(=Y Apple’ Ile Technical Reference Manual

Includes ROM Listings.

"M E E E e EEEFE TS EEEEEN

Copyright

This manual is copyrighted by Apple or by Apple's
suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in
part, without the written consent of Apple. This
exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased
may be sold, given, or lent to another person. Under the
law, copying includes translating into another language.

©Apple Computer, Inc., 1985
20525 Mariani Avenue
Cupertino, California 95014

Apple, the Apple logo, ProDOS, ProFile, and Disk II are
trademarks of Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.

SOFTCARD is a registered trademark of Microsoft
Corporation.

Z-80 is a registered trademark of Zilog, Inc.

Z-Engine is a trademark of Advanced Logic Systems, Inc.

Simultaneously published in the United States and
Canada.

Limited Warranty on Media and Replacement

If you discover physical defects in the manuals
distributed with an Apple product or in the media on
which a software product is distributed, Apple will
replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof
of purchase to Apple or an authorized Apple dealer
during the 90-day period after you purchased the
software. In addition, Apple will replace damaged
software media and manuals for as long as the software
product is included in Apple’s Media Exchange Program.
While not an upgrade or update method, this program
offers additional protection for up to two years or more
from the date of your original purchase. See your
authorized Apple dealer for Program coverage and
details. In some countries the replacement period may
be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA
AND MANUALS, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewsd
the documentation, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO SOFTWARE, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS SOFTWARE IS SOLD “AS IS.”
AND YOU THE PURCHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility
of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with
Apple products, including the costs of recovering such
programs or data.

THE WARRANTY AND REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives yom
specific legal rights, and you may also have other righis
which vary from state to state.

Warning

This equipment has been certified to comply with the
limits for a Class B computing device pursuant to
Subpart J of Part 15 of FCC rules. Only peripherals
(computer input/output devices, terminals, printers, =c.)
certified to comply with Class B limits may be aitached
to this computer. Operation with non-certified pers

is likely to result in interference to radio and televisam
reception.

Apple® Ile Technical
Reference Manual

A

vv

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California

Don Mills, Ontario Wokingham, England Amsterdam
Sydney Singapore Tokyo Mexico City Bogotd
Santiago SanJuan

Copyright © 1985 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or fransmitted, in any form or by any means, electronic, mechanical, photocopving
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

ISBN 0-201-17720-X

ABCDEFGHIJ-DO-898765
First printing, July 1985

EEEEEEEEESEENEEEEEMR

Apple®Ile Technical
Reference Manual

PREFACE

CHAPTER 1

Contents

List of Figures and Tables Xviii
Radio and Television Interference XXV
About This Manual 7 XXvii

Contents of This Manual xxvii

The Enhanced Apple Ile xxix
Physical Changes xxix
Startup Drives xxix
Video Firmware xxx
Video Enchancements xxx
Applesoft 80-Column Support xxx
Applesoft Lowercase Support xxxi
Apple Il Pascal xxxi
System Monitor Enhancements xxxi
Interrupt Handling xxxi

Symbols Used in This Manual xxxii

Introduction 1
Removing the Cover 2

The Keyboard 3

The Speaker 3

The Power Supply 4

The Circuit Board 4

Connectors on the Circuit Board 6

Connectors on the Back Panel 8

Contents

CHAPTER 2

Built-in I/0 Devices
The Keyboard 10
Reading the Keyboard 12
The Video Display Generator 16
Text Modes 18
Text Character Sets 19
40-Column Versus 80-Column Text 20
Graphics Modes 22
Low-Resolution Graphics 22
High-Resolution Graphics 23
Double-High-Resolution Graphics 25
Video Display Pages 26
Display Mode Switching 28
Addressing Display Pages Directly 30
Secondary Inputs and Outputs 37
The Speaker 37
Cassette Input and Output 38
The Hand Control Connector Signals 39
Annunciator Qutputs 40
Strobe Output 40
Switch Inputs 41
Analog Inputs 42
Summary of Secondary I/0 Locations 42

Contents

CHAPTER 3

Built-in I/0 Firmware
Using the 1/0 Subroutines 47
Apple I Compatibility 48
The 80-Column Firmware 49
The Old Monitor 50
The Standard [/0 Links 50
Standard Output Features 51
COUT Qutput Subroutine 51
Control Characters With COUT1 and BASICOUT 52
The Stop-List Feature 54
The Text Window 54
Inverse and Flashing Text 56
Standard Input Features 57
RDKEY Input Subroutine 57
KEYIN Input Subroutine 58
Escape Codes 58
Cursor Motion in Escape Mode 58
GETLN Input Subroutine 60
Editing With GETLN 61
Cancel Line 61
Backspace 61
Retype 62
Monitor Firmware Support 62
BASICOUT 63
CLREOL 63
CLEOLZ 64
CLREOP 64
CLRSCR 64

Contents

CLRTOP 64
COUT 64
COUT1 64
CROUT 64
CROUT1 65
HLINE 65
HOME 65
PLOT 65
PRBL2 65
PRBYTE 65
PRERR 65
PRHEX 66
PRNTAX 66
SCRN 66
SETCOL 66
VTABZ 66
VLINE 66

1/0 Firmware Support 67

PINIT 67
PREAD 67
PWRITE 68
PSTATUS 69

CHAPTER 4

Memory Organization
Main Memory Map 72
RAM Memory Allocation 74
Reserved Memory Pages 75
Page Zero 75
The 656C02 Stack 75
The Input Buffer 76
Link-Address Storage 76
The Display Buffers 76
Bank-Switched Memory 79
Setting Bank Switches 80
Reading Bank Switches 83
Auxiliary Memory and Firmware 84
Memory Mode Switching 86
Auxiliary-Memory Subroutines 88
Moving Data to Auxiliary Memory 89
Transferring Control to Auxiliary Memory 90
The Reset Routine 91
The Cold-Start Procedure 92
The Warm-Start Procedure 92
Forced Cold Start 93
The Reset Vector 93
Automatic Self-Test 95

Contents

CHAPTER 5

Using the Monitor
Invoking the Monitor 98
Syntax of Monitor Commands 99
Monitor Memory Commands 100
Examining Memory Contents 100
Memory Dump 100
Changing Memory Contents 103
Changing One Byte 103
Changing Consecutive Locations 104
ASCII Input Mode 104
Moving Data in Memory 105
Comparing Data in Memory 107
Searching for Bytes in Memory 108
Examining and Changing Registers 108
Monitor Cassette Tape Commands 109
Saving Data on Tape 109
Reading Data From Tape 110
Miscellaneous Monitor Cornmands 112
Inverse and Normal Display 112
Back to BASIC 112
Redirecting Input and Output 113
Hexadecimal Arithmetic 114
Special Tricks With the Monitor 114
Multiple Commands 114
Filling Memory 115
Repeating Commands 116
Creating Your Own Commands 117

Contents

97

Machine-Language Programs 118
Running a Program 118
Disassembled Programs 119

The Mini-Assembler 121
Starting the Mini-Assembler 121
Restrictions 121
Using the Mini-Assembler 122
Mini-Assembler Instruction Formats 124

Summary of Monitor Commands 125
Examining Memory 125
Changing the Contents of Memory 126
Moving and Comparing 126
The Examine Command 126
The Search Command 126
Cassette Tape Commands 126
Miscellaneous Monitor Commands 127
Running and Listing Programs 127
The Mini-Assembler 128

CHAPTER 6 Programming for Peripheral Cards 129
Peripheral-Card Memory Spaces 130
Peripheral-Card 1/0 Space 130
Peripheral-Card ROM Space 131
Expansion ROM Space 132
Peripheral-Card RAM Space 134

X Contents

[/0 Programming Suggestions 135
Finding the Slot Number With ROM Switched In 136
1/0 Addressing 136
RAM Addressing 138
Changing the Standard /0 Links 139
Other Uses of 1/0 Memory Space 140
Switching 1/0 Memory 141
Developing Cards for Slot 3 143
Pascal 1.1 Firmware Protocol 144
Device Identification 144
1/0 Routine Entry Points 145
Interrupts on the Enhanced Apple Ile 146
What Is an Interrupt? 147
Interrupts on Apple Ile Series Computers 148
Rules of the Interrupt Handler 149
Interrupt Handling on the 65C02 and 6502 150
The Interrupt Vector at SFFFE 150
The Built-in Interrupt Handler 151
Saving the Apple Ile’s Memory Configuration 152
Managing Main and Auxiliary Stacks 152
The User's Interrupt Handler at $3FE 154
Handling Break Instructions 155
Interrupt Differences: Apple Ile Versus Apple Ilc 156

Contents

Xi

CHAPTER 7

Xil

Hardware Implementation 157
Environmental Specifications 158
The Power Supply 159
The Power Connector 161
The 65C02 Microprocessor 161
65C02 Timing 162
The Custom Integrated Circuits 164
The Memory Management Unit 164
The Input/Output Unit 166
The PAL Device 168
Memory Addressing 168
ROM Addressing 169
RAM Addressing 170
Dynamic-RAM Refreshment 170
Dynamic-RAM Timing 171
The Video Display 173
The Video Countérs 174
Display Memory Addressing 175
Display Address Mapping 176
Video Display Modes 179
Text Displays 179
Low-Resolution Display 182
High-Resolution Display 183
Double-High-Resolution Display 185
Video Output Signals 186

Contents

Built-in I/0 Circuits 187
The Keyboard 187
Connecting a Keypad 188
Cassette /0 189
The Speaker 189
Game [/0 Signals 190
Expanding the Apple [le 192
The Expansion Slots 192
The Peripheral Address Bus 192
The Peripheral Data Bus 193
Loading and Driving Rules 193
Interrupt and DMA Daisy Chains 193
Auxiliary Slot 197
80-Column Display Signals 197

APPENDIX A The 65C02 Microprocessor
Differences Between 6502 and 65C02 206
Different Cycle Times 206
Different Instruction Results 207
Data Sheet 207

205

APPENDIX B Directory of Built-in Subroutines

Contents

Xiil

APPENDIX C

APPENDIX D

Apple II Family Differences 225
Keyboard 226

Apple Keys 226

Character Sets 226

80-Column Display 227

Escape Codes and Control Characters 227
Built-in Language Card 227

Auxiliary Memory 228

Auxiliary Slot 228

Back Panel and Connectors 228

Soft Switches 228

Built-in Self-Test 229

Forced Reset 229

Interrupt Handling 229

Vertical Sync for Animators 229
Signature Byte 230

Hardware Implementation 230

Operating Systems and Languages 231
Operating Systems 232

ProDOS 232

DOS 3.3 232

Pascal Operatiing System 232

CP/M 233

Contents

APPENDIX E

APPENDIX F

APPENDIX G

Languages 233
Assembly Language 233
Applesoft BASIC 233
Interger BASIC 233
Pascal Language 234
FORTRAN 234

Conversion Tables

Bits and Bytes 236

Hexadecimal and Decimal 238
Hexadecimal and Negative Decimal 240
Graphics Bits and Pieces 242

Eight-Bit Code Conversions 244

Do
O
(S

Frequently Used Tables

253

Using an 80-Column Text Card

Starting Up With Pascal or CP/M 268

Starting Up With ProDOS or DOS 3.3 269

Using the GET Command 269

When to Switch Modes Versus When to Deactivate 270
Display Features With the Text Card 27

INVERSE, FLASH, NORMAL, HOME 270

Contents

Tabbing With the Original Apple Ile 271
Comma Tabbing With the Original Apple [le 271
HTAB and POKE 1403 272

Using Control-Characters With the Card 272
Control Characters and Their Functions 273
How to Use Control-Character Codes in Programs 274
A Word of Caution to Pascal Programmers 275

APPENDIX H Programming With the Super Serial Card 277
Locating the Card 278
Operating Modes 278
Operating Commands 279
The Command Character 280
Baud Rate, nB 280
Data Format, nD 281
Parity, nP 281
Set Time Delay, nC, nL,, and nF 282
Echo Characters to the Screen, E_E/D 283
Automatic Carriage Return, C 283
Automatic Line Feed, LE/D 284
Mask Line Feed In, M_E/D 284
Reset Card, R 284
Specify Screen Slot, S 284
Translate Lowercase Characters, nT 284
Suppress Control Characters, Z 285
Find Keyboard, F_E/D 285
XOFF Recognition, X_E/D 286
Tabin BASIC, T_E/D 286

Xvi Contents

APPENDIX [

Terminal Mode 286
Entering Terminal Mode, T 286
Transmitting a Break, B 287
Special Characters, S_E/D 287
Quitting Terminal Mode, @ 287

SSC Error Codes 287

The ACIA 289

SSC Firmware Memory Use 289
Zero-Page Location 290
Peripheral Card /0 Space 290
Scratchpad RAM Location 292

Monitor ROM Listing

293
Glossary 377
Bibliography 399
Index 401

Tell Apple Card

Contents

Xvii

CHAPTER 1

CHAPTER 2

xvill

Figures a;nd Tables

Introduction

Figure 1-1 Removing the Cover 2

Figure 1-2 The Apple Ile With the Cover Off 2
Figure 1-3 The Apple Ile Keyboard 3

Figure 1-4 The Circuit Board 5

Figure 1-5 The Expansion Slots 7

Figure 1-6 The Auxiliary Slot 7

Figure 1-7 The Back Panel Connectors 8

Built-in [/0 Devices

Figure 2-1 The Keyboard 11

Table 2-1 Apple lle Keyboard Specifications 11
Table 2-2 Keyboard Memory Locations 12

Table 2-3 Keys and ASCII Codes 14

Table 2-4 Video Display Specifications 17

Table 2-5 Display Character Sets 20

Figure 2-2 40-Colurnn Text Display 21

Figure 2-3 80-Colurn Text Display 21

Table 2-6 Low-Resolution Graphics Colors 23
Figure 2-4 High-Resolution Display Bits 24

Table 2-7 High-Resolution Graphics Colors 25
Table 2-8 Double-High-Resolution Grahics Colors 26
Table 2-9 Video Display Page Locations 28

Table 2-10 Display Soft Switches 29

Figure 2-5 Map of 40-Column Text Display 32

Figure 2-6 Map of 80-Column Text Display 33

Figure 2-7 Map of Low-Resolution Graphics Display 34

Figures and Tables

CHAPTER 3

CHAPTER 4

Figure 2-8 Map of High-Resolution Graphics Display 35

Figure 2-9 Map of Double-High-Resolution Graphics Display 36
Table 2-11 Annunciator Memory Locations 40

Table 2-12 Secondary [/0 Memory Location 43

Built-in I /0 Firmware 45
Table 3-1 Monitor Firmware Routines 46

Table 3-2 Apple Il Mode 48

Table 3-3a Control Characters With 80-Column Firmware Off 52
Table 3-3b Control Characters With 80-Column Firmware On 52
Table 3-4 Text Window Memory Locations 55

Table 3-5 Text Format Control Values 56

Table 3-6 Escape Codes 59

Table 3-7 Prompt Characters 60

Table 3-8 Video Firmware Routines 62

Table 3-9 Port 3 Firmware Protocol Table 67

Table 3-10 Pascal Video Control Functions 68

Memory Organization 71
Figure 4-1 System Memory Map 73

Figure 4-2 RAM Allocation Map T4

Table 4-1 Monitor Zero-Page Use 77

Table 4-2 Applesoft Zero-Page Use 77

Table 4-3 Integer BASIC Zero-Page Use 78

Table 4-4 DOS 3.3 Zero-Page Use 78

Table 4-5 ProDOS MLI and Disk-Driver Zero-Page Use 79

Figures and Tables

Xix

Lt
L
Ul
Figure 4-3 Bank-Switched Memory Map 80 .
Table 4-6 Bank Select Switches 82
Figure 4-4 Memory Map With Auxiliary Memory 85
Table 4-7 Auxiliary-Memory Select Switches 87 .
Table 4-8 48K RAM Transfer Routines 88
Table 4-9 Parameters for AUXMOVE Routine 89 .
Table 4-10 Parameters for XFER Routine 90
Table 4-11 Page 3 Vectors 94 .
CHAPTER 5 Using the Monitor 97 -
Table 5-1 Mini-Assembler Address Formats 124
g
CHAPTER 6 Programming for Peripheral Cards 129
Table 6-1 Peripheral-Card /0 Memory Locations Enabled by .
DEVICE SELECT” 131
Table 6-2 Peripheral-Card ROM Memory Locations Enabled by .
1/0 SELECT” 132
Figure 6-1 Expansion ROM Enable Circuit 133
Figure 6-2 ROM Disable Address Decoding 133 .
Table 6-3 Peripheral-Card RAM Memory Locations 134
Table 6-4 Peripheral-Card I/0 Base Addresses 137 .
Figure 6-3 1/0 Memory Map 141
Table 6-5 [/0 Memory Switches 142
Table 6-6 Perpheral-Card Device-Class Assignments 144 .
Table 6-7 1/0 Routine Offsets and Registers Under
Pascal 1.1 Protocol 146 .
I
XX Figures and Tables .

CHAPTER 7

Figure 6-4 Interrupt. Handling Sequence 151

Table 6-8 BRK Handler Information 155

Table 6-9 Memory Configuration Information 155
Hardware Implementation 1567
Table 7-1 Summary of Environmental Specifications 158
Table 7-2 Power Supply Specifications 159

Table 7-3 Power Connector Signal Specifications 161
Table 7-4 65C02 Microprocessor Specifications 162
Table 7-5 65C02 Timing Signal Descriptions 163

Figure 7-1 65C02 Timing Signals 163

Figure 7-2 The MMU Pinouts 165

Table 7-6 The MMU Signal Descriptions 165

Figure 7-3 The IOU Pinouts 167

Table 7-7 The 10U Signal Descriptions 167

Figure 7-4 The PAL Pinouts 168

Table 7-8 The PAL Signal Descriptions 168

Figure 7-5 The 2364 ROM Pinouts 169

Figure 7-6 The 2316 ROM Pinouts 169

Figure 7-7 The 2333 ROM Pinouts 169

Figure 7-8 The 64K RAM Pinouts 170

Table 7-9 RAM Address Multiplexing 171

Figure 7-9 RAM Timing Signals 172

Table 7-10 RAM Timing Signal Descriptions 173

Table 7-11 Display Address Transformation 176

Figure 7-10 40-Column Text Display Memory 177

Table 7-12 Display Memory Addressing 178

Figures and Tables xxi

o
Ll
[
Table 7-13 Memory Address Bits for Display Modes 178 .
Figure 7-11a 7 MHz Video Timing Signals 180
Figure 7-11b 14 MHz Video Timing Signals 181
Table 7-14 Character-Generator Control Signals 182 .
Table 7-15 Internal Video Connector Signals 186
Table 7-16 Keyboard Connector Signals 188 .
Table 7-17 Keypad Connector Signals 188
Table 7-18 Speaker Connector Signals 189
Table 7-19 Game /0 Connector Signals 191 .
Figure 7-12 Peripheral-Signal Timing 194
Table 7-20 Expansion Slot Signals 195 .
Table 7-21 Auxiliary Slot Signals 198
Figure 7-13 Schematic Diagram 200 .
APPENDIX A The 65C02 Microprocessor 205 |
Table A-1 Cycle Time Differences 206
&
APPENDIX E Conversion Tables 235
Table E-1 What a Bit Can Represent 236 .
Figure E-1 Bits, Nibbles, and Bytes 237
Table E-2 Hexadecimal /Decimal Conversion 238 .
Table E-3 Hexadecimal to Negative Decimal Conversion 240
Table E-4 Hexadecimal Values for High-Resolution Dot Patterns
242 .
Table E-5 Control Characters, High Bit Off 245
Table E-6 Special Characters, High Bit Off 246 .
i
Xxii Figures and Tables
5 '

Table E-7 Uppercase Characters, High Bit Off 247
Table E-8 Lowercase Characters, High Bit Off 248
Table E-9 Control Characters, High Bit On 249
Table E-10 Special Characters, High Bit On 250
Table E-11 Uppercase Characters, High Bit On 251
Table E-12 Lowercase Characters, High Bit On 252
APPENDIX F Frequently Used Tables 253
Table 2-3 Keys and ASCII Codes 254
Table 2-2 Keyboard Memory Location 255
Table 2-4 Video Display Specifications 256
Table 2-8 Double-High-Resolution Graphics Colors 257
Table 2-9 Video Display Page Locations 257
Table 2-10 Display Soft Switches 258
Table 3-1 Monitor Firmware Routines 259
Table 3-3a Control Characters With 80-Column Firmware Off 260
Table 3-3b Control Characters With 80-Column Firmware On 260
Table 3-5 Text Format Control Values 261
Table 3-6 Escape Codes 262
Table 3-10 Pascal Video Control Functions 263
Table 4-6 Bank Select Switches 264
Table 4-7 Auxiliary-Memory Select Switches 265
Table 4-8 48K RAM Transfer Routines 265
Table 6-5 1/0 Memory Switches 266
Table 6-6 1/0 Routine Offsets and Registers Under

Pascal 1.1 Protocol 266

Figures and Tables xxiii

APPENDIX G

APPENDIX H

Using an 80-Column Text Card 267
Table G-1 Control Characters With 80-Column Firmware On 273

Programming With the Super Serial Card 277
Table H-1 Baud Rate Selections 280

Table H-2 Data Format Selections 281

Table H-3 Parity Selections 281

Table H-4 Time Delay Selections 282

Table H-5 Lowercase Character Display Options 285

Table H-6 STSBYTE Bit Definitions 287

Table H-7 Error Codes and Bits 288

Table H-8 Memory Use Map 289

Table H-9 Zero-Page Locations Used by the SSC 290

Table H-10 Address Register Bits Interpretation 291

Table H-11 Scratchpad RAM Locations Used by the SSC 292
Figures and Tables

A shielded cable is a cable that uses a
metallic wrap around the wires to reduce
the potential effects of radio frequency
interference,

The equipment described in this manual generates and uses
radio-frequency energy. If it is not installed and used properly—that is, in
strict accordance with our instructions—it may cause interference with
radio and television reception.

This equipment has been tested and complies with the limits for a Class B
computing device in accordance with the specifications in Subpart J,

Part 15, of FCC rules. These rules are designed to provide reasonable
protection against such interference in a residential installation. However,
there is no guarantee that the interference will not occur in a particular
installation, especially if a “rabbit ear” television antenna is used. (A “rabbit
ear” antenna is the telescoping-rod type usually contained on television
receivers.)

You can determine whether your computer is causing interference by
turning it off. If the interference stops, it was probably caused by the
computer or its peripherals. To further isolate the problem, disconnect the
peripheral devices and their input/output cables one at a time. If the
interference stops, it was caused by either the peripheral device or the I/0
cable. These devices usually require shielded 1/0 cables. For Apple
peripherals, you can obtain the proper shielded cable from your dealer.
For non-Apple peripheral devices, contact the manufacturer or dealer for
assistance.

If your computer does cause interference to radio or television reception,
you can try to correct the interference by using one or more of the following
measures:

o Turn the television or radio antenna until the interference stops.
o Move the computer to one side or the other of the television or radio.
o Move the computer farther away from the television or radio.

Radio and Television Interference XXV

XXV

o Plug the computer into an outlet that is on a different circuit than the
television or radio. (That is, make certain the computer and the radio or
television set are on circuits controlled by different circuit breakers or
fuses.)

o Consider installing a rooftop television antenna with coaxial cable lead-in
between the antenna and television.

If necessary, you should consult your Apple-authorized dealer or an
experienced radio/television technician for additional suggestions.

Radio and Television Interference

Preface

About This Manual

This is the reference manual for the Apple Ile personal computer. It
contains detailed descriptions of all of the hardware and firmware that
make up the Apple Ile and provides the technical information that
peripheral-card designers and programmers need.

This manual contains a lot of information about the way the Apple Ile
works, but it doesn’t tell you how to use the Apple Ile. For this, you should
read the other Apple Ile manuals, especially the following:

o Apple lle Owner's Manual
o The Applesoft Tutorial

Contents of This Manual

#
The material in this manual is presented roughly in order of increasing
intimacy with the hardware; the farther you go in the manual, the more
technical the material becormes. The main subject areas are

o introduction: Preface and Chapter 1

o use of built-in features: Chapters 2 and 3

o how the memory is organized: Chapter 4

o information for programmers: Chapters 5 and 6

o hardware implementation: Chapter 7

o additional information: appendixes, glossary, and bibliography.

Chapter 1 identifies the main parts of the Apple [le and tells where in the
manual each part is described.

The next two chapters describe the built-in input and output features of the
Apple Ile. This part of the manual includes information you need for
low-level programming on the Apple Ile. Chapter 2 describes the built-in /0
features and Chapter 3 tells you how to use the firmware that supports
them.

Contents of This Manual Xxvii

Xxviil

Chapter 4 describes the way the Apple Ile’s memory space is organized,
including the allocation of programmable memory for the video display
buffers.

Chapter b is a user manual for the Monitor that is included in the built-in
firmware. The Monitor is a system program that you can use for program
debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral-card
connectors and gives guidelines for their use. It also describes interrupt
programming on the Apple Ile.

Chapter 7 is a description of the hardware that implements the features
described in the earlier chapters. This information is included primarily for
programmers and peripheral-card designers, but it will also help you if you
just want to understand more about the way the Apple Ile works.

Additional reference information appears in the appendixes. Appendix A is
the manufacturer's description of the Apple Ile's microprocessor.

Appendix B is a directory of the built-in [/0 subroutines, including their
functions and starting addresses.

Appendix C describes differences among Apple II family members.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ile.

Appendix E contains conversion tables of interest to programmers.

Appendix F contains additional copies of some of the tables that appear in
the body of the manual. The ones you will need to refer to often are
duplicated here for easy reference.

Appendix G contains information about using Apple Ile 80-column text
cards with the AppleIle and high level languages.

Appendix H discusses programming on the Apple Ile with the Apple Super
Serial Card.

Appendix I contains the source listing of the Monitor firmware. You can
refer to it to find out more about the operation of the Monitor subroutines
listed in Appendix B.

Following Appendix I is a glossary defining many of the technical terms
used in this manual. Some terms that describe the use of the Apple [le are
defined in the glossaries of the other manuals listed earlier.

Following the glossary, there is a selected bibliography of sources of
additional information.

Preface: About This Manual

The Enhanced Apple lle

Opcode is short for operation code and is
used to describe the basic instructions
performed by the central processing unit of
a computer.

Changes have been made in the Apple Ile since the original version was
introduced. The new version is called the enhanced Apple Ile and is
described in this manual. Where there are differences in the original
Apple Ile compared with the enhanced Apple Ile, they will be called out in
the manual. Otherwise, the two machines operate identically.

You can tell whether you have an original or enhanced Apple Ile when you
start up the system. An original Apple Ile will display Apple 11 atthe top
of the monitor screen, while an enhanced Apple Ile will display

Apple //e.

The changes embodied in the enhanced Apple Ile are described in the
following sections of this preface.

Physical Changes

[
The enhanced Apple Ile includes the following changes from the original
Apple Ile:

o The 656C02 microprocessor, which is a new version of the 6502
microprocessor found in the original Apple Ile. The 65C02 uses less
power, has 27 new opcodes, and runs at the same speed as the 6502.
(See Chapter 7 and Appendix A.)

o A new video ROM containing the same MouseText characters found in
the Apple Ilc. (See Chapter 2.)

o New Monitor ROMs (the CD and EF ROMs) containing the enhanced
Apple Ile firmware. (See Chapter 5.)

o The identification byte at $FBCO has been changed. In the original
Apple Ile it was $EA (decimal 234), in the enhanced Apple Ile it is SEO
(decimal 224).

Startup Drives

T e
You can use startup (boot) devices other than a Disk II to start up ProDOS
on the enhanced Apple Ile.

Apple II Pascal versions 1.3 and later may start up from slots 4, 5, or6on a
Disk II, ProFile, or other Apple Il disk drive, Apple Il Pascal versions 1.0
through 1.2 must start up from a Disk II in slot 6.

DOS 3.3 may be started from a Disk II in any slof.

The Enhanced Apple lle Xxix

XXX

When you turn on your Apple Ile, it searches for a disk drive controller to
start up from, beginning with slot 7 and working down toward slot 1. As
soon as a disk controller card is found, the Apple Ile will try to load and
execute the operating system found on the disk. If the drive is not a Disk II,
then the operating system of the startup volume must be either ProDOS or
Apple II Pascal (version 1.3 or later). If it is a Disk II, then the startup
volume may be any Apple II operating system.

Video Firmware
I ———= = =——=—

The enhanced Apple Ile has improved 80-column firmware:

o The enhanced Apple Ile now supports lowercase input.

0 CONTROL H E] passes most control characters to the screen.

o traps most control characters before they get to the
screen.

u] (R] was removed because uppercase characters are no longer
required by Applesoft.

Video Enhancements

Both 80-column Pascal and 80-column mode Applesoft output are faster
than before and scrolling is smoother. 40-column Pascal performance is
unchanged.

In the original Apple Ile, characters echoed to COUT1 during 80-column
operation were printed in every other column; the enhanced Apple Ile
firmware now prints the characters in each column.

Applesoft 80-Column Support
I=—=————=-=_ "~ &= |

The following Applesoft routines now work in 80-column mode:

o HTAB

o TAB

o SPC

o Comma tabbing in PRINT statements

Preface: About This Manual

To find out more, see the Pascal ProFile
Manager Manual.

Applesoft Lowercase Support
free—————————————————o ————=—

Applesoft now lets you do all your programming in lowercase. When you list
your programs, all Applesoft keywords and variable names automatically
are in uppercase characters; literal strings and the contents of DATA and
REM statements are unchanged.

Apple Il Pascal

ek Frms———— o]
Apple 11 Pascal (version 1.2 and later) can now use a ProFile hard disk
through the Pascal ProFile Manager.

The Pascal 1.1 firmware no longer supports the control character that
switches from 80-column to 40-column operation. This control character is
no longer supported because it can put Pascal in a condition where the
exact memory configuration is not known.

System Monitor Enhancements
e ————— =]

Enhancements to the Apple Ile's built-in Monitor (described in Chapter 5 in
this manual) include the following:

o lowercase input

o ASCII input mode

o Monitor Search command
o the Mini-Assembler

Interrupt Handling
e—r=—=aaaa——auy;

Interrupt handler support in the enhanced Apple Ile firmware now handles
any Apple Ile memory configuration.

The Enhanced Apple Ile XXXi

Symbols Used in This Manual

[et R e e e el R S S e]
Special text in this manual is set off in several different ways, as shown in
these examples.

AWarning Important warnings appear in red like this. These flag potential danger to
the Apple Ile, its software, or vou.

Important! The information here is important, but non-threatening. The ways in

which the original Apple Ile differs from the enhanced Apple Ile are
called out this way with the tag Original Ile in the margin.

By the Way: Information that is useful but is incidental to the text is set
off like this. You may want to skip over such information and return to it

Definitions, cross-references, and other later.

short items appear in marginal glosses like . ! .) .

this. Terms that are defined in a marginal gloss or in the glossary appear in
boldface.

Preface: About This Manual

Chapter 1

Introduction

This first chapter introduces you to the Apple Ile itself. It shows you what
the inside looks like, identifies the major components that make up the
machine, and tells you where to find information about each one.

Removing the Cover

Figure 1-1. Removing the Cover

Remove the cover of the Apple Ile by pulling up on the back edge until the
fasteners on either side pop loose, then move the cover an inch or so toward
the rear of the machine to free the front of the cover, as shown in Figure 1-1.
What you will see is shown in Figure 1-2.

Figure 1-2. The Apple Ile With the Cover Off

25

Chapter 1: Introduction

AWarning ‘ There is a red LED (light-emitting diode) inside the Apple Ile, in the left

rear corner of the circuit board. If the LED is on, it means that the power
is on and you must turn it off before you insert or rerove anything. To
avoid damaging the Apple [le, don't even think of changing anything
inside it without first turning off the power.

The Keyboard

ASCII stands for American Code for
Information Interchange.

The keyboard is the Apple Ile's primary input device. As shown in

Figure 1-3, it has a normal typewriter layout, uppercase and lowercase, with
all of the special characters in the ASCII character set. The keyboard is
fully integrated into the machine; its operation is described in the first part
of Chapter 2. Firmware subroutines for reading the keyboard are described
in Chapter 3.

Figure 1-3. The Apple Ile Keyboard

The Speaker

The Apple Ile has a small loudspeaker in the bottom of the case. The
speaker enables Apple Ile programs to produce a variety of sounds that
make the programs more useful and interesting. The way programs control
the speaker is described in Chapter 2.

The Speaker 3

The Power Supply

AWarning

=S~ === —]
The power supply is inside the flat metal box along the left side of the
interior of the Apple Ile. It provides power for the main board and for any
peripheral cards installed in the Apple Ile.

The power supply produces four different voltages: +5V, -5V, +12V, and
-12V. It is a high-efficiency switching supply; it includes special circuits that
protect it and the rest of the Apple Ile against short circuits and other
mishaps. Complete specifications of the Apple Ile power supply appear in
Chapter 7.

| The power switch and the socket for the power cord are mounted directly
| on the back of the power supply’s metal case. This mounting ensures that
| all the cireuits that carry dangerous voltages are inside the power supply.
‘ Do not defeat this design feature by attempting to open the power supply.

The Circuit Board

All of the electronic parts of the Apple Ile are attached to the circuit board,
which is mounted flat in the bottom of the case.

Figure 1-4 shows the main integrated circuits (ICs) in the Apple Ile. They
are the central processing unit (CPU), the keyboard encoder, the keyboard
read-only memory (ROM), the two interpreter ROMs, the video ROM, and
the custom integrated circuits: the Input/Output Unit (I0U), the Memory
Management Unit (MMU), and the Programmed Array Logic (PAL) device.

Chapter 1: Introduction

e
9

. Figure 1-4. The Circuit Board

CPU

PAL

MMU
10U

Interpreter ROMs

Video ROM Keyboard ROM
Keyboard Encoder

The Circuit Board 5

S " B E B EEFEEEEEEEEEm

Original lle

The CPU is a 656C02 microprocessor. The 656C02 is an enhanced version of
the 6502, which is an eight-bit microprocessor with a sixteen-bit address
bus. It uses instruction pipelining for faster processing than comparable
microprocessors. In the Apple Ile, the 65C02 runs at 1.02 MHz and performs
up to 500,000 eight-bit operations per second. The specifications of the
65C02 and its instruction set are given in Appendix A.

The original version of the Apple Ile uses the 6502 microprocessor. You can
tell which version of Apple Ile that you have by starting up your machine.
An original Apple Ile displays Apple 1t at the top of the screen during
startup, while an enhanced Apple Ile displays Apple //e. This manual
will call out specific areas where the two versions of the Apple Ile are
different.

The 6502 is very similar to the 65C02, but lacks 10 instructions and 2
addressing modes found on the 65C02. The 6502 is an NMOS device and
s0 uses more power than the CMOS 65C02. Except for the differences
listed above, and some minor differences in the number of clock cycles
used by some instructions, the two microprocessors are identical.

The keyboard is decoded by an AY-3600-type integrated circuit and a
read-only memory (ROM). These devices are described in Chapter 7.

The interpreter ROMs are integrated circuits that contain the Applesoft
BASIC interpreter. The ROMs are described in Chapter 7. The Applesoft
language is described in the Applesoft Tutorial and the Applesoft BASIC
Programmer’s Reference Manual.

Two of the large ICs are custom-made for the Apple Ile: the MMU and the
IOU. The MMU IC contains most of the logic that controls memory
addressing in the Apple Ile. The organization of the memory is described in
Chapter 4; the circuitry in the MMU itself is described in Chapter 7.

The I0U IC contains most of the logic that controls the built-in input/output
features of the Apple Ile. These features are described in Chapter 2 and
Chapter 3; the I0U circuits are described in Chapter 7.

Connectors on the Circuit Board

The seven slots lined up along the back of the Apple Ile circuit board are the
expansion slots, sometimes called peripheral slots. (See Figure 1-5.) These
slots make it possible to attach additional hardware to the Apple lle.
Chapter 6 tells you how your programs deal with the devices that plug into
these slots; Chapter 7 describes the circuitry for the slots themselves.

Chapter 1: Introduction

Figure 1-5. The Expansion Slots

The large slot next to the left-hand side of the circuit board is the auxiliary
slot (Figure 1-6). If your Apple Ile has an Apple Ile 80-column text card, it
will be installed in this slot. The 80-column display option is fully integrated
into the Apple Ile; it is described along with the other display features in
Chapter 2. The hardware and firmware interfaces to this card are described
in Chapter 7.

Figure 1-6. The Auxiliary Slot

sEREEwERERS

i
&
g
H
Sid
oa
s

-

There are also smaller connectors for game 1/0 and for an internal RF
(radio frequency) modulator. These connectors are described in Chapter 7.

|

Connectors on the Circuit Board

Connectors on the Back Panel

=s————————————— ——— ———————-— . ———— ——__...0%]
The back of the Apple Ile has two miniature phone jacks for connecting a
cassette recorder, an RCA-type jack for a video monitor, and a 9-pin D-type
miniature connector for the hand controls, as shown in Figure 1-7. In
addition to these, there are spaces for additional connectors used with the
peripheral cards installed in the Apple Ile. The installation manuals for the
peripheral cards contain instructions for installing the peripheral
connectors.

Figure 1-7. The Back Panel Connectors

Chapter 1: Introduction

Chapter 2

Built-in /0 Devices

For descriptions of the built-in I/0
hardware refer to Chapter 7.

Built-in 1/0 firmware routines are
described in Chapter 3.

This chapter describes the input and output (1/0) devices built into the
Apple Ile in terms of their functions and the way they are used by
programs. The built-in I/0 devices are

o the keyboard

o the video-display generator
o the speaker

o the cassette input and output
o the game input and output.

At the lowest level, programs use the built-in /0 devices by reading and
writing to dedicated memory locations. This chapter lists these locations for
each I/0 device. It also gives the locations of the internal soft-switches that
select the different display modes of the Apple Ile.

Bugilt-in 1/0 Routines: This method of input and output—loading and
storing directly to specific locations in memory—is not the only method
you can use. For many of your programs, it may be more convenient to
call the built-in 1/0 routines stored in the Apple Ile's firmware.

The Keyboard

[i e o S e S = i S e R i S{Em e
The primary input device of the Apple Ile is its built-in keyboard. The
keyboard has 63 keys and is similar to a typewriter keyboard. The Apple Ile
keyboard has automatic repeat on all keys: hold the key down to repeat. It
also has N-key rollover, which means that you can hold down any number
of keys while typing another. Of course, if you hold the keys down much
longer than the length of time you would hold them down during normal
typing, the automatic-repeat function will start repeating the last key vou
pressed.

The keyboard arrangement shown in Figure 2-1 is the standard one used in
the United States. The specifications for the keyboard are given in

Table 2-1. Apple Ile's manufactured for sale outside the United States have
a slightly different standard keyboard arrangement and include provisions
for switching between two different arrangements.

Chapter 2: Built-in I/0 Devices

Figure 2-1. The Keyboard

<[E LI [b
w lolwlelr|v]lv|u]i]ole]t]}]?
cowm | AlsiD|lF]lG]H]U]K]L o | e
wr lzlxlclvlies{n{m|[S|2]|7] ==
= ol I (' -]
Table 2-1. Apple lle Keyboard Specifications
Number of keys: 63
Character encoding: ASCII
Number of codes: 128
Fesatures: Automatic repeat, two-key rollover

Special function keys: =]
Cursor movement keys: =] (], [*]). [RETURN], [DELETE], [TAB]

Modifier keys: (CONTROLJ, [SHIFT], [CAPS LOCK],[ESC]
Electrical Interface: AY-5-3600 keyboard encoder

In addition to the keys normally used for typing characters, there are four
cursor-control keys with arrows: left, right, down, and up. The
cursor-control keys can be read the same as other keys; their codes are $08,
$15, $0A, and $0B. (See Table 2-3.)

Three special keys, [CONTROL J, [SHIFT), and [CAPS Lock], change the
codes generated by the other keys. The key is similar to the
ASCII CTRL key.

Three other keys have special functions: the key, and two keys
marked with apples, one outlined, or open ([&]), and one solid, or closed
((&]). Pressing the key with the key depressed resets
the Apple Ile, as described in Chapter 4. The Apple keys are connected to
the one-bit game inputs, described later in this chapter.

The Keyboard 11

See Chapter 7 for a complete descriptionof ~ The electrical interface between the Apple Ile and the keyboard is a ribbon
the elecrtical interface to the keyboard. cable with a 26-pin connector. This cable carries the keyboard signals to the
encoding circuitry on the main board.

Reading the Keyboard

The keyboard encoder and ROM generate all 128 ASCII codes, so all of the
special character codes in the ASCII character set are available from the
keyboard. Machine-language programs obtain character codes from the
keyboard by reading a byte from the keyboard-data location shown in
Table 2-2.

Table 2-2. Keyboard Memory Locations

Location
Hex Necimal Description

$C000 49152 -lbwmay Keyboard data and strobe
$C010 49168 -16368 Ary-key-down flag and clear-strobe switch

Your programs can get the code for the last &=y pressed by reading the
keyboard-data location. Table 2-2 gives this lociuon in uu);e dg?;?em
Hexadecimal refers to the base-16 number ~ forms: the hexadecimal value used in assembly fanguage, indicated by a
system, which uses the digits 0 through 8 preceding dollar sign ($); the decimal value used in Applesoft BASIC. and
and the six letters A through F'forepresent. the complementary decimal value used in Apple Integer BASIC. (Integer
e BASIC requires that values greater than 32767 be written as the number
obtained by subtracting 65536 from the value. These are the deaimal
numbers shown as negative in tables in this manual; refer to theé.dppie 17
BASIC Programming Manual.) The low-order seven bits of the at
the keyboard location contain the character code; the high-order bit of th;s
byte is the strobe bit, described later in this section. o

Your program can find out whether any key is down, except the
(CONTROL), [SHIFT }, [CAPS LOCK], [&], and [&) keys by reading from
location 49168 (hexadecimal $C010 or complementary decimal -16368). The
high-order bit (bit 7) of the byte you read at this location is called
any-key-down; it is 1 if a key is down, and 0 if no key is down. The value of
this bit is 128; if a BASIC program gets this information with a PEEK, the
value is 128 or greater if any key is down, and less than 128 if no key is
down.

12 Chapter 2: Built-in I/0 Devices

Important!

The reset routine is described in Chapter 4.

The [&) and [&] keys are connected to switches 0 and 1 of the game [/0
connector inputs. If [&] is pressed, switch 0 is “pressed,” and if [&] is
pressed, switch 1 is “pressed.”

The strobe bit is the high-order bit of the keyboard-data byte. After any key
has been pressed, the strobe bit is high. It remains high until you reset it by
reading or writing at the clear-strobe location. This location is a combination
flag and switch; the flag tells whether any key is down, and the switch
clears the strobe bit. The switch function of this memory location is called a
soft switch because it is controlled by software. In this case, it doesn't
matter whether the program reads or writes, and it doesn’t matter what
data the program writes: the only action that occurs is the resetting of the
keyboard strobe. Similar soft switches, described later, are used for
controlling other functions in the Apple Ile.

Any time you read the any-key-down flag, you also clear the keyboard
strobe. If your program needs to read both the flag and the strobe, it must
read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until another key
is pressed. Even after you have cleared the strobe, you can still read the
character code at the keyboard location. The data byte has a different
value, because the high-order bit is no longer set, but the ASCII code in the
seven low-order bits is the same until another key is pressed. Table 2-3
shows the ASCII codes for most of the keys on the keyboard of the

Apple Ile.

There are several special-function keys that do not generate ASCII codes.
For example, you cannot read the [CONTROL |}, [SHIFT J, and [CAPS LOCK]
keys directly, but pressing one of these keys alters the character codes
produced by the other keys.

Another key that doesn't generate a code is located at the
upper-right corner of the keyboard; it is connected directly to the Apple Ile’s
circuits. Pressing [RESET) with [CONTROL | depressed normally causes the
system to stop whatever program it's running and restart itself. This
restarting process is called the reset routine.

Two more special keys are the Apple keys, [G] and [&], located on either
side of the bar. These keys are connected to the one-bit game
inputs, which are described later in this chapter in the section “Switch
Inputs.” Pressing them in combination with the [CONTROL] and [RESET]
keys causes the built-in firmware to perform special reset and self-test
cycles, described with the reset routine in Chapter 4.

The Keyboard 13

Table 2-3. Keys and ASCII Codes

Note: Codes are shown here in hexadecimal, to find the decimal equivalents, refer

to Table E-2.

Normal Control
ey Code Char Code Char
pELETE] TF DEL TF DEL
08 BS 08 BS
09 HT 09 HT
0A LF 0A LF
0B VT 0B VT
RetuRn] 0D CR 0D CR
16 NAK 15 NAK
C 1B ESC 1B ESC
space] 20 SP 20 SP

=

th;IHIIBBEEI

27 : 27

- . 50w,

oy - IF US

28 . 2E .
/? aF / 2k /
0) 30 0 30 0
1! 31 1 31 1
2@ 32 2 00 NUL
3# 33 3 33 3
4% 34 4 34 4
5% 35 5 35 5
6" 36 B IE RS
T& 37 7 37 7
g 38 8 38 8
9¢(39 9 39 9
2 3B 3B
=+ 3D = 3D =
[5B | 1B ESC
\| 5C \ 1IC FS
1} 5D] ID GS
- & } m .

Chapter 2: Built-in /0 Devices

Code

7
08
09
0A
0B
0D
16
1B
20
22
3C
oF
3E
3F
29
21
40
23
24
2b
5E
26
2A
28
3A
2B
7B
7C
D
7E

Shift
Char
DEL
BS
HT
LF
VT
CR
NAK

Code

TF
08
09
0A
0B
0D
15
1B
20
22
3C
1F
3E
3F
29
21
00
23
24
25
1IE
26
2A
28
3A
2B
1B
1C
1D
TE

Both
Char
DEL
BS
HT
LF
VT
CR
NAK
ESC
SP

<
Us

ESC
FS
GS

Table 2-3—Continued. Keys and ASCII Codes

Note: Codes are shown here in hezadecimal; to find the decimal equivalents, refer
to Table E-2.

Normal Control Shift Both
Key Code Char Code Char Code Char Code Char
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
C 63 ¢ 03 ETX 43 C 03 ETX
D 64 d 04 EQOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
| 69 i 09 HT 49 I 09 HT
J 6A] 0A LF 4A J 0A LF
K 6B k 0B VT 4B K 0B VT
L 6C 1 0C rE 4C L 0C FF
M 6D m 0D CR 4D M 0D CR
N 6E n 0E S0 4E N 0E SO
0 6F 0 OF SI 4F 0 OF SI
P 70 p 10 DLE 50 P 10 DLE
Q 71 q 11 DC1 51 Q 11 DC1
R 72 r 12 DC2 52 R 12 DC2
S 73] 13 DC3 53 S 13 DC3
il T4 t 14 DC4 b4 T 14 DC4
U 75 u 15 NAK 55 U 16 NAK
v 76 v 16 SYN 56 v 16 SYN
w 77 w 17 ETB a7 W 17 ETB
X 78 X 18 CAN 58 X 18 CAN
Y 79 y 19 EM 69 Y 19 EM
Z TA Z 1A SUB bA Z 1A SUB
The Keyboard 15

The Video Display Generator

Important!

Original lle

For a full description of the video signal
and the connections to the Molex-type pins,
refer to the section “Video Qutput Signals”
in Chapter 7.

16

o= = — . sas = o o e = =]
The primary output device of the Apple Ile is the video display. You can use
any ordinary video monitor, either color or black-and-white, to display video
information from the Apple Ile. An ordinary monitor is one that accepts
composite video compatible with the standard set by the NTSC (National
Television Standards Committee). If you use Apple Ile color graphics with a
black-and-white monitor, the display will appear as black and white (or
green or amber or...) and various patterns of these two shades mixed
together.

If you are using only 40-column text and graphics modes, you can use a
television set for your video display. If the TV set has an input connector for
composite video, you can connect it directly to your Apple Ile; if it does not,
you'll need to attach a radio frequency (RF) video modulator between the
Apple Ile and the television set.

With the 80-column text card installed, the Apple Ile can produce an
80-column text display. However, if you use an ordinary color or
black-and-white television set, 80-column text will be too blurry to read.
For a clear 80-column display, you must use a high-resolution video
monitor with a bandwidth of 14 MHz or greater.

The specifications for the video display are summarized in Table 2-4.

Note that MouseText characters are not included in the original version
of the Apple Ile.

The video signal produced by the Apple Ile is NTSC-compatible composite
color video. It is available at three places: the RCA-type phono jack on the
back of the Apple Ile, the single Molex-type pin on the main circuit board
near the back on the right side, and one of the group of four Molex-type pins
in the same area on the main board. Use the RCA-type phono jack to
connect a video monitor or an external video modulator; use the Molex pins
to connect the type of video modulator that fits inside the Apple Ile case.

Chapter 2: Built-in [/0 Devices

Table 2-4. Video Display Specifications

Display modes: 40-column text; map: Figure 2-5
80-column text; map: Figure 2-6

Low-resolution color graphics; map: Figure 2-7
High-resolution color graphics; map: Figure 2-8

Double-high-res. color graphics; map: Figure 2-9

Text capacity: 24 lines by 80 columns (character positions)
Character set: 96 ASCII characters (uppercase and lowercase)
Display formats: Normal, inverse, flashing, MouseText (Table 2-5)

Low-resolution graphics: 16 colors (Table 2-6) 40 horizontal by 48 vertical;
map: Figure 2-7

High-resolution graphics: 6 colors (Table 2-7) 140 horizontal by 192 vertical

(restricted)
Black-and-white: 280 horizontal by 192 vertical;
map: Figure 2-8
Double-high-resolution 16 colors (Table 2-8) 140 horizontal by 192 vertical
graphics: (no restrictions)

Black-and-white: 560 horizontal by 192 vertical;
map: Figure 2-9

The Apple Ile can produce seven different kinds of video display:

text, 24 lines of 40 characters

text, 24 lines of 80 characters (with optional text card)

low-resolution graphics, 40 by 48, in 16 colors

high-resolution graphics, 140 by 192, in 6 colors

high-resolution graphics, 280 by 192, in black and white

double high-resolution graphics, 140 by 192, in 16 colors (with optional
64K text card)

double high-resolution graphics, 560 by 192, in black and white (with
optional 64K text card)

[S Y o Y O 1

[m]

The two text modes can display all 96 ASCII characters: the uppercase and
lowercase letters, numbers, and symbols. The enchanced Apple Ile can also
display MouseText characters.

The Video Display Generator 17

18

Any of the graphics displays can have 4 lines of text at the bottom of the .
screen. The text may be either 40-column or 80-colurn, except that
double-high-resolution graphics may only have 80-column text at the .
bottom of the screen. Graphics displays with text at the bottom are called
mixed-mode displays.

The low-resolution graphics display is an array of colored blocks, 40 wide by
48 high, in any of 16 colors. In mixed mode, the 4 lines of text replace the
bottom 8 rows of blocks, leaving 40 rows of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide by 192 .
high. There are 6 colors available in high-resolution displays, but a given dot

can use only 4 of the 6 colors. In mixed mode, the 4 lines of text replace the .
bottom 32 rows of dots, leaving 160 rows of 280 dots each.

The double-high-resolution graphics display uses main and auxiliary

memory to display an array of dots, 560 wide by 192 high. All the dots are .
visible in black and white. If color is used, the display is 140 dots wide by

192 high with 16 colors available. In mixed mode, the 4 lines of text replace

the bottom 32 rows of dots, leaving 160 rows of 560 (or 140) dots each. In .
mixed mode, the text lines can be 80 columns wide only.

The text characters displayed include the uppercase and lowercase letters, .
the ten digits, punctuation marks, and special characters. Each character is
displayed in an area of the screen that is seven dots wide by eight dots high.

The characters are formed by a dot matrix five dots wide, leaving two blank
columns of dots between characters in a row, except for MouseText

characters, some of which are seven dot wide. Except for lowercase letters .

Text Modes

with descenders and some MouseText characters, the characters are only
seven dots high, leaving one blank line of dots between rows of characters.

The normal display has white (or other single color) dots on a black .
background. Characters can also be displayed as black dots on a white
background:; this is called inverse format.

Chapter 2: Built-in 1/0 Devices

Text Character Sets

The Apple Ile can display either of two text character sets: the primary set
or an alternate set. The forms of the characters in the two sets are actually
the same, but the available display formats are different. The display
formats are

o normal, with white dots on a black screen
o inverse, with black dots on a white screen
o flashing, alternating between normal and inverse.

With the primary character set, the Apple [le can display uppercase
characters in all three formats: normal, inverse, and flashing. Lowercase
letters can only be displayed in normal format. The primary character set is
compatible with most software written for the Apple Il and Apple I Plus
models, which can display text in flashing format but don’t have lowercase
characters.

The alternate character set displays characters in either normal or inverse
format. In normal format, you can get

O uppercase letters

o lowercase letters

o numbers

o special characters.

In inverse format, you can get

o MouseText characters (on the enhanced Apple Ile)
O uppercase letters

o lowercase letters

o numbers

o special characters.

The MouseText characters that replace the alternate uppercase inverse
characters in the range of $40-$5F in the original Apple Ile are inverse
characters, but they don't look like it because of the way that they have
been constructed.

You select the character set by means of the alternate-text soft switch,
ALTCHAR, described later in the section “Display Mode Switching.”
Table 2-5 shows the character codes in hexadecimal for the Apple Ile
primary and alternate character sets in normal, inverse, and flashing
formats.

The Video Display Generator 19

20

Original lle

Each character on the screen is stored as one byte of display data. The
low-order six bits make up the ASCII code of the character being displayed.
The remaining two (high-order) bits select inverse or flashing format and
uppercase or lowercase characters. In the primary character set, bit 7
selects inverse or normal format and bit 6 controls character flashing. In the
alternate character set, bit 6 selects between uppercase and lowercase,
according to the ASCII character codes, and flashing format is not available.

Table 2-5. Display Character Sets
Note: To identify particular characters and values, refer to Table 2-3.

Hex Primary Character Set Alternate Character Set
Values Character Type Format Character Type Format

$00-$1F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$5F Uppercase letters Flashing ~ MouseText

$60-$7F Special characters Flashing Lowercase letters Inverse
$80-$9F Uppercase letters Normal Uppercase letters Normal
$A0-$BF Special characters ~ Normal Special characters ~ Normal
$C0-SDF Uppercase letters Normal Uppercase letters Normal

$EQ-$FF Lowercase letters Normal Lowercase letters Normal

In the alternate character set of the original Apple Ile, characters in the
range $40-85F are uppercase inverse.

40-Column Versus 80-Column Text

The Apple Ile has two modes of text display: 40-column and 80-colurnn.
(The 80-column display mode described in this manual is the one you get
with the Apple Ile 80-Column Text Card or other auxiliary-memory card
installed in the auxiliary slot.) The number of dots in each character does
not change, but the characters in 80-column mode are only half as wide as
the characters in 40-column mode. Compare Figure 2-2 and Figure 2-3. On
an ordinary color or black-and-white television set, the narrow characters in
the 80-column display blur together; you must use the 40-column mode to
display text on a television set.

Chapter 2: Built-in I/0 Devices

Figure 2-2. 40-Column Text Display

ILIST 8,100
18 REM APPLESOFT CHARACTER DEMOD

28 TEXT : HOME

3@ PRINT : PRINT "Applesoft char
acter Demo"

4@ PRINT : PRINT "Which characte
r set--"

S8 PRINT : INPUT "Primary (P) or
Alternate (A) 7";AS

68 IF LEN (A$) < 1 THEN 59

65 LET A$ = LEFT$ (AS$,1)

78 IF A$ = "P" THEN POKE 49166,

]

88 IF As = "A"™ THEN POKE 49167,
2

9@ PRINT : PRINT "...printing th

e same line, first"

188 PRINT "™ in NORMAL, then INVE
RSE ,then FLASH:": PRINT

]

Figure 2-3. 80-Column Text Display

L1

188
158
168
178
188
198
208
188
118
.

ST

REM APPLESOFT CHARACTER DEMD
TEXT : HOME
PRINT : PRINT "Applesoft Character Demo"
PRINT : PRINT "Which character set--"
PRINT : INPUT "Primary (P) or Alternate (A) 7";AS
IF LEN CA$) < 1 THEN 5@
LET A$ = LEFTS (AS$,1)
IF A$ = “P" THEN POKE 49166,8
IF As = "A"™ THEN POKE 49167,80
PRINT : PRINT "...printing the same line, first"
PRINT "™ in NORMAL, then INVERSE ,then FLASH:"™: PRINT
NORMAL : GOSUB 1888
INVERSE : GOSUB 18882
FLASH : GOSUB 10080
NORMAL : PRINT : PRINT : PRINT "Press any key to repeat."
GET AS$
GOTO 18
@ PRINT : PRINT "SAMPLE TEXT: Now is the time--12:88"
RETURN

The Video Display Generator

Graphics Modes

e e |

The Apple Ile can produce video graphics in three different modes. All the
graphics modes treat the screen as a rectangular array of spots. Normally,
your programs will use the features of some high-level language to draw
graphics dots, lines, and shapes in these arrays; this section describes the
way the resulting graphics data are stored in the Apple Ile’s memory.

Low-Resolution Graphics

In the low-resolution graphics mode, the Apple Ile displays an array of 48
rows by 40 columns of colored blocks. Each block can be any one of sixteen
colors, including black and white, On a black-and-white monitor or
television set, these colors appear as black, white, and three shades of gray.
There are no blank dots between blocks; adjacent blocks of the same color
merge to make a larger shape.

Data for the low-resolution graphics display is stored in the same part of
memory as the data for the 40-column text display. Each byte contains data
for two low-resolution graphics blocks. The two blocks are displayed one
atop the other in a display space the same size as a 40-column text
character, seven dots wide by eight dots high.

Half a byte—four bits, or one nibble—is assigned to each graphics block.
Each nibble can have a value from 0 to 15, and this value determines which
one of sixteen colors appears on the screen. The colors and their
corresponding nibble values are shown in Table 2-6. In each byte, the
low-order nibble sets the color for the top block of the pair, and the
high-order nibble sets the color for the bottom block. Thus, a byte
containing the hexadecimal value $D8 produces a brown block atop a
yellow block on the screen.

Chapter 2: Built-in 1/0 Devices

Table 2-6. Low-Resolution Graphics Colors

Note: Colors may vary, depending upon the controls on the monitor or TV set.

Nibble Value Nibble Value
Dec Hex Color Dec Hex Color
0 $00 Black 8 $08 Brown
1 $01 Magenta 9 509 Orange
2 $02 Dark Blue 10 $0A Gray?2
3 $03 Purple 1 $0B Pink
4 $04 Dark Green 12 $0C Light Green
5 $05 Gray 1 13 $0D Yellow
6 $06 Medium Blue 14 SOE Agquamarine
7 $07 Light Blue 15 $0F White

As explained later in the section “Display Pages,” the text display and the
low-resolution graphics display use the same area in memory. Most
programs that generate text and graphics clear this part of memory when
they change display modes, but it is possible to store data as text and
display it as graphics, or vice-versa. All you have to do is change the mode
switch, described later in this chapter in the section “Display Mode
Switching,” without changing the display data. This usually produces
meaningless jumbles on the display, but some programs have used this
technique to good advantage for producing complex low-resolution graphics
displays quickly.

High-Resolution Graphics

[n the high-resolution graphics mode, the Apple Ile displays an array of
colored dots in 192 rows and 280 columns. The colors available are black,
white, purple, green, orange, and blue, although the colors of the individual
dots are limited, as described later in this section. Adjacent dots of the same
color merge to form a larger colored area.

Data for the high-resolution graphics displays are stored in either of two
8192-byte areas in memory. These areas are called high-resolution Page 1
and Page 2; think of them as buffers where you can put data to be
displayed. Normally, your programs will use the features of some high-level
language to draw graphics dots, lines, and shapes to display; this section
describes the way the resulting graphics data are stored in the Apple Ile’s
memory.

The Video Display Generator 23

Figure 2-4. High-Resolution Display
Bits

Bits in Data Byte

T [6}&5(4)3j2]|1]0

0111218345658

Dots on Graphics Screen

For more details about the way the
Apple Ile produces color on a TV set, see
the section “Video Display Modes” in
Chapter 7.

The Apple Ile high-resolution graphics display is bit-mapped: each dot on
the screen corresponds to a bit in the Apple Ile's memory . The seven
low-order bits of each display byte control a row of seven adjacent dots on
the screen, and forty adjacent bytes in memory control a row of 280

(7 times 40) dots. The least significant bit of each byte is displayed as the
leftmost dot in a row of seven, followed by the second-least significant bit,
and so on, as shown in Figure 2-4. The eighth bit (the most significant) of
each byte is not displayed; it selects one of two color sets, as described later.

On a black-and-white monitor, there is a simple correspondence between
bits in memory and dots on the screen. A dot is white if the bit controlling it
ison (1), and the dot is black if the bit is off (0). On a black-and-white
television set, pairs of dots blur together; alternating black and white dots
merge to a continuous grey.

On an NTSC color monitor or a color television set, a dot whose controlling
bit is off (0) is black. If the bit is on, the dot will be white or a color,
depending on its position, the dots on either side, and the setting of the
high-order bit of the byte.

Call the left-most column of dots column zero, and assume (for the moment)
that the high-order bits of all the data bytes are off (0). If the bits that
control dots in even-numbered columns (0, 2, 4, and so forth) are on, the
dots are purple; if the bits that control odd-numbered columns are on, the
dots are green—but only if the dots on both sides of a given dot are black. If
two adjacent dots are both on, they are both white.

You select the other two colors, blue and orange, by turning the high-order
bit (bit 7) of a data byte on (1). The colored dots controlled by a byte with
the high-order bit on are either blue or orange: the dots in even-numbered
columns are blue, and the dots in odd-numbered columns are orange—
again, only if the dots on both sides are black. Within each horizontal line of
seven dots controlled by a single byte, you can have black, white, and one
pair of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects the
colors of all seven dots controlled by the byte.

In other words, high-resolution graphics displayed on a color monitor or
television set are made up of colored dots, according to the following rules:

o Dots in even columns can be black, purple, or blue.
o Dots in odd columns can be black, green, or orange.
o If adjacent dots in a row are both on, they are both white.

o The colors in each row of seven dots controlled by a single byte are either
purple and green, or blue and orange, depending on whether the
high-order bit is off (0) or on (1).

Chapter 2: Built-in I/0 Devices

For information about the way NTSC color
television works, see the magazine articles
listed in the bibliography.

These rules are summarized in Table 2-7. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 2-7. High-Resolution Graphics Colors

Note: Colors may vary depending upon the controls on the monitor or television
set.

Bits 0-6 Bit 7 Off Bit 7 On
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

The peculiar behavior of the high-resolution colors reflects the way NTSC
color television works. The dots that make up the Apple Ile video signal are
spaced to coincide with the frequency of the color subcarrier used in the
NTSC system. Alternating black and white dots at this spacing cause a
color monitor or TV set to produce color, but two or more white dots
together do not.

Double-High-Resolution Graphics

Double-high-resolution graphics is a bit-mapping of the low-order seven bits
of the bytes in the main-memory and auxiliary-memory pages at
$2000-$3FFF. The bytes in the main-memory and auxiliary-memory pages
are interleaved in exactly the same manner as the characters in 80-column
text: of each pair of identical addresses, the auxiliary-memory byte is
displayed first, and the main-memory byte is displayed second. Horizontal
resolution is 560 dots when displayed on a monochrome monitor.

Unlike high-resolution color, double-high-resolution color has no restrictions
on which colors can be adjacent. Color is determined by any four adjacent
dots along a line. Think of a 4-dot-wide window moving across the screen: at
any given time, the color displayed will correspond to the 4-bit value from
Table 2-8 that corresponds to the window’s position (Figure 2-9). Effective
horizontal resolution with color is 140 (560 divided by four) dots per line.

To use Table 2-8, divide the display column number by 4, and use the
remainder to find the correct column in the table: ab0 is a byte residing in
auxiliary memory corresponding to a remainder of 0 (byte 0, 4, 8, and so on);
mbl is a byte residing in main memory corresponding to a remainder of 1
(byte 1, 5,9 and so on), and similarly for ab3 and mb4.

he Video Display Generator 25

Table 2-8. Double-High-Resolution Graphics Colors

Repeated
Color ab0 mbl ab2 mb3 Bit Pattern
Black $00 500 500 $00 0000
Magenta $08 11 $22 $44 0001
Brown $44 308 811 $22 0010
Orange $4C $19 $33 566 0011
Dark Green $22 $44 508 $11 0100
Gray 1 $2A $55 $2A $65 0101
Green $66 $4C 819 $33 0110
Yellow S6E $5D $3B 877 0111
Dark Blue $11 $22 $44 508 1000
Purple $19 $33 366 $4C 1001
Gray 2 $55 52A $65 $2A 1010
Pink $5D $3B 877 S6E 1011
Medium Blue $33 566 $4C $19 1100
Light Blue $3B 877 $6E $6D 1101
Aqua 877 $6E $5D $3B 1110
White 37F STF $7F 37F 1111

Video Display Pages
I===m0— = s ===~]

The Apple Ile generates its video displays using data stored in specific areas
in memory. These areas, called display pages, serve as buffers where your
programs can put data to be displayed. Each byte in a display buffer
controls an object at a certain location on the display. In text mode, the
object is a single character; in low-resolution graphics, the object is two
stacked colored blocks; and in high-resolution and double-high-resolution
modes, it is a line of seven adjacent dots.

26 Chapter 2: Built-in 1/0 Devices

- - - ‘n - - - - - - - -

The 40-column-text and low-resolution-graphics modes use two display
pages of 1024 bytes each. These are called text Page 1 and text Page 2, and
they are located at 1024-2047 (hexadecimal $0400-$07FF) and 2048-3071
($0800-$0BFF) in main memory. Normally, only Page 1 is used, but you can
put text or graphics data into Page 2 and switch displays instantly. Either
page can be displayed as 40-column text, low-resolution graphics, or
mixed-mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-column
mode— 1920 bytes—but it cannot switch pages. The 80-column text display
uses a combination page made up of text Page 1 in main memory plus
another page in auxiliary memory located on the 80-column text card. This
additional memory is not the same as text Page 2—in fact, it occupies the
same address space as text Page 1, and there is a special soft switch that
enables you to store data into it. (See the next section “Display Mode
Switching.”) The built-in firmware 1/0 routines described in Chapter 3 take
care of this extra addressing automatically; that is one reason to use those
routines for all your normal text output.

The high-resolution graphics mode also has two display pages, but each
page is 8192 bytes long. In the 40-column text and low-resolution graphics
modes each byte controls a display area seven dots wide by eight dots high.
In high-resolution graphics mode each byte controls an area seven dots wide
by one dot high. Thus, a high-resolution display requires eight times as
much data storage, as shown in Table 2-9.

The double-high-resolution graphics mode uses high-resolution Page 1 in
both main and auxiliary memory. Each byte in those pages of memory
controls a display area seven dots wide by one dot high. This gives you 560
dots per line in black and white, and 140 dots per line in color. A
double-high-resolution display requires twice the total memory as
high-resolution graphics, and 16 times as much as a low-resolution display.

The Video Display Generator]

Table 2-9. Video Display Page Locations

Display Lowest Address Highest Address
Display Mode Page Hex Dec Hex Dec
40-column text, 1 $0400 1024 SOTFF 2047
low-resolution graphics 2* $0800 2048 $0BFF 3071
80-column text 1 $0400 1024 S0TFF 2047

2 S0800 2048 $0BFF 3071
High-resolution 1 $2000 8192 $3FFF 16383
graphics 2 $4000 16384 $5FFF 24675
Double-high- 14 $2000 8192 $3FFF 16383
resolution graphics 2t $4000 16384 $5FFF 24575

* This is not supported by firmware; for instructions on how to switch pages, refer to the
next section “Display Mode Switching.”

T See the section “Double-High-Resolution Graphics,” earlier in this chapter,

Display Mode Switching
[===—cee— s nie s s e = —— 1)

You select the display mode that is appropriate for your application by
reading or writing to a reserved memory location called a soft switch. In the
Apple Ile, most soft switches have three memory locations reserved for
them: one for turning the switch on, one for turning it off, and one for
reading the current state of the switch.

Table 2-10 shows the reserved locations for the soft switches that control
the display modes. For example, to switch from mixed-mode to full-screen
graphics in an assembly-language program, you could use the instruction

STA $c@s2
To do this in a BASIC program, you could use the instruction
POKE 49234,

Some of the soft switches in Table 2-10 must be read, some must be written
to, and for some you can use either action. When writing to a soft switch, it
doesn’t matter what value you write; the action occurs when you address
the location, and the value is ignored.

Chapter 2: Built-in [/0 Devices

Table 2-10. Display Soft Switches

Note: W means write anything to the location, R means read the location, R/W
means read or write, and R7 means read the location and then check bit 7.

Name Action Hex Function

ALTCHAR W $CO0E Off: display text using primary character set

ALTCHAR W $CO0OF On: display text using alternate character set

RDALTCHAR RT7 $COIE Read ALTCHAR switch (1 = on)

80COL W $C00C Off: display 40 columns

80COL w $C00D On: display 80 columns

RD80OCOL R7 $COIF Read 80COL switch (1 = on)

80STORE W $C000 Off: cause PAGEZ2 on to select auxiliary RAM

80STORE W $C001 On: allow PAGE2 to switch main RAM areas

RD8OSTORE R7 $C018 Read 80STORE switch (1 = on)

PAGE2 R/W $C054 Off: select Page 1

PAGE2 R/W $C055 On:select Page 2 or, if 80STORE on, Page 1 in
auxiliary memory

RDPAGE2 RT $C01C Read PAGE2 switch (1 = on)

TEXT R/W $C050 Off: display graphics or, if MIXED on, mixed

TEXT R/W $C051 On:display text

RDTEXT R7 $CO1A Read TEXT switch (1 = on)

MIXED R/W 8C052 Off: display only text or only graphics

MIXED R/W $C053 On:if TEXT off, display text and graphics

RDMIXED R7 $C01IB Read MIXED switch (1 = on)

HIRES R/W §C056 Off: if TEXT off, display low-resolution graphics

HIRES R/W $C057 On:if TEXT off, display high-resolution or, if
DHIRES on, double-high-resolution graphics

RDHIRES R7 $C01D Read HIRES switch (1 = on)

I0UDIS $COTE On: disable 10U access for addresses $C058 to
$CO5F; enable access to DHIRES switch *

I0UDIS W $COTF Off: enable I0U access for addresses $C058 to
$CO5F; disable access to DHIRES switch *

RDIOUDIS R7 $COTE Read IQUDIS switch (1 = off) t

DHIRES R/W $COSE On:if IOUDIS on, turn on double-high-res.

DHIRES R/W $COSF Off: if IOUDIS on, turn off double-high-res.

RDDHIRES R7 $COTF Read DHIRES switch (1 = on) t

* The firmware normally leaves IQUDIS on. See also t.

t Reading or writing any address in the range $C070-5CO7F also triggers the paddle timer
and resets VBLINT (Chapter 7).

The Video Display Generator

For a full description of the way the

Apple lle handles its display memory, refer

to the section “Display Memory
Addressing” in Chapter 7.

30

By the Way: You may not need to deal with these functions by reading
and writing directly to the memory locations in Table 2-10. Many of the
functions shown here are selected automatically if you use the display

| routines in the various high-level languages on the Apple Ile.

Any time you read a soft switch, you get a byte of data. However, the only
information the byte contains is the state of the switch, and this occupies
only one bit—Dbit 7, the high-order bit. The other bits in the byte are
unpredictable. If you are programming in machine language, the switch
setting is the sign bit; as soon as you read the byte, you can do a Branch
Plus if the switch is off, or Branch Minus if the switch if on.

If you read a soft switch from a BASIC program, you get a value between 0
and 255. Bit 7 has a value of 128, so if the switch is on, the value will be
equal to or greater than 128; if the switch is off, the value will be less

than 128.

Addressing Display Pages Directly
[oaat == = em =5 ===

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write statements that
control the text and graphics displays. Similarly, if you are programming in
assembly language, you may be able to use the display features of the
built-in I/0 firmware. You should store directly into display memory only if
the existing programs can't meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6, 2-7, 2-8, and 2-9.
All of the different display modes use the same basic addressing scheme:
characters or graphics bytes are stored as rows of 40 contiguous bytes, but
the rows themselves are not stored at locations corresponding to their
locations on the display. Instead, the display address is transformed so that
three rows that are eight rows apart on the display are grouped together and
stored in the first 120 locations of each block of 128 bytes ($80
hexadecimal). By folding the display data into memory this way, the

Apple Ile, like the Apple II, stores all 960 characters of displayed text within
1K bytes of memory.

Chapter 2: Built-in I/0 Devices

=

For more details about the way the displays
are generated, see Chapter 7.

The high-resolution graphics display is stored in much the same way as
text, but there are eight times as many bytes to store, because eight rows of
dots occupy the same space on the display as one row of characters. The
subset consisting of all the first rows from the groups of eight is stored in
the first 1024 bytes of the high-resolution display page. The subset
consisting of all the second rows from the groups of eight is stored in the
second 1024 bytes, and so on for a total of 8 times 1024, or 8192 bytes. In
other words, each block of 1024 bytes in the high-resolution display page
contains one row of dots out. of every group of eight rows. The individual
rows are stored in sets of three 40-byte rows, the same way as the text
display.

All of the display modes except 80-column mode and double-high-resolution
graphics mode can use either of two display pages. The display maps show
addresses for each mode's Page 1 only. To obtain addresses for text or
low-resolution graphics Page 2, add 1024 ($400); to obtain addresses for
high-resolution Page 2, add 8192 (52000).

The 80-column display and double-high-resolution graphics mode work a
little differently. Half of the data is stored in the normal text Page-1
memory, and the other half is stored in memory on the 80-column text card
using the same addresses. The display circuitry fetches bytes from these
two memory areas simultaneously and displays them sequentially: first the
byte from the 80-column text card memory, then the byte from the main
memory. The main memory stores the characters in the odd columns of the
display, and the 80-column text card memory stores the characters in the
even columns.

To store display data on the 80-column text card, first turn on the 80STORE
soft switch by writing to location 49153 (hexadecimal $C001 or
complementary -16383). With 80STORE on, the page-select switch, PAGE2,
selects between the portion of the 80-column display stored in Page 1 of
main memory and the portion stored in the 80-column text card memory. To
select the 80-column text card, turn the PAGE2 soft switch on by reading or
writing at location 49237.

The Video Display Generator 31

Figure 2-5. Map of 40-Column Text Display

com-qmm-nmm»—-c%j

ST S S T
00 3 B O = O O — O

—
w

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
5628
56A8
8728
$7A8
$450
$4D0
$550
$6D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

[S]
ERBES

Al
B

$650
$6D0
$750
$7D0

1616
1744
1872
2000

Chapter 2: Built-in 1/0 Devices

. Figure 2-6. Map of 80-Column Text Display

_l Main Memory . __

$00 $01 $02 $03 $04 $05 $06 80 521 52 833 $24 425 $%6 sa
Row Rl S0 6_\ ,_m%mmmss_asmmwssmwj
$400 1024 '
$480 1152
$500 1280
$580 1408
$600 1536
8680 1664 :
§700 1792 1 I : v
$780 1920 : [
$428 1064 | ! “
$4A8 1192
$528 1320
$5A8 1448
§628 1576
$6A8 1704
§728 1832
STAB 1960
$450 1104 ;
$4D0 1232 | | i b
$550 1360 ”
$5D0 1488
$650 1616 : :
$6D0 1744 : i\
§750 1872 | L K
$7D0 2000 "B ENERNE 'R
$00 $01 soz““s03“$04"""$05”$06"“$07($20 $21 $22 $23 824 % 826 ST |

W o 9 O O B W DD = O

—_
<

—_
<Py

—
oo

—_
o

-
=

—
o

—_
o

—
-3

—_
=]

[s~]
(=)

[x-]
—_

[a
0o

[ael
(%)

0 1 2 38 4 5 6 7 32 33 34 3% 36 37T 38 3
Auxiliary Memory [

The Video Display Generator a3

—_
oo

Figure 2-7. Map of Low-Resolution Graphics Display

§400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$TA8
$450
$4D0
$650
$65D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
T $07
8 $08
9 $09
10 $0A
11 $0B
12 $0C
13 $0D
14 $OE
15 $OF
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
2% $1A
27 $1B
28 $1C
29 $1D
30 $IE
31 $IF
32 $20
33 $21
34 $22
3 $23
36 $24
37 $25
38 $26
30 $27

i
«

34

$660
$6D0
$750
$7D0

1616
1744
1872
2000

Chapter 2: Built-in 1/0 Devices

0

Figure 2-8. Map of High-Resolution Graphics Display

— e — — =

RO“- —————————— e 9
$2000 8192
$2080 8320
$2100 8448
$2180 8576
$2200 8704
$2280 8832
$2300 8960
$2380 9088
$2028 8232
$20A8 8360
$2128 8488
$21A8 8616
$2098 8744 \ =
$20A8 8872 -+
$2328 9000
$23A8 9128
$2050 8272
$20D0 8400
$2150 8528
$21D0 8656
$2250 8784

21 $22D0 8912
22 $2350 9040

23 $23D0 9168 +6144 +$1800

\ +7168 +$1C00

o

W 00 =3 O O = QWO DO —

—
(=]

[
[
[

—
oo

—
(V]

—
B

+1024 +80400

—
o

,—
f i

—
(==

+2048 +$0800

p—
|

—
o0

+3072 +$0C00

A

+4096 +$1000

oo
=

\ +56120 +31400

The Video Display Generator 35

Figure 2-9. Map of Double-High-Resolution Graphics Display

T
500 $01 802 $03 $04 $05 $06 | $20 821 22 823 824 $35 $26 S
[o B I B D 2 8 3 B 36 ;3B N

Row

$2000 8192
$2080 8320
$2100 8448
$2180 8576
$2200 8704
$2080 8832 | | | ‘e
s2300 8960 | || L [B B B B OE
soa3s0 ooss | || [[] [‘R
$2028 8232 /
$20A8 8360 : YHERE
§2128 8488 o = gy ‘
s21A8 8616 | | | || | T\ =T |
$2228 8744 | | | | ‘R B E R Vil e
$22A8 8872 '‘nR R R X
$2328 9000
$23A8 9128
$2050 8272
$20D0 8400
$2150 8528

e “w-.‘____._‘__-—-""' 5 _'."-__ P~

w00 9 D T e W N = O

—
=)

—
—_

—_
B

=
<o

+1024 +$0400 T
1
+2048 +$0800 |

s
B=N

—
on

a—
{=r]

-
-2

+3072 +$0C00 | |

o,
e =]

—t
©

$21D0 8656 +4096 +$1000
— B

$2250 8784 1 | .~ o L : +5120 +$1400 ||
seepo sona | L] P BT L BT BT B 1]
$2350 9040 | | - | b +6144 +$1800 |

$23D0 9168

Do
(==}

— -
=y e L

DO
—_

o]
Do

el i

oo
(V]

1 2 3 4 b 6 7
Auxiliary Memory |

R IR C . B
@’0 SO1 $02 $03 S04 $05 $06 307(+7168 +$1C00
0

36 Chapter 2: Built-in 1/0 Devices

Secondary Inputs and Outputs

Important!

Electrical specifications of the speaker
circuit appear in Chapter 7.

In addition to the primary 1/0 devices—the keyboard and display—there
are several secondary input and output devices in the Apple Ile. These
devices are

o the speaker (output)
o cassette input and output

o annunciator outputs

o strobe output

o switch inputs

o analog (hand control) inputs.

These devices are similar in operation to the soft switches described in the
previous section: you control them by reading or writing to dedicated
memory locations. Action takes place any time your program reads or
writes to one of these locations; information written is ignored.

Some of these devices toggle—change state—each time they are
accessed. If you write using an indexed store operation, the Apple Ile’s
microprocessor activates the address bus twice during successive clock
cycles, causing a device that toggles each time it is addressed to end up
back in its original state. For this reason, you should read, rather than
write, to such devices.

The Speaker

=]

The Apple Ile has a small speaker mounted toward the front of the bottom
plate. The speaker is connected to a soft switch that toggles; it has two
states, off and on, and it changes from one to the other each time it is
accessed. (At low frequencies, less than 400 Hz or so, the speaker clicks
only on every other access.)

If you switch the speaker once, it emits a click; to make longer sounds, you
access the speaker repeatedly. You should always use a read operation to
toggle the speaker. If you write fo this soft switch, it switches twice in rapid
succession. The resulting pulse is so short that the speaker doesn't have
time to respond; it doesn’t make a sound.

Secondary Inputs and Outputs 37

BELL1 is described in Appendix B.

Detailed electrical specifications for the
cassette input and output are given in
Chapter 7.

WRITE is deseribed in Appendix B.

The soft switch for the speaker uses memory location 49200 (hexadecimal
$C030). From Integer BASIC, use the complementary address -16336. You
can make various tones and buzzes with the speaker by using combinations
of timing loops in your program. There is also a routine in the built-in
firmware to make a beep through the speaker. This routine is called BELLI.

Cassette Input and Output

==]

There are two miniature phone jacks on the back panel of the Apple Ile. You
can use a pair of standard cables with miniature phone plugs to connect an
ordinary cassette tape recorder to the Apple Ile and save programs and data
on audio cassettes.

The phone jack marked with a picture of an arrow pointing towards a
cassette is the output jack. It is connected to a toggled soft switch, like the
speaker switch described above. The signal at the phone jack switches from
zero to 25 millivolts or from 25 millivolts to zero each time you access the
soft switch.

If you connect a cable from this jack to the microphone input of a cassette
tape recorder and switch the recorder to record mode, the signal changes
you produce by accessing this soft switch will be recorded on the tape. The
cassette output switch uses memory location 49184 (hexadecimal $C020;
complementary value -16352). Like the speaker, this output will toggle
twice if you write to it, so you should only use read operations to control the
cassette output.

The standard method for writing computer data on audio tapes uses tones
with two different pitches to represent the binary states zero and one. To
store data, you convert the data into a stream of bits and convert the bits
into the appropriate tones. To save you the trouble of actually programming
the tones, and to ensure consistency among all Apple Il cassette tapes, there
is a built-in routine called WRITE for producing cassette data output.

Chapter 2: Built-in 1/0 Devices

READ is described in Appendix B.

Complete electrical specifications of these
inputs and outputs are given in Chapter 7.

The phone jack marked with a picture of an arrow coming from a cassette is
the input jack. It accepts a cable from the cassette recorder’s earphone jack.
The signal from the cassette is 1 volt (peak-to-peak) audio. Each time the
instantaneous value of this audio signal changes from positive to negative,
or vice-versa, the state of the cassette input circuit changes from zero to one
or vice-versa. You can read the state of this circuit at memory location
49248 (hexadecimal $C060, or complementary decimal -16288).

When you read this location, you get a byte, but only the high-order bit

(bit 7) is valid. If you are programming in machine language, this is the sign
bit, so you can perform a Branch Plus or Branch Minus immediately after
reading this byte. BASIC is too slow to keep up with the audio tones used for
data recording on tape, but you don’t need to write the program; there is a
built-in routine called READ for reading data from a cassette.

The Hand Control Connector Signals
[e e == o]

Several inputs and outputs are available on a 9-pin D-type miniature
connector on the back of the Apple Ile: three one-bit inputs, or switches,
and four analog inputs. These signals are also available on the 16-pin 1C
connector on the main circuit board, along with four one-bit outputs and a
data strobe. You can access all of these signals from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin connector. The
rotary controls use two analog inputs, and the push-buttons use two one-bit
inputs. However, you can also use these inputs and outputs for many other
jobs. For example, two analog inputs can be used with a two-axis joystick.
Table 7-19 shows the connector pin numbers.

Secondary Inputs and Qutputs 39

For electrical specifications of the
annunciator outputs, refer to Chapter 7.

40

Annunciator Outputs

The four one-bit outputs are called annunciators. Each annunciator can be
used to turn a lamp, a relay, or some similar electronic device on and off.

Each annunciator is controlled by a soft switch, and each switch uses a pair
of memory locations. These memory locations are shown in Table 2-11.
Any reference to the first location of a pair turns the corresponding
annunciator off; a reference to the second location turns the annunciator
on. There is no way to read the state of an annunciator.

Table 2-11. Annunciator Memory Locations

Annunciator Address

No. Pin* State Decimal Hex

0 16 off 49240 -16296 $C068
on 49241 -16295 $C059

1 14 off 49242 -16294 $C0BA
on 49243 -16293 $C05B

2 13 off 49244 -16292 $C05C
on 49245 -16291 $C05D

3 12 off 49246 -16290 $CO5E
on 49247 -16289 $COBF

* Pin numbers given are for the 16-pin IC connector on the circuit board.

Strobe Output

The strobe output is normally at +5 volts, but it drops to zero for about half
a microsecond any time its dedicated memory location is accessed. You can
use this signal to control functions such as data latching in external devices.
If you use this signal, remember that memory is addressed twice by a write;
if you need only a single pulse, use a read operation to activate the strobe.
The memory location for the strobe signal is 49216 (hexadecimal $C040 or
complementary -16320).

