specifies the operation to be 
performed. Often called opcode. 

operator: A symbol or sequence of 
characters, such as + or AND, 
specifying an operation to be 
performed on one or more values 
(the operands) to produce a result. 
See arithmetic operator, 
relational operator, logical 
operator, unary operator, 
binary operator. 

option: An argument that is 
optional. 

OR: A logical operator that 
produces a true result if either or 
both of its operands are true, a false 
result if both of its operands are 
false. Compare exclusive OR, 
AND, NOT. 

output: Information transferred 
from a computer to some external 
destination, such as the display 
screen, a disk drive, a printer, or a 
modern. 

output routine: A 
machine-language routine that 
performs the sending of characters. 
The standard output routine writes 
characters to the screen. A different 
output routine might, for example, 
send them to a printer. 

overflow: The condition that 
exists when an attempt is made to 
put more data into a memory area 
than it can hold. 

override: To modify or cancel a 
long-standing instruction with a 
temporary one. 

overrun: A condition that occurs 
when the processor does not 
retrieve a received character from 
the receive data register of the 
ACIA before the subsequent 
character arrives. The ACIA 
automatically sets bit 2 (OVR) of its 
status register; subsequent 
characters are lost. The receive data 
register contains the last valid data 
word received. 

391 



page: (1) A segment of main 
memory 256 bytes long and 
beginning at an address that is an 
even multiple of 256 bytes. (2) An 
area of main memory containing 
text or graphical information being 
displayed on the screen. (3) A 
screenful of information on a video 
display. With the Apple lle, a page 
consists of 24 lines of 40 or 80 
characters each. 

page zero: See zero page. 

parallel interface: An interface 
in which many bits of information 
(typically eight bits, or one byte) are 
transmitted simultaneously over 
different wires or channels. 
Compare serial interface. 

parity: Maintenance of a sameness 
of level or count, usually the count 
of 1 bit in each character, for error 
checking. 

Pascal: A high-level programming 
language with statements that 
resemble English sentences. Pascal 
was designed to teach programming 
as a systematic approach to problem 
solving. Named after the 
philosopher and mathematician, 
Blaise Pascal. 

pass: A single execution of a loop. 

PC board: See printed-circuit 
board. 

peek: To read information directly 
from a location in the computer's 
memory. 

peripheral: At or outside the 
boundaries of the computer itself, 
either physically (as a peripheral 
device) or in a logical sense (as a 
peripheral card). 

peripheral bus: The bus used for 
transmitting information between 
the computer and peripheral 
devices connected to the computer's 
expansion slots. 

peripheral card: A removable 
printed circuit board that plugs into 
one of the expansion slots in the 
Apple lie. It expands or modifies the 
computer's capabilities by 
connecting a peripheral device or 
performing some subsidiary or 
peripheral function. 

peripheral device: An auxiliary 
piece of equipment-such as a 
video monitor, disk drive, printer, or 
modem-used in conjunction with a 
computer and under the computer's 
control. Often (but not necessarily) 

Glossary 

physically separate from the 
computer and connected to it by 
wires, cables, or some other form of 
interface, typically by means of a 
peripheral card. 

peripheral slot: See expansion 
slot. 

phase: (1) A stage in a periodic 
process. A point in a cycle. For 
example, the 65C02 microprocessor 
uses a clock cycle consisting of two 
phases called ¢0 and ¢1. (2) The 
relationship between two periodic 
signals or processes. For example, in 
NTSC color video, the color of a 
point on the screen is expressed by 
the instantaneous phase of the 
video signal relative to the color 
reference signal. 

PILOT: Acronym for 
Programmed Inquiry, Learning, 
Or Teaching. A high-level 
programming language designed to 
enable teachers to create 
computer-aided instruction (CAI) 
lessons that include color graphics, 
sound effects, lesson text, and 
answer checking. A version called 
Apple II PILOT is sold by Apple 
Computer for use with the Apple II 
family of computers. 

II 
II 
II 
II 
II 
II 
II 
II 
II 

-
II 
II 
II 
II 
II 
II 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

pipelining: A feature of a 
proce.ssor that enables it to begin 
fetchmg the next instruction before 
it has finished executing the current 
instruction. All else being equal, 
processors that have this feature 
run faster than those without it. 

plotting vector: A code 
representing a single step in 
drawing a shape on the 
high-resolution graphics screen 
specifying whether to plot a po~t at 
the current screen position and in 
what direction to move (up down 
left, or right) before proces~ing th~ 
next vector. 

point of call: The point in a 
program from which a subroutine or 
function is called. 

pointer: An item of information 
consisting of the memory address of 
some other item. For example, 
Applesoft maintains internal 
pointers to (among other things) the 
most recently stored variable, the 
most recently typed program line, 
~nd the most recently read data 
1tem. 

?oke: To store information directly 
mto a location in the computer's 
memory. 

pop: To remove the top entry from 
a stack. 

power supply: A box that draws 
electrical power from a power outlet 
and converts it to the power the 
computer can use to do its 
computing. 

power supply case: The metal 
case inside the Apple lie that houses 
the power supply. 

PR#: The PR# command sends 
output to a slot or a 
machine-language program. It 
specifies an output routine in the 
ROM on a peripheral card or in a 
machine-language routine in RAM 
by changing the address of the 
standard output routine used by the 
computer. 

precedence: The order in which 
operators are applied in evaluating 
an expression. 

printed-circuit board: A 
hardware component of a computer 
or other electronic device . . ' cons1stmg of a flat, rectangular 
~ieee of rigid material, commonly 
fiberglass, to which integrated 
circuits and other electronic 
components are connected. 

Glossary 

procedure: In the Pascal 
programming language, a set of 
mstructions that work as a unit· 
equivalent to the subprogram u{ 
BASIC. 

processor: The hardware 
component of a computer that 
~rforms the actual computation by 
directly executing instructions 
represented in machine language 
and stored in main memory. 

ProDOS: An Apple II operating 
system designed to support mass 
storage devices like the ProFile as 
well as flexible disk storage devices. 
Pr?OOS stands for Professional 
Dzsk Operating System. 

Pro DOS command: Any one of 
the 28 commands recognized by 
Pro DOS. Each has its own syntax 
all can be used within programs ' 
and all but five (text file ' 
commands) can be used from 
immediate mode. 

program: n. A set of instructions 
describing actions for a computer to 
perform in order to accomplish some 
task, conforming to the rules and 
conventions of a particular 
programming language. In 
~pplesoft, a sequence of program 
lines, each with a different line 
number. v. To write a program. 

393 



programmer: The author of a 
program; one who writes programs. 

programming: The activity of 
writing programs. 

programming language: A set of 
rules or conventions for writing 
programs. 

prompt: n. A message on the 
screen. v. To remind or signal the 
user that some action is expected, 
typically by displaying a distinctive 
symbol, a reminder message, or a 
menu of choices on the display 
screen. 

prompt character: A text 
character displayed on the screen to 
prompt the user for some action. 
Often also identifies the program or 
component of the system that is 
doing the prompting; for example, 
the prompt character] is used by 
the Applesoft BASIC interpreter, > 
by Integer BASIC, and • by the 
system Monitor program. Also called 
prompting character. 

prompt line: A message displayed 
on the screen to prompt the user for 
some action. Also called prompting 
message. 

protocol: A set of rules for sending 
and receiving data on a 
communications line. 

push: To add an entry to the top of 
a stack. 

queue: A list in which entries are 
added at one end and removed at 
the other, causing entries to be 
removed in FIFO (first-in first-out) 
order. Compare stack. 

radio-frequency modulator: A 
device that transforms your 
television set into a computer 
display device. 

RAM: See random-access 
memory. 

random-access memory (RAM): 
Memory in which the contents of 
individual locations can be referred 
to in an arbitrary or random order; 
the readable and writable memory 
of the Apple lie. Its contents are 
usually filled with programs from a 
disk, and they are lost when the 
Apple lie is turned off. This term is 
often used misleadingly to refer to 
read-write memory, but, strictly 
speaking, both read-only and 
read-write memory can be accessed 
in random order. Random-access 
means that each unit of storage has 
a unique address and a method by 
which each unit can be immediately 
read from or written to. Compare 
read-only memory, read-write 
memory. 

Glossar~ 

random-access text file: A text 
file that is partitioned into an 
unlimited number of uniform-length 
compartments called records. When 
you open a random-access text file 
for the first time, you must specify 
its record length. No record is placed 
in the file until written to. Each 
record can be individually read from 
or written to-hence, 
random-access. 

raster: The pattern of parallel 
lines making up the image on a 
video display screen. The image is 
produced by controlling the 
brightness of successive dots on the 
individual lines of the raster. 

read: To transfer information into 
the computer's memory from a 
source external to the computer 
(such as a disk drive or modem) or 
into the computer's processor from a 
source external to the processor 
(such as the keyboard or main 
memory). 

read-only memory (ROM): 
Memory whose contents can be read 
but not written; used for storing 
firmware. Information is written 
into read-only memory once, during 
manufacture; it then remains there 
permanently, even when the 
computer's power is turned off, and 

II 

II 

II 

-
II 

II 

II 

II 

II 
II 

II 
II 
II 

II 



I 

I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

can never be erased or changed. 
Compare random-access 
memory, read-write memory. 

read-write memory: Memory 
whose contents can be both read 
and written; often misleadingly 
called random-access memory, or 
RAM. The information contained in 
read-write memory is erased when 
the computer's power is turned off, 
and is permanently lost unless it 
has been saved on a more 
permanent storage medium. such as 
a disk . Compare random-access 
memory, read-only memory. 

real number: A number that may 
include a fractional part; 
represented inside the computer in 
floating-point form. Compare 
integer. 

register: A location in a computer 
processor where an item of 
information is held and modified 
under program control. 

relational operator: An operator, 
such as >, that compares numeric 
values to produce a logical result. 
Compare arithmetic operator, 
logical operator. 

reserved word: A word or 
sequence of characters reserved by 
a programming language for some 
special use, and therefore 
unavailable as a variable name in a 
program. 

resident : See memory-resident, 
disk-resident. 

return address: The point in a 
program to which control returns on 
completion of a subroutine or 
function. 

RF modulator: See 
radio-frequency modulator. 

ROM: See read-only memory. 

routine: A part of a program that 
accomplishes some task subordinate 
to the overall task of the program. 

row: A horizontal arrangement of 
character spaces or graphics points 
on the screen. 

RS232 cable: Any cable that is 
wired in accordance with the RS232 
standard, which is the common data 
communications interface standard. 

run: (1) To execute a program. 
(2) To load a program into main 
memory from a peripheral storage 
medium, such as a disk, and 
execute it. 

save: To transfer information from 
main memory to a peripheral 
storage medium for later use. 

scroll: To change the contents of 
all or part of the display screen by 
shifting information out at one end 
(most often the top) to make room 
for new information appearing at 
the other end (most often the 
bottom), producing an effect like 
that of moving a scroll of paper past 
a fixed viewing window. See 
window. 

serial interface: An interface in 
which information is transmitted 
sequentially, one bit at a time, over 
a single wire or channel. Compare 
parallel interface. 

setup time: The amount of time a 
signal must be valid in advance of 
some event. Compare hold time. 

silicon: A non-metallic, 
semiconducting chemical element 
from which integrated circuits are 
made. Not to be confused with 
silica-that is, silicon dioxide, such 
as quartz, opal, or sand-or with 
silicone, any of a group of organic 
compounds containing silicon. 