Chapter 2: Built-in [/0 Devices

AWarning

Switch Inputs

The three one-bit inputs can be connected to the output of another
electronic device or to a pushbutton. When you read a byte from one of
these locations, only the high-order bit—bit 7—is valid information; the rest
of the byte is undefined. From machine language, you can do a Branch Plus
or Branch Minus on the state of bit 7. From BASIC, you read the switch with
a PEEK and compare the value with 128, If the value is 128 or greater, the
switch is on.

The memory locations for these switches are 49249 through 49251
(hexadecimal $C061 through $C063, or complementary -16287 through
-16285), as shown in Table 2-12. Switch 0 and switch 1 are permanently
connected to the (&) and (] keys on the keyboard; these are the ones
normally connected to the buttons on the hand controls. Some software for
the older models of the Apple II uses the third switch, switch 2, as a way of
detecting the shift key. This technique requires a hardware modification
known as the single-wire shift-key mod.

You should be sure that you really need the shift-key mod before you go

ahead and do it. It probably is not worth it unless you have a program that

requires the shift-key mod that you cannot either replace or modify to work

without it.

| If you make the shift-key modification and connect a joystick or other
hand control that uses switch 2, you must be careful never to close the

| switch and press at the same time: doing so produces a short

| circuit that causes the power supply to turn off. When this happens, any
programs or data in the computer’s internal memory are lost.

Shift-Key Mod: To perform this modification on your Apple I, all you
have to do is solder across the broken diamond labelled X6 on the main
circuit board. Remember to turn off the power before changing anything
inside the Apple Ile. Also remember that changes such as this are at your
own risk and may void your warranty.

Secondary Inputs and Outputs 41

Refer to the section *Game [/0 Signals” in
Chapter 7 for details.

PREAD is described in Appendix B.

Analog Inputs

The four analog inputs are designed for use with 150K ohm variable
resistors or potentiometers. The variable resistance is connected between
the +5V supply and each input, so that it makes up part of a timing circuit.
The circuit changes state when its time constant has elapsed, and the time
constant varies as the resistance varies. Your program can measure this
time by counting in a loop until the circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset the timing
circuits. Accessing memory location 49264 (hexadecimal $C070 or
complementary -16272) does this. As soon as you reset the timing circuits,
the high bits of the bytes at locations 49252 through 49256 (hexadecimal
$C064 through $C067 or complementary -16284 through -16281) are set to 1.
If you PEEK at them from BASIC, the values will be 128 or greater. Within
about 3 milliseconds, these bits will change back to 0—byte values less
than 128—and remain there until you reset the timing circuits again. The
exact time each of the four bits remains high is directly proportional to the
resistance connected to the corresponding input. If these inputs are open—
no resistances are connected—the corresponding bits may remain high
indefinitely.

To read the analog inputs from machine language, you can use a program
loop that resets the timers and then increments a counter until the bit at the
appropriate memory location changes to 0, or you can use the built-in
routine called PREAD. High-level languages, such as BASIC, also include
convenient means of reading the analog inputs: refer to your language
manuals.

Summary of Secondary I/O Locations

e e e o e T O R

Table 2-12 shows the memory locations for all of the built-in I/0 devices
except the keyboard and display. As explained earlier, some soft switches
should only be accessed by means of read operations; those switches are
marked.

Chapter 2: Built-in [/0 Devices

Table 2-12. Secondary 1/0 Memory Locations

For connector identification and pin numbers, refer to Tables 7-18 and 7-19.

Address

Function Decimal Hex Access
Speaker 49200 -16336 $C030 Read only
Cassette out 49184 -16352 $0020 Read only
Cassette in 49248 -16288 $C060 Read only
Annunciator (on 49241 -16295 $C059

Annunciator 0 off 49240 -16296 $C068

Annunciator 1 on 49243 -16293 $C05B

Annunciator 1 off 49242 -16294 $COBA

Annunciator 2 on 49245 -16291 $C06D

Annunciator 2 off 49244 -16292 $C06C

Annunciator 3 on 49247 -16289 SCO5F

Annunciator 3 off 49246 -16290 SCO5E

Strobe output 49216 -16320 $C040 Read only
Switch input 0 ((&]) 49249 -16287 $C061 Read only
Switch input 1 ([&]) 49250 -16286 $C062 Read only
Switch input 2 49251 -16285 $C063 Read only
Analog input reset 49264 -16272 $C070

Analog input 0 49252 -16284 $C064 Read only
Analog input 1 49253 -16283 5C065 Read only
Analog input 2 49254 -16282 $C066 Read only
Analog input 3 49255 -16281 3C067 Read only

Secondary Inputs and Qutputs

Eh_apferg

Built-in [/O Firmware

The Monitor, or Svstem Monitor, is a
computer program that is used to operate
the computer at the machine language

level.

16

important!

Almost every program on the Apple Ile takes input from the keyboard and
sends output to the display. The Monitor and the Applesoft and Integer
BASICs do this by means of standard [/0 subroutines that are built into the
Apple Ile's firmware. Many application programs also use the standard /0
subroutines, but Pascal programs do not; Pascal has its own /0
subroutines.

This chapter describes the features of these subroutines as they are used by
the Monitor and by the BASIC interpreters, and tells you how to use the
standard subroutines in your assembly-language programs.

High-level languages already include convenient methods for handling
most of the functions described in this chapter. You should not need to
use the standard 1/0 subroutines in your programs unless you are
programming in assembly language.

Table 3-1. Monitor Firmware Routines

Location Name Description

$C305 BASICIN With 80-column dirmware active, displays solid,
blinking cursor. Accepts character from keyboard.

$C307 BASICOUT Displays a character on the screen; used when the
80-column firmware is active (Chapter 3).

$FCIC CLREOL Clears to end of line from current cursor position.

SFCIE CLEOLZ (Clears to end of line using contents of Y register as
cursor position.

$FC42 CLREOP Clears to bottom of window.,
$F832 CLRSCR Clears the low-resolution screen.

$F836 CLRTOP Clears top 40 lines of low-resolution screen.

$FDED CouT Calls output routine whose address is stored in CSW
(normally COUT1, Chapter 3).

$FDF0 COUT1 Displays a character on the screen (Chapter 3).

$FDSE CROUT Generates a carriage return character.

$FD8B CROUTI Clears to end of line, then generates a carriage return
character.

SFDBA GETLN Displays the prompt character; accepts a string of
characters by means of RDKEY.

$F819 HLINE Draws a horizontal line of blocks.

$FCh8 HOME Clears the window and puts cursor in upper-left
corner of window.,

Chapter 3: Built-in 1/0 Firmware

Table 3-1—Continued. Monitor Firmware Routines

Location Name Description

$FDIB KEYIN With 80-column firmware inactive, displays
checkerboard cursor. Accepts character from
keyboard.

$F800 PLOT Plots a single low-resolution block on the screen.

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device.

$FDDA PRBYTE Prints a hexadecimal byte.

$FF2D PRERR Sends err and Control-G to the output device.

$FDE3 PRHEX Prints 4 bits as a hexadecimal number,

$F941 PRNTAX Prints contents of A and X in hexadecimal.

$FDOC RDKEY Displays blinking cursor; goes to standard input
routine, normally KEYIN or BASICIN.

$F871 SCRN Reads color value of a low-resolution block.

$F864 SETCOL Sets the color for plotting in low-resolution.

$FC24 VTABZ Sets cursor vertical position.

$F828 VLINE Draws a vertical line of low-resolution blocks.

The standard /0 subroutines listed in Table 3-1 are fully described in this

chapter. The Apple Ile firmware also contains many other subroutines that

you might find useful. Those subroutines are described in Appendix B. Two
AUXMOVE and XFER are described inthe of the built-in subroutines, AUXMOVE and XFER, can help you use the

section “Auxiliary-Memory Subroutines”in gptional auxiliary memory.
Chapter 4.

Using the I/O Subroutines

e — e e e S O T e e e e e e,
Before you use the standard /0 subroutines, you should understand a little
about the way they are used. The Apple [le firmware operates differently
when an option such as an 80-column text card is used. This section
describes general situations that affect the operation of the standard 1/0
subroutines. Specific instances are described in the sections devoted to the
individual subroutines.

Using the 1/0 Subroutines 47

g,

i
I
B3

Original lle

The primary and alternate character sets
are described in Chapter 2 in the section
“Text Character Sets.”

Original lle

The ALTCHAR soft switch is described in
Chapter 2.

48

Apple Il Compatibility
[SE=cse—mr e == = ==y}

Compared to older Apple Il models, the Apple Ile has some additional
keyboard and display features. To run programs that were written for the
older models, you can make the Apple Ile resemble an Apple II Plus by
turning those features off. The features that you can turn off and on to put
the Apple Ile into and out of Apple Il mode are listed in Table 3-2.

Table 3-2. Apple Il Mode

Apple Ile Apple II Mode
Keyboard Uppercase and lowercase Uppercase only
Display characters Inverse and normal only Flashing, inverse, and
normal
Display size 40-colurnn; also 80-column 40-column only
with optional card

If the Apple Ile does not have an 80-column text card installed in the
auxiliary slot, it is almost in Apple 11 mode as soon as you turn it on or reset
it. One exception is the keyboard, which is both uppercase and lowercase.

On an original Apple Ile, DOS 3.3 commands and statements in Integer
BASIC and Applesoft must be typed in uppercase letters. To be
compatible with older software, you should switch the Apple lle keyboard

to uppercase by pressing [CAPS LOCK].

Another feature that is different on the Apple Ile as compared to the

Apple Il is the displayed character set. An Apple Il displays only uppercase
characters, but it displays them three ways: normal, inverse, and flashing.
The Apple Ile can display uppercase characters all three ways, and it can
display lowercase characters in the normal way. This combination is called
the primary character set. When the Apple Ile is first turned on or reset,
it displays the primary character set.

The Apple Ile has another character set, called the alternate character
set, that displays a full sef of normal and inverse characters, with the
inverse uppercase characters between $40 and $5F replaced on enhanced
Apple Ile’s with MouseText characters.

In the original Apple Ile, uppercase inverse characters appear in place of
the MouseText characters of the enhanced Apple [le and the Apple Ilc.

You can switch character sets at any time by means of the ALTCHAR soft
switch.

Chapter 3: Built-in [/0 Firmware

See the section “Switching 1/0 Memory” in
Chapter 6 for details.

Important!

SLOTC3ROM is described in Chapter 6 in
the section “Switching 1/0 Memory.”

For more information about interrupts, see
Chapter 6.

The 80-Column Firmware

There are a few features that are normally available only with the optional
80-column display. These features are identified in Table 3-8b and

Table 3-6. The firmware that supports these features is built into the

Apple Ile, but it is normally active only if an 80-column text card is installed
in the auxiliary slot.

When you turn on power or reset the Apple Ile, the 80-column firmware is
inactive and the Apple lle displays the primary character set, even if an
80-column text card is installed. When you activate the 80-column
firmware, it switches to the alternate character set.

The built-in 80-column firmware is implemented as if it were installed in
expansion slot 3. Programs written for an Apple Il or Apple Il Plus with an
80-column text card installed in slot 3 usually will run properly on a
Apple Ile with an 80-column text card in the auxiliary slot.

If the Apple lle has an 80-column text card and you want to use the
80-column display, you can activate the built-in firmware from BASIC by

typing
PR#3

To activate the 80-column firmware from the Monitor, press (3], then
[conTroL HP). Notice that this is the same procedure you use to activate a
card in expansion slot 3. Any card installed in the auxiliary slot takes
precedence over a card installed in expansion slot 3:

Even though you activated the 80-column firmware by typing PR#3, you
should never deactivate it by typing PR#0, because that just disconnects
the firmware, leaving several soft switches still set for 80-column

operation. Instead, type the sequence [CONTROLH @] (See
Table 3-6.)

If there is no 80-column text card or other auxiliary memory card in your
Apple Ile, you can still activate the 80-column firmware and use it with a
40-column display. First, set the SLOTC3ROM soft switch located at $CO0A
(49162). Then type PR#3 to transfer control to the firmware.

When the 80-column firmware is active without a card in the auxiliary slot,
it does not work quite the same as it does with a card. The functions that
clear the display (CLREOL, CLEOLZ, CLREOP, and HOME) work as if the
firmware were inactive: they always clear to the current color. Also,
interrupts are supported only with a card installed in the auxiliary slot.

Using the 1/0 Subroutines 49

50

AWarning

If you do not have an interface card in either the auxiliary slot or slot 3,
don't try to activate the firmware with PR#3. Typing PR#83 with no card
installed transfers control to the empty connector, with unpredictable
results.

Programs activate the 80-column firmware by transferring control to
address $C300. If there is no card in the auxiliary slot, you must set the
SLOTC3ROM soft switch first. To deactivate the 80-column firmware from a
program, write a Control-U character via subroutine COUT.

The Old Monitor

Apple II's and Apple II Pluses used a version of the System Monitor
different from the one the Apple Ile uses. It had the same standard I/0
subroutines, but a few of the features were different; for example, there
were no arrow keys for cursor motion. If you start the Apple Ile with a DOS
or BASIC disk that loads Integer BASIC into the bank-switched area in
RAM, the old Monitor (sometimes called the Autostart Monitor) is also
loaded with it. When you type INT from Applesoft to activate Integer
BASIC, you also activate this copy of the old Monitor, which remains active
until you either type FP to switch back to Applesoft, which uses the new
Monitor in ROM, or type

PR#3

to activate the 80-column firmware. Part of the firmware’s initialization
procedure checks to see which version of the Monitor is in RAM. If it finds
the old Monitor, it replaces it with a copy of the new Monitor from ROM.
After the firmware has copied the new Monitor into RAM, it remains there
until the next time you start up the system.

The Standard 1/O Links

= A L R S ey |

When you call one of the character /0 subroutines (COUT and RDKEY),
the first thing that happens is an indirect jump to an address stored in
programmable memory. Memory locations used for transferring control to
other subroutines are sometimes called vectors; in this manual, the
locations used for transferring control to the I/0 subroutines are called 1/0
links. In a Apple Ile running without a disk operating system, each 1/0 link
is normally the address of the body of the subroutine (COUT1 or KEYIN). If
a disk operating system is running, one or both of these links hold the
addresses of the corresponding DOS or ProDOS I/0 routines instead. (DOS
and ProDOS maintain their own links to the standard I /0 subroutines.)

Chapter 3: Built-in I/0 Firmware

For more information about the I/0 links,
see the section “Changing the Standard /0
Links" in Chapter 6.

By calling the /0 subroutines that jump to the link addresses instead of
calling the standard subroutines directly, you ensure that your program will
work properly in conjunction with other software, such as DOS or a printer
driver, that changes one or both of the 1/0 links.

For the purposes of this chapter, we shall assumne that the I/0 links contain
the addresses of the standard I/0 subroutines—COUT1 and KEYIN if the
80-column firmware is off, and BASICOUT and BASICIN if it is on.

Standard Output Features

== e e]
The standard output routine is named COUT, pronounced C-out, which
stands for character out. COUT normally calls COUT1, which sends one
character to the display, advances the cursor position, and scrolls the
display when necessary. COUT1 restricts its use of the display to an active
area called the text window, described below.

COUT Output Subroutine

=== o)

Your program makes a subroutine call to COUT at memory location SFDED
with a character in the accumulator. COUT then passes control via the
output link CSW to the current output subroutine, normally COUT1 (or
BASICOUT), which takes the character in the accumulator and writes it
out. If the accumulator contains an uppercase or lowercase letter, a number,
or a special character, COUT1 displays it; if the accumulator contains a
control character, COUT1 either performs one of the special functions
described below or ignores the character.

Each time you send a character to COUT1, it displays the character at the
current cursor position, replacing whatever was there, and then advances
the cursor position one space to the right. If the cursor position is already at
the right-hand edge of the window, COUT1 moves it to the left-most position
on the next line down. If this would move the cursor position past the end of
the last line in the window, COUT1 scrolls the display up one line and sets
the cursor position at the left end of the new bottom line.

The cursor position is controlled by the values in memory locations 36 and
37 (hexadecimal $24 and $25). These locations are named CH, for cursor
horizontal, and CV, for cursor vertical. COUT1 does not display a cursor, but
the input routines described below do, and they use this cursor position. If
some other routine displays a cursor, it will not necessarily put it in the
cursor position used by COUTL.

Standard Qutput Features 51

Control Characters With COUT1 and BASICOUT

COUT1 and BASICOUT do not display control characters. Instead, the
control characters listed in Tables 3-3a and 3-3b are used to initiate some
action by the firmware. Other control characters are ignored. Most of the
funetions listed here can also be invoked from the keyboard, either by
typing the control character listed or by using the appropriate escape code,
as described in the section “Escape Codes With KEYIN" later in this
chapter. The stop-list function, described separately, can only be invoked
from the keyboard.

Table 3-3a. Control Characters With 80-Column Firmware Off

Control ASCIT Apple Ile

Character Name Name Action Taken by COUT1

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second.

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in
window; scrolls if needed.

Control-M CR return Moves cursor position to left end of next

line in window; scrolls if needed.

Table 3-3b. Control Characters With 80-Column Firmware On

Control ASCII Apple Ile

Character Name Name Action Taken by BASICOUT

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second,

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in

window; scrolls if needed.

Control-K+ VT clear EOS Clears from cursor position to the end of
the screen.

Control-LT FF home Moves cursor position to upper-left corner
andclear of window and clears window.

Chapter 3: Built-in 1/0 Firmware

Table 3-3b—Continued. Control Characters With 80-Column Firmware On

Control
Character
Control-M

Control-NT
Control-OtF
Control-Qt
Control-Rt
Control-5*

Control-U t
Control-V T

Control-W

Control-X

Control-Y

Control-Z ¥

Control-{

Control-\t

Control-]f

Control-_

ASCII Apple Ile
Name Name

CR return
SO normal
SI inverse

DC1 40-column
DC2 80-column
DC3 stop-list

NAK quit
SYN scroll

ETB scroll-up
CAN disable
MouseText

EM home

SUB clearline

ESC enable
MouseText

FS forward
space

GS clear EOL

Us up

* Only works from the keyboard.

+ Doesn't work from the keyboard.

Standard Output Features

Action Taken by BASICOUT

Moves cursor position to left end of next
line in window; scrolls if needed.

Sets display format normal.
Sets display format inverse.
Sets display to 40-column.
Sets display to 80-column.

Stops listing characters on the display
until another key is pressed.

Deactivates 80-column video firmware.

Scrolls the display down one line, leaving
the cursor in the current position.

Scrolls the display up one line, leaving the
cursor in the current position.

Disable MouseText character display; use
inverse uppercase.

Moves cursor position to upper-left corner
of window (but doesn’t clear).

Clears the line the cursor position is on.

Map inverse uppercase characters to
MouseText characters.

Moves cursor position one space to the
right; from right edge of window, moves it
to left end of line below.

Clears from the current cursor position to
the end of the line (that is, to the right
edge of the window).

Moves cursor up a line, no scroll.

Original lle

The Stop-List Feature

When you are using any program that displays text via COUT1 (or
BASICOUT), you can make it stop updating the display by holding down
and pressing [s]. Whenever COUT1 gets a carriage return from
the program, it checks to see if you have pressed If you
have, COUT1 stops and waits for you to press another key. When you want
COUT1 to resume, press another key; COUT1 will send the carriage return it
got earlier to the display, then continue normally. The character code of the
key you pressed to resume displaying is ignored unless you pressed
(conTroL { €. COUT1 passes Control-C back to the program; if it is a
BASIC program, this enables you to terminate the program while in stop-list
mode.

The Text Window

e

After starting up the computer or after a reset, the firmware uses the entire
display. However, you can restrict video activity to any rectangular portion
of the display you wish. The active portion of the display is called the

text window. COUT1 or BASICOUT puts characters into the window only;
when it reaches the end of the last line in the window, it scrolls only the
contents of the window.

You can set the top, bottom, left side, and width of the text window by
storing the appropriate values into four locations in memory. This enables
your programs to control the placement of text in the display and to protect
other portions of the screen from being written over by new text,

Memory location 32 (hexadecimal $20) contains the number of the leftmost
column in the text window. This number is normally 0, the number of the
leftmost column in the display. In a 40-column display, the maximum value
for this number is 39 (hexadecimal $27); in an 80-column display, the
maximum value is 79 (hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text window.
For a 40-column display, it is normally 40 (hexadecimal $28); for an
80-column display, it is normally 80 (hexadecimal $50).

COUT1 truncates the column width to an even value on the original
Apple Ile.

Chapter 3: Built-in I/0 Firmware

AWarning On an original Apple Ile, be careful not to let the sum of the window
width and the leftmost position in the window exceed the width of the
display vou are using (40 or 80). If this happens, it is possible for COUT1
to put characters into memory locations outside the display page, possibly

| into your current program or data space.

Memory location 34 (hexadecimal $22) contains the number of the top line
of the text window. This is normally 0, the topmost line in the display. Its
maximum value is 23 (hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the bottom
line of the screen, plus 1. It is normally 24 (hexadecimal $18) for the bottom
line of the display. Its minimum value is 1.

After you have changed the text window boundaries, nothing is affected
until you send a character to the screen.

AWarning | Any time you change the boundaries of the text window, you should
make sure that the current cursor position (stored at CH and CV) is inside
| the new window. If it is outside, it is possible for COUT1 to put characters
into memory locations outside the display page, possibly destroying
programs or data.

Table 3-4 summarizes the memory locations and the possible values for the
window parameters.

Table 3-4. Text Window Memory Locations

Window Location Minimum Normal Values Maximum Values
Parameter Value 40 col. 80 col. 40 col. 80 col.
Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
Left Edge 32 §20 00 800 00 300 00 $00 39 827 79 $4F
Width 33 $21 00 800 40 $28 80 %50 40 $28 80 $50
Top Edge 34 $22 00 800 00 $00 00 800 23 $17 23 817
Bottom Edge 3 $23 01 $01 24 $18 24 $18 24 $18 24§18
Standard Qutput Features)

56

Important!

Inverse and Flashing Text

e ==}

Subroutine COUT1 can display text in normal format, inverse format, or,
with some restrictions, flashing format. The display format for any
character in the display depends on two things: the character set being used
at the moment, and the setting of the two high-order bits of the character’s
byte in the display memory.

As it sends your text characters to the display, COUT1 sets the high-order
bits according to the value stored at memory location 50 (hexadecimal $32).
If that value is 2565 (hexadecimal $FF), COUT1 sets the characters to
display in normal format; if the value is 63 (hexadecimal $3F), COUT1 sets
the characters to inverse format. If the value is 127 (hexadecimal $7F) and
if you have selected the primary character set, the characters will be
displayed in flashing format. Note that flashing format is not available in
the alternate character set.

Table 3-5. Text Format Control Values

Note: These mask values apply only to the primary character set (see text).

Mask Value
Dec Hex Display Format
256 $FF Normal, uppercase, and lowercase
127 $TF Flashing, uppercase, and symbols
63 $3F Inverse, uppercase, and lowercase

To control the display format of the characters, routine COUT]1 uses the
value at location 50 as a logical mask to force the setting of the two
high-order bits of each character byte it puts into the display page. It does
this by performing the logical AND function on the data byte and the mask
byte. The result byte contains a 0 in any bit that was 0 in the mask.
BASICOUT, used when the 80-column firmware is active, changes only the
high-order bit of the data.

If the 80-column firmware is inactive and you store a mask value at
location 50 with zeros in its low-order bits, COUT1 will mask out those
bits in your text. As a result, some characters will be transformed into
other characters. You should set the mask to the values given in Table 3-5
only.

Chapter 3: Built-in [/0 Firmware

Switching between character sets is
described in the section “Display Mode
Switching” in Chapter 2.

Original lle

If you set the mask value at location 50 to 127 (hexadecimal $7F), the
high-order bit of each result byte will be 0, and the characters will be
displayed either as lowercase or as flashing, depending on which character
set you have selected. Refer to the tables of display character sets in
Chapter 2. In the primary character set, the next-highest bit, bit 6, selects
flashing format with uppercase characters. With the primary character set
you can display lowercase characters in normal format and uppercase
characters in normal, inverse, and flashing formats. In the alternate
character set, bit 6 selects lowercase or special characters. With the
alternate character set you can display uppercase and lowercase characters
in normal and inverse formats.

On the original Apple [le, the MouseText characters are replaced by
uppercase inverse characters.

Standard Input Features

For more information on GETLN, see the
section "Editing With GETLN," later in this
chapter,

fei — — = e —— = = === g =]
The Apple Ile’s firmware includes two different subroutines for reading
from the keyboard. One subroutine is named RDKEY, which stands for
read key. It calls the standard character input subroutine KEYIN (or
BASICIN when the 80-column firmware is active) which accepts one
character at a time from the keyboard.

The other subroutine is named GETLN, which stands for get line. By
making repeated calls to RDKEY, GETLN accepts a sequence of characters
terminated with a carriage return. GETLN also provides on-screen editing
features.

RDKEY Input Subroutine

= S i |

A program gets a character from the keyboard by making a subroutine call
to RDKEY at memory location $FD0C. RDKEY sets the character at the
cursor position to flash, then passes control via the input link KSW to the
current input subroutine, which is normally KEYIN or BASICIN.

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the display
(normally by using the COUT routine, described earlier). The cursor
displayed by RDKEY is a flashing version of whatever character happens to
be at that position on the screen. It is usually a space, so the cursor appears
as a blinking rectangle.

Standard Input Features a7

Escape mode is described in the next
section, “Escape Codes.”

G
(=%

KEYIN Input Subroutine

[s sS T——

KEYIN is the standard input subroutine when the 80-column firmware is
inactive; BASICIN is used when the 80-column firmware is active. When
called, the subroutine waits until the user presses a key, then returns with
the key code in the accumulator.

If the 80-column firmware is inactive, KEYIN displays a cursor by
alternately storing a checkerboard block in the cursor location, then storing
the original character, then the checkerboard again. If the firmware is
active, BASICIN displays a steady inverse space (rectangle), unless you are
in escape mode, when it displays a plus sign (+) in inverse format.

KEYIN also generates a random number. While it is waiting for the user to
press a key, KEYIN repeatedly increments the 16-bit number in memory
locations 78 and 79 (hexadecimal $4E and $4F). This number keeps
increasing from 0 to 65535, then starts over again at (0. The value of this
number changes so rapidly that there is no way to predict what it will be
after a key is pressed. A program that reads from the keyboard can use this
value as a random number or as a seed for a random number routine.

When the user presses a key, KEYIN accepts the character, stops displaying
the cursor, and returns to the calling program with the character in the
accumulator.

Escape Codes

KEYIN has special functions that you invoke by typing escape codes on the
keyboard. An escape code is obtained by pressing [Esc], releasing it, and
then pressing some other key. See Table 3-6; the notation in the table means
press [EsC], release it, then press the key that follows.

Table 3-6 includes three sets of cursor-control keys. The first set consists of
followed by A, B, C, or D. The letter keys can be either uppercase or
lowercase. These keys are the standard cursor-motion keys on older

Apple Il models; they are present on the Apple Ile primarily for
compatibility with programs written for old machines.

Cursor Motion in Escape Mode

The second and third set of cursor-control keys are listed together because
they activate escape mode. In escape mode, you can keep using the
cursor-motion keys without pressing again. This enables you to
perform repeated cursor moves by holding down the appropriate key.

Chapter 3: Built-in [/0 Firmware

Table 3-6. Escape Codes

When the 80-column firmware is active, you can tell when BASICIN is in
escape mode: it displays a plus sign in inverse format as the cursor, You
leave escape mode by typing any key other than a cursor-motion key.

The escape codes with the directional arrow keys are the standard
cursor-motion keys on the Apple Ile. The escape codes with the I, J, K, and
M keys are the standard cursor-motion keys on the Apple II Plus, and are
present on the Apple Ile for compatibility with the Apple II Plus. On the
Apple 1le, the escape codes with the I, J, K, and M keys function with either
uppercase or lowercase letters.

Escape Code
(e]

(esc](aJor(a]
(Esc](B]or]
(Esc](clor[c]
(esc][@jor(d)
(Escl(E]or[e]
(Esc](Aor [T
(Esc](or [[or (Esc][1]
(Esc](y]or [or(Escl[]
(Esc] (K] or (k] or [EsC] (=]
(Esc](m]or[m]or [ESC] (3]
(Esc](4]

ESC

(E5C) [CoNTROLHD)

(E5C) (CoNTROLHE]
(E5C) (CONTROLH Q]

Function

Clears window and homes cursor (places it in upper-left corner of screen), then exits from
escape mode.

Moves cursor right one line; exits from escape mode.

Moves cursor left one line; exits from escape mode.

Moves cursor down one line; exits from escape mode.

Moves cursor up one line; exits from escape mode.

Clears to end of line; exits from escape mode.

Clears to bottom of window; exits from escape mode.

Moves the cursor up one line; remains in escape mode. See text.
Moves the cursor left one space; remains in escape mode. See text.
Moves the cursor right one space; remains in escape mode. See text.
Moves the cursor down one ling; remains in escape mode. See text.

If 80-column firmware is active, switches to 40-column mode; sets links to BASICIN and
BASICOUT: restores normal window size; exits from escape mode.

If 80-column firmware is active, switches to 80-column mode; sets links to BASICIN and
BASICOUT; restores normal window size; exits from escape mode.

Disables control characters: only carriage return, line feed, BELL, and backspace have an
effect when printed.

Reactivates control characters.

If 80-column firmware is active, deactivates 80-column firmware; sets links to KEYIN and
COUT1; restores normal window size; exits from escape mode.

Standard Input Features 59

GETLN Input Subroutine

Programs often need strings of characters as input. While it is possible to
call RDKEY repeatedly to get several characters from the keyboard, there is
a more powerful subroutine you can use. This routine is named GETLN,
which stands for get line, and starts at location $FD6A. Using repeated
calls to RDKEY, GETLN accepts characters from the standard input
subroutine—usually KEYIN—and puts them into the input buffer located
in the memory page from $200 to $2FF. GETLN also provides the user with
on-screen editing and control features, described in the next section
“Editing With GETLN.”

The first thing GETLN does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the user that
the program is waiting for input. Different programs use different prompt
characters, helping to remind the user which program is requesting the
input. For example, an INPUT statement in a BASIC program displays a
question mark (?) as a prompt. The prompt characters used by the
different programs on the Apple Ile are shown in Table 3-7.

GETLN uses the character stored at memory location 51 (hexadecimal $33)
as the prompt character. In an assembly-language program, you can change
the prompt to any character you wish. In BASIC, changing the prompt
character has no effect, because both BASIC interpreters and the Monitor
restore it each time they request input from the user.

Table 3-7. Prompt Characters

Prompt Character Program Requesting Input

? User's BASIC program (INPUT staterment)
] Applesoft BASIC (Appendix D)
> Integer BASIC (Appendix D)

* Firmware Monitor (Chapter 5)

As you type the character string, GETLN sends each character to the
standard output routine—normally COUT1—which displays it at the
previous cursor position and puts the cursor at the next available position
on the display, usually immediately to the right. As the cursor travels across
the display, it indicates the position where the next character will be
displayed.

Chapter 3: Built-in [/0 Firmware

Important!

GETLN stores the characters in its buffer, starting at memory location $200
and using the X register to index the buffer. GETLN continues to accept and
display characters until you press (RETURN J; then it clears the remainder of
the line the cursor is on, stores the carriage-return code in the buffer, sends

the carriage-return code to the display, and returns to the calling program.

The maximum line-length that GETLN can handle is 255 characters. If the
user types more than this, GETLN sends a backslash (\) and a carriage
return fo the display, cancels the line it has accepted so far, and starts over.
To warn the user that the line is getting full, GETLN sounds a bell (tone) at
every keypress after the 248th.

In the Apple Il and the Apple II Plus, the GETLN routine converts all
input to uppercase. GETLN in the Apple Ile does not do this, even in

Apple I mode. To get uppercase input for BASIC, use [CAPS LOCK].

Editing With GETLN

[=_—————ns———————]

Subroutine GETLN provides the standard on-screen editing features used
by the BASIC interpreters and the Monitor. For an introduction to editing
with these features, refer to the Applesoft Tutorial. Any program that uses
GETLN for reading the keyboard has these features.

Cancel Line

Any time you are typing a line, pressing causes GETLN to
cancel the line. GETLN displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new line.
GETLN takes the same action when you type more than 255 characters, as
described earlier.

Backspace

When you press [«], GETLN moves its buffer pointer back one space,
effectively deleting the last character in its buffer. It also sends a backspace
character to routine COUT, which moves the display position and the cursor
back one space. If you type another character now, it will replace the
character you backspaced over, both on the display and in the line buffer.
Each time you press (=], it moves the cursor left and deletes another
character, until you reach the beginning of the line. If you then press (<]
one more time, you have cancelled the line, and GETLN issues a carriage
return and displays the prompt.

Standard Input Features 61

Retype

has a function complementary to the backspace function. When you
press [=], GETLN picks up the character at the display position just as if it
had been typed on the keyboard. You can use this procedure to pick up
characters that you have just deleted by backspacing across ther. You can
use the backspace and retype functions with the cursor-motion functions to
edit data on the display. (See the earlier section “Cursor Motion in Escape
Mode.”)

Monitor Firmware Support

Table 3-8 summarizes the addresses and functions of the video display
support routines the Monitor provides. These routines are described in the
subsections that follow.

Table 3-8. Video Firmware Routines

Location Name Description

$C307 BASICOUT Displays a character on the screen when
80-column firmware is active,

$FCIC CLREOL Clears to end of line from current cursor
position.

$FCIE CLEOLZ Clears to end of line using contents of Y register
as cursor position.

$FC42 CLREOP Clears to bottom of window.

$F832 CLRSCR Clears the low-resolufion screen.

$F836 CLRTOP (Clears top 40 lines of low-resolution screen.

$FDED CouT Calls output routine whose address is stored in
CSW (normally COUT1, Chapter 3).

$FDF0 COUT! Displays a character on the sereen (Chapter 3).

$FD8E CROUT Generates a carriage return character.

$FD8B CROUTI Clears to end of line, then generates a carriage
return character.

$F819 HLINE Draws a horizontal line of blocks.

Chapter 3: Built-in 1/0 Firmware

Table 3-8—Continued. Video Firmware Routines

Location Name Description

$FCH8 HOME Clears the window and puts cursor in upper-left
corner of window.

$FR00 PLOT Plots a single low-resolution block on the screen.

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device
whose address is in CSW,

$FDDA PRBYTE Prints a hexadecimal byte.

$FF2D PRERR Sends ERR and Control-G to the output device
whose output routine address is in CSW.

$FDE3 PRHEX Prints 4 bits as a hexadecimal number.

$F941 PRNTAX Prints contents of A and X in hexadecimal.

$F871 SCRN Reads color value of a low-resolution block on
the screen.

SF864 SETCOL Sets the color for plotting in low-resolution.

$FC24 VTABZ Sets cursor vertical position. (Setting CV at

location $25 does not change vertical positon
until a carriage return.)

$F828 VLINE Draws a vertical line of low-resolution blocks.

BASICOUT, $C307

BASICOUT is essentially the same as COUT1—BASICOUT is used instead
of COUT1 when the 80-column firmware is active. BASICOUT displays the
character in the accumulator on the display screen at the current cursor
position and advances the cursor. It places the character using the setting of
the inverse mask (location $32). BASICOUT handles control characters; see
Table 3-3b. When it returns control to the calling program, all registers are
intact.

CLREOL, $FC9C

CLREOL clears a text line from the cursor position to the right edge of the
window. This routine destroys the contents of A and Y.

Monitor Firmware Support 63

See the section “Control Characters With
COUT1 and BASICOUT,” earlier in this
chapter for more information on COUT1.

64

CLEOLZ, $FC9E

CLEOLZ clears a text line to the right edge of the window, starting at the
location given by base address BASL, which is indexed by the contents of
the Y register. This routine destroys the contents of A and Y.

CLREOP, $FC42

CLREOQP clears the text window from the cursor position to the bottom of
the window. This routine destroys the contents of A and Y.

CLRSCR, $F832

CLRSCR clears the low-resolution graphics display to black. If you call this
routine while the video display is in text mode, it fills the screen with
inverse-mode at-sign ((@) characters. This routine destroys the contents
of AandY.

CLRTOP, $F836

CLRTOP is the same as CLRSCR, except that it clears only the top 40 rows
of the low-resolution display.

COUT, $FDED

COUT calls the current character output subroutine. (See the section
“COUT OQutput Subroutine” earlier in this chapter.) The character to be sent
to the output device should be in the accumulator. COUT calls the
subroutine whose address is stored in CSW (locations $36 and $37), which

is usually the standard character output subroutine COUT1 (or BASICOUT).

COuUT1, $FDFO

COUT!1 displays the character in the accumulator on the display screen at
the current cursor position and advances the cursor. It places the character
using the setting of the inverse mask (location $32). It handles these control
characters: carriage return, line feed, backspace, and bell. When it returns
control to the calling program, all registers are intact.

CROUT, $FDSE

CROUT sends a carriage return to the current output device.

Chapter 3: Built-in 1/0 Firmware

CROUT1, $FD8B

CROUT1 clears the screen from the current cursor position to the edge of
the text window, then calls CROUT.

HLINE, $F819

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display. Call HLINE with the vertical coordinate of
the line in the accumulator, the leftmost horizontal coordinate in the

Y register, and the rightmost horizontal coordinate in location $2C. HLINE
returns with A and Y scrambled and X intact.

HOME, $FC58

HOME clears the display and puts the cursor in the upper-left corner of the
screen.

PLOT, $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. Call PLOT with the vertical coordinate of the
line in the accumulator, and its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y intact.

PRBL2, $F94A

PRBL2 sends from 1 to 256 blanks to the standard output device. Upon
entry, the X register should contain the number of blanks to send. If
X = $00, then PRBLANK will send 256 blanks.

PRBYTE, $FDDA

PRBYTE sends the contents of the accumulator in hexadecimal to the
current output device. The contents of the accumulator are scrambled.

PRERR, $FF2D

PRERR sends the word ERR, followed by a bell character, to the standard
output device. On return, the accumulator is scrambled.

Monitor Firmware Support 65

66

PRHEX, $FDE3

PRHEX prints the lower nibble of the byte in the accumulator as a single
hexadecimal digit. On return, the contents of the accumulator are
scrambled.

PRNTAX, $F941

PRTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed, and
the X register contains the second. On return, the contents of the
accumulator are scrambled.

SCRN, $F871

SCRN returns the color value of a single block on the low-resolution display.
Call it with the vertical position of the block in the accumulator and the
horizontal position in the Y register. The block’s color is returned in the
accumulator. No other registers are changed.

SETCOL, $F864

SETCOL sets the color used for plotting in low-resolution graphics to the
value passed in the acumulator. The colors and their values are listed in
Table 2-6.

VTABZ, $FC24

VTABZ sets the cursor vertical position. Unlike setting the position at
location $25, change of cursor position doesn't wait until a carriage return
character has been sent.

VLINE, $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display. Call VLINE with the horizontal coordinate of the line
in the Y register, the top vertical coordinate in the accumulator, and the
bottom vertical coordinate in location $2D. VLINE returns with the
accumulator scrambled.

Chapter 3: Built-in I/0 Firmware

I/O Firmware Support

e e e e e N o Ry, S
Apple lle video firmware conforms to the I/0 firmware protocol of Apple II
Pascal 1.1. However, it does not support windows other than the full
80-by-24 window in 80-column mode, and the full 40-by-24 window in
40-column mode. The video protocol table is shown in Table 3-9.

Table 3-9. Slot 3 Firmware Protocol Table

Address Value Description

$C30B $01 Generic signature byte of firmware cards

$C30C 488 80-column card device signature

$C30D S $C3ii is entry point of initialization routine (PINIT).
$C30E $rr $C3rr is entry point of read routine (PREAD).

$C30F Sww $C3ww is entry point of write routine (PWRITE).
$C310 $ss $C3ss is entry point of the status routine (PSTATUS).

PINIT, $C30D
PINIT does the following:

o Sets a full 80-column window.

o Sets 80STORE ($C001).

o Sets 80COL ($C00D).

o Switches on ALTCHAR ($CO0F).

o Clears the screen; places cursor in upper-left corner.
o Displays the cursor.

PREAD, $C30E

PREAD reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a zero in the X register to
indicate IORESULT = GOOD.

[/0 Firmware Support 67

68

PWRITE, $C30F

PWRITE should be called after placing a character in the accumulator with
its high bit cleared. PWRITE does the following:

o Turns the cursor off.

o If the character in the accumulator is not a control character, turns the
high bit on for normal display or off for inverse display, displays it at the
current cursor position, and advances the cursor; if at the end of a line,
does carriage return but not line feed. (See Table 3-10 for control
character functions.)

When PWRITE has completed this, it

o turns the cursor back on (if it was not intentionally turned off)

o puts a zero in the X register (IORESULT = GOOD) and returns to the
calling program.

Table 3-10. Pascal Video Control Functions

Control- Hex Function Performed

Eore $05 Turns cursor on (enables cursor display).
Forf $06 Turns cursor off (disables cursor display).
Gorg $07 Sounds bell (beeps).

Horh $08 Moves cursor left one column. If cursor was at beginning of
line, moves it to end of previous line.

Jorj $0A Moves cursor down one row; scrolls if needed.
Kork $0B Clearstoend of screen.

Lorl $00 Clears screen; moves cursor to upper-left of screen.
Morm $0D Moves cursor to column 0.

Norn $0E Displays subsequent characters in normal video. (Characters
already on display are unaffected.)

Chapter 3: Built-in [/0 Firmware

Table 3-10—Continued. Pascal Video Control Functions

Control- Hex
Qoro $0F
Vorv $16
Worw §$17
Yory $19
Zorz $1A
lor \ $1C
Jor] $ID
“or6 $1E
_ $1F

Function Performed

Displays subsequent characters in inverse video,
(Characters already on display are unaffected.)

Scrolls screen up one line; clears bottom line.

Scrolls screen down one line; clears top line.

Moves cursor to upper-left (home) position on screen.
Clears entire line that cursor is on,

Moves cursor right one column; if at end of line, does
Control-M.

Clears to end of the line the cursor is on, including current
cursor position; does not move cursor.

GOTOxy: initiates a GOTOxy sequence; interprets the next
two characters as x+32 and y+32, respectively.

If not at top of screen, moves cursor up one line,

PSTATUS, $C310

A program that calls PSTATUS must first put a request code in the
accumulator; either a 0, meaning “Ready for output?” or a 1, meaning “Is
there any input?” PSTATUS returns with the reply in the carry bit: 0 (No)

or 1 (Yes).

PSTATUS returns with a 0 in the X register (IORESULT = GOOD), unless
the request was not 0 or 1; then PSTATUS returns with a 3 in the X register
(IORESULT = ILLEGAL OPERATION).

1/0 Firmware Suppert

69

Chapte; 4

Memory Organization

Original lle

For details of the built-in /0 features, refer
to the descriptions in Chapters 2 and 3.

For information about 1/0 operations with
peripheral cards, refer to Chapter 6.

The Apple [le's microprocessor can address 65,536 (64K) memory locations.
All of the programmable storage (RAM and ROM) and input and output
devices are allocated locations in this 64K address space. Some functions
share the same addresses—but not at the same time.

For information about these shared address spaces, see the section
“Bank-Switched Memory” in this chapter and the sections “Other Uses of
[/0 Memory Space” and “Expansion ROM Space” in Chapter 6.

The original version of the Apple Ile, as well as the Apple II Plus and
Apple 11, use the 6502 microprocessor, The 6502 lacks ten instructions
and two addressing modes found on the 65C02 of the enhanced Apple Ile,
but is otherwise functionally sirnilar. For more information about the
differences between the two processors, see Appendix A. In this manual,
unless otherwise stated, the two processors are effectively the same.

All input and output in the Apple [Ie is memory mapped. This means that
all devices connected to the Apple Ile appear to be memory locations to the
computer. In this chapter, the I/0 memory spaces are described simply as
blocks of memory.

Programmers often refer to the Apple Ile’s memory in 256-byte blocks called
pages. One reason for this is that a one-byte address counter or index
register can specify one of 256 different locations. Thus, page 0 consists of
memory locations from 0 to 255 (hexadecimal $00 to $FF), inclusive. Page 1
consists of locations 256 to 511 (hexadecimal $0100 to $01FF); note that the
page number is the high-order part of the hexadecimal address. Don’t
confuse this kind of page with the display buffers in the Apple Ile, which
are sometimes referred to as Page 1 and Page 2.

Main Memory Map

-3
o=

The map of the main memory address space in Figure 4-1 shows the
functions of the major areas of memory. For more details on the /0 space
from 48K to 52K ($C000 through $CFFF), refer to Chapter 2 and Chapter 6:
the bank-switched memory in the memory space from 52K to 64K ($D000
through $FFFF) is described in the section “Bank-Switched Memory” later
in this chapter.

Chapter 4: Memory Organization

Figure 41. System Memory Map

FFFF
Bank-
ROM Switched
RAM
D000
CFFF
€000 1/0
BFFF
8000
TFFF
Main
RAM
4000
3FFF
0000

Main Memory Map

RAM Memory Allocation

e e e T, S S e S . s TV, g 1]
As Figure 4-1 shows, the major portion of the Apple Ile’s memory space is
allocated to programmable storage (RAM). Figure 4-2 shows the areas
allocated to RAM. The main RAM memory extends from location 0 to
location 49151 (hex $BFFF), and occupies pages 0 through 191
(hexadecimal $BF). There is also RAM storage in the bank-switched space
from 53248 to 65535 (hexadecimal $D000 to $FFFF), described in the
section “Bank-Switched Memory” later in this chapter, and auxiliary RAM,
described in the section “Auxiliary Memory and Firmware” later in this
chapter.

Figure 4-2. RAM Allocation Map

BFFF
8000
TFFF
6000
5FFF
Page 2
4000 " High-Resolution
i Graphics
SFER Display Buffers
Page 1
2000
IFFF
Page 2 | Text and Low-Resolution
Page 1 Graphics Display Buffers
0000

<+———— Reserved Pages

Chapter 4: Memory Organization

Important!

Reserved Memory Pages
e e

Most of the Apple Ile’'s RAM is available for storing your programs and data.
However, a few RAM pages are reserved for the use of the Monitor firmware
and the BASIC interpreters. The reserved pages are described in the
following sections.

The system does not prevent your using these pages, but if you do use
them, you must be careful not to disturb the system data they contain, or
you will cause the system to malfunction.

Page Zero

Several of the 65C02 microprocessor's addressing modes require the use of
addresses in page zero, also called zero page. The Monitor, the BASIC
interpreters, DOS 3.3, and ProDOS all make extensive use of page zero.

To use indirect addressing in your assembly-language programs, you must
store base addresses in page zero. At the same time, you must avoid
interfering with the other programs that use page zero—the Monitor, the
BASIC interpreters, and the disk operating systems. One way to avoid
conflicts is to use only those page-zero locations not already used by other
programs. Tables 4-1 through 4-5 show the locations in page zero used by
the Monitor, Applesoft BASIC, Integer BASIC, DOS 3.3, and ProDOS.

As you can see from the tables, page zero is pretty well used up, except for a
few bytes here and there. It's hard to find more than one or two bytes that
aren't used by either BASIC, ProDOS, the Monitor, or DOS. Rather than
trying to squeeze your data into an unused corner, you may prefer a safer
alternative: save the contents of part of page zero, use that part, then
restore the previous contents before you pass control to another program.

The 65C02 Stack

The 65C02 microprocessor uses page 1 as the stack—the place where
subroutine return addresses are stored, in last-in, first-out sequence. Many
programs also use the stack for temporary storage of the registers (via push
and pull operations). You can do the same, but you should use it sparingly.
The stack pointer is eight bits long, so the stack can hold only 256 bytes of
information at a time. When you store the 257th byte in the stack, the stack
pointer repeats itself, or wraps around, so that the new byte replaces the
first byte stored, which is now lost. This writing over old data is called stack
overflow, and when it happens, the program continues to run normally until
the lost information is needed, whereupon the program terminates
catastrophically.

RAM Memory Allocation 75

For more information about links, see the
section “Changing the Standard I/0 Links”
in Chapter 6.

See Chapter 6 for information on the
memory locations that are reserved for
peripheral cards.

For more information about the display
buffers, see the section “Video Display
Pages” in Chapter 2.

The Input Buffer

The GETLN input routine, which is used by the Monitor and the BASIC
interpreters, uses page 2 as its keyboard-input buffer. The size of this buffer
sets the maximum size of input strings. (Note: Applesoft uses only the first
237 bytes, although it permits you to type in 256 characters.) If you know
that you won't be typing any long input strings, you can store temporary
data at the upper end of page 2.

Link-Address Storage

The Monitor, ProDOS, and DOS 3.3 all use the upper part of page 3 for link
addresses or vectors.

BASIC programs sometimes need short machine-language routines. These
routines are usually stored in the lower part of page 3.

The Display Buffers

The primary text and low-resolution-graphics display buffer occupies
memory pages 4 through 7 (locations 1024 through 2047, hexadecimal $0400
through $07FF). This entire 1024-byte area is called text Page 1, and it is not
usable for program and data storage. There are 64 locations in this area that
are not displayed on the screen; these locations are reserved for use by the
peripheral cards.

Text Page 2, the alternate text and low-resolution-graphics display buffer,
occupies memory pages 8 through 11 (locations 2048 through 3071,
hexadecimal $0800 through $0BFF"). Most programs do not use Page 2 for
displays, so they can use this area for program or data storage.

The primary high-resolution-graphics display buffer, called high-resolution
Page 1, occupies memory pages 32 through 63 (locations 8192 through
16383, hexadecimal $2000 through $3FFF). If your program doesn't use
high-resolution graphics, this area is usable for programs or data.

High-resolution Page 2 occupies memory pages 64 through 95 (locations
16384 through 24575, hexadecimal $4000 through $5FFF). Most programs
use this area for program or data storage.

The primary double-high-resolution-graphics display buffer, called
double-high-resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through $3FFF) in both
main and auxiliary memory. If your program doesn't use high-resolution or
double-high-resolution graphics, this area of main memory is usable for
programs or data.

Chapter 4: Memory Organization

Table 4-1. Monitor Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D SE $F

$00

$10 oF
$20
$30
$40
$60
$60
$70
$80
$90
$A0
$B0
$C0
$D0
$E0
$F0

* Byte used in original Apple Ile ROMs, now free.

Table 4-2. Applesoft Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 34 $5 86 $7 $8 $9 $SA $B $C $D $E $F

$00 ® @& @& o = » L]
$10 e @ @ e« & @ & = @ s
$20 .

2
L]

L)

=
e & & & & & & & & @
® @ & o @ & & & & 8 »
® & & @ @& & & ° 8 0
e @ & © @ @ & @ @& & @
® * ® & & 0 " " 80
® @ & ® @ & @ ® 0 & @
® & & & & & & & & #
e & & @& & @ @
® ® @ & & & @& & 0 *
® © & & & & © & 8 & @
® @ @ & o ° & & 0
® @ & & ® & 0 @* 0
® & & & @ & & @& @
® & & & 0 o & 0 0
® & & & & & @
o ® o o @ 0 0

-3

-3

RAM Memory Allocation

Table 4-3. Integer BASIC Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D SE SF

$00 .
$10
$20
$30
$40

&

=
® & & & ° & ° o
® & & & & o ° 0
* & & & 0 @ o @
e @ & & ° 0o @ @
e & & & & & 0 0
e & & @& © & o 0 @
® @ & & & & & @& @
® @ o o o o o ° @
e @ & o @ & & 0 0
® & & & & & & 0o @
e @ & & & 9 & ° 0 0
e @ & & @& & & 0 0o @
® & & @ & & & & & @
® & & & ® & ° & 0
e @& @ & o & & & @
® & & @& o & ° 0 0

3

Table 4-4. DOS 3.3 Zero-Page Use

High Nibble Low Nibble of Address
of Address 80 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D SE SF

$00

§10

$20 L] L L L] L

$30 L] L] L] L] L]

$40 L] L L] L ® L] L] L ® L] L] L L]

$50

$60 L L] L] L L]
$70 .

$80

$90

$A0 .
$B0 .

$CO L] ® L] []

$D0 .

$EO

$F0

Chapter 4: Memory Organization

Table 4-5. ProDOS MLI and Disk-Driver Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $SA $B $C $D SE $F

$(}0 L] L]

$10

$20

830 L ® L] L L] L
340 L] L] L] L L] L] L] L L L] L L] L] L] L]
$50

$60

$70

$80

$90

$A0

$BO

$CO

$DO

$EO

$FO

Bank-Switched Memory

The memory address space from 52K to 64K (hexadecimal $D000 through
$FFFF) is doubly allocated: it is used for both ROM and RAM. The 12K bytes
of ROM (read-only memory) in this address space contain the Monitor and
the Applesoft BASIC interpreter. Alternatively, there are 16K bytes of RAM
in this space. The RAM is normally used for storing either the Integer
BASIC interpreter or part of the Pascal Operating System (purchased
separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple Ile is able to run
software written for the Apple Il and Apple II Plus because it uses this part
of memory in the same way they do. It is convenient to have the Applesoft
interpreter in ROM, but the Apple Ile, like an Apple II with a language card,
is also able to use that address space for other things when Applesoft is not
needed.

Bank-Switched Memory 79

AWarning

You may also be wondering how 16K bytes of RAM is mapped into only 12K
bytes of address space. The usual answer is that it's done with mirrors, and
thatisn’t a bad analogy: the 4K-byte address space from 52K to 56K
(hexadecimal $D000 through $DFFF) is used twice.

Switching different blocks of memory into the same address space is called
bank switching. There are actually two examples of bank switching going
on here: first, the entire address space from 52K to 64K ($D000 through
$FFFF) is switched between ROM and RAM, and second, the address space
from 52K to 56K ($D000 to $DFFF) is switched between two different
blocks of RAM.

Figure 4-3. Bank-Switched Memory Map

FFFF
RAM
E000 ROM
DFFF
- RAM RAM

Setting Bank Switches

You switch banks of memory in the same way you switch other functions in
the Apple Ile: by using soft switches. Read operations to these soft switches
do three things: select either RAM or ROM in this memory space; enable or
inhibit writing to the RAM (write-protect); and select the first or second
4K-byte bank of RAM in the address space $D000 to $DFFF.

Do not use these switches without careful planning. Careless switching
between RAM and ROM is almost certain to have catastrophic effects on
your program,

Chapter 4: Memory Organization

i

Table 4-6 shows the addresses of the soft switches for enabling all
combinations of reading and writing in this memory space. All of the
hexadecimal values of the addresses are of the form $C08x. Notice that
several addresses perform the same function: this is because the functions
are activated by single address bits. For example, any address of the form
$C08x with a 1 in the low-order bit enables the RAM for writing. Similarly,
bit 3 of the address selects which 4K block of RAM to use for the address
space $D000-$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3
is 1, the second bank is used.

When RAM is not enabled for reading, the ROM in this address space is
enabled. Even when RAM is not enabled for reading, it can still be written to
if it is write-enabled.

When you turn power on or reset the Apple Ile, it initializes the bank
switches for reading the ROM and writing the RAM, using the second bank
of RAM. Note that this is different from the reset on the Apple II Plus, which
didn’t affect the bank-switched memory (the language card). On the

Apple Ile, you can’t use the reset vector to return control to a program in
bank-switched memory, as you could on the Apple II Plus.

Reset With Integer BASIC: When you are using Integer BASIC on the
Apple le, reset works correctly, restarting BASIC with your program
intact. This happens because the reset vector transfers control to DOS,
and DOS resets the switches for the current version of BASIC.

Bank-Switched Memory 81

Table 4-6. Bank Select Switches

Note: R means read the location, W means write anything to the location, R/W
means read or write, and R7 means read the location and then check bii 7.

Name Action Hex Function

R $C080 Read RAM; no write; use $D000 bank 2.
RR $C081 Read ROM; write RAM; use $D000 bank 2.
R $C082 Read ROM; no write; use $D000 bank 2.
RR $C083 Read and write RAM; use $D000 bank 2.
R $C088 Read RAM; no write; use $D000 bank 1.
RR $C089 Read ROM; write RAM; use $D000 bank 1.
R $C08A Read ROM; no write; use $D000 bank 1.

RR $C08B Read and write RAM; use $D000 bank 1.
RDBNK?2 R7 $C011 Read whether $D000 bank 2 (1) or bank 1 (0).
RDLCRAM RT $C012 Reading RAM (1) or ROM (0).

ALTZP W $C008 Off: use main bank, page 0 and page 1.
ALTZP W $C009 On: use auxiliary bank, page 0 and page 1.
RDALTZP R7 $C016 Read whether auxiliary (1) or main (0) bank.

Reading and Writing to RAM Banks: Note that you can't read one
RAM bank and write to the other; if you select either RAM bank for
reading, you get that one for writing as well.

Reading RAM and ROM: You can’t read from ROM in part of the
bank-switched memory and read from RAM in the rest: specifically, vou
can't read the Monitor in ROM while reading bank-switched RAM. If you
want to use the Monitor firmware with a program in bank-switched RAM,
copy the Monitor from ROM (locations $F800 through $FFCB) into
bank-switched RAM. You can't do this from Pascal or ProDOS.

Chapter 4: Memory Organization

ce
ce

cs

ce
c9

ce

co

ce

Cco

ce
ce

co

LDA
LDA
LDA
STA
LDA
STA
JSR

LDA
JSR

LDA
LDA
INC
JSR

LDA
INC
LDA
JSR

LDA
LDA
INC
INC
LDA
JSR

To see how to use these switches, look at the following section of an
assembly-language program:

$CO83
$CO83
#$DP
BEGIN
#$FF
END
RAMTST

$C@8B
RAMTST

$Co88
#$80
TSTNUM
WPTSINIT

scese
TSTNUM
#PAT 12K
WPTSINIT

$CP8B
$C@8B
RWMODE
TSTNUM
#PAT4K
WPTSINIT

*SELECT 2ND 4K BANK & READ/WRITE
*BY TWO CONSECUTIVE READS

*SET UP...

%o eNEW. o4

* . ..MAIN-MEMORY. ..

%5 «POINTERS ...

*...FOR 12K BANK

*SELECT 1ST 4K BANK
*USE ABOVE POINTERS

*SELECT 1ST BANK & WRITE PROTECT

*SELECT 2ND BANK & WRITE PROTECT

*SELECT 1ST BANK & READ/MWRITE
*BY TWO CONSECUTIVE READS
*FLAG RAM IN READ/WRITE

The LDA instruction, which performs a read operation to the specified
memory location, is used for setting the soft switches. The unusual
sequence of two consecutive LDA instructions performs the two
consecutive reads that write-enable this area of RAM; in this case, the data
that are read are not used.

Reading Bank Switches

FEE=E=T g & o R ee——

You can read which language card bank is currently switched in by reading
the soft switch at $C011. You can find out whether the language card or
ROM is switched in by reading $C012. The only way that you can find out
whether the language card RAM is write-enabled or not is by trying to write
some data to the card’s RAM space.

Bank-Switched Memory

83

Auxiliary Memory and Firmware

84

AWarning

e e nae S e —— == i | |
By installing an optional card in the auxiliary slot, you can add more
memory to the Apple Ile. One such card is the Apple ITe 80-Column Text
Card, which has 1K bytes of additional RAM for expanding the text display
from 40 columns to 80 columns.

Another optional card, the Apple Ile Extended 80-Column Text Card, has
64K of additional RAM. A 1K-byte area of this memory serves the same
purpose as the memory on the 80-Column Text Card: expanding the text
display to 80 columns. The other 63K bytes can be used as auxiliary
program and data storage. If you use only 40-column displays, the entire
64K bytes is available for programs and data.

Do not attempt to use the auxiliary memory from a BASIC program. The
BASIC interpreter uses several areas in main RAM, including the stack
and the zero page. If vou switch to auxiliary memory in these areas, the
BASIC interpreter fails and you must reset the system and start over.

As you can see by studying the memory map in Figure 4-4, the auxiliary
memory is broken into two large sections and one small one. The largest
section is switched into the memory address space from 512 to 49151 (80200
through $BFFF). This space includes the display buffer pages: as described
in the section “Text Modes” in Chapter 2, space in auxiliary memory is used
for one half of the 80-column text display. You can switch to the auxiliary
memory for this entire memory space, or you can switch just the display
pages: see the next section, “Memory Mode Switching.”

Soft Switches: 1f the only reason you are using auxiliary memory is for
the 80-column display, note that you can store into the display page in
auxiliary memory by using the 80STORE and PAGE2 soft switches
described in the section “Display Mode Switching” in Chapter 2.

The other large section of auxiliary memory is switched into the memory
address space from 52K to 64K ($D000 through $FFFF). This memory space
and the switches that control it are described earlier in this chapter in the
section “Bank-Switched Memory.” If you use the auxiliary RAM in this
space, the soft switches have the same effect on the auxiliary RAM that
they do on the main RAM: the bank switching is independent of the
auxiliary-RAM switching.

Chapter 4: Memory Organization

Figure 4-4. Memory Map With Auxiliary Memory

FFFF
Main Auxiliary
Bank- Bank-
Switched Switched
RAM RAM

ROM

D000
CFFF
€000 1/0
BFFF

Main

8000 Auxiliary
TFFF RAM

6000
5FFF

4000 High-Resolution
3FFF Graphics Display Buffers

2000
1FFF

Text and Low-Resolution
Graphics Display Buffers | |

Stack and Zero Page—

0000

Bank Switches: Note that the soft switches for the bank-switched
memory, described in the previous section, do not change when you
switch to auxiliary RAM. In particular, if ROM is enabled in the
bank-switched memory space before you switch to auxiliary memory, the
ROM will still be enabled after you switch. Any time you switch the
bank-switched section of auxiliary memory in and out, you must also
make sure that the bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched space, you also
switch the first two pages, from 0 to 511 ($0000 through $01FF). This part
of memory contains page zero, which is used for important data and base
addresses, and page one, which is the 65C02 stack. The stack and zero page
are switched this way so that system software running in the

Auxiliary Memory and Firmware 85

86

AWarning

bank-switched memory space can maintain its own stack and zero page
while it manipulates the 48K address space (from $0200 to $BFFF) in either
main memory or auxiliary memory.

Memory Mode Switching

Switching the 48K section of memory is performed by two soft switches: the
switch named RAMRD selects main or auxiliary memory for reading, and
the one named RAMWRT selects main or auxiliary memory for writing, As
shown in Table 4-7, each switch has a pair of memory locations dedicated to
it, one to select main memory, and the other to select auxiliary memory.
Enabling the read and write functions independently makes it possible for a
program whose instructions are being fetched from one memory space to
store data into the other memory space.

Do not use these switches without careful planning. Careless switching
between main and auxiliary memories is almost certain to have
catastrophic effects on the operation of the Apple lle. For example, if you
switeh to auxiliary memory with no card in the slot, the program that is
running will stop and you will have to reset the Apple [le and start over.

Writing to the soft switch at location $C008 turns RAMRD on and enables
auxiliary memory for reading; writing to location $C002 turns RAMRD off
and enables main memory for reading, Writing to the soft switch at location
$C005 turns RAMWRT on and enables the auxiliary memory for writing;
writing to location $C004 turns RAMWRT off and enables main memory for
writing. By setting these switches independently, you can use any of the
four combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high-resolution graphics
Page 1 can be used as part of the address space from $0200 to $BFFF by
using RAMRD and RAMWRT as described above. These areas in auxiliary
RAM can also be controlled separately by using the switches described in
the section “Display Mode Switching” in Chapter 2. Those switches are
named 80STORE, PAGE2, and HIRES.

As shown in Table 4-7, the 80STORE switch functions as an enabling
switch: with it on, the PAGE2 switch selects main memory or auxiliary
memory. With the HIRES switch off, the memory space switched by PAGE2
is the text Page 1, from $0400 to $07FF; with HIRES on, PAGE2 switches
both text Page 1 and high-resolution graphics Page 1, from $2000 to $3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control switches
take priority: if 80STORE is off, RAMRD and RAMWRT work for the entire

Chapter 4: Memory Organization

memory space from $0200 to $BFFF, but if 80STORE is on, RAMRD and
RAMWRT have no effect on the display page. Specifically, if 80STORE is on
and HIRES is off, PAGE2 controls text Page 1 regardless of the settings of
RAMRD and RAMWRT. Likewise, if 80STORE and HIRES are both on,
PAGE2 controls both text Page 1 and high-resolution graphics Page 1, again
regardless of RAMRD and RAMWRT.

A single soft switch named ALTZP (for alternate zero page) switches the
bank-switched memory and the associated stack and zero page area
The next section, “Auxiliary-Memory between main and auxiliary memory. As shown in Table 4-7, writing to
Subroutines,” describes firmware that you Jocation $C009 turns ALTZP on and selects auxiliary-memory stack and
can call to help you switch between main yar0 page: writing to the soft switch at location $C008 turns ALTZP off and
e, selects main-memory stack and zero page for both reading and writing.

Table 4-7. Auxiliary-Memory Select Switches.

Name Function Location Notes
Hex Decimal

RAMRD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 49154 -16382 Write
Read RAMRD switch $C013 49171 -16366 Read

RAMWRT Write auxiliary memory $C005 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -16354 Read

80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $C000 49152 -16384 Write
Read 80STORE switch $C018 49176 -16360 Read

PAGE2 Page2 on (aux. memory) $C055 49237 -16299 *
Page 2 off (main memory) $C054 49236 -16300 ¢
Read PAGE2 switch 8C01C 49180 -16356 Read

HIRES On: access high-res. pages $C0567 49239 -16297 T
Off: use RAMRD, RAMWRT $C056 49238 -16298 ¥

Read HIRES switch $C0ID 49181 -16356 Read
ALTZP Auxiliary stack & z.p. $C009 49161 -16373 Write
Main stack & zero page $C008 49160 -16374 Write
Read ALTZP switch $C016 49174 -16352 Read

* When 80STORE is on, the PAGE2 switch selects main or auxiliary display memory.

+ When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch
between the high-resolution Page-1 area in main memory or auxiliary memory.

Auxiliary Memory and Firmware 87

When these switches are on, auxiliary
memory is being used; when they are off,
main memory is being used.

88

Important!

There are three more locations associated with the auxiliary-memory
switches. The high-order bits of the bytes you read at these locations tell
you the settings of the three soft switches described above. The byte you
read at location $C013 has its high bit set to 1 if RAMRD is on (auxiliary
memory is read-enabled), or 0 if RAMRD is off (the 48K block of main
memory is read-enabled). The byte at location $C014 has its high bit set to 1
if RAMWRT is on (auxiliary memory is write-enabled), or 0 if RAMWRT is
off (the 48K block of main memory is write-enabled). The byte at location
$C016 has its high bit set to 1 if ALTZP is on (the bank-switched area, stack,
and zero page in the auxiliary memory are selected), or 0 if ALTZP is off
(these areas in main memory are selected).

Sharing Memory: In order to have enough memory locations for all of
the soft switches and remain compatible with the Apple Il and

Apple II Plus, the soft switches listed in Table 4-7 share their memory
locations with the keyboard functions listed in Table 2-2. The
operations—read or write—shown in Table 4-7 for controlling the
auxiliary memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Auxiliary-Memory Subroutines

s —— s See e ——Ss s]

If you want to write assembly-language programs that use auxiliary
memory but you don’t want to manage the auxiliary memory yourself, you
can use the built-in auxiliary-memory subroutines. These subroutines make
it possible to use the auxiliary memory without having to manipulate the
soft switches described in the previous section.

The subroutines described below make it easier to use auxiliary memory,
but they do not protect you from errors. You still have to plan your use of
auxiliary memory to avoid catastrophic effects on your program.

You use these built-in subroutines the same way you use the I/0
subroutines described in Chapter 3: by making subroutine calls to their
starting locations. Those locations are shown in Table 4-8.

Table 4-8. 48K RAM Transfer Routines

Name Action Hex Function

AUXMOVE JSR $C312 Moves data blocks between main and
auxiliary 48K memory.

XFER JMP $C314 Transfers program control between main and
auxiliary 48K memory.

Chapter 4: Memory Organization

AWarning

Moving Data to Auxiliary Memory

In your assembly-language programs, you can use the built-in subroutine
named AUXMOVE to copy blocks of data from main memory to auxiliary
memory or from auxiliary memory to main memory. Before calling this
routine, you must put the data addresses into byte pairs in page zero and set
the carry bit to select the direction of the move—main to auxiliary or
auxiliary to main.

Don't try to use AUXMOVE to copy data in page zero or page one (the
65002 stack) or in the bank-switched memory ($D000-SFFFF).
AUXMOVE uses page zero all during the copy, so it can’t handle moves in
the memory space switched by ALTZP,

The pairs of bytes you use for passing addresses to this subroutine are
called Al, A2, and A4, and they are used for parameter passing by several of
the Apple Ile's built-in routines. The addresses of these byte pairs are
shown in Table 4-9.

Table 4-9. Parameters for AUXMOVE Routine

Note: The X, ¥, and A registers are preserved by AUXMOVE.

Name Location Parameter Passed
Carry 1 = Move from main to auxiliary memory
‘ (0 = Move from auxiliary to main memory
AlL $3C Source starting address, low-order byte
AlH $3D Source starting address, high-order byte
A2L $3E Source ending address, low-order byte
A2H $3F Source ending address, high-order byte
A4L $42 Destination starting address, low-order byte
A4H $43 Destination starting address, high-order byte

Put the addresses of the first and last bytes of the block of memory you
want to copy into Al and A2. Put the starting address of the block of
memory you want to copy the data to into A4.

The AUXMOVE routine uses the carry bit to select the direction to copy
the data. To copy data from main memory to auxiliary memory, set the
carry bit; to copy data from auxiliary memory to main memory, clear the
carry bit.

Auxiliary Memory and Firmware 89

When you make the subroutine call to AUXMOVE, the subroutine copies the
block of data as specified by the A byte pairs and the carry bit. When it is
finished, the accumulator and the X and Y registers are just as they were
when you called AUXMOVE.

Transferring Control to Auxiliary Memory

You can use the built-in routine named XFER to transfer control to and from
program segments in auxiliary memory. You must set up three parameters
before using XFER: the address of the routine you are transferring to, the
direction of the transfer (main to auxiliary or auxiliary to main), and which
page zero and stack you want to use.

Table 4-10. Parameters for XFER Routine
Note: The X, Y, and A parameters are preserved by XFER.

Name or
Location Parameter Passed
Carry 1 = Transfer from main to auxiliary memory
(0 = Transfer from auxiliary to main memory
Overflow 1 = Use page zero and stack in auxiliary memory
(0 = Use page zero and stack in main memory
$03ED Program starting address, low-order byte
$03EE Program starting address, high-order byte

Put the transfer address into the two bytes at locations $03ED and $03EE,
with the low-order byte first, as usual. The direction of the transfer is
controlled by the carry bit: set the carry bit to transfer to a program in
auxiliary memory; clear the carry bit to transfer to a program in main
memory. Use the overflow bit to select which page zero and stack you want
to use: clear the overflow bit to use the main memory; set the overflow bit to
use the auxiliary memory.

After you have set up the parameters, pass control to the XFER routine by a
jump instruction, rather than a subroutine call. XFER saves the
accumulator and the transfer address on the current stack, then sets up the
soft switches for the parameters you have selected and jumps to the new
program.

Chapter 4: Memory Organization

AWarning

It is the prograramer’s responsibility to save the current stack pointer at
$0100 in main memory and the alternate stack pointer at $0101 in
auxiliary memory before calling XFER and to restore them after regaining
control. Failure to do so will cause program errors.

The Reset Routine

For information about the 1/0 links, see the
section “Changing the Standard 1/0 Links”
in Chapter 6.

For more information about peripheral-card
ROM, see the section “Peripheral-Card ROM
Space” in Chapter 6.

To put the Apple Ile into a known state when it has just been turned on or
after a program has malfunetioned, there is a procedure called the reset
routine. The reset routine is built into the Apple Ile’s firmware, and it is
initiated any time you turn power on or press while holding down
(conTroL). The reset routine puts the Apple Ile into its normal operating
mode and restarts the resident program.

When you initiate a reset, hardware in the Apple e sets the
memory-controlling soft switches to normal: main board RAM and ROM are
enabled, and, if there is an 80-column text card in the auxiliary slot,
expansion slot 3 is allocated to the built-in 80-column firmware. Auxiliary
RAM is disabled and the bank-switched memory space is set up to read from
ROM and write to RAM, using the second bank at $D000.

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
window equal to the full 40-column display, puts the cursor at the bottom of
the screen, and sets the display format to normal.

The reset routine sets the keyboard and display as the standard input and
output devices by loading the standard /0 links. It turns annunciators 0
and 1 off and annunciators 2 and 3 on, clears the keyboard strobe, turns off
any active peripheral-card ROM and outputs a bell (tone).

The Apple Ile has three types of reset: power-on reset, also called cold-start
reset; warm-start reset; and forced cold-start reset. The procedure described
above is the same for any type of reset. What happens next depends on the
reset vector. The reset routine checks the reset vector to determine whether
it is valid or not, as described later in this chapter in the section “The Reset
Vector.” If the reset was caused by turning the power on, the vector will not
be valid, and the reset routine will perform the cold-start procedure. If the
vector is valid, the routine will perform the warm-start procedure.

The Reset Routine 91

For more information about ProDOS and
the startup procedure, see the ProDOS
Technical Reference Manual.

92

Important!

The Cold-Start Procedure

If the reset vector is not valid, either the Apple Ile has just been turned on
or something has caused memory contents to be changed. The reset routine
clears the display and puts the string Apple //e (Apple 1 o0nan
original Ile) at the top of the display. It loads the reset vector and the
validity-check byte as described below, then starts checking the expansion
slots to see if there is a disk drive controller card in one of them, starting
with slot 7 and working down.

If it finds a controller card, it initiates the startup (bootstrap) routine that
resides in the controller card's firmware. The startup routine then loads
DOS or ProDOS from the disk in drive 1. When the operating system has
been loaded, it displays other messages on the screen. If there is no disk in
the disk drive, the drive motor just keeps spinning until you press
(CONTROL H RESET }

If the reset routine doesn't find a controller card, or if you press

[CoNTROL HRESET) again before the startup procedure has been completed,
the reset routine will continue without using the disk, and pass control to
the built-in Applesoft interpreter.

The Warm-Start Procedure

Whenever you press [CONTROL H RESET | when the Apple Ile has already
completed a cold-start reset, the reset vector is still valid and it is not
necessary to reinitialize the entire system. The reset routine simply uses the
vector to transfer control to the resident program, which is normally the
built-in Applesoft interpreter. If the resident program is indeed Applesoft,
your Applesoft program and variables are still intact. If you are using DOS,
it is the resident program and it restarts either Applesoft or Integer BASIC,
whichever you were using when you pressed [CONTROL H RESET }.

A program in bank-switched RAM cannot use the reset vector to regain
control after a reset, because the Apple Ile hardware enables ROM in the
bank-switched memory space. If you are using Integer BASIC, which is in
the bank-switched RAM, you are also using DOS, and it is DOS that
controls the reset vector and restarts BASIC.

Chapter 4: Memory Organization

Forced Cold Start

]

If a program has loaded the reset vector to point to the beginning of the
program, as described in the next section, pressing [CONTROL H RESET
causes a warm-start reset that uses the vector to transfer control to that
program. If you want to stop such a program without turning the power off
and on, you can force a cold-start reset by holding down [&] and [CONTROL],
then pressing and releasing [RESET),

Unconditional Restart: When you want to stop a program
unconditionally—for example, to start up the Apple Ile with some other
program—you should use the forced cold-start reset,

(GHconTROL HRESET), instead of turning the power off and on.

Whenever you press [CONTROL H{ RESET), firmware in the Apple Ile always
checks to see whether either Apple key is down. If the [&] key is down, with
or without the [&] key, the firmware performs the self-test described later in
this chapter. If only the (&) key is down, the firmware starts a forced
cold-start reset. First, it destroys the program or data in memory by writing
two bytes of arbitrary data into each page of main RAM. The two bytes that
get written over in page 3 are the ones that contain the reset vector. The
reset routine then performs a normal cold-start reset.

The Reset Vector

[=== |

When you reset the Apple Ile, the reset routine transfers control to the
resident program by means of an address stored in page 3 of main RAM.
This address is called a vector because it directs program control to a
specified destination. There are several other vector addresses stored in
page 3, as shown in Table 4-11, including the interrupt vectors described in
the section “Interrupts on the Enhanced Apple Ile” in Chapter 6, and the
ProDOS and DOS vectors described in the ProDOS Technical Reference
Manual and the Apple If DOS Programmer’s Manual.

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector address at
locations 1010 and 1011 (hexadecimal $03F2 and $03F3). It then stores a
validity-check byte, also called the power-up byte, at location 1012
(hexadecimal $03F4). The validity-check byte is computed by performing
an exclusive-OR of the second byte of the vector with the constant 165
(hexadecimal $A5). Each time you reset the Apple Ile, the reset routine uses
this byte to determine whether the reset vector is still valid.

The Reset Routine 93

See “The User's Interrupt Handler at $3FE”
in Chapter 6.

94

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For this to
work, you must also change the validity-check byte to the exclusive-OR of
the high-order byte of your new reset vector with the constant 165 ($A5). If
you fail to do this, then the next time you reset the Apple Ilg, the reset
routine will determine that the reset vector is invalid and perform a
cold-start reset, eventually transferring control to the disk startup routine or
to Applesoft.

The reset routine has a subroutine that generates the validity-check byte
for the current reset vector. You can use this subroutine by doing a
subroutine call to location -1169 (hexadecimal $FB6F). When your program
finishes, it can return the Apple Ile to normal operation by restoring the
original reset vector and again calling the subroutine to fix up the
validity-check byte.

Table 4-11. Page 3 Vectors

Vector

Address Vector Function

$3F0 Address of the subroutine that handles BRK requests (normally
$3F1 $59, SFA).

$3F2 Reset vector (see text).

$3F3

$3F4 Power-up bvte (see text).

83F5 Jump instruction to the subroutine that handles Applesoft &
$3F6 commands (normally $4C, $58, $FF).

$3F7

$3F8 Jump instruction to the subroutine that handles user

$3F9 commands.

$3FA

$3FB Jump instruction to the subroutine that handles non-maskable
$3FC interrupts.

$3FD

$3FE Interrupt vector (address of the subroutine that handles

$3FF interrupt requests).

Chapter 4: Memory Organization

AWarning

Automatic Self-Test

If you reset the Apple Ile by holding down [&] and while
pressing and releasing [RESET], the reset routine will start running the
built-in self-test. Successfully running this test assures you that the
Apple Ile is operational.

The self-test routine tests the Apple Ile's programmable memory by
writing and then reading it. All programs and data in programmable
memory when you run the self-test are destroyed.

The self-test takes several seconds to run. The screen will display some
patterns in low resolution mode which will change rapidly just before the
self-test finishes. If the test finishes normally, the Apple Ile displays
System 0Ok and waits for you to restart the system.

If you have been running a program, some soft switches might be on when
you run the self-test. If this happens, the self-test will display a message
such as

10U FLAG ES:1

Turn the power off for several seconds, then turn it back on and run the
self-test again. If it still fails, there is really something wrong; to get it
corrected, contact your authorized Apple dealer for service,

The Reset Routine 95

(—Jhapter 5

Using the Monitor

The starting addresses for all of the
standard subroutines are listed in
Appendix B.

The System Monitor is a set of subroutines in the Apple Ile firmware. The
Monitor provides a standard interface to the built-in I/0 devices described
in Chapter 2. The 1/0 subroutines described in Chapter 8 are part of the
System Monitor,

ProDOS, DOS 3.3, and the BASIC interpreters use these subroutines by
direct calls to their starting locations, as described for the 1/0 subroutines
in Chapter 3.

If you wish, you can call the standard subroutines from your programs in
the same fashion.

You can perform most of the Monitor functions directly from the keyboard.
This chapter tells you how to use the Monitor to

o look at one or more memory locations

o change the contents of any location

o write programs in machine language to be executed directly by the
Apple Ile’s microprocessor

save blocks of data and programs onto cassette tape and read them back
in again

move and compare blocks of memory

search for data bytes and ASCII characters in memory

invoke other programs from the Monitor

invoke the Mini-Assembler.

(]

0 R 3 [(o

Invoking the Monitor

The System Monitor starts at memory location $FF69 (decimal 65385

or -151). To invoke the Monitor, you make a CALL statement to this location
from the keyboard or from a BASIC program. When the Monitor is running,
its prompting character, an asterisk (*), appears on the left side of the
display screen, followed by a blinking cursor.

To use the Monitor, you type commands at the keyboard. When you have
finished using the Monitor, you return to the BASIC language you were
previously using by pressing [CONTROL H RESET), by pressing

then [RETURN], or by typing 3D#86, which executes the
resident program—usually Applesoft—whose address is stored in a jump

instruction at location $3D0.

Chapter 5: Using the Monitor

Syntax of Monitor Commands

See “Surmnmary of Monitor Commands” at
the end of this chapter.

e e e il e s e) ey]
To give a command to the Monitor, you type a line on the keyboard, then
press [(RETURN). The Monitor accepts the line using the standard I/0
subroutine GETLN, described in Chapter 3. A Monitor command can be up
to 255 characters in length, ending with a carriage return.

A Monitor command can include three kinds of information: addresses, data
values, and command characters. You type addresses and data values in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits
(0-9) and the first six letters (A-F) to represent the sixteen values from

0 to 15. A pair of hexadecimal digits represent values from 0 to 255,
corresponding to a byte, and a group of four hexadecimal digits can
represent values from 0 to 65,536, corresponding to a word. Any address in
the Apple Ile can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor accepts any
group of hexadecimal digits. If there are fewer than four digits in the group,
it adds leading zeros; if there are more than four hexadecimal digits, the
Monitor uses only the last four digits. It follows a similar procedure when
the command syntax calls for two-digit data values.

Each command you type consists of one command character, usually the
first letter of the command name. When the command is a letter, it can be
either uppercase or lowercase. The Monitor recognizes 23 different
command characters. Some of them are punctuation marks, some are
letters, and some are control characters.

Note: Although the Monitor recognizes and interprets control characters
typed on an input line, they do not appear on the screen.

This chapter contains many examples of the use of Monitor commands. In
the examples, the commands and values you type are shown in a normal
typeface and the responses of the Monitor are in a computer typeface. Of
course, when you perform the examples, all of the characters that appear
on the display screen will be in the same typeface. Some of the data values
displayed by your Apple Ile may differ from the values printed in these
examples, because they are variables stored in programmable memory.

Syntax of Monitor Commands 99

Monitor Memory Commands

100

When you use the Monitor to examine and change the contents of memory,
it keeps track of the address of the last location whose value you inquired

about and the address of the location that is next to have its value changed.
These are called the last opened location and the next changeable location.

Examining Memory Contents
[sastaaae———————rese e St

When you type the address of a memory location and press (RETURN], the
Monitor responds with the address you typed, a dash, a space, and the value
stored at that location, like this:

*E000
EBBE- 29
*33
p033- AA

*

Each time the Monitor displays the value stored at a location, it saves the
address of that location as the last opened location and as the next
changeable location.

Memory Dump

=T

When you type a period (.) followed by an address, and then press
[RETURN), the Monitor displays a memory dump: the data values stored at
all the memory locations from the one following the last opened location to
the location whose address you typed following the period. The Monitor
saves the last location displayed as both the last opened location and the
next changeable location. In these examples, the amount of data displayed
by the Monitor depends on how much larger than the last opened location
the address after the period is.

Chapter 5: Using the Monitor

*20
Be2e- 0@

*2B
pp21- 28 8@ 18 @F 8C 8@ 8@
pp28- AB 86 D@ 87

*300
8380- 99

+ 315

#381- B9 9P 88 A BA BA 99
p388- 9@ €8 C8 DP F4 AE 2B A9
#318- P9 85 27 AD CC 83

* 32A

#316- B85 41

#318- 84 48 BA 4A 4A 4A 4A B9
p328- C@ 85 3F A9 5D 85 3E 28
p328- 43 03 20

When the Monitor performs a memory dump, it starts at the location
immediately following the last opened location and displays that address
and the data value stored there. It then displays the values of successive
locations up to and including the location whose address you typed, but
only up to eight values on a line. When it reaches a location whose address
is a multiple of eight—that is, one that ends with an 8 or a 0—it displays
that address as the beginning of a new line, then continues displaying more
values,

After the Monitor has displayed the value at the location whose address you
specified in the command, it stops the memory dump and sets that location
as both the last opened location and the next changeable location. If the
address specified on the input line is less than the address of the last
opened location, the Monitor displays only the address and value of the
location following the last opened location.

Monitor Memory Commands 101

You can combine the two commands, opening a location and dumping
memory, by simply concatenating them: type the first address, a period, and
the second address. This combination of two addresses separated by a
period is called a memory range.

*300.32F

#36@8- 99 BSOS 6@ 08 BA BA BA 99
p3p8- @@ 88 C8 DB F4 AB 2B A9
#31@8- B9 85 27 AD CC £83 85 41
#318- 84 4P BA 4A 4A 4A 4A B9
p328- CP 85 3F A9 SD 85 3E 20
#328- 43 @3 20 46 83 A5 3D 4D

*30.40

pP30- AA 88 FF AA 85 C2 85 C2
p938- 1B FD D@ 83 3C 88 48 08
po40- 38

*E015.E025

E@16- 4C ED FD

EP18- A9 28 C5 24 BE BC A2 8D
E@20- AP 87 28 ED FD A9

Pressing by itself causes the Monitor to display one line of a
memory dump; that is, a memory dump from the location following the last
opened location to the next multiple-of-eight boundary. The Monitor saves
the address of the last location displayed as the last opened location and the
next changeable location

*H

0885- 89
*_LRETURN
88 289

*(RETURN

ge@s- 89 00 99 90 00 00 80 PP
*32

8832- FF

* RETURN

AA B8P C2 @5 C2

* RETUR

pp38- 1B FD D@ @3 3C @@ 3F 8@

a
=
!! II

Chapter 5: Using the Monitor

Changing Memory Contents

AWarning

———— ==, .., === == === === ===
The previous section showed you how to display the values stored in the
Apple Ile’s memory; this section shows you how to change those values.
You can change any location in RAM—programmable memory—and you
can also change the soft switches and output devices by changing the
locations assigned to them.