395 



II 
II 

simple variable: A variable that is space character: A text character step value: The amount by which II not an element of an array. whose printed representation is a the index variable changes on each 

simplified keyboard: The blank space, typed by pressing the pass through a loop. 
I sPACE I bar. II Dvorak keyboard. string: An item of information 

6502: The type of microprocessor stack: A list in which entries are consisting of a sequence of text 
added or removed at one end only characters. used in the Apple II, II Plus, and (the top of the stack), causing them II original lie. to be removed in LIFO (last-in strobe: A signal whose change is 

65C02: The type of microprocessor first-out) order. Compare queue. used to trigger some action. 

used in the enchanced Apple lie and standard instruction: An subroutine: A part of a program II the Apple lie. 
instruction automatically present that can be executed on request 

slot: A narrow socket inside the when no superseding instruction from any point in the program, and 

II computer where you can install has been received. which returns control to the point of 
the request on completion. peripheral device cards. start up: To get the system 

soft switch: A means of changing running. For example, In the synchronous transmission: A II some feature of the computer from context of Pro DOS, starting up is the transmission process that requires 

within a program; specifically, a process of reading the Pro DOS an integral number of unit (time) 

location in memory that produces program (in the files PRO DOS and intervals between any two II some special effect whenever its BASIC.SYSTEM) from the disk, and significant instances. In 

contents are read or written. running it. synchronous communications, the 
transmitter and receiver are in step II software: Instructions that tell the starting value: The value with each other, and characters 

computer what to do. They're assigned to the index variable on being transmitted follow one after 
usually stored on disks. Compare the first pass through a loop. the other at regular intervals. II hardware, firmware. startup disk: A disk containing an Compare asynchronous 

source program: The original operating system and a self-starting transmission. 

form of a program given to a program. syntax: The rules governing the II language translator such as a statement: A unit of a program in structure of statements or 
compiler or assembler for a high-level language that specifies instructions in a programming 

II conversion into another form; language; a representation of a 
sometimes called source code. an action for the computer to 

command that specifies all the perform, typically corresponding to Compare object program. 
several instructions of machine possible forms the command can 

II language. take. 

II 
3Ci) Glossar~ II 



I 

I 

I 

I 

I 

I 

I 

I 
I 
I 

I 

I 

I 

I 
I 
I 

I 

system: A coordinated collection of 
interrelated and interacting parts 
organized to perform some function 
or achieve some purpose. 

system configuration: See 
configuration. 

system program: A program that 
makes the resources and 
capabilities of the computer 
available for general purposes, such 
as an operating system or a 
language translator. Compare 
application program. 

system software: The component 
of a computer system consisting of 
system programs. 

TAB: An ASCII character that 
commands a device such as a 
printer to start printing at a preset 
location (called a tab stop). There 
are two such characters;: horizontal 
tab (hex $09) and vertical tab (hex 
$0B). 

television set: A display device 
capable of receiving broadcast video 
signals (such as commercial 
television) by means of an antenna. 
Can be used in combination with a 
radio-frequency modulator as a 
display device for the Apple lie. 
Compare video monitor. 

terminal: A device consisting of a 
typewriter-like keyboard and a 
display device, used for 
communicating between a computer 
system and a human user. Personal 
computers such as those in the 
Apple II family of computers 
typically have all or part of a 
terminal built into them. 

text: (1) Information presented in 
the form of characters readable by 
humans. (2) The display of 
characters on a display screen. 
Compare graphics. 

text window: An area on the video 
display screen within which text is 
displayed and scrolled. 

traces: Electrical roads that 
connect the components on a circuit 
board. 

transistor-transistor logic 
(TTL): (1) A type of integrated 
circuit used in computers and 
related devices. (2) A standard for 
interconnecting such circuits that 
defines the voltages used to 
represent logical zeros and ones. 

troubleshoot: To locate and 
correct the cause of a problem or 
malfunction in a computer system. 
Typically used to refer to 
hardware-related problems. 
Compare debug. 

Glossar~ 

TTL: See transistor-transistor 
logic. 

turnkey disk: A disk that 
executes a specific application 
program when you use that disk to 
start the computer. 

turnkey program: A program, 
such as a game or application, that 
runs automatically when the disk 
that the program is on is used to 
start up the computer. 

unary operator: An operator that 
applies to a single operand; for 
example, the minus sign(-) in a 
negative number such as -6 is a 
unary arithmetic operator. Compare 
binary operator. 

unconditional branch: A branch 
that does not depend on the truth of 
any condition. Compare 
conditional branch. 

value: An item of information that 
can be stored in a variable, such as a 
number or a string. 

variable: (1) A location in the 
computer's memory where a value 
can be stored. (2) The symbol used 
in a program to represent such a 
location. Compare constant. 

397 



vector: (1) The starting address of 
a program segment, when used as a 
common point for transferring 
control from other programs. (2) A 
memory location used to hold a 
vector, or the address of such a 
location. 

video: (1) A medium for 
transmitting information in the form 
of images to be displayed on the 
screen of a cathode-ray tube. (2) 
Information organized or 
transmitted in video form. 

video monitor: A display device 
capable of receiving video signals by 
direct connection only, and which 
cannot receive broadcast signals 
such as commercial television. Can 
be connected directly to the 
computer as a display device. 
Compare television receiver. 

volume: A general term referring 
to a storage device; a source or 
destination of information. A 
volume has a name and a volume 
directory with the same name. Its 
information is organized into files. 

window: The portion of a 
collection of information (such as a 
document, picture, or worksheet) 
that is visible on the display screen. 

word: A group of bits of a fixed size 
that is treated as a unit; the number 
of bits in a word is a characteristic 
of each particular computer. 

write: To transfer information 
from the computer to a destination 
external to the computer (such as a 
disk drive, printer, or modem) or 
from the computer's processor to a 
destination external to the processor 
(such as main memory). 

write-enable notch: The square 
cutout on one edge of a disk's jacket 
that permits information tD be 
written on the disk. If there is no 
write-enable notch, or if it is covered 
\vith a write-protect tab, 
information can be read from the 
disk but not written onto it. 

write-protect: To protect the 
information on a disk by covering 
the write-enable notch \\ith a 
write-protect tab, preventing any 
new information from being written 
onto the disk. Compare copy 
protect. 

write-protect tab: A small 
adhesive sticker used to 
write-protect a disk by covering the 
write-enable notch. 