Use these commands carefully. If you change the zero-page locations
used by Applesoft, ProDOS, or DOS, you may lose programs or data stored
in memory.

Changing One Byte

ETT— N T T S

The previous commands keep track of the next changeable location; these
commands make use of it. In the next example, you open location 0, then
type a colon (:) followed by a value.

*0

geee- 89

#:5F

The contents of the next changeable location have just been changed to the
value you typed, as you can see by examining that location:

%
8888~ SF

*

You can also combine opening and changing into one operation by typing an
address followed by a colon and a value. In the example, you type the
address again to verify the change.

+302:42
+302
g3p2- 42

When you change the contents of a location, the value that was contained
in that location disappears, never to be seen again. The new value will
remain until you replace it with another value.

Changing Memory Contents 103

104

Changing Consecutive Locations

You don’t have to type a separate command with an address, a colon, a
value, and for each location you want to change. You can change
the values of up to 85 consecutive locations at a time (or even more, if you
omit leading zeros from the values) by typing only the initial address and
colon followed by all the values separated by spaces, and ending with
(RETURN]. The Monitor will duly store the consecutive values in
consecutive locations, starting at the location whose address you typed.
After it has processed the string of values, it takes the location following the
last changed location as the next changeable location. Thus, you can
continue changing consecutive locations without typing an address on the
next input line by typing another colon and more values. In these examples,
you first change some locations, then examine them to verify the changes.

+300:69 01 20 EDFD 4C03
*300
9388~ 69

*[RETURN]
@1 20 ED FD 4C 80 83

*10:0123
*4567
+10.17

ge10- 00 61 82 03 84 BS 66 @7

ASCII Input Mode

[E=—=————————————=]

The enhanced Apple Ile has an ASCII input mode that lets vou enter ASCII
characters just as you can their hexadecimal ASCII equivalents by
preceding the literal character with an apostrophe (*). This means that A is
the same as $C1 and 'B is the same as $C2 to the Monitor. The ASCII value
for any character following an apostrophe is used by the Monitor,

Chapter 5: Using the Monitor

Important!

Original lle

Each character to be placed in memory should be delimited by a leading
apostrophe (*) and a trailing space. The only exception to this rule is that
the last character in the line is followed with a return character instead of a
space. The following example would enter the string “Hooray for sushi!” at
$0300 in memory.

*300:H'o’o'r'a'y’ 'flo'r’ 's'u’s’h'i’

ASCII input mode sets the high bit of the code for a character that you
enter. So A will equal $C1, not $41.

| The original Apple Ile does not have an ASCII input mode.

Moving Data in Memory
[e G T RS e i —

You can copy a block of data stored in a range of memory locations from one
area in memory to another by using the Monitor’'s MOVE command. To
move a range of memory, you must tell the Monitor both where the data is
now situated in memory (the source locations) and where you want the
copy to go (the destination locations). You give this information to the
Monitor by means of three addresses: the address of the first location in the
destination and the addresses of the first and last locations in the source. .
You specify the starting and ending addresses of the source range by
separating them with a period. You separate the destination address from
the range addresses with a less-than character (<), which you may think
of as an arrow pointing in the direction of the move. Finally, you tell the
Monitor that this is a MOVE command by typing the letter M (in either
lowercase or uppercase). The format of the complete MOVE command looks
like this:

|destination| << |start, . jend! M

When you type the actual command, the words in braces should be replaced
by hexadecimal addresses, and the braces and spaces should be omitted.

Changing Memory Contents 105

Here are some examples of Monitor commands, including some memory
moves. First, you examine the values stored in one range of memory, then
store several values in another range of memory; the actual MOVE
commands end with the letter M.

*0.F

geee- SF @P 85 07 0@ 00 29 @@
pgos- PP 60 09 B8P PE 6@ 6D A9

*+300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03
*300.30C

#30@- A9 8D 20 ED FD A9 45 28
#388- DA FD 4C @0 83

*(<<300.30CM
+0.C

geee- A9 8D 20 ED FD A9 45 28
28@8- DA FD 4C 68 83

*+310<<8.AM
+310.312

8318- DA FD 4C
2<T9M

=0.C

8epe- A9 8D 20 DA FD A9 45 28
pges- DA FD 4C 89 83

The Monitor moves a copy of the data stored in the source range of locations
to the destination locations. The values in the source range are left
undisturbed. The Monitor remembers the last location in the source range
as the last opened location, and the first location in the source range as the
next changeable location. If the second address in the source range
specification is less than the first, then only one value (that of the first
location in the range) will be moved.

If the destination address of the MOVE command is inside the source range
of addresses, then strange (and sometimes wonderful) things happen: the
See the section “Special Tricks With the locations between the beginning of the source range and the destination

Monitor” later in this chapter for an address are treated as a sub-range and the values in this sub-range are
interesting application of this feature, repli cated throu ghout the source range.
108 Chapter 5: Using the Monitor

See the section “Special Tricks With the
Monitor” later in this chapter.

Comparing Data in Memory
N Y P s e

You can use the VERIFY command to compare two ranges of memory using
the same format you use to move a range of memory from one place to
another. In fact, the VERIFY command can be used immediately after a
MOVE command to make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a
destination. The syntax of the VERIFY command is

{destination} << {start|. {end} V

The Monitor compares the values in the source locations with the values in
the locations beginning at the destination address. If any values don't
match, the Monitor displays the address at which the discrepancy was
found and the two values that differ. In the example, you store data values
in the range of locations from 0 to $D, copy them to locations starting at
$300 with the MOVE command, and then compare them using the VERIFY
command. When you use the VERIFY command after you change the value
at location 6 to $E4, it detects the change.

+(:D7 F2 E9 F4 F4 E5 EE A0 E2 F9 A0 C3 C4 C5
*300<<0.DM

*300<<0.DV

*6:E4

+300<<0.DV

8806-E4 (EE)

If the VERIFY command finds a discrepancy, it displays the address of the
location in the source range whose value differs from its counterpart in the
destination range. If there is no discrepancy, VERIFY displays nothing. The
VERIFY command leaves the values in both ranges unchanged. The last
opened location is the last location in the source range, and the next
changeable location is the first location in the source range, just as in the
MOVE command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges will be
compared. Like the MOVE command, the VERIFY command also does
unusual things if the destination address is within the source range.

Changing Memory Contents 107

Original lle

Searching for Bytes in Memory
e s e e

The SEARCH command lets you search for one or two bytes (either
hexadecimal values or ASCII characters) in a range of memory. You must
type in the ASCII string (or hexadecimal number or numbers) in reverse of
the order that they appear in memory. Think of the SEARCH command as
looking for items in a last-in, first-out queue.

The syntax of the SEARCH command is
{value or ASCII| <|start|.|end{S

If the byte (or two byte sequence) that you specify is in the specified
memory range, the Monitor will return with a list of the addresses where
that byte (or byte sequence) occurs. If the byte (or byte sequence) is not in
the range, the Monitor just displays the prompt.

The following example looks for the character string L0 in memory
between $0300 and $O3FF.

*0'L<<300.3FFS
High Bit Set: Remember that ASCII input mode sets the high-order bit of
each character that you enter.

The next example searches for the two-byte sequence $FF11.

*11FF <<300.3FFS

You can't search for a two-byte sequence with a high byte of 0. The Monitor
ignores the high byte and searches for the low byte only. The sequence
00FF is seen by the Monitor SEARCH command as FF.

The Monitor in the original Apple Ile does not recognize the SEARCH
command.

Examining and Changing Registers

108

The microprocessor’s register contents change continuously whenever the
Apple Ile is running any sort of program, such as the Monitor. The Moniter
lets you see what the register contents were when you invoked the Monitor
or a program that you were debugging stopped at a break (BRK). The
Monitor also lets you set 65002 register values before you execute a
program with the GO command.

Chapter 5: Using the Monitor

When you call the Monitor, it stores the contents of the microprocessor’s
registers in memory. The registers are stored in the order A, X, Y, P
(processor status register), and S (stack pointer), starting at location $45
(decimal 69). When you give the Monitor a GO command, the Monitor loads
the registers from these five locations before it executes the first instruction
in your program.

Pressing and then invokes the Monitor's EXAMINE
command, which displays the stored register values and sets the location

containing the contents of the A register as the next changeable location,
After using the EXAMINE command, you can change the values in these
locations by typing a colon and then typing the new values separated by
spaces. In the following example, you display the registers, change the first
two, and then display them again to verify the change.

*[CONTROL HE]

A=0A X=FF Y=DB P=B# S=F8
=B0 02

* CONTROL HE]
A=B@ X=@2 Y=D8 P=B@ S=F8

Monitor Cassette Tape Commands

The Apple Ile has two jacks for connecting an audio cassette tape recorder,
With a recorder connected, you can use the Monitor commands described
later in this section to save the contents of a range of memory onto a
standard cassette and recall it for later use.

Saving Data on Tape
s R T e S ==]

The Monitor’s WRITE command saves the contents of up to 65,536 memory
locations on cassette tape. To save a range of memory on tape, give the
Monitor the starting and ending addresses of the range, followed by the
letter W (for WRITE), like this:

{start| . fend} W

Monitor Cassette Tape Commands 109

110

Don’t press yet: first, put the tape recorder in record mode and let
the tape run for a second, then press The Monitor will write a
ten-second tone onto the tape and then write the data. The tone acts as a
leader: later, when the Monitor reads the tape, the leader enables the
Monitor to get in step with the signal from the tape. When the Monitor is
finished writing the range you specified, it will sound a bell (beep) and
display a prompt. You should rewind the tape and label it with the memory
range that's on the tape and what it’s supposed to be.

Here's a small example you can save and use later to try out the READ
command. Remember that you must start the cassette recorder in record
mode before you press after typing the WRITE command.

+(:FF FF AD 30 CO 88 D0 04 C6 01 F0 08 CA
DO F6 A6 00 4C 02 00 60

*0.14

pP@e- FF FF AD 3¢ C@ 88 D@ 84
po@s- Cc 81 F@ 88 CA DB F6 AB
pe18- 8@ 4C 82 0@ @

*0.14W

*

It takes about 35 seconds total to save the values of 4,096 memory locations
preceded by the ten-second leader onto tape. This works out to an average
data transfer rate of about 1,350 bits per second.

The WRITE command writes one extra value on the tape after it has
written the values in the memory range. This extra value is the checksum,
which is the eight-bit partial sum of all values in the range. When the
Monitor reads the tape, it uses this value to determine if the data has been
written and read correctly. (See the next section.)

Reading Data From Tape
e e e e e e,

Once you've saved a memory range onto tape with the Monitor's WRITE
command, you can read that memory range back into the computer by
using the Monitor's READ command. The data values you've stored on the
tape need not be read back into the same memory range from whence they
came; you can tell the Monitor to put those values into any memory range in
the computer’s memory, provided that it's the same size as the range you
saved.

Chapter 5: Using the Monitor

The format of the READ command is the same as that of the WRITE
command, except that the command letter is R:

{start| . {end| R

Once again, after typing the command, don’t press [RETURN). Instead, start
the tape recorder in play mode and wait a few seconds. Although the
WRITE command puts a ten-second leader tone on the beginning of the
tape, the READ command needs only three seconds of this leader to lock on
to the signal from the tape. You should let a few seconds of tape go by before
you press to allow the tape recorder’s output to settle down to a
steady tone.

This example has two parts. First, you set a range of memory to zero, verify
the contents of memory, and then type the READ command, but don't press

(RETURN].
«0:000000000000000000000

+(.14

0pog- 60 00 00 00 00 9@ 00 @0
peps- 8@ 069 PP 0P 0P 89 PP @9
gg1@- 00 0P 60 00 00

#(0.14R

Now start the cassette running in play mode, wait a few seconds, and press
[RETURN . After the Monitor sounds the bell (beep) and displays the prompt,
examine the range of memory to see that the values from the tape were
read correctly:

*(0.14

g@pe- FF FF AD 30 C@ 88 DB #4
ppes- Ce @1 F@ 88 CA DB F6 AB
pp18- B8 4C 82 80 G0

*

After the Monitor has read all the data values on the tape, it reads the
checksum value. It computes the checksum on the data it read and
compares it to the checksum from the tape. If the two checksums differ, the
Monitor sends a beep to the speaker and displays ERR. This warns you that
there was a problem reading the tape and that the values stored in memory
aren’t the values that were recorded on the tape. If the two checksums
mateh, the Monitor will just send out a beep and display a prompt.

Monitor Cassette Tape Commands 111

Miscellaneous Monitor Commands

These Monitor commands enable you to change the video display format
from normal to inverse and back, and to assign input and output to
accessories in expansion slots.

Inverse and Normal Display
e ey

You can control the setting of the inverse-normal mask location used by the
COUT subroutine (described in Chapter 3) from the Monitor so that all of
the Monitor's output will be in inverse format. The INVERSE command, [,
sets the mask such that all subsequent inputs and outputs are displayed in
inverse format. To switch the Monitor’s output back to normal format, use
the NORMAL command, N.

*(.F

@ppe- #A 8B BC 8D @E OF D@ 84
geps- Cc 01 FP B8 CA DB FE A6
+]

*).F

pege- 8A @B @C @D @E @F D@ 24
pp@e8- Ce #1 F@ 88 CA DB F6 AB
*N

*0.F

pesg- A @B AC @D OE @F D@ 04
pp@s8- Co 81 FB B8 CA DP F6 AB

Back to BASIC

=)

Use the BASIC command, [CONTROL H{B), to leave the Monitor and enter the
BASIC that was active when you entered the Monitor. Normally, this is
Applesoft BASIC, unless you deliberately switched to Integer BASIC. Any
program or variables that you had previously in BASIC will be lost. If you
want to reenter BASIC with your previous program and variables intact, use

the CONTINUE BASIC command, [CONTROL H{ €.

Chapter 5: Using the Monitor

AWarning

If you are using DOS 3.3 or ProDOS, press [CONTROL H{ RESET | or type

3DeG

to return to the language you were using, with your program and variables
intact.

That's a Number Not a Letter: If you use 3D0G, make sure that the
third character you type is a zero, not a letter O. The letter G is the
Monitor’s GO command, described in the section “Machine-Language
Programs” later in this chapter.

Redirecting Input and Output

= T e e R

The PRINTER command, activated by a diverts all output
normally destined for the screen to an interface card in a specified
expansion slot, from 1 to 7. There must be an interface card in the specified
slot, or you will lose control of the computer and your program and variables
may be lost. The format of the command is

{slot number} [CONTROL H P

A PRINTER command to slot number (will switch the stream of output
characters back to the Apple Ile's video display.

Don't give the PRINTER command with slot number 0 to deactivate the
80-column firmware, even though you used this command to activate it in
slot 3. The command works, but it just disconnects the firmware, leaving
some of the soft switches set for 80-column display,

In much the same way that the PRINTER command switches the output
stream, the KEYBOARD command substitutes the interface cardin a
specified expansion slot for the Apple Ile’s normal input device, the
keyboard. The format for the KEYBOARD command is

{slot number;

A slot number of 0 for the KEYBOARD command directs the Monitor to
accept input from the Apple Ile’s built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents of the
BASIC commands PR# and IN#.

Miscellaneous Monitor Commands 113

Hexadecimal Arithmetic
o e e —— i S i i

The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats:

\value| + |value,
{value| - |value|

The Apple lle performs the arithmetic and displays the result, as shown in
these examples:

*20+13
=33
#4A-C
=3E
*FF+4
=03
+3.4
=FF

Special Tricks With the Monitor

- ==
This section describes some more complex ways of using the Monitor
commands.

Muitiple Commands
[Eha —————— == == =]

You can put as many Monitor commands on a single line as you like, as long
as you separate them with spaces and the total number of characters in the
line is less than 254. Adjacent single-letter commands such as L, S, I, and N
need not be separated by spaces.

You can freely intermix all of the commands except the STORE (:)
command. Since the Monitor takes all values following a colon and places
them in consecutive memory locations, the last value in a STORE must be
followed by a letter command before another address is encountered. You
can use the NORMAL command as the required letter command in such
cases; it usually has no effect and can be used anywhere.

Chapter 5: Using the Monitor

mmmeesasasanana

In the following example, you display a range of memory, change it, and
display it again, all with one line of commands.

+300.307 300:18 69 1 N 300.302

0300- PP 60 09 0P PP 8@ B8P B9
B3p@- 18 69 81

*

If the Monitor encounters a character in the input line that it does not
recognize as either a hexadecimal digit or a valid command character, it
executes all the commands on the input line up to that character, then
grinds to a halt with a noisy beep and ignores the remainder of the input
line.

Filling Memory
et}

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in the first
locations in the range:

*300:1122 33

-

Remember the number of values in the pattern: in this case, it is 3. Use the
number to compute addresses for the MOVE command, like this:

start+number| < |start| . |end-number| M

This MOVE command will first replicate the pattern at the locations
immediately following the original pattern, then replicate that pattern
following itself, and so on until it fills the entire range.

+303<<300.32DM
*300.32F

g3e@8- 11 22 33 11 22 33 11 22
#398- 33 11 22 33 11 22 33 11
8319- 22 33 11 22 33 11 22 33
2318~ 11 22 33 11 22 33 11 22
p328- 33 11 22 33 11 22 33 11
p328- 22 33 11 22 33 11 22 33

*

Special Tricks With the Monitor 115

116

You can do a similar trick with the VERIFY command to check whether a
pattern repeats itself through memory. This is especially useful to verify
that a given range of memory locations all contain the same value. In this
example, you first fill the memory range from $0300 to $0320 with zeros and
verify it, then change one location and verify again, to see the VERIFY
command detect the discrepancy:

*300:0
*301<<300.31FM
*301<<300.31FV
*304:02
*301<<300.31FV

p303-08 (B2)
8384-02 (80D

*

Repeating Commands
e A R W=

You can create a commiand line that repeats one or more commands over
and over. You do this by beginning the part of the command line that you
want to repeat with a letter command, such as N, and ending it with the
sequence 34:n, where n is a hexadecimal number that specifies the position
in the line of the command where you want to start repeating; for the first
character in the line, n=0. The value for n must be followed with a space in
order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200. Each
time the Monitor executes a command, it stores the value of the index at
location $34; when that command is finished, the Monitor reloads the index
register with the value at location $34. By making the last command change
the value at location $34, you change this index so that the Monitor picks up
the next command character from an earlier point in the buffer.

Chapter 5: Using the Monitor

The only way to stop a loop like this is to press ([CONTROL H{ RESET J; that is
how this example ends.

+N 300 302 34:0

g3ge- 11
8382- 33
g3e0- 11
p3@2- 33
p3ge- 11
#382- 33
p388- 11
#382- 33
p30@- 11
#382- 33
g3e8- 11
g3@2- 33
838

Creating Your Own Commands
V==

The USER command, forces the Monitor to jump to memory
location $03F8. You can put a JMP instruction there that jumps to your own
machine-language program. Your program can then examine the Monitor's
registers and pointers or the input buffer itself to obtain its data. For
example, here is a program that displays everything on the input line after
the (ConTRoL H{¥). The program starts at location $0300; the command line
that starts with $03F8 stores a jump to $0300 at location $03F8.

*300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF
*3F8:4C 00 03

*(ConTroL {Y) THIS IS A TEST
THIS IS A TEST

*

Special Tricks With the Monitor 117

Machine-Language Programs

118

EV—————T=——=—————— = = == e
The main reason to program in machine language is to get more speed. A
program in machine language can run much faster than the same program
written in high-level languages such as BASIC or Pascal, but the
machine-language version usually takes a lot longer to write. There are
other reasons to use machine language: you might want your program to do
something that isn’t included in your high-level language, or you might just
enjoy the challenge of using machine language to work directly on the bits
and bytes.

Boning Up on Machine Language: If you have never used machine
language before, you'll need to learn the 65C02 instructions listed in
Appendix A. To become proficient at programming in machine language,
you'll have to spend some time at it and study at least one of the books on
6502 programming listed in the bibliography. With the books and
Appendix A, you'll have the needed information to program the 65C02.

You can get a hexadecimal dump of your program, move it around in
memory, or save it on tape and recall it using the commands deseribed in
the previous sections. The Monitor commands in this section are intended
specifically for you to use in creating, writing, and debugging
machine-language programs.

Running a Program
s ———)

The Monitor command you use to start execution of your machine-language
program is the GO command. When you type an address and the letter G,
the Apple Ile starts executing machine language instructions starting at the
specified location. If you just type the G, execution starts at the last opened
location. The Monitor treats this program as a subroutine: it should end with
an RTS (return from subroutine) instruction to transfer control back to the
Monitor.

Chapter 5: Using the Monitor

The word mnemonic comes from the same
root as memory and refers to
abbreviations that are easier to remember
than the hexadecimal operation codes
themselves: for example, for clear carry
vou write CLC instead of $18.

The Monitor has some special features that make it easier for you to write
and debug machine-language programs, but before you get into that, here is
a small machine-language program that you can run using only the simple
Monitor commands already described. The program in the example merely
displays the letters A through Z: you store it starting at location $0300,
examine it to be sure you typed it correctly, then type 300G to start it
running.

+300:A9 C1 20 ED FD 18 69 1 C9 DB D0 F6 60
*300.30C

8388- A9 C1 2@ ED FD 18 69 @1
p308- C9 DB D@ FE 68

*300G
ABCDEFGHI JKLMNOPQRSTUVKXYZ

Disassembled Programs

= e = e ————)

Machine-language code in hexadecimal isn't the easiest thing in the world
to read and understand. To make this job a little easier, machine-language
programs are usually written in assembly language and converted into
machine-language code by programs called assemblers.

Since programs that translate assembly language into machine language are
called assemblers, a program like the Monitor’s LIST command that
translates machine language into assembly language is called a
disassembler.

The Monitor’s LIST command displays machine-language code in
assembly-language form. Instead of unformatted hexadecimal gibberish, the
LIST command displays each instruction on a separate line, with a
three-letter instruction name, or mnemeonic, and a formatted hexadecimal
operand. The LIST command also converts the relative addresses used in
branch instructions to absolute addresses.

The Monitor LIST command has the format

{location| L

Machine-Language Programs 119

120

The LIST command starts at the specified location and displays as much
memory as it takes to make up a screenfull (20 lines) of instructions, as
shown in the following exarmple:

*300L

g30e- A9 C1 LDA #$C1
g3e2- 280 ED FD JSR $FDED
8306- 18 CLC

8306~ 69 81 ADC 501
8388- c2 DB CMP #$DB
838A- Dé F6 BNE sp3p2
#38C- 60 RTS

838D- ee BRK

#38E- 8o BRK

838F - ee BRK

8318- L1 BRK

#311- ee BRK

#312- 2o BRK

8313- ge BRK

8314- ge BRK

8316~ ge BRK

8316- ge BRK

8317- 8o BRK

8318- 2o BRK

p319- 8o BRK

The first seven lines of this example are the assembly-language form of the
program you typed in the previous example. The rest of the lines are BRK
instructions only if this part of memory has zeros in it: other values will be
disassembled as other instructions.

The Monitor saves the address that you specify in the LIST command, but
not as the last opened location used by the other commands. Instead, the
Monitor saves this address as the program counter, which it uses only to
point to locations within programs. Whenever the Monitor performs a LIST
command, it sets the program counter to point to the location immediately
following the last location displayed on the screen, so that if you type
another LIST command it will display another screenful of instructions,
starting where the previous display left off.

Chapter 5: Using the Monitor

The Mini-Assembler

Original lle

o o e A e e e e e e e i)
Without an assembler, you have to write your machine language program,
take the hexadecimal values for the opcodes and operands, and store them
in memory using the commands covered in the previous sections. That is
exactly what you did when you ran the previous examples.

The Monitor includes an assembler called the Mini-Assembler that lets you
enter machine-language programs directly from the keyboard of your Apple.
ASCII characters can be entered in Mini-Assembler programs, exactly as
you enter them in the Monitor. Note that the Mini-Assembler doesn't accept
labels; you must use actual values and addresses.

Starting the Mini-Assembler
===

To start the Mini-Assembler first invoke the Monitor by typing cALL-151
and then from the Monitor, type ! followed by (RETURN]. The
Monitor prompt character then changes from # to 1.

When you finish using the Mini-Assembler, press from a blank
line to return to the Monitor.

Restrictions
==

The Mini-Assembler supports only the subset of 65C02 instructions that are
found on the 6502,

Before you can use the Mini-Assembler on the original Apple Ile, you have
to be running Integer BASIC. When you start up the computer using DOS
or either BASIC, the Apple Ile loads the Integer BASIC interpreter from
the file named INTBASIC into the bank-switched RAM. Here's how to
start the Mini-Assembler on an original Apple lle:

1. Start Integer BASIC from DOS 3.3 by typing 1NT [RETURN].

2. After the Integer prompt character (=) and a cursor appear, enter
the Monitor by typing cALL - 151 [RETURN].

3. Now start the Mini-Assembler by typing F6666 [RETURN).

The Mini-Assembler 121

Formats for operands are listed in Table
5-1.

Using the Mini-Assembler

The Mini-Assembler saves one address, that of the program counter. Before
you start to type a program, you must set the program counter to point to
the location where you want the Mini-Assembler to store your program. Do
this by typing the address followed by a colon.

After the colon, type the mnemonic for the first instruction in your program,
followed by a space and the operand of the instruction. Now press
(RETURN . The Mini-Assembler converts the line you typed into
hexadecimal, stores it in memory beginning at the location of the program
counter, and then disassembles it again and displays the disassembled line.
It then displays a prompt on the next line.

Now the Mini-Assembler is ready to accept the second instruction in your
program. To tell it that you want the next instruction to follow the first,
don’t type an address or a colon: just type a space and the next instruction’s
mnemonic and operand, then press [RETURN]. The Mini-Assembler
assembles that line and waits for another.

1300:LDX #02

#308- A2 B2 LDX #$p2
1 LDA $0.X

#382- BS 880 LDA $00,X
1 STA §10,X

8304 95 18 STA $18,X
1 DEX

#386- CA DEX

1 STA $C030

#387- 8D 30 C@ STA $CO30
1 BPL $302

#38A- 18 F6 BPL $8302
' BRK

#38C- 88 BRK

If the line you type has an error in it, the Mini-Assembler beeps loudly and
displays a caret (*) under or near the offending character in the input line.
Most common errors are the result of typographical mistakes: misspelled
mnemonics, missing parentheses, and so forth. The Mini-Assembler also
rejects the input line if you forget the space before or after a mnemonic or

Chapter 5: Using the Monitor

include an extraneous character in a hexadecimal value or address. If the
destination address of a branch instruction is out of the range of the branch
(more than 127 locations distant from the address of the instruction), the
Mini-Assembler flags this as an error.

There are several different ways to leave the Mini-Assembler and reenter
the Monitor. On an enhanced Apple Ile only, simply press ata
blank line.

Original lle | Onanoriginal Apple lle, type the Monitor command $FF69G.

On any Apple Ile, you can press [CONTROL H{RESET), Which warm starts
BASIC, then type

CALL -151

Your assembly-language program is now stored in memory. You can display
it with the LIST command:

*3001

g388- A2 B2 LDX ¥$92
g382- BS 8@ LDA $00,X
p3P4- 95 18 STA $10,X
g386- CA DEX

p387- 8D 38 C@ STA $CB380
p38A- 18 FG BPL $0302
p36Cc- @80 BRK

p38D- @80 BRK

P30E- 00 BRK

p30F- @80 BRK

p319- @0 BRK

#311- 08P BRK

p312- @@ BRK

9313- 89 BRK

#314- @80 BRK

p316- @8 BRK

#316- 00 BRK

8317- 08 BRK

p318- 009 BRK

p319- 08 BRK

*

The Mini-Assembler 123

Mini-Assembler Instruction Formats

e eame—ee s e e s e
The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing
See Appendix A for more information about formats. These constitute the 6502 subset of the 65C02 instruction set. The
85C02 (and 6502) instructions. mnemonics are standard, as used in the Syneriek Programming Manual
(Apple part number A2L0003), but the addressing formats are somewhat
different. Table 5-1 shows the Apple standard address-mode formats for
6502 assembly language.

Table 5-1. Mini-Assembler Address Formats

Addressing Mode Format
Accumulator *
Implied ‘
Immediate #${value}
Absolute ${address}
Zero page ${address}
Indexed zero page ${address; X
${address},Y
Indexed absolute $[addressl,x
${address},Y
Relative ${address}
Indexed indirect (8{address},X)
Indirect indexed (8{address}),Y
Absolute indirect (8{address})

* These instructions have no operands.

An address consists of one or more hexadecimal digits. The Mini-Assembler
interprets addresses the same way the Monitor does: if an address has fewer
than four digits, the Mini-Assembler adds leading zeros; if the address has
more than four digits, then it uses only the last four.

Dollar Signs: In this manual, dollar signs ($) in addresses signify that
the addresses are in hexadecimal notation. They are ignored by the
Mini-Assembler and may be omitted when typing programs.

124 Chapter &: Using the Monitor

There is no syntactical distinction between the absolute and zero-page
addressing modes. If you give an instruction to the Mini-Assembler that can
be used in both absolute and zero-page mode, the Mini-Assembler assembles
that instruction in absolute mode if the operand for that instruction is
greater than $FF, and it assembles it in zero-page mode if the operand is less
than $0100.

Instructions in acecurnulator mode and implied addressing mode need no
operands.

Branch instructions, which use the relative addressing mode, require the
target address of the branch. The Mini-Assembler calculates the relative
distance to use in the instruction automatically. If the target address is more
than 127 locations distant from the instruction, the Mini-Assembler sounds
a bell (beep), displays a caret () under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction and an
operand, and the addressing mode of the operand cannot be used with the
instruction you entered, the Mini-Assembler will not accept the line,

Summary of Monitor Commands

Here is a summary of the Monitor commands, showing the syntax for each
one.

Examining Memory
e |

{adrs| Examines the value contained in
one location.

|adrs1}.{adrs2} Displays the values contained in all
locations between {adrs1| and
{adrs2l.

Displays the values in up to eight
locations following the last opened
location.

Summary of Monitor Commands 125

Changing the Contents of Memory

ladrs|:|val| |val|...

;{val|lvall...

Moving and Comparing
fe=——————— s]

|dest| << [start|./end|M

\dest| <|start|.|end|V

The Examine Command
[T e s T o e S w5 |

CONTROL HE]

The Search Command
=i s e e]

val| <|start|.lend|S

Cassette Tape Commands

start|./lend|R

Chapter 5: Using the Monitor

Stores the values in consecutive
memory locations starting at |adrs|.
Stores values in memory starting at
the next changeable location.

Copies the values in the range
start|.|end| into the range
beginning at |dest|.

Compares the values in the range
start|./end| to those in the range
beginning at {dest|.

Displays the locations where the
contents of the 65C02’s registers are

stored and opens them for changing.

Displays the address of the first
occurrence of {val| in the specified
range beginning at |start|.

Writes the values in the memory
range |start|./end| onto tape,
preceded by a ten-second leader.
Reads values from tape, storing
them in memory beginning at |start|
and stopping at lend|. Prints ERR if
an error occurs.

Miscellaneous Monitor Commands

| Sets inverse display mode.

N Sets normal display mode.

Enters the language currently active
(usually Applesoft).

Returns to the language currently
active (usually Applesoft).

{val|+|val| Adds the two values and prints the
hexadecimal result.

lval|-|val| Subtracts the second value from the
first and prints the result.

'slot| =2 Diverts output to the device whose

interface card is in slot number
islot|. If {slot|=0, accepts input from
the keyboard.

Jumps to the machine-language
subroutine at location $3F8.

Running and Listing Programs

adrs|G Transfers control to the machine
language program beginning at
adrs|.

ladrs|L Disassembles and displays 20

instructions, starting at |adrs|.
Subsequent LIST commands
display 20 more instructions.

Summary of Monitor Commands 127

The Mini-Assembler
P N e i

Original lle The Mini-Assembler is available on an original Apple Ile only when
Integer BASIC is active. See the earlier section “The Mini-Assembler.”

F666G Invokes the Mini-Assembler on the
original Apple Ile.

! Invokes the Mini-Assembler on the
enhanced Apple Ile.

$|command| Executes a Monitor command from
the Mini-Assembler on the original
Apple Ile.

SFF69G Leaves the Mini-Assembler on the
original Apple Ile.

Leaves the Mini-Assembler on the
enhanced Apple Ile.

Chapter 5: Using the Monitor

Chapter 6

Programming for Peripheral Cards

Il Plus, Il

Original lle

The seven expansion slots on the Apple Ile’s main circuit board are used for
installing circuit cards containing the hardware and firmware needed to
interface peripheral devices to the Apple Ile. These slots are not simple I /0
ports; peripheral cards can access the Apple Ile’s data, address, and control
lines via these slots. The expansion slots are numbered from 1 to 7, and
certain signals, described below, are used to select a specific slot.

The Apple 1l and Apple 1l Plus have an eighth expansion slot: slot
number (). On those models, slot 0 is normally used for a language card or
a ROM card; the functions of the Apple 1l Language Card are built into the
main circuit board of the Apple Ile.

Interrupt support on the enhanced Apple Ile requires that special attention
be paid to cards designed to be in slot 3. A description of what you need to
watch for is given at the end of this chapter.

The interrupt support built into the enhanced Apple Ile is an enhanced
and expanded version of the interrupt support in the original Apple Ile.

Peripheral-Card Memory Spaces

130

e s e
Because the Apple lle’s microprocessor does all of its I/0 through memory
locations, portions of the Apple Ile’'s memory space have been allocated for
the exclusive use of the cards in the expansion slots. In addition to the
memory locations used for actual /0, there are memory spaces available
for programmable memory (RAM) in the main memory and for read-only
memory (ROM or PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are described below.
Those memory spaces are used for small dedicated programs such as I/0
drivers. Peripheral cards that contain their own driver routines in firmware
like this are called intelligent peripherals. They make it possible for you to
add peripheral hardware to your Apple Ile without having to change your
programs, provided that your programs follow normal practice for data
input and output.

Peripheral-Card 1/O Space

Each expansion slot has the exclusive use of sixteen memory locations for
data input and output in the memory space beginning at location $C090.
Slot 1 uses locations $C090 through SCO9F, slot 2 uses locations $COAQ
through $COAF, and so on through location $COFF, as shown in Table 6-1.

Chapter 6: Programming for Peripheral Cards

I These memory locations are used for different 1/0 functions, depending on
the design of each peripheral card. Whenever the Apple Ile addresses one of
the sixteen [/0 locations allocated to a particular slot, the signal on pin 41
I Signals for which the active state is low are of that slot, called DEVICE SELECT", switches to the active (low) state.
marked with a prime (7). This signal can be used to enable logic on the peripheral card that uses the
four low-order address lines to determine which of its sixteen I/0 locations
I is being accessed.

Table 6-1. Peripheral-Card 1/0 Memory Locations Enabled by DEVICE SELECT”

Slot Locations Slot Locations

1 $C090-8CO9F) $CODO-SCODF
2 $COAQ-$COAF 6 $COE0-$COEF
3 3COB0-5COBF 7 $COF0-$COFF
4 $C0CO-$COCF

Peripheral-Card ROM Space

One 256-byte page of memory space is allocated to each accessory card.
This space is normally used for read-only memory (ROM or PROM) on the
card with driver programs that control the operation of the peripheral
device connected to the card.

The page of memory allocated to each expansion slot begins at location
$Cn00, where n is the slot number, as shown in Table 6-2 and Figure 6-3.
Whenever the Apple Ile addresses one of the 256 ROM memory locations
allocated to a particular slot, the signal on pin 1 of that slot, called I/0
SELECT’, switches to the active (low) state. This signal enables the ROM or
PROM devices on the card, and the eight low-order address lines determine
which of the 256 memory locations is being accessed.

Peripheral-Card Memory Spaces 131

See the section “1/0 Programming
Suggestions” later in this chapter.

Important!

Table 6-2. Peripheral-Card ROM Memory Locations Enabled by 1/0 SELECT”

Slot Locations Slot Location

1 $C100-$C1FF 5 8C500-$C5FF
2 $C200-$C2FF i 3C600-8COFF
3 $C300-$C3FF 7 8CT00-8CTFF
4 $C400-$CAFF

Expansion ROM Space

BFEeEe=—--a—-———ssm

In addition to the small areas of ROM memory allocated to each expansion
slot, peripheral cards can use the 2K-byte memory space from $C800 to
SCFFF for larger programs in ROM or PROM. This memory space is called
expansion ROM space. (See the memory map in Figure 6-3). Besides being
larger, the expansion ROM memory space is always at the same locations
regardless of which slof is occupied by the card, making programs that
oceupy this memory space easier to write.

This memory space is available to any peripheral card that needs it. More
than one peripheral card can have expansion ROM on it, but only one of
them can be active at a time.

Each peripheral card that uses expansion ROM must have a circuit on it to
enable the ROM. The circuit does this by a two-stage process: first, it sets a
flip-flop when the I1/0 SELECT” signal, pin 1 on the slot, becomes active
(low); second, it enables the expansion ROM devices when the /0
STROBE’ signal, pin 20 on the slot, becomes active (low). Figure 6-1 shows
a typical ROM-enable circuit.

The 1/0 SELECT" signal on a particular slot becomes active whenever the
Apple Ile’s microprocessor addresses a location in the 256-byte ROM address
space allocated to that slot. The I/0 STROBE' signal on all of the expansion
slots becomes active (low) when the microprocessor addresses a location in
the expansion-ROM memory space, $C800-$CFFF. The 1/0 STROBE' signal
is used to enable the expansion-ROM devices on a peripheral card. (See
Figure 6-1.)

If there is an 80-column text card installed in the auxiliary slot, some of
the functions normally associated with slot 3 are performed by the
80-column text card and the built-in 80-column firmware. With the
80-column text card installed, the [/0 STROBE’ signal is not available on
slot 3, so firmware in expansion ROM on a card in slot 3 will not run.

Chapter 6: Programming for Peripheral Cards

Figure 6-1. Expansion ROM Enable Circuit

1/0 SELECT’ 5 ENABLE 1
’ Latch -
SCFFF’ — g ,
ENABLE 2 | X Bv®
(1/0 STROBE") . -
C_ A0 to A10 -
Address . i

A program on a peripheral card can get exclusive use of the expansion ROM
mermory space by referring to location SCFFF in its initialization phase. This
location is special: all peripheral cards that use expansion ROM must
recognize a reference to $CFFF as a signal to reset their ROM-enable
flip-flops and disable their expansion ROMs. Of course, doing so also
disables the expansion ROM on the card that is about to use it, but the next
instruction in the initialization code sets the flip-flop in the expansion-ROM
enable circuit on the card.

A card that needs to use the expansion ROM space must first insert its slot
address ($Cn) in $07F8 before it refers to SCFFF. This allows interrupting
devices to reenable the card’s expansion ROM after interrupt handling is
finished. Once its slot address has been inserted in $07F8, the peripheral
card has exclusive use of the expansion memory space and its program can
jump directly into the expansion ROM.

Figure 6-2. ROM Disable Address Decoding

(a8)
CHED o § } To RESET, ROM Enable

“ALD Flip-Flop

(1/0 STROBE")

Peripheral-Card Memory Spaces 133

134

Important!

As described earlier, the expansion-ROM disable circuit resets the enable
flip-flop whenever the 65C02 addresses location $CFFF. To do this, the
peripheral card must detect the presence of $CFFF on the address bus. You
can use the /0 STROBE' signal for part of the address decoding, since it is
active for addresses from 3C800 through $CFFF. If you can afford to
sacrifice some ROM space, you can simplify the address decoding even
further and save circuitry on the card. For example, if you give up the last
256 bytes of expansion ROM space, your disable circuit only needs to detect
addresses of the form SCFxx, and you can use the minimal disable-decoding
circuitry shown in Figure 6-2.

Applesoft addresses two locations in the $CFxx space, thereby resetting
the enable flip-flop. If your peripheral device is going to be used with
Applesoft programs, you must either use the full address decoding or else
enable the expansion ROM each time it is needed.

Peripheral-Card RAM Space

e —————>——~ ——+-——~]

There are 56 bytes of main memory allocated to the peripheral cards, eight
bytes per card, as shown in Table 6-3. These 56 locations are actually in the
RAM memory reserved for the text and low-resolution graphics displays,
but these particular locations are not displayed on the screen and their
contents are not changed by the built-in output routine COUT1. Programs in
ROM on peripheral cards use these locations for temporary data storage.

Table 6-3. Peripheral-Card RAM Memory Locations

Base Slot Number
Address i 2 3* 4 5 6 7
$0478 $0479 $047A $047B* $047C $047D $04TE S04TF

$04F8 $04F9 $04FA SO4FB* S04FC $04FD $O4FE $O4FF
$0578 §0579 $057A $057B* S8057C $057D SOSTE $O5TF
$05F8 $05F9 $05FA SO05FB* S05FC SO5FD $0BFE $0GFF
$0678 30679 S067A S067B* S067C $067D $067TE $067F
$06F8 $06F9 SO6FA SO6FB* SO6FC $06FD $06FE $06FF
30778 $0779 $077A SQ77B* $077C $077TD $O77E $O77F
$07F8 $07TF9 $OTFA SOTFB* $0TFC $07FD $OTFE $07FF

*1f there is a card in the auxiliary slot, it takes over these locations.

Chapter 6: Programming for Peripheral Cards

AWarning

A program on a peripheral card can use the eight base addresses shown in
the table to access the eight RAM locations allocated for its use, as shown in
the next section, “I/0 Programming Suggestions.”

The Apple Ile firmware sets the value of $04FB to $FF on a reset, even if
there is no 80-column card installed.

1/O Programming Suggestions

Important!

P v VO e T) i S R T R s S A
A program in ROM on a peripheral card should work no matter which slot
the card occupies. If the program includes a jurmp to an absolute location in
one of the 256-byte memory spaces, then the card will work only when it is
plugged into the slot that uses that memory space. If you are writing the
program for a peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

To function properly no matter which slot a peripheral card is installed
in, the program in the card’s 256-byte memory space must not make any
absolute references to itself. Instead of using jump instructions, you
should force conditions on branch instructions, which use relative
addressing.

The first thing a peripheral-card used as an [/0 device must do when called
is to save the contents of the Apple Ile’s microprocessor’s registers.
(Peripheral cards not being used as 1/0 devices do not need to save the
registers.) The device should save the register’s contents on the stack, and
restore them just before returning control to the calling program. If there is
RAM on the peripheral card, the information may be stored there.

Most single-character /0 is done via the microprocessor's accumulator. A
character being output through your subroutine will be in the accumulator
with its high bit set when your subroutine is called. Likewise, if your
subroutine is performing character input, it must leave the character in the
accumulator with its high bit set when it returns to the calling program.

1/0 Programming Suggestions 135

Finding the Slot Number With ROM Switched In

The memory addresses used by a program on a peripheral card differ
depending on which expansion slot the card is installed in. Before it can
refer to any of those addresses, the program must somehow determine the
correct slot number. One way to do this is to execute a JSR (jump to
subroutine) to a location with an RTS (return from subroutine) instruction
in it, and then derive the slot number from the return address saved on the
stack, as shown in the following example.

PHP
SEI
JSR KNOWNRTS

save status

inhibit interrupts

-» a known RTS instruction...
...that you set up

O LI LR T IR Ty

TSX get high byte of the...

LDA $@8168,X ..return address from stack
AND #$0@F low-order digit is slot no.
PLP restore status

The slot number can now be used in addressing the memory allocated to the
peripheral card, as shown in the next section.

1/0O Addressing

Once your peripheral-card program has the slot number, the card can use
the number to address the 1/0 locations allocated to the slot. Table 6-4
shows how these locations are related to sixteen base addresses starting
with $C080. Notice that the difference between the base address and the
desired 1/0 location has the form $n0, where n is the slot number. Starting
with the slot number in the accumulator, the following example computes
this difference by four left shifts, then loads it into an index register and
uses the base address to specify one of sixteen I/0 locations.

ASL ; get n into...

ASL 5

ASL 3

ASL i -..high-order nybble...

TAX : .. of index register.

LDA $CP8A,X ; load from first I1/0 location
136 Chapter 6: Programming for Peripheral Cards

See the section “Setting Bank Switches™ in
Chapter 4 for more information.

| Selecting Yo

Table 6-4. Peripheral-Card I/0 Base Addresses

or Target: You must make sure that you get an
appropriate value into the index register when you address 1/0 locations
this way. For example, starting with 1 in the accumulator, the
instructions in the above example perform an LDA from location $C090,
the first 1/0 location allocated to slot 1. If the value in the accumulator
had been 0, the LDA would have accessed location SC080, thereby setting
the soft switch that selects the second bank of RAM at location $D000
and enables it for reading.

Base
Address

$CO80
$C081
$C082
$C083
$C084
$C085
$C086
8CO87
$C083
$C089
$CO8A
3C08B
$CO8C
$C08D
SCOSE
SCOSF

1
$C090
$C091
3C092
$C093
$C094
2C095
$C096
$C097
$C098
$C099
$CO9A
$C09B
$C09C
5C09D
SCO9E
$CO9F

2
$COAD
$COAL
$C0A2
SCOA3
SCOA4
$C0A5
$COA6
SCOAT
$COAS
$COA9
SCOAA
SCOAB
SCOAC
SCOAD
SCOAE
$COAF

1/0 Programming Suggestions

Connector Number

3

$C0BO
$COB1
$C0B2
$COB3
3C0B4
$COB5
$C0BB6
$COB7
$COB8
$COB9
$COBA
5COBB
$COBC
$COBD
SCOBE
SCOBF

4

800C0O
3C0C1
5C0C2
5C0C3
$C0C4
$COC5
$C0C6
$COCT
SCOC8
$COCI
3COCA
$COCB
$Coce
$COCD
SCOCE
SCOCF

]
$CODO
SCOD1
$C0D2
$COD3
$COD4
$COD5
$CODG6
$CODT7
$COD8
$CODY
SCODA
$CODB
$CODC
$CODD
$CODE
$CODF

6
SCOED
SCOEL
$COE2
SCOE3
SCOE4
$COE5
$COE6
$COET
$COES
$COE9
SCOEA
SCOEB
SCOEC
SCOED
$COEE
$COEF

7

SCOF0
$COF1
SCOF2
SCOF3
SCOF4
$COF5
$COF6
$COFT7
3COF8
$COF9
$COFA
$COFB
$COFC
$COFD
$COFE
$COFF

137

RAM Addressing

i N i Ay

A program on a peripheral card can use the eight base addresses shown in
Table 6-3 to access the eight RAM locations allocated for its use. The
program does this by putting its slot number into the Y index register and
using indexed addressing mode with the base addresses. The base
addresses can be defined as constants because they are the same no matter
which slot the peripheral card occupies.

If you start with the correct slot number in the accumulator (by using the
example shown earlier), then the following example uses all eight RAM
locations allocated to the slot.

TAY

LDA $0478,Y
STA $04F8,Y
LDA $8578,Y
STA $85F8B,Y
LDA $8678,Y
STA $86F8,Y
LDA $8778,Y
STA $87F8,Y

AWarning You must be very careful when you have your peripheral-card program
store data at the base-address locations themselves since they are
temporary storage locations; the RAM at those locations is used by the
disk operating system. Always store the first byte of the ROM location of
the expansion slot that is currently active (§Cn) in location $7F8, and the
first byte of the ROM location of the slot holding the controller card for
the startup disk drive in location $5F8.

138 Chapter 6: Programming for Peripheral Gards

See “The Standard 1/0 Links” in Chapter 3.

COUT! and BASICOUT are described in
Chapter 3.

KEYIN and BASICIN are described in
Chapter 3.

Changing the Standard 1/O Links

£ AR e e A i B i A i3]

There are two pairs of locations in the Apple Ile that are used for controlling
character input and output. They are called the I/0 links. In a Apple Ile
running without a disk operating system, the I/0 links normally contain the
starting addresses of the standard input and output routines—KEYIN and
COUT!1 if the 80-column firmware is not active, BASICIN and BASICOUT if
the 80-column is active. If a disk operating system is running, one or both of
the links will hold the addresses of the operating system input and output
routines.

The link at locations $36 and $37 (decimal 54 and 55) is called CSW, for
character output switch. Individually, location $36 is called CSWL (CSW
Low) and location $37 is called CSWH (CSW High). CSW holds the starting
address of the subroutine the Apple Ile is currently using for
single-character output. This address is normally $FDF0, the address of
routine COUTI, or $C307, the address of BASICOUT.

When you issue a PR#n from BASIC or an n from the
Monitor, the Apple Ile changes this link address to the first address in the
ROM memory space allocated to slot number n. That address has the form
$Cn00. Subsequent calls for character output are thus transferred to the
program on the peripheral card. That program can use the instruction
sequences given above to find its slot number and use the [/0 and RAM
locations allocated to it. When it is finished, the program can execute an
RTS (return from subroutine) instruction to return control to the calling
program, or jump to the output routine COUT1 at location $FDF0 to display
the output character (which must be in the accumulator) on the screen,
then let COUT1 return to the calling program,

A similar link at locations $38 and $39 (decimal 56 and 57) is called KSW,
for keyboard input switch. Individually, location $38 is called KSWL (for
KSW low) and location $39 is called KSWH (KSW high). KSW holds the
starting address of the routine currently being used for single-character
input. This address is normally SFD1B, the starting address of KEYIN, or
$C305, the address of BASICIN.

[/0 Programming Suggestions 139

Important!

See the ProDOS Technical Reference
Manual for more about using link
addresses.

Refer to the section on input and output
link registers in the DOS Programmer’s
Manual and the ProDOS Technical
Reference Manual for further details.

When you issue an IN#n command from BASIC or an n from
the Monitor, the Apple Ile changes this link address to $Cn00, the beginning
of the ROM memory space that is allocated to slot number n. Subsequent
calls for character input are thus transferred to the program on the
accessory card. That program can use the instruction sequences given
above to find its slot number and use the [/0 and RAM locations allocated
to it. The program should put the input character, with its high bit set, into
the accumulator and execute an RTS instruction to return control to the
program that requested input.

When a disk operating system (ProDOS or DOS 3.3) is running, one or both
of the standard 1/0 links hold addresses of the operating system’s input and
output routines. The operating system has internal locations that hold the
addresses of the character input and output routines that are currently
active.

If a program that is running with ProDOS or DOS 3.3 changes the
standard link addresses, either directly or via IN# and PR# commands,
the operating system is disconnected.

To avoid disconnecting the operating system each time a BASIC program
initiates /0 to a slot, it should use either an IN# or a PR# command from
inside a PRINT statement that starts with a Control-D character. For
assembly-language programs, there is a DOS 3.3 subroutine call to use when
changing the link addresses. After changing CSW or KSW, the program calls
this subroutine at location $03EA (decimal 1002). The subroutine transfers
the link address to a location inside the operating system and then restores
the operating system address in the standard link location.

Other Uses of 1/O Memory Space

140

The portion of memory space from location $C000 through $CFFF (decimal
49152 through 53247) is normally allocated to I/0 and program memory on
the peripheral cards, but there are two other functions that also use this
memory space: the built-in self-test firmware and the 80-column display
firmware. The soft switches that control the allocation of this memory
space are described in the next section.

Chapter 6: Programming for Peripheral Cards

Figure 6-3. 1/0 Memory Map

CFFF
Internal
Peripheral
ROM and
Expansion
Peripheral
ROM
Expansion ROM
Internal
C800 ROM
Slot 7 ROM
C700
Slot 6 ROM
C600
Slot 5 ROM
C500
Slot 4 ROM
C400
Slot 3 ROM Internal ROM
C300
Slot 2 ROM
€200
Slot 1 ROM
C100
Internal Soft Switches and Peripheral 1/0
C000

Switching I/O0 Memory

e e

The built-in firmware uses two soft switches to control the allocation of the
1/0 memory space from $C000 to SCFFF. The locations of these soft
switches, SLOTCXROM and SLOTC3ROM, are given in Table 6-5.

Note: Like the display switches described in Chapter 2, these soft
switches share their locations with the keyboard data and strobe
functions. The switches are activated only by writing, and the states can
be determined only by reading, as indicated in Table 6-5.

Other Uses of I/0 Memory Space 141

142

Table 6-5. 1/0 Memory Switches

Location
Name Function Hex Decimal Notes
SLOTC3ROM Slot ROM at $C300 $CO0B 49163 -16373 Write

Internal ROM at $C300 $CO0A 49162 -16374 Write
Read SLOTC3ROM switch ~ $C017 49175 -16361 Read

SLOTCXROM Slot ROM at $Cx00 $C006 49159 -16377 Write
Internal ROM at $Cx00 $C007 49158 -16378 Write
Read SLOTCXROM switch ~ $C015 49173 -16363 Read

When SLOTC3ROM is on, the 256-byte ROM area at $C300 is available to a
peripheral card in slot 3, which is the slot normally used for a terminal
interface. If a card is installed in the auxiliary slot when you turn on the
power or reset the Apple [le, the SLOT3ROM switch is turned off. Turning
SLOTC3ROM off disables peripheral-card ROM in slot 3 and enables the
built-in 80-column firmware, as shown in Figure 6-3. The 80-column
firmware is assigned to slot-3 address space because slot 3 is normally used
with a terminal interface, so the built-in firmware will work with programs
that use slot 3 this way.

The bus and /0 signals are always available to a peripheral card in slot 3,
even when the 80-column hardware and firmware are operating. Thus it is
always possible to use this slot for any /0 peripheral that does nof have
built-in firmware.,

When SLOTCXROM is active (high), the I/0 memory space from $C100 to
SCTFF is allocated to the expansion slots, as described previously. Setting
SLOTCXROM inactive (low) disables the peripheral-card ROM and selects
built-in ROM in all of the I/0 memory space except the part from $C000 to
$COFF (used for soft switches and data I/0), as shown in Figure 6-3. In
addition to the 80-column firmware at $C300 and $C800, the built-in ROM
includes firmware that performs the self-test of the Apple Ile’s hardware.

Note: Setting SLOTCXROM low enables built-in ROM in all of the I/0
memory space (except the soft-switch area), including the $C300 space,
which contains the 80-column firmware.

Chapter 6: Programming for Peripheral Cards

Developing Cards for Slot 3

Original lle In the original Apple Ile firmware, the internal slot 3 firmware was
always switched in if there was an 80-column card (either 1K or 64K) in
the auxiliary slot. This means that peripheral cards with their own ROM
were effectively switched out of slot 3 when the system was turned on.

With the enhanced Apple Ile Monitor ROM, the rules are different. A
peripheral card in slot 3 is now switched in when the system is started up or
when is pressed if the card’s ROM has the following ID bytes:

$C305 = $38
$C307 = $18

The enhanced Apple Ile firmware requires that interrupt code be present in
the $C3 page (either external or internal). A peripheral card in slot 3 must
have the following code to support interrupts. After this segment, the code
continues execution in the internal ROM at $C400.

$C3F4: IRQDONE STA s$CO81 ;Read ROM, write RAM
JMP $FC7A ;Jump to $F8 ROM
IRQ
BIT scO01s5 ;slot or internal ROM
STA sC@ép7 s;force in internal ROM

When programming for cards in slot 3:
o You must support the AUXMOVE and XFER routines at $C312 and

$C314.
For more information about the $C300 o Don't use unpublished entry points into the internal $Cn00 firmware,
fifﬂl*’%f_ﬂ- Ise? l]l:_e Mnnifot}' PEOM list]ilng in because there is no guarantee that they will stay the same.
Appendix | of this manual. Especially note . ; : g)
the portion from SC300 through $C420. o If your peripheral card is a character /0 device, you must follow the

Pascal 1.1 firmware protocol, described in the next section.

Developing Cards for Slot 3 143

Pascal 1.1 Firmware Protocol

= ———e—— — = — —— ———-——— =}
The Pascal 1.1 firmware protocol was originally developed to be used with
Apple Pascal 1.1 programs. The protocol is followed by all succeeding
versions of Apple Il Pascal, and can be used by programmers using other
languages as well.

The Pascal 1.1 firmware protocol provides Apple Ile programmers with

o astandard way to uniquely identify new peripheral cards
o astandard way to address the firmware routines in peripheral cards,

Device Identification
Em—=—————0—a=a

The Pascal 1.1 firmware protecol uses four bytes near the beginning of the
peripheral card’s firmware to identify the peripheral card.

Address Value

SCs05 $38 (like the old Apple II Serial Interface Card)
$Cs07 $18 (like the old Apple II Serial Interface Card)
$Cs0B 801 (the generic signature of new cards)
$Cs0C Sci (the device signature)

The first hexadecimal digit, ¢, of the device signature byte identifies the
device class and the second hexadecimal digit, i, of the device signature
byte is a unique identifier for the card, used by some manufacturers for
their cards. Table 6-6 shows the device class assignments.

Table 6-6. Peripheral-Card Device-Class Assignment

Digit Device Class

$0 Reserved

$1 Printer

$2 Joystick or other X-Y input device
$3 Serial or parallel I/Q card

$4 Modem

$5 Sound or speech device

56 Clock

87 Mass storage device

$8 80-column card

$9 Network or bus interface

SA Special purpose (none of the above)
$B-F Reserved for future expansion
Chapter 6: Programuming for Peripheral Cards

For example, the Apple II Super Serial Card has a device signature of $31:
the 3 signifies that it is a serial or parallel /0 card, and the 1 is the
low-order digit supplied by Apple Technical Support.

Although version 1.1 of Pascal ignores the device signature, applications
programs can use them to identify specific devices.

I/O Routine Entry Points

peeseam e ———a——a = =22 4

Indirect calls to the firmware in a peripheral card are done through a
branch table in the card’s firmware. The branch table of 1/0 routine entry
points is located near the beginning of the Cs00 address space (s being the
slot number where the peripheral card is installed).

The branch table locations that Pascal 1.1 firmware protocol uses are as
follows:

Address Contains

$CsOD Initialization routine offset (required)
$CsOE Read routine offset (required)

$CsOF Write routine offset (required)

$Cs10 Status routine offset (required)

$Cs11 $00 if optional offsets follow; non-zero if not
$Cs12 Control routine offset (optional)

$Cs13 Interrupt handling routine offset (optional)

Notice that $Cs11 contains $00 only if the control and interrupt handling
routines are supported by the firmware. (For example, the SSC does not
support these two routines, and so location $Cs11 contains a non-zero
firmware instruction.) Apple II Pascal 1.0 and 1.1 do not support control and
interrupt requests, but such requests are implemented in Pascal 1.2 and
later versions and in ProDOS.

Pascal 1.1 Firmware Protocol 145

Table 6-7 gives the entry point addresses and the contents of the 65C02
registers on entry to and on exit from Pascal 1.1 I/0 routines.

Table 6-7. 1/0 Routine Offsets and Registers Under Pascal 1.1 Protocol

Addr. Offset for X Register Y Register A Register
$CsOD Initialization

On entry $Cs §s0

On exit Error code (unchanged) (unchanged)
$CsOE Read

On entry $Cs 5s0

On exit Error code (unchanged) Character read
$CsOF Write

On entry $Cs $s0 Char. to write

On exit Error code (unchanged) (unchanged)
$Cs10 Status

On entry $Cs $s0 Request (0 or 1)

On exit Error code (changed) (unchanged)

Interrupts on the Enhanced Apple lie

For more about interrupt support in
ProDOS, see the ProDOS Technical
Reference Manual.

For information about interrupt handling
with Apple Pascal 1.2, see the Device and
Interrupt Support Tools Manual which
is part of the Apple I Device Support Tools
package (A2W0014).

.
146

The original Apple lle offered little firmware support for interrupts. The
enhanced Apple Ile's firmware provides improved interrupt support, very
much like the Apple Ilc’s interrupt support. Neither machine disables
interrupts for extended periods.

Interrupts work on enhanced Apple Ile systems with an installed 80-column
text card (either 1K or 64K) or a peripheral card with interrupt-handling
ROM in slot 3. Interrupts are easiest to use with ProDOS and Pascal 1.2
because they have interrupt support built in. DOS 3.3 has no built-in
interrupt support.

The new interrupt handler operates like the Apple Ilc interrupt handler,
using the same memory locations and operating protocols. The main
purpose of the interrupt handler is to support interrupts in any memory
configuration. This is done by saving the machine’s state at the time of the
interrupt, placing the Apple in a standard memory configuration before
calling your program’s interrupt handler, then restoring the original state
when your program's interrupt handler is finished.

Chapter 6: Programming for Peripheral Cards

What Is an Interrupt?

An interrupt is a hardware signal that tells the computer to stop what it is
currently doing and devote its attention to a more important task. Print
spooling and mouse handling are examples of interrupt use, things that
don't take up all the time available to the system, but that should be taken
care of promptly to be most useful.

For example, the Apple Ile mouse can send an interrupt to the computer
every time it moves. If you handle that interrupt promptly, the mouse
pointer's movement on the screen will be smooth instead of jerky and
unevern.

Interrupt priority is handled by a daisy-chain arrangement using two pins,
INT IN and INT OUT, on each peripheral-card slot. As described in
Chapter 7, each peripheral card breaks the chain when it makes an
interrupt request. On peripheral cards that don’t use interrupts, these pins
should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: if this card
opens the connection between INT IN and INT OUT, or if there is no card in
this slot, interrupt requests from cards in slots 1 through 6 can't get
through. Similarly, slot 6 controls interrupt requests (IRQ) from slots 1
through 5, and so on down the line.

When the IRQ’ line on the Apple Ile’s microprocessor is activated (pulled
low), the microprocessor transfers control through the vector in locations
$FFFE-$FFFF. This vector is the address of the Monitor’s interrupt handler,
which determines whether the request is due to an external IRQ or a BRK
instruction and transfers control to the appropriate routine via the vectors
stored in memory page 3. The BRK vector is in locations $03F0-$03F1 and
ProDOS uses the IRQ vector in locations S03FE-$03FF. (See Table 4-11.)
The Monitor normally stores the address of its reset routine in the IRQ
vector; you should substitute the address of your program'’s
interrupt-handling routine.

Apple Pascal doesn’t use the BRK vector at $03F0-$03F1, but it does use the
IRQ vector at $03FE-$03FF.

Interrupts on the Enhanced Apple Ile 147

Interrupts on Apple Il Series Computers
e = e ===]

The interrupt handler built in to the enhanced Apple Ile’s firmware saves
the contents of the accumulator on the stack. (The original Apple Ile saves
the contents of the accumulator at location $45.) DOS 3.3, as well as the
Monitor, rely on the integrity of location $45, so this change lets both

DOS 3.3 and the Monitor continue to work with active interrupts on the
enhanced Apple Ile,

Original lle Since the built-in interrupt handler on the original Apple Ile uses location
$45 to save the contents of the accumulator, the operating system fails
when an interrupt occurs under DOS 3.3 on the original Apple Ile.

If you want to write programs that use interrupts while running on the
original Apple Ile, Apple II Plus, or Apple II, you must use either ProDOS
or Apple Il Pascal 1.2 (or later versions). Both these operating systems
give vou full interrupt support, even though these versions of the Apple II
don't include interrupt support in their firmware. (Versions of Pascal
before 1.2 do not work with interrupts enabled on an original Apple Ile.)

Some other manufacturer's hardware, such as co-processor cards, don't
work properly in an interrupting environment. If you are trying to develop
an application and encounter this problem, check with the manufacturer of
the card to see if a later version of the hardware or its software will operate
properly with interrupts active. You may not be able to use interrupts if an
interrupt-tolerant version isn't available.

Interrupts are effective only if they are enabled most of the time. Interrupts
that occur while interrupts are disabled will not be serviced.

Pascal, DOS 3.3, and ProDOS turn off interrupts while performing disk
operations because of the critical timing of disk read and write operations.
Some peripheral cards used in the Apple Ile disable interrupts while reading
and writing.

Original lle Although the enhanced Apple lle firmware never disables interrupts
during screen handling, the original Apple Ile periodically turns
interrupts off while doing 80-column screen operations. The effect is most
noticeable while the screen is scrolling.

148 Chapter 6; Programming for Peripheral Cards

important!

Important!

See the seetion “Developing Cards for
Slot 3" earlier in this chapter.

Don't use PR#6 to restart your Apple Ile while running ProDOS with
interrupts enabled since PR#6 doesn't disable interrupts. If you try it,
ProDOS will fail as it starts up since its interrupt handlers aren’t yet set
up. If you have to restart, use [CONTROL HRESET J, or make sure that your
program disables interrupts before it ends.

Rules of the Interrupt Handler

Unlike the Apple Ilc, the enhanced Apple Ile’s interrupt handling firmware
is not always switched in. Here are the reasons why this is so and the
implications that necessarily follow.

There is 7o part of memory in the Apple Ile that is always switched in.
Thus, there is no location for an interrupt handler that works for all
memory configurations. However, the $C3 page of firmware is present on all
systems that have 80-column text cards in their auxiliary slots, so it was
selected as the starting location of the built-in interrupt handling routine.

There are two factors that determine if the $C3 firmware is switched in and
therefore whether or not interrupts will be usable:

o Is there an 80-column text card in the auxiliary slot?

o If not, is there a peripheral card in slot 3 with built-in ROM with bytes
$C305 = $38 and $C307 = $18?

The Apple Ile's memory is switched according to the following rules at both
powerup and reset:

o If there is a ROM card in slot 3, but no text card in the auxiliary slot, the
firmware on the ROM card is switched in. This is necessary for Pascal to
work.

o If there is a text card in the auxiliary slot, but no ROM card in slot 3, the
internal $C3 firmware is switched in.

o If there is both a text card in the auxiliary slot and a ROM card in slot 3,
the firmware on the ROM card is switched in.

These rules mean that systems without 80-colurnn text cards in the
auxiliary slot do not have their internal $C3 firmware switched in. Such
systems cannot handle interrupts or breaks (the software equivalent of
interrupts). An application program must swap in the $C3 firmware both
on initialization and after reset to make interrupts function properly on
such a machine configuration. (ProDOS versions 1.1 and later do this for
you during startup.)

Interrupts on the Enhanced Apple lle 149

Another implication of the decision to have interrupt code in the $C3 page
affects the shared $C800 space in the Apple Ile. When the $C3 page is
referenced, the Ile hardware automatically switches in its own $C800
space. When the interrupt handler finishes, it restores the $C800 space to
the original owner using MSLOT (807F8). This means that it is very
important for a peripheral card to place its slot address in MSLOT to support
interrupts while code is being executed in its SC800 space.

Interrupt Handling on the 65C02 and 6502

[e e e S SR W e]
There are three possible conditions that will allow interrupts on the 65C02
and 6502:

o The IRQ line on the microprocessor is pulled low after a CLI instruction
has been used (interrupts are not masked). This is the standard
technique that devices use when they need immediate attention.

o The microprocessor executes a break instruction (BRK = opcode $00).

o A non-maskable interrupt (NMI) occurs. The microprocessor services
this interrupt whether or not the CLI instruction has been used. An NMI
is completely independent of the interrupts discussed in this manual.

The microprocessor saves the current program counter and status byte on
the stack when an interrupt occurs and then jumps to the routine whose
address is stored in $FFFE and $FFFF. The sequence of operations
performed by the microprocessor is as follows:

1. It finishes executing the current instruction if an IRQ is encountered. (If
a BRK instruction is encountered, the current instruction is already
finished.)

It pushes the high byte of the program counter onto the stack.
It pushes the low byte of the program counter onto the stack.
It pushes the processor status byte onto the stack.

It executes a JMP ($FFFE) instruction.

il o

The Interrupt Vector at SFFFE

Three separate regions of memory contain address $FFFE in an Apple Ile
with an Extended 80-Column Text Card: the built-in ROM, the
bank-switched memory in main RAM, and the bank-switched memory in
auxiliary RAM. The vector at SFFFE in the ROM points to the built-in
interrupt handling routine. You must copy the ROM's interrupt vector to the
other banks yourself if you plan to use interrupts with the bank-switched
memory switched in,

Chapter 6: Programming for Peripheral Cards

The Built-in Interrupt Handler

The enhanced Apple Ile's built-in interrupt handler records the computer’s
current memory configuration, then sets the computer's memory
configuration to a standard state so that your program’s interrupt handler
always begins running in the same memory configuration.

Next the built-in interrupt handler checks to see if the interrupt was caused
by a break instruction, and handles it as just described under “Interrupt
Handling on the 65C02 and 6502.” If it was not a break, it passes control to
the interrupt handling routine whose address is stored at $3FE and $3FF of
main memory. Normally, that would be the operating system’s interrupt

Interrupt handler installation is described ~ handler, unless you have installed one of your own.

in the ProDOS Technical Reference .. . oy
Manual and the Device and]‘llIE?‘?"i&]}f After y()ur program.s lnterrupt- handler returns (Wlth an RTI), the bul[t‘ln

Support Tools Manual, which is part of interrupt handler restores the memory configuration, and then does another

the Apple Ile Device Support Tools package RTI to return to where it was when the interrupt occurred. Figure 6-4

(A2W0014). illustrates this entire process. Each of these steps is explained later in this
chapter.

Figure 6-4. Interrupt-Handling Sequence

Interrupted
Program Processor Built-in Handler User’s Handler
Program —® Push Address

Push Status
JMP ($FFFE) — Save old and set new
memory configuration

If BRK, then go to break
handler (SFA4T).

Our interrupt?
NO: Push Address
Push Status
JMP (83FE) — Handle interrupt

Y

YES: Handle it.

Restore memory <€—— RTI
configuration

Pull Status <———RTI
Program <€—— Pull Address

Interrupts on the Enhanced Apple Ile 161

Important!

Saving the Apple lle’s Memory Configuration

The built-in interrupt handler saves the Apple Ile’s memory configuration
and then sets it to a known state according to these rules:

o Text Page 1 is switched in (PAGE2 off) so that main screen holes are
accessible if 80STORE and PAGE2 are on.

o Main memory is switched in for reading (RAMRD off).

o Main memory is switched in for writing (RAMWRT off).

o $D000-$FFFF ROM is switched in for reading (RDLCRAM off).
o Main stack and zero page are switched in (ALTZP off).

o The auxiliary stack pointer is preserved, and the main stack pointer is
restored. (See the next section, “Managing Main and Auxiliary Stacks.”)

Because main memory is switched in, all memory addresses used later in
this chapter are in main memory unless otherwise specified.

Managing Main and Auxiliary Stacks
[e == ——————=———]

Apple has adopted a convention that allows the Apple Ile to be run with two
separate stack pointers since the Apple Ile with an Extended 80-Column
Text Card has two stack pages. Two bytes in the auxiliary stack page are
used as storage for inactive stack pointers: $0100 for the main stack pointer
when the auxiliary stack is active, and $0101 for the auxiliary stack pointer
when the main stack is active.

When a program using interrupts switches in the auxiliary stack for the
first time, it must place the value of the main stack pointer at $0100 (in the
auxiliary stack) and initialize the auxiliary stack pointer to $FF (the top of
the stack). When it subsequently switches from one stack to the other, it
must save the current stack pointer before loading the pointer for the other
stack.

The current stack pointer is stored at $0101, and the main stack pointer is
retrieved from $0100 when an interrupt occurs while the auxiliary stack is
switched in. Then the main stack is switched in for use. The stack pointer
is restored to its original value after the interrupt has been handled.

Chapter 6: Programming for Peripheral Cards

® & % *

~N o wom

16

important!

The built-in XFER routine does not support this procedure. If you are

using XFER to swap stacks, vou must use code like the following to set up

the stack pointers and stack.

This example transfers control from a code segment running
using the main stack to one running using the aux stack.

XFERALT

PHP
PLA
SEI
TSX
STA
STX
LDX
TXS
PHA
PLP

LDA
STA
LDA
STA

SETALTZP
$180
$101

#DESTL
$3ED
#DESTH
$3EE

SEC/CLC

BIT
JMP

STX
LDX

STA SETSTDZP

CLV

RTS
XFER

$181
$188

ipreserve interrupt status in A
;jdisable interrupts
;jsave main stack pointer at $188
jand swap zero pages

snow restore aux stack pointer

;and interrupt status

;set destination address

;set direction of transfer
;V=1 for alt zero page (RTS=$68)
jdo transfer

To transfer control the other direction, change the following lines

;V=0 for main zp

Interrupts on the Enhanced Apple Ile

154

AWarning

The User’s Interrupt Handler at $3FE

E=—-—_—-——=——- -, - - — |

If your program has an interrupt handler, it must place the entry address of
that handler at $03FE. After it sets the machine to a standard state, the Ile’s
internal interrupt handler transfers control to the routine whose address is
in the vector at S03FE.

It is very important for a peripheral card to place its slot address in MSLOT
to support interrupts whenever it is executing code in its $C800 space.
Whenever the $C3 page is referenced, the Ile automatically switclies in its
own $C800 ROM space. When the interrupt handler finishes, it restores the
$C800 space to the original owner using MSLOT ($07F8).

| Be careful to install interrupt handlers according to the rules of the
operating system that you are using. Placing the address of your
program's interrupt handler at $03FE disconnects the operating system’s
| interrupt handler.

The $03FE interrupt handler must do these things:

1. Verify that the interrupt came from the expected source.
2. Handle the interrupt as desired.

3. Clear the appropriate interrupt soft switch.

4. Return with an RTL

Here are some things to remember if you are dealing with programs that
must run in an interrupt enviroment:

o There is no guaranteed maximum response time for interrupts because
the system may be doing a disk operation that lasts for several seconds.

o Once the built-in interrupt handler is called, it takes at least 150 to
200 microseconds for it to call your interrupt handling routine. After your
routine returns, it takes 40 to 140 microseconds to restore memory and
return to the interrupted program.

o If memory is in the standard state when the interrupt occurs, the total
overhead for interrupt processing is about 150 microseconds less than if
memory is in the worst state. (The worst state is one that requires the
most work to set up for: 80STORE and PAGE2 on; auxiliary memory
switched in for reading and writing; bank-switched memory page 2 in the
auxiliary bank switched in for reading and writing; and internal $Cn00
ROM switched in).

o Interrupt overhead will be greater if your interrupt handler is installed
through an operating system'’s interrupt dispatcher. The length of delay
depends on the operating system, and on whether the operating system
dispatches the interrupt to other routines before calling yours.

Chapter 6: Programming for Peripheral Cards

Handling Break Instructions
Lo e N e S

The 65C02 treats a break instruction (BRK, opcode $00) just like a hardware
interrupt. After the interrupt handler sets the memory configuration, it
checks to see if the interrupt was caused by a break (bit 4 of the status byte
is set), and if it was, jumps to a break handling routine. This routine saves
the state of the computer at the time of the break as shown in Table 6-8.

Table 6-8. BRK Handler Information

Information Location
Program counter (low byte) $3A
Program counter (high byte) $3B
Encoded memory state $44
Accumulator $45
X register $46
Y register $47
Status register $48

Finally the break routine jumps to the routine whose address is stored at
$3F0 and $3F1.

The encoded memory state in location $44 is interpreted as shown in
Table 6-9.

Table 6-9. Memory Configuration Information

Bit7T=1 if auxiliary zero page and auxiliary stack are switched in
Bit6=1 if 80STORE and PAGEZ both on

Bits=1 if auxiliary RAM switched in for reading

Bit4=1 if auxiliary RAM switched in for writing

Bit3=1 if bank-switched RAM being read

Bit2=1 if bank-switched $D000 Page 1 switched in and RAMREAD set
Bitl=1 if bank-switched $D000 Page 2 switched in and RAMREAD set
Bit0=1 if internal Cs ROM was switched in (e only)

—
7

Interrupts on the Enhanced Apple Ile

Interrupt Differences: Apple lle Versus Apple lic

I ===~ =2 4

If you are writing software for both the Apple Ile and the Apple Ilc, you
should know that there are several important differences between the
interrupts on the enhanced Apple Ile and those on the Apple Ilc. They are

o In the Ilc ROM, $FFFE points to $C803; in the Ile ROM, to $C3FA. To
ensure that the proper interrupt vectors are placed into the Language
Card RAM space, always copy them to the RAM from the ROM. (When
you initialize built-in devices on the Ilc, these vectors are automatically
updated).

o There is no shared $C800 ROM in the Ilc. Peripheral cards share this
space in the Ile. Thus it is crucial that the slot address of the peripheral
card using the $C800 space is stored in MSLOT ($07F8). When the
interrupt handler goes to the internal $C3 space, the Ile hardware
switches in its own $C800 space. When the interrupt handler finishes, it
restores the $C800 space to the slot whose address is in MSLOT.

o The Ilc $C800 space is always switched in. The enhanced Ile’s interrupt
handler preserves the state of the $C800-space switch and then switches
in the slot 1/0 space. This means that when restoring the state of the
system using the value placed in location $44, break handling routines must
restore one more value on the Apple Ile than on the Apple Ilc.

Chapter 6: Programming for Peripheral Cards

Hardware Implementation

Most of this manual describes functions—what the Apple Ile does. This
chapter, on the other hand, describes objects: the pieces of hardware the
Apple Ile uses to carry out its functions. If you are designing a piece of
peripheral hardware to attach to the Apple Ile, or if you just want to know
more about how the Apple [le is built, you should study this chapter.

Environmental Specifications

The Apple Ile is quite sturdy when used in the way it was intended.
Table 7-1 defines the conditions under which the Apple Ile is designed to
funetion properly.

Table 7-1. Summary of Environmental Specifications

Operating Temperature: 0°to 45° C (30° to 115° F)
Relative Humidity: 5% 10 86%
Line Voltage: 107 to 132 VAC

You should treat the Apple Ile with the same kind of care as any other
electrical appliance. You should protect it from physical violence, such as
hammer blows or defenestration. You should protect the mechanical
keyboard and the electrical connectors inside the case from spilled liquids,
especially those with dissolved contaminants, such as coffee and cola
drinks.

In normal operation, enough air flows through the slots in the case to keep
the insides from getting too hot, although some of the parts inside the
Apple Ile normally get rather warm to the touch. If you manage to overheat
your Apple Ile, by blocking the ventilation slots in the top and bottorm for
example, the first symptom will be erratic operation. The memory devices
in the Apple Ile are sensitive to heat: when they get too hot, they
occasionally change a bit of data. The exact result depends on what kind of
program you are running and on just which bit of memory is affected.

Chapter 7: Hardware Implementation

The Power Supply

_e———==x=rm——|g-— = e e s e e
The power supply in the Apple Ile operates on normal household AC power
and provides enough low-voltage electrical power for the built-in electronics
plus a full complement of peripheral cards, including disk controller cards
and communications interfaces. The basic specifications of the power
supply are listed in Table 7-2.

The Apple Ile’s power cord should be plugged into a three-wire 110- to
120-volt outlet. You must connect the Apple Ile to a grounded outlet or to a
good earth ground. Also, the line voltage must be in the range given in
Table 7-2. If you try to operate the Apple Ile from a power source with more
than 140 volts, you will damage the power supply.

Table 7-2. Power Supply Specifications

Line voltage: 107V to 132V AC
Maximum power consumption: 60W continuous
80W intermittent*
Supply voltages: +5V £3%
+11.8V +6%
-5.2V £ 10%
-12V £10%
Maximum supply currents: +5V: 2.5A

+12V: 1.5A continuous,
2.5A intermittent®

-5V: 260mA

-12V: 250mA

Maximum case temperature: 55° C (130° F)

* Intermittent operation: The Apple [le can safely operate for up to twenty minutes at the
higher load if followed by at least ten minutes at normal load.

The Power Supply 159

The Apple Ile uses a custom-designed switching-type power supply. It is
small and lightweight, and it generates less heat than other types of power
supplies do.

The Apple Ile’s power supply works by converting the AC line voltage to DC
and using this DC voltage to power a variable-frequency oscillator. The
oscillator drives a small transformer with many separate windings to
produce the different voltages required. A circuit compares the voltage of
the +5-volt supply with a reference voltage and feeds an error signal back
to the oscillator circuit. The oscillator circuit uses the error signal to control
the frequency of its oscillation and keep the output voltages in their normal
ranges.

The power supply includes circuitry to protect itself and the other
electronic parts of the Apple Ile by turning off all four supply voltages
whenever it detects one of the following malfunctions:

o any supply voltage short-circuited to ground
o the power-supply cable disconnected
o any supply voltage outside the normal range

Any time one of these malfunctions occurs, the protection circuit stops the
oscillator, and all the output voltages drop to zero. After about half a second,
the oscillator starts up again. If the malfunction is still occurring, the
protection circuit stops the oscillator again. The power supply will continue
to start and stop this way until the malfunction is corrected or the power is
turned off.

AWarning If you think the power supply is broken, do not attempt to repair it
yourself. The power supply is in a sealed enclosure because some of its
circuits are connected directly to the power line. Special equipment is
needed to repair the power supply safely, so see your authorized Apple
dealer for service.

160 Chapter T: Hardware Implementation

The Power Connector

The cable from the power supply is connected to the main circuit board by a
six-pin connector with a strain-relief catch. The connector pins are
identified in Table 7-3 and Figure 7-13d.

Table 7-3. Power Connector Signal Specifications

Pin Number Name Description

1,2 Ground Common electrical ground
3 +5V +5V from power supply

4 +12V +12V from power supply
5 -12V -12V from power supply

6 -5V -5V from power supply

The 65C02 Microprocessor

See Appendix A for a description of the
65002's instruction set and electrical
characteristics.

The enhanced Apple Ile uses a 65C02 microprocessor as its central
processing unit (CPU). The 65C02 in the Apple Ile runs at a clock rate of
1.023 MHz and performs up to 500,000 eight-bit operations per second. You
should not use the clock rate as a criterion for comparing different types of
microprocessors. The 65C02 has a simpler instruction cycle than most other
microprocessors and it uses instruction pipelining for faster processing. The
speed of the 65C02 with a IMHz clock is equivalent to other types of
microprocessors with clock rates up to 2.5MHz.

The 656C02 has a sixteen-bit address bus, giving it an address space of 64K
(2 to the sixteenth power or 656536) bytes. The Apple Ile uses special
techniques to address a total of more than 64K: see the sections
“Bank-Switched Memory” and “Auxiliary Memory and Firmware” in
Chapter 4 and the section “Switching [/0 Memory” in Chapter 6.

The 65C02 Microprocessor 161

Table 7-4. 65C02 Microprocessor Specifications

Type: 65C02

Register Complement: 8-bit Accurnulator (A)
8-bit Index Registers (X)Y)
8-bit Stack Pointer (S)
8-bit Processor Status (P)
16-bit Program Counter (PC)

Data Bus: Eight bits wide

Address Bus: Sixteen bits wide

Address Range: 65,536 (64K)

Interrupts: IRQ (maskable)
NMI (non-maskable)
BRK (programmed)

Operating Voltage: +5V (= 5%)

Power Dissipation; 5mW (at 1 MHz)

65C02 Timing

S cia=—=—=anh]

The operation of the Apple lle is controlled by a set of synchronous timing
signals, sometimes called clock signals. In electronics, the word clock is
used to identify signals that control the timing of circuit operations. The
Apple Ile doesn't contain the kind of clock you tell time by, although its
internal timing is accurate enough that a program running on the Apple Ile
can simulate such a clock.

The frequency of the oscillator that generates the master timing signal is
14.31818 MHz. Circuitry in the Apple Ile uses this clock signal, called 14M,
to produce all the other timing signals. These timing signals perform two
major tasks: controlling the computing functions, and generating the video
display. The timing signals directly involved with the operation of the
65C02 (and 6502 on the original version of the Apple le) are described in
this section. Other timing signals are desecribed in this chapter in the
sections “RAM Addressing,” “Video Display Modes,” and “The Expansion
Slots.”

The main 656C02 timing signals are listed in Table 7-b, and their
relationships are diagrammed in Figure 7-1. The 65C02 clock signals are ¢1
and ¢0, complementary signals at a frequency of 1.02273 MHz. The

Apple Ile signal named ¢0 is equivalent to the signal called ¢2 in the
hardware manual. (It isn't identical: it's a few nanoseconds early.)

Chapter 7: Hardware Implementation

Table 7-5. 65C02 Timing Signal Descriptions

Signal
Name

14M
VIDTM
Q3

0
¢l

Description
Master oscillator, 14.318 MHz; also 80-column dot clock
Intermediate timing signal and 40-column dot clock

Intermediate timing signal, 2.0456 MHz with asymmetrical duty
cycle

Phase 0 of 65C02 clock, 1.0227 MHz; complement of ¢1
Phase 1 of 65C02 clock, 1.0227 MHz; complement of ¢0

Figure 7-1. 65C02 Timing Signals

280 ns

210 s

" I | CPU Phase |

490 ns -

¢1—,_ I I

ADDR
From 65C02

S— '-—140 ns (Max.) 30 ns (Min.)—={ “—

DATA From 65C02 (Write)

A
60 ns (Mm)
100 ns (Max.) I.._
X

50 ns (Min.) —-| e

DATA to 65C02 (Read) X X

10 ns (Min.) ——{ |~—

The 65C02 Microprocessor 163

The operations of the 65C02 are related to the clock signals in a simple way:
address during ¢1, data during ¢0. The 65C02 puts an address on the
address bus during ¢1. This address is valid not later than 140 nanoseconds
after ¢1 goes high and remains valid through all of ¢0. The 65C02 reads or
writes data during ¢0. If the 65C02 is writing, the read /write signal is low
during 0 and the 65C02 puts data on the data bus. The data is valid not
later than 75 nanoseconds after ¢0 goes high. If the 65C02 is reading, the
read/write signal remains high. Data on the data bus must be valid no later
than 50 nanoseconds before the end of ¢0.

The Custom Integrated Circuits

Most of the circuitry that controls memory and I/0 addressing in the

Apple Ile is in three custom integrated circuits called the Memory
Management Unit (MMU), the Input/Output Unit (I0U), and the
Programmed Array Logic device (PAL). The soft switches used for
controlling the various 1/0 and addressing modes of the Apple Ile are
addressable flags inside the MMU and the I0U. The functions of these two
devices are not as independent as their names suggest; working together,
they generate all of the addressing signals. For example, the MMU generates
the address signals for the CPU, while the I0U generates similar address
signals for the video display.

The Memory Management Unit

The circuitry inside the MMU implements these soft switches, which are
described in the indicated chapters in this manual:

o Page 2 display (PAGE2): Chapter 2

o High resolution mode (HIRES): Chapter 2

o Store to 80-column card (80STORE): Chapter 2

o Select bank 2: Chapter 4

o Enable bank-switched RAM: Chapter 4

o Read auxiliary memory (RAMRD): Chapter 4

o Write auxiliary memory (RAMWRT): Chapter 4

o Auxiliary stack and zero page (ALTZP): Chapter 4

o Slot ROM for connector #3 (SLOTC3ROM): Chapter 6
o Slot ROM in I/0 space (SLOTCXROM): Chapter 6

Chapter 7: Hardware Implementation

The 64K dynamic RAMs used in the Apple Ile use a multiplexed address, as
described later in this chapter in the section “Dynamic-RAM Timing.” The
MMU generates this multiplexed address for memory reading and writing
by the 656C02 CPU. The pinouts and signal descriptions of the MMU are
shown in Figure 7-2 and Table 7-6.

Figure 7-2. The MMU Pinouts Table 7-6. The MMU Signal Descriptions
Pin
GND | 1 o 40 | Al Number Name Description
A0 2 39 | A2
0| 3 38 | A3 1 GND Power and signal common
Q| 4 3T A 2 A0 65C02 address input
PRAS" | 5 36 | Ab 3 #0 Clock phase 0 input
RAO | 6 35 | AB 4 Q3 Timing signal input
gﬁé g gg :; b PRAS’ Memory row-address strobe
RA3 | 9 2 | A9 6-13 RAQ-RAT Multiplexed address output
RA4 | 10 31 | AL0 14 R/W’ 65C02 read-write control signal
RA5 | 11 30 | A1l 15 INH’ Inhibits main memory (tied to +5 V)
RAG | 12 o9 | A12 16 DMA’ Controls data bus for DMA transfers
RAT | 13 28 | Al13 It EN80’ Enables auxiliary RAM
R/W | 14 27 | Al4 18 KBD’ Enables keyboard data bits 0-6
INH" | 15 2 | Alb 19 ROMEN2’ Enables ROM (tied to ROMEN1")
DMA” | 16 25 | +5V 20 ROMEN1 Enables ROM (tied to ROMEN2")
Eggg %g g; gmw 21 MD7 State of MMU flags on data bus bit 7
FOMERL | &, = e 24 Cxxx Enables peripheral-card memory
25 +bV Power
26-40 Alb-Al 65C02 address input
The Custom Integrated Circuits 165

The Input/Output Unit

The circuitry inside the Input/Output Unit (I0U) implements the following
soft switches, all described in Chapter 2 in this manual:

o Page 2 display (PAGE2)

o High resolution mode (HIRES)

o Text mode (TEXT)

o Mixed mode (MIXED)

o 80-column display (80COL)

Text display mode select (ALTCHAR)
o Any-key-down

o Annunciators

o Vertical blanking (VBL)

The 64K dynamic RAMs used in the Apple Ile require a multiplexed
address, as described later in this chapter in the section “Dynamic-RAM
Timing.” The I0U generates this multiplexed address for the data transfers
required for display and memory refresh during clock phase 1. The way this
address is generated is described later in this chapter in the section “Display
Address Mapping.” The pinouts and signal descriptions for the IOU are
shown in Figure 7-3 and Table 7-7.

O

Chapter 7: Hardware Implementation

. Figure 7-3. The 10U Pinouts

Table 7-7. The 10U Signal Descriptions

GND
GR

SEGA

. SEGB
vC

BOVID/

CASSO

l SPKR

MDT
ANO

Nl

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32
10 31
11 30
12 29
13 28
14 27
16 26
16 25
17 24
18 23
19 22
20 21

HO
SYNC’
WNDW’
CLRGAT
RALY
RAY’
VID6
VID7
KSTRB
AKD

Pin
Number

1

3

The Custom Integrated Circuits

Name

GND
GR
SEGA

SEGB

VC

80VID’
CASSO
SPKR
MD7
ANO-AN3
R/W’
RESET’

RAQ-RAT
PRAS’

AKD

KSTRB
VIDD7,VIDD6
RA9" RA10
CLRGAT’
WNDW’
SYNC’

HO

Description

Power and signal common

Graphics mode enable

In text mode, works with VC (see pin 5) and SEGB
to determine character row address

In text mode, works with VC (see pin 5) and SEGA;
in graphics mode, selects high-resolution when low,
low-resolution when high

Display vertical counter bit: in text mode, SEGA,
SEGB and VC determine which of the eight rows of
a character's dot pattern to display; in
low-resolution, selects upper or lower block defined
by a byte.

80-column video enable

Cassette output signal

Speaker output signal

Internal I0U flags for data bus (bit 7)3
Annunciator outputs

65C02 read-write control signal

Power on and reset output

Nothing is connected to this pin.

Video refresh multiplexed RAM address (phase 1)
Row-address strobe (phase 0)

Master clock phase ()

Intermediate timing signal

Power

Address bit 6 from 65C02

1/0 address enable

Any-key-down signal

Keyboard strobe signal

Video display data bits

Video display control bits

Color-burst gate (enable)

Display blanking signal

Display synchronization signal

Display horizontal timing signal (low bit of
character counter)

167

The PAL Device

A Programmed Array Logic device, type PAL 16R8, generates several timing
and control signals in the Apple Ile. These signals are listed in Table 7-8.
The PAL pinouts are given in Figure 7-4.

Figure 7-4. The PAL Pinouts Table 7-8. The PAL Signal Descriptions
N Pin
4M | 1 20 | +5V Number Name Description
™ 2 19 | PRAS’
358M | 3 18 | (nc) 1 14M 14.31818 MHz master timing signal
HO | 4 17 | PCAS’ 2 ™ 7.15909 MHz timing signal
VIDT | 5 16 | @3 3 3.58M 3.579545 MHz timing signal
SEGB | 6 15 | @0 4 HO Horizontal video timing signal
GR {7 4] ol 5 VID7 Video data bit 7
BAMEN } 4 13 | ViD7M 6 SEGB Video timing signal
80VID 9 12 | LDPS 7 GR Vit disilay o
oND | 10 1 | ENTMG play graphics-mode enable

8 RAMEN’ RAM enable (CAS enable)
9 80VID’ Enable 80-column display mode
10 GND Power and signal common
11 ENTMG Enable master timing
12 LDPS’ Video shift-register load enable
13 VIDTM Video dot clock, 7 or 14 MHz
14 ol Phase 1 system clock
156 @0 Phase () system clock
16 Q3 Intermediate timing and strobe signal
17 PCAS’ RAM column-address strobe
18 N.C. ('This pin is not used.)
19 PRAS’ RAM row-address strobe
20 +5V Power

Memory Addressing

N S Se e — Ei e, ~ S i R L St S ke il A b o s
The Apple Ile’s microprocessor can address 65,536 locations. The Apple Ile
uses this entire address space, and then some: some areas in memory are
used for more than one function. The following sections describe the
memory devices used in the Apple Ile and the way they are addressed.
Input and output also use portions of the memory address space; refer to the
section “Peripheral-Card Memory Spaces” in Chapter 6 for information.

168 Chapter T: Hardware Implementation

Figure 7-5. The 2364 ROM Pinouts

+5V
Al2
AT

GND

Q0 =3 O O o GO DD —

+5V
+5V
+5V
A8
A9
All
ROMENX"
AlD
CE’
MD7
MD6
MD5
MD4
MD3

Figure 7-6. The 2316 ROM Pinouts

GND

0O =3 O O W QO BO—

(

24
23
22
21

MD4
MD3

Figure 7-7. The 2333 ROM Pinouts

VID4
VID3
VID2
VID1
VIDO
Ve
SEGB
SEGA
DO

D1

D2
GND

A .
1 24 | +5V
2 23 | VID5
3 22 | RAS
4 21 | GR
b 20 | WNDW’
6 19 | RAID
7 18 | ENVID
8 17 | D7
9 16 | D6
10 15 | D5
11 14 | D4
12 13 | D3

ROM Addressing

f—e =
In the Apple Ile, the following programs are permanently stored in two type
2364 8K by 7-bit ROMs (read-only memory):

o Applesoft editor and interpreter
o System Monitor

o 80-column display firmware

o self-test routines

These two ROMs are enabled by two signals called ROMEN1 and ROMENZ2.
The ROM enabled by ROMEN1, sometimes called the Diagnostics ROM,
occupies the memory address space from $C100 to $DFFF. The address
space from $C300 to $C3FF and from $C800 to $CFFF contains the
80-column display firmware. Those address spaces are normally assigned to
ROM on a peripheral card in slot 3; for a discussion of the way the
80-column firmware overrides the peripheral card, see the section “Other
Uses of I/0 Memory Space” in Chapter 6. The pinouts of the 2364 ROMs are
given in Figure 7-5.

Two other portions of the Diagnostics ROM, addressed from $C100 to $C2FF
and from $C400 to $CTFF, contain the built-in self-test routines. These
address spaces are normally assigned to the peripheral cards; when the
self-test programs are running, the peripheral cards are disabled.

The remainder of the Diagnostics ROM, addressed from $D000 to $DFFF,
contains part of the Applesoft BASIC interpreter.

The ROM enabled by ROMENZ, sometimes called the Monitor ROM,
occupies the memory address space from $E000 to $FFFF. This ROM
contains the rest of the Applesoft interpreter, in the address space from
$E000 to SEFFF, and the Monitor subroutines, from $F000 to $FFFF.

The other ROMs in the Apple Ile are a type 2316 ROM used for the keyboard
character decoder and a type 2333 ROM used for character sets for the video
display. This 2333 ROM is rather large because it includes a section of
straight-through bit-mapping for the graphics modes. This way, graphics
display video can pass through the same circuits as text without additional
switching circuitry. The 2316's pinout is given in Figure 7-6, and the 2333's
pinout is given in Figure 7-7.

Memory Addressing 169

Figure 7-8. The 64K RAM Pinouts RAM Addressing

T e o e
7 The RAM (programmable) memory in the Apple [le is used both for program
16 | GND and data storage and for the video display. The areas in RAM that are used
iz gl?)sx for the display are accessed both by the 65C02 microprocessor and by the
13 | Rl video display circuits. In some computers, this dual access results in
RA4 addressing conflicts (cycle stealing) that can cause temporary dropouts in
11 | RA3 the video display. This problem does not occur in the Apple Ile, thanks to

18 gﬁg the way the microprocessor and the video circuits share the memory.

+6V
MDx
R/W
RAS’
RA7
RA5
RAG
+5V

GO ~3 T O W QO DD e
—t
(]

The memory circuits in the Apple Ile take advantage of the two-phase
system clock described earlier in this chapter in the section “65C02 Timing”
to interleave the microprocessor memory accesses and the display memory
accesses so that they never interfere with each other. The microprocessor
reads or writes to RAM only during 40, and the display circuits read data
only during ¢1.

Dynamic-RAM Refreshment

The image on a video display is not permanent; it fades rapidly and must be
refreshed periodically. To refresh the video display, the Apple Ile reads the
data in the active display page and sends it to the display. To prevent
visible flicker in the display, and to conform to standard practice for
broadeast video, the Apple Ile refreshes the display sixty times per second.

The dynamic RAM devices used in the Apple [le also need a kind of refresh,
because the data is stored in the form of electric charges which diminish
with time and must be replenished every so often. The Apple Ile is designed
so that refreshing the display also refreshes the dynamic RAMs. The next
few paragraphs explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by the
structure of the devices themselves. The individual data cells in each RAM
device are arranged in a rectangular array of rows and columns. When the
device is addressed, the part of the address that specifies a row is presented
first, followed by the address of the column. Splitting information into parts
that follow each other in time is called multiplexing. Since only half of the
address is needed at one time, multiplexing the address reduces the number
of pins needed for connecting the RAMs.

Different manufacturers’ 64K RAMs have cell arrays of either 128 rows by
512 columns or 256 rows by 256 colurans. Only the row portion of the
address is used in refreshing the RAMs.

170 Chapter 7; Hardware Implementation

Now consider how the display is refreshed. As described later in this
chapter in the section “The Video Counters,” the display circuitry generates
a sequence of 8,192 memory addresses in high-resolution mode; in text and
low-resolution modes, this sequence is the 1,024 display-page addresses
repeated eight times. The display address cycles through this sequence

60 times a second, or once every 17 milliseconds. The way the low-order
address lines are assigned to the RAMs, the row address cycles through all
266 possible values once every two milliseconds. (See Figure 7-9.) This
more than satisfies the refresh requirements of the dynamic RAMs.

Table 7-9. RAM Address Multiplexing

Mux'd Row Column
Address Address Address
RAO AD A9

RAl Al Ab

RA2 A2 Al0
RA3 A3 All

RA4 Ad Al2
RA5 Ad Al3
RAG AT Al4
RAT A8 Alb

Dynamic-RAM Timing

The Apple Ile's microprocessor clock runs at a moderate speed, about
1.023 MHz, but the interleaving of CPU and display cycles means that the
RAM is being accessed at a 2 MHz rate, or a cycle time of just under

500 nanoseconds. Data for the CPU is strobed by the falling edge of ¢0, and
display data is strobed by the falling edge of ¢1, as shown in Figure 7-9.

Memory Addressing 171

Figure 7-9. RAM Timing Signals

v L LML UL L

T p—

W —

Lol L

CPU Phase L

¢ —

Video Phase | |

I ML ML

CAS’

MDO-MD7

|
AT

T, .

Chapter 7: Hardware [mplementation

The RAM timing looks complicated because the RAM address is
multiplexed, as described in the previous section. The MMU takes care of
multiplexing the address for the CPU cycle, and the I0U performs the same
function for the display cycle. The multiplexed address is sent to the RAM
ICs over the lines labelled RAO-RAT. Along with the other timing signals, the
PAL device generates two signals that control the RAM addressing:
row-address strobe (RAS) and column-address strobe (CAS).

Table 7-10. RAM Timing Signal Descriptions

Signal Name Description

@0 Clock phase 0 (CPU phase)

ol Clock phase 1 (display phase)

RAS Row-address strobe

CAS Column-address strobe

Q3 Alternate RAM/column-address strobe
RAO-RAT Multiplexed address bus

MDOQ-MD7 Internal data bus

The Video Display

e s e e e
The Apple Ile produces a video signal that creates a display on a standard
video monitor or, if you add an RF modulator, on a black-and-white or color
television set. The video signal is a composite made up of the data that is
being displayed plus the horizontal and vertical synchronization signals that
the video monitor uses to arrange the lines of display data on the screen.

Video Standards: Apple Ile’s manufactured for sale in the U.S.
generate a video signal that is compatible with the standards set by the
NTSC (National Television Standards Committee). Apple Ile’s
manufactured for sale in European countries generate video that is
compatible with the standard used there, which is called P.A.L. (for
phase alternating lines). This manual describes only the NTSC version of
the video circuits.

The Video Display 173

The display portion of the video signal is a time-varying voltage generated
from a stream of data bits, where a 1 corresponds to a voltage that generates
a bright dot, and a 0 to a dark dot. The display bit stream is generated in
bursts that correspond to the horizontal lines of dots on the video screen.
The signal named WNDW" is low during these bursts.

During the time intervals between bursts of data, nothing is displayed on
the screen. During these intervals, called the blanking intervals, the display
is blank and the WNDW" signal is high. The synchronization signals, called
sync for short, are produced by making the signal named SYNC’ low during
portions of the blanking intervals. The syne pulses are at a voltage
equivalent to blacker-than-black video and don't show on the screen.

The Video Counters

The address and timing signals that control the generation of the video
display are all derived from a chain of counters inside the 10U, Only a few
of these counter signals are accessible from outside the IOU, but they are all
important in understanding the operation of the display generation process,
particularly the display memory addressing described in the next section.

The horizontal counter is made up of seven stages: H0, H1, H2, H3, H4, H5,
and HPE’. The input to the horizontal counter is the 1 MHz signal that
controls the reading of data being displayed. The complete cycle of the
horizontal counter consists of 65 states. The six bits H0 through H5 count
normally from 0 to 63, then start over at 0. Whenever this happens, HPE’
forces another count with HO through H5 held at zero, thus extending the
total count to 65.

The I0U uses the forty horizontal count values from 25 through 64 in
generating the low-order part of the display data address, as described later
in this chapter in the section “Display Address Mapping.” The 10U uses the
count values from 0 to 24 to generate the horizontal blanking, the horizontal
sync pulse, and the color-burst gate.

Chapter 7: Hardware Implementation

When the horizontal count gets to 65, it signals the end of a line by
triggering the vertical counter. The vertical counter has nine stages: VA,
VB, VC, V0, V1, V2, V3, V4, and V5. When the vertical count reaches 262,
the IOU resets it and starts counting again from zero. Only the first 192
scanning lines are actually displayed; the IOU uses the vertical counts from
192 to 261 to generate the vertical blanking and sync pulse. Nothing is
displayed during the vertical blanking interval. (The vertical line count is
262 rather than the standard 262.5 because, unlike normal television, the
Apple Ile’s video display is not interlaced.)

Smooth Animation: Animation displays sometimes have an erratic
flicker caused by changing the display data at the same time it is being
displayed. You can avoid this on the Apple Ile by reading the
vertical-blanking signal (VBL) at location $C019 and changing display
data while VBL is low only (data value less than 128).

Display Memory Addressing
e D= — M=, =i ——u

As described in Chapter 2 in the section “Addressing Display Pages
Directly,” data bytes are not stored in memory in the same sequence in
which they appear on the display. You can get an idea of the way the
display data is stored by using the Monitor to set the display to graphics
mode, then storing data starting at the beginning of the display page at
hexadecimal $400 and watching the effect on the display. If you do this, you
should use the graphics display instead of text to avoid confusion: the text
display is also used for Monitor input and output.

If you want your program fto display data by storing it directly into the
display memory, vou must first transform the display coordinates into the
appropriate memory addresses, as shown in the section “Video Display
Pages” in Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary. They will
not (alas!) eliminate that necessity.

The address transformation that folds three rows of forty display bytes into
128 contiguous memory locations is the same for all display modes, so it is
described first. The differences among the different display modes are then
described in the section “Video Display Modes.”

The Video Display 176

The requirements of the RAM refreshing
are discussed earlier in this chapter in the
section “Dynamic-RAM Refreshment.”

176

Display Address Mapping

Consider the simplest display on the Apple Ile, the 40-column text mode. To
address forty columns requires six bits, and to address twenty-four rows
requires another five bits, for a total of eleven address bits. Addressing the
display this way would involve 2048 (2 to the eleventh power) bytes of
memory to display a mere 960 characters. The 80-column text mode would
require 4096 bytes to display 1920 characters. The leftover chunks of
memory that were not displayed could be used for storing other data, but
not easily, because they would not be contiguous.

Instead of using the horizontal and vertical counts to address memory
directly, the circuitry inside the 10U transforms them into the new address
signals described below. The transformed display address must meet the
following criteria:

o Map the 960 bytes of 40-columnn text into only 1024 bytes.

o Scan the low-order address to refresh the dynamic RAMs.
o Continue to refresh the RAMs during video blanking.

The transformation involves only horizontal counts H3, H4, and H5, and
vertical counts V3 and V4. Vertical count bits VA, VB, and VC address the
lines making up the characters, and are not involved in the address
transformation. The remaining low-order count bits, H0, H1, H2, V0, V1, and
V2 are used directly, and are not involved in the transformation.

The IOU performs an addition that reduces the five significant count bits to
four new signals called S0, S1, S2, and S3, where S stands for sum.

Figure 7-10 is a diagram showing the addition in binary form, with V3
appearing as the carry in and Hb appearing as its complement H5’.

A constant value of 1 appears as the low-order bit of the addend. The carry
bit generated with the sum is not used.

Table 7-11. Display Address Transformation

V3 Carry in
H5’ V3 H4 H3 Augend
V4 H5 V4 1 Addend
S3 S2 51 S0 Sum

Chapter 7: Hardware Implementation

If this transformation seems terribly obscure, try it with actual values. For
example, for the upper-left corner of the display, the vertical count is 0 and
the horizontal count is 24: HO, H1, H2, and H5 are 0's and H3, and H4 are 1's.
The value of the sum is 0, so the memory location for the first character on
the display is the first location in the display page, as you might expect.

Horizontal bits H0, H1, and H2 and sum bits S0, S1, and S2 make up the
transformed horizontal address (A0 through A6 in Table 7-12). As the
horizontal count increases from 24 to 63, the value of the sum

(S3 82 S1 80) increases from 0 to 4 and the transformed address goes from 0
to 39, relative to the beginning of the display page.

The low-order three bits of the vertical row counter are V0, V1, and V2.
These bits control address bits A7, A8, and A9, as shown in Table 7-12, so
that rows 0 through 7 start on 127-byte boundaries. When the vertical row
counter reaches 8, then V0, V1, and V2 are 0 again, and V3 changes to 1. If
you do the addition in Table 7-11 with H equal to 24 (the horizontal count
for the first column displayed) and V equal to 8, the sum is 5 and the
horizontal address is 40: the first character in row 8 is stored in the memory
location 40 bytes from the beginning of the display page.

Figure 7-10. 40-Column Text Display Memory

Memory locations marked with an asterisk (*) are reserved for use by peripheral
1/0 firmware: refer to the section “Peripkeral-Card RAM Space” in Chapter 6.

- 128 Bytes -
40 Bytes—|=+——40 Bytes——|<+——4(Bytes— Ey-'-st;;
$400 row 0 row 8 row 16 2
5480 row 1 row 9 row 17 2
$500 row 2 row 10 row 18 v
$580 row 3 row 11 row 19 .
$600 row 4 row 12 row 20 d
$680 row 5 row 13 row 21 ’
$700 row row 14 row 22 e
$780 row 7 row 15 row 23 2
The Video Display 177

Figure 7-10 shows how groups of three forty-character rows are stored in
blocks of 120 contiguous bytes starting on 127-byte address boundaries.
This diagram is another way of describing the display mapping shown in
Figure 2-5. Notice that the three rows in each block of 120 bytes are not
adjacent on the display.

Table 7-12 shows how the signals from the video counters are assigned to
the address lines. HO, H1, and H2 are horizontal-count bits, and V0, V1, and
V2 are vertical-count bits. S0, S1, S2 and S3 are the folded address bits
described above. Address bits marked with asterisks (*) are different for
different modes: see Table 7-13 and the four subsections under the section
“Video Display Modes." :

Table 7-12. Display Memory Addressing

Memory Display Memory Display
Address Bit Address Bit Address Bit Address Bit
AD HO A8 V1

Al H1 A9 V2

A2 H2 Al0 i

A3 SO All o

A4 S1 Al2 2

Ab 82 Al3 =

Af 53 Al4 i

AT VO Al5 GND

* For these address bits, see text and Table 7-13.

Table 7-13. Memory Address Bits for Display Modes

. means logical AND; “means iogical NOT.

Display Modes
Address Text and High-Resolution and
Bit Low-Resolution Double-High-Resolution
AlD 80STORE+PAGE2’ VA
All 80STORE’.PAGE2 VB
Al2] VG
Al3 0 80STORE+PAGE?2’
Ald 0 80STORE’.PAGE2

Chapter T; Hardware Implementation

Video Display Modes
ety

The different display modes all use the address-mapping scheme described
in the previous section, but they use different-sized memory areas in
different locations. The next four sections describe the addressing schemes
and the methods of generating the actual video signals for the different
display modes.

Text Displays

The text and low-resolution graphics pages begin at memory locations
$0400 and $0800. Table 7-13 shows how the display-mode signals control
the address bits to produce these addresses. Address bits A10 and Al1 are
controlled by the settings of PG2 and 80STORE, which are set by the
display-page and 80-column-video soft switches. Address bits A12, A13, and
Al4 are set to 0. Notice that 80STORE active inhibits PG2: there is only one
display page in 80-column mode.

The bit patterns used for generating the different characters are stored in a
32K ROM. The low-order six bits of each data byte reach the character
generator ROM directly, via the video data bus VID0-VID5. The two
high-order bits are modified by the I0U to select between the primary and
alternate character sets and are sent to the character generator ROM on
lines RA9 and RA10.

The data for each row of characters are read eight times, once for each of
the eight lines of dots making up the row of characters. The data bits are
sent to the character generator ROM along with VA, VB, and VC, the
low-order bits from the vertical counter. For each character being displayed,
the character generator ROM puts out one of eight stored bit patterns
selected by the three-bit number made up of VA, VB, and VC.

The bit patterns from the character generator ROM are loaded into the
74166 parallel-to-serial shift register and output as a serial bit stream that
goes to the video output circuit. The shift register is controlled by signals
named LDPS’ (for load parallel-to-serial shifter) and VIDTM (for video

7 MHz). In 40-column mode, LDPS’ strobes the output of the character
generator ROM into the shift register once each microsecond, and bits are
sent to the screen at a 7T MHz rate.

The Video Display 179

The addressing for the 80-colurn display is exactly the same as for the
40-column display: the 40 columns of display memory on the 80-column
card are addressed in parallel with the 40 columns in main memory. The
data from these two memories reach the video data bus (lines VIDO-VIDT)
via separate 7415374 three-state buffers. These buffers are loaded
simultaneously, but their outputs are sent to the character generator ROM
alternately by ¢0 and ¢1. In 80-column mode, LDPS’ loads data from the
character generator ROM into the shift register twice during each
microsecond, once during ¢0 and once during ¢1, and bits are sent to the
screen at a 14 MHz rate. Figures 7-11a and 7-11b show the video timing
signals.

Figure 7-11a. 7 MHz Video Timing Signals

we [Ty

|
GBS ERAER R NS PR SR SR ENES W F N

0 _] ? CPU Phase é | 1

| |

1 _ | Video Phase | | | |

!
pataBus X X

!

VIDEO LATCH 4 4

LDPS’ and EN8O’

L]
VIDEO BUS Into CHARGEN b4 l X
OUTPUT BUS Into SPI (Shift Register) l)(X
|
SPI Serial Output (VID7M and 14M) }L}_L}_IM

180 Chapter 7: Hardware Implementation

Figure 7-11b. 14 MHz Video Timing Signals

uv [UUUT
90 g P CPU Phase b [i
&1 __E Video Phase Jl c]} [
|
DATA BUS
l 3
VIDEO LATCH b 4 X D
|
ALTERNATE BUS)X_ ALT, X
|
80 LATCH X ALT, WCALT,
(LE?I?gO” Always On) [U 8| U
| |
VIDEO BUS Into CHARGEN e D, ;)(ALT, XD,
OUTPUT BUS Into SPI (Shift Register) l)(D, jlc AT, XD,

SPI Serial Output (14M Clock)

The Video Display 181

Low-Resolution Display

In the graphics modes, VA and VB are not used by the character generator,
so the IOU uses lines SEGA and SEGB to transmit H0 and HIRES', as shown
in Table 7-14.

Table 7-14. Character-Generator Control Signals

Display

Mode SEGA SEGB SEGC
Text VA VB VO
Graphics HO HIRES’ Ve

The low-resolution graphics display uses VC to divide the eight display lines
corresponding to a row of characters into two groups of four lines each.
Each row of data bytes is addressed eight times, the same as in text mode,
but each byte is interpreted as two nibbles. Each nibble selects one of 16
colors, During the upper four of the eight display lines, VC is low and the
low-order nibble determines the color. During the lower four display lines,
VC is high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read from the
character-generator ROM in the same way the bit patterns for characters
are produced in text mode. The 74166 parallel-to-serial shift register
converts the bit patterns to a serial bit stream for the video circuits.

The video signal generated by the Apple Ile includes a short burst of

3.58 MHz signal that is used by an NTSC color monitor or color TV set to
generate a reference 3.58 MHz color signal. The Apple Ile’s video signal
produces color by interacting with this 3.58 MHz signal inside the monitor or
TV set. Different bit patterns produce different colors by changing the duty
cycles and delays of the bit stream relative to the 3.58 MHz color signal. To
produce the small delays required for so many different colors, the shift
register runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz
data clock. To generate a stream of fourteen bits from each eight-bit pattern
read from the ROM, the output of the shift register is connected back to the
register’s serial input to repeat the same eight bits; the last two bits are
ignored the second time around.

Chapter 7: Hardware Implementation

Fach bit pattern is output for the same amount of time as a character: .98
microseconds. Because that is exactly enough time for three and a half
cycles of the 3.58 MHz color signal, the phase relationship between the bit
patterns and the signal changes by a half cycle for each successive pattern.
To compensate for this, the character generator ROM puts out one of two
different bit patterns for each nibble, depending on the state of H0, the
low-order bit of the horizontal counter.

High-Resolution Display

The high-resolution graphics pages begin at memory locations $2000 and
$4000 (decimal 8192 and 16384). These page addresses are selected by
address bits A13 and A14. In high-resolution mode, these address bits are
controlled by PG2 and 80STORE, the signals controlled by the display-page
(PAGEZ2) and 80-column-video (80COL) soft switches. As in text mode,
80STORE inhibits addressing of the second page because there is only one
page of 80-column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored in blocks
like the one shown in Figure 7-10, but there are eight of these blocks. As
Table 7-12 and Table 7-13 show, vertical counts VA, VB, and VC are used
for address bits A10, A11, and A12, which address eight blocks of 1024 bytes
each. Remember that in the display, VA, VB, and VC count adjacent
horizontal lines in groups of eight. This addressing scheme maps each of
those lines into a different 1024-byte block. It might help to think of it as a
kind of eight-way multiplexer: it’s as if eight text displays were combined to
produce a single high-resolution display, with each text display providing
one line of dots in turn, instead of a row of characters.

The high-resolution bit patterns are produced by the character-generator
ROM. In this mode, the bit patterns simply reproduce the eight bits of
display data. The low-order six bits of data reach the ROM via the video
data bus VID0-VID5. The 10U sends the other two data bits to the ROM via
RA9 and RA10.

The high-resolution colors described in Chapter 2 are produced by the
interaction between the video signal the bit patterns generate and the

3.58 MHz color signal generated inside the monitor or TV set. The
high-resolution bit patterns are always shifted out at 7 MHz, so each dot
corresponds to a half-cycle of the 3.58 MHz color signal. Any part of the
video signal that produces a single white dot between two black dots, or
vice versa, is effectively a short burst of 3.58 MHz and is therefore displayed
as color. In other words, a bit pattern consisting of alternating I's and (s

The Video Display 183

184

gets displayed as a line of color. The high-resolution graphics subroutines
produce the appropriate bit patterns by masking the data bits with
alternating 1's and 0's.

To produce different colors, the bit patterns must have different phase
relationships to the 3.58 MHz color signal. If alternating 1's and 0's produce
a certain color, say green, then reversing the pattern to 0's and 1's will
produce the complementary color, purple. As in the low-resolution mode,
each bit pattern corresponds to three and a half cycles of the color signal, so
the phase relationship between the data bits and the color signal changes by
a half cycle for each successive byte of data. Here, however, the bit patterns
produced by the hardware are the same for adjacent bytes; the color
compensation is performed by the high-resolution software, which uses
different color masks for data being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing relationships
to the 3.58 MHz color signal. In high-resolution mode, the Apple Ile produces
two more colors by delaying the output of the shift register by half a dot

(70 ns), depending on the high-order bit of the data byte being displayed.
(The high-order bit doesn’t actually get displayed as a dot, because at 7 MHz
there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift
register, high-order data bit DT is also sent to the PAL device. If DT is off, the
PAL device transmits shift-register timing signals LDPS’ and VIDTM
normally. If D7 is on, the PAL device delays LDPS’ and VIDTM by 70
nanoseconds, the time corresponding to half a dot. The bit pattern that
formerly produced green now produces orange; the pattern for purple now
produces blue.

A Note About Timing: For 80-column text, the shift register is clocked
at twice normal speed. When 80-column text is used with graphics in
mixed mode, the PAL device controls shift-register timing signals LDPS’
and VID7TM so that the graphics portion of the display works correctly
even when the text window is in 80-column mode.

Chapter 7: Hardware Implementation

Double-High-Resolution Display

Double-high-resolution graphics mode displays two bytes in the time
normally required for one, but uses high-resolution graphics Page 1 in both
main and auxiliary memory instead of text or low-resolution Page 1.

| Note: There is a second pair of pages, high-resolution Page 2, which can
| beused to display a second double-high-resolution page.

Double-high-resolution graphics mode displays each pair of data bytes as 14
adjacent dots, seven from each byte. The high-order bit (color-select bit) of
each byte is ignored. The auxiliary-memory byte is displayed first, so data
from auxiliary memory appears in columns 0-6, 14-20, and so on, up to
columns 547-652. Data from main memory appears in columns 7-13, 21-27,
and so on, up to 553-559.

As in 80-column text, there are twice as many dots across the display
screen, so the dots are only half as wide. On a TV set or low-bandwidth
monitor (less than 14 MHz), single dots will be dimmer than normal.

Note: Except for some expensive RGB-type monitors, any video monitor
with a bandwidth as high as 14 MHz will be a monochrome monitor.
Monochrome means one color: a monochrome video monitor can have a
screen color of white, green, orange, or any other single color.

The main memory and auxiliary memory are connected to the address bus
in parallel, so both are activated during the display cycle. The rising edge of
¢0 clocks a byte of main memory data into the video latch, and a byte of
auxiliary memory data into the 80 latch.

Phi 1 (¢1) enables output from the (auxiliary) 80 latch, and ¢0 enables
output from the (main) video latch. Output from both latches goes to
CHARGEN, where GR and SEGB’ select high-resolution graphics. LDPS
operates at 2 MHz in this mode, alternately gating the auxiliary byte and
main byte into the parallel-to-serial shift register. VIDTM is active (kept
true) for double-high-resolution display mode, so when it is ANDed with
14M, the result is sfill 14M. The 14M serial clock signal gate shift register
then outputs to VID, the video display hybrid circuit, for output to the
display device.

The Video Display 185

Video Output Signals

O D A T el e e e S W
The stream of video data generated by the display circuits described above
goes to a linear summing circuit built around transistor Q1 where it is mixed
with the sync signals and the color burst. Resistors R3, R5, R7, R10, R13,
and R15 adjust the signals to the proper amplitudes, and a tank circuit (L3
and C32) resonant at 3.58 MHz conditions the color burst.

The resulting video signal is an NTSC-compatible composite-video signal
that can be displayed on a standard video monitor. The signal is similar to
the EIA (Electronic Industries Association) standard positive composite
video (see Table 7-15). This signal is available in two places in the Apple Ile:

o At the phono jack on the back of the Apple lle. The sleeve of this jack is
connected to ground and the tip is connected to the video output through
a resistor network that attenuates it to about 1 volt and matches its
impedance to 75 ohms.

o At the internal video connector on the Apple [le circuit board near the
RCA jack, J13 in Figure 7-13c. It is made up of four Molex-type pins,
0.25 inches tall, on 0.10 inch centers. This connector carries the video
signal, ground, and two power supplies, as shown in Table 7-15.

Table 7-15. Internal Video Connector Signals

Note: Pin I is the pin closest to the keyboard; pin 4 is at the back.

Pin Name Description
1 GROUND System common ground
2 VIDEO NTSC-compatible positive composite video. White

level is about 2.0 volts, black level is about .75
volts, and sync level is (1.0 volts. This output is not
protected against short-circuits.

3 -5V -5 volt power supply
4 +12V +12 volt power supply
186 Chapter 7: Hardware Implementation

|

Built-in 1/0 Circuits

= — === ==~ =" == = = =
The use of the Apple [le's built-in [/0 features is described in Chapter 2.
This section describes the hardware implementation of all of those features
except the video display described in the previous sections.

The 10U (Input/Output Unit) directly generates the output signals for the
speaker, the cassette interface, and the annunciators. The other 1/0
features are handled by smaller ICs, as described later in this section.

The addresses of the built-in 1/0 features are described in Chapter 2 and
listed in Table 2-2, Table 2-11, and Table 2-12. All of the built-in /0
features except the displays use memory locations between $C000 and
$C070 (decimal 49152 and 49264). The 1/0 address decoding is performed
by three ICs: a T4LS138, a T4LS154, and a 74LS251.

The T4LS138 decodes address lines A8, A9, A10, and Al1 to select address
pages on 256-byte boundaries starting at $C000 (decimal 49152). When it
detects addresses between $C000 and $COFF, it enables the IOU and the
T4LS154. The T4LS154 in turn decodes address lines A4, A, A6, and AT to
select 16-byte address areas between $C000 and $COFF. Addresses between
$C060 and $CO6F enable the 7415251 that multiplexes the hand control
switches and paddles; addresses between $C070 and $COTF reset the NE558
quadruple timer that interfaces to the hand controls, as described later in
the section “Game I/0 Signals.”

The Keyboard

[e===—e=——==—c—r— = =]

The Apple Ile's keyboard is a matrix of keyswitches connected to an
AY-3600-type kevboard decoder via a ribbon cable and a 26-pin connector.
The AY-3600 scans the array of keys over and over to detect any keys
pressed. The scanning rate is set by the external resistor-capacitor network
made up of C70 and R32. The debounce time is also set externally, by CT1.

The AY-3600's outputs include five bits of key code plus separate lines for
[CONTROL), [SHIFT), any-key-down, and keyboard strobe. The
any-key-down and keyhoard-strobe lines are connected to the I0U, which
addresses them as soft switches. The key-code lines, along with
and [SHIFT), are inputs to a separate 2316 ROM. The ROM translates them
to the character codes that are enabled onto the data bus by signals named
KBD" and ENKBD'. The KBD’ signal is enabled by the MMU whenever a
program reads location $C000, as described in the section “Reading the
Keyboard” in Chapter 2.

Built-in 1/0 Circuits 187

Table 7-16. Keyboard Connector Signals

Pin Number Name Description

1246810, Y0-Y9 Y-direction key-matrix connections
23,25,12,22

3 +5 +5 volt supply

579,15 n.c.

1 LCNTL’ Line from key

13 GND System common ground
14,16,20,21, X0-X7 X-direction key-matrix connections
19,26,17

24 LSHFT’ Line from key

Connecting a Keypad

There is a smaller connector wired in parallel with the keyboard connector.

You can connect a ten-key numeric pad to the Apple Ile via this connector.

Table 7-17. Keypad Connector Signals

Pin Number Name Description

1,2,5,34,6 Y0-Y5 Y-direction key-matrix connections

7 n.c.

911,108 X4-X7 X-direction key-matrix connections
188 Chapter 7: Hardware Implementation

Cassette 1/O

The two miniature phone jacks on the back of the Apple Ile are used to
connect an audio cassette recorder for saving programs. The output signal
to the cassette recorder comes from a pin on the I0U via resistor network R6
and R9, which attenuates the signal to a level appropriate for the recorder’s
microphone input. Input from the recorder is amplified and conditioned by a
type 741 operational amplifier and sent to one of the inputs of the 7415251
input multiplexer.

The signal specifications for cassette [/0 are

o Input: 1 volt (nominal) from recorder earphone or monitor output. Input
impedance is 12K ohms.

o Output: 25 millivolts to recorder microphone input. Output impedance is
100 ohms.

The Speaker

jr—sse = e el]

The Apple Ile's built-in loudspeaker is controlled by a single bit of output
from the [OU (Input Output Unit). The signal from the IOU is AC coupled to
Q5, an MPSA13 Darlington transistor amplifier. The speaker connector is a
Molex KK100 connector, J18 in Figure 7-13b, with two square pins 0.25
inches tall and on 0.10-inch centers.

A light-emitting diode is connected in parallel across the speaker pins such
that, when the speaker is not connected, the diode glows whenever the
speaker signal is on. This diode is used as a diagnostic indicator during
assembly and testing of the Apple Ile,

Table 7-18. Speaker Connector Signals

Pin

Number Name Description

1 SPKR Speaker signal. This line will deliver about
(1.5 watts into an 8-ohm speaker.

2 +5 +5V power supply. Note that the speaker is not
connected to system ground.

Built-in 1/0 Circuits 189

190

Game |/O Signals

Several 1/0 signals that are individually controlled via soft switches are
collectively referred to as the game signals. Even though they are normally
used for hand controls, these signals can be used for other simple [/0
applications. There are five output signals: the four annunciators,
numbered A0 through A3, and one strobe output. There are three one-bit
inputs, called switches and numbered SW0 through SW2, and four analog
inputs, called paddles and numbered PDL0 through PDL3.

The annunciator outputs are driven directly by the 10U (Input Output Unit).

These outputs can drive one TTL (transitor-transitor logic) load each; for
heavier loads, you must use a transistor or a TTL buffer on these outputs.
These signals are only available on the 16-pin internal connector. (See
Table 7-19.)

The strobe output is a pulse transmitted any time a program reads or writes
to location $C040. The strobe pin is connected to one output of the T4LS154
address decoder. This TTL signal is normally high; it goes low during ¢0 of
the instruction cycle that addresses location $C040. This signal is only
available on the 16-pin internal connector, (See Table 7-19.)

The game inputs are multiplexed along with the cassette input signal by a
7418251 eight-input multiplexer enabled by the CO6X’ signal from the
7418154 1/0 address decoder. Depending on the low-order address, the
appropriate game input is connected to bit 7 of the data bus.

The switch inputs are standard low-power Schottky TTL inputs. To use
them, connect each one to 560-ohm pull-down resistors connected to the
ground and through single-pole, mementary-contact pushbutton switches to
the +5 volt supply.

The hand-control inputs are connected to the timing inputs of an NE558
quadruple 555-type analog timer. Addressing $C07X sends a signal from the
T4LS154 that resets all four timers and causes their outputs to go to

1 (high). A variable resistance of up to 150K ochms connected between one
of these inputs and.the +5V supply controls the charging time of one of four
(.022-microfarad capacitors. When the voltage on the capacitor passes a
certain threshold, the output of the NE558 changes back to ((low).
Programs can determine the setting of a variable resistor by resetting the
timers and then counting time until the selected timer input changes from
high to low. The resulting count is proportional to the resistance.

Chapter 7: Hardware Implementation

-

The game 1/0 signals are all available on a 16-pin DIP socket labelled
GAME [/0 on the main circuit board inside the case. The switches and the
paddles are also available on a D-type miniature connector on the back of

the Apple Ile; see J8 and J15 in Figure 7-13d.

Table 7-19.

(Game 1/0 Connector Signals

Internal-

Connector

Pin Number

6,10,7,11

15,14,13,12

9,16

Built-in1/0C

el
1ICUL

Back-Panel-

Connector

Pin Number Signal Name

2 +5V

7.16 PBO-PB2
STROBE’

5,849 PDLO-PDL3

3 GND
ANO-AN3
n.c.

its

Description

+5V power supply. Total current
drain from this pin must not
exceed 100mA.

Switch inputs. These are
standard 74LS inputs.

Strobe output. This line goes low
during ¢o of a read or write
instruction to location $C040.

Hand control inputs. Each of
these should be connected to a
150K-ohm variable resistor
connected to +5V,

System ground.

Annunciators. These are
standard 74LS TTL outputs and
must be buffered to drive other
than TTL inputs.

Nothing is connected to these
pins.

Expanding the Apple lle

Chapter 6 describes the standards for
programming peripheral cards for the
Apple Ile.

The main circuit board of the Apple Ile has eight empty card connectors or
slots on it. These slots make it possible to add features to the Apple Ile by
plugging in peripheral cards with additional hardware. This section
describes the hardware that supports them, including all of the signals
available on the expansion slots.

The Expansion Slots
e =]

The seven connectors lined up across the back part of the Apple lle’s main
circuit card are the expansion slots, also called peripheral slots or simply
slots, numbered from 1 to 7. They are 50-pin PC-card edge connectors with
pins on 0.10-inch centers. A PC card plugged into one of these connectors
has access to all of the signals necessary to perform input and cutput and to
execute programs in RAM or ROM on the card. These signals are described
briefly in Table 7-20. The following paragraphs describe the signals in
general and mention a few points that are often overlooked. For further
details, refer to the schematic diagram in Figures 7-13a, 7-13b, 7-13c, and
7-13d.

The Peripheral Address Bus

The microprocessor's address bus is buffered by two 7415244 octal
three-state buffers. These buffers, along with a buffer in the
microprocessor’s R/W’ line, are enabled by a signal derived from the DMA’
daisy-chain on the expansion slots. Pulling the peripheral line DMA’ low
disables the address and R/W* buffers so that peripheral DMA circuitry can
control the address bus. The DMA address and R/W’ signals supplied by a
peripheral card must be stable all during ¢0 of the instruction cycle, as
shown in Figure 7-12.

Another signal that can be used to disable normal operation of the Apple Ile
is INH’. Pulling INH’ low disables all of the memory in the Apple Ile except
the part in the [/0 space from $C000 to $CFFF. A peripheral card that uses
either INH” or DMA’ must observe proper timing; in order to disable RAM
and ROM cleanly, the disabling signal must be stable all during ¢0 of the
instruction cycle (refer to the timing diagram in Figure 7-12).

Chapter 7: Hardware Implementation

The peripheral devices should use [/0 SELECT” and DEVICE SELECT" as
enables. Most peripheral ICs require their enable signals to be present for a
certain length of time before data is strobed into or out of the device,
Remember that /0 SELECT” and DEVICE SELECT” are only asserted
during ¢0 high.

The Peripheral Data Bus

The Apple Ile has two versions of the microprocessor data bus: an internal
bus, MD0-MD7, connected directly to the microprocessor; and an external
bus, DO-D7, driven by a 74LS245 octal bidirectional bus buffer. The 65C02 is
fabricated with MOS circuitry, so it can drive capacitive loads of up to about
130 pF. If peripheral cards are installed in all seven slots, the loading on the
data bus can be as high as 500 pF, so the T4LS245 drives the data bus for the
peripheral cards. The same argument applies if you use MOS devices on
peripheral cards: they don't have enough drive for the fully-loaded bus, so
you should add buffers.

Loading and Driving Rules

Table 7-20 shows the drive requirements and loading limits for each pin on
the expansion slots. The address bus, the data bus, and the R/W’ line
should be driven by three-state buffers. Remember that there is
considerable distributed capacitance on these busses and that you should
plan on tolerating the added load of up to six additional peripheral cards.
MOS devices such as PIAs and ACIAs cannot switch such heavy capacitive
loads. Connecting such devices directly to the bus will lead to possible
timing and level errors.

Interrupt and DMA Daisy Chains

The interrupt requests (IRQ" and NMI") and the direct-memory access
(DMA’) signal are available at all seven expansion slots. A peripheral card
requests an interrupt or a DMA transfer by pulling the appropriate output
line low (active). If two peripheral cards request an interrupt or a DMA
transfer at the same time, they will contend for the data and address
busses. To prevent this, two pairs of pins on each connector are wired as a
priority daisy chain. The daisy-chain pins for interrupts are INT IN and INT
OUT, and the pins for DMA are DMA IN and DMA OUT, as shown for J1-J7
in Figure 7-13d.

Expanding the Apple Ile 193

Each daisy chain works like this: the output from each connector goes to
the input of the next higher numbered one. For these signals to be useful for
cards in lower numbered connectors, all of the higher numbered connectors
must have cards in them, and all of those cards must connect DMA IN to
DMA OUT and INT IN to INT OUT. Whenever a peripheral card uses pin
DMA’, it must do so only if its DMA IN line is active, and it must disable its
DMA OUT line while it is using DMA’. The INT IN and INT OUT lines must
be used the same way: enable the card’s interrupt circuits with INT IN, and
disable INT OUT whenever IRQ’ or NMI” is being used.

Figure 7-12. Peripheral-Signal Timing

w [T ULy

RS SESeRpSpEy gy

G i, Bed || bnd”

" | | CPU Phase |
1 Video Phase |
Address —t | l4—140 ns (Max.) 30 ns (Min)—= l"_'
AO-A15, R/W’
(e }—X X
Peripheral Select

DEVICE SELECT
1/0 STROBE’

{ 1/0 SELECT’ }

194 Chapter 7: Hardware [mplementation

Table 7-20. Expansion Slot Signals

Pin
1

217

18

19

20

21

22

23
24
25

26

28
29

Name
1/0 SELECT

AQ-Ald

R/W’

SYNC’

1/0 STROBE’

RDY

DMA’

INTOUT
DMA OUT
+5V

GND
DMAIN

INTIN

NMI

Expanding the Apple Ile

Description

Normally high; goes low during ¢0 when the 65C02
addresses location $CnXX, where n is the connector
number. This line can drive 10 LS TTL loads.*
Three-state address bus. The address becomes
valid during ¢1 and remains valid during ¢0. Each
address line can drive 5 LS TTL loads.*
Three-state read/write line, Valid at the same time
as the address bus; high during a read cycle, low
during a write cycle. It can drive 2 LS TTL loads.*
Composite horizontal and vertical sync, on
expansion slot 7 only. This line can drive 2 LS TTL
loads.*

Normally high; goes low during ¢0 when the 65C02
addresses a location between $C800 and $CFFF.
This line can drive 4 LS TTL loads.

Input to the 65C02. Pulling this line low during ¢1
halts the 65C02 with the address bus holding the
address of the location currently being fetched.
This line has a 3300 ohm pullup resistor to +5V.
Input to the address bus buffers. Pulling this line
low during ¢b1 disconnects the 66C02 from the
address bus. This line has a 3300 chm pullup
resistor to +5V.

Interrupt priority daisy-chain output. Usually
connected to pin 28 (INT IN).+

DMA priority daisy-chain output. Usually
connected to pin 22 (DMA IN).

+b-volt power supply. A total of 500mA is available
for all peripheral cards.

System common ground.

DMA priority daisy-chain input. Usually connected
to pin 24 (DMA OUT).

Interrupt priority daisy-chain input. Usually
connected to pin 23 (INT OUT).

Non-maskable interrupt to 65C02. Pulling this line
low starts an interrupt cycle with the
interrupt-handling routine at location $03FB. This
line has a 3300 ohm pullup resistor to +5V.

195

Table 7-20—Continued. Expansion Slot Signals

Pin Name Description

30 IRQ’ Interrupt request to 65C02. Pulling this line low
starts an interrupt cycle only if the
interrupt-disable () flag in the 65C02 is not set.
Uses the interrupt-handling routine at location
$08FE. This line has a 3300 ohm pullup resistor to

+5V.

31 RES’ Pulling this line low initiates a reset routine, as
described in Chapter 4.

32 INH’ Pulling this line low during ¢1 inhibits (disables)
the memory on the main circuit board. This line
has a 3300 ohm pullup resistor to +5V,

33 -12V -12 volt power supply. A total of 200mA is available
for all peripheral cards.

34 -5V -5 volt power supply. A total of 200mA is available
for all peripheral cards.

35 3.58M 3.58 MHz color reference signal, on slot 7 only. This
line can drive 2 LS TTL loads.*

36 ™ System 7 MHz clock. This line can drive 2 LS TTL
loads.*

37 Q3 System 2 MHz asymmetrical clock. This line can
drive 2 LS TTL loads.*

38 ol 65C02 phase 1 clock. This line can drive 2 LS TTL
loads.”

39 wPSYNC The 656C02 signals an operand fetch by driving this
line high during the first read cycle of each
instruction.

40 foll] 656C02 phase 0 clock. This line can drive 2 LS TTL
loads.*

41 DEVICE Normally high; goes low during ¢(0 when the 65C02

SELECT” addresses location $C0nX, where n is the connector
number plus 8. This line can drive 10 LS TTL
loads.*

42-49 DO-D7 Three-state buffered bi-directional data bus. Data

becomes valid during ¢0 high and remains valid
until ¢0 goes low. Each data line can drive one
LS TTL load.*

50 +12V +12 volt power supply. A total of 250mA is
available for all peripheral cards.

* Loading limits are for each card.

+On slot 7 only, this pin can be connected to the graphics-mode signal GR: see text for
details.

Chapter 7: Hardware Implementation

Auxiliaz Slot

The large connector at the left side of the Apple Ile’s main circuit card is the
auxiliary slot. It is a 60-pin PC-card edge connector with pins on 0.10-inch
centers. A PC card plugged into this connector has access to all of the
signals used in producing the video display. These signals are described
briefly in Table 7-21. For further details, refer to the schematic diagram in
Figures 7-13a, 7-13b, 7-13c, and 7-13d.

Many of the internal signals that are not available on the expansion slots
are on the auxiliary slot. By using both kinds of connectors, manufacturing
and repair personnel can gain access to most of the signals needed for
diagnosing problems in the Apple Ile.

80-Column Display Signals

The additional memory needed for producing an 80-column text display is
on the 80-column text card, along with the buffers that transfer the data to
the video data bus, as described earlier in this chapter in the section “Text
Displays.” The signals that control the 80-column text data include the
system clocks ¢0 and ¢1, the multiplexed RAM address RAQ-RAT, the RAM
address-strobe signals PRAS” and PCAS’, and the auxiliary-RAM enable
signals, EN80’ and R/W80. The EN8(’ enable signal is controlled by the
80STORE soft switch described in Chapter 4. Data is sent to the auxiliary
memory via the internal data bus MDO-MD?7; the data is transferred to the
video generator via the video data bus VID0-VIDT.

Expanding the Apple [le 197

Table 7-21. Auxiliary Slot Signals

Pin Name Description

1 3.58M 3.68 MHz video color reference signal. This line can
drive two LS TTL loads.

2 VIDTM Clocks the video dots out of the 74166
parallel-to-serial shift register. This line can drive two
LS TTL loads.

3 SYNC’ Video horizontal and vertical sync signal. This line
can drive two LS TTL loads.

4 PRAS’ Multiplexed RAM row-address strobe. This line can
drive two LS TTL loads.

5 Ve Third low-order vertical-counter bit. This line can
drive two LS TTL loads.

6 COTX’ Hand-control reset signal. This line can drive two LS
TTL loads.

7 WNDW* Video non-blank window. This line can drive two LS
TTL loads.

8 SEGA First low-order vertical counter bit. This line can
drive two LS TTL loads.

51,10,49,48, RAO-RA7 Multiplexed RAM-address bus. This line can drive

13,14,46,9 two LS TTL loads.

11,12 ROMEN1, Enable signals for the ROMs on main circuit board.

ROMEN2

44 43.40,39, MDO-MD7 Internal (unbuffered) data bus. This line can drive

21,20,17,16 two LS TTL loads.

45,42,41,38, VIDO-VIDT Video data bus. This three-state bus carries video

22,19,18,15 data to the character generator.

23 0 65002 clock phase 0. This line can drive two LS TTL
loads.

24 CLRGAT” Color-burst gating signal. This line can drive two LS
TTL loads.

25 80VID’ Enables 80-column display timing. This line can drive
two LS TTL loads.

26 EN8(Enable for auxiliary RAM. This line can drive two LS
TTL loads.

27 ALTVID” Alternative video output to the video summing
amplifier.

28 SEROUT” Video serial output from 74166 parallel-to-serial shift
register.

29 ENVID Normally low; driving this line high disables the
character generator such that the video dots from the
shift register are all high (white), and alternative
video can be sent out via ALTVID’. This line has a
1000 ohm pulldown resistor to ground.

198 Chapter 7: Hardware Implementation

Table 7-21—Continued. Auxiliary Slot Signals

Pin Name Description

30 +5 +5 volt power supply.

31 GND System common ground.

32 14M 14.3 MHz master clock signal. This line can drive two
LS TTL loads.

33 PCAS’ Multiplexed column-address strobe. This line can
drive two LS TTL loads.

34 LDPS’ Strobe to video parallel-to-serial shift register. This
signal goes low to load the contents of the video data
bus into the shift register. This line can drive two LS
TTL loads.

% R/W80 Read/write signal for RAM on the card in this slot.
This line can drive two LS TTL loads.

36 ¢l 65C02 clock phase 1. This line can drive two LS TTL
loads.

37 CASEN’ Column-address enable. This signal is disabled (held
high) during accesses to memory on the card in this
slot. This line can drive two LS TTL loads.

47 HO Low-order horizontal byte counter. This line can drive
two LS TTL loads.

50 AN3 Output of annunciator number 3. This line can drive
two LS TTL loads.

52 R/W’ 65C02 read/write signal. This line can drive two LS
TTL loads.

53 Q3 2 MHz asymmetrical clock. This line can drive two LS
TTL loads.

54 SEGB Second low-order vertical-counter bit. This line can
drive two LS TTL loads.

55 FRCTXT” Normally high; pulling this line low enables 14MHz
video output even when GR is active.

56,67 RAY RAI0" Character-generator control signals from the I0U.
This line can drive two LS TTL loads.

58 GR Graphics-mode enable signal. This line can drive two
LS TTL loads.

59 ™ T MHz timing signal. This line can drive two LS TTL
loads.

60 ENTMG” Normally low; pulling this line high disables the

Expanding the Apple [le

master timing from the PAL device. This line has a
1000 ohm pulldown resistor to ground.

199

/4

ale-ir
(i
wndu & HMI
Ll e { , = — ot
AN,‘.‘_ J.T.
& ! ——=a()
MsS-8r =g BT ol =
. Fl Iﬂ!\l\-
2an)
E]
o o]
ki crun
I e
A T =
L T m EL
DRy N
ol 4 2%
T
raos |% (73 hoid Bt]
3 i 17)
¥ v B v v L3 A T3 som
g § G G © 2 &2 van
bt 3 My L 3 el 13 NI s X o
s 2 24l 0 Y o v R T P B
2 & fd] had 0] # & an
B o e oY o eviZ L] vl
i i vl it wit -
av by i ¥ g g vl { B £ il
wiT Wi b v bl ot uﬂ.l-qﬂ‘!_
s o avpe i | AL ET i)
e T 7 T Tl S R o e
v K z
11 L 1 i L2 ' .
e TT ' 3
3 oL 2 et -
(TLE) [i s
(2) - v O
weero i Ao T
Lo e g & .
= =
2T OW s+ ;
v)) vRG 22U
svea |
w5E
4.
V1] 2 s !
p—)
O T

[e WIRIFRI(] ONRUIDYIS DET-, d4nbit]

Chapter 7: Hardware Implementation

Figure 7-13b. Schematic Diagram, Part 2

_UDSTRBR o 17120041

it o .
5 Coxxw o
e - B shy T —mems?
Pt TH— — - -t Sdezuss 2p2 0SELZ® o o)
o LN P 0sELIN
A 3p 3
e (s 2, usa L seven = e,
IOSELSH ;
L1 A2 5P IOSELSH o, 451
o) ¢] 1 g6 8 IOSELEN o 4.
CASSIN . " 3 10SELTA "
Juf 12K
Ri2
12K
[Tt
= i t!&r
lia ™ L19g 1 SR o 155 4
(43 017-7, 487, Ji5-2 mSWB/OAPL aly T el
(4 J17-3, J8-1, 115-3 - SWLLCAPL 2y, hae 23] : COrAN L 0o
(8)J8-6, 154 w222 T s o as 22, - 0 g_;uzl_! i
Lae 21 V2w
e - i MULTIPLEXER T J2-41
R23 LE251 AT 20,y Py DEVIR . 4y
(4185, Ji5-6 mOLE n—2f kM ! [{. B, I DEvas 0 o 19
! 1) "' o ul, wh oevee o I
55 &) 58-8, o159 mTOL! 2 P2 13y epb DEVES 0 o,
= [] oy, wh, sl DEVIR o 5.4
& ©4) 84 5oy e tOL2 I
a i
5 (4) J8-9, 1511 mP0LY
[=Y
Rt
= e
= 1)
= L] 2 DP o sri-TI 48
= s 3 [
= Dl g yt1-7148
= PSCITT) A o 1cine
© INJOUTH ;
1w MO IMIOU 5 7
= 03 g yer-mrae \)
o 3y ENVION ; ! L 04 JeiTas
43 Ji7-9 mmCAPLOCKS - 7 05 i Tie
oy mRB0X - £ 06 JET143
43 J1 35 mENKDDN 9 o7 JO1-TIA2
R27 2 g e
N 27139
sELariet® T ” L3 = KSTRO__
62, 0172 :' W i AKD 3
se-saram@ L4 W] aabro
3 wa-ggd S
16-3, 176 =3 20] & W .::5 "
J16-4, 3178 w14 2t B o DA— J
N6, T T £2] B4 o k2
23 18 g- ' 2 33K
D728 86 P cro pm
a17-12 =8 23 ot (3)m3PER 3
45 J17-22 m Y2 26 psll et SIK
qiT-14 g Bolb e P
31718 XL) B2l NS4
1715 X2 39 B3
Jir2e =23 3t oscif
269 417-21 2t 36 v/jmn
RE-1, Ji7-19 w2 ¥ v,
HE, HT-26 -——l:- g osczi © (PWR. ON)
NE-8. 41717 k] a2 At e
an-zqn-z!:;%:: 2] wox 200
N7 = o} —20] 05C 3 ~5C
Lo G Ll
' ‘Ap2 cn
1 . o qu
] = =
| o e—

[sSe]
(=1
—_

e fi-qries-gr
ISE-LF 1Bt
v 2-9r

¥} pr - 0rs2-pr (2X0)
RELoT-ara) = o

(¥ LEQ-]res-0r ()

e) £E-8r(n &2

(9 ¥-9r(1) =3 oras

trvepr =T

§ s

() 2-9r —-———r0

QA

R T

8

7)) PGB0 25T —-—

PSR ey

ZNY
()w-sir

£ k]

(WISHGir -t

By
(vl y-gr lu‘|..

bt

() B0 (1) e——

[e-vy

~

~

g3

EIEIT NS

t

oloiglel~lf

3

91 61-L0"E- Pr e

BI¥2 B0 = ey

J
[
1
I
|
I
1
T
1
1
I
1

]

SaIA SQIA 51 L WEST

aIA raA 2|

SaA SoA 6]

20iA oA 9

HEEEEEEE

1A [T
Oh 1 J&n—>|
[F Ll L) i

-on

L LLE]

®1N04s

& 0IALTY 40 int

[e-glats

¢ Weq "WRIFRI(] DNRIBYDS “OF[-4 d4nbLy

: Hardware Implementation

Chapter

Figqure 7-14d. Schematic Diagram, Part 4

a1 a1ddy ay) Swipuedxy

ANZ2 13 4 Sw2
AN 4 3 SWI/CAPL
AND 5 2 SWQ@/OAPL
Jia 1 +5C
. POWER CONNECTOR i
o>~ GAME 170

:
i

NUMERIC PAD KEYBOARD

£02

Appendix A

The 65C02 Microprocessor

This appendix contains a description of the differences between the 6502
and the 66C02 microprocessors. It also contains the data sheet for the 65C02
microprocessor.

The 6502 microprocessor was used in the original Apple Ile, Apple II Plus,
and Apple II. The 65C02 is a 6602 that uses less power and has ten new
instructions and two new addressing modes. The 65C02 is used in both the
enhanced Apple lle and the Apple Ile.

In the data sheet tables, execution times are specified in nurmber of cycles.
One cycle time for the Apple Ile equals 0.978 microseconds, giving a system
clock rate of about 1.02 MHz.

Note: 1f you want to write programs that execute on all computers in the
Apple II series, use only those 656C02 instructions that are also present on
the 6502.

Differences Between 6502 and 65C02

206

e e e s e . . e s e e
The data sheet lists the instructions and addressing modes of the 65C02.

This section supplements that information by listing those instructions
whose execution times or results differ in the 6502 and the 65C02.

Different Cycle Times
eSS e e,

A few instructions on the 65C02 operate in different numbers of cycles than
their 656C02 equivalents. These instructions are listed in Table A-1.

Table A-1. Cycle Time Differences

6502 65C02
Instruction/Mode Opcode Cycles Cycles
ASL Absolute, X 1E 7 6
DEC Absolute, X DE 7 6
INC Absolute, X FE 7 6
JMP (Absolute) 6C 5 6
LSR Absolute, X bE 7 6
ROL Absolute, X 3E T 6
ROR Absolute, X TE 7 6

Appendix A: The 656C02 Microprocessor

Different Instruction Results
[ronimer e === = e]

It is important to note that the BIT instruction when used in immediate
mode (opcode $89) leaves processor status register bits 7 (N) and 6 (V)
unchanged on the 65C02. On the 6502, all modes of the BIT instruction have
the same effect on the status register: the value of memory bit 7 is placed in
status bit 7, and memory bit 6 is placed in status bit 6.

Also note that if the JMP indirect instruction (code $6C) references an
indirect address location that spans a page boundary, the 656C02 fetches the
high-order byte of the effective address from the first byte of the next page,
while the 6502 fetches it from the first byte of the current page. For
example, JMP ($02FF) gets ADL from location $02FF on both processors.
But on the 656C02, ADH comes from $0300; on the 6502, ADH comes

from $0200.

Data Sheet

The remaining pages of this appendix are copyright 1982, NCR Corporation,
Dayton, Ohio, and are reprinted with their permission.

Data Sheet 207

NCR65C02

= GENERAL DESCRIPTION s PIN CONFIGURATION
The NCR CMOS 6502 is an B-bit microprocessor which is soft- a"ss P :HO .
ware compatible with the NMOS 6502. The NCR65C02 hardware & ‘GU‘?T : g;‘ ki
interfaces with all 6500 peripherals. The enhancements include 4 el e
ten additional instructions, expanded operational codes and = N‘C’
two new addressing modes. This microprocessor has all of the ad- e ye
vantages of CMOS technology: low power consumption, increased syne 7 Qi
noise immunity and higher reliability. The CMOS 6502 is a low voo s Do
power high performance microprocessor with applications in the a0 [o1
consumer, business, automotive and communications market. Al [5F)

Az o3

Al Da

A4 D5
= FEATURES i =

® Enhanced software performance including 27 additional OP codes
encompassing ten new instructions and two additional

addressing modes,
A0

® §6 microprocessor instructions. ANl

® 15 addressing modes.
® 178 operational codes.
e 1MHz, 2MHz operation.

» Operates at frequencies as low . NCRGSCOZ BLOCK DIAGRAM

as 200 Hz for even lower power
consumption (pseudo-static: stop during @3 high).

* Compatible with NMOS 6500 series

microprocessors. ~~—— REGISTER SECTION CONTADL SECTION ——m=
® 64 K-byte addressable memory, SRR
HH ™ awl
® |nterrupt capability. ':—lﬁ ’m;(l_‘% [wrernzer
® Lower power consumption. | A | e i | i
4mA @ TMHz. AT - | ALGiTER K~ H I L apy
X f—t I
z |
® +5 volt power supply. ::“4 it ‘ EL.,_ [eragEzamT {:3 L I - SYNC
® B-bit bidirectional data bus, s gt & e ————— | "
— & — INSTRUCTION beatfed
® Bus Compatible with M680O. e | []SERA P pecone (o] TS,
a2 ;
® Non-maskable interrupt. _1
: y . . ;ESUHESS
® 40 pin dual-in-line packaging.
A8 z
® B-bit parallel processing A8 2 -
* Decimal and binary arithmetic. = £
" i @ 1ouT)
® Pipeline architecture. a1z 4 £ 0z 10uT
)
® Programmable stack pointer. ::: A
® Variable length stack. 15 -

® Optional internal pullups for =
(RDY, IRQ, §0, NMI and RES)

LEGEND

1T esarume

Specifications are subject to | =verrume
change without notice.

DaTA
BUS

Copyright ©1982 by NCR Corporation, Dayton, Ohio, USA

208 Appendix A: The 65C02 Microprocessor

NCR65C02
s ABSOLUTE MAXIMUM RATINGS: (vpp =5.0V £5%, Vsg =0V, Ta = 0°to + 70°C)
RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vop —0.3t0+7.0 v
INPUT VOLTAGE Vin —0.3t0 +7.0 v
OPERATING TEMP. Ta Oto+70 .
STORAGE TEMP, TsTG —=55to+ 150 °C
= PIN FUNCTION
PIN FUNCTION
AD- A15 Address Bus
DO - D7 Data Bus
TRQ * Interrupt Request
RDY * Ready
ML Memory Lock
NMI* Non-Maskable Interrupt
SYNC Synchronize
RES* Reset
T Set Overflow
NC No Connection
R/W Read/Write
VDD Power Supply {+5V)
VSS Internal Logic Ground
) Clock Input
91, 02 Clock Qutput

*This pin has an optional internal pullup for a No Connect condition.

= DC CHARACTERISTICS

SYMBOL MIN.
Input High Voltage
OOHN] ViH Vgg +2.4
Input High Volitage
RES, NMI, RDY, TRQ, Data, S.0. Vgg + 2.0
Input Low Voltage
@p (IN) Vi Vsg -0.3
RES, NMI, RDY, TRQ, Data, S.0. =
Input Leakage Current
(Vin =0105.25V, Vpp =5.25V) hin
With pullups -30
Without pullups =
Three State (Off State} Input Current
(V|N =041t024V, Vcc =5.28V)
Data Lines I1s1 =
Qutput High Voltage
(lon =-100 mAde, Vpp =4.75V
SYNC, Data, AD-A15, R/W) Vo Vgg +2.4
Out Low Voltage
“OL = 1.6mAdec, Vop =4.75V
SYNC, Data, AO-A15, R/W) Voo -
Supply Current f=1MHz Ipp =
Supply Current f =2MHz Ipp -
Capacitance o
(Vin =0, Ta =25°C, f = TMHz)
Logic Cin =
Data -
A0-A15, R/W, SYNC Cout -
@p (IN) C@g (IN) =
Data Sheet

NCR65C02
= TIMING DIAGRAM

tea
%0 j 1:
=ty

9 j \ /
= toLys - :Ltmg;ﬁ - e
\ ‘l\

L)) - M .
= taps tan
ADDR, R/W X
tacc thsu Al - = tour
= = tups = = tonw
WRITE DATA hY { b
>4 K.
= tsync
SYNC X
e - Ty
s)ir* X
- = % tpcs
RDY, IRQ
NMI, RES X i X
™ ‘so
S0 ;1'

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts.

= NEW INSTRUCTION MNEMONICS

MNEMONIC DESCRIPTION
BRA Branch relative always [Relative]
DEA Decrement accumulator [Accum)]
INA Increment accumulator [Accum]
PHX Push X on stack [Implied]
PHY Push Y on stack [Implied]
PLX Pull X from stack [Implied]
PLY Pull ¥ from stack [Implied]
STZ Store zero [Absolute]
sTZ Store zero [ABS, X]
sTZ Store zero [Zero page]
5TZ Store zero [ZPG,X]
TRB Test and reset memory bits with accumulator [Absolute]
TRB Test and reset memory bits with accumulator [Zero page]
TSB Test and set memory bits with accumulator [Absolute]
TSB Test and set memory bits with accumulator [Zero page]

= ADDITIONAL INSTRUCTION ADDRESSING MODES

210

MNEMONIC DESCRIPTION
ADC Add memory to accumulator with carry [{ZPG)]
AND “AND" memory with accumulator [(ZPG)]
BIT Test memory bits with accumulator [ABS, X]
BIT Test memory bits with accumulator [ZPG, X]
CMP Compare memory and accumulator [{ZPG)]
EOR "Exclusive Or'" memory with accumulator [(ZPG)]
JMP Jump (New addressing mode) [ABS(IND,X)]
LDA Load accumulator with memory [{ZPG}]
ORA “OR" memory with accumulator [(ZPG))
SBC Subtract memory from accumulator with borrow [(ZPG)]
STA Store accumulator in memory [(ZPG)]

Appendix A: The 65C02 Microprocessor

NCR65C02

= MICROPROCESSOR PROGRAMMING MODEL

7 0

[A]accumuLaToR A

7

[PCH PCL

= FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction
cycle being monitored. The unit is set to zero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as is required to complete the instruction. Each
data transfer which takes place between the registers de-
pends upon decoding the contents of both the instruc-
tion register and the timing control unit,

Program Counter

The 16-bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program.

Each time the microprocessor fetches an instruction
from program memory, the lower byte of the program
counter (PCL) is placed on the low-order bits of the
address bus and the higher byte of the program counter
(PCH) is placed on the high-order 8 bits, The counter is
incremented each time an instruction or data is fetched
from program memory,

Instruction Register and Decode

Instructions fetched from memory are gated onto the
internal data bus. These instructions are latched into the
instruction register, then decoded, along with timing and
interrupt signals, to generate control signals for the var-
ious registers,

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the
ALU including incrementing and decrementing internal
registers (except the program counter). The ALU has no
internal memory and is used only to perform logical and
transient numerical operations.

Data Sheet

0
Y INDEX REGISTER Y
[
X INDEX REGISTER X
Q
| PROGRAM COUNTER PC

9
S | STACK POINTER §

7
[NIvIa[B]O]1]Z]cC

Lo

PROCESSOR STATUS
REG P

—

CARRY 1 = TRUE

ZERO 1 = RESULT ZEROD
TAG DISABLE 1 = DISABLE
DECIMAL MODE 1 = TRUE
BAK COMMAND 1 = BRK
OVERFLOW 1 = TRUE
NEGATIVE 1 = NEG.

Accumulator

The accumulator is a general purpose 8-bit register that
stores the results of most arithmetic and logic operations,
and in addition, the accumulator usually contains one of
the two data words used in these operations.

Index Registers

There are two B-bit index registers (X and Y), which
may be used to count program steps or to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation.
Pre- or post-indexing of indirect addresses is possible (see
addressing modes).

Stack Pointer

The stack pointer is an 8-bit register used to control the
addressing of the variable-length stack on page one. The
stack pointer is automatically incremented and decre-
mented under control of the microprocessor to perform
stack manipulations under direction of either the program
or interrupts (NMI and IRQ). The stack allows simple
implementation of nested subroutines and multiple level
interrupts. The stack pointer should be initialized before
any interrupts or stack operations occur.

Pr Status Regi

The 8-bit processor status register contains seven status
flags. Some of the flags are controlled by the program,
others may be controlled both by the program and the
CPU. The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program-
ming model).

NCR65C02

s AC CHARACTERISTICS vpp=5.0V#5% Ta=0°Cto 70°C, Load = 1 TTL + 130 pF

1MHZ 2MHz 3MHZ
Parameter Symbol Min Max Min Max Min Max Unit
Delay Time, @g (IN) to @2 (OUT) toLy - 60 - 60 20 60 nS
Delay Time, @1 (OUT) to 82 (OUT) toLys -20 20 -20 20 -20 20 nS
Cycle Time tove 1.0 5000 [0.50 5000" | 0.33 5000 | uS
Clock Pulse Width Low tpL 460 = 220 - 160 - nS
Clock Pulse Width High ten 460 - 220 - 160 - nS
Fall Time, Rise Time te, tg - 25 - 25 - 25 nS
Address Hold Time taH 20 — 20 - 0 - nS
Address Setup Time taps — 225 — 140 — 110 nS
Access Time tacc 650 - 310 - 170 — nS
Read Data Hold Time toHR 10 - 10 - 10 - nS
Read Data Setup Time tpsu 100 - 60 — 60 — nS
Write Data Delay Time tmps - 30 - 30 - 30 nS
Write Data Hold Time tDHW 20 - 20 = 15 - nS
50 Setup Time tso 100 - 100 - 100 - nS
Processor Control Setup Time®™* tpes 200 - 150 - 150 - nS
SYNC Setup Time tsyne - 225 - 140 - 100 nS
ML Setup Time L - 225 - 140 = 100 nS
Input Clock Rise/Fall Time tego. tR0 - 25 - 25 - 25 nS
*NCRB5C02 can be held static with @ 2 high.

**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle,

s MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function

NMOS 6502 Microprocessor

NCRB5C02 Microprocessor

Indexed addressing across page boundary.

Extra read of invalid address.

Extra read of last instruction byte,

Execution of invalid op codes.

Some terminate only by reset, Resuits
are undefined.

All are NOPs (reserved for future use).

Op Code Bytes Cycles
X2 2 2
X3, X7, XB, XF 1 1
44 2 3
54, D4, F4 2 4
5C 3 B
DC, FC 3 4

Jump indirect, operand = XXFF.

Page address does not increment,

Page address increments and adds one
additional cycle.

Read/modify/write instructions at
effective address.

One read and two write cycles.

Two read and one write cycle.

Decimal flag,

Indeterminate after reset.

Initialized to binary mode (D=0) after
reset and interrupts,

Flags after decimal operation,

Invalid N, V and Z flags.

Valid flag adds one additional cycle.

Interrupt after fetch of BRK instruc-
tion.

Interrupt vector is loaded, BRK vector
is ignored.

BRK is executed, then interrupt is
executed.

= MICROPROCESSOR HARDWARE ENHANCEMENTS

Function

NMOS 6502

NCRB5C02

Assertion of Ready RDY during
write operations.

Ignored,

Stops processor during @5.

Unused input-only pins (TRQ, NMI,
RDY, RES, 50).

Must be connected to low impedance
signal to avoid noise problems,

Connected internally by a high-
resistance to Vpp (approximately 250
K ohm.|

Appendix A: The 85C02 Microprocesser

NCR65C02
= ADDRESSING MODES

Fifteen addressing modes are available to the user of the
NCRB5C02 microprocessor. The addressing modes are
described in the following paragraphs:

Implied Addressing [Implied]

In the implied addressing mode, the address containing
the operand is implicitly stated in the operation code of
the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one byte
instruction and implies an operation on the accumu-
lator.

Immediate Addressing [Immediate]

With immediate addressing, the operand is contained in
the second byte of the instruction; no further memory
addressing is required.

Absolute Addressing [Absolute)

For absolute addressing, the second byte of the instruc-
tion specifies the eight low-order bits of the effective
address, while the third byte specifies the eight high-order
bits. Therefore, this addressing mode allows access to the
total 64K bytes of addressable memory.

Zero Page Addressing [Zero Page]

Zero page addressing allows shorter code and execution
times by only fetching the second byte of the instruction
and assuming a zero high address byte. The careful use
of zero page addressing can result in significant increase
in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, Y]
Absolute indexed addressing is used in conjunction with
X or Y index register and is referred to as “Absolute, X,”
and “"Absolute, Y."” The effective address is formed by
adding the contents of X or Y to the address contained
in the second and third bytes of the instruction, This
mode allows the index register to contain the index or
count value and the instruction to contain the base
address. This type of indexing allows any location refer-
encing and the index to modify multiple fields, resulting
in reduced coding and execution time,

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]

Zero page absolute addressing Is used in conjunction
with the index register and is referred to as ““Zero Page,
X" or ““Zero Page, Y."" The effective address is calculated
by adding the second byte to the contents of the index
register. Since this is a form of ""Zero Page” addressing,
the content of the second byte references a location in
page zero. Additionally, due to the *“Zero Page’ address-
ing nature of this mode, no carry is added to the high-
order eight bits of memory, and crossing of page boun-
daries does not occur.

Relative Addressing [Relative]
Relative addressing is used only with branch instructions;

Data Sheet

it establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand
which is an “Offset” added to the contents of the pro-
gram counter when the counter is set at the next in-
struction. The range of the offset is —128 to +127
bytes from the next instruction.

Zero Page Indexed Indirect Addressing [(IND, X)]

With zero page indexed indirect addres:sing (usually re-
ferred to as indirect X) the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a
memory location on page zero whose contents is the low-
order eight bits of the effective address. The next mem-
ory location in page zero contains the high-order eight
bits of the effective address. Both memory locations
specifying the high- and low-order bytes of the effective
address must be in page zero.

*Absolute Indexed Indirect Addressing [ABS(IND, X)]
(Jump Instruction Only)

With absolute indexed indirect addressing the contents of
the second and third instruction bytes are added to the
X register. The result of this addition, points to a memory
location containing the lower-order eight bits of the
effective address. The next memory location contains
the higher-order eight bits of the effective address.

Indirect Indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect,
Y. The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
location are added to the contents of the Y index regis-
ter, the result being the low-order eight bits of the effec-
tive address. The carry from this addition is added to the
contents of the next page zero memory location, the
result being the high-order eight bits of the effective
address.

*Zero Page Indirect Addressing [(ZPG)]
in the zero page indirect addressing mode, the second
byte of the instruction points to a memory location on
page zero containing the low-order byte of the effective
address. The next location on page zero contains the
high-order byte of the effective address.

Absolute Indirect Addressing [(ABS)]

{Jump Instruction Only)

The second byte of the instruction contains the low-order
eight bits of a memory location. The high-order eight
bits of that memory location is contained in the third
byte of the instruction. The contents of the fully speci-
fied memory location is the low-order byte of the effec-
tive address. The next memory location contains the
high-order byte of the effective address which is loaded
into the 1B bit program counter.

NOTE: * = New Address Modes

= SIGNAL DESCRIPTION

Address Bus (A0-A15)
AQ-A15 forms a 16-bit address bus for memory and 1/0
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF.

Clocks (@, 04, and @2)

@p is a TTL level input that is used to generate the inter-
nal clocks in the 6502, Two full level output clocks are
generated by the 6502. The @2 clock output is in phase
with @g. The @7 output pin is 180° out of phase with Bp.
(See timing diagram.)

Data Bus (D0-D7)

The data lines (DO-D7) constitute an 8-bit bidirectional
data bus used for data exchanges to and from the device
and peripherals, The outputs are three-state buffers
capable of driving one TTL load and 130 pF.

Interrupt Request (IRQ)

This TTL compatible input requests that an interrupt
sequence begin within the microprocessor. The TRQ is
sampled during @2 operation; if the interrupt flag in the
processor status register is zero, the current instruction
is completed and the interrupt sequence begins during
@ 1. The program counter and processor status register
are stored in the stack. The microprocessor will then set
the interrupt mask flag high so that no further IRQs
may occur. At the end of this cycle, the program counter
low will be loaded from address FFFE, and program
counter high from location FFFF, transferring program
control to the memory vector located at these addresses.
The RDY signal must be in the high state for any inter-
rupt to be recognized. A 3K ohm external resistor should
be used for proper wire OR operation.

Memory Lock (ML)

In a multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycle to
ensure the integrity of read-modify-write instructions.
ML goes low during ASL, DEC, INC, LSR, ROL, ROR,
TRB, TSB memory referencing instructions. This signal
is low for the modify and write cycles.

Non-Maskable Interrupt (NMI)

A negative-going edge on this input requests that a non-
maskable interrupt sequence be generated within the
microprocessor, The NMI is sampled during @2; the cur-
rent instruction is completed and the interrupt sequence
begins during @1. The program counter is loaded with
the interrupt vector from locations FFFA (low byte)
and FFFB (high byte), thereby transferring program con-
trol to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another NMi
can occur before the first is finished. Care should be taken
when using NMI to avoid this.

[o]
g
e

NCR65C02

Ready (RDY)

This input allows the user to single-cycle the micropro-
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (@1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched. This condition will remain through a subsequent
phase two (@2) in which the ready signal is low. This fea-
ture allows microprocessor interfacing with low-speed
memory as well as direct memory access (DMA).

Reset (RES)

This input is used to reset the microprocessor. Reset
must be held low for at least two clock cycles after
VDD reaches operating voltage from a power down, A
positive transistion on this pin will then cause an initiali-
zation sequence to begin. Likewise, after the system has
been eperating, a low on this line of at least two cycles
will cease microprocessing activity, followed by initial-
ization after the positive edge on RES.

When a positive edge is detected, there is an initialization
sequence lasting six clock cycles. Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro-
gram counter is loaded with the restart vector from loca-
tions FFFC (low byte) and FFFD (high byte). This is
the start location for program control. This input should
be high in normal operation.

Read Write (R/W)

This signal is normally in the high state indicating that
the microprocessor is reading data from memory or 1/0
bus. In the low state the data bus has valid data from the
microprocessor to be stored at the addressed memory
location.