Glos~a. \' 

X register: One of the index 
registers in the 65C02 
microprocessor. 

Y register: One of the index 
registers in the 65C02 
microprocessor. 

zero page: The first page (256 
bytes) of memory in the Apple lie, 
also called page zero. Since the 
high-order byte of any address in 
this page is zero, only the low-order 
byte is needed to specify a zero-page 
address; this makes zero-page 
locations more efficient to address, 
in both time and space, than 
locations in any other page of 
memory. 

-
II 
II 

II 

II 

II 

II 
II 
II 
II 



I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

Bibliography 

Addendum to the Design Guidelines. Cupertino, Calif.: Apple Computer, 
Inc., 1984. 

Apple II Monitors Peeled. Cupertino, Calif.: Apple Computer, Inc., 1978. 

Currently not updated for Apple Ile and Ilc, but a good introduction 
to Apple II series input/output procedures; also useful for historical 
background. 

Apple lie Design Guidelines. Cupertino, Calif.: Apple Computer, Inc., 1982. 

Applesoft BASIC Programmer's Reference Manual, Volumes 1 and 2. 
For the Apple II, lie, and lie. Reading, Mass.: Addison-Wesley, 
1982,1985. ISBN 0-201-17722-6. 

Applesoft Tutorial. Reading, Mass.: Addison-Wesley, 1983, 1985. 
ISBN 0-201-17724-2. 

"Characteristics of Television Systems." C.C.J.R. Report, Rep. 624 
(1970-1974), pp. 22-52. 

"Colorimetric Standards in Colour Television." C.C.J.R. Report, Rep. 476-1 
(1970-197 4 ), pp. 21-22. 

Leventhal, Lance. 6502 Assembly Language Programming. Berkeley, 
Calif.: Osborne/McGraw-Hill, 1979. 

Sims, H. V. Principles of PAL Colour Television and Related Systems. 
London, England: Newnes-Butterworth, 1969. ISBN-0-592-05970-7. 

SynertekHardware manual. Santa Clara, Calif.: Synertek Incorporated, 
1976. 

Does not contain instructions new to 65C02, but is the only 
currently available manufacturer's hardware manual for 6500 series 
microcomputers. 

Biblingraph~ 



0 

Synertek Programming manual. Santa Clara, Calif.: Synertek, 
Incorporated, 1976. 

The only currently available manufacturer's programming manual 
for 6500 series microcomputers. 

"Video-Frequency Characteristics of a Television System to Be Used for the 
International Exchange of Programmes Between Countries That 
Have Adopted 625-Line Colour or Monochrome Systems." C. C.!. R., 
Recommendation 472-1 (1970-1971), pp. 53-54. 

Watson, Allen, III. "A Simplified Theory of Video Graphics, Part I." Byte 
Vol. 5, No. 11 (November, 1980). 

--."A Simplified Theory of Video Graphics, Part II." Byte Vol. 5, No. 12 
(December, 1980). 

- -."More Colors for Your Apple." Byte Vol. 4, No.6 (June, 1979). 

- - ."True Sixteen-Color Hi-Res." Apple Orchard Vol. 5, No.1 (January, 
1984). 

Wozniak, Steve: "System Description: The Apple II." Byte Vol. 2, No.5 
(May, 1977). 

--."SWEET16: The 6502 Dream Machine." Byte Vol. 2, No.10 
(October, 1977). 

Bib!tograph) 

II 
II 

II 

II 
II 
II 
II 
II 
II 



Index 

I 
I 

, • r Cl· .t r; d· ·r-: 80-column text 20-21 any-key-down flag 12 
differences in Apple II family 227 Apple keys 11, 13 

• (asterisk) as prompt character 60 display pages 27 differences in Apple II family 226 

I 
~ (caret) 122, 125 generation 179 Applesoft BASIC xxx, 12, 103, 233 
:(colon) as Monitor command 103 map 33 and lowercase xxxi 
> (greater than sign) as prompt signals 197 and uppercase 48 

character 60 with Applesoft xxx 80-column support xxx 

I G 61 with Pascal xxx tabbing with original Apple lie 
@] 11, 13, 226 with TV set 16 271-272 
. (period) as Monitor command 100 80-Column Text Card 84, 132, 149, use of zero page 77 

I <PO (phi 0) 162-164, 170, 171, 180-181 268-275 Apple II compatibility with Apple lie 
¢1 (phi 1) 162-164, 170, 171, 180-181 80STORE soft switch 29, 31, 84, 86, 87, 48-50 
¢2 (phi 2) 162 197 Apple II family differences 226-230 

I 
? (question mark) prompt character 60 Apple Ilc interrupt differences 156 
EJ62 A. Apple lie, differences between original 
] (right bracket) as prompt character and enhanced xxix-xxxi 

60 A register 146 ASCII input mode 105 

I [!] 11,13, 226 AI 89 COUTl subroutine 54 
14M signal 163 A2 89 interrupt support 130, 148 
40-column text 20-21 A4 89 microprocessor 6 

I display pages 27 accumulator 136, 148 Mini-Assembler 121 
generation 179 AClA 289 Monitor Search command 108 
memory map 32, 177 address bus 162 MouseText 16, 20 

I 
with TV set 16 address transformation 176 slot 3 143 

GG02 microprocessor G, G addressing tabbing in Applesoft 271-272 
differences from 65C02 206-207 display pages 30-36, 175-178 using 1 CAPS LOCK I 48 

I 
65C02 microprocessor xxix, 5, 6, 1/0 locations 136-137 Apple lie 80-Column Text Card 84, 

206-216 RAM 138, 170-173 132, 268-275 
data sheet 208-216 ROM 169 Apple lie Extended 80-Column Text 
differences from 6502 6, 206-207 addressing, indirect 75 Card 84, 132, 268-275 

I specifications 161-164 addressing, relative 119, 125, 135 arithmetic, hexadecimal 114 
timing 162-164 AL TCHAR soft switch 29 arrow keys 61, 62 

65C02 stack 75 alternate character set 19-20, 226 ASCII codes 14-15 

I 80COL soft switch 29 on original lie 20 ASCII input mode 104-105 
80-column firmware xxx, 49-50 AL TZP soft switch 82, 87, 89 assemblers 119 

activating 49 analog inputs 42, 43 assembly language 233 

I 
control characters with 273-275 animation 229 asterisk (*) as prompt character 60 

annunciators 40, 43 auxiliary firmware 84-91 

I 
I lndtx -!Ill 

- ------ ------- ------



auxiliary memory 84-91 
differences in Apple ll family 228 
map 85 
moving data to 89 
soft switches 87 
subroutines 88 

auxiliary RAM 84 
auxiliary slot 7, 49 

differences in Apple 11 family 228 
signals 197-199 

AUXMOVE subroutine 88, 89, 143 

B 
backspacing 61 
bank-switched memory 79-83 , 85,227 

map 80 
bank switches 80-83, 85 

reading 83 
BASIC, Applesoft xxx,12, 103, 233 

and lowercase xxxi 
and uppercase 48 
80-column support xxx 
tabbing with original Apple lie 

271-272 
use of page 3 76 
use of zero page 77 

BASIC, Integer 12, 233 
and bank-switched memory 79 
and reset 81 
and uppercase 48 
use of page 3 76 
use of zero page 78 

BASlCIN subroutine 57, 218 
address in 1/0 link 51 

BASIC Monitor command 112 
BASICOUT subroutine 63, 218 

address in 1/0 link 51 

baud rate for sse 280 
BEL character 52 
BELL subroutine 218 
BELLI subroutine 38, 218 
bit definition 236 
bit mapping of graphics 24-26 
booting 268-269 
break intructions 155 
BRK handler 155 
BRK instruction 155 
BRK vector 147 
BS character 52 
byte definition 237 

canceling lines 61 
CA~ character 53 
I CAPS LOCK I II 

for older software compatibility 48 
caret ( ·) 122, 125 
carriage returns with sse 283 
cassette 1/0 38-39, 189 

commands 109-111 
soft S"\\itches 38 

central processing unit (CPU) 6 
See also 65C02 microprocessor 

CH 51 
changing memory contents 103-108 
character code 12 
character generator ROM 179 
character sets, text 19-20 

differences among Apple II models 
226-227 

CHARGEN signal 185 
circuit board 4-5 

connectors 6 
clear-strobe switch 12 

Index 

CLEOLZ subroutine 49, 64, 219 
clock rate 161 
clock signals 162 
CLREOL subroutine 49, 63, 218 
CLREOP subroutine 49, 64, 219 
CLRSCR subroutine 64, 219 
CLRTOP subroutine 64, 219 
cold-start reset 92 
colon(:) as Monitor command 103 
color graphics with black-and-white 

monitors 16 
colors 

double-high-resolution graphics 26 
high-resolution graphics 24-25, 183 
low-resolution graphics 23 

command characters, Monitor 99 
comma tabbing with original Apple lie 

271-272 
complementary decimal values 12 
connectors 

back panel 8 
cassette 1/0 8, 38 
D-type 8 
game 1/0 7, 13 
hand control 8, 39-42 
9-pin 8, 39 
phonejacks 8,38 
power 161 
RCA-type jack 8 
video monitor 8, 186 

control characters 245, 249 
with BASICOUT 52-53 
with COUT1 52 
with 80-column firmware 273-275 
with Pascal 1/0 protocol 68-69 

Control-U 50 
I CONTROL I 11 
I coNTROL HID Monitor command 112 

II 
II 
II 
II 
II 
II 
II 

II 
II 

II 
II 

II 
II 

II 

-



I 

I 

I 

I 

I 

I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I CONTROL 1-[I) Monitor command 109 
I coNTROL I{K) Monitor command 113 
1 coNTROL HEJ Monitor command 113 
I CONTROL f-[]J 61 
~Monitor command 117 
COUT subroutine 51, 64, 219 

deactivating 80-column firmware 50 
COUTl subroutine 51, 64, 134, 219 

address in I/0 link 50 
on original Apple lie 54 

cover 2 
CP/M 233 

starting up with 268 
CPU 6 

See also 65C02 microprocessor 
CR character 53 
CROUT subroutine 64, 219 
CROUT! subroutine 65, 219 
CSW link 139 
current, supply 159 
cursor-control keys 11 
cursor motion in escape mode 58-59 
cursor position 51-57 
custom IC's 164-168 
cv 51 
cycle stealing 170 

D-type connector 8 
daisy chains, interrupt and DMA 

193-194,203 
data bus 162 
data format for sse 281 
DC! character 53 
DC2 character 53 
DC3 character 53 

decimal values 12 
converting to hexadecimal 238-239 
negative 240-241 

device assignment, peripheral card 
144 

device identification 144 
DEVICE SELECT' signal 131 
DHIRES soft switch 29 
Diagnostics ROM 169 
differences among Apple II models 