Set Overflow (SO)

A negative transition on this line sets the overflow bit in
the status code register, The signal is sampled on the trail-
ing edge of @1,

Synchronize (S§YNC)

This output line is provided to identify those cycles dur-
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during @7 of an OP CODE
fetch and stays high for the remainder of that cycle. If
the RDY line is pulled low during the @1 clock pulse in
which SYNC went high, the processor will stop in its
current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execu-
tion,

Appendix A: The 65C02 Microprocessor

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
*BRA

LDA
Note:

NCR65C02
s [NSTRUCTION SET — ALPHABETICAL SEQUENCE

Add Memory to Accumuiator with Carry LOX
“AND" Memory with Accumulator LDY
Shift One Bit Left LSR
Branch on Carry Clear NOP
Branch on Carry Set ORA
Branch on Result Zero PHA
Test Memory Bits with Accumulator PHP
Branch on Result Minus *PHX
Branch on Result not Zero * PHY
Branch on Result Plus PLA
Branch Always PLP
Force Break *PLX
Branch on Overflow Clear *PLY
Branch on Overflow Set ROL
Clear Carry Flag ROR
Clear Decimal Mode RTI

Clear InterruptDisable Bit RTS
Clear Overflow Flag SBC
Compare Memory and Accumulator SEC
Compare Memory and Index X SED
Compare Memory and Index Y SEI

Decrement Accumulator STA,
Decrement by One 5TX
Decrement Index X by One STY
Decrement index Y by One *STZ
"Exclusive- or’” Memory with Accumulator TAX
Increment Accumulator TAY
Increment by One *TRB
Increment Index X by One *TSB
Increment Index Y by One TSX
Jump to New Location TXA
Jump to New Location Saving Return Address TXS
Load Accumulator with Memory TYA

= New Instruction

= MICROPROCESSOR OP CODE TABLE

Load Index X with Memory
Load Index Y with Memary

Shift One Bit Right

No Operation

“OR" Memaory with Accumulator
Push Accumulator on Stack

Push Processor Status on Stack
Push Index X on Stack

Push Index Y on Stack

Pull Accumulator from Stack

Pull Processor Status from Stack
Pull Index X from Stack

Pull Index Y from Stack

Rotate One Bit Left

Rotate One Bit Right

Return from Interrupt

Return from Subroutine

Subtract Memary from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Bit

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Store Zero in Memory

Transfer Accumulator to index X
Transter Accumulator 1o Index Y
Test and Reset Memory Bits with Accumulator
Test and Set Memory Bits with Accumulator
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

s
D 0 1 2 3 4 5 6 7 8 9 A B C D E F
BRK | ORA TSB* | ORA ASL PHP ORA | ASL TsB* ORA ASL
ind, X zpg pg zpg imm A abs abs abs
1 BPL ORA |ORA'T TRB*| ORA ASL CLC ORA INA® TRB* ORA ASL
rel ind, Y (zpg) 2pg zpg, X | zpg, X abs, Y A abs abs, X | abs, X
2 JSR AND BIT AND | ROL PLP AND | ROL BIT AND ROL
abs ind, X zpg zpg 2pg imm A abs abs abs
3 BMI AND [AND*t BIT* | AND ROL SEC AND |DEA* BTt AND ROL
rel ind, Y (zpg) zpg, X |zpg, X | zpg, X abs, Y A abs, X abs, X | abs, X
4 RTI EOR EOR LSR PHA EOR | LSR JMP EOR LSR
ind, X 2pg zpg imm A abs abs abs
5 BvC EOR |EOR*T EOR LSR cul EOR | PHY" EOR LSR
rel ind, Y {zpg) zpg, X | zpg, X abs, Y abs, X | abs, X
[} RTS ADC §TZ* | ADC ROR PLA ADC | ROR JMP ADC ROR
ind, X Py pg 09 imm A {abs) abs abs
7 BVS ADC |ADC*t §TZ* | ADC ROR SEI ADC | PLY* Jmpet ADC | ROR
rel ind, ¥ | (zpgl zpg, X | 2pg, X | zpg, X abs, Y abs (ind,X)| abs, X | abs, X
B |BRA" | STA STY STA STX DEY | BIT" | TXA STY STA sTX
rel ind, X zpg zpg zpg imm abs abs abs
9 BCC STA |STA*t STY STA 5TX TYA STA | TXS sTZ* STA §TZ*
rel ind, Y (zpg) zpg. X | 2pg, X | zpg. Y abs, Y abs abs, X | abs, X
A LDY | LDA LDX LDY | LDA LDX TAY LDA | TAX Loy LDA LDX
imm | ind, X imm zpg g zpg imm sbs abs abs
B | BCS | LDA [LDA't LDY | LDA | LDX CcLv LDA | TSX LDY LDA LDX
rel ind, ¥ | l(zpg) zpg, X | zpg, X | zpg. ¥ abs, Y abs, X |abs, X | abs Y
c CPY | CMP CPY CmP DEC INY CMP | DEX cPY CMP DEC
wmm | ind, X zpg zpg pg imm abs abs abs
=} BNE | CMP [CMmP*T CMP DEC cLD CMP | PHX* CMmP DEC
rel ind, ¥ | (zpgl zpg, X | zpg, X abs, Y abs, X | abs, X
E CPX S8C CPX | SBC INC INX SBC | NOP CPX SBC INC
imm | ind, X zpg zpg zpg imm abs abs abs
F BEQ | SBC seCc*t SBC INC SED SBC | PLX* SBC INC
rel ind, ¥ (zpg) zpg, X | zpg, X abs, Y abs, X | abs, X
1] 1 2 3 4 5 6 7 8 8 A B c D E F

Note: * = New OP Codes
MNote: T = New Address Modes

o

Data Sheet

215

= OPERATIONAL CODES, EXECUTION TIME, AND MEMORY
IMME- | ABSO- | ZERD . | ino, | rino), RELA- ABS PROCESSOR
DIATE| LUTE | PAGE [ACCUMPLIED| X) Y |2ZPG, X|ZPG, Y|ABS, X| ABS, Y| TIVE | (ABS) |(ND, X)| IZPG) | STATUS CODES
76543210
MNE OPERATION OP| n| 4 OP| nl# 0P| nl #{OP | nl#{OP|n [#foP|n | #loP|n [#|0P|n #]|0Pln [#]0P |n [#|0P|n [# 0P| n| #oP | n|#]oP|n [#|or|n|s
ADC|A+M+C*A 11,31 e8| 2| 2|60 |4|3(65 (3|2 61/6(2(71|5(2|75 (4|2 70/4|3|79 (4|3 72(5(2
AND|A A M=A (11 | 29|2|2|20|4|3{25|3}2 21(6/231|5[2|35|a|2 30/4/3| 3|43 3z(sf2(N z
ASL @«f ___B-0 (r OE|6(3{06|5/2|0A |21 16(6/2| 05 Y I O O O O O L L
BCC [Branch if C=0 2 ool | I 1] L] L v s
BCS |Branch f C=1 (2) B0|2[2
BEQ |Branch if Z=1 12) Fo|2[2
BIT [AAM (4.5)| 89| 2|2(2C [4|3{24|3|2 34la2 3c|a|3
BMI |Branch if N=1 @ 30(2(2 2
BNE | Branch it Z=0 @ 00| 2(2
BPL |Branch f N=0 @ 10|22
BRA |Branch Always (2) 80|22
BAK |Break oo|71
BYC |Branch f V=0 12l 50|2(2
BVS |Branch if V=1 2 70(2}2
cicjoec 18[2j1
cLofo+p 08|21
cul {o=1 5821
CLvio=v 8821 ;
CMP A - M (11 | cof2|zicofs|3fcs|3jz c1fel201|5]2|08)4|2 0Dj4[3|D8| 43 D2/5(2|N
CPX X M E0|2|2|EC|4|3€4| 32} N
CPY Y M co|2|2{cci4|3{ca|3|2 N
DEA[A - 1+A 3a(2)1 N 24
DEC|M-1+M (31} CE|6|3|C6|5|2 D6|8|2 DE|6{3. N 2.
DEX|X-1°x CAl2(1 N .
DEY|Y-1ev 8821 N . z
EOR[AwM=a 49| 2|2 40| 4|3 45312 41(s(2/51 |5 |2/56]af2 50(4(3{59|4(3 s2(5(2(N . 2.
INA |A+1=A 1A N - i
INC [M+1+M m EE|6|3(E6|5|2 76|62 FE[B(3 N rd
INX [X+ 10X EB[2[1 N, z.
INY [Yal=Y cajz2|1 N . Z
IMP [Jumo 10 new Joc 4claf3 6c|6(3|7c(6(3
JSA | Jump Subroutine 20(6(3 h
LDA|M*a 111 | a9(2|2|AD{4|3| a8 3(2 41|612/81/5/2|B5(a|2] 80|4[3|B9|4(3 B2(5[2(N . z
LOX M+ X i1 | A2|2|2|AE|a|3|ag]3|2 86|42 BE[4|3 N z
LDY|M =¥ 11| anj2|2|ac)a|ala4l3)2 B4/4|2 BC|al3 N . z
LSR [0~ B-[1 [§1] 4E (63| 46|5/2|4a |21 5662 SE (63| 0 . z
NOP |PC + 1 +PC Eal2(1 o
ORA[AVM=A 1) |oe|2|2oD{4|3]05|3|2 01162 11]5(2| 15(4|2] 1D4f3]19|4[3 12{5(2|N B
PHA|A <M, § 125 148 (31 =
PHP [PaM; §. 145 08 (3|1
PHX |X*M; 5125 DAl3 |1
PHY [Y*M, §.1+§ 5A(3)s fig
PLA S+1+5 My+A 68|41 N -
PLP [S41=5 My+P 28|41 NV 1D12g
PLX |S+1°5 M *X Faldlr N ;X
PLY |S+1+5 M, *Y TA 411 N. & s
ROLQ‘_’_fﬁD (31 2E(6]3(26(5|2(24 [2]1 36(6(2 3E|6|3 N Z gROL
ROR| LTEf m 6E|6|3/66(5(2/6a 2|1 78(6/2 7E(6{3 N, z gROR
RTI | Return from Inter 20/ 1 NV . 1D | ZdgRTI
ATS [Return from Subr. 60{6 |1 " ATS
SBC A M-T-a 1.3 | E92|2jen|a|3|es]al2 E1]62|F1]5|2{Fs|a|2] Foj4(3{Fola(3 F2/5(2|n v Z gsBec
SEC |1=+C 38|2(1 Vo 1|SEC
SED|1+D Fa (2|1 1 SED
SEl [19) 8|21 s b hoe B JlEEY
STA A<M 80 |4/3(85)3|2 81(a[281 [6|2/95]a]2 90 (5/3|98]s (3 92|52 .|sTa
STX [X M 8E|4(386(3|2 96(4(2 STX
STY (YoM 8C|4/31843(2 94 |a|2 ; .|sTY
§TZ (00 *m 9C|4(3{68)3(2 74|al2 o€ (5(3 A iy oo o8TR
TAX[A*xX wajz 1 N .2 TAX
TAY|A=Y Ag|2 11 N . 2 .|TAY
TRB[AAM=M 4) 1C|6(3[14(5(2 . Z.|TRB
TSB (AVMeM (1] joc [6/3|0as |2 . 2.|Ts8
TSX [§+x BAf2 1 N z . |Tsx
TXA (X *4 BAZ 1 N Z.|TxA
TXS |x*5 94 (2 |1 RS . |Txs
TYA|Y=*A 982 N 2 |TYa
Notes:
1. Add 1 to “n" if page boundary is crossed. X Index X + Add n No. Cycles
2. Add 1 to "n" if branch occurs to same page. Y Index Y — Subtract # No. Bytes
Add 2 to "n" if branch occurs to different page. A Accumulator A And Mg Memory bit 6
3. Add 1 to “n" if decimal mode. M Memory per effective address V Or M7 Memory bit 7
4. V bit equals memory bit 6 prior to execution. Ms Memory per stack pointer M Exclusive or
N bit equals memory bit 7 prior to execution.
*5. The immediate addressing mode of the BIT instruction leaves bits 6 & 7
(V & NJ in the Processor Status Code Register unchanged.
216 Appendix A: The 65C02 Microprocessor .

Appendix B

Directory of Built-in Subroutines

AWarning

Here is a list of useful subroutines in the Apple Ile’s Monitor. To use these
subroutines from machine-language programs, store data into the specified
memory locations or microprocessor registers as required by the subroutine
and execute a JSR to the subroutine’s starting address. After the subroutine
performs its function, it returns with the 65C02's registers changed as
described.

For the sake of compatibility between the Apple II Plus, Apple Ilc, and
the Apple Ile, do not jump into the middle of Monitor subroutines. The
starting addresses are the same for all models of the Apple II, but the
actual code is different.

BASICIN Read the keyboard $C305

When the 80-column firmware is active, BASICIN is used instead of KEYIN.
BASICIN operates like KEYIN except that it displays a solid, non-blinking
cursor instead of a blinking checkerboard cursor.

BASICOUT Output to screen $C307

When the 80-column firmware is active, BASICOUT is used instead of
COUT1. BASICOUT displays the character in the accumulator on the
Apple Ile’s screen at the current output cursor position and advances the
output cursor. It places the character using the setting of the
Normal/Inverse location. It handles control codes; see Table 3-3b.
BASICOUT returns with all registers intact.

BELL Output a bell character $FF3A

BELL writes a bell (Control-G) character to the current output device. It
leaves the accumulator holding $87.

BELL1 Sends a beep to the speaker $FBDD

BELLI generates a 1 kHz tone in the Apple Ile’s speaker for 0.1 second. It
scrambles the A and X registers.

CLREOL Cleartoend of line $FCOC

CLREOL clears a text line from the cursor position to the right edge of the
window. CLREOL destroys the contents of A and Y.

Appendix B: Directory of Built-in Subroutines

CLEOLZ Clear to end of line $FCIE

CLEOLZ clears a text line to the right edge of the window, starting at the
location given by base address BASL, which is indexed by the contents of
the Y register. CLEOLZ destroys the contents of A and Y.

CLREOP Clear to end of window $FC42
CLREQP clears the text window from the cursor position to the bottom of
the window. CLREOP destroys the contents of A and Y.

CLRSCR Clear the low-resolution screen $F832

CLRSCR clears the low-resolution graphics display to black. If you call
CLRSCR while the video display is in text mode, it fills the screen with
inverse-mode at-sign ((@) characters. CLRSCR destroys the contents of A
and Y.

CLRTOP Clear the low-resolution screen $F836
CLRTOP is the same as CLRSCR (above), except that it clears only the top
40 rows of the low-resolution display.

couT Output a character $FDED

COUT calls the current character output subroutine, The character to be
output should be in the accumulator. COUT calls the subroutine whose
address is stored in CSW (locations $36 and $37), which is usually one of
the standard character output subroutines, COUT1 or BASICOUT.

COUT1 Qutput to screen $FDF0

COUT1 displays the character in the accumulator on the Apple Ile’s screen
at the current output cursor position and advances the output cursor. It
places the character using the setting of the Normal /Inverse location. It
handles the codes for carriage return, linefeed, backspace, and bell. It
returns with all registers intact.

CROUT Generate a carriage return character $FD8E

CROUT sends a carriage return character to the current output device,

CROUT1 Generate carriage return, clear rest of line $FD8B

CROUT1 clears the screen from the current cursor position to the edge of
the text window, then calls CROUT.

Appendix B: Directory of Built-in Subroutines 219

GETLN Get an input line with prompt $FD6A

GETLN is the standard input subroutine for entire lines of characters, as
described in Chapter 3. Your program calls GETLN with the prompt
character in location $33; GETLN returns with the input line in the input
buffer (beginning at location $0200) and the X register holding the length of
the input line.

GETLNZ Getaninput line $FDBT
GETLNZ is an alternate entry point for GETLN that sends a carriage return
to the standard output, then continues into GETLN.

GETLN1 Get aninput line, no prompt $FD6F

GETLNI is an alternate entry point for GETLN that does not issue a prompt
before it accepts the input line. If, however, the user cancels the input line,
either with too many backspaces or with a then GETLN1
will issue the contents of location $33 as a prompt when it gets another line.

HLINE Draw a horizontal line of blocks $F819

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display. Call HLINE with the vertical coordinate of
the line in the accumulator, the leftmost horizontal coordinate in the

Y register, and the rightmost horizontal coordinate in location $2C. HLINE

returns with A and Y scrambled, X intact.

HOME Home cursor and clear $FCH8
HOME clears the display and puts the cursor in the home position: the
upper-left corner of the screen.

IOREST Restore all registers $FF3F
IOREST loads the 65C02's internal registers with the contents of memory
locations $45 through $49.

IOSAVE Save all registers SFF4A

IOSAVE stores the contents of the 65C02's internal registers in locations $45
through $49 in the order A, X, Y, P, S. The contents of A and X are changed
and the decimal mode is cleared.

Appendix B: Directory of Built-in Subroutines

KEYIN Read the keyboard $FDIB

KEYIN is the keyboard input subroutine. It reads the Apple Ile's keyboard,
waits for a keypress, and randomizes the random number seed at $4E-$4F.
When a key is pressed, KEYIN removes the blinking cursor from the display
and returns with the keycode in the accumulator, KEYIN is described in
Chapter 3.

MOVE Move a block of memory SFE2C

MOVE copies the contents of memory from one range of locations to
another. This subroutine is the same as the MOVE command in the Monitor,
except that it takes its arguments from pairs of locations in memory,
low-byte first. The destination address must be in A4 ($42-$43), the starting
source address in A1 ($3C-83D), and the ending source address in A2
($3E-$3F) when your program calls MOVE. Register Y must contain $00
when your program calls MOVE.

NEXTCOL Increment color by 3 $F85F
NEXTCOL adds 3 to the current color (set by SETCOL) used for
low-resolution graphics.

PLOT Plot on the low-resolution screen $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block’s vertical position is passed in the
accumulator, its horizontal position in the Y register. PLOT returns with the
accumulator scrambled, but X and Y intact.

PRBLNK Print three spaces $F948
PRBLNK outputs three blank spaces to the standard output device. On
return, the accumulator usually contains $AQ, the X register contains 0.
PRBL2 Print many blank spaces SF94A

PRBL2 outputs from 1 to 256 blanks to the standard output device. Upon
entry, the X register should contain the number of blanks to be output. If
X=800, then PRBL2 will output 256 blanks.

PRBYTE Print a hexadecimal byte $FDDA

PRBYTE outputs the contents of the accumulator in hexadecimal on the
current output device. The contents of the accumulator are scrambled.

Appendix B: Directory of Built-in Subroutines 221

PREAD Read a hand control $FBIE

PREAD returns a number that represents the position of a hand control. You
pass the number of the hand control in the X register. If this number is not
valid (not equal to 0, 1, 2, or 3), strange things may happen. PREAD returns
with a number from $00 to $FF in the Y register. The accumulator is
scrambled.

PRERR Print ERR $FF2D
PRERR sends the word ERE, followed by a bell character, to the standard
output device. On return, the accumulator is scrambled.

PRHEX Print a hexadecimal digit $FDE3
PRHEX prints the lower nibble of the accumulator as a single hexadecimal
digit. On return, the contents of the accumulator are scrambled.
PRNTAX Print A and X in hexadecimal $F941

PRNTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte output, the X
register contains the second. On return, the contents of the accumulator are
scrambled.

RDCHAR Get an input character or escape code $FD35

RDCHAR is an alternate input subroutine that gets characters from the
standard input subroutine, and also interprets the escape codes listed in
Chapter 3.

RDKEY Get an input character $FDOC

RDKEY is the character input subroutine. It places a blinking cursor on the
display at the cursor position and jumps to the subroutine whose address is
stored in KSW (locations $38 and $39), usually the standard input
subroutine KEYIN, which returns with a character in the accumulator.

READ Read a record from a cassette $FEFD

READ reads a series of tones at the cassette input port, converts them to
data bytes, and stores the data in a specified range of memory locations.
Before calling READ, the address of the first byte must be in Al ($3C-$3D)
and the address of the last byte must be in A2 ($3E-$3F).

222 Appendix B: Directory of Built-in Subroutines

READ keeps a running exclusive-OR of the data bytes in CHKSUM ($2E).
When the last memory location has been filled, READ reads one more byte
and compares it with CHKSUM. If they are equal, READ sends out a beep
and returns; if not, it sends the string £RR through COUT, sends the beep,
and returns.

SCRN Read the low-resolution graphics screen $F871

SCRN returns the color value of a single block on the low-resolution
graphics display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. Call it as you
would call PLOT (above). The color of the block will be returned in the
accumulator. No other registers are changed.

SETCOL Set low-resolution graphics color $F864

SETCOL sets the color used for plotting in low-resolution graphics to the
value passed in the accumulator. The colors and their values are listed in
Table 2-6.

SETINV Set inverse mode SFES0

SETINV sets the dislay format to inverse. COUT1 will then display all
output characters as black dots on a white background. The Y register is set
to $3F, all others are unchanged.

SETNORM Set normal mode $FE84

SETNORM sets the display format to normal. COUT1 will then display all
output characters as white dots on a black background. On return, the
Y register is set to $FF, all others are unchanged.

VERIFY Compare two blocks of memory $FE36

VERIFY compares the contents of one range of memory to another. This
subroutine is the same as the VERIFY command in the Monitor, except it
takes its arguments from pairs of locations in memory, low-byte first. The
destination address must be in A4 ($42-$43), the starting source address in
A1 ($3C-$3D), and the ending source address in A2 ($3E-$3F) when your
program calls VERIFY.

Appendix B: Directory of Built-in Subroutines 223

224

VLINE Draw a vertical line of blocks $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display. You should call VLINE with the horizontal
coordinate of the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2D. VLINE will
return with the accurmulator scrambled.

WAIT Delay $FCA8

WAIT delays for a specific amount of time, then returns to the program that
called it. The amount of delay is specified by the contents of the
accumulator. The delay is 1,/2(26+27A+5A ~ 2) microseconds, where A is
the contents of the accumulator. WAIT returns with the accumulator
zeroed and the X and Y registers undisturbed.

WRITE Write a record on a cassette $FECD

WRITE converts the data in a range of memory to a series of tones at the
cassette output port. Before calling WRITE, the address of the first data
byte must be in A1 ($3C-$3D) and the address of the last byte must be in A2
(83E-$3F). The subroutine writes a ten-second continuous tone as a header,
then writes the data followed by a one-byte checksum.

Appendix B: Directory of Built-in Subroutines

:Appendiﬁ C

Apple_fliFé.imily Differences

This appendix lists the differences among the Apple II Plus, the original and
the enhanced Apple Ile, and the Apple Ilc.

If you're trying to write software to run on more than one version of the
Apple II, this appendix will help you avoid unexpected problems of
incompatibility.

The differences are listed here in approximately the order you are likely to
encounter them: obvious differences first, technical details later. Each entry
in the list includes references to the chapters in this manual where the item
is described.

Keyboard

[e e P e ——————a—a] |
The Apple Ile and Apple lc have a full 62-key uppercase and lowercase
keyboard. The keyboard includes fully-operational and

keys. It also includes four directional arrow keys for moving
the cursor. Chapter 2 includes a description of the keyboard. The
cursor-motion keys are described in Chapter 3.

Apple Keys

The keyboard of the Apple Ile and Apple Ilc have two keys marked with the
Apple logo. These keys, called the Open-Apple key ([&]) and Solid-Apple
key ((&)), are used with the key to select special reset functions.
They are connected to the buttons on the hand controls, so they can be used
for special functions in programs.

The Apple 11 and the Apple II Plus do not have Apple keys.

Character Sets

I S s T P e ————— R ———— = Ay S [— = —=—1
The Apple Ile and Apple Ilc can display the full ASCII character set,
uppercase and lowercase. For compatibility with older Apple II's, the
standard display character set includes flashing uppercase instead of
inverse-format lowercase; you can also switch to an alternate character set
with inverse lowercase and uppercase, but no flashing. Chapter 2 includes a
description of the display character sets. Chapter 3 tells you how to switch
display formats.

226 Appendix C: Apple II Family Differences .

The Apple Iic and the enhanced Apple Ile include a set of “graphic” text
characters, called MouseText characters, that replace some of the inverse
uppercase characters in the alternate character set of the original Apple Ile.
MouseText characters are described in Chapter 2.

80-Column Display

e e e = e e S]
With the addition of an 80-column text card, the Apple Ile can display 80
columns of text. The 80-colurn display is completely compatible with both
graphics modes—you can even use it in mixed mode. (If you prefer, you can
use an old-style 80-column card in an expansion slot instead.) Chapter 2
includes a description of the 80-column display.

The Apple Ilc has a built-in extended 80-column card.

Escape Codes and Control Characters

L= ST e O S S = P N U I S S T i i1 * |
On the Apple Ile and Apple Ilc, the display features mentioned above (and
many others not mentioned) can be controlled from the keyboard by escape
sequences and from programs by control characters. Chapter 3 includes
descriptions of those escape codes and control characters.

Built-in Language Card

e e e e e e
The 16K bytes of RAM you add to the Apple II Plus by installing the
Language Card is built into the Apple Ile and Apple Ile, giving the Apple Ile
a standard memory size of 64K bytes. (The Apple Ilc has a built-in extended
80-column text card as well, giving it a standard memory size of 128K
bytes.) In the Apple Ile, this 16K-byte block of memory is called the
bank-switched memory. It is described in Chapter 4.

Built-in Language Card 227

Auxiliary Memory

== s s o8 =-S5 = = ——=u-——=—u—— . ——)
By installing the Apple lle Extended 80-Column Text Card, you can add an
alternate 64K bytes of RAM to the Apple lle. Chapter 4 tells you how to use
the additional memory. (The Extended 80-Column Text Card also provides
the 80-column display option.)

The Apple Ilc has a built-in extended 80-column text card.

Auxiliary Slot

. R T e T R T e) e e e T N VG |
In addition to the expansion slots on the Apple II Plus, the Apple Ile has a
special slot that is used either for the 80-Column Text Card or for the
Extended 80-Column Text Card. This slot is identified in Chapter 1 and
described in Chapter 7.

The Apple Ilc has the functions of the auxiliary slot built in.

Back Panel and Connectors

e e e e e]
The Apple Ile has a metal back panel with space for several D-type
connectors. Each peripheral card you add comes with a connector that you
install in the back panel. Chapter 1 includes a description of the back panel;
for details, see the installation instructions supplied with the peripheral
cards.

The Apple Ilc back panel has seven built-in connectors.

Soft Switches

The display and memory features of the Apple Ile and the Apple Ilc are
controlled by soft switches like the ones on the Apple II Plus. On the

Apple Ile and the Apple Ile, programs can also read the settings of the soft
switches. Chapter 2 describes the soft switches that confrol the display
features, and Chapter 4 describes the soft switches that control the memory
features,

Appendix C: Apple Il Family Differences

Built-in Self-Test

The Apple Ile has built-in firmware that includes a self-test routine. The
self-test is intended primarily for testing during manufacturing, but you can
run it to be sure the Apple Ile is working correctly. The self-test is described
in Chapter 4.

The Apple Ilc also has built-in diagnosties.

Forced Reset

et) N B - D S W S Al B S AT SN il i UM S i)
Some programs on the Apple II Plus take control of the reset function to
keep users from stopping the machine and copying the program. The

Apple Ile and Apple Ilc have a forced reset that writes over the program in
memory. By using the forced reset, you can restart the Apple Ile (or

Apple Ile) without turning power off and on and causing unnecessary stress
on the circuits. The forced reset is described in Chapter 4.

Interrupt Handling

Even though most application programs don't use interrupts, the Apple Ile
(and Apple Ilc) provide for interrupt-driven programs. For example, the
80-column firmware periodically enables interrupts while it is clearing the
display (normally a long time to have interrupts locked out). Interrupts are
discussed in Chapter 6.

Vertical Sync for Animators

Programs with animation on the Apple Ile and Apple IIc can stay in step
with the display and avoid flickering objects in their displays. Chapter 7
includes a description of the video generation and the vertical sync.

Vertical Sync for Animators 294

Signature Byte

e = e e s
A program can find out whether it's running on an Apple Ile, Apple Ile,
Apple III (in emulation mode), or on an older model Apple II by reading the
byte at location $FBB3 in the System Monitor. In the Apple Ile Monitor, this
byte’s value is $06; in the Autostart Monitor (the standard Monitor on the
Apple I Plus), its value is $EA. (Note: if you start up with DOS and switch
to Integer BASIC, the Autostart Monitor is active and the value at location
$FBB3 is $EA, even on an Apple Ile.) Obviously, there are lots of other
locations that have different values in the different versions of the Monitor;
location $FBB3 was chosen because it will have the value $06 even in
future revisions of the Apple Ile Monitor.

Hardware Implementation

All of these features are described in
Chapter 7.

For more information about the Apple Ilc,
see the Apple Ilc Reference Manual.

EPEeEeEe—0—————s=——e— =
The hardware implementation of the Apple Ile is radically different from
the Apple Il and Apple II Plus. Three of the more important differences are
o the custom ICs: the I0U and MMU

o the video hardware, which uses ROM to generate both text and graphics
o the peripheral data bus, which is fully buffered.

The Apple Ilc

o shares some of the custom ICs of the Apple Ile

o has some new ones all its own

o lacks the slots of the Apple Ile, replacing some of them with built-in 1/0
ports.

Appendix C: Apple Il Family Differences

Appendix D

Operating Systems and Languages

231

This appendix is an overview of the characteristics of operating systems
and languages when run on the Apple Ile. It is not intended to be a full
account. For more information, refer to the manuals that are provided with
each product.

Operating Systems

This section discusses the operating systems that can be used with the
Apple Ile.

ProDOS

I

ProDOS is the preferred disk operating system for the Apple Ile. It supports
interrupts, startup from drives other than a Disk I, and all other hardware
and firmware features of the Apple Ile.

DOS 3.3

fe————c—=]

The Apple Ile works with DOS 3.3. The Apple Ile can also access DOS 3.2
disks by using the BASICS disk. However, neither version of DOS takes full
advantage of the features of the Apple Ile. DOS support is provided only for
the sake of Apple Il series compatibility.

Pascal Operating System

The Apple II Pascal operating system was developed from the UCSD Pascal
system from the University of California at San Diego. While it shares many
characteristics of that system, it has been extended by Apple in several
areas.

Pascal versions 1.2 and later support interrupts and all the hardware and
firmware features of the Apple Ile.

The Apple II Pascal system uses a disk format different than either ProDOS
or DOS 3.3.

Appendix D: Operating Systems and Languages

CP/M

_

CP/M® is an operating system developed by Digital Research that runs on
either the Intel 8080 or Zilog Z80® microprocessors. This means that a
co-processor peripheral card, available from several manufacturers for the
Apple Ile, is required to run CP/M. Several versions of CP/M from 1.4
through 3.0 and later can be run on an Apple Ile with an appropriate
co-processor card.

Languages

An aid for assembly-language programming
is ProDOS Assembler Tools (A2W0013).

This section discusses special techniques to use, and characteristics to be
aware of, when using Apple programming languages with the Apple Ile.

Assembly Language
SR R R

Programs written in assembly language have the potential of extracting the
most speed and efficiency from yvour Apple lle, but they also require the
most effort on your part.

Applesoft BASIC

Eere——= e r o

The focus of the chapters in this manual is assembly language, and so most
addresses and values are given in hexadecimal notation. Appendix E in this
manual includes tables to help you convert from hexidecimal to the decimal
notation vou will need for BASIC.

In BASIC, use a PEEK to read a location (instead of the LDA used in
assembly language), and a POKE (instead of STA) to write to a location. If
you read a hardware address from a BASIC program, you get a value
between 0 and 255. Bit 7 holds a place value of 128, so if a soft switch is on,
its value will be equal to or greater than 128; if the switch is off, the value
will be less than 128.

Integer BASIC

E—————————-

Integer BASIC is not included in the Apple Ile firmware. If you want to run
it on your Apple [le, you must use DOS 3.3 to load it in to the system.
ProDOS does not support Integer BASIC.

Languages 233

Pascal Language
P o= e]

The Pascal language works on the Apple Ile under versions 1.1 and later of
the Pascal Operating System. However, for best performance, use Pascal 1.2
or a later version.

FORTRAN

=

FORTRAN works under version 1.1 of the Pascal Operating System which
does not detect or use certain Apple Ile features, such as auxiliary memory.
Therefore, FORTRAN does not take advantage of these features.

Appendix D: Operating Systems and Languages

}—Xi)éndix E

Conversion Tables

235

This appendix briefly discusses bits and bytes and what they can represent.
It also contains conversion tables for hexadecimal to decimal and negative
decimal, for low-resolution display dot patterns, display color values, and a
number of 8-bit codes.

These tables are intended for convenient reference. This appendix is not
intended as a tutorial for the materials discussed. The brief section
introductions are for orientation only.

Bits and Bytes

236

e e =}
This section discusses the relationships between bit values and their
position within a byte. The following are some rules of thumb regarding the
65C02 and 6502.

o A bit is a binary digit; it can be eitheraOora 1.

o A bit can be used to represent any two-way choice. Some choices that a
bit can represent in the Apple Ile are listed in Table E-1.

Table E-1. What a Bit Can Represent

Context Representing 0= 1=
Binary number Place value 0 1 x that power of 2
Logic Condition False True
Any switch Position Off On
Any switch Position Clear* Set
Serial transfer ~ Beginning Start Carrier (no information yet)
Serial transfer Data 0 value 1 value
Serial transfer Parity SPACE MARK
Serial transfer End Stop bit(s)
Serial transfer ~ Communication BREAK Carrier
state
P reg. bit N Neg. result? No Yes
Preg. bit V Overflow? No Yes
P reg. bit B BRK command? No Yes
Preg. bit D Decimal mode? No Yes
Preg bit1 IRQ interrupts Enabled Disabled (masked out)
P reg. bit Z Zero result? No Yes
Preg bit C Carry required? No Yes

* Sometimes ambiguously termed reset.

Appendix E: Conversion Tables

o Bits can also be combined in groups of any size to represent numbers.
Most of the commonly used sizes are multiples of four bits.

o Four bits comprise a nibble (sometimes spelled nybble).

o One nibble can represent any of 16 values. Each of these values is
assigned a number from 0 through 9 and (because our decimal system
has only ten of the sixteen digits we need) A through F.

o Eight bits (two nibbles) make a byte (Figure E-1).

Figure E-1. Bits, Nibbles, and Bytes

High Nibble Low Nibble

MSB LSB
7 6 5 4 3 2 1 0

$80 sS40 820 $10 508 504 $02 301 Hexadecimal
128 64 32 16 8 4 2 i Decimal

Binary Hex Dec
0000 $00 0
0001 $01 1
0010 $02 2
0011 $03 3
0100 $04 4
0101 $05 5
0110 306 6
0111 $07 7
1000 308 8
1001 $09 9
1010 $0A 10
1011 $0B 11
1100 $0C 12
1101 $0D 13
1110 $0E 14
il $0F 15

o One byte can represent any of 16 x 16 or 256 values. The value can be
specified by exactly two hexadecimal digits.

o Bits within a byte are numbered from bit 0 on the right to bit 7 on the left.

o The bit number is the same as the power of 2 that it represents, in a
manner completely analogous to the digits in a decimal number.

Bits and Bytes ' 237

o One memory position in the Apple Ile contains one eight-bit byte of data.

o How byte values are interpreted depends on whether the byte is an
instruetion in a language, part or all of an address, an ASCII code, or
some other form of data.

o Two bytes make a word. The sixteen bits of a word can represent any
one of 256 x 256 or 65536 different values.

o The 65C02 uses a 16-bit word to represent memory locations. It can
therefore distinguish among 65536 (64K) locations at any given time.

o A memory location is one byte of a 256-byte page. The low-order byte of
an address specifies this byte. The high-order byte specifies the memory
page the byte is on.

Hexadecimal and Decimal

Use Table E-2 for conversion of hexadecimal and decimal numbers.

Table E-2. Hexadecimal/Decimal Conversion

Digit $x000 $0x00 $00x0 $000x
F 61440 3840 240 15
E 57344 3584 224 14
D 53248 3328 208 13
C 49152 3072 192 12
B 45056 2816 176 11
A 40960 2560 160 10
9 36864 2304 144 9
8 32768 2048 128 8
7 28672 1792 112 7
6 24576 1536 96 6
5 20480 1280 80 5
4 16384 1024 64 4
3 12288 768 48 3
2 8192 512 32 2
1 4096 266 16 1

Appendix E: Conversion Tables

To convert a hexadecimal number to a decimal number, find the decimal
numbers corresponding to the positions of each hexadecimal digit. Write

them down and add them up.

Examples:

$3C = 7 $FD47 = 2

$30 = 48 $FO0A = 61448

$8C = 12 $ DB = 3328

________ $ 49 = 64
$ 7 = 7

$3C = 68 o ______

$FD47 = 64839

To convert a decimal number to hexadecimal, subtract from the decimal
number the largest decimal entry in the table that is less than the number.
Write down the hexadecimal digit (noting its place value) also. Now
subtract the largest decimal number in the table that is less than the
decimal remainder, and write down the next hexadecimal digit. Continue
until you have zero left. Add up the hexadecimal numbers.

Example:
16215 = §$ 7?7
16215 - 12288 = 3927 12288 = $7068
3927 - 3848 = 87 3840 = §$ F@P
87 - 88 = 7 88 = $ 5@
F 7 =3 I
16215 = $7FS57
Hexadecimal and Decimal 239

Hexadecimal and Negative Decimal .

If a number is larger than decimal 32767, Applesoft BASIC allows and .
Integer BASIC requires that you use the negative-decimal equivalent of the
number. Table E-3 is set up to make it easy for you to convert a
hexadecimal number directly to a negative decimal number.

Table E-3. Hexadecimal to Negative Decimal Conversion

Digit $x000 $$0x00 $800x0 $$000x

F 0 0 0 «]
E -4096 -256 -16 -2
D -8192 -512 -32 -3
C -12288 -768 -48 -4
B -16384 -1024 -64 -5
A -20480 -1280 -80 -6
9 -24576 -1536 -96 -7
8 -28672 -1792 -112 -8
7 -2048 -128 9
6 -2304 -144 -10
5 -2560 -160 -11
4 -2816 -176 -12
3 -3072 -192 -13
2 -3328 -208 -14
1 -3584 -224 -15
0 -3840 -240 -16

To perform this conversion, write down the four decimal numbers
corresponding to the four hexadecimal digits (zeros included). Then add
their values. The resulting number is the desired negative decimal number.

Example:

$co1@ = - ?
$cegp: -12288
$ B0P: - 38489
$ 18: - 224
$ @#: - 186
$CP18 -16368

Appendix E: Conversion Tables

To convert a negative-decimal number to a positive decimal number, add it
to 65536. (This addition ends up looking like subtraction.)

Example:
151 = + ?
65536 + (-151) = 65536 - 151 = 65385

To convert a negative-decimal number to a hexadecimal number, first
convert it to a positive decimal number, then use Table E-2.

Hexadecimal and Negative Decimal 241

Graphics Bits and Pieces .
e == e . = = =

Table E-4 is a quick guide to the hexadecimal values corresponding to 7-bit .
high-resolution patterns on the display screen. Since the bits are displayed

in reverse order, it takes some calculation to determine these values.
Table E-4 should make it easy.

Table E-4. Hexadecimal Values for High-Resolution Dot Patterns

242 Appendix E: Conversion Tables

Bits in Data Byte Bit Pattern x=0 x=1 Bit Pattern x=0 x=1 .
gls51413]2]1]0] x0000000 500 $80 x0100000 $02 $82
x0000001 $40 $CO 0100001 $42 $C2 .
0000010 $20 $AO 0100010 $22 $A2
0000011 $60 SEO 0100011 $62 SE2
0000100 $10 $90 0100100 $12 $92 .
x0000101 $50 $DO 0100101 $52 D2
x0000110 $30 $BO 0100110 $32 $B2
o|1|2|3|4|5|6| x0000111 $70 SFO 0100111 $72 $F2 .
ey o x0001000 $08 88 0101000 $0A $8A
0001001 $48 $C8 0101001 $4A $CA
0001010 $28 $A8 X0101010 $2A $AA
x0001011 $68 SES X0101011 $6A SEA .
0001100 $18 $98 0101100 $1A $9A
0001101 $58 $D8 x0101101 $5A $DA
0001110 $38 $BB 0101110 $3A $BA e
0001111 §78 $F8 x0101111 $7A SFA
0010000 $04 $84 0110000 $06 $86
x0010001 $44 $C4 x0110001 $46 $C6 .
0010010 $24 $A4 0110010 $26 $A6
0010011 $64 $E4 0110011 $66 $E6
0010100 $14 $94 x0110100 $16 $96 .
x0010101 $54 $D4 x0110101 $56 SD6
x0010110 $34 $B4 0110110 $36 $B6
x0010111 $74 S$F4 0110111 $76 $F6
x0011000 $0C $8C x0111000 $0E $8E .
x0011001 $4C $CC 0111001 $4E $CE
x0011010 $2C SAC 0111010 $2E $AE
x0011011 $6C SEC 0111011 $6E SEE .
0011100 $I1C $9C x0111100 $1E $9E
x0011101 $5C $DC 0111101 $5E $DE
x0011110 $3C $BC 0111110 $3E $BE .
x0011111 §7C $FC 0111111 $7E SFE

The a represents bit 7. Zeros represent bits that are off; ones bits that are
on. Use the first hexadecimal value if bit 7 is to be off, and the second if it is
to be on.

For example, to get bit pattern 00101110, use $3A; for 10101110, use $BA.

Table E-4—Continued. Hexadecimal Values for High-Resolution Dot Patterns

Bit Pattern x=0 x=1 Bit Pattern x=0 x=1
x1000000 $01 $81 x1100000 $03 $83
x1000001 $41 $C1 x1100001 $43 $C3
x1000010 $21 $Al x1100010 $23 $A3
x1000011 $61 $E1 x1100011 $63 $E3
x1000100 $11 891 x1100100 $13 §93
x1000101 851 $D1 x1100101 $53 $D3
x1000110 $31 $B1 x1100110 $33 $B3
x1000111 871 $F1 x1100111 $73 $F3
x1001000 $09 $89 x1101000 0B $8B
x1001001 $49 8C9 x1101001 $4B $CB
x1001010 $29 $A9 x1101010 $2B $AB
x1001011 $69 $E9 x1101011 $6B SEB
x1001100 $19 $99 x1101100 $IB $9B
x1001101 $59 $D9 x1101101 $5B $DB
x1001110 $39 $BY x1101110 $3B $BB
x1001111 $79 $F9 x1101111 $7B $FB
x1010000 $05 $85 x1110000 $07 $87
x1010001 $45 $C5 x1110001 $47 $C7
x1010010 $25 $A5 x1110010 $27 $A7
x1010011 $65 $E5 x1110011 $67 $ET
x1010100 $156 895 x1110100 $17 897
x1010101 $55 $D5 x1110101 $57 $D7
x1010110 $35 $B5 x1110110 $37 $B7
x1010111 §75 $F5 x1110111 $77 $F7
x1011000 $0D 88D x1111000 $0F $8F
x1011001 $4D $CD x1111001 $4F $CF
x1011010 $2D $AD x1111010 $2F SAF
x1011011 $6D SED x1111011 $6F SEF
x1011100 $1D 89D x1111100 $1F $9F
x1011101 $D $DD x1111101 $5F $SDF
x1011110 $3D $BD x1111110 $3F $BF
x1011111 $7D S$FD x1111111 $7F §FF
Graphics Bits and Pieces 243

Eight-Bit Code Conversions ._

Tables E-b through E-12 show the entire ASCII character set twice: once .
with the high bit off, and once with it on. Here is how to interpret these
tables.

o The Binary column has the 8-bit code for each ASCII character.
o The first 128 ASCII entries represent 7-bit ASCII codes plus a high-order
bit of 0 (SPACE parity or Pascal)—for example, 010010000 for the
letter A. .
o The last 128 ASCII entries (from 128 through 255) represent 7-bit ASCII
codes plus a high-order bit of 1 (MARK parity or BASIC)—for example,
11001000 for the letter A. .
o A transmitted or received ASCII character will take whichever form is
appropriate if odd or even parity is selected—for example, 11001000 for .
an odd-parity H, 01001000 for an even-parity H.
o The ASCII Char column gives the ASCII character name.
o The Interpretation column spells out the meaning of special symbols .
and abbreviations, where necessary.
0 The What to Type column indicates what keystrokes generate the ASCII
character (where it is not obvious). .
o The columns marked Pri and Alt indicate what displayed character
results from each code when using the primary or alternate display
character set, respectively. Boldface is used for inverse characters; italic .
is used for flashing characters.

Note that the values $40 through $5F (and $C0 through $DF) in the .
The MouseText characters are shown in alternate character set are displayed as MouseText characters if
Table E-7. MouseText is turned on.

244 Appendix E: Conversion Tables

Note: The primary and alternate displayed character sets in Tables E-5
through E-12 are the result of firmware mapping. The character generator
ROM actually contains only one character set. The firmware mapping
procedure is described in the section “Inverse and Flashing Text,” in
Chapter 3.

Table E-5. Control Characters, High Bit Off

ASCII
Binary Dec Hex Char Interpretation What to Type Alt
0000000 0 $00 NUL Blank (null)
0000001 1 $01 SOH Start of Header
0000010 2 $02 STX Start of Text
0000011 3 $03 ETX End of Text
0000100 4 $04 EOT End of Transm. (0]
0000101 b $05 ENQ Enquiry
0000110 6 $06 ACK Acknowledge
0000111 T $07 BEL Bell ()
0001000 8 $08 BS Backspace or(=)
0001001 9 $09 HT Horizontal Tab CONTROL H 1] 0T [TAB)
0001010 10 $0A LF Line Feed or3)
0001011 11 $0B VT Vertical Tab [ConTROL HK] Or (1]
0001100 12 $0C FF Form Feed CONTROL
0001101 13 $0D CR Carriage Return or
0001110 14 $0E SO Shift Out [N]
0001111 15 $0F Sl Shift In
0010000 16 510 DLE Data Link Escape CONTROL

!I

0010001 17 811 DC1 Device Control 1 CONTRO
0010010 18 $12 DC2 Device Control 2
0010011 19 $13 DC3 Device Control 3 C

o]
z
3
(o]
=

O
o
=z
!
o]
(] =]
T TNMMECOHOROTOZEN RN T HNANETOERR ¥

"—'/"‘N-QNQ'E!C“"!WHO"UOZEF'H"—"".‘:I:CDHHUOW:P@

0010100 20 $14 DC4 Device Control 4

0010101 21 816 NAK Neg. Acknowledge or[=)

0010110 22 $16 SYN Synchronization

0010111 23 $17 ETB End of Text Blk.

0011000 24 $18 CAN Cancel

0011001 25 $19 EM End of Medium

0011010 26 $1A SUB Substitute CONTROL HZ]

0011011 27 $1B ESC Escape [CoNTROL HT) or [ESC)

0011100 28 $1C FS File Separator

0011101 29 $1D GS Group Separator il

0011110 30 $1E RS Record Separator

0011111 31 $1F Uus Unit Separator = =
Eight-Bit Code Conversions 245

Table E-6. Special Characters, High Bit Off .
ASCII

Binary Dec Hex Char Interpretation What to Type Pri Alt .

0100000 32 $20 SP Space bar

0100001 33 $21 ! ! ! .

0100010 34 $22 8 " o

0100011 35 $23 # # #

0100100 36 $24 $ $ $

0100101 37 $25 % % % .

0100110 38 $26 & & &

0100111 39 $27 ' Closing Quote 4 '

010100 40 $28 ¢ C i

0101001 41 $29)))

0101010 42 $2A % * *

0101011 43 $2B + + + l

0101100 4 $2C ’ Comma : ,

0101101 45 $2D - Hyphen . 2

0101110 46 $2E . Period ; .

0101111 47 $F / / /

0110000 48 $30 0 0 0

0110001 49 $31 1 1 1

0110010 50 $32 2 2 2 .

0110011 51 $33 3 3 3

0110100 52 $34 4 4 4

0110101 53 $% 5 5 B .

0110110 54 $36 6 6 6

0110111 55 $37 7 7 7

0111000 56 $38 8 8 8 .

0111001 57 $39 9 9 9

0111010 58 $3A - :

0111011 59 $3B ; ;

0111100 60 $3C < < .

0111101 61 $3D = = =

0111110 62 $3E g > b

011111 63 SIF 7 ? 9 -

246 Appendix E: Conversion Tables .

Table E-7. Uppercase Characters, High Bit Off

Binary

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

Hex

§40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$4A

$5F

ASCII
Char

Interpretation

Opening Bracket
Reverse Slant
Closing Bracket
Caret

Underline

Eight-Bit Code Conversions

What to Type

S TSNNNFEIQNLDOTOIITARASTIaNEbaNEg ¥

-

“EL D& MAUNANY OR

v

Tl le_UDN#E LT | 26

Table E-8. Lowercase Characters, High Bit Off

Binary

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Dec

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
873
874
875
876
877
§78
879
$TA
$7B
$7C
$7D
$7E
$7F

ASCII
Char

it TR M g <ot RO o g TRSTITTDARO Q0 O

DEL

Interpretation What to Type

Opening Quote

Opening Brace
Vertical Line
Closing Brace
Overline (Tilde)
Delete/Rubout

Appendix E: Conversion Tables

cR R g - v

= 5 N~

L

D00~ Db Cody O™

'vv I A-. ..

=

-

e = NY M gd @@ "RogwoBRgTESTTRMmOAOTE

DEL

Table E-9. Control Characters, High Bit On

Binary

10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111

Dec

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Hex

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F

ASCII
Char

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT

Interpretation

Blank (null)
Start of Header
Start of Text
End of Text

End of Transm.
Enquiry
Acknowledge
Bell

Backspace
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out

Shift In

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Neg. Acknowledge
Synchronization
End of Text Blk.
Cancel

End of Medium
Substitute
Escape

File Separator
Group Separator
Record Separator
Unit Separator

What to Type

CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL
CONTROL HF

CONTROL
(CoNTROLHH] or [=]
[CoNTROL 1] or [TAB]
(conTROLHIJ or (3]
(ConTROL HK]or [1]
CONTROL

CONTROL HM] 0T [RETURN
C

oL
oL

@
A

[¢]

i""/—'N"<:><é<.‘.C!HGOZUD*UOZEF‘N‘—'HZD”HK’JUOWZP@

i
3
2]

(o]
2
2
°
©)

g[8l
Z||Z||Z
31313
98
BlglEEE

CONTROL

]
=)
[+]

O O] O] O] |0
g g Q] 10] |0
=IEEIEIE
Ol 0] |10] 10| |0
Ul B Lol B Ut B Ll B L
FEEEE

(CoNTROL HT] or [ESC]
CONTROL H \]
CONTROL H1]
CONTRO
CONTROL

Eight-Bit Code Conversions

o)
a

|

=

Table E-10. Special Characters, High Bit On

Binary

10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111

10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111

250

Dec

160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Hex

$A0
$Al
$A2
$A3
$A4
SA5
$A6
$AT

5A8
$A9
$AA
$AB
$AC
$AD
SAE
SAF
$BO
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
SBE
$BF

ASCII

Char Interpretation What to Type

SP Space SPACE bar

|

#

$

%

&

i Closed Quote
(acute accent)

(

)

*

+

y Comma
Hyphen

; Period

/

0

1

'

8

4

5

6

7

8

9

&

>

?

Appendix E: Conversion Tables

“pose e w =o—

T D00 IO W LoD O L

Sy A

Alt

gy e H -

+ s N

T O 00 1O O W QoD = O

AT

Table E-11. Uppercase Characters, High Bit On

Binary

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111

Dec

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Hex

$C0
$C1
$C2
$C3
$C4
$Ch
$C6
$CT
$C8
$C9
$CA
$CB
$CC
$CD
$CE
$CF
$DO
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
SDF

ASCII
Char

Interpretation

Opening Bracket
Reverse Slant
Closing Bracket
Caret

Underline

Eight-Bit Code Conversions

What to Type

»“—'/‘—N'-f::x:ﬁ<G~!m9§¢D“UOZgF“P<L"'*=EC)*‘JUJUOEB>@ z

=

TN X E<CHYTOTOZEIC RN T IQEETO® >R

|

251

Table E-12. Lowercase Characters, High Bit On

ASCII
Binary Dec Hex Char Interpretation What to Type

11100000 224 S$EO) Open Quote
11100001 225 $El
11100010 226 $E2
11100011 227 $E3
11100100 228 $E4
11100101 229 $E5
11100110 230 $E6
11100111 231 $E7
11101000 232 SES8
11101001 233 $E9
11101010 234 $EA
11101011 235 $EB
11101100 236 $EC
11101101 237 $ED
11101110 238 S$EE
11101111 239 S$EF
11110000 240 $FO
11110001 241 $F1
11110010 242 $F2
11110011 243 $F3
11110100 244 §F4
11110101 245 $F5
11110110 246 $F6
11110111 247 $F7
11111000 248 $F8
11111001 249 $F9
11111010 250 $FA

4
-

e R R e =l - R e it~ L N N

TN M g S RS N aE e B g e SR e o e
TR M S E T ROD oY RO D G O

11111011 251 $FB Opening Brace

11111100 252 $FC | Vertical Line

11111101 253 $FD } Closing Brace

11111110 254 $FE > Overline (Tilde)

11111111 255 $FF DEL Delete (Rubout) DELETE DEL DEL
252 Appendix E: Conversion Tables

Appendix F

Frequently Used Tables

This appendix contains copies of the tables you will need to refer to
frequently, for example, ASCII codes and soft-switch location. The figures
all have their original figure numbers.

Table 2-3. Keys and ASCII Codes

Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer
to Table E-2.

Normal Control Shift Both
Key Code Char Code Char Code Char Code Char

77 DEL TF DEL 7F DEL 7F DEL
= 8 BS 08 BS 08 BS 08 BS
9 HT 09 HT 09 HT 09 HT
© OA LF O0OA LF O0A LF 0A LF
@ 08 VI OB VI OB VT 0B VT
o O OO C 0D CR 0D OR
= 5 NAK 15 NAK 15 NAK 15 NAK
1B ESC 1B ESC 1B ESC 1B ESC
% SP 20 SP 20 SP 2 SP

27 ' 27 ' 22 22
N 2C ’ 2C : 3C & 3C <
- 2D - 1F Us 5F = 1F Us
i 2E : 2E : 3E = 3E >
F2 2F P2 2F / 3F ? 3F ?
0) 30 0 30 0 29) 29)
1! 31 1 31 1 21 ! 21 !
2@ 32 2 00 NUL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
4% 34 4 34 4 24 $ 24 $
5% 35 5 35 5 25 % 25 %
6" % 6 IE RS 5E ’ IE RS
T& 37 7 37 7 26 & 26 &
5* 38 8 38 8 2A * 2A ’
9(9 9 39 9 28 (B’
s 3B : 3B : 3A ; 3A :
=+ 3D = 3D = 2B - 2B +
[5B | 1B ESC 1B | 1B ESC
\ 5C \ 1C FS 7C | 1C FS
I 50| D G M D GS
T 60 ‘ 60 ’ B) o i
Appendix F: Frequently Used Tables

Table 2-3—Continued. Keys and ASCII Codes

Note: Codes are shown here in hexadecimal; to find the decimal equivalents, refer
to Table E-2.

Normal Control Shift Both
Key Code Char Code Char Code Char Code Char
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
C 63 c 03 ETX 43 C 03 ETX
D 64 d 04 EOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 i 09 HT 49 I 09 HT
J BA] 0A LF 4A J 0A LF
K 6B k 0B VT 4B K 0B VT
L 60 | 0c FF 4C L 0C EF
M 6D m 0D CR 4D M 0D CR
N 6E n 0E SO 4E N 0E SO
0 6F 0 OF SI 4F 0 OF SI
P 70 p 10 DLE 50 P 10 DLE
Q i q 11 DC1 51 Q 11 DC1
R 72 r 12 DC2 52 R 12 DC2
S 73 s 13 DC3 53 S 13 DC3
y 74 t 14 DC4 b4 T 14 DC4
U 75 u 15 NAK 55 U 15 NAK
V 76 v 16 SYN 56 v 16 SYN
W 7 w 17 ETB 57 w 17 ETB
X 78 X 18 CAN 88 X 18 CAN
Y 79 y 19 EM 59 ¥ 19 EM
Z TA Z 1A SUB bA Z 1A SUB

Table 2-2. Keyboard Memory Locations

Location
Hex Decimal Description

$C000 49152 -16384 Keyboard data and strobe
$C010 49168 -16368 Any-key-down flag and clear-strobe switch

Appendix F: Frequently Used Tables 255

206

Table 2-4. Video Display Specifications

Display modes:

Text capacity:
Character set:

Display formats:

Low-resolution graphics:

High-resolution graphies:

Double-high-resolution
graphics:

40-colurnn text; map: Figure 2-2
80-column text; map: Figure 2-3

Low-resolution color graphics; map: Figure 2-7
High-resolution color graphics; map: Figure 2-8

Double-high-resolution color graphics;
map: Figure 2-9

24 lines by 80 columns (character positions)
96 ASCII characters (uppercase and lowercase)
Normal, inverse, flashing, MouseText (Table 2-5)

16 colors (Table 2-6) 40 horizontal by 48 vertical;
map: Figure 2-7

6 colors (Table 2-T) 140 horizontal by 192 vertical
(restricted)

Black-and-white: 280 horizontal by 192 vertical;
map: Figure 2-8

16 colors (Table 2-8) 140 horizontal by 192 vertical
(no restrictions)

Black-and-white: 560 horizontal by 192 vertical,
map: Figure 2-9

Appendix F: Frequently Used Tables

Table 2-8. Double-High-Resolution Graphics Colors

Repeated

Color ab0 mbl ab2 mb3 Bit Pattern
Black $00 $00 $00 $00 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 $11 $22 0010
Orange $4C $19 $33 $66 0011
Dark Green $22 $44 $08 $11 0100
Gray 1 $2A $55 $2A $55 0101
Green $66 $4C $19 $38 0110
Yellow $6E $6D $3B 8§77 0111
Dark Blue $11 $22 $44 $08 1000
Purple $19 $33 $66 $40 1001
Gray 2 $65 $2A $55 $2A 1010
Pink $5D $3B 877 $6E 1011
Medium Blue $33 $66 $4C $19 1100
Light Blue $3B 877 $6E $5D 1101
Aqua $77 $6E $5D $3B 1110
White $TF $TF $7F $7F 1111
Table 2-9. Video Display Page Locations

Display Lowest Address Highest Address
Display Mode Page Hex Dec Hex Dec
40-column text, 1 $0400 1024 $0TFF 2047
low-resolution 2* $0800 2048 $OBFF 3071
graphics
80-column text 1 $0400 1024 S07FF 2047

e $0800 2048 $0BFF 3071
High-resolution 1 $2000 8192 $3FFF 16383
graphics 2 $4000 16384 $5FFF 24575
Double-high- I} $2000 8192 $3FFF 16383
resloution graphics 2t $4000 16384 $65FFF 24575

* This is not supported by firmware; for instructions on how to switch pages, refer to the
section “Display Mode Switching” in Chapter 2.

t See the section “Double-High-Resolution Graphics,” in Chapter 2,

Appendix F: Frequently Used Tables 257

258

Table 2-10. Display Soft Switches

Note: Wmeans write anything to the location, R means read the location, R/W
means read or write, and R7 means read the location and then check bit 7.

Name Action Hex Function

ALTCHAR W $CO0E Off: display text using primary character set

ALTCHAR W $COOF On: display text using alternate character set

RDALTCHAR RT7 $COLE Read ALTCHAR switch (1 = on)

80COL W $C00C Off: display 40 columns

80COL W $C00D On: display 80 columns

RD8OCOL R7 $COIF Read 80COL switch (1 = on)

80STORE W $C000 Off: cause PAGE2 on to select auxiliary RAM

80STORE W $C001 On: allow PAGE2 to switch main RAM areas

RD80STORE RT $C018 Read 80STORE switch (1 = on)

PAGE2 R/W $C054 Off: select Page 1

PAGE2 R/W $C055 On:select Page 2 or, if 80STORE on, Page 1 in
auxiliary memory

RDPAGE2 R7 $C01C Read PAGE2 switch (1 = on)

TEXT R/W $C050 Off: display graphies or, if MIXED on, mixed

TEXT R/W $C051 On:display text

RDTEXT R7 $C01A Read TEXT switch (1 = on)

MIXED R/W $C052 Off: display only text or only graphics

MIXED R/W 8C053 On:if TEXT off, display text and graphics

RDMIXED R7 $C01B Read MIXED switch (1 = on)

HIRES R/W $C0566 Off: if TEXT off, display low-resolution graphics

HIRES R/W 8C069 On:if TEXT off, display high-resolution or, if
DHIRES on, double-high-resolution graphics

RDHIRES R7 $C0LD Read HIRES switch (1 = on)

I0UDIS w SCOTE On: disable I0U access for addresses $C058 to
$COGF; enable access to DHIRES switch *

10UDIS $COTF Off: enable I0U access for addresses $C058 to
$CO5F; disable access to DHIRES switch *

RDIOUDIS RT $COTE Read IOUDIS switch (1 = off) +

DHIRES R/W $CO5E On:(if IOUDIS on) turn on double-high-res.

DHIRES R/W $CO5F Off: (if IOUDIS on) turn off double-high-res.

RDDHIRES RT7 $COTF Read DHIRES switch (1 =on) 1

* The firmware normally leaves IOUDIS on. See also T.

+ Reading or writing any address in the range $C070-8COTF also triggers the paddle timer
and resets VBLINT (Chapter 7).

Appendix F: Frequently Used Tables

Table 3-1. Monitor Firmware Routines

Location Name Description

$C305 BASICIN ~ With 80-column dirmware active, displays solid, blinking
cursor. Accepts character from keyboard.

$C307 BASICOUT Displays a character on the screen; used when the
80-column firmware is active (Chapter 3).

$FCIC CLREOL Clears to end of line from current cursor position.

$FCOE CLEOLZ Clears to end of line using contents of Y register as cursor
position.

$FC42 CLREOP Clears to bottom of window.

$F832 CLRSCR Clears the low-resolution screen.

$F856 CLRTOP Clears top 40 lines of low-resolution screen.

$FDED COUT Calls output routine whose address is stored in CSW
(normally COUT1, Chapter 3).

$FDFO COUTI Displays a character on the screen (Chapter 3).

$FDSE CROUT Generates a carriage return character.

$FD8B CROUT1 Clears to end of line, then generates a carriage return
character,

$FD6A GETLN Displays the prompt character; accepts a string of
characters by means of RDKEY.

$F819 HLINE Draws a horizontal line of blocks.

$FC58 HOME (Clears window; puts cursor in upper-left corner of
window,

$FDIB KEYIN With 80-column firmware inactive, displays
checkerhoard cursor. Accepts character from keyboard.

$F800 PLOT Plots a single low-resolution block on the screen.

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device.

$FDDA PRBYTE Prints a hexadecimal byte.

$FF2D PRERR Sends err and Control-G to the output device.

$FDE3 PRHEX Prints 4 bits as a hexadecimal number,

$F941 PRNTAX Prints contents of A and X in hexadecimal.

$FDOC RDKEY Displays blinking cursor; goes to standard input routine,
normally KEYIN or BASICIN.

$F871 SCRN Reads color value of a low-resolution block.

$F864 SETCOL Sets the color for plotting in low-resolution.

$FC24 VTABZ Sets cursar vertical position.

$F828 VLINE Draws a vertical line of low-resolution blocks,

Appendix F: Frequently Used Tables 259

Table 3-3a. Control Characters With 80-Column Firmware Off

Control ASCII Apple Ile

Character Name Name Action Taken by COUT1

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second.

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in
window; scrolls if needed.

Control-M CR return Moves cursor position to left end of next

line in window; scrolls if needed.

Table 3-3b. Control Characters With 80-Column Firmware On

Control ASCII Apple Ile
Character Name Name Action Taken by BASICOUT
Control-G BEL bell Produces a 1000 Hz tone for 0.1 second.

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in
window; scrolls if needed.

Control-K f VT clearEOS Clears from cursor position to the end of
the screen.

Control-L T FF home Moves cursor position to upper-left corner
and clear of window and clears window.

Control-M CR return Moves cursor position to left end of next
line in window; scrolls if needed.

Control-N ¥ S0 normal Sets display format normal.
Control-O t SI inverse Sets display format inverse.
Control-Q T DC1 40-column Sets display to 40-column.
Control-R t DC2 80-column Sets display to 80-column.

Control-S * DC3 stop-list Stops listing characters on the display
until another key is pressed.

Appendix F: Frequently Used Tables

Table 3-3b—Continued. Control Characters With 80-Column Firmware On

Control ASCII Applelle

Character Name Name Action Taken by BASICOUT

Control-U t NAK quit Deactivates 80-column video firmware.
Control-V ¥ SYN scroll Scrolls the display down one line, leaving

the cursor in the current position.

ControlW 1 ETB scroll-up Scrolls the display up one line, leaving the
cursor in the current position.

Control-X CAN disable Disable MouseText character display; use
MouseText inverse uppercase.

Control-Y T EM home Moves cursor position to upper-left corner
of window (but doesn't clear).

Control-Z T SUB clearline Clears the line the cursor position is on.

Control| ESC enable Map inverse uppercase characters to
MouseText MouseText characters.

Control-\ T FS forward Moves cursor position one space to the

space right; from right edge of window, moves it
to left end of line below.

Control-JT GS clear EOL Clears from the current cursor position to
the end of the line (that is, to the right
edge of the window).

Control-_ Uus up Moves cursor up a line, no scroll.

* Only works from the keyboard.
¥ Doesn't work from the keyboard.

Table 3-5. Text Format Control Values
Note: These mask values apply only to the primary character set (see text).

Mask Value
Dec Hex Display Format
255 $FF Normal, uppercase, and lowercase
127 §7F Flashing, uppercase, and symbols
63 $3F Inverse, uppercase, and lowercase
Appendix F; Frequently Used Tables 261

Table 3-6. Escape Codes

Escape Code

(Esc](&]or(a]
(Escl(B)or (&)
(Esc)(c]or[c]
(Esc](@or (@)
(EsC](E]or]
(EsC)(E]or (1)
(EsC)(Dor[Dor [ESTI(1]
(Esc)(or (Dor (ESC)(=]
(Esc)(K)or (W or [EsC] (=]
(Esc](m] or [m] or [ESE][1]
(Escl(@)

(Esci(e]

[ESC)[CONTROL HD]

(€SC) (CONTROL HE]
(ESC) (CONTROLH G

262

Function

Clears window and homes cursor (places it in upper-left corner of screen), then exits from
escape mode.

Moves cursor right one line; exits from escape mode.

Moves cursor left one line; exits from escape mode.

Moves cursor down one line; exits from escape mode.

Moves cursor up one line; exits from escape mode.

Clears to end of line; exits from escape mode.

Clears to bottom of window; exits from escape mode.

Moves the cursor up one line; remains in escape mode. See text.
Moves the cursor left one space; remains in escape mode. See text.
Moves the cursor right one space; remains in escape mode. See text,
Moves the cursor down one line; remains in escape mode. See text.

If 80-column firmware is active, switches to 40-column mode; sets links to BASICIN and
BASICOUT; restores normal window size; exits from escape mode.

1f 80-column firmware is active, switches to 80-column mode; sets links to BASICIN and
BASICOUT; restores normal window size; exits from escape mode,

Disables control characters; only carriage return, line feed, BELL, and backspace have an
effect when printed.

Reactivates control characters,

If 80-column firmware is active, deactivates 80-colunm firmware; sets links to KEYIN and
COUT1I; restores normal window size; exits from escape mode.

Appendix F: Frequently Used Tables

Table 3-10. Pascal Video Control Functions

Control-
Eore
Forf
Gorg
Horh

Jorj
Kork
Lorl
Morm

Norn
Qoro

Vorv
Worw
Yory
Zorz

lor \

tor]

or 6

Hex
$05
$06
$07
$08

S0A
$0B
$0C
$0D
$OE

$0F

$16
$17
$19
$1A
$1C

$1D

SIE

$1F

Function performed

Turns cursor on (enables cursor display).
Turns cursor off (disables cursor display).
Sounds bell (beeps).

Moves cursor left one column. If cursor was at
beginning of line, moves it to end of previous line.

Moves cursor down one row; scrolls if needed.
(Clears to end of screen.

Clears screen; moves cursor to upper-left of screen.
Maoves cursor to column 0.

Displays subsequent characters in normal video.
(Characters already on display are unaffected.)

Displays subsequent characters in inverse video,
(Characters already on display are unaffected.)

Scrolls screen up one line; clears bottom line.

Scrolls screen down one line; clears top line.

Moves cursor to upper-left (home) position on screen.
Clears entire line that cursor is on.

Moves cursor right one column; if at end of line, does
Control-M.

Clears to end of the line the cursor is on, including
current cursor position; does not move cursor.

GOTOxy: initiates a GOTOxy sequence; interprets the
next two characters as x+32 and y+32, respectively.

If not at top of screen, moves cursor up one line.

Appendix F: Frequently Used Tables

263

Table 4-6. Bank Select Switches

Note: R means read the location, W means write anything to the location, R/W
means read or write, and R7 means read the location and then check bit 7.

Name Action Hex Function
R $C080 Read RAM; no write; use $D000 bank 2.
RR $C081 Read ROM; write RAM; use $D000 bank 2.
R $C082 Read ROM; no write; use $D000 bank 2.
RR $C083 Read and write RAM; use $D000 bank 2.
R $C088 Read RAM; no write; use $D000 bank 1.
RR $C089 Read ROM; write RAM; use $D000 bank 1.
R $CO8A Read ROM; no write; use $D000 bank 1.

RR $C08B Read and write RAM; use $D000 bank 1.
RDBNK2 R7 §C011 Read whether $D000 bank 2 (1) or bank 1 (0)
RDLCRAM RT $C012 Reading RAM (1) or ROM (0).
ALTZP W $C008 Off: use main bank, page 0 and page 1.
ALTZP W $C009 On:use auxiliary bank, page 0 and page 1.
RDALTZP RT $C016 Read whether auxiliary (1) or main (0) bank

264 Appendix F: Frequently Used Tables

Table 4-7. Auxiliary-Memory Select Switches

Location
Name Function Hex Decimal Notes
RAMRD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 40154 -16382 Write
Read RAMRD switch $C013 49171 -16365 Read
RAMWRT Write auxiliary memory $C005 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -16354 Read
80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $C000 49152 -16384 Write
Read 80STORE switch $C018 49176 -16360 Read

PAGE2 Page 2 on (aux. memory) $C065 49237 -16299 *
Page 2 off (main memory) $C054 49236 -16300 ¢
Read PAGE2 switch $C01C 49180 -16356 Read

HIRES On: access high-res. pages $C067 49239 -16297 ¢t
Off: use RAMRD, RAMWRT $C056 49238 -16298 t

Read HIRES switch $COID 49181 -163556 Read
ALTZP Auxiliary stack & z.p. $C009 49161 -16373 Write
Main stack & zero page $C008 49160 -16374 Write
Read ALTZP switch $C016 49174 -16352 Read

* When 80STORE is on, the PAGE2 switch selects main or auxiliary display memory.

 When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch
between the high-resolution Page-1 area in main memory or auxiliary memory.

Table 4-8. 48K RAM Transfer Routines

Name Action Hex Function

AUXMOVE JSR $C312 Moves data blocks between main and auxiliary
48K memory.

XFER JMP $C314 Transfers program control between main and
auxiliary 48K memory.

Appendix F: Frequently Used Tables 265

Table 6-5. 1/0 Memory Switches .
Location
Name Function Hex Decimal Notes .
SLOTC3ROM Slot ROM at $C300 $C00B 49163 -16373 Write
Internal ROM at $C300 $CO0A 49162 -16374 Write .
Read SLOTC3ROM switch ~ $C017 491756 -16361 Read
SLOTCXROM Slot ROM at $Cx00 $C006 49159 -16377 Write
Internal ROMat $Cx00 $C007 49158 16378 Write .
Read SLOTCXROM switch ~ $C015 49173 -16363 Read
Table 6-7. 1/0 Routine Offsets and Registers Under Pascal 1.1 Protocol
Addr. Offset for X Register Y Register A Register .
$CsOD Initialization
On entry $Cs $s0 .
On exit Error code (unchanged) (unchanged)
$CsOE Read
On entry $Cs $s0 .
On exit Error code (unchanged) Character read
$CsOF Write
On entry $Cs $s0 Char. to write .
On exit Error code (unchanged) (unchanged)
$Cs10 Status .
On entry $Cs $s0 Request (0 or 1)
On exit Error code (changed) (unchanged)
266 Appendix F: Frequently Used Tables l

Appendix-a

Using an 80-Column Text Card

267

This appendix explains how to use 80-column text cards with high-level
languages. Information about using 80-column text cards with assembly
language programs through the Apple Ile Monitor firmware is found in
Chapter 3 of this manual. The information in this appendix applies to the
Apple Ile 80-Column Text Card and the Apple Ile Extended 80-Column Text
Card.

If you are using Applesoft, ProDOS, or DOS you can choose to leave the
80-column text card inactive after installing it. You will want to do this
when running software that does not take advantage of the 80-column
display capability.

The startup procedure for displaying 80 columns of text on your Apple Ile
depends on which operating system you plan to use. Starting up the system
with Apple II Pascal or CP/M® is very easy; the operating system does it for
you; the procedures for starting up with ProDOS or DOS 3.3 are slightly
more complicated, but not difficult.

Starting Up With Pascal or CP/M

Refer to the operating system reference
manual for your version of Apple Pascal for
more information.

268

Pascal programmers don't have to activate the text card because Pascal
does it for them. If you use the Pascal language or the CP/M operating
system, displaying 80 columns of text is automatic once you've installed the
card. Simply start up your system with any Pascal or CP/M startup disk.

CP/M: CP/M (Control Program for Microprocessors) is a trademark of
Digital Research. To use the CP/M operating system with your Apple Ile,
make sure the SOFTCARD® by Microsoft or the Z-Engine™ by Advanced
Logic Systems is correctly installed before you start up the computer.

Co-Processor Cards and Interrupts: Some co-processor cards that
were designed for use in the Apple Il Plus may not work with an Apple Ile
without some modification. There could be problems if you want to use
interrupts on the Apple Ile. If you are having problems with a coprocessor
card, check with the card’s manufacturer for their recommendations.

When using Apple II Pascal 1.1, you'll probably want to run the program
SETUP to make the [¥] and (3] keys functional. SETUP is a
self-documenting program on the Pascal disk APPLE3. Pascal versions 1.2
and later are already configured to use the [¥] and 3] keys.

Appendix G: Using an 80-Column Text Card

Starting Up With ProDOS or DOS 3.3

P e e e e AR e = e e e W |
ProDOS and DOS 3.3 both look for a startup program on the startup (boot)
disk as soon as the operating system has been loaded and begins executing.
If the operating system finds the program, called STARTUP on a ProDOS
disk and usually called HELLO on a DOS 3.3 disk, it will execute the
program.

You can write a customized startup program that will set up the 80-column
text card in any state you need. Just be sure it is on your startup disk and
has the startup filename.

Here is a sample Applesoft startup program that works with both ProDOS
and DOS 3.3:

18 HOME:D$=CHR$(4)
28 PRINT D$;"PR#3"
30 END

You can do whatever you wish with the program from line 20 on. Note that
the screen will have switched to 80-column text mode after line 20.

By the Way: 1f you arrange to have the card active automatically, you
will still, of course, be able to switch into 40-column mode.

Using the GET Command

| R R B O R S S N T T e [T T e e A e T e e]
The presence of an active 80-column text card in the Ile requires that
BASIC programmers use some alternate to Applesoft's INPUT command if
their programs are to be userproof. Applesoft programmers should use
either the GET command or the RDKEY or GETLN subroutines.

This is because the escape sequences used to switch back and forth
between modes or to deactivate the card sometimes make it necessary to
accept escape sequences in INPUT mode when using an 80-column card.
Because the program accepts escape sequences typed from the keyboard,
your program will not be userproof against accidental sequences typed in
response to an INPUT command.

To get around this problem, you can use the GET command instead. The
program does not read escape sequences typed from the keyboard in
response to a GET command. This means that your users can err in their
responses without endangering the display.

Using the GET Command 269

When to Switch Modes Versus When to Deactivate

Original lle

[| A). Pl | NI ot STV e oA] T £ O 1o WA 1 M a7 A NS = PR WP i
When using BASIC, deactivate the text card whenever a previous (BASIC)
program has left the card active (leaving a solid cursor on the screen) or
whenever you want to send output to a peripheral device.

Switch back and forth between 40-column and 80-column displays for
visual appeal. For full use of the control charaeters described later, your
card must be active, although it can display in either 40-column or
80-column mode.

Tabbing in Applesoft: You must switch to a 40-column display to use
Applesoft comma tabbing or the HTAB command.

Display Features With the Text Card

e s e e R R Y P e W I AT RS Ry
With an active 80-column card you can issue BASIC and PRODOS
commands in lowercase characters. You can also issue commands in
lowercase from the keyboard, that is, in immediate mode. This is
particularly convenient because REM statements and data within quotes
remain in lowercase as they were typed.

If you are using DOS 3.3, you must issue commands in uppercase whether
or not your card is active.

INVERSE, FLASH, NORMAL, HOME

210

[0 LS L T T L G N T T SR BN N S I e N T s |
There are several commands you can give your computer from Applesoft
BASIC to affect the appearance of text on the screen. All of these features
are described in the Applesoft BASIC Programmer's Reference Manual.

o INVERSE tells the computer to display black characters on a white
background instead of the normal display of white characters on a black
background. This command is normally only available for uppercase
characters, but with an active 80-column text card it is available for
uppercase and lowercase characters.

o FLASH causes subsequently printed characters to blink quickly between
inverse and normal characters. You can turn off the FLASH command by
typing the NORMAL command. The FLASH command is normally
available only with uppercase characters; it is not available at all while
the card is active.

Appendix G: Using an 80-Column Text Card

Important!

o NORMAL tells the computer to turn off the INVERSE or FLASH
command and to display subsequently printed characters normally. It
works the same way with the card active or inactive.

o HOME clears the screen and returns the cursor to the upper-left corner of
the screen. Both the NORMAL HOME and INVERSE HOME commands
are available while the card is active, but INVERSE HOME works a little
differently when the card is active.

By the Way: The FLASH and INVERSE commands can be used to
highlight important screen messages within a BASIC program.

If you are using the FLASH command (which means the 80-column text
card is inactive) and then type PR#3 to activate the card, the screen
turns white as the cursor goes to the HOME position. Whatever you type
appears in black characters on the white screen. If you list or run an
Applesoft BASIC program, some of the characters will appear as
MouseText characters. To avoid this, remember to use either the
NORMAL or INVERSE command before you exit the program.

Tabbing With the Original Apple lle

You cannot use conventional 40-column tabbing in BASIC with the original
model Apple Ile with an 80-column display. You do not have to turn off your
card, but you must switch out of 80-column mode to use the HTAB
command or to use comma tabbing.

When an original Apple Ile is displaying 80-column text, you should use the
POKE 1403 command for horizontal tabbing in the right half of the screen
instead of the HTAB command.

Comma Tabbing With the Original Apple lle
s i e e A st e [e A b i |

In BASIC you can use commas in PRINT statements to instruct the
computer to display all or part of your output in columns. This is known as
comma tabbing. You can use this method of tabbing as long as the screen is
displaying 40 columns (that is with the card inactive or after issuing an
command to switch to 40-column mode). You cannot use this
method of tabbing with an 80-column display. If you try to do so, characters
will be placed in memory outside the screen area and may change programs
or data in memory.

Tabbing With the Original Apple ITe 271

HTAB and POKE 1403

The VTAB (vertical tab) and HTAB (horizontal tab) statements can be used
to place the cursor at a specific location on the sereen before printing
characters. The largest value you can use with the VTAB statement is 24;
the largest for HTAB is 255. The VTAB command works just the same in an
80-column display as it does in a 40-column display.

On the original Apple Ile, the HTAB command causes the cursor to wrap
around to the next line after it reaches the 40th column, so you cannot use
this command to position the cursor in the last 40 columns while the screen
is displaying 80 columns.

POKE 1403 is specifically designed to solve this problem. Using the
POKE 1403 command allows you to tab horizontally across the extra 40
columns provided by the 80-column text card.

If you want to tab past column 40 while the card is active and the screen is
displaying 80 columns, use the following, where n is a number from 0 to 79:

POKE 1483, N

When you use the HTAB command, HTAB 1 places the cursor at the
leftmost position on the screen. When you use the POKE 1403 command,
POKE 1403,0 places the cursor at the leftmost position on the screen.

Using Control Characters With the Card

(s
[R]

Using BASIC with an active 80-column text card increases the number of
functions you can perform with control characters. Originally
control-character commands were so named because they were given from
the keyboard by pressing the key in conjunction with another key.
You can perform the same functions from your programs by using an
equivalent control-character code. Commands based on these two-key
combinations are called control-character commands even when they must be
issued from a program.

Appendix G: Using an 80-Column Text Card

Control Characters and Their Functions
R R T TR e O e G e e e M e D R Rl

Table G-1 lists the control-character commands supported by BASIC with

an 80-column card. The table includes the corresponding command code, its
function and whether a given command can be executed from the keyboard
as well as from a program.

Table G-1. Control Characters With 80-Column Firmware On

Control
Character

Control-G

Control-H

Control-J

Control-K T

Control-L T

Control-M

Control-N T
Control-O0 T
Control-Q ¥
Control-R T
Control-S *

Control-U ¥

Control-V ¥

Control-W

Control-X

ASCIT Apple Tle

Code

BEL

BS

LF

vT

FF

CR

S0
S
DC1
DC2
DC3

NAK
SYN

ETB

CAN

Name
bell

backspace

line feed

clear EOS

home
and clear

return

normal
inverse
40-column
80-column

stop-list

quit

scroll

scroll-up

disable
MouseText

Using Control Characters With the Card

Action Taken by BASICOUT
Produces a 1000 Hz tone for 0.1 second.

Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Moves cursor position down to next line in
window: scrolls if needed.

(Clears from cursor position to the end of
the screen,

Moves cursor position to upper-left corner
of window and clears window.

Moves cursor position to left end of next
line in window; scrolls if needed.

Sets display format normal.
Sets display format inverse.
Sets display to 40-column.
Sets display to 80-column.

Stops listing characters on the display
until another key is pressed,

Deactivates 80-column video firmware.

Scrolls the display down one line, leaving
the cursor in the current position.

Serolls the display up one line, leaving the
cursor in the current position.

Disable MouseText character display; use
inverse uppercase.

273

b2

Table G-1—Continued. Control Characters With 80-Column Firmware On

Control ASCII Applelle
Character Code Name Action Taken by BASICOUT
Control-Y T EM home Moves cursor position to upper-left corner

of window (but doesn’t clear).
Control-Z t SUB clearline (Clears the line the cursor position is on.

Control-[ESC enable Map inverse uppercase characters to
MouseText MouseText characters.

Control-\ F3 forward Moves cursor position one space to the

space right; from right edge of window, moves it
to left end of line below.

Control-Jt GS clear EOL Clears from the current cursor position to
the end of the line (that is, to the right
edge of the window).

Control-_ Us up Moves cursor up a line, no seroll.

* Only works from the keyboard.
T Doesn't work from the keyboard.

How to Use Control-Character Codes in Proarams

To issue a control-character command from a program, use the ASCII
decimal code that corresponds to the control-character. (See Table G-1.)

The following example shows how to use ASCII decimal codes in an
Applesoft BASIC program. Type

HOME [?]

NEW

18 PRINT CHR$C15): PRINT "MAKE HAY"

20 PRINT CHR$(14): PRINT "WHILE THE SUN SHINES"
RUN

(CHRS$ is the Applesoft BASIC command that signifies that a
control-character function is to be performed.)

Appendix G: Using an 80-Column Text Card

See Chapter 3 in this manual for a
description of control-character functions.

You will get

The ASCII decimal codes for inverse video (Control-0) and normal video
(Control-N) are 15 and 14. When the PRINT statements in the example are
executed, the display switches to inverse and prints MAKE HAY, then
switches back to a normal display and prints WHILE THE SUN SHINES.

A Word of Caution to Pascal Programmers
R s e e e I BT e e]

Avoid writing Control-U or Control-Q to the console from a Pascal program.
Either one puts the system into a state that will cause Pascal to eventually
crash.

You can't send control characters from the keyboard to the 80-column
firmware when using Pascal. The only exceptions to this rule are Control-M
(CR) and Control-G (BEL).

Using Control Characters With the Card 275

Abpéhdﬁ H

Programming With the Super Serial Card

For more information about the installation
and operation of the SSC, see the Super
Serial Card manual.

This appendix briefly describes how to use the Apple II Super Serial Card
(SSC) from programs, how to find the SSC through software, and the
commands supported by the SSC.

The SCC is one of the most common serial interface cards used with the
Apple Ile, and the Apple IIc’s serial ports operate very much like the Super
Serial Card. This similarity should make it easier for you to write programs
for both the Apple Ile and Apple Ile.

Locating the Card

The Pascal 1.1 firmware protocol is
described in Chapter 6.

Locations $Cs05, $Cs07, $Cs0B, and $Cs0C (where s is the number of the
slot where the SSC is installed) contain the identification bytes for the
Super Serial Card. The identification byte's values are

$Cs05 $38
$Cs07 $18
$Cs0B $01
$Cs0C $31

Operating Modes

2 ot B B i 0 | | S S e =, A, 1) R T B O DR G E e Nyl LE
The Super Serial Card has two main operating modes: printer mode and
communications mode. There is nothing you can do from software to
change from one mode to the other since they are set by the position of the
jumper block.

Note to Software Developers: If you are writing software that depends
on the SSC being in a given operating mode, make sure that your
documentation tells the user to set up the SSC in the proper way.

In printer mode, the SSC is set to send data to a printer, local terminal, or
other serial device. In communications mode, the SSC is set to operate with
a modem. From communications mode, the SSC can enter a special mode
called terminal mode. In terminal mode the Apple Ile acts like an
unintelligent terminal.

Appendix H: Programming With the Super Serial Card

Operating Commands

important!