226-230 
differences between original and 

enhanced Apple lie xxix-xxxi 
ASCII input mode 105 
COCTl subroutine 54 
interrupt support 130, 148 
microprocessor 6 
Mini-Assembler 121 
Monitor Search command 108 
MouseText 16, 20 
slot 3 143 
tabbing in Applesoft 271-272 
using 1 CAPS LOCK I 48 

disassemblers 119 
display, video 16-36 

address transformation 176-177 
double-high-resolution graphics 185 
80-column text 179 
formats 17, 56 
40-column text 179 
generation 173-185, 230 
high-resolution graphics 183-184 
low-resolution graphics 182-183 
memory addressing 175-178 
modes 17,20-26,28-30, 179-185 
pages 26-28, 30-36, 76 
refreshing 170 
specifications 17 
text 179-181 

DMA daisy chain 193-194, 203 
DOS 3.3 xxix, 140,232 

and uppercase 48 
starting up with 269 
use of page 3 76 
use of zero-page 78 

double-high-resolution graphics 17, 18, 
25-26 

colors 26 
display pages 27 
generation 185 
map 36 
memory pages 25 

double-high-resolution Page 1 76 

E 

editing with GETLN 61 
80COL soft switch 29 
80-column firmware xxx, 49-50 

activating 49 
control characters with 273-275 

80-column text 20-21 
differences in Apple II family 227 
display pages 27 
generation 179 
map 33 
signals 197 
with Applesoft xxx 
\\ith Pascal xxx 
with TV set 16 

80-Column Text Card 84, 132, 149, 
268-275 

80STORE soft S'l\itch 29, 31 , 84, 86, 87, 
197 

E\1 character 53 
E~80' signal 197 

403 



II 
II 

enhanced Apple lie See differences (l H II between original and enhanced 
game 1/0 Apple lie hand control connectors 8, 39-42 

ENKBD' signal 187 connectors 13 hard disk with Pascal xxxi 

entry points for 1/0 routines 145-146 signals 190-191 hexadecimal arithmetic 114 
escape codes 58-59 GET command 269 hexadecimal values 12 

escape mode 58-59 GETLN subroutine 57,60-62, 220 converting to decimal 238-239 

ESC character 53 editing with 61 converting to negative decimal 

ETB character 53 input buffer 76 240-241 

EXAM!t\E command 108-109 line length 61 high-resolution graphics 17, 18, 23-25 
examining memory 100 used by Monitor 99 addressing display pages 31, 35 II expansion RO~ space 132-134 with 80-column card 269 bit patterns 242-243 
expansion slot 3 49 GETLN1 subroutine 220 colors 24-25, 183 
expansion slots 6-7, 130-143 GETLNZ subroutine 220 display pages 27 -signals 192-196 GO command 118 generation 183-184 
Extended 80-Column Text Card 84, graphics, double-high-resolution 17, map 35 

132, 268-275 18, 25-26 high-resolution Page 1 23, 27, 76 
colors 26 high-resolution Page 2 23, 76 

f.' display pages 27 HIRES soft switch 29, 86, 87 
generation 185 HLINE subroutine 65, 220 

FF character 52 map 36 HOME command 270-271 
firmware memory pages 25 HOME subroutine 49, 65, 220 

auxiliary 84·91 graphics, high-resolution 17, 18, 23-25, HT AB command xxx 
80-column xxx, 49-50 addressing display pages 3L 35 with original Apple lie 272 II 1/0 46-69 bit patterns 242-243 humidity, operating 158 
Monitor subroutines 46-69 colors 24-25, 183 
Pascall.l protocol 67-69, 144-146 display pages 23, 27 LJ II slot 3 67 generation 183-184 

flag, any-key-down 12 map 35 1/0 
FLASH command 270-271 graphics, low-resolution 17, 18, 22-23, addressing 136-137 
flashing format 18-19, 56-57 colors 23 circuits 187-191 II forced cold-start reset 93 display pages 27 devices, built-in 10-42 
FORTRAN 234 generation 182-183 entry points 145-1 46 
40-column text 20-21 map 34 firmware, built-in 46-69 II display pages 27 with TV set 16 links 50-51, 76, 139-140 

generation 179 graphics modes 22-26 memory for peripheral cards 
memory map 32, 177 bit-mapping 24-26 130-131 

II with TV set 16 greater than sign(>) as prompt memory map 141 
FS character 53 character 60 Pascal protocol 67-69, 143, 144-146 

GS character 53 switching memory 141-142 

II 
h'"X II 



I 

I 

I 

I 1/0 SELECT' signal 131-132 
identification byte xxix, 230 
I~# command 113 

I 
index register 136 
indirect addressing 75 
input buffer 76 
INPUT command 269 

I input devices See l/0 devices 
input/output See l/0 
Input/Output Unit (JOG) 5, 6. 166-167. 

I 187 
inputs 

analog 37, 42 

I 
hand control 37 
secondary 37-42, 43 
switch 37-41 

I 
See also 1/0 devices 

INT IN pin 147 
!NT OUT pin 147 
Integer BASIC 12, 233 

I and bank-switched memory 79 
and reset 81 
and uppercase 48 

I use of page 3 70 
use of zero page 78 

interpreter ROM 5 

I 
interrupt handler 

built-in 146, 149-150 
user's 154 

I 
interrupts xxx, 146-156 

and card in auxiliary slot 49 
daisy chain 193-194, 203 
definition 14 7 

I original Apple lie differences 148 
priority 147 
sequence 151 

I 
interrupt vector 150 
INVERSE command 270-271 
in verse display format 18-19, 56-57, 

I 
112 

I 

IOREST subroutine 220 
IOSA VE subroutine 220 
IOU (Input/Output Unit) 5, 6, 166-167, 

187 
IOU DIS soft switch 29 
IRQ vector 147 
IRQ' signal 147 

KBD' signal 187 
keyboard 3, 10-15 

automatic repeat function lO 
circuits 187-188 
differences in Apple II family 226 
memory locations 12 
rollover 10 
specifications 11 