T T e e P T s S e e e e R e e T e e e T R
For each of the operating modes, you can control many aspects of data
transmission such as baud rate, data format, line feed generation, and so
forth.

Your program can change these aspects by sending control codes as
commands to the card. All commands are preceded by a command
character and followed by a carriage return character ($0D).

The command character is usually Control-I in printer mode and Control-A
in communications mode and terminal mode. In the command examples in
the following sections, Control-I is used unless the command being
described is available only in communications mode or terminal mode. A
carriage return character is represented by its ASCII symbol, CR.

There are three types of command formats:

o A number, represented by n, followed by an uppercase letter with no
space between the characters (for example, 4D to set data format 4).

o An uppercase letter by itself (for example, R to reset the SSC).

o An uppercase letter followed by a space and then either E to enable or D
to disable a feature (for example, L D to disable automatic insertion of
line feed characters).

The allowable range of n is given in each command description that follows.

The choice of enable or disable is indicated with E/D. The underscore
character () before the E/D in commands that allow enable/disable is to
remind you that a space is required there.

The SSC checks only numbers and the first letters of commands and
options. (All such letters must be uppercase.) Further letters, which you
can add to assist your memory, have no effect on the SSC. For example,
XOFF Enable is the same as X E. The SSC ignores invalid commands.

The spaces in command examples are there for clarity; generally you will
not use spaces in a command string. Where a space is required in a
command string, an underscore (__) character will appear in the text as a
reminder.

Operating Commands 279

The Command Character
et L BB bt - =i T s e AL ——— v)

The normal command character is Control-I (ASCII $09) in printer mode, or
Control-A (ASCII $01) in communications mode. If you want to change the
command character from Control-I to Control-something else, send Control-1
Control-something else. For example, to change the command character to
Control-W, send Control-I Control-W. To change back, send Control-W
Control-1. No return character is required after either of these commands.

You can send the command character itself through the SSC by sending it
twice in a row: Control-1 Control-I; no return character is required after this
command. This special command allows you to transmit the command
character without affecting the operation of the SSC, and without having to
change to another command character and then back again later.

Here is how to generate this character in BASIC and Pascal:

Applesoft BASIC: PRINT CHR$(9);"command*
Pascal: WRITELN C(CHR(9),‘command’);

Baud Rate, nB

You can use this command to override the physical settings of switches
SW1-1 through SW1-4 on the SSC. For example, to change the baud rate to
135, send Control-1 4B CR to the SSC.

Table H-1. Baud Rate Selections

n SSC Baud Rate n SSC Baud Rate
0 use SWI-1to SW1-4 8 1200

1 50 9 1800

2 75 10 2400

3 109.92 (110) 11 3600

4 134.58 (135) 12 4800

5 150 13 7200

6 300 14 9600

7 600 15 19200

Appendix H: Programming With the Super Serial Card

Data Format, nD

BT

You can override the settings of switch SW2-1 with this command. The
table below shows how many data and stop bits correspond to each value
of n. For example, Control-I 2D CR makes the SSC transmit each character
in the form one start bit (always transmitted), six data bits, and one stop
bit.

Table H-2. Data Format Selections

n Data Bits Stop Bits
0 8 1

1 7 1

2 6 1

3 b 1

4 8 2*

b i 2

6 6 2

7 b 2t

* 1 with Parity options 4 through 7
+ 1% with Parity options 0 through 3

Parig, nP

You can use this command to set the parity that you want to use for data
transmission and reception. There are five parity options available,
described in Table H-3.

Table H-3. Parity Selections

n Parity to Use

0,2,40r6 None (default value)

1 0dd parity (odd total number of ones)

3 Even parity (even total number of ones)
b MARK parity (parity bit always 1)

7 SPACE parity (parity bit always 0)

Operating Commands 281

'l.\L
Bo

For example, the command string Control-I 1P CR makes the SSC transmit
and check for odd parity. Odd parity means that the high bit of every
character is 0 if there is an odd number of 1 bits in that character, or 1 if
there is an even number of 1 bits in the character, making the total number
of 1 bits in the character always odd. This is an easy (but not foolproof) way
to check data for transmission errors. Parity errors are recorded in a status

byte.

Set Time Delay, nC, nL, and nF

e s o e e st

Some printers can't keep up with the Apple Ile when they are doing certain
operations. You may need to change default settings on the SSC to give a
printer the time it needs.

The nC command overrides the setting of switch SW2-2 on the SSC. That
switch provides two choices: either no delay or a 250 millisecond delay after
the SSC sends a carriage return character.

The nL command allows time after a line feed character for a printer platen
to turn so the paper is vertically positioned to receive the next line.

The nF command allows time after a form feed character for the printer
platen to move the paper form to the top of the next page (typically a longer
time than a line feed).

Table H-4. Time Delay Selections

n Time Delay

0 none

1 32 milliseconds

2 250 milliseconds (1/4 second)
3 2 seconds

Appendix H: Programming With the Super Serial Card

Important!

Consult the user manual for a given printer to find out how much time it
takes to move its print head and platen so you can determine an appropriate
set of values for these three delays. The idea is to have at least enough time
for the printer parts to move the required distance, but not so much time
that overall printing speed is slowed down drastically. Many printers
require no delays because they have a buffer built in to keep accepting
characters even while they are doing form feeds and so on.

A typical setup for a very slow printer would be Control-I 2C CR,

Control-I 2L CR, Control-I 3F CR; that is, the SSC waits 250 milliseconds
after transmitting carriage returns, 250 milliseconds after transmitting line
feeds, and 2 seconds after transmitting form feed characters.

Echo Characters to the Screen, E_E/D

For the Apple Ile, as for most computers, displaying (echoing) a character
on the video screen during communications is a separate step from
receiving it from the keyboard, though we tend to think if these as one step,
as on a typewriter. For example, if you send Control-A E_D CR, the SSC
does not forward incoming characters to the Apple Ile screen. This can be
used to hide someone’s password entered at a terminal, or to avoid double
display of characters.

This command is used in communications mode only.

Automatic Carriage Return, C

Sending Control-I C CR to the SSC causes it to generate a carriage return
character (ASCII CR) whenever the column count exceeds the current
printer line width limit. This command is used in printer mode only.

Once this option is on, only clearing the high-order bit at location $578+s
(where s is the slot the SSC is in) can turn this option back off. This
option is normally off.

Operating Commands 283

84

Automatic Line Feed, L_E/D

T e T o S S e i T R R

You can use this command to have the SSC automatically generate and
transmit a line feed character after each carriage return character. This
overides the setting of switch SW2-5. For example, send Control-I L_E CR
to your printer to print listings or double-spaced manuscripts for editing.

Mask Line Feed In, M_E/D

R T R R e T SO R I
If you send Control-Il M_E CR to the SSC, it will ignore any incoming line
feed character that immediately follows a carriage return character.

Reset Card, R

Sending Control-I R CR to the SSC has the same effect as sending a PR#0
and an IN#0 to a BASIC program and then resetting the SSC. This
command cancels all previous commands to the SSC and puts the physical
switch settings back into force.

Specify Screen Slot, S

In communications mode, you can specify the slot number of the device
where you want text or listings displayed with this command. (Normally
this is slot 0, the Apple Ile video screen.) This allows chaining of the SSC to
another card slot, such as an 80-column text card. For the firmware in the
SSC to pass on information to the firmware in the other card, the other card
must have an output entry point within its $Cs00 space; this is the case for
all currently available 80-column cards for the Apple lle.

For example, let’s say you have the SSC in slot 2 with a remote terminal
connected to it, and an 80-column card in slot 3. Send Control-A 3S CR to
cause the data from the remote terminal to be chained through the card in
slot 3, so that it is displayed on the Apple Ile in 80-column format. (Not
available in Pascal.)

Translate Lowercase Characters, nT
T T A e T T gy e = s e R s et S A RTER T)

The Apple Ile Monitor translates all incoming lowercase characters into
uppercase ones before sending them to the video screen or to a BASIC

program. The nT command has four options, which are shown in Table H-5.

Appendix H: Programming With the Super Serial Card

Important!

Table H-5. Lowercase Character Display Options

n Action

0 Change all lowercase characters to uppercase ones before passing
them to a BASIC program or to the video screen. This is the way the
Apple Ile monitor handles lowercase.

1 Pass along all lowercase characters unchanged. The appearance of
the lowercase characters on the Apple 11 screen is undefined
(garbage).

2 Display lowercase characters as uppercase inverse characters (that

is, as black characters on a white background).

3 Pass lowercase characters to programs unchanged, but display
lowercase as uppercase, and uppercase as inverse uppercase (that is,
as black characters on a white background).

Suppress Control Characters, Z

If you issue the Z command described here, all further commands are
ignored; this is useful if the data you are transmitting, such as graphics
data, contains bit patterns that the SSC can mistake for control characters.

Sending Control-I Z CR to the SSC prevents it from recognizing any further
control characters (and hence commands) whether coming from the
kevboard or contained in a stream of characters sent to the SSC.

| The only way to reinstate command recognition after the Z command is
to either reinitialize the SSC, or clear the high-order bit at location
$5F8+s (where s is the number of the slot in which the SSC is installed).

Find Keyboard, F_E/D

You can use this command to make the SSC ignore keyboard input.

For example, vou can include Control-I F_D CR in a program, followed by a
routine that retrieves data through the SSC, followed by Control-I F_E CR
to turn the keyboard back on.

Operating Commands 285

XOFF Recognition, X_E/D

Sending Control-I X_E CR to the SSC causes it to look for any XOFF ($13)
character coming from a device attached to the SSC, and to respond to it by
halting transmission of characters until the SSC receives an XON ($11)
from the device, signalling the SCC to continue transmission. In printer
mode, this function is normally turned off.

Caution In printer mode, full duplex communication may not work with XOFF
recognition turned on, so be careful.

Tab in BASIC, T E/D

In printer mode only, if you send Control-I T_E CR to the SSC, the BASIC
horizontal position counter is left equal to the column count. All tabs work,
including back-tabs. Tabs beyond column 40 require a POKE to location 36.
Commas only work as far as column 40, and BASIC programs will be listed
in 40-column format.

Note that this use of tabbing is specific to the SSC—it doesn’t go through
the 80-column firmware.

Terminal Mode

From communications mode, the SSC can enter terminal mode and make
the Apple Ile act like an unintelligent terminal. This is useful for connecting
the Apple Ile to a computer timesharing service, or for conversing with
another Apple II.

Entering Terminal Mode, T

e e ol i e

Send Control-A T CR to enter terminal mode. This causes the Apple lle to
function as a full-duplex unintelligent terminal. You can use this command
together with the Echo command to simulate the half-duplex terminal mode
of the old Apple Il Communications Card.

By the Way: 1f you enter terminal mode and don't see what you type

echoed on the Apple video screen, probably the modem link has not yet
been established, or you need to use the Echo Enable command
(Control-A E_E CR).

286 Appendix H: Programming With the Super Serial Card

Transmitting a Break, B

Sending Control-A B CR causes the SSC to transmit a 233-millisecond break
signal, recognized by most time-sharing systems as a signoff.

Special Characters, S_E/D

If you send Control-A S_D CR, the SSC will treat the key like any
other key.

Quitting Terminal Mode, Q
e | e = S M TN R o]
Send Control-A Q CR to the SSC to exit from terminal mode.

SSC Error Codes

The SSC uses [/0 scratchpad address $678+s (s is the number of the slot
that the SSC is in) to record status after a read operation. The firmware
calls this byte STSBYTE. Table H-6 lists the bit definitions of this byte.

Table H-6. STSBYTE Bit Definitions

Bit “1"” Means “0" Means

0 Parity Error occurred. No Parity Error occurred.

! Framing Error occurred. No Framing Error occurred.
2 Overrun occurred. No Overrun occurred.

3 Carrier lost. Carrier present.

5 Error occurred. No error occurred.

The terms Parity, Framing Error, and Overrun are defined in the
glossary.
Bits 0, 1, and 2 are the same as the corresponding three bits of the ACIA

Status Register of the SSC. Bit 3 indicates whether or not the Data Carrier
Detect (DCD) signal went false at any time during the receive operation.

SSC Error Codes 287

Bit 5 is set if any of the other bits are set, as an overall error indicator. If
bit 5 is the only bit set, an unrecognized command was detected. If all bits
are (0, no error occurred.

These error codes begin with the number 32 to avoid conflicting with
previously defined and documented system error codes.

In BASIC, you can check this status byte via a PEEK $678+s (s is the SSC
slot), and reset it with a POKE command at the same location.

In Pascal, the [IORESULT function returns the error code value.

By the Way: Any character—including the carriage return at the end of
a WRITELN statement—will cause posting of a new value in IORESULT.

Table H-7 shows the possible combinations of error bits corresponding to
these decimal error codes.

Table H-7. Error Codes and Bits

Error Carrier Framing Parity
Code* Lost Overrun Error Error
0 no error

32 illegal command

33 no no no yes
34 no no yes no

35 no no yes yes
36 no yes no no

37 no yes no yes
38 no yes ves no

39 no yes yes yes
40 yes no no no

41 ves no no yes
42 ves no yes no

43 yes no yes yes
44 ves yes no no

45 yes yes no yes
46 yes yes yes no

47 ves ves ves yes

* Result of PEEK $678+s in BASIC or IORESULT in Pascal.

288 Appendix H: Programming With the Super Serial Card

The ACIA

The Asynchronous Communication Interface Adapter (ACIA) chip is the
heart of the Super Serial Card. It takes the 1.8432 MHz signal generated by
the crystal oscillator on the SSC and divides it down to one of the fifteen
baud rates that it supports. The ACIA also handles all incoming and
outgoing signals of the RS232-C serial protocol that the ACIA supports.

The ACIA registers control hardware handshaking and select the baud rate,
data format, and parity. The ACIA also performs parallel to serial and serial
to parallel data conversion, and buffers data transfers.

SSC Firmware Memory Use

Table H-8 is an overall map of the locations that the SSC uses, both in the
Apple Ile and in the SSC's own firmware address space.

Table H-8. Memory Use Map

Address Name of Area Contents

$0000-800FF Page zero Monitor pointers, 1/0 hooks, and temporary
storage.

$04xx-$07xx Peripheral slot Locations (8 per slot) in Apple Ile pages $04
(selected Scratchpad RAM through $07. SSC uses all 8 of them.
locations)

$C0(8+s)0- Peripheral card 1/0 Locations (16 per slot) for general 1/0; SSC

$CO(8+s)F space uses 6 bytes.
$0s00-$CsFF Peripheral card One 256-byte page reserved for card in slot s;
ROM space first page of SSC firmware,

$C800-$CFFF Expansion ROM Eight 256-byte pages reserved for 2K ROM or
PROM; SSC maps its firmware onto
$C800-$CEFF.

88C Firmware Memory Use 289

Zero-Page Locations
BT S Y PE e ek e

The SSC uses the zero-page locations described in Table H-9.

Table H-9. Zero-Page Locations Used by the SSC

Address Name Description

$24* CH Monitor pointer to current position of cursor on
screen

$26 SLOT16 Usually (slot x 16); that is, $s0

$27 CHARACTER Input or output character

$28* BASL Monitor pointer to current screen line

$2A 7ZPTMPI1 Temporary storage (various uses)

$2B ZPTMP2 Temporary storage (various uses)

$35 ZPTEMP Temporary storage (various uses)

$36* CSWL BASIC output hook (not for Pascal)

$37* CSWH High byte of CSW

$38* KSWL BASIC input hook (not for Pascal)

$39* KSWH High byte of KSW

$4E* RNDL Random number location, updated when looking for

a keypress (not used when initialized by Pascal)
* Not used when Pascal initializes SSC.

Perieheral Card 1/O sEace

There are 16 bytes of /0 space allocated to each slot in the Apple Ile. Each
set begins at address $C080 + (slot x 16); for example, if the SSC is in slot 3,
its group of bytes extends from $COBO to SCOBF. Table H-10 interprets the 6
bytes the SSC uses.

200 Appendix H: Programming With the Super Serial Card

Table H-10. Address Register Bits Interpretation

Address Register Bits Interpretation

$C081+s0DIPSW1 0

(SWlx) 1
4-7
$C082+s0DIPSW2 0
(SW2-x) 1-3
5,7
$C088+s0 TDREG 0-7
RDREG 0-7
$C089+s0STATUS
0
1
2
3
4
b
6
7
$C08A+s0COMMAND
0
1
2-3
4
57
$C08B+s0CONTROL
0-3
4
56
7

S8C Firmware Memory Use

SW1-6 is OFF when 1, ON when 0
SW1-6 is OFF when 1, ON when 0
Same as above for SW1-4 through SW1-1

Clear To Send (CTS) is true when 0
Same as above for SW2-5 through SW2-3
Same as above for SW2-2 and SW2-1

ACIA transmit register (write)
ACIA receive register (read)

ACIA status/reset register

Parity error detected when 1

Framing error detected when 1
Overrun detected when 1

ACIA receive register full when 1
ACIA transmit register empty when 1
Data Carrier Detect (DCD) true when 0
Data Set Ready (DSR) true when 0
Interrupt (IRQ) has occurred when 1

ACIA command register (read /write)

Data Terminal Ready (DTR): enable (1)

or disable (0) receiver and all interrupts

When 1, allow STATUS bit 3 to cause interrupt
Control transmit interrupt, Request To Send (RTS)
level, and transmitter

When 0, normal mode for receiver; when 1, echo
mode (but bits 2 and 3 must be ()

Control parity

ACIA control register (read/write)

Baud rate: $00 = 16 times external clock; See
Table H-1.

When 1, use baud rate generator; when 0, use
external clock (not supported)

Number of data bits: 8 (bitband6=0)7(5=1,
6=0),6(5=06=1)or5 (bitsand 6 both =1)
Number of stop bits: 1if bit 7 = 0;

1 bit 7= 1, then 1-1/2 (with 5 data bits, no parity),
1(8 data plus parity), or 2

201

BT W

{

Scratchpad RAM Locations

The SSC uses the scratchpad RAM locations listed in Table H-11.

Table H-11. Scratchpad RAM Locations Used by the SSC

Address Fieldname Bit Interpretation

$0478+s DELAYFLG 0-1 Form feed delay selection
2-3 Line feed delay selection
4-5 Carriage return delay selection
6-7 Translate option

$04F8+s PARAMETE 0-7 Accumulator for firmware's command processor

$0578+s STATEFLG 0-2 Command mode when not 0

3-5 Slot to chain to (communications mode)

6 Settol after lowercase input character

T Terminal mode when 1 (communications mode)

7 Enable CR generation when 1 (printer mode)
$05F8+s CMDBYTE 0-6 Printer mode default is Control-I; communications

mode default is Control-A
7 Setto 1to Zap control commands

$0678+s STSBYTE Status and IORESULT byte

$06F8+s CHNBYTE 02 Current screen slot (communication mode); when
slot = 0, chaining is enabled.
3-7 $Cs00 space entry point (communications mode)
PWDBYTE 0-7 Current printer width; for listing compensation,
auto-CR (printer mode)

$0778+s BUFBYTE 0-6 One-byte input buffer (communications mode);
used in conjunction with XOFF recognition
7 Setto 1 when buffer full (communications mode)

COLBYTE 0-7 Current-column counter for tabbing and so forth
(printer mode)
Generate line feed after CR when 1
Printer mode when 0; comminications mode when 1
Keyboard input enabled when 1
Control-S (XOFF), Control-R, and Control-T input
checking when 1
Pascal operating system when 1; BASIC when 0
Discard line feed input when 1
Enable lowercase and special character generation
when 1 (communications mode)
6 Tabbing option on when 1 (printer mode)
T Echo output to Apple Ile screen when 1

$07F8+s MISCFLG

CO DI =D

T O

Appendix H: Programming With the Super Serial Card

Appendix I

Monitor R—OM Listing

00 0000
0000:
0000:
0000: 0001
0000: 0000
s
S
S
S
0000:
0000: F800
0000: c100
0000 : c300
0000: c800
0000 :
0000:
0000 :
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000: 0006
0000:
0000:
0000:
0000: c000
0000: c000
0000 co0l
0000: co02
0000 con3
0000: CcO04
0000 c005s
0000: €006
0000 : co07
0000: coo8
0000 c009
0000: c00A
0000: COOB
0000: cooc
0000: Cc00D
0000: CO0E
0000: COOF
0000: c010
0000 : col1l
0000: co12
204

TEST EQU 0

LST ON

MSB ON
IROTEST EQU 1

DO TEST
F80RG EQU $§1800
C1ORG EQU $2100
C30RG EQU $2300
C8ORG EQU $2800

ELSE
FBORG EQU $F800
CIORG EQU $C100
C30RG EQU $C300
C80RG EQU $C800

FIN

MSB ON

INCLUDE EQUATES

:REAL VERSION

;D0 LISTING AND SYMBOL TABLES
;SET THEM HIBITS

e de sk ke ok ok de gk ok o ok ke ok ok e ok ok e e ok vk ok e ok o e e ke ok de e ok

*

* Apple //e Video Firmware

*

RICK AURICCHIO 08/81

*
* E. BEERNINK, R. WILLIAMS 1984
*

* (C) 1981,1984 APPLE COMPUTER INC.
* ALL RIGHTS RESERVED

*

ek e e e e e e o sk ok ok ke ok ok sl e vk ok e ok ke e ok e o ook o e ke e ok e ok ok e e e e

*
GOODF8 EQU 6
*

* HARDWARE EQUATES:
*

KBD EQU $C000

CLR80COL EQU $CO00

SET80COL EQU $C001

RDMAINRAM EQU $C002
RDCARDRAM EQU $C003
WRMAINRAM EQOU $C004
WRCARDRAM EQU $C005

SETSLOTCXROM EQU $C006
SETINTCXROM EQU $C007

SETSTDZP EQU $C008
SETALTZP EQU $C009

SETINTC3ROM EQU $CO0A
SETSLOTC3ROM EQU SCO0B

CLRBOVID EQU $C00C
SET80VID EQU $CO0D
CLRALTCHAR EQU $COOE
SETALTCHAR EQU $COOF
KBDSTRB EQU $CO10
RDLCBNK2 EQU $CO11
RDLCRAM EQU $CO12

;F8 ROM VERSION

;Read keyboard

iDisable 80 column store

;Enable 80 column store

;Read from main RAM

;Read from auxiliary RAM

iWrite to main RAM

;Write to auxiliary RAM

;Switch in slot CX00 ROM

;Switch in internal CX00 ROM
;Switch in main stack/zp/lang.card
;Switch in aux stack/zp/lang.card
;Switch in intermal $C3 ROM
;Switch in slot $C3 space
;Disable 80 column video

;Enable 80 column video

;Normal Apple II char set
;Norm/inv LC, no flash

;Clear keyboard strobe

;2127 if LC BANK2 in use

;2127 1f 1C is read enabled

Appendix 1: Monitor ROM Listings

0000: co13 37 RDRAMRD EQU $CO13 ;2127 if main RAM read enabled
0000: co0l4 38 RDRAMWRT EQU $CO14 ;2127 if main RAM write enabled
0000: col5 39 RDCXROM EQU $CO15 32127 if ROM CX space enabled
0000: c0l6 40 RDALTZP EQU S$cCOlé6 32127 if alt. zp & lc enabled
0000 : co17 41 RDC3ROM EQU §$cCO017 32127 if slot C3 space enabled
0000: cO018 42 RDBOCOL EQU $cCO18 ;2127 if 80 column store enabled
0000: c019 43 RDVBLBAR EQU $CO019 12127 if not vertical blanking
0000: COlA 44 RDTEXT EQU $COlA ;2127 if text mode

0000: co1c 45 RDPAGE2 EQU §$cCOl1C +2127 if page 2

0000: COlE 46 ALTCHARSET EQU SCO1E ;2127 if alt char set switched in
0000: COLlF 47 RDSOVID EQU SCOLF 32127 if 80 column video enabled
0000: Cc030 48 SPKR EQU $C030 ;toggle speaker

0000: c054 49 TXTPAGEl EQU 5C054 ;jswitches in text page 1

0000: €055 50 TXTPAGE2 EQU $C055 ;switches in text page 2

0000 : c05D 51 CLRANZ EQU $CO5D jannunciator 2

0000: CO5F 52 CLRAN3 EQU $COSF ;annunciator 3

0000: c061 53 BUTNO EQU $cC061 ;open-apple key

0000: €062 54 BUTNIL EQU $C062 jclosed-apple key

0000: co81 55 ROMIN EQU $CO081 ;swap in DOOO-FFFF ROM

0000: c083 56 LCBANK2 EQU $cC083 ;swap in LC bank 2

0000: CO8B 57 LCBANK1 EQU SCOB8B ;jswap in LC bank 1

0000: 58 %

0000: 59 * MONITOR EQUATES:

0000: 60 *

0000: FBB3 61 FBVERSION EQU FB8ORG+S$S3B3 ;F8 ROM ID

0000: FD1B 62 KEYIN EQU FBORG+$51B ;normal input

0000 : FDFO 63 COUT1 EQU FBORG+S5F0 ;normal output

0000: FF69 64 MONZ EQU FBORG+$769 ;monitor entry point

0000: 65 *

0000 : 66 * ZEROPAGE EQUATES:

0000: 67 *

0000: 0000 68 LOCD EQU O ;used for doing PR#

0000: 0001 69 LOCl EQU 1 sused for doing PR#

0000: 70 DSECT

0020: 0020 71 ORG §$20

0020: Q001 72 WNDLFT DS 1 :scrolling window left

0021: 0001 73 WNDWDTH DS 1 ;scrolling window width

0022: 0001 74 WNDTOP DS 1 ;scrolling window top

0023: 0001 75 WNDBTM DS 1 ;jscrolling window bottomtl
0024 0001 76 CH DS 1 ;cursor horizontal

0025: 0001 77 ¢cv DS 1 jcursor vertical

0026: 0002 78 DS 2 ;GBASL ,GBASH

0028: 0002 79 BASL Ds 2 ;points to current line of text
002A: 0029 80 BASH EQU BASL+1

002A: 0002 81 BAS2L DS 2 ;jpointer used for scroll

o02cC: 002B 82 BAS2H EQU BAS2L+1

o002c: 83 *

002F: 002F B84 ORG $2F

002F: 0001 85 LENGTH DS 1 ;length for mnemonics

0030: 0002 86 DS 2

0032: 0001 87 INVFLG DS 1 3>127=normal, <127=inverse
0033: 0001 88 PROMPT NS 1 ;sused by monitor upshift

0034: 0001 89 YSAV ns 1 jinput buffer index for mini
0035: 0001 90 SAVY1L DS 1 ifor restoring Y

Appendix I: Monitor ROM Listings 29

0036:
0038:
0038:
003A:
003C:
003cC:
003E:
003E:
0040:
0040:
0042:
0044:
0044 :
004E:
004E:
0050:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000 :
0000+
0000:
0000:
0000:
0000
0000 :
0000:
0000 :
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

0002
0037
0002
0039
003cC
0002
003D
0002
003F
0002
0002
0043
0001
004E
0002
004F

0200

07F8

047B
04FB
0578
05FB
067B
06FB
0778
0778
Q7FB
07FB

143
144

CSWL Ds 2

shook for output routine

CSWH EQU CSWL+1

KSWL DS 2

shook for input routine

KSWH EQU KSWL+1

ORG $3C
AlL DS 2 ;Monitor temps for MOVE
AlH EQU AlL+1
A2L DS 2
AZ2H EQU A2L+1
DS 2 ;A3 NOT USED
A4L ps 2
A4H EQU A4L+1

MACSTAT DS 1

RNDL D8 2

;machine state on breaks
ORG $4E
;jrandom number seed

RNDH EQU RNDL+1

BUF EQU $200

*

¥ % % & % X ¥ H X F N H F

MSLOT EQU $7F8
*

DEND

;input buffer
Permanent data in screenholes

Note: these screenholes are only used by

the 80 column firmware if an 80 column card

is detected or if the user explicitly activates
the firmware. If the 80 column card is not
present, only MODE is trashed on RESET.

The success of these routines rely on the

fact that if 80 column store is on (as it
normally is during 80 column operation), that
text page | is switched in. Do not call the
video firmware if video page 2 is switched in!!

;=8Cn ;n=slot using $C800

OLDCH EQU $478+3 {LAST CH used by video firmware
MODE EQU S$4F8+3 jvideo firmware operating mode
OURCH EQU $578+3 ;80 column CH

OURCY EQU $5F8+3 ;80 column CV

CHAR EQU 5678+3 ;character to be printed/read
XCOORD EQU $6F8+3 :GOTOXY X-coord (pascal only)
TEMP1 EQU §778+3 itemp

OLDBASL EQU §778+3 ;last BASL (pascal only)

TEMP2 EQU $7F8+3 ;temp

OLDBASH EQU $7F8+3 ;last BASH (pascal only)

*

* % N O N ¥ O ¥

BASIC MODE BITS

o P —— . = BASIC active
lessesss — Pascal active

Devenas

slecaass
«eDesves = Print control characters
«2lesses = Don't print ctrl chars.

Appendix 1: Monitor ROM Listings

0040
0020
0010
0008
0004
0002
0001

0080
0010
0008
0004
0002

FALT
FC74
FC7A
F8B7

NEXT OBJECT
cl00
C100

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
18
FILE
1

2

saadQisss
voislisone
esss0ess = Print control characters
seseless — Don't print next ctrl char
PSP & P
swsadiog
ennsanls
soveanle
sesssss0 = Mouse text inactive
sesenesl = Mouse text active

EQU §40

EQU $20 ;Don't print controls
EQU $10

EQU $08 ;Temp ctrl disable
EQU S04

EQU $02

OUSE EQU 501

« s e
=
=
no

Ee—ma oo
P
=

Pascal Mode Bits

Qeceeess = BASIC active
leseeasa = Pascal active
Qessene
elavasas
reQsaees
seleanss
+ss0seee = Cursor always on
wssleess = Cursor always off
eseelaes = GOTOXY n/a

= GOTOXY in progress
ssess0se — Normal Video

sesesles = Inverse Video
esensal. = PASCAL 1.1 F/W ACTIVE
- PASCAL 1.0 INTERFACE
sessess0 — Mouse text inactive
sssssesl = Mouse text active

vevelons

seseasls

F Ok o K Ok N OF N o N N N o H N ¥ ¥ F F XX T ZXZ ok ok FF E R F K o F %

M.PASCAL EQU $80
M.CURSOR EQU $10
M.GOXY EQU $08
M.VMODE EQU $04
M.PAS1.0 EQU $02
*

;Pascal active
;Don't print cursor
;GOTOXY IN PROGRESS
;s PASCAL VIDEO MODE
;PASCAL 1.0 MODE

* F8 ROM entries
*
NEWBREAK EQU FB8ORG+$247
IRQUSER EQU FBORG+$474
IRQDONE2 EQU F8ORG+S4TA
TSTROM EQU F8ORG+$B7
INCLUDE BFUNC
NAME IS REFLIST.O
ORG ClORG
BFUNCPG EQU *

Appendix I: Monitor ROM Listings

4

clo0: FECS5 3 FUNCEXIT EQU F8ORG+$6C5 ;RETURN ADDRESS .
Cl00: FCFO 4 MINI EQU FBORG+$4F0

Cc100: %

C100: 6 * BASIC FUNCTION HOOK:

€100: 7 % .
€100: 8 * $C100 is called by the patched $F8 ROM.

C100: 9 * It provides an extension to $F8 routines

Cl100: 10 * that do not work in 80 columns.

Ccl00: 11 * .
Cl00: 12 * Before jumping here, the $F8 rom disabled

C100: 13 * slot I/0 and enabled ROM I/0. This makes

C100: 14 * the entire space from $C100 = SCFFF with the

Ccl00: 15 * exception of the $C300 page available. .
C100: 16 *

Cl00: 17 * On exit slot I/0 is restored if necessary.

C100: 18 *

Cl00: 19 * INPUT: Y=FUNCTION AS FOLLOWS: .
C100: 20 *

Cl00: Z1 * 1 = KEYIN

Ccl100: 22 * 2 = Fix escape char

Ccl00: 23 * 3 = BASCALC .
Ccl00: 24 * 4 = VTAB or VTABZ

Cc100: 25 * 5 = HOME

Cl100: 26 * 6 = SCROLL

Cl00: 27 * 7 = CLREOL .
Cl00: 28 * 8 = CLREOLZ

Cl00: 29 * 9 = RESET

Cl00: 30 * A = CLREOP

Ccl00: 31 = B = RDKEY .
C100: 32 % C = SETWND

Cl00: 33 * D = Mini Assembler

C100: 34 * E = gset 40 columns on PR#0/IN#0

Ccl00: 35 * F = Fix pick for monitor .
Cl100: 36 *

Ccl00: 37 * Stack has PHP for status of internal $CNOO ROM

C100: 38 *

€100: 39 * Note: If B0 Vid is on and the MODE byte is valid, .
Cc100: 40 * this call will be dispatched to an 80 column routine

Ccl00: 41 * by B.FUNCO. Otherwise it will be dispatched to a

Cc100: 42 * 40 column routine by B.OLDFUNC. In all cases return

C100: 43 * to the Autostart ROM is done through F.RETURN. .
c100: 4y *

Ccl00:4C 13 C2 45 B.FUNC JMP DISPATCH ;figure out what to do

Cc103: 46 *

Cl03:44 24 47 F.CLREOP LDY CH ; ESC F IS CLR TO END OF PAGE .
C105:A5 25 48 LDA CV

Cl07:48 49 CLEOP1 PHA

C108:20 03 CE 50 JSR VTABZ

Cl0B:20 F4 Cl 51 JSR X.CLREOLZ .
CLOE:A0 00 52 LDY #5500

C110:68 53 PLA

Cl11:69 00 54 ADC #8500 ;(carry set)

€113:C5 23 55 CMP WNDBTM

Cl115:90 FO cl07 56 BCC CLEOPI1

298 Appendix I: Monitor ROM Listings .

Cl17:B0
Ccl19:

Cl19:A5
Cl1B:85
Cl1D:AD
Cl1F:84
Cl21:F0
Ccl23:

Cl23:A5
Cl125:48
Cl126:20
C129:A5
Cl2B:85
Cl2D:AS5
Cl12F:85
Cl131:A4
C133:88
C134:68
C135:69
€137:C5
C139:B0
C13B:48
Cl3C:20
Cl13F:Bl
Cl41:91
Cl43:88
Cl44:10
Cl46:30
C148:A0
Cl4A:20
Cl4D:AS5
Cl4F:4C
€152

C152:

C152:A9
Cl154:85
Cl56:A9
C158:85
C15A:A9
C15C:85
CLl5E:DO
Cl60:

Cl60:

Cl160:

Cl60: A4
Cl62:4C
Cl65:

Cl65:

Cl65:

Cl65:4C
Cl168:

Cl68:

Cl68:

Cl68:4C

34

22
25
00

E4

03 CE

03 CE

F4 Cl

03 CE

2A
F4 Cl

EB CB

9A CC

Cl4D

c107

Cl148

Cl13F
cl29

cl52

Cl4F

BCS GVTZ ;=>always to VTABZ

F.HOME LDA WNDTOP

STA CV

LDY #3800

STY CH

BEQ CLEOPI ; (ALWAYS TAKEN)
%*
F.SCROLL LDA WNDTOP

PHA

JSR VTABZ
SCRL1 LDA BASL

STA BAS2L

LDA BASH

STA BAS2H

LDY WNDWDTH

DEY

PLA

ADC #501

CMP WNDBTM

BCS SCRL3

PHA

JSR VTABZ
SCRL2 LDA (BASL),Y

STA (BAS2L),Y

DEY

BPL SCRL2

BMI SCRLI
SCRL3 LDY #S00

JSR X.CLREOLZ
GVTZ LDA CV
GVTZ2 JMP VTABZ ;set vertical base
*

F.SETWND EQU #*

LDA #40

STA WNDWDTH

LDA {#24

STA WNDBTM

LDA #23

STA CV

BNE GVTZ2 ;=>go do vtab, exit
*

* Load Y from BAS2L and clear line
*

F.CLREOLZ LDY BAS2L ;set up by SF8 ROM
JMP X.CLREOLZ ;and clear line
*

* 80 column routines begin here
*

B.SCROLL JMP SCROLLUP ;DO IT FOR CALLER
*

* Clear to end of line using Y = OURCH
*

B.CLREOL JMP X.GS ;clear to end of line

Appendix I: Monitor ROM Listings

Cl6B: 111 * l
Cl6B: 112 * Clear to end of line using Y = BAS2L

Cl6B: 113 * which was set up by the $F8 ROM

Cl6B: 114 * .
Cl16B:A4 2A 115 B.CLREOLZ LDY BAS2L jget Y

Cl6D:4C 9D CC 116 JMP X.GSEOLZ ;clear to end of line

Cl70: 117 *

Cl70:4C 74 CC 118 B.CLREOP JMP X.VT ;CLEAR TO EOS .
Cl73:4C A0 C2 119 B.SETWND JMP B.SETWNDX

Cl76:4C BO C2 120 B.RESET JMP B.RESETX ;MUST BE IN BFUNC PAGE

Cl79:4C F2 C2 121 B.RDKEY JMP B.RDKEYX

cl7c: 122 * .
cl7C:20 90 CC 123 B.HOME JSR X.FF ;HOME & CLEAR

Cl7F:AD 7B 05 124 LDA OURCH

ClB82:85 24 125 STA CH ;COPY CH/CV FOR CALLER

C184:8D 7B 04 126 STA OLDCH ;REMEMBER WHAT WE SET .
Cl87:4C FE CD 127 JMP VTAB scalc base & return

Cl8A: 128 *

Cl8A: 129 * Complete PR# or IN# call. Quit video firmware

C18A: 130 * 1f PRFO and it was active (B.QUIT). Complete call .
Cl8A: 131 * if inactive (F.QUIT).

Cl18A: 132 *

Cl8A: Cl18A 133 B.QUIT EQU *

ClBA:B4 00 134 LDY LOCO,X ;was it PRIO/IN#O? .
Cl8C:F0O OF C19D 135 BEQ NOTO ;=’no, not slot 0

Cl8E:CD 1B 136 CPY #KEYIN ;was it IN#O?

C190:F0 OE ClA0 137 BEQ 1850 ;=>yes, update high byte

C192:20 80 €D 138 JSR QUIT squit the firmware

C195:B4 00 139 F.QUIT LDY LOCO,X ;get low byte into Y

C197:F0 04 Cl9D 140 BEQ NOTO jnot slot 0, firmware inactive

C199:A9 FD 141 F8HOOK LDA {#<KEYIN ;set high byte to $FD

C19B:95 01 142 STA LoCl,X

C19D:B5 01 143 NOTO LDA LOCl,X ;jrestore accumulator

Cl9F:60 144 RTS

ClAO: 145 *

ClA0:A5 37 146 IS0 LDA CSWH ;is $C3 in output hook?

ClA2:C9 C3 147 CMP #<BASICIN

ClA4:DO F3 C199 148 BNE F8HOOK ;=>no, set to S$FDOC

ClA6:4C 32 C8 149 JMP C3IN ;else set to $C305, exit A=SC3

ClA9: 150 *

ClA9:A4 24 151 F.RDKEY LDY CH ;else do normal 40 cursor .
ClAB:B1 28 152 LDA (BASL),Y ;grab the character

CIAD:48 153 PHA

ClAE:29 3F 154 AND {#$3F ;set screen to flash

C1B0:09 40 155 ORA #5840 .
C1B2:91 28 156 STA (BASL),Y j;and display it

C1B4:68 157 F.NOCUR PLA

C1B5:60 158 RTS ;return (A=char)

ClB6: 159 * '
ClB6:A8 160 F.BASCALC TAY irestore Y

ClB7:A5 28 161 LDA BASL ;jrestore A

C1B9:20 BA CA 162 JSR BASCALC ;jcalculate base address

CIBC:90 4C C20A 163 BCC F.RETURN ;BASCALC always returns BCC! .
C1BE: 164 *

3 Appendix [: Monitor ROM Listings .

ClBE: CIBE 165 B.ESCFIX EQU *
C1BE:20 14 CE 166 JSR UPSHFT supshift lowercase
clcl:A0 03 167 B.ESCFIX1 LDY #4-1 +SCAN FOR A MATCH
clc3: C1C3 168 B.ESCFIX2 EQU *
Clc3:D9 EE C2 169 CMP ESCIN,Y ;IS IT?
Cclc6:D0 03 CICB 170 BNE B.ESCFIX3 ;=DNAW
ClC8:B9 A4 C9 171 LDA ESCOUT,Y ;YES, TRANSLATE IT
CICB: C1CB 172 B.ESCFIX3 EQU *
CIlCB:88 173 DEY
clcc:10 F5 clc3 174 BPL B.ESCFIX2
CICE:30 3A C20A 175 BMI F.RETURN ;RETURN:CHAR IN AC
ClDO: 176 *
Clp0:20 70 C8 177 F.BOUT JSR BOUT ;print the character
CID3:4C 0A C2 178 JMP F.RETURN ;AND RETURN
ClD6: 179 *
C1D6: 180 * Do displaced mnemonic stuff
ClD6: 181 *
ClD6:8A 182 MNNDX TXA ;get old acc
clDp7:29 03 183 AND #8$03 ;make it a length
ClD9:85 2F 184 STA LENGTH
CIDB:AS 2A 185 LDA BAS2L ;get old Y into A
CclDD:29 8F 186 AND {#S8F
CIDF:4C 71 CA 187 JMP DOMN ;and go to open spaces
ClE2: 188 *
ClE2:20 FO FC 189 GOMINI JSR MINI ;do mini-assembler
ClE5:8A 190 TXA ;X=0. Set mode to 0, and counter
ClE6:85 34 191 STA YSAV ;80 not CR on new line
ClE8:60 192 RTS
ClE9: 193 *
CIE9: 194 * Pick an B0 column character for the monitor
Cl1E9: 195 *
ClE9:AC 7B 05 196 FIXPICK LDY OURCH ;get 80 column cursor
ClEC:20 44 CE 197 JSR PICK ;pick the character
C1EF:09 80 198 ORA #$80 ;always pick as normal
C1F1:60 199 RTS jand return
ClF2: 200 *
ClF2: 201 * Load CH into Y and clear line
ClF2: 202 *
ClF2: ClF2 203 F.CLREOL EQU *
ClF2:A4 24 204 X.CLREOL LDY CH ;get horizontal position
ClF4:A9 AD 205 X.CLREOLZ LDA #SA0 ;jstore a normal blank
ClF6:2C 1E CO 206 BIT ALTCHARSET j;unless alternate char set
CLF9:10 06 c201 207 BPL X.CLREOL2
ClFB:24 32 208 BIT INVFLG ;and inverse
ClFD:30 02 C201 209 BMI X.CLREOL2
ClFF:A9 20 210 LDA #8520 ;use inverse blank
C201:4C A8 CC 211 X.CLREOL2 JMP CLR40 iclear to end of line
C204: 208,
C204: 213 * Call VTAB or VTABZ for 40 or 80 colummns. Acc (CV)
C204: 214 * ig saved in BASL.
C204: 215 =
C204: AB 216 F.VTABZ TAY ;jrestore Y
C205:A5 28 217 LDA BASL ;and A
C207:20 03 CE 218 JSR VTABZ ;do VTABZ

Appendix I Monitor ROM Listings 301

C20A: 219 * .
C20A: 220 * EXIT. EITHER EXIT WITH OR WITHOUT

C20A: 221 * ENABLING 1/0 SPACE.

C20A: 222 *

C20A: C20A 223 F.RETURN EQU * .
C20A:28 224 PLP sGET PRIOR I/0 DISABLE

C20B:30 03 €210 225 F.RET2 BMI F.RETI ;=>LEAVE IT DISABLED

C20D:4C C5 FE 226 JMP FUNCEXIT ;=>EXIT & ENABLE 1/0

C210:4C C8 FE 227 F.RET1 JMP FUNCEXIT+3 ;;EXIT DISABLED .
C213: 228 *

C213:3 229 * Do BOUT, ESCFIX, BASCALC, and KEYIN immediately

©213: 230 * to avoid destroying Accumulator.

Cc213: 231 * .
C213:88 232 DISPATCH DEY

C214:30 BA C1DO 233 BMI F.BOUT jcode 0 = 80 column output

C216:88 234 DEY

C217:30 A5 CIBE 235 BMI B.ESCFIX ;code 1 = ESCFIX .
€219:88 236 DEY

C21A:30 9A Cl1B6 237 BMI F.BASCALC ;code 2 = BASCALC

c21c:88 238 DEY

€21D:30 3D c25C 239 BMI B.KEYIN j;code 3 = KEYIN .
C21F:88 240 DEY

€220:30 E2 C204 241 BMI F.VTABZ jcode 4 = VTABZ

€222: 242 *

C22723 243 * First push address of generic return routine .
c222: 244 *

C222:A9 C2 245 LDA #<F.RETURN ;return to F.RETURN

C224:48 246 PHA

C225:A9 09 247 LDA #>F.RETURN-1 .
€227:48 248 PHA

C228: 249 *

Cc228: 250 * If any of 5 bits in $4FB (MODE) is on, then the mode is not

c228: 251 * valid for video firmware. Use old routines. .
c228: 252 *

C228:AD FB 04 253 LDA MODE ;no, 1s mode valid?

C22B:29 D6 254 AND #M.PASCAL+M.6+M.4+M.2+M. 1

€22D:D0 OD C23C 255 BNE GETFUNC ;=>no, use 40 column routines .
C22F:98 256 TYA ;80 column routines in

€230:18 257 CLC ;2nd half of table

C231:69 0OC 258 ADC #TABLEN

C233:48 259 PHA .
C234:20 50 c8 260 JSR CSETUP ;set up 80 column cursor

C237:20 FE CD 261 JSR VTAB ;calc base

C23A:68 262 PLA

C23B:A8 263 TAY jrestore Y .
C23¢G: 264 *

Cc23C: 265 * Now push address of routine

C23¢: 266 *

€23C:A9 Cl 267 GETFUNC LDA #<BFUNCPG ;stuff routine address .
C23E:48 268 PHA

C23F:B9 44 C2 269 LDA F.TABLE,Y

C242:48 270 PHA

C243: 271 *

C243: 272 * RTS goes to routine on stack. When the routine

302 Appendix I: Monitor ROM Listings .

€243: 273 * does an RTS, it returns to F.RETURN, which restores
C243: 274 * the INTCXROM status and returns.
C243: 275 *
C243:60 276 RTS
C244: 277 *
C244: 278 * Table of routines to call. All routines are
C244: 279 * in the $CI00 page. These are low bytes only.
C244: 280 *
C244: C244 281 F.TABLE EQU *
C244:18 282 DFB #>F.HOME-1 ;(5) 40 column HOME
C245:22 283 DFB #>F.SCROLL-1 ;(6) 40 column scroll
C246:F1 284 DFB #>F.CLREOL-1 ;(7) 40 column clear line
C247 :5F 285 DFB #>F.CLREOLZ-1 ;(8) 40 column clear with Y set
C248:75

286 DFB #>B.RESET=1 ;(9) 40/80 column reset
€249:02 287 DFB #>F.CLREOP-1 ;(A) 40 column clear end of page
C24A:A8 288 DFB #>F.RDKEY-1 ;(B) readkey w/flashing checkerboard
C24B:51 289 DFE {#>F.SETWND-1 ;(C) Set 40 column window
C24C:El 290 DFB #>GOMINI-1 ;(D) Mini-assembler
C24D:94 291 DFB {#>F.QUIT-1 ;(E) quit before IN#0,PR#0
C24E:E8 292 DFB #>FIXPICK-1 ;(F) fix pick for 80 columns
C24F:D5 293 DFE #>MNNDX-1 ;(10) calc mnemonic index
Cc250: 294 *
C250: 000C 295 TABLEN EQU *-F.TABLE
C250: 296 *
C€250:78 297 DFB #>B.HOME-1 ;(11) B0 column HOME
C251:64 298 DFB #>B.SCROLL-1 ;(12) 80 colummn scroll
C252:67 299 DFB #>B.CLREOL-1 ;(13) 80 column clear line
C253:6A 300 DFB #>B.CLREOLZ-1 ;(14) 80 column clear with Y set
C254:75 301 DFB #»B.RESET-1 ;(15) 40/80 column reset
C255:6F 302 DFB #>B.CLREOP-1 ;(16) 80 column clear end of page
C256:78 303 DFB #>B.RDKEY-1 ;(17) readkey w/inverse cursor
6257172 304 DFB #>B.SETWND-1 ;(18) 40/80 column VTAB
C258:E1 305 DFB #>GOMINI-1 ;(19) Mini-Assembler
€259:89 306 DFB {#>B.QUIT-1 ;(1A) quit before IN#0,PR#0
C25A:E8 307 DFB #>FIXPICK-1 ;(1B) fix pick for 80 columns
C25B:D5 308 DFB #>MNNDX-1 ;(1C) calc mnemonic index
C25C: 309 *
c25C: €25¢C 310 B.KEYIN EQU *
C25C:2C 1F €O 311 BIT RDBOVID ;80 columns?
C25F:10 06 €267 1312 BPL. B.KEYINl ;=>na, flash the cursor
C261:20 74 C8 313 JSR BIN ;get a keystroke
C264:4C DA C2 314 GOF.RET JMP F.RETURN ;and return
C267¢ 35 *
C267:A8 316 B.KEYINl TAY ipreserve A
C268:8A 317 TXA jput X on stack
C269:48 318 PHA
C26A:98 319 TYA irestore A
C26B:48 320 PHA ;jsave char on stack
C26C:48 321 PHA ;dummy for cursor/char test
C26D: 322 *
C26D:68 323 NEW.CUR PLA ;get last cursor
C26E:C9 FF 324 CMP {#SFF ;was it checkerboard?
C270:F0 04 Cc276 325 BEQ NEW.CURl ;=>yes, get old char

Appendix I: Monitor ROM Listings 303

C272:A9 FF 326 LDA {#SFF ;no, get checkerboard .
C274:D0 02 c278 327 BNE NEW.CUR2 ;=>always

C276:68 328 NEW.CUR]1 PLA ;get character

C277:48 329 PHA yinto accumulator

C278:48 330 NEW.CUR2 PHA ;save for next cursor check

C279:44 24 331 LDY CH ;get cursor horizontal

C27B:91 28 332 STA (BASL),Y ;and save char/cursor

Cc27D: 333 *

€27Ds 334 * Now leave char/cursor for awhile or

C27D: 335 * until a key is pressed.

C27D: 336 *

C27D:Eb6 4E 337 WAITKEYl INC RNDL ;bump random seed

C27F:DO OA C28B 338 BNE WAITKEY4 ;=>and check keypress .
C281:A5 4F 339 LDA RNDH iis 1t time to blink yet?

C283:E6 4F 340 INC RNDH

C285:45 4F 341 EOR RNDH

C287:29 40 342 AND #540 .
C289:D0 E2 C26D 343 BNE NEW.CUR ;=>yes, blink it

C28B:AD 00 CO 344 WAITKEY4 LDA KBD ;Ivories been tickled?

C28E:10 ED C27D 345 BPL WAITKEYl ;no, keep blinking

C€290: 346 * .
€290:68 347 PLA ;pop char/cursor

C291:68 348 PLA ;pop character

C292:A4 24 349 LDY CH ;and display it

C294:91 28 350 STA (BASL),Y ;(erase cursor) .
C296:68 351 PLA srestore X

C297:AA 352 TAX

€298:AD 00 CO 353 LDA KBD jnow retrieve the key

C29B:8D 10 CO 354 STA KBDSTRB ;clear the strobe -
C29E:30 c4 C264 355 BMI GOF.RET ;=vexit always

C2A0: 356 *

C2A0: C2A0 357 B.SETWNDX EQU #*

C2A0:20 52 Cl 358 JSR F.SETWND ;set 40 column width .
C2A3:2C 1F CO 359 BIT RDBOVID 380 columns?

C2A6:10 02 C2AA 360 BPL SKPSHFT ;=>no, width ok

C2A8:06 21 361 ASL, WNDWDTH ;make it 80

C2AA:AS5 25 362 SKPSHFT LDA CV .
C2AC:8D FB 05 363 STA OURCV jupdate OURCV

C2AF:60 364 RTS

C2BO: 365 *

C2B0: 366 * HANDLE RESET FOR MONITOR: .
C2BO: 367 *

C2B0: C2B0 368 B.RESETX EQU *

C2B0:A9 FF 369 LDA #SFF ;DESTROY MODE BYTE

C2B2:8D FB 04 370 STA MODE .
C2B5:AD 5D CO 371 LDA CLRAN2 s SETUP

C2BB:AD 5F CO 372 LDA CLRAN3 3 ANNUNCIATORS

C2BB: 373 *

C2BB: 374 * IF THE OPEN APPLE KEY .
C2BB: 375 * (ALIAS PADDLE BUTTONS 0) IS

C2BB: 376 * DEPRESSED, COLDSTART THE SYSTEM

C2BB: 377 * AFTER DESTROYING MEMORY:

C2BB: 378 * .
C2BB:AD 62 CO 379 LDA BUTNI sGET BUTTON 1 (SOLID)

34 Appendix I Monitor ROM Listings .

C2BE:10
C2C0:4C
C2C3:AD
C2C6:10
c2c8:
c2c8:
c2c8:
c2cs:
C2C8:A0
C2CA:A9
C2CC:85
C2CE:A9
€2D0:38
C2D1:
¢2D1:85
C2D3:48
C2D4:A9
C2D6:91
C2D8:88
€2D9:91
C2DB:68
C2DC:E9
C2DE:C9
C2E0:D0
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2E2:
C2R2:
C2E2:8D
C2E5:20
C2E8:DO0
C2EA:8D
C2ED:60
C2EF:
C2EE:88
C2F2:
C2F2:A4
C2F4:Bl
C2F6:2C
C2F9:30
C2FB:4C
C2FE:
C2FE:
C2FE:
C€300:
5
C300:

03
00
61

3n

AD
3C

3C

01

EF

0B

cac3

C2Dl1

c2pl

0002
0002
0000

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

BPL NODIAGS ;=>Up, no diags

JMP DIAGS ;=>else go do diagnostics
NODIAGS LDA BUTNO ;GET BUTTON O (OPEN)

BPL RESETRET ;=>NOT JIVE OR DIAGS
-
* BLAST 2 BYTES OF EACH PAGE,

* INCLUDING THE RESET VECTOR:
*

LDY #SBO ;sLET IT PRECESS DOWN
LDA {0
STA AlL
LDA {#$BF :START FROM BFXX DOWN
SEC ;s FOR SUBTRACT

BLAST EQU *
STA AlH
PHA ;save acc to store
LDA {#SA0 ;blanks
STA (AlL),Y
DEY
STA (AlL),Y
PLA ;jrestore acc for counter
SBC #1 sBACK DOWN TO NEXT PAGE
CMP #1 ;STAY AWAY FROM STACK!
BNE BLAST

If there is a ROM card plugged into slot 3,

don't switch in the internal ROM C3 space. If not,
only switch them in if there is a RAM card

in the video slot.

NOTE: The //e powers up with internal $C3 ROM switched
in. TSTROMCARD switches it out, RESETRET may or may
not switch it back in.

* % F Ok % * X F F %

RESETRET EQU *
STA SETSLOTC3ROM ;swap in slot 3
JSR TSTROMCRD ;ROM or no card plugged in?
BNE GORETNI1 ;=>ROM or no card, leave $C3 slot
STA SETINTC3ROM jcard, enable internal ROM
GORETN1 RTS
*
ESCIN DFB $88,595,%8A,58B
*
B.RDKEYX LDY CH ;get cursor position
LDA (BASL),Y j;and character
BIT RDBOVID ;80 columns?
BMI GORETNIL ;=>don't display cursor
JMP INVERT ;else display cursor, exit
*
ZSPAREC2 EQU C30RG-*
DS C30RG-*,0
IFNE *-C30RG
FAIL 2,'C300 overflow'
FIN

Appendix I: Monitor ROM Listings

C300: 19 INCLUDE C3SPACE .
©300: 1 Ak koo Ak ko kokok ok ok ok ok Ak

€300: 2 *

C300: 3 * THIS IS THE $C3XX ROM SPACE:

C300: 4 * Note: This page must not be used by any routines .
C300: 5 * called by the F8 ROM. When it is referenced, it claims

C300: 6 * the C800 space (kicking out anyone who was using it).

C300: 7 * This also means that peripheral cards cannot use the AUXMOVE

C300: 8 * and XFER routines from their CB0O space. .
C300: 9 *

€300 10 sk sk sk e e sk ek ok ko e ek ok ok e ok ek Rk

C300: €300 11 CNOO EQu *

C300: Cc300 12 BASICINT EQU * .
C300:2C 43 CE 13 BIT SEV jset vElag (init)

€303:70 12 c317 14 BVS BASICENT ;(ALWAYS TAKEN)

C305: 15 *

C305: 16 * BASIC input entry point. After a PR#3, this is the .
Cc305: 17 * address that is called to input each character.

Cc305: 18 *

C305: €305 19 BASICIN EQU *

Cc305:38 20 SEC .
C306:90 21 DFB §$90 ;BCC OPCODE (NEVER TAKEN)

C307: 22 *

C307: 23 * BASIC output entry point. After a PR#3, this is the

C307: 24 * address that is called to output each character. .
Cc307: 25 *

C307: c307 26 BASICOUT EQU *

Cc307:18 27 CLC

C308:B8 28 CLV ;CLEAR VFLAG (NOT INIT) .
C309:50 OC c317 29 BVC BASICENT ;(ALWAYS TAKEN)

C30B: 30 *

C30B: 31 * Pascal 1.1 Firmware Protocol table:

C308: 32 * .
C30B: 33 * This tables identifies this as an Apple //e 80 column

C30B: 34 * card. It points to the four routines available to

C30B: 35 * programs doing 1/0 using the Pascal 1.1 Firmware

C30B: 36 * Protocol. .
C30B: 37 *

C30B:01 38 DFB $01 ;GENERIC SIGNATURE BYTE

c30C:88 39 DFB $88 ;DEVICE SIGNATURE BYTE

C30D: 40 *

C30D:4A 41 DFB #>JPINIT ;PASCAL INIT .
C30E:50 42 DFB #>JPREAD ; PASCAL READ

C30F:56 43 DFB #>JPWRITE ;PASCAL WRITE

€310:5¢C 44 DFB #>JPSTAT ;PASCAL STATUS .
c311: 45 Kk kdkok ok gk skok ek ke ook ek ek ek

C311: 46 *

c311: 47 * 128K SUPPORT ROUTINE ENTRIES:

C311: 48 *

c311:4C 76 C3 49 JMP MOVE sMEMORY MOVE ACROSS BANKS .
C314:4C C3 C3 50 JMP XFER ;s TRANSFER ACROSS BANKS

c317: G 1 ek koo dek e sk ok ok Rk ek kA K Kk

c317: 52 %

C317:8D 7B 06 53 BASICENT STA CHAR .
3% Appendix I: Monitor ROM Listings .

C31A:98 54 TYA ; AND Y

C31B:48 55 PHA

C31C:8A 56 TXA ; AND X

C31D:48 57 PHA

C31E:08 58 PHP ;SAVE CARRY & VFLAG

C31F: 59 =

C31F: 60 * If escape mode is allowed, the high bit of MSLOT is
C31F: 61 * clear. Set M.CTL to flag that 1) escapes are allowed, and
C31F: 62 * 2) that control characters should not be echoed.
C31F: 63 * M.CTL is cleared by BPRINT.

C31F: 64 *

C31F:AD FB 04 65 LDA MODE ;jelse esc enable, ctl disable
C322:2C F8 07 66 BIT MSLOT ;get MSLOT

C325:30 05 c32¢ 67 BMI NOGETLN ;=>Esc disable, ctl char enable
€327:09 08 68 ORA #M.CTL

C329:8D FB 04 69 STA MODE

C32C: 70 *

c32c: C32C 71 NOGETLN EQU *

Cc32C:20 6D C3 12 JSR SETC8 ;SETUP C8 INDICATOR

C32F:28 73 PLP 3GET VFLAG (INIT)

C330:70 15 C347 74 BVS JBASINIT ;=>D0 THE INIT

C332: 75 *

63321 76 * If a PR#0 has been done, input should be transferred
Cc332: 77 * from the video firmware to KEYIN. This is detected
Cc332: 78 * if the high bit of the mode byte is set.

c332: 79 *

£332:90 10 C344 B8O BCC JCB ;j=>output, no problem
C334:AA 81 TAX ;test mode

€335:10 0D C344 82 BPL JC8 jvideo firmware is on
C337:20 5B CD 83 JSR SETKEYIN ;else set FD1B as input
C33A:68 84 PLA ;jrestore registers

C33B:AA 85 TAX

C33C:68 86 PLA

C33D:A8 87 TAY

C33E:AD 7B 06 88 LDA CHAR

C341:6C 38 00 89 JMP (KSWL) ;g0 input the character

C344: 90 *

C344:4C 7C C8 91 Jc8 JMP (CBBASIC sGET OUT OF CN SPACE

C347:4C 03 C8 92 JBASINIT JMP BASICINIT ;=>GOTO C8 SPACE

C34A: 93 *

C34A: C34A 94 JPINIT EQU *

C34A:20 6D C3 95 JSR SETCS8 ;SETUP C8 INDICATOR

C34D:4C B4 C9 96 JMP PINIT ;XFER TO PASCAL INIT

C€350: €350 97 JPREAD EQU *

C350:20 6D C3 98 JSR SETCS ;SETUP C8 INDICATOR

C353:4C D6 C9 99 JMP PREAD ;XFER TO PASCAL READ

C356: €356 100 JPWRITE EQU *#*

C356:20 6D C3 101 JSR SETC8 ;SETUP C8 INDICATOR

C359:4C FO C9 102 JMP PWRITE ;XFER TO PASCAL WRITE

C35C: 103 *

C35C:AA 104 JPSTAT TAX ;is request code = 07
C35D:F0 08 €367 105 BEQ PIORDY ;=>yes, ready for output
C35F:CA 106 DEX scheck for any input

C360:D0 07 c369 107 BNE PSTERR ;=>bad request, return error

Appendix 1. Monitor ROM Listings 307

C362:2C 00 CO 108 BIT KBD ;look for a key .
C365:10 04 C36B 109 BPL PNOTRDY ;=>no keystroked

C367:38 110 PIORDY SEC

C368:60 111 RTS

€369: 112 * .
£369:A2 03 113 PSTERR LDX #3 ;else flag error

C36B:18 114 PNOTRDY CLC

C36C:60 115 RTS .
C36n:]_16 khkdkkhhkkhkhhhhkhkhkkkkkhkkhkhkhhhkhhhkhkhhhkkhkkhk

c36Dn: 117 * NAME : SETC8

C36D: 118 * FUNCTION: SETUP IRQ $C800 PROTOCOL

C36D: 119 * INPUT : NONE

C36D: 120 * OUTPUT : NONE .
€36D: 121 * VOLATILE: NOTHING

€36D: 122 * CALLS : NOTHING

CS{,D: 123 e e v o e e e ko o e o o ok ek ok ok ok ok ok ke ok ke ok ok e ok ok o e ok ek ok ke ok ek

C36D: 124 * .
€36D: C36D 125 SETC8 EQU *

C36D:A2 C3 126 LDX #<CNOO ;SLOT NUMBER

C36F:8E F8 07 127 STX MSLOT ;STUFF IT

C372:AE FF CF 128 LDX SCFFF ikick out other $C& ROMs .
€375:60 129 RTS

C376: 130 khkkkhkhkhkhkhhkdkhkhhkhkkkkhkkkhkhhkkhdhhkhkkkhkhkhkkkkik

C376: 131 * NAME : MOVE

c376: 132 * FUNCTION: PERFORM CROSSBANK MEMORY MOVE .
C376: 133 *# INPUT : Al=SOURCE ADDRESS

€376: 134 * : A2=SOURCE END

C376: 135 * : A4=DESTINATION START

c376: 136 * : CARRY SET=MAIN-->CARD .
€376: 137 # CLR=CARD-->MAIN

€376 138 * QUTPUT : NONE

€376 139 * VOLATILE: NOTHING

€376 140 * CALLS : NOTHING .
C376: 141 hhkhAhkhkhkkhhhhhkhkhhhhhhkkhkkkhhkhkhkkkhhhkkih

€376 142 *

€376 £376 143 MOVE EQU *

376148 144 PHA S SAVE AC .
C377:98 145 TYA i AND Y

C378148 146 PHA

€379:AD 13 CO 147 LDA RDRAMRD ;SAVE STATE OF

c37C 148 148 PHA : MEMORY FLAGS .
C37D:AD 14 CO 149 LDA RDRAMWRT

C380:48 150 PHA

C381: 151 *

c381: 152 * SET FLAGS FOR CROSSBANK MOVE: .
C381: 153 *

€381:90 08 C38B 154 BCC MOVEC2M ;=D>CARD-->MAIN

©383:8D 02 CO 155 STA RDMAINRAM ;SET FOR MAIN

€386:8D 05 €O 156 STA WRCARDRAM ; TO CARD .
C389:B0 06 €391 157 BCS MOVESTRT ;=>(ALWAYS TAKEN)

C38B: 158 *

C38B: C38B 159 MOVEC2M EQU *

C38B:8D 04 €O 160 STA WRMAINRAM ;SET FOR CARD .
C38E:8D 03 CO 161 STA RDCARDRAM ; TO MAIN

308 Appendix I: Monitor ROM Listings .

C391:
C391:
C391:A0
C393:
Cc393:
C393:B1
€395:91
C397:E6
€399:D0
C39B:E6
C39n:A5
C39F:C5
C3Al:AS
C3A3:E5
C3A5:E6
C3A7:D0
C3A9:E6
C3AB:90
C3AD:
C3AD:
C3AD:
C3AD:8D
C3B0:68
C3B1:10
C3B3:8D
C3B6:
C3B6:8D
C3B9:68
C3BA:10
C3BC:8D
C3BF:
C3BF:68
€3Cc0:A8
C3C1:68
C3C2:60
C3C3:
€3c3:
C3C3:
C3C3:
€3C3:
C3C3:
C3C3:
C3C3:
€3c3:
€3c3:
C3C3:
C3C3:
C3C3:
C3C3:
C3C3:
C3C3:48
C3Cé:
C3C4:
C3Ca:

c391
00
€393
ic
42
42
02 Cc39D
43
3C
3E
3D
3F
3¢
02 C3AB
3D
E6 €393
04 cO
03 C3B6
05 co
C3B6
02 co
03 C38F
03 co
C3BF
c3c3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

*x

MOVESTRT EQU
LDY
#

MOVELOOP EQU

LDA
STA
INC
BNE
INC
NXTAL LDA
CMP
LDA
SBC
INC
BNE
INC
col BCC
*
* RESTORE OR
*
STA
PLA
BPL
STA
Cco3 EQU
STA
PLA
BPL
STA
MOVERET EQU
PLA
TAY
PLA
RTS
dekkdodk ko ook ok ok
* NAME 5
* FUNCTION:
* INPUT
*
*
* -
* 3
* QUTPUT :
* VOLATILE:
* CALLS
* NOTE H
Fhkk kkkkkkkk
*
XFER EQU
PHA
*
* COPY DESTI

*
#0 ;DUMMY INDEX

*

(AlL),Y ;GET A BYTE
(A4L),Y ;MOVE IT
A4L

NXTAL

A4H

AlL

A2L

ALH

A2H

AlL

€01

ALH

MOVELOOP ;=>MORE TO MOVE

IGINAL FLAGS:
WRMATNRAM ;CLEAR FLAG2
;GET ORIGINAL STATE
co3 3=>IT WAS OFF
WRCARDRAM
%*

RDMAINRAM ;CLEAR FLAGI

;GET ORIGINAL STATE
MOVERET ;=>IT WAS OFF
RDCARDRAM
*

;RESTORE Y

; AND AC

e vk e e ook e ok e ek ek ok ke e ke ok e e e ok e ko

XFER
TRANSFER CONTROL CROSSBANK

: SO3ED=TRANSFER ADDR
: CARRY SET=XFER TO CARD

CLR=XFER TO MAIN
VFLAG CLR=USE STD ZP/STK
SET=USE ALT ZP/STK
NONE
SO3ED/O3EE IN DEST BANK

: NOTHING

ENTERED VIA JMP, NOT JSR
dhhkkkkhhkkhkkkkhhkkhkkhkkkhhhkihkk

*

;SAVE AC ON CURRENT STACK

NATION ADDRESS TO THE

215 * OTHER BANK SO THAT WE HAVE IT

Appendix I: Monitor ROM Listings

C3C4:
C3C4:
C3C4:AD
C3C7:48
C3C8:AD
C3CB:48
£3ee:
c30e:
c36C:
c3cc:90
C3CE:8D
C3D1:8D
C3D4:BO
C3D6:
C3D6:8D
C€3D9:8D
C3DC:
Cc3DC:
C3DC:68
C3DD:8D
C3E0:68
C3E1:8D
C3E4:68
C3E5:70
C3E7:8D
C3EA:50
C3EC:8D
C3EF:6C
C3F2:
C3F2:
C3F4:
C3F4:
C3F4:
C3F4:
C3F4:8D
C3F7:4C
C3FA:
C3FA:
C3FA:
C3FA:
C3FA:
C3FA:
C3FA:2C
C3FD:8D
C400:
C400:
C400:
Cc400:
c400:
C400:
C400:
C400:
C400:
C400:D8

310

08
03
05
06

02
04

05
08
03
09
ED

81
7A

15
07

03

03

03

03
C3EC

co
C3EF

co

03

0002

co
FC

co

C400

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
258
256
257
258
259
260
261
262

[
W W= O

* 1IN CASE WE DO A SWAP:

LDA
PHA
LDA
PHA

* SWITCH TO

XFERC2M

*
XFERZP

XFERAZP

JMPDEST
*

* ¥ ¥ F

IRQDONE STA $CO81

* * % O % *

irq

*

BCC
STA
STA
BCS
EQU
STA
STA

EQU
PLA
STA
PLA
STA
PLA
BVS
STA
BVC
STA
JMP

DS

JMP

bit
sta

$03ED ;GET XFERADDR LO

;SAVE ON CURRENT STACK
SO3EE ;GET XFERADDR HI

;SAVE IT T0O

APPROPRIATE BANK:

XFERC2M ;=>CARD-->MAIN
RDCARDRAM ;SET FOR RUNNING
WRCARDRAM ; IN CARD RAM
XFERZP ;=» always taken
®

RDMAINRAM ;SET FOR RUNNING
WRMAINRAM ; IN MAIN RAM

* ;SWITCH TO ALT ZP/STK
;STUFF XFERADDR

S03EE ; HI AND

$03ED i LD
;RESTORE AC

XFERAZP s=r’switch in alternate zp
SETSTDZP ;else force standard zp
JMPDEST ;=ralways perform transfer
SETALTZP ;switch in alternate zp
(S03ED) ;=>off we go

C30RG+$F4-* 0 ;pad to interrupt stuff

This is where the interrupt routine returns to.
At this point the ROM is not necessarily switched in so0...

;read ROM, write RAM
IRQDONE2 :and jump to ROM

This is the main entry point for the interrupt
handler.
jumps to the main part of the interrupt handler
at $C400.

This switches in the internal ROM and

rdexrom ;Test internal or external rom
setintcxrom ;Force in ROM to get to interrupt handler

* Fall into $C400 which is now switched in!!

*

*

INCLUDE IRQ

* Here is the main interrupt handler

*

hhkkhkhkhhhhhhkhhhkhhhhkhhhkhhhhhkhhkhhkhhkhhht

newirq

equ
cld

*
;make no assumptions!!

Appendix I: Monitor ROM Listings

C401:38 T sec ;C=1 if internal slot space
c402:30 01 Cc405 8 bmi irqintex
C404:18 9 cle
C405:48 10 irgintcx pha ;Save A on stack instead of $45
C406:48 11 pha ;Make room for rts if needed
C407 :48 12 pha
C408:8A 13 txa ;Save X
C409:BA 14 tsx ;Get stack pointer for BRK bit
C40A:E8 15 inx ;Can't do add cause we need C
C40B:E8 16 inx
C40C:E8 17 inx
C40D:E8 18 inx
C4OE:48 19 pha
C40F:98 20 tya jand Y
C410:48 21 pha
C411:BD 00 01 22 lda $100,x ;Get status for break test
C414:29 10 23 and #$10 ;A = 510 if break
C416:A8 24 tay iSave it for later
C4l7: 25 * Now test & set the state of the machine. Don't alter Y
C417:AD 18 CO 26 lda rdB80col ;Test for B0 store and page 2
C41A:2D 1C CO 27 and rdpage2
c41D:29 80 28 and #$80 ;Make it 0 or $80
C41F:FO 05 C426 29 beq 1irq2 ;Branch if no change needed
C421:A9 20 30 lda #820 ;Set shifted page 2 reset bit
C423:8D 54 €O 31 sta txtpagel ;Set page 1
C426:2A 32 irq2 rol A :Align bit & shift in slotex bit
C427:2C 13 CO 33 bit rdramrd ;Are we reading from aux ram?
C42A:10 05 C431 34 bpl 1irq3 ;Branch if main ram read
C42C:8D 02 CO 35 sta rdmainram ;Else, switch main in
C42F:09 20 36 ora #520 ;and record the event
C431:2C 14 CO 37 ixq3 bit rdramwrt ;Do the same for ram write
C434:10 05 C43B 38 bpl irqé4
C436:8D 04 CO 39 sta wrmainram
€439:09 10 40 ora {810
C43B: C43B 41 irqgéh equ *
C43B:2C 12 CO 42 1irqg5 bit rdlcram ;Determine if language card active
C43E:10 OC Cc44C 43 bpl irq7
C440:09 0OC 44 ora {#S$0C ;Sets two bits. Second is redundant
Cc442:2C 11 cO 45 bit rdlebnk2 ;if INC used to restore.
C445:10 02 C449 46 bpl 1irqb ;Branch 1f not page 2 of $D000
C447:49 06 47 eor #S806 ;Set bits for page 2
C449:8D 81 €O 48 irgb sta romin ;Enable ROM STA leaves write enable alone
Cc44C:2C 16 CO 49 irq7 bit rdaltzp ;Last...and very important
C44F:10 OD C45E 50 bpl irq8 ;If alternate stack
C451:BA 51 tsx ;store current stack pointer at $101
C452:8E 01 01 52 stx $101
C455:AE 00 01 53 ldx $100 ;Retreve main stack pointer from $100
C458:9A 54 txs
C459:8D 08 CO 55 sta setstdzp
C45C:09 80 56 ora #$80 ;Mark stack switched
C4A5E:88 57 irq8 dey iWas it a break?
C&5F:30 OC C46D 58 bmi 1irq9
Cs61:85 44 59 sta macstat ;Save state of machine
C563:68 60 pla ;Restore registers
Appendix I: Monitor ROM Listings 311

312 Appendix I: Monitor ROM Listings

C464:AB 61 tay .
C4b5:68 62 pla
Ch66:AA 63 tax
CL67:68 64 pla
C468:68 65 pla ;A stored where RTS address would go .
C469:68
66 pla
C4HA:4C 47 FA 67 jmp newbreak ;Go to normal break routine stuff
C4bD:48 68 irq9 pha ;Save state of machine on stack .
C4B6E:AD F8 07 69 lda mslot ;S5ave mslot
C471:48 70 pha
C472:A9 C3 71 lda #<irqdone ;Save return irq address
C474:48 72 pha .
C475:A9 F4 73 lda #>irqdone ;so when interrupt does RTI
C477:48 74 pha ;It returns to irqdone
C478:08 75 php ;Status for user's RTI
C479:4C 74 FC 76 jmp irquser ;O0ff to the user .
c47cC: 77 * The user's RTI returns here
C47C: 78 * BEWARE
c47¢C: 79 * The rom must be reenabled with a LDA romin
C47C: 80 * This way if the LC was write protected, it still is .
C47C: 81 * if it was write enabled, it still is
c47cC: 82 * {if it was being write enabled (2 ldas), it still will be
c47c: 83 * The restore loop uses an INC because some of the switches are read
c47cC: 84 * and some are write. It must be an INC abs,x since both the 6502 and .
c47C: 85 * the 65C02 do two reads before the write.
C47C:AD 81 CO 86 irqfix 1lda romin jMust be 1lda!
C4TF:68 87 pla ;Recover machine state
C480:10 07 Cc489 88 bpl 1irqdnl ;Branch if main ZP .
C482:8D 09 cO 89 sta setaltzp
C485:AE 01 01 90 ldx $101 ;Get alt stack pointer
C4BB:9A 91 txs
C489:A0 06 92 irqdnl 1ldy #8306 ;¥ = index into table of switch addresses .
C4BB:10 06 C493 93 irqdn2 bpl 1irqdn3 ;Branch if no change
C48D:BE Cl C4 94 ldx 1irqtble,y ;Get soft switch address
C490:FE 00 €O 95 ine $C000,x ;Hit the switch. NO PAGE CROSS!
0493188 95 Tigiad. dey .
C494:30 03 Cc499 97 bmi irqdné
C496:0A 98 asl A ;Get next bit to check
C497:D0 F2 C4L8B 99 bne 1irqdn2
C499:0A 100 irqdn4 asl A ;€ = 1 if internal slot space .
C49A:0A 101 asl A
C49B:68 102 pla ;Restore the registers
C49C: A8 103 tay
C49D:BA 104 tsx ;Save the stack pointer .
C49E:A9 40 105 lda #5840 ;{RTI opcode
C4A0:48 106 pha
C4AL:A9 CO 107 lda #<setslotcxrom
C4A3:48 108 pha .
C4A4:A9 06 109 lda #>setslotcxrom
C4A6:69 00 110 ade #0 +Add 1 if internal slot space
C4AB:48 111 pha
C4A9:A9 8D 112 1da #$8D ;STA setslotcxrom
C4AB:48 113 pha

C4AC:9A
C4AD:8A
C4AE:69 03
C4BO:AA
C4B1:38
C4B2:E9 07
C4B4:9D 00
C4B7:E8
C4B8:A9 01
C4BA:9D 00
C4BD:68
C4BE:AA
C4BF:68
C4C0:60

C4Cl1:83 8B
C4C4:05 03
C4CT7 2

01

01

8B
55

114
115
116
117
118
119
120
121
122
123
124
125
126
127

129
130
21

OBJECT FILE

Cc600

c051
0009
0001
05B8
€000

C600

txs ;Restore stack pointer
txa ;Make return address on stack point to code on stack
ade #3 ;€ = 0 from earlier adc

tax

sec

sbe #7 ;Point to where code starts
sta $100,x

inx

lda #81

sta $100,x

pla

tax

pla

rts ;Go to code on stack

irqtble dfb >lcbank2,>lcbankl,>lcbankl

dfb Dwrcardram,>rdcardram,>txtpage2
INCLUDE DIAGS

NAME IS REFLIST.l

¥ % O ¥ N % ¥ ¥ F F % ¥ X F O ¥ F % ¥ ¥ ¥ X F ¥ ¥

ORG C30RG+$300
These routines test all 64K RAM, as well as the 64K on an Auxiliary
memory card (when present). With the exception of the INTCXROM switch
of the I0U, all combinations of the IOU switches are tested and ver-
ified. All configurations of the MMU switches are also tested.

In the event of any failure, the diagnostic is halted. A message

is written to screen memory indicating the source of the failure.

When RAM fails the message is composed of "RAM ZP" (indicating failure
detected in the first page of RAM) or "RAM" (meaning the other 63.75K),
followed by a binary representation of the failing bits set to "1".

For example, "RAM 0 1 1 00 0 0 0" indicates that bits 5 and 6 were
detected as failing. To represent auxiliary memory, a "*" symbol is
printed preceeding the message.

When the MMU or IOU fail, the message is simply "MMU" or '"'IOU".

The test will run continuously for as long as the Open and Closed
Apple keys remain depressed (or no keyboard is connected) and no
failures are encountered. The message "System OK" will appear in

the middle of the screen when a successful cycle has been run and
either of the Apple keys are no longer depressed. Another cycle

may be initiated by pressing both Apple keys again while this message
is on the screen. To exit diagnostics, Control-Reset must be pressed
without the Apple keys depressed.

TEXT equ $COSI
I0OUIDX equ $09
MMUIDX equ $01
SCREEN equ $5B8
TOSPACE equ $C000

*

DIAGS equ *

Appendix I: Monitor ROM Listings 313

€600:8D
Cch03:
C603:
C603:
Cc603:

C603:A0
C605: A2
C607:18
C608:79
C60B:95
C60D:E8
C60E:DO
c610:18
C611:79
Ch14:D5
Ch16:D0
C618:E8
€619:D0
C61B:6A
célc:2C
C61F:10
C621:49
C623:88
C624:10
C626:30

C628:55
C62A:18
C62B:4C
C62E:

C62E:86
C630:86
C632:86
C634:A2
C636:86
C638:E6
C63A:A8
C63B:8D
C63E:8D
C641:A5
C643:29
C645:C9
C647:D0
C649:AD
CH4C: AD
C64F:AS
C651:69
C653:D0
C655:A5
C657:85
C€659:98
C65A:A0

co

c7

c607
c7
Cc628
Cc610
co
c623

c607
C62E

cé
C62E

sta

$C050

* Test Zero-Page, then all of memory. Report errors when encountered.

* Accumulator can be anything on entry. All registers used, but no stack.
between $C000 and $CFFF are mapped to main $D000 bank.

64K is also tested if present.

* Addresses
* Auxillary

TSTZPG 1ldy
ldx
zpl cle
ade
sta
inx
bne
zp2 cle
ade
cmp
bne
inx
bne
ror
bit
bpl
eor
zp3 dey
bpl
bmi

ZPERROR eor
ecle
Jmp
TSTMEM equ
stx
stx
stx
ldx
stx
meml ine
mem2 tay
sta
sta
lda
and
cmp
bne
lda
lda
1da
ade
bne
mem3 lda
memé sta
tya
ldy

#54
#0

ntbl,y
$00,x

zpl

ntbl,y
$00,x
ZPERROR

zp2

a
RDVBLBAR
zp3

#5A5

zpl
TSTMEM

$00,x

BADBITS
*

$01

$02

$03

#a

S04

01

$C083
$c083
$01
#SFO0
#5c0
mem3
$C08B
$C08B
$01
#SF
memé
$01
$03

#500

3fill zero page with a pattern

jafter all bytes filled,
; ACC has original value again.
;80 values can be tested

jbranch if memory failed
;loop until all 256 bytes tested

;change ACC so location $FF will change
; use RDVBLBAR for a little randomness...

;juse a different pattern now
sbranch to retest with other value
;branch always

swhich bits are bad?
sindicate zero page failure

;ydo RAM $100-$FFFF five times
;jpoint to page 1 first
jsave ACC in Y for now

;janticipate not $C000 range...