KEYBOARD command 113 
keyboard er.coder 5, 12 
keyboard ROM 5 
keyboard strobe 13 
KEYIN subroutine 57,58-59,221 

address in 1/0 link 50 
keypad 188 
keys and ASCII codes 14-15 
KSW link 139 

language card 83 
differences in Apple II family 227 

LED 3 
Gkey 61 
LF character 52 
line feeds with sse 284 
links, 1/0 50-51 

address storage 70 
changing 139-140 

:nrlH 

LIST command 119 
low-resolution graphics 17, 18, 22-23 

colors 23 
display pages 27 
generation 182-183 
map 34 
with TV set 16 

~I 

machine language 118·120 
mapping display addresses 176-177 
maps See memory maps 
memory 

addressing 168 
auxiliary 84-91 
bank-switched 79-83, 86-88, 227 
changing contents 103-108 
display 175-178 
examining 100 
filling 115-116 
for peripheral cards 130-135 
1/0 space 141-142 
organization 72-95 
sharing 88 
text window locations 55 
used by sse 289 

memory dump 100-102 
Memory Management Unit (MMU) 5, 

6, 164-165 
memory maps 

auxiliary memory 85 
bank-s\\it.ched areas 80 
double-high-resolution graphics 36 
SO-column text 33 
40-column text 32, 177 
high-resolution graphics 35 
1/0 141 
low-resolution graphics 34 
main memory 73 
RAM 74 



II 

II 
memory pages, reserved 75-79 " 
microprocessor See 65C02 and 6502 

period(.) as Monitor command 100 II 
microprocessors @) 11,13,226 

peripheral address bus 192-193 194 

Mini-Assembler 121-125 operating systems 232-233 
peripheral cards ' 

errors 122 original Apple lie 
device assignment 144 

II instruction formats 124-125 ASCII input mode 105 
I/0 memory space 130-131 141 . , 

starting 121 COUT1 subroutine 54 
programmmg for 130-156 

MIXED soft switch 29 interrupt support 130 148 
RAM space 134-135 

Monitor, System 98-128 
. , ROM space 131-132 II miCroprocessor 6 

command summary 125-128 Mini-Assembler 121 
peripheral data bus 193 

command syntax 99 Monitor Search command 108 
~ifferences in Apple II family 230 

creating commands 117 MouseText 16, 20 
penpheral slots See expansion slots 

enhancements xxvi slot 3 143 
</>O(phi 0) 162, 164, 170,171 180-181 

firmware subroutines 46-69 startup display 6 
</>I (phi 1) 162, 164, 170, 171, 180-181 

returning to BASIC 112 tabbing in Applesoft 271-272 
4>2 (phi 2) 162 , 

II ROM listings 294-375 using I CAPS LOCK 1 48 
phone jacks 8, 38 

use of page 3 76 output See I/0 
PINIT subroutine 67 

use of zero page 77 overheating 158 
pipelining 161 

Monitor ROM 169 
PLOT subroutine 65, 221 II POKE command 272 

listings 294-375 r 
MouseText characters 17, 19,247 

power connector 161 

MOVE command 105, 115 Page 1, double-high-resolution 76 power supply 4, 159-160 

MOVE subroutine 221 Page 1, high-resolution 23 27 76 PR# command 113 

MSLOT 150, 154 Page 1, text 27 ' ' PRBL2 subroutine 65, 221 

Page 2. high-resolution 23 76 PRBL~K subroutine 221 

\I 
Page 2, text 27 ' PRBYTE subroutine 65 221 

page 3 vectors 94 PREAD subroutine 42, 67, 222 

NAK character 53 page zero See zero page PRERR subroutine 65, 222 

negative decimal values 12 PAGE2 soft switch 29, 31, 84, 86,87 P~HEX subroutine 66, 222 II 
converting 240 pages, reserved memory 75-79 pnmary character set 19-20 

~EXTCOL subroutine 221 PAL device 168 PRINTER command 113 

9:pin connectors 8, 39 parity for sse 281-282 PRNT AX subroutine 66 222 II 
~OR~AL command 270-271 Pascal xxix, 234, 275 ProDOS 103, 140, 232 ' 

normal format 18-19 112 and bank-switched memory 79 interrupt support 148 

~TSC standard 16, 2'4, 173 1/0 subroutines 46 starting up with 269 II starting up with 268 use of page 3 76 

Pascall.l firmware protocol 67-69 use of zero-page 79 

143, 144-146 l II Pascal operating system 232 

II 
4J)i': :ndex II 



I 

I 

I 
ProFile hard disk xxxi refreshing the display 170 self-test 13, 95 
Programmed Array Logic (PAL) device registers 146, 162 differences in Apple II family 229 

5, 168 A register 146 SETCOL subroutine 66, 223 
prompt characters 60 accumulator 136, 148 SETINV subroutine 223 

I PST A TUS subroutine 69 examining and changing 108-109 SETNORM subroutine 223 
PWRITE subroutine 68 index 136 I SHIFT I 11 

X register 146 shift-key mod 41 

I 'I Y register 146 short circuits 160 
relative addressing 119, 125, 135 SI character 53 

Q3 signal 163 reserYed memory pages 75-79 signals 

I 
question mark (?) prompt character 60 I RESET I 11,13, 226 auxiliary slot 197-199 

reset routine 91-95 expansion slot 192-196 
D and bank switches 81 game I/0 connector 191 

differences in Apple II family 229 IOU 167 

I R/W80 signal 197 reset vector 93-94 keyboard connector 188 
radio frequency modulator 7 

1 RETURN I Monitor command 125 keypad connector 188 
RAM retype function 62 MMU 165 

I addressing 138, 170-173 RF modulator 7 PAL device 168 
allocation 74-79 ROB-type monitor 185 RAM timing 172-173 
auxiliary 84 G 62 65002 timing 163 