;get page address
;test for $CO-SCF range

;branch 1if not...
;select primary $D000 space
;Plus carry =+§10

;branch always taken

;jrestore pattern to ACC
3£111 this page with the pattern

Appendix I Monitor ROM Listings

C65C
C65D
C660
C662
Cch63
€665
Cc667

C668:

C66A
C66C

C66E
C670
C671
Cc674
c677
Cc679
CH7B
C67D
C67F
C682
C684
Cc686
c688
C68A
C68C
Ch8D
C68F
C690
c693
€695
c697
c699
C69A
C69C
C69E
C69F
C6bAl
C6A3
COAS
C6A6
CHA9
C6AB
C6AD
C6AF

C6Bl
C6B2
C685
C6B7
C6BA

118
:7D
191
:CA
110
1A2
:CB
DO
:E6
:DO

tEb

A8

tAD
tAD
A5
129
iC9
:DO
TAD
tAS
169

:DO

tAS
:85
198
+AQ
118
:7D
$51
H1)]
:Bl
:CA
:10
tA2
:C8
:DO
:E6
: DO
:6A
120
:10
149
:C6
:10

tAA
:20
:DO
:0E
:0A

B4
02

02
04

F2

cc

8D
07
00

C6BB:CD 00

c7

cé667

C65C

C63A

co

Cc688
co

Co8A

c7

céce

C69E

C68F

c670
co

CBAD

c638

c9
C6BE
oc

oc

87

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

133
134

136
137
138

mem>

memb

mem7

mem8
mem9

memA

memB

memC

cle
ade
sta
dex
bpl
ldx
iny
bne
inc
bne

inc
tay
lda
lda
lda
and
cmp
bne
lda
1da
ade
bne
1lda
sta
tya
ldy
cle
adc
eor
bne
lda
dex
bol
1dx
iny
bne
inc
bne
ror
bit
bpl
eor
dec
bpl

TAX
JSR
BNE
ASL
ASL
CMP

ntbl,x
(502),y
;keep x in the range 0-4
memb
#4
;all 256 filled yet?
mem5 ;jbranch if not
1 ;bump page
mem2 ;loop through $0100 to $FFOO
$01 ;point to page 1 again
;save ACC in Y for now
$8C083 ;anticipate not $C000 range...
$c083
$01 ;get page address
#SFO jtest for $CO-SCF range
#5€0
mem8 sbranch if not...
SCO8B ;select primary $D000 space
$01
#SF ;Plus carry =+$10
mem? ;branch always taken
$01
$03
irestore pattern to ACC
#3500 ;fi1l this page with the pattern
ntbl,x
(502),y
MEMERROR ;if any bits are different, give up!!!
(s02),y ;restore correct pattern
;keep x in the range 0-4
memB
#a
;all 256 filled yet?
memA ;branch if not
1 ;bump page #
mem7/ ;loop through $0100 to $FFOO
a ;jchange ACC for next pass
RDVBLBAR ; use RDVBLBAR for a little randomness...
memC
#SA5
504 ;have 5 passes been done yet?
meml sbranch if not...
;save acc
STAUX ;set aux memory & write $EE to $C00,$800
SWCHTST! ;=>not 128K
$co0 ;shift test byte
A
$C00 ;check memory
Appendix I: Monitor ROM Listings 315

C6BE:DO
c6CO:CD
C6C3:FO0
C6C5:8A
C6C6:8D
C6CY:4C
C6CC:38
C6CD: AA
CBCE:AD
C6D1:B8
C6D2:10
C6D4:2C
C6bD7 : A9
C6D9: A0
C6DB:99
C6DE:99
C6E1:88
C6E2:88
C6E3:D0
C6E5:8D
CHE8:8D
C6EB:99
C6EE:99
C6F1:99
C6F4:99
C6F7:C8
C6F8:D0
C6FA:8A
C6FB:F0O
C6FD: A0
C6FF:BO
C701: A0
C703:A9
C705:50
Cc707:8D
C70A:B9
c70D:99
Cc710:88
c711:10
C713:A0
C715:8A
C716:4A
C717:AA
C718:A9
C71A:2A
C71B:99
C71E:88
C71F:88
C€720:D0
C722:F0
C724:A0
C726:B9
C€729:90
C72B:BY9

L0
—
(=1}

76

AQ
06
FE
06

C736
C736

co

cé

co
céD7

c7

BF
co

C6DB
co
co
04
05
06
07

CHEB
C724

c703

05

€715
Cc722

c7
C72E
c7

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

SWCHTST1 BNE SWCHTST ;=>not 128K
CMP $800 ;look for shadowing
BEQ SWCHTST ;=Pnot 128K
txa
STA SETALTZP ;swap in alt zero page
jmp TSTZPG ; and test it!
MEMERROR sec ;jindicate main ram failure
BADBITS tax ;jsave bit pattern in x for now
1da RDRAMRD jdetermine if primary or auxillary RAM
clv swith V-FLG
bpl bhbitsl ;jbranch if primary bank
bit setv
bbitsl 1da #S$A0 ;try to clear video screen
1dy #6

clrsts sta IOSPACE-2,y
sta IOSPACE+6,y
dey
dey
bne clrsts
sta TEXT
sta TXTPAGEL
clrs sta $400,y
sta $500,y
sta $600,y
sta $700,y
iny
bne clrs
txa jtest for switch test failure
beq BADSWICH j;branch if it was a switch
1dy #3
bes badmain ;branch if ZP ok
1dy i#5
badmain lda #$AA ;ymark aux report with an asterisks
bve badprim
sta screen-8
badprim lda rmess,y
sta screen-7,y
dey
bpl badprim ;message is either "RAM" or "RAM ZP"
ldy #3510 ;print bits
bbits2 txa
lsr a
tax
1da #858 ;bits are printed as ascii 0 or 1
rol a
sta screen-2,y
dey
dey
bne bbits2
hangx beq hangx ;hang forever and ever
BADSWICH 1ldy #2
bswtchl lda smess,y
bee bswtch2 sbranch if MMU in error
lda smesst+3,y jelse indicate IQU error

Appendix I: Monitor ROM Listings

C72E:99
C731:88
€732:10
C734:30

C736:A0
C738:A9
C73A:6A
C73B:BE
C73E:F0
Cc740:90
C742:BE
C745:9D
C748:C8
C749:D0
C74B:

C74B:AE
C74E:2A
C74F:88
C750:BE
C753:F0
€755:30
C757:2A
C758:90
C75A:1E
C75D:90
C75F: RO
C761:1E
C764:B0
C766:90
Cc768:

C768:2A
C769:C8
C76A:38
C76B:E9
C76D: B0
C76F:88
C770:D0
C772:A0
c774:D0
C776:

C776:A2
€778:C0
C77A:4C
C77D:46
C77F:D0
C781:A9
C783:A0
C785:99
C788:99
C78B:99
C78E:99
C791:C8

B8

F2

01
7F

B9
OF
03
c9
FF

EF

30

D9
13
F4

07
00
17
EE

10
E7

05

c726
C734

c7
C74F
C745

BF
C73A

co

c7
C768
C74B
C761

co
C776
CT4F

co

c776
C74F

C73A
C77D

c738

cé
c736
04

05
06

193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

bswtch2

hangy

SWCHTST
swtstl
swtst2

swtst3

click

swtstd

swtsth

swtsth

swerr

BIGLOOP
blp2

blp3

sta
dey
bpl
bmi

ldy
1da
ror
ldx
beq
bee
ldx
sta
iny
bne

ldx
rol
dey
ldx
beq
bmi
rol
bee
asl
bee
bes
asl
bcs
bee

rol
iny
sec
sbhe
bes
dey
bne
ldy
bne

ldx
cpy
jmp
lsr
bne
lda
ldy
sta
sta
sta
sta
iny

screen,y
bswtchl sprint "MMU" or "IoOU"
hangy ibranch forever
#MMUTIDX
#$7F
a ;set switches of the IOU/MMU to match Accumulator
SWTBLO,y
swtsth ;branch if done setting switches
swtst3 ;jbranch if setting switch to O-state
SWTBLl,y ;else get index to set switch to 1
I0SPACE-1,x ;set switch
swtst2 ;branch always taken...
$c030
a
RSWTBL,y ;now verify the settings just made
swtsth sjbranch if done this pass
click ;branch if this switch no to be verified.
a
swtst>
10SPACE,x
swerr
swtsté ;branch always
TOSPACE,x
SWerr
swtsté sbranch always
a ;restore original value
; and IOU/MMU index
#1 ;try next pattern
swtst2

;jwas MMU just tested?
BIGLOOP ;branch if I0U was just tested
#I0UIDX j;else, go test IOU.
swtstl :branch always taken...

#0 ;indicate switch error
#10UIDX+1 ;set carry if I0U was cause
bbitsl

$80

SWCHTST

#SA0

#0

5400,y jclear screen for success message
$500,y

$600,y

$700,y

Appendix 1: Monitor ROM Listings

317

C792:D0 F1 C785 246 bne blp3

C794:AD 61 CO 247 blp4 LDA $C061 sjtest for both Open and Closed Apple
C797:2D 62 CO 248 AND $C062 ; pressed

C79A:0A 249 asl a ;put result in carry

C79B:E6 FF 250 INC §$FF

C79D:A5 FF 251 LDA SFF

C79F:90 03 C7A4 252 bee dquit

C7Al:4C 00 C6 253 jmp DIAGS

C7A4: 254 *

C7A4:AD 51 CO 255 dquit 1da TEXT ;put success message on the screen
C7A7:A0 08 256 ldy {8

C7A9:B9 F6 C7 257 suc2 lda success,y

C7AC:99 B8 05 258 sta SCREEN,y

C7AF:88 259 dey

C7B0:10 F7 C7A9 260 bpl suc2

C7B2:30 E0O €794 261 bmi blp4 ;loop forever
C7B4: 262 *
C7B4: C7B4 263 setv equ *

C7B4:53 43 2B 29 264 ntbl dfb B83,67,43,41,7

C7B9:00 89 31 03 265 swtbl0 dfb $00,$89,$31,503,$05,509,$0b,501,%00,$83,851,5$53,$55,857,50F, $SOD
€7c9:00 81 31 04 266 swtbll dfb $00,$81,$31,504,506,504,50C,$02,$00,$84,5852,554,5856,$58,510, SOE
C7D9:00 11 FF 13 267 rswtbl dfb $00,$11,8FF,$13,814,516,517,518,800,$12,51A,618B,81C,$1D,$1E, S1F,$00
C7EA: 268 MSB ON

C7EA:D2 C1 CD A0 269 rmess asc '"RAM zp"

C7F0:CD CD D5 C9 270 smess asc 'MMUIOU"

C7F6:D3 F9 F3 F4 272 success asc '"System OK"

C7FF: C7FF 273 zzzend equ *

C7FF: 22 INCLUDE CBSPACE

C7FF: 0001 1 DS CBORG-*,0 ;pad to C800

Cc800: 2 *

Cc800: 3 * This entry point is only used by Pascal 1.0

Cc800: 4

C800:4C BO C9 5 JMP PINITL.0 ;PASCAL 1.0 INIT

C803: 6 *

C803: 7 * BASIC initialization:

CB03: 8 *

CcB803: 9 * This is called by the $C3 space only after a PR#3 or
C803: 10 * the equivalent (a JSR $C300).

CB03: 11 *

C803: 12 * It causes a copy of the $F8 ROM to be placed in the
Cc803: 13 * language card if the language card is switched in and
Cc803: 14 * the ID byte doesn't match. It sets up all the

C803: 15 * screenhole variables to support its operation. If the
C803: 16 * 80 column card is detected, it sets things up for 80 column
C803: 17 * operation, else 40 column operation. Then it clears the
C803: 18 * gcreen and prints the character that was in the accumulator
Cc803: 19 * upon entry.

Cc803: 20 *

Cc803: C803 21 BASICINIT EQU *

C803:20 F4 CE 22 JSR COPYROM ;If LC in, copy F8 to it

C806:20 2a C8 23 JSR C3HOOKS ;out=38C307, in=$C305

C809:20 2E CD 24 JSR DO4D ;jset full 40-col window

[+ 2]

Appendix I: Monitor ROM Listings

C0

* %

C80C: A9
C80E:8D
Cc811:
Cc811:
c8ll:
C811:20
C814:D0
C816:06
Cc818:8D
C81B:8D
C81E:
C8lE:
C81E:
C8lE:
CB1E:8D
€821:20
CB824:AC
C827:4C
CB2A:
C82A:A9
Cc82C:85
CB2E:A9
c830:85
c832:
c832:
C832:
C832:A9
C834:85
C836:A9
C838:85
C83A:60
C83B:
C83B:E6
C83D:D0
CB3F:E6
C841:AD
CB44:10
C846:8D
CB4&9:60
C84A:
CB4A:
C84A:
CB4A:
C84A:
C84A:
C84D:
S
C84D:

OF
90
7B

07
36
c3
37

05
38
c3
39

4E
02

00
F5
10

04

CA
C81E

co
co

C81E

C841

co
C83B
co

0003
0000

C84D:4C 50 C3

C850:
Cc850:
C850:
C850:
Cc850:

*

LDA
STA

#M.MOUSE ;init with mouse text off
MODE ;Set BASIC video mode

* IS THERE A CARD?

*

*

JSR
BNE
ASL
STA
STA

TESTCARD ;SEE IF CARD PLUGGED IN
CLEARIT 3=>IT'S 40

WNDWDTH ;SET 80-COL WINDOW
SET80COL ;ENABLE 80 STORE
SET80VID ; AND 80 VIDEO

* HOME & CLEAR:
*

CLEARIT EQU

*

STA
JSR
LDY
JMP

C3HOOKS LDA

*

STA
LDA
STA

*

SETALTCHAR ;SET NORM/INV LCASE

X.FF ;CLEAR IT

OURCH ;set up cursor for store
BPRINT ;always print a character

#>BASICOUT ;set output hook first
CSWL

#<CNOO

CSWH

* C3IN is called by IN#0 if CSWH = #$C3
*

C3IN LDA

STA
LDA
STA
RTS

GETKEY 1INC

BNE
INC

GETK2 LDA

*

BPL
STA
RTS

#>BASICIN ;set input hook
KSWL
#<CNOO
KSWH
;exit with A=S$C3 for IN#O stuff
RNDL ;BUMP RANDOM SEED
GETK2
RNDH
KBD sKEYPRESS?
GETKEY 1=>NOPE

KBDSTRB ;CLEAR STROBE

KkkkkkhAhhhkhkkAkkhhhkikkkkhkkkkhkktikktik

*

* PASCAL 1.0 INPUT HOOK:

*

DS

CBORG+$4D-*,0 ;pad to 1.0 hooks

IFNE *-CBORG-54D ;ERR IF WRONG ADDR
FAIL 2,'C84D HOOK ALIGNMENT'

FIN
JMP

JPREAD +=>G0 TO STANDARD READ

kkkhkkkkkhkkhkkkhhktrhkhtkh ki kAt his

*

*
*
*

CSETUP compensates for everything that the user

can do to

change the cursor status: poke CV, CH,

OURCH, WNDWDTH. It updates the video firmware's

Appendix I: Monitor ROM Listings

319

C850: 79 * versions of these values for its own use. .
C850: 80 * COPY USER'S CURSOR IF IT DIFFERS FROM

Cc850: Bl * WHAT WE LAST PUT THERE:

C850: 82 *

CB850:A5 25 83 CSETUP LDA CV ;jset up OURCV .
C852:8D FB 05 84 STA OURCV
C855:A4 24 85 LDY CH sGET IT

C857:CC 7B 04 86 CPY OLDCH ;IS IT THE SAME?

C85A:F0 03 C85F 87 BEQ CS2 3=>YES, USE OUR OWN .
C85C:8C 7B 05 88 STY OURCH ;update our cursor

C85F:A5 21 89 cs2 LDA WNDWDTH scursor horizontal must not

c861:18 90 CLC ;be greater than window width

C862:ED 7B 05 91 SBC OQURCH ;if it is, then put cursor .
CB65:BO 05 C86C 92 BCS (€83 ;at left edge of window

€867:A0 00 93 LDY #0

CB69:8C 7B 05 94 STY OURCH

CB6C:AC 7B 05 95 cs3 LDY OURCH ;exit with Y = CH .
C86F:60 96 RTS

c870: 97 *

c870: 98 * BIN and BOUT are used when characters are

c870: 99 * input and output by the SF8 ROM while 8OVID .
Cc870: 100 * is on. They cannot use the $C3 entry points

Cc870: 101 * because that switches in the $CB space, causing

Cc870: 102 * possible conflict with other $C8 users.

C870: 103 * These routines are only called by the $C100-$C2FF space. .
c870: 104 *

C870: 105 * These entry points will only work if the card was

C870: 106 * first initialized using a PR#3. B0 columns will not

C870: 107 * work simply by turning on the 80VID flag. -
c870: 108 * :
C870:4A4 35 109 BOUT LDY SAVYl ;load Y stuffed by SF8 ROM

c872:18 110 CLC ;signal an output

c873:B0 FE 873 111 BCS * ;skip SEC .
C874: c874 112 ORG *-]

C874:38 113 BIN SEC jsignal an input

c875:8D 7B 06 114 STA CHAR ;save the char

c878:98 115 TYA isave Y .
C879:48 116 PHA

C87A:8A 117 TXA ;save X

C87B:48 118 PHA

c87C: C87C 119 C8BASIC EQU * sBASIC IN/OUT

C87C:B0 5E c8pc 120 BCS BINPUT ;=>input a character .
0000 : 0000 1 TEST EQU O ;REAL VERSION

CB7E: 23 LST ON,A,V

C87E: 24 INCLUDE BPRINT

C87E: 1 *

CB7E: 2 * This is the place where characters printed using the

C87E: 3 * CSW hook are actually printed (or executed if they are

CB87E: 4 * control characters).

C87E:20 50 C8 6 BPRINT JSR CSETUP jsetup user cursor

C881:AD 7B 06 7 LDA CHAR :GET CHARACTER

Cc884:C9 8D 8 CMP #S8D ;IS IT C/R?

c886:D0 18 CBAQ 9 BNE NOWAIT ;=>don't wait, OURCH ok .
3 Appendix I; Monitor ROM Listings .

C888:AE 00 €O 10 LDX KBD ;IS KEY PRESSED?

C88B:10 13 C8AQ 11 BPL NOWAIT s NO

C88D:E0 93 12 CPX #8593 ;I8 IT CTL-S§7

C88F:D0 OF C8A0 13 BNE NOWAIT ;NO, IGNORE IT

c891:2C 10 co 14 BIT KBDSTRB ;CLEAR STROBE

C894:AE 00 CO 15 KBDWAIT LDX KBD sWAIT FOR NEXT KEYPRESS
C897:10 FB Cc894 16 BPL KBDWAIT

C899:E0 83 17 CPX #3583 ;IF CTL-C, LEAVE IT
C89B:F0 03 CBAD 18 BEQ NOWAIT 3 IN THE KBD BUFFER
C89D:2C 10 CO 19 BIT KBDSTRB ;CLEAR OTHER CHARACTER
CBA0:29 7F 20 NOWAIT AND #$7F ;jdrop possible hi bit
C8A2:C9 20 v | CMP #520 315 IT CONTROL CHAR?
CBA4:BO 06 CBAC 22 BCS BPNCTL 1=>NOPE

CB8A6:20 D2 CA 23 JSR CTLCHARO j;execute CTL if M.CTL ok
C8A9:4C BD C8 24 JMP CTLON ;=>enable ctl chrs

CBAC: 25 *

CBAC: 26 * NOT A CTL CHAR. PRINT IT.

C8AC: 27 *

C8AC: CBAC 28 BPNCTL EQU *

CBAC:AD 7B 06 29 LDA CHAR ;get char (all 8 bits)
CBAF:20 38 CE 30 JSR STORCHAR ;and display it

C8B2: 3] *

C8B2: 32 * BUMP THE CURSOR HORIZONTAL:

C8B2: 33 *

C8B2:C8 34 INY ybump 1t

C8B3:8C 7B 05 35 STY OURCH ;are we past the

C8B6:C4 21 36 CPY WNDWDTH ; end of the line?

C8B8:90 03 C8BD a7 BCC CTLON :=>NO, NO PROBLEM

C8BA:20 51 CB 38 JOR H.CR ;YES, DO C/R

CBBD: 39 %

CBBD: 40 * M.CTL is set by RDCHAR and cleared here, after each
CBBD: 41 * character is displayed.

CBBD: 42 *

CBBD:AD FB 04 43 CTLON LDA MODE ;enable printing of control char:
C8C0:29 F7 44 AND #255-M.CTL

C8C2:8D FB 04 45 STA MODE

C8C5:AD 7B 05 46 BIORET LDA OURCH ;get newest cursor position
cBc8:2C 1F cO 47 BIT RDBOVID ; IN 80-MODE?

C8CB:10 02 C8CF 48 BPL SETALL 3=>no, set other cursors
CBCD:A9 00 49 LDA #0 ;pin CH to 0 for 80 columns
CBCF:85 24 50 SETALL STA CH

C8D1:8D 7B 04 51 STA OLDCH ;REMEMBER THE SETTING
C8D4:68 52 GETREGS PLA ;sRESTORE

CBD5:AA 53 TAX

C8D6:68 54 PLA ;X AND Y

C8D7:A8 55 TAY

C8D8:AD 7B 06 56 LDA CHAR

C8DB:60 57 RTS sRETURN TO BASIC

C8DC: 25 INCLUDE BINPUT

ca8Dc: 1 *

C8DC: 2 * BASIC input entry point called by entry point in the
C8DC: 3 * $C3 space. This is the way things normally happen.
C8DC: 4 *

CBDC:A4 24 5 BINPUT LDY CH

Appendix L. Monitor ROM Listings 321

CBDE:AD 7B 06 6 LDA CHAR .
C8E1:91 28 7 STA (BASL),Y

C8E3:20 50 C8 8 JSR CSETUP ;get newest cursor

C8E6:20 26 CE 9 B.INPUT JSR INVERT jinvert that char

C8E9:20 3B C8 10 JSR GETKEY ;GET A KEY

CBEC:8D 7B 06 11 STA CHAR sSAVE IT

CBEF:20 26 CE 12 JSR INVERT s REMOVE CURSOR

C8F2:A8 13 TAY ;jpreserve acce. .
C8F3: 14 *

C8F3: 15 * On pure input, an uninterpreted character code should

C8F3: 16 * be returned. If M.CTL is set, however, escape functions

C8F3: 17 * are enabled, and CTL~-U causes the character under the .
C8F3: 18 * cursor to be picked up from the screen.

C8F3: 19 * M.CTL is set whenever a character is requested using

C8F3: 20 * RDCHAR in the $F8 ROM.

C8F3: 21 *

C8F3:AD FB 04 22 LDA MODE ;1s escape mode enabled?

C8F6:29 08 23 AND {#M.CTL

C8F8:F0 CB CBC5 24 BEQ BIORET ;=>no,return

CBFA:CO 8D 25 CPY #$8D ;was it a CR

CBFC:DO 08 C%06 26 BNE NOTACR ;=>nope, not a CR

CBFE:AD FB 04 27 LDA MODE

€901:29 F7 28 AND #255-M.CTL ;else end of line...

€903:8D FB 04 29 STA MODE ; disable escape

C906: C906 30 NOTACR EQU *

C906:C0 9B 31 CPY #59B ;ESCAPE KEY?

C908:F0 11 Cc91B 32 BEQ ESCAPING ;=>YES IT IS

C90A: 33 *

C90A: 34 * Not an escape sequence. Check for control-u. .
C90A: 35 *

C90A:CO 95 36 CPY #5895 iis it control-U?

Cc90Cc:D0 B7 cC8C5 37 BNE BIORET ;no, return to caller

C90E:AC 7B 05 38 LDY OURCH ;get horizontal position .
C911:20 44 CE 39 JSR PICK sand pick up the char

C914:09 80 40 ORA #580 ;always pick as normal

C916:8D 7B 06 41 STA CHAR ;jsave keystroke

€919:D0 AA CBC5 42 BNE BIORET ;=>(always) return to caller .
C91B: 43 *

C91B: 44 * Start an escape sequence. If the next character

C91B: 45 * pressed is one of the following, it is executed.

CY1B: 46 * Otherwise it is ignored. .
C91B: 47 *

C91B: 48 * @ - home & clear

C91B: 49 * E - clear to end of line

C91B: 50 * F - clear to end of screen .
C91B: 51 % I - move cursor up

C91B: 52 * J - move cursor left

C91B: 53 * K - move cursor right

C91B: 54 * M - move cursor down .
C91B: 57 * 4 = enter 40 column mode

C91B: 58 * 8 - enter 80 column mode

C91B: 59 * CTL-D- disable the printing of control characters

C91B: 60 * CTL-E~ enable the printing of control characters .
C91B: 61 * CTL-Q- quit (PR#0/IN#0)

322 Appendix I: Monitor ROM Listings .

C91B: 62 * The four arrow keys {as LJKM)
C91B: 63 *
C91B: 64 MSB OFF
C91B: c918 65 ESCAPING EQU *
C91B:20 Bl CE 66 JSR ESCON sESCAPE CURSOR ON
C91E:20 3B C8 67 JSR GETKEY ;sGET ESCAPE FUNCTION
€921:20 C4 CE 68 JSR ESCOFF sREPLACE ORIGINAL CHARACTER
C924:20 14 CE 69 JSR UPSHFT ;upshift the char
€927:29 7F 70 AND #87F ;DROP HI BIT
C929:A0 10 71 LDY #ESCNUM-1 ;COUNT/INDEX
C92B:D9 7C C9 72 ESC2 CMP ESCTAB,Y ;IS IT A VALID ESCAPE?
C92E:F0 05 C935 73 BEQ ESC3 ;=>YES
€930:88 74 DEY
c931:10 F8 C92B 75 BPL ESC2 ;TRY 'EM ALL...
€933:30 OF C944 76 BMI ESCSPEC s=>MAYBE IT'S A SPECIAL ONE
£9351 77 *
€9354 €935 78 ESC3 EQU *
C935:B9 6B C9 79 LDA ESCCHAR,Y ;GET CHAR TO "PRINT"
€938:29 7F 80 AND #87F ;DROP HI BIT (FLAG)
C93A:20 D6 CA 81 JSR CTLCHAR ;EXECUTE IT
C93D:B9 6B C9 82 LDA ESCCHAR,Y ;GET FLAG
€940:30 D9 C91B 83 BMI ESCAPING ;=>STAY IN ESCAPE MODE
C942:10 A2 C8E6 84 BPL B.INPUT ;=>QUIT ESCAPE MODE
C944: 85 *
C944: C944 86 ESCSPEC EQU *
C944: A8 87 TAY ;put char here
C945:AD FB 04 88 LDA MODE ;80 we can put this here
€948:C0 11 89 CPY #S11 ;jwas it Quit?
C94A:D0 OB c957 30 BNE ESCSPI 1=>no
€94C:20 4D CD 91 JSR X.NAK ;do the quitting stuff
CI94F:A9 98 92 LDA {598 ;make it look like
C951:8D 7B 06 93 STA CHAR ;CTL-X was pressed
C€954:4C C5 C8 94 JMP BIORET 3=>quit the card forever
C957: 95 *
€957:C0 05 96 ESCSP1 CPY #S05 ;jwas it CTL-E for enable
€959:D0 08 C963 97 BNE ESCSP4 ;=’no
C95B:29 DF 98 AND #255-M.CTL2 ;yes, enable ctl chars
C95D:8D FB 04 99 ESCSP2 STA MODE ;jsave new mode
C960:4C E6 C8 100 ESCSP3 JMP B.INPUT ;=> exit escape mode
C963: 101 *
C963:C0 04 102 ESCSP4 CPY #804 ;jwas it CTL-D for disable
€965:D0 F9 €960 103 BNE ESCSP3 ;=>no, exit escape mode
€967:09 20 104 ORA #M.CTL2 ;disable ctl chars
C969:D0 F2 C95D 105 BNE ESCSP2 ;=> exit escape mode
C96B: 106 *
C96B: 107 * This table contains the control characters which,
C96B: 108 * when executed, carry out the escape functions. If
C96B: 109 * the high bit of the character is set, it means that
C96B: 110 * escape mode should not be exited after execution of
C96B: 111 * the character.
C96B: 112 *
C96B: C96B 113 ESCCHAR EQU *
C96B:0C 114 DFB $0C ;@: FORMFEED
c96C:1C 115 DFB $1C jA: FS

Appendix I: Monitor ROM Listings) 323

C96D:08 116 DFB $08 ;B: BS .
C96E:0A 117 DFB SOA 3C: LF

C96F:1F 118 DFB S1F ;D US

€970:1D 119 DFB $1D sEt GS

Cc971:08 120 DFB SOB ;F: VT .
C972:9F 121 DFB S$1F+5$80 sI: US (STAY ESC) "
c973:88 122 DFB $08+$80 3J: BS (STAY ESC)

C974:9C 123 DFB $1C+S80 ;K: FS (STAY ESC)

C975:8A 124 DFB S0A+$80 ;M: LF (STAY ESC) .
Cc976:11 125 DFB $11 34 :DC1

€977:12 126 DFB $12 38 :DC2

C978:88 127 DFB $08+3$80 ;<-:BS (STAY ESC)

€979:8A 128 DFB $0A+$80 ;DN:LF (STAY ESC) .
C97A:9F 129 DFB $1F+$80 ;UP:US (STAY ESC)

C97B:9C 130 DFB S1C+$80 ;=>:FS (STAY ESC)

c97¢C: 131 *

c97¢C: 132 MSB OFF ;high bit already masked .
c97c: C97C 133 ESCTAB EQU *

C97C:40 134 ASC '@’

C97D:41 135 ASC 'A' ;HANDLE OLD ESCAPES

COTE 142 136 ASC B .
C97F:43 137 ASG "¢

C980:44 138 ASC 'D'

C981:45 139 ASC 'E'

C982:46 140 ASC 'F' .
C983:49 141 Ase 1!

€984 :4A 142 s8c 3

C985:4B 143 ASC 'K'

C986:4D 144 ASC "M .
C987:34 145 ASC "4

C988:38 146 ASC '8'

c989:08 147 DFB $08 s LEFT ARROW

C98A:0A 148 DFB SOA ;DOWN ARROW .
C98B:0B 149 DFB $0B 1 UP ARROW

C98C:15 150 DFB $§15 sRITE ARROW

C98D: 0011 151 ESCNUM EQU *-ESCTAB

C98D: 152 MSB ON

C98D: 183 %

C98D: 154 * Tack on diag 128K test here

c98D: 155 *

c98D:2C 13 €O 156 STAUX BIT RDRAMRD ;aux done yet?

€990:30 11 C9A3 157 BMI XSTAUX ;=>yes, exit .
C992:A9 EE 158 LDA {#SEE ;get test pattern

€994:8D 05 €O 159 STA WRCARDRAM ;write AUX RAM

€997:8D 03 CO 160 STA RDCARDRAM ;read AUX RAM

C99A:8D 00 OC 161 STA $C00 ;test this byte

C99D:8D 00 08 162 STA 5800 ;jand this is 1K off

C9A0:CD 00 OC 163 CMP $C00 shas $C00 been updated?

C9A3:60 164 XSTAUX RTS ;check in main diags.

C9A4L: 165 * .
C9A4: 166 * ESCOUT used by ESCFIX in $Cl page

C9AL: 167 *

C9A4: 168 MSB ON

C9A4:CA CB CD C9 169 ESCOUT ASC '"JKMI' ;The arrows .
324 Appendix I: Monitor ROM Listings .

C9A8:
C9A8:
C9A8:
C9A8:
C9A8:
C9A8:
C9AA:

S
C9AA:
C9AA:AD
CY9AD:4C
C9BO:
C9BO:
C9BO:
C9BO:
C9BO:
C9BO:
C9BO:
C9B0: A9
C9B2:D0
C9B4:
C9B4: A9
C9B6:
CI9B6:
CSB6:48
C987:
C9B7:
C9B7:
C9B7:20
C9BA:FO
C9BC:68
C9BD: A2
C9BF:60
Cc9¢0:
C9C0:
C9C0:68
€9C1:8D
C9C4:8D
C9C7:8D
C9CA:8D
C9CD:20
Cc9p0:20
C9D3:4C
C9D6:
C9D6:
C9D6:
C9D6:
C9D6:
C9D6:
C9D6:
CcI9D6:20
C9D9:20
cInC:29
C9DE: 8D

7B
56

83

81

90
04

09

0002
0000

06
c3

C9B0
C9B6
C9B4

C9B6

CA
c9co

C9D6
CE
c8

06

MSB OFF

INCLUDE PASCAL
kkhkkRkARAkhkhkhkkkkhkhhkhkkkhkhkhhhhkhkhkhhhhhkk
* PASCAL 1.0 OUTPUT HOOK:
hkkkkkkhkkhhkkhkhkhhkkhhkhhhhkhhhkdkkkkkhkhkkkkkhkx

DS CBORG+S1AA-*,0

IFNE *-CBORG-$1AA

FAIL 2,'C9AA HOOK ALIGNMENT'

FIN

LDA CHAR ;GET OUTPUT CHARACTER

JMP JPWRITE ;=>USE STANDARD WRITE
e e o e e e e o ek ook ek ko ek ok ek ke ok ok ok ok ke

*
Kkkkkkhkkhkhkkkkkkkhhhhhhkhhkhhhhhhhhhhhhkkkk

* PASCAL INITIALIZATION:
* Disable printing of mouse text
khkkkdkhkhhhhhddkhkhkkhkhihdkhikhhhhhkhkhkhhkd
PINITL.0 EQU *
LDA {#M.PASCAL+M.PAS].0+M,MOUSE
BNE PINIT2 i=>always
PINIT EQU *
LDA #M.PASCAL+M.MOUSE ;SAY WE'RE
*
PINIT2 EQU *
PHA ;save version ID
*

* SEE IF THE CARD'S PLUGGED IN:
*

JSR TESTCARD ;IS IT THERE?

BEQ PIGOOD ;=>YES
PLA ;discard ID byte
LDX #9 ; IORESULT="NO DEVICE'
RTS
*
PIGOOD EQU *
PLA ;get version ID
STA MODE ; and save it

STA SET80COL ;ENABLE 80 STORE

STA SETB0OVID ; AND 80 VIDEO

STA SETALTCHAR ;NORM+INV LCASE

JSR PSETUP ;set window and cursor

JSR X.FF ;HOME & CLEAR IT

JMP DOBASL ;fix OLDBASL/H, display cursor, exit
JekkdkkRkkkdedokk ko ok k Ak Rk kR k kAR k kR

* PASCAL TNPUT:
*

* Character always returned with high bit clear.
*
Kk kokk & kR ko ke ko d ok ek ook ek kkk kok Kk k

PREAD EQU *

JSR PSETUP ;SETUP ZP STUFF
JSR GETKEY {GET A KEYSTROKE
AND #87F :DROP HI BIT
STA CHAR ;SAVE THE CHAR
Appendix I: Monitor ROM Listings 325

C9E1:A2 00 53 LDX #0 ; IORESULT="'G0OOD' .
CY9E3:AD FB 04 54 LDA MODE ;ARE WE IN 1.0-MODE?

C9E6:29 02 55 AND #M.PAS1.0

C9EB:FO 02 C9EC 56 BEQ PREADRET2 ;=>NOPE .
CY9EA:A2 C3 57 LDX #<CNOO ;YES, RETURN CN IN X

C9EC: 58 *

C9EC: C9EC 59 PREADRET2 EQU *

CY9EC:AD 7B 06 60 LDA CHAR sRESTORE CHAR .
C9EF:60 61 RTS

C9FO0: 62 *

C9F0: 63 * PASCAL OUTPUT:

C9F0: 64 * Note: to be executed, control characters must have .
C9F0: 65 * their high bits cleared. All other characters are

C9F0: 66 * displayed regardless of their high bits.

C9F0: 67 *

C9F0: C9F0 68 PWRITE EQU *

C9F0:29 7F 69 AND {#S$7F ;clear high bits

CIF2:AA 70 TAX isave character

C9F3:20 D4 CE i JSR PSETUP ;SETUP ZP STUFF, don't set ROM

C9F6:A9 08 72 LDA #M.GOXY ;ARE WE DOING GOTOXY?

C9F8:2C FB 04 73 BIT MODE

CI9FB:D0 32 CA2F 74 BNE GETX ;y=>Doing X or Y?

COFD:8A 75 TXA ;now check for control char

CIYFE:2C 2E CA 76 BIT PRTS ;is it control?

CAO1:FO 50 CA53 77 BEQ PCTL ;=>yes, do control

CA03:AC 7B 05 78 LDY OURCH ;get horizontal position

CA06:24 32 79 BIT INVFLG ;check for inverse

CAOB8:10 02 CAOC 80 BPL PWR1 jinverse, go store it

CAOA:09 80 81 ORA #3580 .
CAOC:20 70 CE 82 PWRL JSR STORIT jnow store it (erasing cursor)

CAQOF:C8 83 INY ;INC CH

CAl0:8C 7B 05 84 STY OURCH

CAl3:C4 21 85 CPY WNDWDTH .
CA15:90 08 CALF 86 BCC DOBASL

CAl7:A9 00 87 LDA {0 ;do carriage return

CA19:8D 7B 05 88 STA OURCH

CA1C:20 D8 CB 89 JSR X.LF ;and linefeed .
CALF:A5 28 90 DOBASL LDA BASL ;save BASL for pascal

CA21:8D 7B 07 91 STA OLDBASL

CA24:A5 29 92 LDA BASH

CA26:8D FB 07 93 STA OLDBASH .
CA29:20 1F CE 94 PWRITERET JSR PASINV ;display new cursor

CA2C:A2 00 95 PRET LDX #80 jreturn with no error

CA2E:60 96 PRTS RTS

CA2F: 97 * .
CA2F: 98 * HANDLE GOTOXY STUFF:

CA2F: 99 =*

CA2F:20 1F CE 100 GETX JSR PASINV jturn off cursor

CA32:8A 101 TXA ;get character .
CA33:38 102 SEC

CA34:E9 20 103 SBC #32 ;MAKE BINARY

CA36:2C FB 06 104 BIT XCOORD ;doing X?

CA39:30 30 CABB 105 BMI PSETX ;=>yes, set it .
CA3B: 106 *

328 Appendix I: Monitor ROM Listings .

CA3B: 107 * Set Y and do the GOTOXY

CA3B: 108 *

CA3B:8D FB 05 109 GETY STA OQURCV

CA3E:85 25 110 STA CV

CA40:20 BA CA 111 JSR BASCALC jcalc base addr

CA43:AD FB 06 112 LDA XCOORD

CA46:8D 7B 05 113 STA OURCH ;iset cursor horizontal
CA49:A9 F7 114 LDA #255-M.GOXY ;turn off gotoxy

CA4B:2D FB 04 115 AND MODE

CA4LE:8D FB 04 116 STA MODE

CA51:D0 CC CALF 117 BNE DOBASL 1+=>DONE (ALWAYS TAKEN)
CA53: 118 *

CA53:20 1F CE 119 PCTL JSR PASINV jturn off cursor

CAS56:8A 120 TXA ;get char

CA57:C9 1E 121 CMP #S1E ;1s 1t gotoXY?

CA59:F0 06 CA6l 122 BEQ STARTXY ;=>yes, start it up

CA5B:20 D6 CA 123 JSR CTLCHAR ;sEXECUTE IT IF POSSIBLE
CASE:4C IF CA 124 JMP DOBASL ;=>update BASL/H, cursor, exit
CA61: 125 %

CA61: 126 * START THE GOTOXY SEQUENCE:

CA61: 127 *

CA61: CA61 128 STARTXY EQU *#*

CA61:A9 08 129 LDA #M.GOXY

CA63:0D FB 04 130 ORA MODE ;turn on gotoxy

CA66:8D FB 04 131 STA MODE

CA69:A9 FF 132 LDA #SFF ;set XCOORD to -1

CA6B:8D FB 06 133 PSETX STA XCOORD ;set X

CAGE:4C 29 CA 134 JMP PWRITERET ;=>display cursor and exit
CA71: 27 INCLUDE SUBS1

CA71: CA71 1 DOMN EQU *

CA71:AA 2 TAX s SAVE IT

CA72:A5 2A 3 LDA BAS2L ;GET OPCODE AGAIN

CA74:A0 03 4 LDY #$03

CA76:E0 8A 5 CPX i#$8A

CA78:F0 OB CA85 6 BEQ MNNDX3

CATA:L4A 7 MNNDX1 LSR A

CA7B:90 08 CA85 8 BCC MNNDX3 ;FORM INDEX INTO MNEMONIC TABLE
CA7D:4A 9 LSR A

CATE:4A 10 MNNDX2 LSR A ;1) 1XXX1010 => 00101XXX
CA7F:09 20 11 ORA #520 3 2) XXXYYYOl => OOL11XXX
CAB1:88 12 DEY ; 3) XXXYYY10 => 00110XXX
CA82:D0 FA CA7E 13 BNE MNNDX2 3 4) XXXYY100 => 00100XXX
CAB4:C8 14 INY 3 5) XXXXX000 => OOOXXXXX
CA85:88 15 MNNDX3 DEY

CA86:D0 F2 CA7A 16 BNE MNNDX1

CAB8:60 17 RTS

CAB9: 18 *

CA89: 19 * Syitch in slot 3, then test for a ROM card.
CA89: 20 * 1f none found, test for 80 column card,

CAB9: 21 * else return with BNE.

CABY: 22 *

CAB9: CAB9 23 TSTROMCRD EQU *

CAB9:20 B7 F8 24 JSR TSTROM jtest for ROM card

CABC:D0O 02 CA90 25 BNE TESTCARD ;=>no ROM, check for 80 column card

Appendix I: Monitor ROM Listings 327

CABE:C8 26 INY ;ymake BNE for return .
CABF:60 27 RTS
CA90: 28 *
CA90: DG sk ok ke Kk g ok ok ko Ak ek ek
CA90: 30 * NAME : TESTCARD .
CA90: 31 * FUNCTION: SEE IF B80COL CARD PLUGGED IN
CA90: 32 * INPUT + NONE
CA90: 33 *# QUTPUT : 'BEQ' IF CARD AVAILABLE
CA90: 34 * : "BNE' IF NOT
CA90: 35 * VOLATILE: AC,Y
CAQO: 36 Akkhhkkhhhkhkhhrhkhhhkhhrhkhkhkkhhhhahhkhik
CA90: 37 *
CA90: CA90 38 TESTCARD EOQU #*
CA90:AD 1C CO 39 LDA RDPAGE2 ;REMEMBER CURRENT VIDEO DISPLAY
CA93:0A 40 ASL A ;s IN THE CARRY
CA94:A9 88 41 LDA #588 ;USEFUL CHAR FOR TESTING
CA96:2C 18 CO 42 BIT RDBOCOL ;REMEMBER VIDEO MODE IN 'N' .
CA99:8D 01 CO 43 STA SETBOCOL ;ENABLE B80COL STORE
CA9C:08 44 PHP ;SAVE 'N' AND 'C' FLAGS
CA9D:8D 55 CO 45 STA TXTPAGE2 ;SET PAGE2
CAAD:AC 00 04 46 LDY $0400 ;sGET FIRST CHAR .
CAA3:8D 00 04 47 STA $0400 sSET TO A '*!
CAAG:IAD 00 04 48 LDA $0400 3GET IT BACK FROM RAM
CAA9:8C 00 04 49 STY $0400 ;RESTORE ORIG CHAR
CAAC:28 50 PLP ;RESTORE '"N' AND 'C' PLAGS .
CAAD:BO 03 CAB2 51 BCS STAY2 3sSTAY IN PAGE2
CAAF:8D 54 CO 52 STA TXTPAGEl ;RESTORE PAGElL
CAB2: CAB2 53 STAY2 EQU *
CAB2:30 03 CAB7 54 BMI STAYS80 ;=>STAY IN 80COL MODE .
CAB4:8D 00 CO 55 STA CLRBOCOL ;TURN OFF 80COL STORE
CAB7: CAB7 56 STAY8B0 EQU *
CAB7:C9 88 57 CMP {588 ;WAS CHAR VALID?
CAB9:60 58 RTS ;RETURN RESULT AS BEQ/BNE .
CABA: 59 *
CABA: 60 * Do the
normal monitor ROM BASCALC
CABA: 61 * .
CABA: CABA 62 BASCALC EQU *
CABA:48 63 PHA
CABB:4A 64 LSR A
CABC:29 03 65 AND #$03 .
CABE:09 04 66 ORA #S04
CACO0:85 29 67 STA BASH
CAC2:68 68 PLA
CAC3:29 18 69 AND #$18 .
CAC5:90 02 CACY 70 BCC BSCLC2
CAC7:69 7F 71 ADC #ST7F
CAC9:85 28 72 BSCLC2 STA BASL
CACB:0A 73 ASL A .
CACC:0A 74 ASL. A
CACD:05 28 75 ORA BASL
CACF:85 28 76 STA BASL
CAD1:60 77 RTS .
CAD2: 78 *
328 Appendix [: Monitor ROM Listings .

CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:
CAD2:2C
CAD5:50
CAD6:
CADb:
CADb:
CAD6:
CAD6:
CAD6:
CAD6:
CAD6:
CAD6:
CADG:
CAD6:
CAD6:
CAD6:B8
CAD7:8D
CADA:48
CADB:98
CADC:48
CADD:
CADD:AC
CAEO:CO
CAE2:90
CAE4:B9
CAE7 :FO
CAE9:50
CAEB:
CAEB:

S
CAEB:
CAEB:30
CAED:
CAED:
CAED:8D
CAFO0:AD
CAF3:29
CAF5:FO
CAF7:
CAF7:
CAF7:38
CAF8:B0
CAFA:
CAFA:AD
CAFD:

06 CB

FE CAD5
CAD6

78 07

7B 07

05

13 CAF7

B4 CB

OE CAF7

12 CAFD
0000

10 CAFD

7B 07

FB 04

28

03 CAFA
CAF7

09 CBO3

78 07
CAFD

132

hkhkdhkhhkkhhhkhkhhhkkhhrdhikhhhhhhdhhhhdhdhhd

* NAME C
* FUNCTION:
* INPUT :
* QUTPUT

* 3
* VOLATILE:
* CALLS

¢ CTLCHARO

Execute CTL char if M.CTL=0

AC=CHAR

'BCS' if not executed
'BCC' if executed

NOTHING

: MANY THINGS

kkkkkhkhhkhhkhrhhhhhhhRhkkhhhhakkhrkkhkkhkikk

*

CTLCHARO BIT SEV1

BVC

ORG
*

*
*-]

;set V (use M.CTL)
;skip CLC

kkkkkkkhkkhkhkkkhkhhkdhhhkhhhhhokhhkkkkhkk

* NAME : CTLCHAR
* FUNCTION: Always execute CTL char
* INPUT : AC=CHAR
* QUTPUT 'BCS' if not executed
* : 'BCC' if ctl executed
* VOLATILE: NOTHING
* CALLS : MANY THINGS
o ek ek ok ek ok ek ok ek kR ek & ok ek
*
CTLCHAR CLV ;jelear V (ignore M.CTL)
STA TEMPI1 ;TEMP SAVE OF CHAR
PHA ;SAVE AC
TYA ;SAVE Y
PHA
*
LDY TEMPL ;GET CHAR IN QUESTION
CPY #8505 ;IS IT NUL..EOT?
BCC CTLCHARX ;=>YES, NOT USED
LDA CTLADH-5,Y ;Get high byte of address
BEQ CTLCHARX ;=>ctl not implemented
BVC CTLGOO ;=> CLTCHAR: always execute
*
DO TEST
BPL CTLGOO ;=>CR,BEL,LF,BS always done
ELSE
BMI CTLGOO ;=>CR,BEL,LF,BS always done
FIN
*
STA TEMPL ;save high byte of address
LDA MODE 3if control chars
AND #M.CTL+M.CTL2 ;are enabled
BEQ CTLGO ;=-then go do them
*
CTLCHARX EQU *
SEC sSAY 'NOT CTL'
BCS CTLRET ;=>DONE
*
CTLGO LDA TEMPL ;get address back
CTLGOO EQU *

Appendix I: Monitor ROM Listings

329

CAFD: 0000 133 Do TEST .
S 134 AND #S7F ;for test, hi bit clear

CAFD: 135 ELSE

CAFD:09 80 136 ORA #580 jhi bit always set .
CAFF: 137 FIN

CAFF:20 07 CB 138 JSR CTLXFER ;EXECUTE SUBROUTINE

CBO2: 139 *

CBO2:18 140 CLC ;SAY 'CTL CHAR EXECUTED' -
CBO3: CBO3 141 CTLRET EQU *

CB03:68 142 PLA sRESTORE

CB04:A8 143 TAY ¥

CB05:68 144 PLA ; AND AC .
CB06:60 145 SEVI RTS

CBO7: 146 *

CBO7: CBO7 147 CTLXFER EQU *

CBO7:48 148 PHA ;PUSH ONTO STACK FOR .
CB0O8:B9 99 CB 149 LDA CTLADL-5,Y ; TRANSFER TRICK

CBOB:48 150 PHA

CBOC:60 151 RTS sXFER TO ROUTINE

CBOD: 152 * .
CBOD: 153 * Turn cursor on for Pascal only

CBOD: 154 *

CBOD:AD FB 04 155 X.CUR.ON LDA MODE ;get mode byte

CB10:10 05 CB17 156 BPL CURON.X ;=>not pascal, don't do it

CB12:29 EF 157 AND #255-M.CURSOR ;clear cursor bit .
CBl4:8D FB 04 158 SAVCUR STA MODE ;save it

CB17:60 159 CURON.X RTS ;and exit

CB18: 160 *

CB18: 161 * Turn cursor off for Pascal only. .
CB18: 162 * Cursor is not displayed during call.

CBl18: 163 *

CB18:AD FB 04 164 X.CUR.OFF LDA MODE ;get mode byte

CB1B:10 FA CBl7 165 BPL CURON.X ;=>not pascal, don't do it .
CB1D:09 10 166 ORA #M.CURSOR ;turn on cursor bit

CB1F:D0 F3 CBl4 167 BNE SAVCUR ;save and exit

CB21: 168 *

CB21: 169 * EXECUTE BELL: .
CB21: 170 *

CB21: CB21 171 X.BELL EQU *

CB21:A9 40 172 LDA {#S40 ;RIPPED OFF FROM MONITOR

CB23:20 34 CB 173 JSR WAIT -
CB26:A0 CO 174 LDY #$CO

CB28:A9 0OC 175 BELL2 LDA #$0C

CB2A:20 34 CB 176 JSR WAIT

CB2D:AD 30 CO 177 LDA SPKR .
CB30:88 178 DEY

CB31:D0 F5 cB28 179 BNE BELL2

CB33:60 180 RTS

CB34: 181 * .
CB34: CB34 182 WAIT EQU * +RIPPED OFF FROM MONITOR ROM

CB34:38 183 SEC

CB35:48 184 WAIT2 PHA

CB36:E9 01 185 WAIT3 SBC #1 .
CB38:D0 FC CB36 186 BNE WAIT3

330 Appendix I: Monitor ROM Listings .

CB3A:68
CB3B:E9
CB3D:DO
CB3F:60
CB40O:
CB40:
CB40:
CB40:
CB40:CE
CB43:10
CB45:A5
CB47:8D
CB4A:CE
CB4D:20
CB50:
CB50:60
CB51:
CB51:
CB51:
CBS51:
CB51:A9
CB53:8D
CB56:AD
CB59:30
CB5B:20
CB5E:
CBSE:60
CBSF:
CB5F:
CB5F:
CB5F:
CB5F:A5
CB61:85
CB63:A9
CB65:8D
CB68B:4C
CB6B:
CB6B:
CB6B:
CB6B:
CBHB:EE
CBBE:AD
ea71:05
CB73:90
CB75:20
CB78:
CB78:
CB78:60
CB79:
CB79:
CB79:
CB79:A5
CB7B:C5
CB7N:BO

01
F6

00
7B
FB

D8

22

iE

CB35

CB51
05
CBSE

CB
CB5E

CB5F

05
CD

CB6B
05

CB78
CB

CB78

CBY9D

187

*

PLA
SBC
BNE
RTS

i1
WAIT2

* EXECUTE BACKSPACE:
*

Xe

BS EQU
DEC
BPL
LDA
STA
DEC
JSR

BSDONE EQU

*

RTS

*

QURCH ;BACK UP CH

BSDONE ;=>DONE

WNDWDTH ;BACK UP TO PRIOR LINE
OURCH ;SET CH

OURCH

X.US ;NOW DO REV LINEFEED

*

* EXECUTE CARRIAGE RETURN:

*

Xa

X.

*

CR EQU
LDA
STA
LDA
BMI
JSR
CRRET EQU
RTS

*

#0 ;BACK UP CH TO

OURCH ; BEGINNING OF LINE

MODE ;ARE WE IN BASIC?

X.CRRET ;=> Pascal, avoid auto LF
X.LF ;EXECUTE AUTO LF FOR BASIC

*

* EXECUTE HOME:

*

X.

*

EM EQU
LDA
STA
LDA
STA
JMP

*

WNDTOP

cv

#0

OURCH 3+STUFF CH

VTAB :set base for OURCV

* EXECUTE FORWARD SPACE:

*

X

*

X.

*

FS EQU
INC
LDA
CMP
BCC
JSR

FSRET EQU
RTS

*

OURCH ;BUMP CH

OURCH :GET THE POSITION
WNDWDTH ;OFF THE RIGHT SIDE?
X.FSRET ;=>NO, GOOD

X.CR ;=DYES, WRAP AROUND

*

* EXECUTE REVERSE LINEFEED:

*

X.

Us LDA
CMP
BCS

\ppendix 1

WNDTOP ;are we at top?
cv
X.USRET 1=>yes, stay there

Monitor ROM Listings 331

CB7F:C6 25 241 DEC cCV ;else go up a line
CB81:4C FE CD 242 JMP VTAB ;exit thru VTAB (update OURCV)
CB84: 243 *

CB84: 244 * EXECUTE "NORMAL VIDEO"

CB84: 245 *

CB84: CB84 246 X.SO EQU *

CBB4:AD FB 04 247 LDA MODE ;SET MODE BIT
CB87:10 02 CB8B 248 BPL X.S501 ;don't set mode for BASIC
CB89:29 FB 249 AND #255-M.VMODE ;SET 'NORMAL'
CBBB:AD FF 250 X.S01 LDY #255

CB8D:D0 09 CB98 251 BNE STUFFINV :(ALWAYS)

CB8F: 252 *

CB8F: 253 * EXECUTE "INVERSE VIDEO"

CB8F: 254 *

CBBF: CBBF 255 X.SI EQU *

CBBF:AD FB 04 256 LDA MODE ;SET MODE BIT
CB92:10 02 CB96 257 BPL X.SIl ;don't set mode for BASIC
CB94:09 04 258 ORA #M.VMODE ;SET 'INVERSE'
CB96:A0 7F 259 X.SI1 LDY #127

CB98:8D FB 04 260 STUFFINV STA MODE ;SET MODE
CB9B:84 32 261 STY INVFLG ;STUFF FLAG TO0O
CBI9D:60 262 X.USRET RTS

CBYE: 263 *

CBYE: CB9E 264 CTLADL EQU *

CBYE:0C 265 DFB #>X.CUR.ON-1 ;ENQ
CB9F:17 266 DFB #>X.CUR.OFF-1 ;ACK
CBAO:20 267 DFB #>X.BELL-1 ;BEL

CBAl:3F 268 DFB #>X.BS~1 ; BS

CBA2:00 269 DFB 0 JHT

CBA3:D7 270 DFB #>X.LF-1 sLF

CBA4:73 271 DFB #>X.VT-1 sVT

CBAS5:8F 272 DFB #>X.FF-1 +FF

CBA6:50 273 DFB #>X.CR-1 1CR

CBA7:83 274 DFB #>X.S0-1 180

CBAB:8E 275 DFB #>X.SI-l ;SI

CBA9:00 276 DFB O ;DLE

CBAA:E9 277 DFB #>X.DCl-1 ;DC1

CBAB:FB 278 DFB #>X.DC2-1 ;DC2

CBAC:00 279 DFB 0 ;DC3

CBAD:00 280 DFB O ; DC4

CBAE:4C 281 DFB #>X.NAK-1 ;NAK

CBAF:D3 282 DFB #>SCROLLDN-1 ;S¥YN

CBBO:EA 283 DFB #>SCROLLUP-1 ;ETB

CBB1:3C 284 DFB #>MOUSEOFF-1

CBB2:5E 285 DFB #>X.EM~-1 ;EM

CBB3:95 286 DFB #>X.SUB-1 ;SUB

CBB4:43 287 DFB #>MOUSEON-1

CBB5:6A 288 DFB #>X.FS~1 :FS

CBB6:99 289 DFB #>X.GS-1 ;GS

CBB7:00 290 DFB 0O ;RS

CBB8:78 291 DFB #>X.US-1 ;US

CBBY: 292 *

CBB9: CBB9 293 CTLADH EQU *

CBB9:4B 294 DFB #<X.CUR.ON-$8001 ;ENQ

pendix 1: Manitor ROM Listings

. CBRBA:4B 295 DFB #<X.CUR.OFF-$8001 ;ACK
CBBR:CB 296 DFB #<X.BELL-1 ;BEL
CBBC:CB 297 DFB #<X.BS-1 +BS
CBED:00 298 DFE O 3HT
. CBBE:CB 299 DFB #<X.LF-1 4+LF
CBBF:4C 300 DFB #<X.VT-$8001 ;VT
CBCO:4C 301 DFB #<X.FF-$8001 ;FF
CBC1:CB 302 DFB #<X.CR-1 ;CR
l CBC2:4B 303 DFB #<X.50~-$8001 ;S0
CBC3:4B 304 DFB #<X.S1-$8001 ;SI
CBC4:00 305 DFE 0O ;DLE
CBC5:4C 306 DFB #<X.DCLl=-$8001 ;DCl
. CBCH:4C 307 DFB #<X.DC2-$8001 ;DC2
CBC7:00 308 DFB 0 ;DC3
CBCB:00 309 DFB 0 1 DC4
CBC9:4D 310 DFB #<X.NAK-$8001 ;NAK
. CBCA:4B 311 DFB #<SCROLLDN-$8001 ;SYN
CECB:4B 312 DFB {#<SCROLLUP-$8001 ;ETB
CBCC:4D 313 DFB #<MOUSEQFF-$8001
CBCD: 4B 314 DFE {#I<X.EM-$8001 ;EM
. CBCE:4C 315 DFB #<X.SUB-58001 ;SUB
CBCF:4D 316 DFB #<MOUSEQON-$8001
CBDO:4B 317 DFB #<X.FS-$B001 ;FS
CBD1:4C 318 DFB #<X.G5-$8001 ;GS
. CBD2:00 319 DFB 0 3RS
CBD3:4B 320 DFB #<X.US-$8001 ;US
CBD4: 28 INCLUDE SUBS2
CBD4:]
. CBD&4 : 2 * SCROLLIT scrolls the screen either up or down, depending
CBD4: 3 * on the value of X. It scrolls within windows with even
CBD4: 4 * or odd edges for both 40 and 80 columns. It can scroll
CBD4: 5 * windows down to 1 characters wide.
. CBD4: 6 *
CBD4:A0 00 7 SCROLLDN LDY #0 sdirection = down
CBD6:FO 15 CBED 8 BEQ SCROLLIT ;=>go do scroll
CBD8: g *
. CBDS: 10 * EXECUTE LINEFEED:
CBD8: 11 *
CBDS: CBD8 12 X.LF EQU *
CBD8:E6 25 13 INC CV
l CBDA:AS 25 14 LDA CV ;SEE IF OFF BOTTOM
CBDC:8D FB 05 15 STA OURCV
CBDF:C5 23 16 CMP WNDBTM ;OFF THE END?
CBEL1:B0 03 CBE6 17 BCS X.LF2 ;=>yes, scroll screen
. CBE3:4C 03 CE 18 JMP VTABZ ;exit thru VTABZ
CBE6: 19 *
CBE6: CBE6 20 X.LF2 EQU *
CBE6:CE FB 05 21 DEC OURCV ;back up to bottom
. CBE9:CH 25 22 DEC CV ;jand fall into scroll
CBEB: 23 *
CBEB:A0 01 24 SCROLLUP LDY #1 ;direction = up
CBED:BA 25 SCROLLIT TXA ;save X
CBEE:48 26 PHA
CBEF:8C 7B 07 27 STY TEMPL ;jsave direction
. Appendix I: Monitor ROM Listings 333

CBF2:A5
CBF4:48
CBF5:2C
CBF8:10
CBFA:8D
CBFD:4A
CBFE:AA
CBFF: A5
CCOl:4A
Cc02:B8
€Cc03:90
CC05:2C
CCO8:2A
CC09:45
CCOB:4A
ccoc:70
CCOE:BO
CCl10:CA
CCl1:86
CC13:AD
CC16:08
CCl7:A6
cCl19:98
CClA:DO
CClC: A6
CCIE:CA
CClF:

CClF:8A
€C20:20
BG23s

CC23:A5
CC25:85
CC27:A5
CC29:85
CC2B:

CC2B:AD
CC2E:F0
CC30:E8
CC31:E4
CC33:B0
CC35:8A
CC36:20
CC39:A4
CC3B:28
cc3c:08
CC3D:10
CC3F:AD
CC42:98
CC43:F0
CC45:B1
CcCc47:91
CC49:88
CC4A:DO
CC4C:70

21

1F
1c

20

03

06

21

03
01

21

22

03
23

1E
<

07

2A

F9
04

co
CCl6
co

ccos
CB

ccll
CcCll

co

CCIF

CE

07
CcC62
CcCco67

CE

CC5D
co

cc4c

CC45
CC52

LDA

LDA

CHRRT ROL

GETST STX

GETST1 PHP

*
SETDBAS TXA

*

SCRLIN LDA
STA
LDA
STA

LDA
BEQ
INX
CPX

SETSRC TXA
JSR
LDY
PLP
PHP
BPL
LDA
TYA
BEQ

SCRLEVEN LDA
STA
DEY
BNE

SCRLFT BVS

WNDWDTH

RDBOVID
GETST1
SET80COL
A

WNDLFT
A

CHKRT
SEV1

A
WNDWDTH
A
GETST
GETST

WNDWDTH
RDBOVID

WNDTOP

SETDBAS
WNDBTM

VTABZ

BASL
BAS2L
BASH
BAS2H

TEMP1
SCRLDN

WNDBTM
SCRLL3

VTABZ
WNDWDTH

SKPRT
TXTPAGE2

SCRLFT
(BASL),Y
(BAS2L),Y

SCRLEVEN
SKPLFT

;get width of screen window
jsave original width

;in 40 or 80 columns?

3=>40, determine starting line
;jmake sure this is enabled
jdivide by 2 for 80 column index
;and save

jtest oddity of right edge

;by rotating low bit into carry
;V=0 if left edge even

;=>check right edge

;V=1 if left edge odd

;restore WNDLFT

jget oddity of right edge

;C=1 if right edge even

3if odd left, don't DEY

:1f even right, don't DEY

;1f right edge odd, need one less
;save window width

3N=1 if B0 columns

;save N,Z,V

jassume scroll from top

;up or down?

;=>up

;down, start scrolling at bottom
;really need one less

;get current line
;jcalculate base with window width

jcurrent line is destination

stest direction

;=>do the downer

jdo next line

;done yet?

;=>yup, all done

;set new line

;get base for new current line
;get width for scroll

jget status for scroll

;:N=1 if 80 columns

;=>only do 40 columns

;scroll aux page first (even bytes)
jtest Y

;if ¥=0, only scroll one byte

;jdo all but last even byte
;jodd left edge, skip this byte

CC4E:Bl
cCc50:91
CC52:AD
CC55: A4
CC57 :BO
CC59:B1
CC5B:91
CC5D:88
CC5E:10
CC60:30
CCh2:

CC62:CA
CC63:E4
cc65:10
CcCé7:

CC67:28
CC68:68
CC69:85
CC6B:20
CC6E:20
CC71:68
CC72:AA
CC73:60
CC74:

CC74:

CC74:

CC74:20
CC77:A5
CC79:48
CC7A:10
Ce7C:20
CC7F:20
CCB2:E6
CCB4:AS
cc86:c5
CC88:90
CC8A:68
CC8B:85
CC8D:4C
Ccc90:

cCco0:

€Cc90:

CcCY0:

CC90:20
CC93:4C
CC96:

CC96:

CCY96:

CC96:AD
CC98:F0
CCYA:

CCY9A:

CCY4A:

CCY9A:AC

28
2A
54

04
28
2A

F9
Cl

22
CE

21

FE

9A
25

06
03
96
25
25
23

25
FE

S5F
74

00
03

78

co

cesn

cc59
cC23

CC35

cc
cbp

cc7c

Cch

€C90

ccC

ccop

05

LDA
STA
SKPLFT LDA
LDy
BCS
SCRLODD LDA
STA
SKPRT DEY
BPL
BMI
*
SCRLDN DEX
CPX
BPL

SCRLL3 PLP
PLA
STA
JSR
JSR
PLA
TAX

RTS
*

(BASL),Y
(BAS2L),Y
TXTPAGEL
WNDWDTH
SKPRT
(BASL),Y
(BAS2L),Y

SCRLODD
SCRLIN

WNDTOP
SETSRC

WNDWDTH
X.SUB
VTAB

* EXECUTE CLR TO EOS:
*

X.VT J8R
LDA
PHA
BPL

X.VTLOOP JSR
JSR

X.VINEXT INC
LDA
CMP
BCC
PLA
STA

JMP
*

X.GS
cv

X.VTNEXT
VTABZ
X.SUB

cv

cv
WNDBTM
X.VTLOOP

cv
VTAB

* EXECUTE CLEAR:
*

*

X.EM
X.VT

* EXECUTE CLEAR LINE
*

X.FF EQU
JSR
JMP

*

X.SUB LDY
BEO

*

* EXECUTE CLEAR TO EOL:
*

X.GS LDY

#0
X.GSEOLZ

QURCH

inow do main page (odd bytes)
srestore width
jeven right edge, skip this byte

;=> always scroll next line

;do next line
;done yet
;j=>’nope, not yet

;pull status off stack
;restore window width

;clear current line
jrestore original cursor line
;and X

:done!!!

;CLEAR TO EOL
;1 SAVE ¢V

sDO NEXT LINE (ALWAYS TAKEN)
;set base address
;:CLEAR LINE

;OFF SCREEN?

3=>NO, KEEP GOING

; RESTORE

HE

;jreturn via VTAB (blech)

;HOME THE CURSOR
;RETURN VIA CLREOS (UGH!)

jstart at left
;and clear to end of line

;get CH

ndix 1+ Monitor m-,.!.\’l !_;‘i?illj-i“- 335

CC9D:A5 32 136 X.GSEOLZ LDA INVFLG ;mask blank

CCIF:29 80 137 AND #8580 ;with high bit of invflg
CCAL:09 20 138 ORA {520 ;make it a blank

CCA3:2C 1F CO 139 BIT RDBOVID ;is it 80 columns?

CCA6:30 15 CCBD 140 BMI CLR80 i=>yes do quick clear
CCAB:91 28 141 CLR4O STA (BASL),Y

CCAA:C8 142 INY

CCAB:C4 21 143 CPY WNDWDTH

CCAD:90 F9 CCA8 144 BCC CLR40

CCAF:60 145 RTS

CCBO: 146 *

CCBO: 147 * Clear right half of screen for 40 to 80

CCBO: 148 * gcreen conversion

CCBO: 149 *

CCBO:86 2A 150 CLRHALF STX BAS2L ;save X

CCB2:A2 D8 151 LDX #S$D8 ;set horizontal counter
CCB4:AO 14 152 LDY #20

CCB6:AS 32 153 LDA INVFLG ;set (inverse) blank
CCBB:29 A0 154 AND #SA0

CCBA:4C D5 CC 155 JMP CLR2

CCRD: 156 *

CCBD: 157 * Clear to end of line for 80 columns

CCBD: 158 *

CCBD:86 2A 159 CLR80 STX BAS2L ;save X

CCBF:48 160 PHA ;and blank

ccco:98 161 TYA ;get count for CH

CCCl1:48 162 PHA ;save for left edge check
cce2:38 163 SEC ;count=WNDWDTH-Y-1

CCC3:E5 21 164 SBC WNDWDTH

CCC5:AA 165 TAX ysave CH counter

CCCh:98 166 TYA 3div CH by 2 for half pages
CCC7:4A 167 LSR A

CCCB: A8 168 TAY

CCCY:68 169 PLA ;jrestore original ch
CCCA:45 20 170 EOR WNDLFT ;get starting page

CCOC:6A 171 ROR A

CCCD:BO 03 cep2 172 BCS CLRO

CCCF:10 01 cecp2 173 BPL CLRO

ccpl:c8 174 INY ;1ff WNDLFT odd, starting byte odd
CCD2:68 175 CLRO PLA ;get blank

cecn3:BO OB CCEO 176 BCS CLRI istarting page is 1 (default)
CCD5:2C 55 €O 177 CLR2 BIT TXTPAGE2 jelse do page 2

CCDB8:91 28 178 STA (BASL),Y

CCDA:2C 54 CO 179 BIT TXTPAGEl ;now do page 1

CCDD:E8 180 INX

CCDE:F0 06 CCE6 181 BEQ CLR3 jall done

CCE0:91 28 182 CLRI STA (BASL),Y

CCE2:C8 183 INY ;forward 2 columns -
CCE3:E8 184 INX ;next ch]
CCE4:D0 EF CCD5 185 BNE CLR2 jnot done yet f \
CCE6:A6 2A 186 CLR3 LDX BAS2L ;restore X

CCE8:38 187 SEC ;jgood exit condition
CCE9:60 188 RTS ;and return

CCEA: 189 *

Appendix I: Monitor ROM Listings

CCEA:

CCEA:

CCEA:

CCEA: AD
CCED:30

cD3C

CCEF:20
CCF2:2C
CCF5:10
CCF7:20
CCFA:90
CCFC:

CCFC:

CCFC:

CCFC:

CCFC:20
CCFF:D0
cD01:2C
CD04:30
CD06:20
CD09:

CD09:AD
cpoC:18
CDOD:65
CDOF:2C
cn12:30
CD14:C9
CD16:90
CD18:A9
CD1A:8D
CD1D:85
CDIF:AS5
CcD21:20
CD24:2C
cn27:10
cn29:

cD29:20
CD2C:FO
CD2E:

CD2E:20
CD31:4A9
CcD33:2C
CD36:30
CD38:A9
CD3A:B5
CD3C:60
CD3D:

CD3D:

CD3D:

CD3D: AD
CD40:09
CD4a2:D0
Chad4

CD4b:

FR

15

CCFC

CA
CD3C

co

cn

05

co
CD1A
CDLA

05

CA

co

CD2E

cn
cDn3l

CDh

CD3A

04

CD49

190 * EXECUTE '"40COL MODE':

191 *

192 X.DC1 EQU *

193 LDA MODE ;don’t convert if Pascal
BMI X.DCIRTS ;=>it's Pascal

195 X.DClA JSR SETTOP ;set top of window (0 or 20)
196 BIT RDBOVID ;are we in 80 columns?
197 BPL X.DCIB ;=»no, no convert needed
198 JSR SCRNB4 ;else convert 80 to 40
199 BCC X.DCIB ;=>always set new window
200 *

201 * Set B0 column mode

202 *

203 X.DC2 EQU *

204 JSR TESTCARD ;is there an 80 column card?

205 BNE X.DCIRTS ;=>no, can't do this

206 BIT RDBOVID ;are we in 40 columns?

207 BMI X.DC1B ;=>no, no convert needed
208 JSR SCRN48 ;else convert 40 to 80

209 *

210 X.DCIB LDA OURCH ;get cursor

211 CLC isince new window left = 0
212 ADC WNDLFT ; NEWCH=0LDCH+OLDWNDLFT

213 BIT RDBOVID ;in 80 columns?

214 BMI X.DCIC ;=>yes, CH is ok

215 CMP {40 ;jelse if CH is too big,
216 BCC X.DCIC ;eet it to 39

217 LDA #39

218 X.DCIC STA OURCH ;save new CH

219 STA CH

220 LDA CV ;base

221 JSR BASCALC

222 BIT RDBOVID ;in 80 columns?

223 BPL D040 ;=»no, set forty column window
224 *

225 DOBO JSR FULL80O yset 80 column window

226 BEQ SETTOP j=>always branch

227 *

228 D040 JSR FULL40 ;set 40 column window

229 SETTOP LDA #0 jassume normal window
230 BIT RDTEXT jtext or mixed?

237 BMI DO4DA ;y=>text, all ok

232 LDA #20

233 DO40A STA WNDTOP ;set new top

234 X.DCIRTS RTS

235 *

236 * EXECUTE MOUSE TEXT OFF

237 =

238 MOUSEOFF LDA MODE

239 ORA #M.MOUSE ;set mouse bit

240 BNE SMOUSE jto disable mouse chars

241 *

242 * EXECUTE MOUSE TEXT ON

Appendix I Monttor ROM Listings

347

CD44: 243 *

CD44:AD FB 04 244 MOUSEON LDA MODE

CD47:29 FE 245 AND #255-M.MOUSE ;clear mouse bit
CD49:8D FB 04 246 SMOUSE STA MODE ;to enable mouse chars
CD4C:60 247 RTS

CD4D: 248 *

CD4D: 249 * EXECUTE 'QUIT':

CD4D: 250 *

CD4D: CD4D 251 X.NAK EQU *

CD4D:AD FB 04 252 LDA MODE ;ONLY VALID IN BASIC
CD50:30 1A CD6C 253 BMI SKRTS ;ignore if pascal
CcD52:20 2E CD 254 JSR D040 ;force 40 column window
CD55:20 80 CD 255 JSR QUIT ;jdo stuff used by PR#0
CD58:20 64 CD 256 JSR SETCOUT1 ;set output hook

CD5B: 257 *

CD5B:A9 FD 258 SETKEYIN LDA #<KEYIN jset input hook
CD5D:85 39 259 STA KSWH

CD5F:A9 1B 260 LDA #>KEYIN

CD61:85 38 261 STA KSWL

CD63:60 262 RTS

CD64: 263 *

CD64:A9 FD 264 SETCOUT1 LDA #<COUT1 ;set output hook
CD66:85 37 265 STA CSWH

CD68:A9 FO 266 LDA #>COUT1

CD6A:85 36 267 STA CSWL

CD6C: 60 268 SKRTS RTS

CD6D: 269 *

CD6D: 270 FdkkkkkkkkkkkkkkkRRAEAAK R RIIRRRIAK AR Kk AKX
CD6D: 271 * NAME : FULL40

CD6D: 272 * FUNCTION: SET FULL 40COL WINDOW

CD6D: 273 * INPUT : NONE

CD6D: 274 * QUTPUT : WINDOW PARAMETERS, A=0

CD6D: 275 * VOLATILE: AC

CD6D: 276 Kk ek ke ok ek e ok ke ek ok ek e ek
CD6D: 277 *

CD6D: CD6D 278 FULL4O EQU *

CD6D:A9 28 279 LDA #40 ;set window width to 40
CD6F:D0 02 CD73 280 BNE SAVWDTH ;=>(always taken)

(3 7 281 *

cp7l: 287 Rk kok Rk Ak ek kR Rk R A kR kR ok Rk
CD71: 283 * NAME : FULL8O

CcD71: 284 * FUNCTION: SET FULL B0COL WINDOW

cD71: 285 * INPUT : NONE

CD71: 286 * QUTPUT : WINDOW PARAMETERS, A=0

CD71: 287 * VOLATILE: AC

cDp71: 288 Fkkkkkkk Rk Ak Rk Ak ARk kAR kR K kK i
cD71: 289 *

CD71:A9 50 290 FULLBO LDA #80 ;set full 80 column window
CD73:85 21 291 SAVWDTH STA WNDWDTH

CD75:A9 18 292 LDA #24

CcD77:85 23 293 STA WNDBTM

CD79:A9 00 294 LDA {0

CD7B:85 22 295 STA WNDTOP

CD7D:85 20 296 STA WNDLFT

Appendix I: Monitor ROM Listings

CD7F:60
CD8O:

CD80:

CDBO:

CD80:

CDB0:2C
Ccn83:10
CD85:20
CD88:8D
CDB8B: A9
cpan:8n
CD90:60
CD91:

CD91:

CD91:

CD91:

CD91:

CD91:8A
CD92:48
CD93:A2
CD95:8D
CD98:84A
CD99:20
CD9C: AD
CDYE:B4
CDAQ:98
CDALl:4A
CDA2:BO
CDA4:2C
CDA7 : A8
CDA8: Bl
CDAA:2C
CDAD: A4
CDAF:91
CDB1:88
CDB2:10
CDB4:CA
CDB5:30
CDB7:E4
CDB9: B0
CDBB:8D
CDBE:8D
CDCl :4C
CDC4:

CDC4:8A
CDC5:48
CDC6: A2
CDC8:BA
CDC9:20
CDCC:AQ
CDCE:8D
CDD1:Bl
CDD3:84
CDD5:48

03
EF
0E
FF
FB

17

BA

2A

03

55

28

2A
28

BA

01
28
2A

CDBO
cnas
cc
co

D4

co

CA

CDA7
co

co

CD9E

CDBB

€D98

co
CcD

CA

co

297
298

RTS

*

299 * QUIT is used by PR#0 to turn off everything

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

*

QUIT EQU
BIT
BPL
JSR

QUIT2 STA
LDA
STA

RTS
*

* SCRNB4 and SCRN4B convert screens between 40 & 80 cols.

*
RDSOVID
QUIT2
X.DClA

swere we in 80 columns?
;=2 not a chance
;switch to 40 columns

CLRALTCHAR ;don't use lower case

#SFF
MODE

; DESTROY THE
; MODE BYTE

* WNDTOP must be set up to indicate the last line to
All registers are trashed.

* be done.
*

SCRN84 TXA ;jsave X
PHA
LDX #23 ;start at hottom of screen
STA SET80COL j;allow page 2 access
SCR1 TXA ;jcalc base for line
JSR BASCALC
LDY #39 ;jstart at right of screen
SCR2 STY BAS2L ;save 40 index
TYA ;div by 2 for 80 column index
LSR A
BCS SCR3
BIT TXTPAGE2 ;even column, do page 2
SCR3 TAY ;get 80 index
LDA (BASL),Y ;get 80 char
BIT TXTPAGElL ;restore pagel
LDY BAS2L ;get 40 index
STA (BASL),Y
DEY
BPL SCR2 ;do next 40 byte
DEX ;ydo next line
BMI SCR4 ;=>done with setup
CPX WNDTOP ;at top yet?
BCS SCRI
SCR4 STA CLRBOCOL ;clear B80STORE for 40 columns
STA CLRBOVID ;clear 80VID for 40 columns
JMP SCRNRET jcalc base, restore X, exit
*
SCRN48 TXA ;save X
PHA
LDX #23 ;jstart at bottom of screen
SCR5 TXA ;jset base for current line
JSR BASCAILC
LpY {0 ;start at left of screen
STA SET80COL ;enable pagel store
SCR6 LDA (BASL),Y ;get 40 column char
SCR8 STY BAS2L ;save 40 column index
PHA ;save char
Appendix [: Monitor ROM Listings

339

CDD6:98
ChD7:44A
CDDB: BO
CDDA:8D
CDDD: A8
CDDE: 68
CDDF:91
CDEL:8D
CDE&4: A4
CDE6:C8
CDE7:C0
CDE9:90
CDEB:20
CDEE:CA
CDEF:30
CDF1:E4
CDF3:B0
CDF5:8D
CDF8:20
CDFB:68
CDFC:AA
CDFD:60
CDFE:

CDFE:AS
CE00:8D
CE03:20
CE06:AS
CEN8:2C
CEOB:10
CEOD:4A
CEQE:18
CEDF:65
CEl11:85
CE13:60
CEl4:

CEl4:C9
CE16:90
CE18:C9
CE1A:BO
CELC:29
CELE:60
CELF:

CELF:

CELF:

CEILF:

CElF:

CE1F:

CE1F:

CELF:

CELF:

CELF:

CE1F:

CE1F:AD
CE22:29

03
55 cO

28
54 €O

28
E6
BO CC

04
D3

0D co
FE CD

25
FB 05
BA CA

LF CO
01

28

El
06

0z
DF

FB 04
10

CDDD

CcDD1

CDF5

coca

CEOE

CEL1E

CE1E

351 TYA ;div 2 for 80 column index
352 LSR A
353 BCS SCR?7 jsave on pagel
354 STA TXTPAGE2
355 SCR7 TAY ;get B0 column index
3156 PLA ;jnow save character
357 STA (BASL),Y
358 STA TXTPAGEl ;flip pagel
359 LDY BAS2L ;jrestore 40 column index
360 INY jmove to the right
361 CPY #40 ;at right yet?
362 BCC SCR6 ;=>no, do next column
363 JSR CLRHALF ;clear half of screen
364 DEX ;else do next line of screen
365 BMI SCR9 ;=>done with top line
366 CPX WNDTOP ;at top yet?
367 BCS SCR5
368 SCR9 STA SETBOVID j;convert to 80 columns
369 SCRNRET JSR VTAB jupdate base
370 PLA jrestore X
371 TAX
372 RTS
373 *
374 VTAB LDA CV ;get 80 column CV
375 STA OURCV jcopy to OURCV
376 VTABZ JSR BASCALC jcale base address
377 LDA WNDLFT ;and add window left to it
378 BIT RD8OVID ;is it 80 columns?
379 BPL VTAB40 ;window width ok
380 LSR A jelse divide width by 2
381 VTAB4D CLC ;prepare to add
382 ADC BASL jadd in window left
383 STA BASL ;and update base
384 VTABX RTS ;and exit
29 INCLUDE SUBS3
1 UPSHFT CMP #SEl ;is it lowercase?
2 BCC UPSHFT2 ;=>nope
3 CMP {#SFB ;lowercase?
4 BCS UPSHFT2 ;=>nope
5 AND #5DF ;else upshift
& UPSHFT2 RTS
7 *
B kkkkkdkkRARAARAK KRN RRAKRR KR KRR KRR K hA Ak Ak
9 * NAME : INVERT
10 * FUNCTION: INVERT CHAR AT CH/CV
11 = : Unless Pascal and M.CURSOR=1
12 * INPUT : NOTHING
13 * QUTPUT : CHAR AT CH/CV INVERTED
14 * VOLATILE: NOTHING
15 * CALLS : PICK, STORCHAR
16 Akkhkhkiakkhkhkdkidhhhhhhihhkhrhohikhikhir
17 %
18 PASINV LDA MODE scheck pascal cursor flag

AND

#M.CURSOR ;before displaying cursor

Appendix I Monitor ROM Listings

CE24:D0
CE26:48
CE27:98
CE28:48
CE29:AC
CE2C:20
CE2F:49
CE31:20
CE34:68
CE35:A8
CE36:68
CE37:60
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:
CE38:48
CE39:24
CE3B:30
CE3D:29
CE3F:
CE3F:20
CE42:68
CE&43:60
CE&44:
CE&4:
CE&44:
CE44:
CE&44:
CE44:
CE&44:
CE44:
CE44:
CE44:B1
CE46:2C
CE49:10
CE4B:8D
CE4E:84
CE50:98
CE51:45
CE53:6A
CE54:B0
CE56:AD
CE59:C8
CE5A:98
CE5B:4A
CE5C:A8

Il

78 05
44 CE

70 CE

32
02

70 CE

28
1F €0
19
01 co

20

04
55 €O

CE37

CE38

CE3F

CE3F

CE64

CE5A

BNE INVX ;=>cursor off, don't invert
INVERT PHA jsave AC
YA ; AND Y
PHA
LDY OURCH 1GET CH
JSR PICK 3GET CHARACTER
EOR #$80 ;FLIP INVERSE/NORMAL
JSR STORIT ; ONTQ SCREEN
PLA ;sRESTORE Y
TAY 3 AND AC
PLA
INVX RTS
ek kA kR Rk R R R KR Ak ok ek ok e
* NAME : STORCHAR
* FUNCTION: STORE A CHAR ON SCREEN
* INPUT : AC=CHAR
* : Y=CH POSITION
* QUTPUT : CHAR ON SCREEN
* YOLATILE: NOTHING
* CALLS : SCREENIT
ek ok e kA R R e A ok R gk ok ek e ok

*

STORCHAR EQU *

STOR2

SEV

PHA
BIT
BMI
AND
EQU
JSR
PLA
RTS

INVFLG
STOR2
#87F

*

STORIT

;SAVE AC

; NORMAL OR INVERSE?
3 =>NORMAL

jinverse it

i=>do it!!
;RESTORE AC

EkkkkkkkrhARhkAk kA RAR AR KRR AR RRR ARk AKX R
: PICK
GET A CHAR FROM SCREEN
: Y=CH POSITION
: AC=CHARACTER

* NAME
* PUNCTI
* INPUT
* QUTPUT
* VOLATI
* CALLS

*
PICK

PICKI

ON:

LE:

NOTHING

¢ SCREENIT
Kokkodokkkkkakkkkhkhhhdhhkhhdhhhkhkkkhhkhkkk

LDA
BIT
BPL
STA
STY
TYA
EOR
ROR
BCS
LDA
INY
TYA
LSR
TAY

(BASL),Y ;get 40 column character
RDBOVID ;80 columns?
PICK3 ;=>no, do text shift
SET80COL j;force 80STORE for 80 columns
BAS2L ;temp store for position
;divide CH by two
WNDLFT ;C=1 if char in main RAM
A ;get low bit into carry
PICK] ;=>store in main memory
TXTPAGE2 jelse switch in page 2
;for odd left, aux bytes
jdivide position by 2
A jand use carry as
;page indicator
Appendix 1: Monitor ROM Listings

341

CE5D:Bl 28 74 PICK2 LDA (BASL),Y ;get that char

CE5F:2C 54 €O 75 BIT TXTPAGEl ;flip to page 1

CE62:A4 2A 76 LDY BASZL

CE64:2C 1E €O 77 PICK3 BIT ALTCHARSET ;only allow mouse text

CE67:10 06 CE6F 78 BPL PICK4 ;if alternate character set

CE69:C9 20 79 CMP #8520

CE6B:B0O 02 CE6F 80 BCS PICK4

CE6D:09 40 81 ORA #8540

CE6F:60 82 PICK4 RTS

CE70: 83 *

CE70: 84 KRkkEkkkARRAKKKAIARKRIA AR KRR KRR ARI AR Ak Thkk

CE70: 85 * NAME : STORIT

CE70: 86 * FUNCTION: STORE CHAR

CE70: 87 * INPUT : AC=char for store

CE70: 88 * Z=high bit of char

CE70: 89 * 1 Y=CH POSITION

CE70¢ 90 * QUTPUT : AC=CHAR (PICK)

CE70: 91 * VOLATILE: NOTHING

CE70: 92 * CALLS : NOTHING

CE70: Q3 dekokdkdekkokk ok kA ko ko ke Rk Rk ok ke

CE70: 94 *

CE70:48 95 STORIT PHA ;jsave char

CE71:29 FF 96 AND #SFF 3if high bit set...

CE73:30 16 CEBB 97 BMI STORElL ;=>not mouse text

CE75:AD FB 04 98 LDA MODE ;1s mouse text enabled?

CE78:6A 99 ROR A juse carry as flag

CE79:68 100 PLA ;and restore char

CE7A:48 101 PHA ineed to save it too

CE7B:90 OE CE8B 102 BCC STORElL

CE7D:2C 1E cO 103 BIT ALTCHARSET ;only do mouse text if

CEB0:10 09 CEBB 104 BPL STORE1 ;alt char set switched in

CE82:49 40 105 EOR #840 ;do mouse shift

CE84:2C AC CE 106 BIT HEX60 ;is it in proper range? |
CE87:F0 02 CE8B 107 BEQ STOREl ;=>yes, leave it

CEB9:49 40 108 EOR #840 ;else shift it back

CE8B: 109 *

CE8B:2C 1F €O 110 STOREL BIT RDBOVID ;80 columns?