I 
space for peripheral cards 134-135 right bracket(]) as prompt character speaker connector 189 
timing signals 171-173 60 video connector 186 

RAMRD soft switch 86, 87 rollover, N-key 10 video timing 180-181 , 184 

I 
RAMWR soft switch 86, 87 ROM signature byte 230 
ranrlom numhflr gflnflrator 5il addressing 169 6502 microprocessor 6 
RDALTCHAR soft switch 29 expansion 132-134 differences from 65002 6, 206-207 
RDAL TZP soft switch 82 interpreter 5 65002 microprocessor xxix, 5, 6, 

I RDBNK2 soft switch 82 keyboard 5 206-216 
RDCHAR subroutine 222 Monitor listings 294-375 comparison with 6502 6, 206-207 
RDDHIRES soft switch 29 space for peripheral cards 131-132 data sheet 208-216 

I 
RD80COL soft switch 29 video 5 specifications 161-164 
RD80STORE soft switch 29 ROMENl signal 169 timing 162-164 
RDHIRES soft switch 29 ROMEN2 signal 169 slot, auxiliary 7, 49 

I 
RDIOUDIS soft switch 29 slot number, finding 136 
RDKEY subroutine 47, 57, 60, 222, 269 s slot 3 49, 149 
RDLCRAM soft switch 82 firmware 67 
RDMIXED soft s~~tch 29 schematic diagram 200-203 in original Apple lie 143 

I RDPAGE2 soft switch 29 SCRN subroutine 66, 223 slots, expansion 6-7, 130-143 
RDTEXT soft switch 29 SEARCH command 108 signals 192-196 
READ subroutine 39, 222 

I READ tape command 110-lll 

I 
lndex 407 



II 
II 

SLOTC3ROM soft switch 49, 142 subroutines text Page 1 27, 76 II SLOTCXROM soft switch 142 directory of 218-224 text Page 2 27, 76 
SO character 53 output 62-66 TEXT soft switch 29 
soft switches Pascal 1/0 protocol 67-69 text window 54-55 

auxiliary memory 84, 87 standard 1/0 46-69 memory locations 55 -bank switches 80-83, 85 See also names of subroutines timing signals 
differences in Apple II family 228 Super Serial Card 278-293 expansion slots 194 
display 28-30 command character 280 RAM 172-173 II for bank switching 83,85 commands 280-287 65C02 microprocessor 162-164 
1/0 memory 141-142 error codes 287-288 video 180-181, 184 
implemented by IOC 166 memory use 289-292 II implemented by M:\<!U 164 scratchpad RA~1 292 u speaker 38 terminal mode 2 6-287 

[!] 11 , 13, 226 switch 0 41 ,43 CS character 53 

II SPC command xxx S\t,·itch 1 ·!1 , 43 user's interrupt handler 154 
speaker 3,37, 189 switches See soft swit{:hes 

connector 189 switch inputs -H. 43 \ ' 
soft switch 38 SYN character 53 

specifications, environmental 158 System Monitor See Monitor, System vectors 
stack pointers 75, 152 BRK 147 
stack T 

interrupt 150 
auxiliary 152-153 IRQ 147 
main 152-153 tabbing page 3 94 
65C02 75 TAB command xxx reset 93-94 

standard 1/0 links 50-51 with original Apple lie 271-272 VERIFY command 107, 116 
address storage 76 television set 16 VERIFY subroutine 223 
changing 139-140 temperature vertical sync 229 

starting up 268-269 case 159 VID7M signal 163 
startup display 6 operating 158 videocounters 174-175 
startup drives xxix-xxx text cards 84, 132, 149, 268-275 video display See display, video 
stop-list feature 54 text character sets video display pages 23, 25, 26-28 II strobe bit 13 alternate 19-20 video monitor 16 
strobe output 40, 43 primary 19-20, 226, 227 connector 8, 186 
STSBYTE 287 text display 18-21 , 179-181 video output signals 186 

II SUB character 53 flashing format 56-57 video ROM 5 
inverse format 18, 56-57 
normal format 18 
See also 40-column text and II SO-column text 

II 
:ndex 

II 



I 

I 

I 

I 

I 
I 
I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

video standards 173 
VLINE subroutine 66, 224 
voltage 

line 158 
supply 159 

VT character 52 
VT ABZ subroutine 66 

w 
WAIT subroutine 224 
warm-start reset 92 
WRITE subroutine 38, 224 
WRITE tape command 109-110 

XFER subroutinE' 8. 90. 1-!3. 153 
X register 1-!6 

lnae\ 

y 

Y register 146 

z 
zero page 75, 77-79 

409 



Apple® lie Technical Reference Manual 
The Official Publication from Apple Computer, Inc. 

Written and produced by the people at Apple Computer, this is the defmith·e, 
up-to-date reference manual for the Apple lie computer. It was written for 
professional programmers, designers of peripheral equipment, and more 
advanced home users, and it describes-as completely as possible in one 
volume-the internal operation of the original and enhanced Apple lie. 

This manual provides detailed descriptions of all the lie's hardware and 
firmware, including input/output features (such as mousetext), memory 
organization, and the use of the Monitor firmware. Appendices offer complete 
reference information to the 6502 and 6SC02 instruction sets and built-in I/0 
subroutines, a complete source listing of the Monitor firmware, and more. 
Anyone who needs technical information on the internal workings of the 
original or enhanced Apple lie will find this book an indispensable guide to 
one of the world's most popular computers. 

The Apple lie Technical Reference Manual was written and produced by 
the Apple II User Education Group. 

Apple Computer. Inc. 
20525 ~fm2ru Arenue 
Cupertino, Califomia 9501-i 
408 996-1010 
TLXn-5~6 

Addison-Wesley Publishing Company. Inc. 

!]-

ISBN o-2'J::.-: 772!rX 