CE8E:10 1D CEAD 111 BPL STOR40 ;=>no, 40 columns

CE90:8D 01 c0 112 STA SET80COL ;force BOSTORE for 80 columns

CE93:48 113 PHA ;save shifted character

CEQ94:84 24 114 STY BAS2L jtemp storage |
CE96:98 115 TYA ;get position

CE97:45 20 116 EOR WNDLFT ;€=1 if char in main RAM

CE99:4A 117 LSR A -
CE9A:BO 04 CEAD 118 BCS STORE2 ;=>yes, main RAM ‘;‘,H.y
CE9C:AD 55 CO 119 LDA TXTPAGE2 ;else flip in main RAM VL
CE9F:C8 120 INY ;jdo this for odd left bytes

CEAQ0:98 121 STORE2 TYA ;get position

CEAl:4A 122 LSR A jand divide it by 2

CEA2:A8 123 TAY

CEA3:68 124 STORIT2 PLA jrestore acc

CEA4:91 28 125 STA (BASL),Y ;save to screen

CEA6:AD 54 CO 126 LDA TXTPAGElL ;flip to page 1 .
CEA9:A4 2A 127 LDY BAS2L

Appendix [: Monitor ROM Listings

H E N E - S E EEE E .

CEAB:68
CEAC:60
CEAD:
CEAD:91
CEAF:68
CEBO:60
CEBI1:
CEBl:
CEBL:
CEBl:
CEB1:
CEBI:
CEBl:
CEBl:
CEBIL:
CEBl:
CEB1:48
CEB2:98
CEB3:48
CEB4:AC
CEB7:20
CEBA:8D
CEBD:29
CEBF:49
CECl:4C
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:
CEC4:48
CEC5:98
CEC6:48
CEC7:AC
CECA:AD
CECD:
CECD:20
CED0:68
CED1: A8
CED2:68
CED3:60
CED4:
CED4:
CED4:
CED4:
CED&4:
CED4:
CED4:

CED4:

28

7B 05
44 CE
7B 06

AB
CD CE

7B 05
7B 06

70 CE

CEBI1

CEC4

CECD

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

174
175
176
177
178
179
180
181

PLA ;jrestore true Acc

HEX60 RTS jand exit

*

STOR40 STA (BASL),Y ;quick 40 column store
PLA ;restore real char
RTS

Ak kAAARRRRRRARRRARRRRRRRAARIRRAR KRR RN

* NAME : ESCON

* FUNCTION: TURN ON 'ESCAPE' CURSOR

* INPUT : NONE

* QUTPUT : 'CHAR'=ORIGINAL CHAR

* VOLATELE: NOTHING

*

CALLS : PICK,STORCHAR
kkkkkhkhhkhhhkkdkkhkkkhkhhhhhhhhkhhhhhkhhkk

*
ESCON EQU *

PHA 1 SAVE AC
TYA ; AND Y
PHA
LDY OURCH {GET CH
JSR PICK ;GET ORIGINAL CHARACTER
STA CHAR ; AND REMEMBER FOR ESCOFF
AND #580 ;SAVE NORMAL/INVERSE BIT
EOR #5AB JMAKE IT AN INVERSE '+'
JMP ESCRET :RETURN VIA SIMILAR CODE
hkkdhhkhkkhhkhkhhhkhkAkrhkhkkhhixhhhhkkhkhkhhkk

* NAME : ESCOFF

* FUNCTION: TURN OFF 'ESCAPE' CURSOR
* INPUT : 'CHAR'=ORIGINAL CHAR

* QUTPUT : NONE

* VOLATILE: NOTHING

*

CALLS : STORCHAR
dkkdkkhkkhkkARRARRRRRARRR KKK R AR KRRk KkHh*k

*
ESCOFF EQU *

PHA ;SAVE AC
TYA ; AND Y
PHA
LDY OURCH ;GET CH
LDA CHAR :GET ORIGINAL CHARACTER
ESCRET EQU * ;USED BY ESCON
JSR STORIT ; EXACTLY AS IT WAS
PLA ;RESTORE Y
TAY
PLA ; AND AC
RTS
Kkkhkhhkhkhkhkhhhhhkhhkkrhkkhkhhhhkrhhkhkhhkihk
* NAME : PSETUP
* FUNCTION: SETUP ZP FOR PASCAL
* INPUT : NONE
* QUTPUT : NONE
* YOLATILE: AC
* CALLS : NOTHING

dekkdkhkkkidkhkdkkhkkhhdhkhkhkkbhhkhkkthkhrhik

\ppendix [: Monitor ROM Listings 343

CED4: 182 *

CED4: CED4 183 PSETUP EQU *

CED4:20 71 CD 184 JSR FULL8O ;SET FULL 80COL WINDOW
CED7:A9 FF 185 IS80 LDA #255

CED9:85 32 186 STA INVFLG ;ASSUME NORMAL MODE

CEDB: 187 =

CEDB:AD FB 04 188 LDA MODE

CEDE:29 04 189 AND #M.VMODE

CEEO:F0 02 CEE4 190 BEQ PSETUPRET ;=>IT'S NORMAL

CEE2:46 32 191 LSR INVFLG :MAKE IT INVERSE

CEE4: 192 #*

CEE4: CEE4 193 PSETUPRET EQU *

CEE4:AD 7B 07 194 LDA OLDBASL ;SET UP BASE ADDRESS
CEE7:85 28 195 STA BASL

CEE9:AD FB 07 196 LDA OLDBASH

CEEC:85 29 197 STA BASH

CEEE:AD FB 05 198 LDA OURCV ;get user's cursor vertical
CEF1:85 25 199 STA CV jand set it up

CEF3:60 200 RIS

CEF4: DL et s ko ke ek ok e ok ke ek ok e ek ke e ok e ok

CEF4: 202 *

CEF4: 203 * COPYROM is called when the video firmware is
CEF4: 204 * initialized. 1If the language card is switched
CEF&4: 205 * in for reading, it copies the F8 ROM to the
CEF4: 206 * language card and restores the state of the
CEF4: 207 * language card.

CEF4: 208 *

CEF4:2C 12 CO 209 COPYROM BIT RDLCRAM ;is the LC switched in?
CEF7:10 3D CF36 210 BPL ROMOK ;=>no, do nothing

CEF9:A9 06 211 LDA #GOODF8 ;yes, check $F8 RAM
CEFB:CD B3 FB 212 CMP FBVERSION ;does it match?

CEFE:¥0 36 CF36 213 BEQ ROMOK ;=» assum ROM is there
CFO0:A2 03 214 LDX #3 ;indicate bank 2, RAM write enabled
CF02:2C 11 CO 215 BIT RDLCBNK2 ;is it bank 2?7

CF05:30 02 CF09 216 BMI BANK2 ;=>yes, we were right
CF07:A2 OB 217 LDX #8B ;no, bank 1, RAM write enabled
CF09:8D B3 FB 218 BANK2 STA F8VERSION ;write to see if LG 1is
CFOC:2C 80 €O 219 BIT S$C080 iwrite protected (read RAM)
CFOF:AD B3 FB 220 LDA FBVERSION ;did it change?

CF12:C9 06 221 CMP #GOODF8

CFl4:F0 01 CF17 222 BEQ WRTENBL ;=>yes, write enabled
CFl6:EB 223 INX ;else indicate write protect
CF17:2C 81 CO 224 WRTENBL BIT $CO081 ;read ROM, write RAM
CFlA:2C 81 CO 225 BIT 8CO81 jtwice is nice

CF1D:AO0 00 226 LDY #80 ;now copy ROM to RAM
CF1F:A9 F8 227 LDA {#S$F8 J
CF21:B5 37 228 STA CSWH ;hooks set later

CF23:84 36 229 STy CSWL

CF25:Bl 36 230 COPYROM2 LDA (CSWL),Y ;get a byte

CF27:91 36 231 STA (CSWL),Y j;and move it

CF29:C8 232 INY

CF2A:DD F9 CF25 233 BNE COPYROM2

CF2C:E6 37 234 INC CSWH jnext page

CF2£:D0 F5 CF25 235 BNE COPYROM2 ;finish copy

CF30:BD 80 CO 236 LDA $COBO0,x ;read RAM

CF33:BD 80 CO 237 LDA $C080,x

CF36:60 238 ROMOK RTS ;jdone with ROM copy

Appendix 1: Monitor ROM Listings

0000

0001

0000

F800
cl00
€300
c800

0001

F800
2000

0000
0001
0020
0021
0022
0023
0024
0025
0026
0027
0028

o

Lr=lie N A A L

TEST EQU 0

LST On,A,V
IRQTEST EQU 1

MSB ON ;SET THEM HIBITS

DO TEST
FBORG EQU $1800
INDADR EQU $2000 ;For setting PR# hooks

ClORG EQU $2100

C30RG EQU $2300

CBORG EQU $2800
ELSE

FBORG EQU SFB00
ClORG EQU $C100
C30RG EQU $C300
CBORG EQU $CB800
FIN
kkkhhkkrk ik hkhkhk ik hkkdhhkkhkihkd
*
* APPLE IT
* MONITOR I1
*
* COPYRIGHT 1978, 1981, 1984 BY
* APPLE COMPUTER, INC.
*
* ALL RIGHTS RESERVED
*
* S. WOZNIAK 1977
* A, BAUM 1977
* JOHN A NOV 1978
* R. AURICCHIO SEP 1981
* E, BEERNINK 1984
*
APPLE2F. EQU 1 ;COND ASSM/RRA0981
*
dedekdehdkhhhhhhhhkhkhhkhhhkhkhhkhhkhkhikk
ORG FBORG
0BJ $2000
khkhkkkhkkXxhkkhkkhhkkkhhkhkhkhkhkhhkkki
*
* Zero Page Equates
*
Loco EQU SO0 ;vector for autost from disk
Locl EQU $01
WNDLFT EQU $20 ;left edge of text window
WNDWDTH EQU §21 ;jwidth of text window
WNDTOP EQU $22 ;top of text window
WNDBTM EQU $23 ;bottom+l of text window
CH EQU $§24 scursor horizontal position
cv EQU 825 jcursor vertical position
GBASL EQU 826 ;lo-res graphics base addr.
GBASH EQU $§27
BASL EQU 428 ;text base address
Appendix I: Monitor ROM Listings 345

F800:
F800:
F800:
FB00:
FBOO:
F800:
F800:
FB0O:
F800:
FBOO:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F80O0:
F800:
F800:
F800:
F800:
F800:
FB0O:
F800:
F800:
F800:
FB00:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F300:
F800:
FR00:
F800:
F800:
F800:
F300:

0029
002A
002B
onzc
oozc¢
002D
002D
002E
002E
002E
002F
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003cC
003D
003E
003F
0040
0041
0042
0043
0044
0044
0045
0045
0046
0047
0048
0049
004E
004F

0095

0200

03F0
03F2
03F4
03F5
03F8

RMNEM
MASK
CHKSUM
FORMAT
LASTIN
LENGTH
COLOR
MODE
INVFLG
PROMPT
YSAV
YSAVI
CSWL
CSWH
KSWL
KSWH
PCL
PCH
AlL
AlH
A2L
AZH
A3L
A3H
A4L
A4H
ASL
MACSTAT
ASH
ACC
XREG
YREG
STATUS
SPNT
RNDL
RNDH

*

PICK
*

IN
*

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

§29
$2A
$28
$2¢
s2¢
§2D
§2D
$2E
$2E
$2E
$2F
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3c
$3D
53E
$3F
$40
$41
$42
543
S44
$44
$45
$45
$46
S47
548
549
S4E
$4F

$95

$0200

* Page 3 vectors

*

BRKV
SOFTEV
PWREDUP
AMPERV
USRADR

EQU
EQU
EQU
EQU
EQU

S03F0
$03F2
$03F4
$03F5
$03F8

;jtemp base for scrolling

;temp for lo-res graphics
;temp for mnemonic decoding
itemp for lo-res graphics
stemp for mnemonic decoding
jcolor mask for lo-res gr.
stemp for opcode decode
;temp for opcode decode
stemp for tape read csum
stemp for opcode decode
scolor for lo-res graphics
;Monitor mode
snormal/inverse(/flash)
;jprompt character

;position in Monitor command
stemp for Y register
;character output hook

;character input hook
;temp for program counter

;Al=A5 are Monitor temps

;smachine state for break

;Ace after break (destroys AS5SH)
;X reg after break

;Y reg after break

;P reg after break

;SP after break

jrandom counter low

;random counter high

sCONTROL-U character

;jinput buffer for GETLN

;jvectors here after break

jvector for warm start

;THIS MUST = EOR #5A5 OF SOFTEV+1
;APPLESOFT & EXIT VECTOR
;Applesoft USR function wvector

Appendix I: Monitor ROM Listings

F800:
FBOO:
FB800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
F800:
FB00:
F800:
F800:
F800:
F800:
F800:
FBOO:
F800:
F800:
F800:
F800:
F800:
F800:
FB00:
FB800:
F800:
FBOO:
F800:
FB00:
F800:
F800:
F800:
FB0O:
F800:
FB00:
FBOO:
F800:
F800:
F800:
F800:
F800:
F800:
FB80O:
FBOO:
F800:
F800:
FB800:4A
F801:08
F802:20 47 F8
F805:28
F806:A9% OF

03FB
03FE

0400
07F8

0000

€000

€000
co06
€007
col10
COLF
coz0
€030
€050
€051
Cc052
€053
€054
c055
c056
€057
€058
€059
CO54
CO5B
c05¢C
c05D
CO5E
CO5F
c060
CO64
€070

C3FA
c4ic

c567
€5D1
C5AA

CFFF
EQO0O
EQ03

92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
121
112
113
114
115
116
117
118
119
120

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

NMI
IRQLOC
*

LINEL
MSLOT
*

LOADR

*
KBD

EQU
EQU

EQU
EQU

Do
ELSE
EQU
FIN

EQU

3 vector
$03FB NMI
$S03FE ;Maskable interrupt vector

$0400 jfirst line of text screen
$07F8 jcurrent user of $C8 space

TEST

$C000

$€000

SLOTCXROM EQU $C006 ;enable slots 1-7
INTCXROM EQU $C007 ;swap out slots for firmware

KBDSTRB
RDBOVID
TAPEOUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
SETANO
CLRANO
SETANI
CLRAN]
SETAN2
CLRAN2
SETAN3
CLRAN3
TAPEIN
PADDLO
PTRIG

*

IRQ
IRQFIX
*

XHEADER
XREAD
WRITE2
*
CLRROM
BASIC
BASIC2
*

PLOT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU

LSR
PHP
JSR
PLP
LDA

5C010
$COLF
$C020
$C030
$€050
$c051
$€052
$C053
$C054
$€055
$C056
$€057
$C058
$€059
$C05A
$c05B
$coscC
$CO5D
$COSE
$SCOS5F
$C060
$C064
$c070

C30RG+SFA ;IRQ entry in $C3 page
C30RG+S17C ;Restore state at IRQ

C30RG+5$267
C30RG+$2D1
C30RG+S$2AA

$CFFF
SE000
$E003

A ;Y-COORD/2
;SAVE LSB IN CARRY
GBASCALC ;CALC BASE ADR IN GBASL,H
;RESTORE LSB FROM CARRY
#S0F ;MASK SOF IF EVEN

\ppendix I; Monitor ROM Listings 347

F808:90
F80A:69
F80C:85
F8OE: Bl
F810:45
F812:25
F814:51
F816:91
F818:60
F819:

F819:20
F81C:C4
F8IE:BO
F820:C8
F821:20
F824:90
F826:69
F828:48
F829:20
F82C:68
F82D:C5
F82F:90
F831:60
F832:

FB832:A0
F834:D0
F836: A0
F838:84
F83A:

F83A:A0
F83C: A9
F83E:85
F840:20
F843:88
F844:10
F846:60
F847:

FB4T7:48
F848:4A
F849:29
F84B:09
F84D:85
FB4F:68
F850:29
F852:90
F854:69
F856:85
Fd58:0A
F859:0A
F354A:05
F85C:85
F85E:60
FB5F:

FBSF:AS

03
04
27

13
02

7F
26

26

30

F8

F8

F8

F8

F80C

F831

F81C

F826

F838

F83C

F856

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
7L
172
173

174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

BCC

RTMASK STA
PLOTI LDA

RTS

HLINE JSR
HLINEL CPY

VLINEZ ADC
VLINE PHA

RTS1 RIS
*
CLRSCR LDY
ENE
CLRTOP LDY
CLRSC2 STY
3
LDY
CLRSC3 LDA
STA
JSR
DEY
BPL
RTS
*
GBASCALC PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
GBCALC STA
ASL
ASL
ORA
STA
RTS
*

NXTCOL LDA

RTMASK
#$E0 ;MASK SFO IF ODD
MASK
(GBASL),Y ;DATA
COLOR ; XOR COLOR
MASK i AND MASK
(GBASL),Y ; XOR DATA
(GBASL),Y TO DATA
PLOT ;PLOT SQUARE
H2 ;DONE?
RTS1 ; YES, RETURN
; NO, INCR INDEX (X-COORD)
PLOTI1 :PLOT NEXT SQUARE
HLINEL {ALWAYS TAKEN
#501 {NEXT Y-COORD
; SAVE ON STACK
PLOT ; PLOT SQUARE
V2 ; DONE?
VLINEZ ; NO, LOOP.
#S2F iMAX Y, FULL SCRN CLR
CLRSC2 s ALWAYS TAKEN
#s27 ;MAX Y, TOP SCRN CLR
v2 ;STORE AS BOTTOM COORD
FOR VLINE CALLS
#3527 ;RIGHTMOST X-COORD (COLUMN)
#3500 :TOP COORD FOR VLINE CALLS
COLOR ;CLEAR COLOR (BLACK)
VLINE ;DRAW VLINE
;NEXT LEFTMOST X~COORD
CLRSC3 ;LOOP UNTIL DONE.
{FOR INPUT OODEFGH
A
#503
#3504 :GENERATE GBASH=000001FG
GBASH
;AND GBASL=HDEDEQOO
#$18
GBCALC
#$TF
GBASL
A
A
GBASL
GBASL
COLOR ; INCREMENT COLOR BY 3

Appendix I Monitor ROM Listings

& §

‘

F861:18
FB62:69
FB64:29
FB866:85
F868:0A
F869:0A
FB6A:0A
F86B:0A
F86C:05
FBBE:85
FB70:60
FB871:

FB71:4A
F872:08
F873:20
F876:B1
FB78:28
F879:90
F87B:4A
FB7C:4A
FB7D:4A
FB7E:4A
F87F:29
F881:60
FB882:

FBB2:A6
F884: AL
FB886:20
F889:20
F88C: Al
FBBE: A8
FBBF:4A
F890:90
F892:6A
F893:B0
F895:C9
F897:F0
F899:29
F89B:4A
F89C:AA
F89D:BD
F8A0:20
F8A3:DO
FBA5: A0
FBA7:A9
FEBA9:AA
FBAA:BD
FBAD:85
FBAF:

FBAF:

FBAF:

FBAF:

FBAF:

FBAF:

03
OF

47
26

04

OF

34
3B
96
48
3A
09

10

87

62
79
04
00

Ab

F8

FB7F

FD

F89B
F8A5

FBAS

F9
F8
FB8A9

F9

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

CLC
ADC

SETCOL AND

STA
ASL
ASL
ASL
ASL

STA
RTS

SCRN LSR

PHP
JSR
LDA
PLP

SCRN2 BCC

LSR
LSR
LSR
LSR

RTMSKZ AND

*

RTS

INSDS] LDX

INSDS2 TAY

IEVEN LSR

BNE

ERR LDY

LDA

GETFMT TAX

: (0=1 BYTE,

*

LDA
STA

#SOF ;SETS COLOR=17*A MOD 16

A ;BOTH HALF BYTES OF COLOR EQUAL

A ;READ SCREEN Y-COORD/2
;SAVE LSB (CARRY)
GBASCALC ;CALC BASE ADDRESS
(GBASL),Y ;GET BYTE
;RESTORE LSB FROM CARRY

RTMSKZ 3IF EVEN, USE LO H
A

A

A ;SHIFT HIGH HALF BYTE DOWN

A

#S50F ;MASK 4-BITS

PCL ;PRINT PCL,H

PCH

PRYX2

PRBLNK ;FOLLOWED BY A BLANK

(PCL, %) ;GET OPCODE

A :EVEN/ODD TEST

IEVEN

A ;BIT 1 TEST

ERR ;XXXXXX11 INVALID OP

#SA2

ERR ;OPCODE $89 INVALID

#587 ;MASK BITS

A ;LSB INTO CARRY FOR L/R TEST
FMT1,X ;GET FORMAT INDEX BYTE

SCRN2 ;R/L H-BYTE ON CARRY

GETFMT

#5880 ;SUBSTITUTE $80 FOR INVALID OPS
#500 ;SET PRINT FORMAT INDEX TO 0
FMT2,X s INDEX INTO PRINT FORMAT TABLE
FORMAT ;SAVE FOR ADR FIELD FORMATTING

1=2 BYTE, 2=3 BYTE)

* Move code to C1-C2 because the code
that tests for ROM in slot 3 must be in
* the F8 ROM.

*

*

Appendix I Monitor ROM Listings 349

FBAF:AA 254 TAX ;save ACC in X

F8B0:84 2A 255 STY BAS2L ;and Y in scrolling temp
F8B2:A0 10 256 LDY #510 jcall = finish mnemonics
F8B4:4C B4 FB 257 JMP GOTOCX ;off to C100

F8B7: 258 *

F8B7: 259 * Test slot 3 for a card containing ROM.

FBB7: 260 * If there is one, we'll not switch in our internal
FBB7: 261 * glot 3 firmware (for 80 columns).

F8B7: 262 * On entry Y has a high value like $F2, so the
F8B7: 263 * ROM/bus is read a bunch of times

F8B7: 264 *

FB8B87:8D 06 CO 265 TSTROM STA SLOTCXROM ;swap in slots

F8BA:A2 02 266 TSTROMO LDX {2 ;check 2 ID bytes
F8BC:BD 05 C3 267 TSTROM1 LDA $C305,X ;at C305 and $C307
F8BF:DD 9C FC 268 CMP CLREOL,X ;with two bytes that are same
F8C2:D0 07 F8CB 269 BNE XTST

F8C4:CA 270 DEX scheck next ID byte
F8C5:CA 271 DEX

F8C6:10 F4 F8BC 272 BPL TSTROMI

FBC8:88 273 DEY

F8C9:D0 EF F8BA 274 BNE TSTROMO ;if ROM ok, exit with BEQ
FBCB:8D 07 cO 275 XTST STA INTCXROM ;swap internal ROM
F8CE:60 276 RTS ;and return there

FBCF: 277 *

FBCF:EA 278 NOP ;line things up

F8DO: 279 *

F8D0:20 82 F8 280 INSTDSP JSR INSDSL ;GEN FMT, LEN BYTES
F8D3:48 281 PHA ;SAVE MNEMONIC TABLE INDEX
F8D4:Bl 3A 282 PRNTOP LDA (PCL),Y

F8D6:20 DA FD 283 JSR PRBYTE

F8D9:A2 01 284 LDX #3501 sPRINT 2 BLANKS

F8DB:20 4A F9 285 PRNTBL JSR PRBL2

F8DE:C4 2F 286 CPY LENGTH ;PRINT INST (1-3 BYTES)
F8E0:C8 287 INY ;IN A 12 CHR FIELD
F8E1:90 Fl F8D4 288 BCC PRNTOP

F8E3:A2 03 289 LDX #503 ;CHAR COUNT FOR MNEMONIC INDEX
FBE5:CO 04 290 CPY #8504

F8E7:90 F2 F8DB 291 BCC PRNTBL

FBE9:68 292 PLA ;sRECOVER MNEMONIC INDEX
FBEA:A8 293 TAY

FBEB:B9 CO F9 294 LDA MNEML,Y

FBEE:85 2C 295 STA LMNEM ;FETCH 3-CHAR MNEMONIC
F8F0:B9 00 FA 296 LDA MNEMR,Y ; (PACKED INTO 2-BYTES)
F8F3:85 2D 297 STA RMNEM

FBF5:4A9 00 298 PRMNI1 LDA #5500

FBF7:A0 05 299 LDY #S05

F8F9:06 2D 300 PRMN2 ASL RMNEM ;SHIFT 5 BITS OF CHARACTER INTO A
F8FB:26 2C 301 ROL LMNEM

F8FD:2A 302 ROL A ; (CLEARS CARRY)
F8FE:88 303 DEY

FBFF:D0 F8 FBF9 304 BNE PRMN2

F301:69 BF 305 ADC {#$BF ;ADD "?'" OFFSET

F903:20 ED FD 306 JSR COUT ;OUTPUT A CHAR OF MNEM

F306:CA 307 DEX

F907:D0 EC FBF5 308 BNE PRMNI
F909:20 48 F9 309 JSR PRBLNK ;OUTPUT 3 BLANKS
FI0C:A4 2F 310 LDY LENGTH
F90E:A2 06 311 LDX {#506 ;CNT FOR 6 FORMAT BITS
F910:EQ 03 312 PRADRI CPX #$03
F912:F0 1C F930 313 BEQ PRADRS 3 IF X=3 THEN ADDR.
F914:06 2E 314 PRADR2 ASL FORMAT
F916:90 OE F926 315 BCC PRADR3
F918:BD B3 F9 316 LDA CHARL1-1,X
F91B:20 ED FD 317 JSR cCoOuUT
F91E:BD B9 F9 318 LDA CHAR2-1,X
F921:F0 03 F926 319 BEQ PRADR3
F923:20 ED FD 320 JSR couT
F926:CA 321 PRADR3 DEX
F927:D0 E7 F910 322 BNE PRADRI
F929:60 323 RTS
F92A:88 324 PRADR4 DEY
F92B:30 E7 F914 325 BMI PRADR2
F92D:20 DA FD 326 JSR PRBYTE
F930:A5 2E 327 PRADRS LDA FORMAT
F932:C9 E8 328 CMP {#SE8 ;HANDLE REL ADR MODE
F934:B1 3A 329 LDA (PCL),Y :SPECIAL (PRINT TARGET,
F936:90 F2 F92A 330 BCC PRADR4 ; NOT OFFSET)
F938:20 56 F9 331 RELADR JSR PCADJ3
F93B:AA 332 TAX 3PCL,PCH+OFFSET+1 TO A,Y
F93C:E8 333 INX
F93D:D0 01 F940 334 BNE PRNTYX i+l TO ¥, X
F93F:C8 335 INY
F940:98 336 PRNTYX TYA
F941:20 DA FD 337 PRNTAX JSR PRBYTE ;OUTPUT TARGET ADR
F944:8BA 338 PRNTX TXA ;3 OF BRANCH AND RETURN
F945:4C DA FD 339 JMP PRBYTE
F948: 340 *
F948:A2 03 341 PRBLNK LDX #503 ;BLANK COUNT
FI4A:A9 AD 342 PRBL2 LDA #SAD ;LOAD A SPACE
F94C:20 ED FD 343 PRBL3 JSR COUT ;OUTPUT A BLANK
F94F:CA 344 DEX
F950:D0 F8 F94A 345 BNE PRBL2 ;LOOP UNTIL COUNT=0
F952:60 346 RTS
F953: 347 *
F953:38 348 PCADJ SEC ;0=1 BYTE, l=2 BYTE,
F954:A5 2F 349 PCADJ2 LDA LENGTH ;3 2=3 BYTE
F956:A4 3B 350 PCADJ3 1LDY PCH
F958:AA 351 TAX ;TEST DISPLACEMENT SIGN
F959:10 01 F95C 352 BPL PCADJ4 ; (FOR REL BRANCH)
F95B:88 353 DEY ;EXTEND NEG BY DECR PCH
FI95C:65 3A 354 PCADJ4 ADC PCL
F95E:90 01 F961 355 BCC RTS2 s PCL+LENGTH(OR DISPL)+1 TO A
F960:C8 356 INY ; CARRY INTO Y (PCH)
F961:60 357 RTS2 RTS
F962: 358 ;
F962: 359 ; FMT1 BYTES: XXXXXXY0O INSTRS
F962: 360 ; IF Y=0 THEN LEFT HALF BYTE
F962: 361 ; IF Y=1 THEN RIGHT HALF BYTE
Appendix 1 Monitor ROM Listings 351

F962:

F962:

F962:04
F963:20
F964:54
F965:30
F966:0D
F967 : 80
F968:04
F969:90
FI6A:03
F96B:22
F96C:54
F96D:33
F96E:0D
F96F:80
F970:04
F971:90
F972:04
F973:20
F974:54
F975:33
F976:0D
F977:80
F978:04
F979:90
F97A:04
F978:20
F97C:54
F97D:3B
F97E:0D
F97F:80
F980:04
F981:90
F982:00
F983:22
F384:44
F985:33
F986:0D
F987:C8
F988:44
F989:00
F98A:11
F98B:22
F98C:44
F98D:33
FI8E:0D
F98F:C8
F990:44
F991:A9
F992:01
F993:22
F994:44
F995:33

362 ;
363 ;
364 FMTL
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
339
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

(X=INDEX)

$04
520
$54
830
$0D
$80
$04
$90
$03
822
5§54
$33
sOn
$80
504
$90
504
§20
554
$33
$0D
580
S04
$90
S04
$20
5§54
$3B
$0D
$80
$04
$90
$00
§22
$44
$33
50D
$c8
$44
$00
511
§22
$44
$33
$0D
$c8
$44
$A9
$01
$22
$44
$33

Appendix I

Monitor ROM Listings

F996:0D
F997:80
F998:04
F999:90
F99A:01
F99B:22
F99C:44
F99D:33
F99E:0D
FI99F:80
F9A0:04
F9A1:90
F9A2:26
F9A3:31
F9A4:87
F9A5:9A
F9A6:

F9A6:

F9A6:

F946:00
F9A7:21
F9A8:81
F9A9:82
F9AA:00
F94B:00
F9AC:59
F9AD:4D
F9AE:91
F9AF:92
F9BO:86
FIBL:4A
F9B2:85
FI9B3:9D
F9B4: AC
FI9B5:A9
F9B6:AC
FYB7: A3
FOBB:AB
F9B9: A4
F9BA:D9
F9BB:00
F9BC:D8
FIBD: A4
FI9BE: A4
F9BF:00
F9C0:1¢C
FI9C1:8A
F9C2:1¢C
F9C3:23
F9C4:5D
FI9C5:8B
FICh:1B
FI9C7:Al
FIC8:9D

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432
3 ZZXXXY0l INSTR'S

433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
459

FMT2

CHARI1

CHAR2

MNEML

DFB
DFB
DFB8
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$0D
$80
$04
890
§01
§22
§44
$33
$0D
$80
$04
$90
$26
$31
$87
$9A

$00
521
581
$82
$00
$00
§59
$4D
591
592
$86
S4A
385
$9D
SAC
$A9
$AC
SA3
SAB
SAL
$p9
$00
$D8
SA4
SAL
$00
sic
$8A
s1cC
§23
$5D
$8B
S18
$A1
$9D

;ERR

3 IMM

1 Z-PAGE

s ABS

s IMPLIED
s ACCUMULATOR
s (ZPAG,X)
;(ZPAG),Y
;ZPAG,X
;ABS X
1ABS,Y

; (ABS)

1 ZPAG,Y
sRELATIVE

« ¥ 0

i'Y'
;I‘YI

;'ls!
;rsl

453

F9C9:8A
FI9CA: 1D
F9CB:23
F9CC:9D
FI9CD:8B
F9CE:1D
FI9CF:Al
F9D0:00
FID1:29
F9D2:19
FID3: AE
FaD4:69
FID5:A8
FID6:19
F9D7:23
FI9DB:24
F9D9:53
FO9DA:1B
FI9DB:23
F9DC:24
F9DD:53
F9DE:19
F9DF:Al
FIE0:00
FI9E1:1A
F9E2:5B
F9E3:5B
F9E4: A5
F9E5:69
F9E6:24
F9E7 :24
F9E3:AE
F9E9: AE
FI9EA: A8
FIEB:AD
F9EC:29
FIED:00
FI9EE:7C
F9EF:00
FI9F0:15
F9F1:9C
F9F2:6D
F9F3:9C
F9F4: A5
F9F5:69
F9F6:29
F9F7:53
F9F8:84
F9F9:13
FO9FA:34
FO9FB:11
FIFC: AS
FIFD:69
F9FE:23

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$8A
$1D
$23
$9D
$88
$1D
$Al
$00
$29
$19

$69
$A8
$19
$23
$24
553
518
$23
$24
$53
519
$AL
$00
S1A
$5B
$5B
$A5
$69
$24
§24
SAE
SAE
SA8
$AD
$29
500
$7C
500
$15
s9¢
$6D
$9C
SAS
$69
$29
$53
$84
513
§34
Sl

569
$23

; (A) FORMAT ABOVE

; (B) FORMAT

; (C) FORMAT

; (D) FORMAT

; (E) FORMAT

FO9FF:AQ0
FAQD: D8
FADL:62
FA02:5A
FAD3:48
FAQ4:26
FA05:62
FAO6:94
FAQ7 :88
FAOB:54
FAQ9:44
FAOA:C8
FAOB:54
FAOC:68
FAOD:44
FAOE:E8
FAQF:94
FAL10:00
FALl:B&4
FA12:08
FAL3:84
FAl4:74
FALS5:B4
FAl6:28
FAl7:6E
FA18:74
FA19:F4
FALA:CC
FALB:4A
FAlC:72
FAID:F2
FAIE: A4
FALF:8A
FA20:00
FA21:AA
FA22:A2
FA23:A2
FA24:74
FA25:74
FA26:74
FA27:72
FA28:44
FA29:68
FA2A:B2

567
FA2B:32
FA2C: B2
FAZD:D0
FA2E:22
FA2F:00
Fa30:14
FA31:1A
FA32:26
FA33:26

524
525 MNEMR
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
ShL
565
566

DFB $B2
568
569
570
5%
572
573
574
575
576

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
NFB
DFB
DFB
DFB
DFB
DFB

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$SAO
$D8
$62
$54
$48
326
$62
$94
$88
$54
$44
sca
§54
568
Shh
SE8
$94
$00
$B4
508
$84
$74
SB4
328
S6E
374
SF4
scC
S4A
$72
$F2
SAL
$B8A
300
SAA
SA2
SA2
S74
$74
574
572
$44
$68

$32
$B2
$00
$22
S00
S1A
SlA
$26
526

Appendix I: Monitor ROM Listings

..

(A) FORMAT

(B) FORMAT

; (C) FORMAT

dhh

FA34:72
FA35:72
FA36:88
FA37:C8
FA38:CL
FA39:CA
FA3A:26
FA3B:48
FA3C:44
FA3D:44
FAJE:A2
FA3F:C8
FA40:

FA40:

FA4O:

FA40:85
FA42:AS
FA44:14C
FA4T:

FA4T :8D
FA4A:85
FA4C:

FA4C:28
FA4D:20
FA50:68
FA51:85
FA53:68
FA54:85
FAS56:6C
FA59:

FA59:20
FAS5C:20
FASF:4C
FA62:D8
FA63:20
FA66:20
FA69:20
FA6C:20
FA6F:AD
FA72:AD
FA75:A0
FA77:20
FATA:EA
FA7B:AD
FATE:2C
FA81:D8
FA82:20
FABS5:AD
FAB88:49
FAB8A:CD
FA8D:DO
FA8F:AD
FA92:D0
FA94: A9

45
45
FA
06
45
4C

3A

C3FA

c3

co

FF

FAAG

FAA3

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
613
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

*
NEWIRQ
*

OLDIRQ

*

NEWBREAK STA

*
BREAK

OLDBRK

RESET

INITAN

NEWMON

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

EQU

STA
LDA
JMP

STA

PLP
JSR
PLA
STA
PLA
STA
JMP

JSR
JSR
JMP
CLD
JSR
J8R
JSR
JSR
LDA
LDA
LDY
JSR
NOP
LDA
BIT
CLD
JSR
LDA
EOR

BNE
LDA
BNE
LDA

§72
§72
588
$c8
$Ch
SCA
826
548
S44
S44
SA2
5C8

SC3IFA
$45

$45
NEWIRQ

; (D) FORMAT

: (E) FORMAT

inew IRQ entry

;{should never be used)
;for those who save A to $45
;g0 to interrupt handler

SETSLOTCXROM ;force in slots

ACC

SAV1
PCL

PCH
(BRKV)

INSDS1
RGDSPL
MON

SETNORM
INIT
SETVID
SETKBD
SETANO
SETANL
#9
GOTOCX

CLRROM
KBDSTRB

BELL
SOFTEV+1
#SAS
PWREDUP
PWRUP
SOFTEV
NOFIX
#SEO

;save accumulator

1SAVE REG'S ON BREAK
; INCLUDING PC

;BRKV WRITTEN OVER BY DISK BOOT

;PRINT USER PC

: AND REGS

;60 TO MONITOR (NO PASS GO, NO $200!)
;DO THIS FIRST THIS TIME

; ANO = TTL LO

: ANl = TTL LO
;CODE=INIT/RRAO981

;DO APPLE2E INIT/RRA0981
;/RRAO0981

; TURN OFF EXTNSN ROM

; CLEAR KEYBOARD

; CAUSES DELAY IF KEY BOUNCES

;IS RESET HI

;A FUNNY COMPLEMENT OF THE

; PWR UP BYTE 777

; NO 50 PWRUP

; YES SEE IF COLD START

; HAS BEEN DONE YET?

; DOES SOFT ENTRY VECTOR POINT AT BASIC?

FA96:CD
FA99:D0
FA9B:AQ
FA9D:8C
FAAD:4C
FAA3:6C
FAAG:

FAAG:20
FAA9:

FAAG 1 A2
FAAB:BD
FAAE:9D
FABL :CA
FAB2:D0
FAB4: A9
FAB6:86
FABB:85
FABA:

FABA:

FABA:

FABA:

FABA: A0
FABC:C6
FABE: A5
FACO:C9
FAC2:FO
FAC4:8D
FAC7:B1
FAC9:D9
FACC : DO
FACE:88
FACF:88
FADO:10
FAD2:6C
FADS5:

FAD5:FA
FAD6:EA
FAD7 :

FAD7 :20
FADA: A9
FADC: 8%
FADE: A9
FAEQ:85
FAE2:42
FAE4: A9
FAE6:20
FAE9:BD
FAEC:20
FAEF:A9
FAF1:20
FAF4:BS

FAF6:20

F3

05

05

01
co
D7
F8
00
01
EC

F5

00

8E

40

03
FAA3

03
EQ

FA9B
07

FB
FABA

FAC7
00

FD

FD
FA
FD
FD
FD

FAE4

631
632
633
634
635
636
637
638
639
640
641
642
643
644

646

656

660

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

CMP SOFTEV+1
BNE HNOFIX + YES SO REENTER SYSTEM
FIXSEV LDY #3 ;3 NO SO POINT AT WARM START
STY SQFTEV ;5 FOR NEXT RESET
JMP BASIC 3 AND DO THE COLD START
NOFIX JMP (SOFTEV) ; SOFT ENTRY VECTOR
ek kg Aok K Rk e Kk k e
PWRUP JSR APPLEII
SETPG3 EQU * ; SET PAGE 3 VECTORS
LDX #5
SETPLP LDA PWRCON-1,X ; WITH CNTRL B ADRS
STA BRKV-1,X ; OF CURRENT BASIC
NEX
BNE SETPLP
LDA {#5C8 ; LOAD HI SLOT +1
STX LOCO 3 SETPG3 MUST RETURN X=0
STA LoCl ;s SET PTR H
i
* Check 3 ID bytes instead of 4. Allows devices
* other than Disk II's to be bootable.
*
SLOOP LDY #5 ;Y is byte ptr
DEC LoCl
LDA TLocl
CMP #5C0 s AT LAST SLOT YET?
BEQ FIXSEV ; YES AND IT CAN'T BE A DISK
STA MSLOT
NXTBYT LDA (LOCO),Y 3+ FETCH A SLOT BYTE
CMP DISKID-1,Y ; IS IT A DISK 27
BNE SLOOP ; NO, S0 NEXT SLOT DOWN
DEY
DEY ; YES, SO CHECX NEXT BYTE
BPL NXTBYT 3 UNTIL 3 BYTES CHECKED
JMP (LOCD) 3 GO BOOT...
*
NOP
NOP
*
REGDSP JSR CROUT ;DISPLAY USER REG CONTENTS
RGDSP1 LDA #8§45 sWITH LABELS
STA A3L
LDA #500
STA A3H
LDX #SFB
RDSP1 LDA {#$A0
JSR COUT
LDA RTBL-251,X
JSR COUT
LDA #S$BD
JSR COUT
LDA ACC+5,X
JSR PRBYTE
INX
BMI RDSP1

FAFC:60 685 RTS

FAFD: 686 *

FAFD:59 FA 687 PWRCON DwW OLDRRK

FAFF:00 EOD 45 688 DFB 500,$E0,845

FBO2:20 FF 00 FF 689 DISKID DFB $20,5FF,S00,SFF

FBO6:03 FF 3C 690 DFB $03,5FF,$3C

FBO9:Cl FO FO EC 691 ASC 'Apple 1t

FB11l: FB11 692 XLTBL EQU *

FB11:C4 C2 CIL 693 DFB SC4,%C2,5Cl1

FB14:FF C3 694 DFB S$FF,$C3

FBL6:FF FF FF 695 DFE SFF,SFF,$FF

FB19: 696 *

FE19:C1 D8 D9 697 RTEL DFB 8Cl1,5D8,8D9 ;REGISTER NAMES FOR REGDSP:
FB1C:DO D3I 698 DFB $DO,$D3 ;' AXYPS'

FBLE:AD 70 CO 699 PREAD LDA PTRIG 1TRIGGER PADDLES

FB21:A0 00 700 LDY #500 3 INIT COUNT

FB23:EA 701 NOP ;COMPENSATE FOR 1ST COUNT
FB24:EA 702 NOP

FB25:BD 64 CO 703 PREAD2Z LDA ©PADDLO,X ;COUNT Y-REG EVERY 12 USEC.
FB28:10 04 FB2E 704 BPL RTS2D

FB2A:C8 705 INY

FB2B:D0O F8 FB25 706 BNE PREAD2 JEXIT AT 255 MAX

FB2D:88 707 DEY

FB2E:60 708 RTS2D RTS

FB2F: 1 %

FB2F:A9 00 2 INIT LDA #3500 ;CLR STATUS FOR DEBUG SOFTWARE
FB31:85 48 3 STA STATUS

FB33:AD 56 CO 4 LDA LORES

FB36:AD 54 CO 5 LDA LOWSCR + INIT VIDEO MODE

FB39:AD 51 CO 6 SETTXT LDA TXTSET 3SET FOR TEXT MODE
FB3C:A9 00 7 LDA #8000 3yFULL SCREEN WINDOW
FB3E:FO OB FB4B B8 BEQ SETWND

FB40:AD 50 CO 9 SETGR LDA TXTCLR 3SET FOR GRAPHICS MODE
FB43:AD 53 CO 10 LDA MIXSET ;LOWER 4 LINES AS TEXT WINDOW
FB46:20 36 F8 11 JSR CLRTOP

FB49:A9 14 12 LDA {#$14

FB4B:85 22 13 SETWND STA WNDTOP ;SET FOR 40 COL WINDOW
FB4D: A9 00 14 LDA #3500 ;TOP IN A-REG,

FB4F:85 20 15 STA WNDLFT ; BOTTOM AT LINE $24
FB51:A0 0C 16 LDY #5C ;CODE=SETWND /RRA0Y81
FR53:N0 SF FBRBR4 17 BNE GOTOCX

FB55:A9 18 18 LDA #S18

FB57:85 23 19 STA WNDBTM

FB59:A9 17 20 LDA #8117 ;VTAB TO ROW 23

FB5B:85 25 21 TABV STA CV 1 VTABS TO ROW IN A-REG
FB5D:4C 22 FC 22 JMP VTAB

FB60: 23 *

FB60:20 58 FC 24 APPLEII JSR HOME ;CLEAR THE SCRN

FB63:A0 09 25 LDY #9

FB65:B9 09 FF 26 STITLE LDA TITLE-1,Y ;GET A CHAR

FB68:99 OE 04 27 STA LINEl+14,Y :PUT IT AT TOP CENTER OF SCREEN
FB6B:88 28 DEY

FB6C:DO F7 FB65 29 BNE STITLE

FB6E:60 30 RTS

FBGF:

FBEF:AD
FB72:49
FB74:8D
FB77:60
FB78:

FB78:

FB78:C9
FB7A:D0O
FB7C:AC
FB7F:10
FB81:CO
FB83:D0
FB85:2C
FB8&: AC
FB8B:10
FB8D:CO
FBBF:FO
FB91:2C
FB94 :4C
FB97:

FB97:38
FB98:4C
FB9B: A8
FB9C: B9
FBY9F:20
FBA2:20
FBA5:C9
FBA7: BO
FBA9:C9
FBAB:90
FBAD:C9
FBAF:FO
FBB1:DO
FBB3:

FBB3:

FBB3:

FBB3:

FBB3:

FBB3:06
FRB4:

FBBR4 :

FBB4:2C
FBB7:08
FBBB:8D
FBBB:4C
FBBE:

FBBE:00
FBBF:00
FBCO:

FBCO:EQ
FBCl:

FBCI :48
FBC2:44A

F3
A5
Fb4

15

07
00

03

03

co

co

co
FB
FC
FA

FB
FD

co

co
cl

FB78

FB94

FB94

FR94

FR88

FB94

FB97

FB97

FB97
FB9B

c006

coo7
co15

FBB4

SETPWRC

*
VIDWAILT

KBDWAIT

NOWAIT
*
ESCOLD

ESCNOW

ESCNEW

*

LDA
EOR
STA
RTS

EQU
CMP
BNE
LDY
BPL
CPY
BNE
BIT
LDY
BPL
CPY
BEQ
BIT
JHP

SEC
JMP
TAY
LDA
JSR
JSR
CHMP
BCS
CMP
BCC
CMP
BEQ
BNE

SOFTEV+1 sROUTINE TO CALCULATE THE 'FUNNY

#545 ;COMPLEMENT' FOR THE RESET VECTOR
PWREDUP

;CHECK FOR A PAUSE (CONTROL-S).
#58D ;ONLY WHEN 1 HAVE A CR

NOWAIT ;NOT SO, DO REGULAR

KBD ;IS KEY PRESSED?

NOWALT $NO.

#3893 ;YES —- IS IT CTRL-S?

NOWATT ;NOPE - IGNORE

KBDSTRB ;CLEAR STROBE

KBD SWATL TILL NEXT KEY TO RESUME
KBDWAIT iWAIT FOR KEYPRESS

#3583 ;IS IT CONTROL-C?

NOWALT ;YES, SO LEAVE IT

KBDSTRB ;CLR STROBE

VIDOUT ;D0 AS BEFORE

3 INSURE CARRY SET
ESC1

;USE CHAR AS INDEX
XLTBL-$C9,Y ;TRANSLATE IJKM TO CBAD

ESCOLD ;DO THE CURSOR MOTION

RDESC ;GET TJKM, ijkm, ARROWS/RRA0981
#SCE ;1S THIS AN 'N"?

ESCOLD ;'N' OR GREATER - DO IT!

#5C9 ;LESS THAN 'I'?

ESCOLD ;YES, SO DO OLD WAY

#sCC 118 It AN YLYE

ESCOLD ;D0 NORMAL

ESCNOW ;GO DO IT

SETSLOTCXROM EQU $C006 ;/RRAD981
SETINTCXROM EQU $C007 ;/RRA0981

RDCXROM EQU $COL5 ;/RRAD981

* /RRA0981

VERSION DFB 506 ;FOR IDCHECK/RRA0981

*

GOTOCX FOU * ;/RRAD981
BIT RDCXROM ;GET CURRENT STATE/RRA0981
PHP ;SAVE ROMBANK STATF/RRA0981
STA SETINICXROM ;SET ROMS ON/RRAQ981
JMP ClORG ;=>OFF TO CXSPACE/RRAC9B]

*
DFB 0
DFB 0

*

ZIDBYTE DFB $EO i//e ROM rev ID byte

*

BASCALC PHA ;CALC BASE ADDR IN BASL,H
LSR A ;FOR GIVEN LINE NO.

M Listing 369

FBC3:
FBCS5:
FBC7:
FBCY:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD&:
FBDG:
FBD8:
FBD9:
FBDY:
FBDB:
FBDD:
FBDF:
FBE2:
FBE4:
FBE6:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
FBFO:
FBF2:
FBF4:
FBF6:
FBF8:
FBFA:
FBFC:
FBFD:
FBFD:C
FBFF:
FCO1:
FCO2:
FCO4:
FCO6:
FCOB:
FCOA:
FCOC:
FCOE:
FClO:
FC12:
FClb:
FCl6:
FC13:
FClLA:
FCle:
FCLE:
FC20:
FC22:

03
04
29

18
02
7F
28

28
28

87
12
40
AB
co
oc
A8
30

FBDO

FBEF

FC

FC

FBE4

FC62

FBFO
FBFO
FC62
FC66
FBD9

FBFC

FBFC

92 BASCLC2

99 BELL1

104 BELL2

109 RTSZB
110 *
111 STORADV

113 ADVANCE

115
116
117 RTS3
118 *
119 vIpouT
120
121
122
123
124
125
126
127
128
129 BS
130
131
132
133
134 UP
135
136
137
138 *

AKD

STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS

CMP
BNE
LDA
JSR
1.DY
LDA
JSR
LDA
DEY
BNE
RTS

LDY
STA
INC
LbA
CMP
BCS
RTS

cMp
BCS
TAY
BPL
CMP
BEQ
CHMP
BEQ
CMP
BNE
DEC
BPL
LDA
STA
DEC
LDA
CMP
BCS
DEC

#503 ; O<=LINE NO.<=§17

#3804 ;ARG = Q000DABCDE, GENERATE
BASH ; BASH = 000001CD
; AND
#3518 ; BASL = EABABOOD
BASCLC2
#S7F
BASL
A
A
BASL
BASL
#587 ;BELL CHAR? (CONTROL-G)
RTS2B : NO, RETURN.
#8540 s YER: e
WALT ;DELAY .01 SECONDS
#sco
#s0c ;TOGGLE SPEAKER AT 1 KHZ
WAIT ; FOR .1 SEC.
SPKR
BELLZ2
CH ;CURSOR H INDEX TO Y-REG
(BASL),Y ;STORE CHAR IN LINE
CH ;INCREMENT CURSOR H INDEX
CH ; (MOVE RIGHT)
WNDWDTH ;BEYOND WINDOW WIDTH?
CR i YES, CR TO NEXT LINE.
; NO, RETURN.
#3$AD ;CONTROL CHAR?
STORADV ; NO, OUTPUT IT.
; INVERSE VIDEO?
STORADV : YES, OUTPUT IT.
#58D ;CR?
CR ; YES.
#58A ;LINE FEED?
LF ; 1IF S0, DO IT.
#588 ;BACK SPACE? (CONTROL-H)
BELLL s NO, CHECK FOR BELL.
CH :DECREMENT CURSOR H INDEX
RTS3 ;IF POSITIVE, OK; ELSE MOVE UP.
WNDWDTH ;SET CH TO WINDOW WIDTH - 1.
CH
cd ; (RIGHTMOST SCREEN PQS)
WNDTOP ;CURSOR V INDEX
cv
RTS3 ;IF TOP LINE THEN RETURN
v :DECR CURSOR V INDEX

ROM Listings

FC22:A5
FC24:85
FC26:98
FC27:A0
FC29:D0
FC2B:

FC2B:EA
FC2C:

FC2C:49
FC2E: FO
FC30:69
FC32:90
FC34:F0
FC36:69
FC38:90
FC3A:F0
FC3C:69
FC3E:90
FC40:D0
FC42:

FC42:

FC42:A0
FC44:D0
FC46:

FC46:2C
FC49:10
FC4B:AO
FC4D:FO
FC4F:98
FC50:48
FC51:20
FC54:68
FC55: A4
FC57:60
FC58:

FC58:

FC58: A0
FCS5A:4C
FC5D:

FC5D:EA
FCSF:FA
FCSF:EA
FCH0:EA
FCHhL:EA
FCh2:

FCH2: A9
FCh4:85
FCHA:EB
FCHB:AS5
FCHA:CS
FCAC:90
FCBE:CH
FC70:

FC70:

25
28

0A
E3

1F
04

0B

78

35

B4

FBB4

FC58

FBF4
FC10

FC66
FClA

FC9C
FBFC

FC42
FC29

co
FC4F
FC5A

FB

FC58

FB

FC24

FC70

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
455
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
il
172
173
174
173
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
141
192

VTAB LDA
VTABZ STA
TYA
LDy

GOTOCX1 BNE
*

NOP
*
ESCl EOR
BEQ

BCC
BEQ

BCC
BEQ

ENE
*

CLREOP EQU
NEWVW BIT

NEWVWL TYA

HOME EQU
GOTOCX3 JMP
*

NOP
NOP
NOP
NOP
NOP

CR LDA
STA
LF INC
LDA
CMP
BCC
DEC
*

SCROLL EQU

cv
BASL

#$4
GOTOCX

#3C0
HOME
#$FD
ADVANCE
BS
#SFD
LF

Up
#$FD
CLREOL
RTS3

*

#sa
GOTOCX1

RDBOVID
NEWVW1
#50
GOTOCX3

VIDWAIT

YSAVL

*

#5
GOTOCX

cv
WNDBTM
VTABZ
cv

*

{GET CURSOR V INDEX
;temporarily save Acc
jand Y
sthis is VTABZ call
;=> always perform call

;ESC '@'?

; IF SO DO HOME AND CLEAR
1ESC~A OR B CHECK

; A, ADVANCE

1+ B, BACKSPACE

;ESC-C OR D CHECK

3 C, DOWN

1 D, GO UP

;ESC-E OR F CKECK

;+ E, CLEAR TO END OF LINE
; ELSE NOT F,RETURN

;/RRAD9RI
; CODE=CLREOP/RRA0981
;DO 40/80 /RRA0981

;in B0 columns?

;=>not 80 columns
;Print a character
;through video firmware
;get masked character
;and set up for vidwait
sprint the character
irestore Acc

jand Y

;/RRAD981
; CODE=HOME /RRA0981
;do 40/80

1CURSOR TO LEFT OF INDEX
;(RET CURSOR H=0)
;INCR CURSOR V. (DOWN 1 LINE)

;OFF SCREEN?
; NO, SET BASE ADDR
;DECR CURSOR V. (BACK TO BOTTOM)

;/RRAD981

UM Lisiings 3(‘,]

FC70:A0 06 193 LDY #6 ;CODE=SCROLL/RRA0981

FC72:D0 B5 FC29 194 BNE GOTOCX1 ;DO 40/80 /RRAD98I1
FC74: 195 *

FC74: 196 * Jump here to swap out ROMs

FC74: 197 * for interrupt handlers in peripheral cards
FC74: 198 *

FC74:8D 06 CO 199 IRQUSER STA SETSLOTCXROM ;switch in slots
FC77:6C FE 03 200 JMP (S3FE) ;and jump to user
FC7A: 201 *

FC7A: 202 * IRQDONE (S$SC3F4) jumps here after interrupt
FC7A: 203 * because this cannot be done from $Cn00 space
FC7A: 204 *

FC7A:68 205 IRQDONE2 PLA ;Fix SC800 space
FC7B:8D F8 07 206 STA MSLOT ;restore MSLOT
FC7E:C9 Cl 207 CMP #3C1 ;valid Cn?

FC80:90 0D FC8F 208 BCC TIRQNOSLT

FC82:8D FF CF 209 STA S$CFFF ;Deselect all $C800
FC85:A0 00 210 LY #0

FC87:46 01 211 LDX $1

FC89:85 01 212 STA $§1

FC8B:Bl1 00 213 LDA (80),Y jdo $Cn00 reference
FC8D:86 01 214 STX sl ;£ix zp location
FCBF:8D 07 CO 215 TRQNOSLT STA SETINTCXROM

FC92:4C 7C C4 216 JMP TIRQFIX ;and restore the machine state
FC95: 217 *

FC95:90 02 FC99 218 DOCOUT1 BCC DOCOUT2 ;jdon't mask controls
FC97:25 32 219 AND INVFLG ;apply inverse mask
FC99:4C F7 FD 220 DOCOUT2 JMP COUTZ1 ;g0 back to COUTI
FCYC: 221 *

FC9C: 0000 222 DS FBORG+S49C-*,0 ;pad to clreol
FC9C: 223 *

FC9C: 224 * Note: bytes CLREOL and CLREOLZ (538 and $18)
FCIC: 225 * are used by slot test at $FBB7.

FC9C: 226 *

FC9C:38 227 CLREOL SEC ;jsay it is EOL
FCI9D:90 228 DFB $90 ;"BCC' opcode

FC9E:18 229 CLREQLZ CLC 3jsay it is EOLZ
FCOF:84 2A 230 STY BAS2L ;save Y in temp
FCAl:A0Q 07 231 LDY #7 ;code=CLREOL

FCA3:B0O 78 FDID 232 BCS GOTOCX2 ido ic

FCA5:C8 233 INY scode 8=CLREQLZ
FCA6:D0 75 FDID 234 BNE GOTOCX2

FCA8: 235 *

FCA8:38 236 WAIT SEC jenter with count in A
FCA9:48 237 WAIT2 PHA ;delay is:

FCAA:E9 01 238 WAIT3 SBC #501

FCAC:DO FC FCAA 239 BNE WAIT3 s 13+11*%A+5%A*A cycles
FCAE:68 240 PLA ;0 1.023 usec per cycle
FCAF:E9 01 241 SBC #5801

FCB1:DO Fé FCA9 242 BNE WAIT2

FCB3:60 243 RTS

FCB4: 244 *

FCB4:E6 42 245 NXTA4 INC A4L ;INCR 2-BYTE A4

FCB6:D0 02 FCBA 246 BNE NXTAl ; AND Al

FCRB:E6
FCBA:AS
FCBC:C5
FCBE: A5
FCCO:ES
FCC2:E6
FCC4:D0
FCCh:E6
FCCB:60
FCC9:

FCC9:8D
FCCC:20
FCCF:4C
FCD2:

FCD2:

FCD2:

FCD2:

FCD2:

FCD2:

FCD2:8D
FCD5:20
FCDB: A9
FCDA:20
FCDD:20
FCEOD:4C
FCE3:

FCE3:8D
FCE6:20
FCE9:20
FCEC:84
FCEE:85
FCFO:

FCFO:

FCFO:

FCFO:

FCFO: A9
FCF2:85
FCF4:20
FCF7:8D
FCFA:4C
FCFD:

FCFD: B9
FDOO:C8
FDO1:C9
FDD3:90
FD05:C9
FDO7:BO
FD09:29
FDOB:60
FDOC:

FDOC: AQ
FDOE: DO
FDLO:4C
FD13:20

06
4A
DE

34
FO

06

3B
3A

El
06

02
DF

OB
03
18
B4

co

FE

co

FD
FF
FC
co

F8
Fy

ED

CF

02

FD
FB

FCC8

FDOB

FDOB

FD13

247
248
249
250
251

253

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

298
299
300

INC A4H
NXTAI LDA AlL ; LNCR 2-BYTE Al.
CMP AZL i AND COMPARE TO A2
LDA AlH ; (CARRY SET IF >=)
SBC AZH
INC AlL
BNE RTS4B
INC AlH
RTS4B RTS
“
HEADR STA SETINTCXROM ;force internal ROM
JSR XHEADER jwrite header
JMP RETCXL ;force slots and return
*
* For the disassembler to be able to do I/0 to slots,
* it cannot make calls to the I/0 routines with the
* internal ROM switched in. This stuff switches the
* ROM out for such instances.
*
FRR3 ~ STA SETSLOTCXROM ;force slot ROM
JSR PRBL2 jtab to the error
LDA {#SDE ito print a caret "V
JSR COUT sprint it
JSR BELL sand beep
JMP GETINST1 j;and go get next instruction
*
DISLIN STA SETSLOTCXROM ;force slot ROM
JSR INSTDSP ;jdisassemble the instruction
JSR PCADJ ;jcalculate new PC
STY PCH ;and update PC
STA PCL
*
* NOTE: The entry point GETINST] is hard-coded in
* BFUNC of the Video firmware.
*
GETINSTl LDA #SAl ;get mini-prompt "!"
STA PROMPT
JSR GETLNZ ;80 get a line of input
STA SETINTCXROM ;force internal ROM
JMP DOINST ;and return to CX space
*
UPMON LDA 1IN,Y ;get character
INY ;jpoint to next char
CMP #SEl ;is it lowercase?
BCC UPMON2 i=>nope
CMP {#SFB ;lowercase?
BCS UPMON2 ;=>nope
AND #5DF ;else upshift
UPMON2 RTS
*
RDKEY LDY #$B ;code=RDKEY
BNE RDKEYO ;allow $FD10 entry
FD10 JMP RDKEY1 ;1f enter here, do nothing
RDKEY0 JSR GOTOCX ;display cursor

nitor ROM Listings Bﬁli

FD16:EA
FD17:EA
FD18:6C
FD1B:
FD1B:
FD1B:AQ
FDID:4C
FN20:EA
FD21:
FD21:
FD21:20
FD24: A0
FD26:D0
FD28:
FD28:
FD28:
FD28:
FD28:
FD28:
FD28:4E
FD2B:4C
FD2E:EA
FD2F:
FD2F:20
FD32:20
FD35:20
FD38:C9
FD3A:F0
FD3C:60
FD3D:
FD3D:AO0
FD3F:20
FD42: A4
FD44:9D
FD4T:

FD&47:20
FD4A:EA
FD4B:EA
FD4C:EA
FD4D:BD
FD50:CY9
FD52:F0
FD54:C9
FD56:F0
FD58:E0
FD5A:90
FD5C:20
FD5F:EB
FD60: DO
FD62:

FD62:A9
FD64:20
FD67:20

38

03

0c

F5

F&
oc

ED

00
88
1D

0A
F8

3A

DC
ED

00

FD1B

FB

FD21

FD

FDID

07

FD

FD

FD

FD2F

FB

02

FD

02

FD71

FD62

FD5F
FF

FD75

FD
FD

301
302

304
305
306
307
308
309
310
311
312
313
314
5
316
317
318
319
320
321
322
323
324
325
326
327
328

330
331
332
333
334
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

NOP

NOP
RDKEY1 JMP
*

KEYIN EQU
LDY

GOTOCX2 JMP
NOP

*

RDESC EQU
JSR
LDY

BNE
*

(KSWL) ;G0 TO USER KEY-IN
*
#3 ; RDKEY /RRAQ981
GOTOCX ;/RRAD981
; /RRADI81
*
RDKEY {GET A KEY
#1 ;CODE=FIXIT

GOTOCX2 ;=>always

* Flag to the video firmware that escapes are allowed.
* This routine is called by RDCHAR which is called by
* GETLN. The high bit of MSLOT is set by all cards

* that use the C800 space.

*

NEWEDKEY LSR MSLOT ;<128 means escape allowed
JMP RDKEY ;jnow read the key
NOP
*
ESC JSR RDESC s /RRAD981
JSR ESCNEW ;HANDLE ESC FUNCTION.
RDCHAR JSR NEWRDKEY ;Flag RDCHAR and read key
CMP #S$9B 1 TESCY?
BEQ ESC ; YES, DON'T RETURN.
RTS
*
PICKFIX LDY #SF ;code = fixpick
JSR GOTOCX ;do 80 column pick
LDY CH s;restore Y
STA 1IN,X ;jand save new character
*#03 AUTOST2 Auto-Start Monitor ROM 27-AUG-84
NOTCR JSR CcouT jecho typed char
NOP
NOP
NOP
LDA IN,X
CMP #3588 ;CHECK FOR EDIT KEYS
BEQ BCKSPC ;3 — BACKSPACE
CMP #5898
BEQ CANCEL 3 = CONTROL-X
CPX {#SF8
BCC NOTCRI ;MARGIN?
JSR BELL ;s YES, SOUND BELL
NOTCRlI INX ;ADVANCE INPUT INDEX
BNE NXTCHAR
*
CANCEL LDA #SDC sBACKSLASH AFTER CANCELLED LINE
JSR COUT
GETLNZ JSR CROUT ;OUTPUT 'CR’

PAGE 20

o B E R EE N EEEEEEmw

FDb6A: AS
FD6C:20
FD6F: A2
FD71:8A
FD72:F0
FD74:CA
FD75:20
FD78:C9
FD7A:DO
FD7C:Bl
FD7E:2C
FD81:30
FD83:EA
FDB4:9D
FD87:C9
FD89: 10
FD8B:20
FDBE:A9
FD90:DO
FD92:

FD92: A4
FD94: A6
FD96:20
FD99:20
FD9C:AD
FDY9E: A9
FDAO:4C
FDA3:

FDA3:AS
FDA5:09
FDA7 :85
FDA9: A5
FDAB:85
FDAD: A5

33
ED
01

F3

DBCHK LDA

FDAF:29
FDB1:D0O
FDB3:20
FDB6: A9
FDB8:20
FDBB:B1
FDBD:20
FDCO:20
FDC3:90
FDC5:60
FDC6:

FDCH:4A
FDC7:90
FDC9:4A
FDCA:4A
FDCB:A5
FDCD:90
FDCF:49
FDD1:65

07
03
92

EA

3E
02

3C

FD

FD67

FD

FD84

co
FD3D

02

FD47
FC

FDED

FD

FD

AlL

FDB6
FD

FD
FD

FC
FDAD

FDB3

FDDI

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
196
397
198
399
400
401
402
403
404
405
406

GETLN
BCKSPC

NXTCHAR

ADDINP

CROUT

PRAL

PRYX2

XAM8

MO

XAM
DATAOUT

RTS4C
*

XAMPM

ADD

LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
BNE
LDA
BIT
BMI
NOP
STA
CMP
BNE
JSR
LDA
BNE

LDY
LDX
JSR
JSR
LDY
LDA
JMP

LDA

STA
LDA
STA

AND
BNE
JSR
LDA
JSR
LDA
JSR
JBR

RTS
LSR
LSR
LSR
LDA

EOR

PROMPT ;OUTPUT PROMPT CHAR
CcouT

#3501 ;INIT INPUT INDEX
GETLNZ sWILL BACKSPACE TO 0
RDCHAR

#5895 1 USE SCREEN CHAR
ADDINP 3 FOR CONTROL-U
(BASL),Y jdo 40 column pick
RDBOVID 380 columns?

PICKFIX y=>yes, fix it

IN,X ;ADD TO INPUT BUFFER
#$8D

NOTCR

CLREOL ;CLR TO EOL IF CR
#$8D

couT ; (ALWAYS)

AlH 1+PRINT CR,Al IN HEX
AlL

CROUT

PRNTYX

#500

#SAD s PRINT '-'

couT

AlL

#3807 ;SET TO FINISH AT
A2L ; MOD 8=7

AlH

AZH

#5807

DATAQUT

PRAL

#$A0

cout ;OUTPUT BLANK
(ALL),Y

PRBYTE ;OUTPUT BYTE IN HEX
NXTAL

MODBCHK ;NOT DONE YET. GO CHECK MOD 8

;DONE.

A sDETERMINE IF MONITOR MODE IS
XAM ; EXAMINE, ADD OR SUBTRACT
A

A

A2L

ADD

#$FF ;FORM 2'S COMPLEMENT FOR SUBTRACT.
AlL
A\ppendix [: Monitor ROM Listings

365

FDD3:48
FDD4 : A9
FDD6:20
FDD9:68
FDDA:48
FDDB:4A
FDDC:4A
FDDD:4A
FDDE:4A
FDDF:20
FDE2:68
FDE3:29
FDE5:09
FDE7:C9
FDE9:90
FDEB:69
FDED:

FDED:6C
FDFO:

FDFQ:48
FDF1:C9
FDF3:4C
FDF6:

FDF6:48
FDF7:84
FDF9: A8
FDFA:68
FDFB:4C
FDFE:EA
FDFF:EA
FEDO:

FE00:C6
FEO2:F0
FEO4:CA
FE05:D0
FE07:C9
FE09:D0
FFOB:85
FEOD: A5
FEOF:91
FE11:E6
FE13:D0
FE15:E6
FE17:60
FE18:

FE18:4A4
FEIA:B9
FE1D:85
FEIF:60
FE20:

FE20:A2
FE22:B5
FE24:95
FE26:95

BD
ED

E5
OF
BA
02
06

36

95

25

46

FD

FD

00

FC

FC

01

FDED

FDA3

FEID

FDC6

FE17

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

458
459
460

PRBYTE

PRHEX
PRHEXZ

CouT

COUT1

*

CoUTZ
COUTZ1

BL1

BLANK

STOR

RTS5
*

SETMODE

SETMDZ

*
LT
LT2

PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSR
LSR
JSR
PLA
AND
ORA
CMP
BCC
ADC

JMP

PHA
CMP

PHA
STY
TAY
PLA
JMP
NOP
NOP

DEC
BEQ
DEX
BNE
CMP
BENE
STA
LDA
STA
INC
BNE
INC
RTS

LDY
LDA
STA
RTS

LDX
LDA
STA
STA

o>

RHEXZ

#$OF
#$B0
#$BA
couT
#$06

(CSwWL)

#$A0
DOCOUT1

YSAVL

NEWVW

YSAV
XAM8

SETMDZ
#SBA
XAMPM
MODE
A2L
(A3L),Y
AL
RTSS
A3H

YSAV
IN-1,Y
MODE

#3501

A2L,X
A4L,X
ASL,X

;PRINT '=', THEN RESULT

;PRINT BYTE AS 2 HEX DIGITS
; (DESTROYS A-REG)

;PRINT HEX DIGIT IN A-REG
;LSBITS ONLY.

;VECTOR TO USER OUTPUT ROUTINE

;save original character
;is it a control?
;=r>mask if not; return to COUTZI1

;save original character
;save Y

;save masked character
;get original char

ynew entry to vidwait

:BLANK TO MON

;AFTER BLANK

:DATA STORE MODE?

; NO; XAM, ADD, OR SUBTRACT.
KEEP IN STORE MODE

;STORE AS LOW BYTE AT (A3)

;INCR A3, RETURN.

;SAVE CONVERTED ':', '+',
-1, ',' AS MODE

:COPY A2 (2 BYTES) TO
; A4 AND AS

FE28:CA
FE29:10
FE2B:60
FE2C:

FE2C:Bl
FE2E:91
FE30:20
FE33:90
FE35:60
FE36:

FE36:81
FE38:D1
FE3A:F0
FE3C:20
FE3F:Bl
FE41:20
FE44:AQ
FE46:20
FE49:A9
FE&4B:20
FE4E:Bl
FE50:20
FE53:A9
FE55:20
FE58:20
FE5B:90
FESD:60
FESE:

FE5E:20
FEb61:A9
FE63:48
FE64:20
FE67:20
FE6A:BS5
FE6C:84
FEGE:68
FE6F:38
FE70:E9
FE72:D0
FE74:60
FE75:

FE75:8A
FE76:F0
FE78:B5
FE7A:95
FE7C:CA
FE7D:10
FE7F:60

F7

3c
42
B4
F7

FC

FD

FD

FD

FD

FD

FD

FE

F8
F9

FE22

FE2C

FE58

FE36

FE63

FE7F

FE78

FE86

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

MOVE

VFY

VFYOK

LIST

LIST2

*
AlPC

Al PCLP

Al1PCRTS
*
SETINV

SETNORM
SETIFLG

DEX
BPL
RTS

LDA
STA
JSR
BCC
RTS

LDA

BEQ
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
BCC
RTS

JSR
LDA
PHA
JSR
JSR
STA
STY
PLA
SEC
SBC
BNE
RTS

TXA
BEQ
LDA
STA
DEX
BPL
RTS

LDY
LDY

STY
RTS

LT2

(AlL),Y
(A4L),Y
NXTA4
MOVE

(AlL),Y
(ALL),Y
VFYOK
PRAL
(A1L),Y
PRBYTE
#5A0
cour
#$A8
CouT
(A4L),Y
PRBYTE
#3549
couT
NXTA4
VFY

AlPC
#5514

INSTDSP
PCADJ
PCL

PCH

#$01
LIST2

ALPCRTS
AlL,X
PCL,X

AlPCLP

#383F
SETIFLG
#SFF
INVFLG

;MOVE (Al) THRU (A2) TO (A4)

JVERIFY (A1) THRU (A2)
: WITH (A4)

sMOVE Al (2 BYTES) TO
; PC IF SPEC'D AND
; DISASSEMBLE 20 INSTRUCTIONS.

;ADJUST PC AFTER EACH INSTRUCTION.

(NEXT OF 20 INSTRUCTTIONS

+IF USER SPECIFIED AN ADDRESS,
; COPY IT FROM Al TO PC.
;YEP, SO COPY IT.

:SET FOR INVERSE VID
; VIA COUT1
;SET FOR NORMAL VID

Appendix I: Monitor ROM Listings

367

FEB9: 515 %

FEB9:A9 00 516 SETKBD LDA #3500 ;DO "INKO'

FE8B:85 3E 517 INPORT STA A2L ;DO 'INFAREG'

FE8D:A2 38 518 INPRT LDX #KSWL

FEBF:AO0 1B 519 LDY #KEYIN

FE91:D0 08 FE9B 520 BNE TIOPRT

FE93: 521 %

FE93:A9 00 522 SETVID LDA #S$00 ;DO '"PR#Q’

FE95:85 3E 523 OUTPORT STA A2L ;DO "PRIAREG'

FE97:A2 36 524 OUTPRT LDX #CSWL

FE99:A0 FO 525 LDY #COUT1

FE9B:A5 3E 526 IOPRT LDA A2L 3SET INPUT/OUTPUT VECTORS
FE9D:29 OF 527 AND #S$0OF

FE9F:F0 04 FEAS 528 BEQ IOPRTI

FEAL1:09 CcO 529 ORA #<IOADR

FEA3:4A0 00 530 LDY #300

FEA5:94 00 531 IOPRTI STY LOCO,X isave low byte of hook

FEA7:95 01 532 STA LOCL,X ;save acc

FEA9:A0 OE 533 LDY #$E ;code=PR#/ IN#

FEAB:4C B4 FB 534 GOTOCX4 JMP GOTOCX ;perform call

FEAE: 535 #

FEAE:EA 536 NOP

FEAF:00 537 CKSUMFIX DFB 0 s /RRAD9SB1L

FEBO: 538 * ;=—->CORRECT CKSUM AT CREATE TIME.

FEBO:4C 00 EO 539 XBASIC JMP BASIC ;TO BASIC, COLD START

FEB3:4C 03 EO 540 BASCONT JMP BASIC2 ;sTO BASIC, WARM START

FEB6:20 75 FE 541 GO JSR AIPC +ADDR TO PC IF SPECIFIED
FEB9:20 3F FF 542 JSR RESTORE ;RESTORE FAKE REGISTERS
FEBC:6C 34 00 543 JMP (PCL) +AND GO!

FEBF:4C D7 FA 544 REGZ JMP REGDSP ;G0 DISPLAY REGISTERS

FEC2:60 545 TRACE RTS ;TRACE IS GONE

FEC3:EA 546 NOP

FEC4:60 547 STEPZ RTS ;STEP IS GONE

FECS5: 548 *

FECS: 549 * Return here from GOTOCX

FECS5: 550 *

FEC5: 551 * NOTE: This address is hard-coded in BFUNC of the
FEC5: 552 * video firmware

FEC5: 553 *

FEC5:8D 06 CO 554 RETCX1 STA SETSLOTCXROM ;restore bank

FEC8:60 555 RETCX2 RTS ;jsimply return

FECY9:EA 556 NOP

FECA: 557 *

FECA:4C F8 03 558 USR JMP USRADR ;JUMP TO CONTROL-Y VECTOR IN RAM
FECD: 559 *

FECD:A9 40 560 WRITE LDA #S40

FECF:8D 07 CO 561 WRT2 STA SETINTCXROM ;set internal ROM

FED2:20 AA C5 562 JSR WRITE2 jwrite to tape —
FED5:F0 2C FF03 563 BEQ RD2 ;=>always set slots, beep
FED7: 564 *

FED7: 565 * SEARCH is called with a Monitor command of the form
FED7: 566 * HHLLCADRL.ADR2Z in which ADRI < ADR2 and LL precedes HH o
FED7: 567 * in memory. If HH is 0, or omitted (LL<ADR1.ADR2), then
FED7: 568 * the single byte LL is searched for. You cannot search for

Appendix E Monitor ROM Listings

FED7: 569 * a two byte pair with a high byte of 0. A list of all

FED7: 570 * adresses containing the specified pattern is displayed.

FED7: 571 *

FED7:40 01 572 SEARCH LDY #1 ;set Y to 1

FED9:45 43 573 LDA A4H ;is high byte 07

FEDB:FO 04 FEEL 574 BEQ SRCHI! ;=>yes, only look for low byte

FEDD:N1 3C 575 CMP (AlL),Y ;check high byte first

FEDF:DO OA FEEB 576 BNE SRCH2 ;=»no match, try next byte

FEEl :88 577 SRCHI DEY imatch, now check low byte

FEEZ2:A5 42 578 LDA A4L ;get low byte

FEE4:D1 3C 579 CMP (AlL),Y ;does it match?

FEE6:D0 03 FEEB 580 BNE SRCH2 j=»>no match, try next byte

FEE8:20 92 FD 581 JSR PRAl ;bytes match, print address

FEEB:20 BA FC 582 SRCH2 JSR NXTAl sincrement address

FEEE:90 E7 FED7 583 BCC SEARCH ;set Y back to 1

FEF0:60 584 RTS

FEFl: 585 *

FEF1:A0 0D 586 MINI LDY #$D ;dispatch mini-assembler call to

FEF3:20 B4 FB 587 JSR GOTOCX ;get internal ROM switched in

FEF6: 588 *

FEF6:20 00 FE 589 CRMON JSR BLI ;HANDLE CR AS BLANK

FEF9:68 590 PLA ; THEN POP STACK

FEFA:68 591 PLA ; AND RETURN TO MON

FEFB:DD 6C FF69 592 BNE MONZ ; (ALWAYS)

FEFD: 593 #*

FEFD:8D 07 CO 594 READ STA SETINTCXROM j;set internal ROM

FF00:20 D1 C5 595 JSR XREAD ;do tape read

FF03:8D 06 CO 596 RD2 STA SETSLOTCXROM ;restore slot CX

FFO6:F0 32 FF3A 597 BEQ BELL ;read (write) ok, beep

FF08:D0 23 FF2D 598 BNE PRERR serror, print message

FFOA: 599 *

FFOA:C1 FO FO EC 600 TITLE ASC "Apple /1"

FF13: 601 *

FF13: 602 * NNBL gets the next non-blank for the mini-assembler

FF13: 603 *

FF13:20 FD FC 604 NNBL JSR UPMON ;get char, upshift, INY

FF16:C9 AO 605 CMP {#1SAQ ;1s it blank?

FF18:F0 F9 FF13 606 BEQ NNBL ;yes, keep looking

FFLA:60 607 RTS

FFLB: 608 *

FF1B:BO 6D FF8A 609 LOOKASC BCS DIG 3it was a digic

FF1D:C9 AO 610 CMP #$SA0 ;check for quote (')

FFLF:DO 28 FF49 611 BNE RTS6 ;jnope, return char

FF21:B9 00 02 612 LDA $5200,Y ;else get next char

FF24:A2 07 613 LDX #7 ;for shifting asc into A2L and A2H

FF26:C9 8D 614 CMP #$8D ;was it CR?

FF28:F0 7D FFA7 615 BEQ GETNUM ;yes, go handle CR

FF2A:C8 616 INY jadvance index

FF2B:DO 63 FF90 617 BNE NXTBIT ;=>(always) into A2L and A2H
618 *
619 PRERR LDA #5C5 ;PRINT 'ERR', THEN FALL INTO
620 JSR COUT ; FWEEPER.

3 621 LDA #$D2
FF34:20 ED FD 622 JSR COUT

Appendix I: Monitor ROM Listings 369

FF37:20
FF3A:

FF3A:A9
FF3C:4C
FF3F:

FF3F:AS
FF41:48
FF42:A5
FF44: A6
FF46: A4
FF48:28
FF&49:60
FF4A:

FF4A:85
FF4C:86
FF4E:84
FF50:08
FF51:68
FF52:85
FF54:BA
FF55:86
FF57:D8
FF58:60
FF59:

FF59:20
FF5C:20
FF5F:20
FF62:20
FF65:

FF65:D8
FF66:20
FF69:A9
FF6B:85
FF6D:20
FF70:20
FF73:20
FF76:84
FF78:A0
FF7A:88
FF7B:30
FF7D:D9
FF80:D0
FF82:20
FF85: A4
FF87:4C
FFBA:

FFBA:A2
FF8C:0A
FF8D:0A
FFBE:0A
FF8F:0A
FF90:0A
FF91:26
FF93:26

ED

87
ED

48

45

47

45

47

48

84
2F
93
89

3E
3F

FD 623
624 *
625 BELL
FD 626
627 *
628 RESTORE
629
630
631 RESTRI
632
633
634 RTS6
635 *
636 SAVE
637 SAVI

639
640
641
642
643
b4k
645
646 *
FE 647 OLDRST
FB 648
FE 649
FE 650
£51 %
652 MON
FF 653
654 MONZ
655
FD 656

FF 658 NXTITM
659
660
661 CHRSRCH
FF65 662
FF 663
FF7A 664
FF 665
666
FF 667
668 *
669 DIG
670
671
672
673
674 NXTBIT
675
676

JSR
JSR
JSR
JSR

CLD
JSR
LDA
STA
JSR
JSR
JSR
STY
LDY
DEY
BMI
CMP
BNE
JSR
LDY
JMP

LDX
ASL
ASL
ASL
ASL
ASL
ROL
ROL

CouT

#$87
COUT

STATUS

ASH
XREG
YREG

ASH
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKBD

BELL
FSAA
PROMPT
GETLNZ
ZMODE
GETNUM
YSAV
#$17

MON
CHRTBL,Y
CHRSRCH
TOSUB
YSAV
NXTITM

sMAKE A JOYFUL NOISE, THEN RETURN.

;RESTORE 6502 REGISTER CONTENTS
; USED BY DEBUG SOFIWARE

+SAVE 6502 REGISTER CONTENTS
; FOR DEBUG SOFTWARE

;SET SCREEN MODE
; AND INIT KBD/SCREEN
; AS I/0 DEVS.

sMUST SET HEX MODE!
s FWEEPER.
;'*'" PROMPT FOR MONITOR

;READ A LINE OF INPUT

;CLEAR MONITOR MODE, SCAN IDX
3GET ITEM, NON-HEX

; CHAR IN A-REG.

; X-REG=0 IF NO HEX INPUT

;COMMAND NOT FOUND, BEEP & TRY AGAIN.
;FIND COMMAND CHAR IN TABLE

;NOT THIS TIME

sGOT IT! CALL CORRESPONDING SUBROUTINE
;PROCESS NEXT ENTRY ON HIS LINE

;GOT HEX DIGIT,
; SHIFT INTO A2

FF95:CA
FF96:10
FF98:A5
FF9A:D0
FF9C:B5
FFI9E:95
FFAO:95
FFA2 :EB
FFA3:FO
FFA5:D0
FFA7:

FFA7 : A2
FFA9:86
FFAB:86
FFAD:20
FFBO:EA
FFB1:49
FFB3:C9
FFB5:90
FFB7:69
FFR9:C9
FFBB:4C
FFBE:

FFBE:A9
FFCO:48
FFCl:B9
FFC4:48
FFC5:A5
FFC7 : AO
FFC9:84
FFCB:60
FFCCt

FFCC:BC
FFCD:B2
FFCE:BE
FFCF:9A
FFDO:EF
FFDIl:C4
FFD2:EC
FFD3:A9
FFD4: BB
FFD5: A6
FFD6: A4
FFD7:06
FFN8:95
FFD9:07
FFDA:02
FFDB:05

FC

FF

FF

FF90

FFA2

Fr98
FFAD

FF8A

677

NXTBAS

NXTBS2

GETNUM

NXTCHR

TOSUB

ZMODE

*
CHRTBL

DEX
BPL
LDA
BNE
LDA
STA
STA
INX
BEQ

LDX
STX
STX
JSR
NOP
EOR
CMP
BCC
ADC

JMP

LDA
PHA
LDA

LDA
LDY

RTS

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

;LEAVE X=S$FF IF DIG
NXTBIT
MODE
NXTBS2 ;IF MODE IS ZERO,
A2H,X ; THEN COPY A2 TO Al AND A3
AlH,X
A3H,X
NXTRAS
NXTCHR
#3500 ;CLEAR A2
A2L
A2H
UPMON ;get char, upshift, INY
3INY now done in UPMON
#8B0
#S0A
DIG ;BR IF HEX DIGIT
#3588
#SFA
LOOKASC icheck for ASCII input
#<60 sDISPATCH TO SUBROUTINE, BY
; PUSHING THE HI-ORDER SUBR ADDR,
SUBTBL,Y ; THEN THE LO-ORDER SUBR ADDR
; ONTO THE STACK,
MODE ; (CLEARING THE MODE, SAVE THE OLD
#3500 ; MODE IN A-REG),
MODE
; AND 'RTS' TO THE SUBROUTINE!
$BC ;°C (BASIC WARM START)
$B2 ;Y (USER VECTOR)
SBE :"E (OPEN AND DISPLAY REGISTERS)
S9A ;! (enter mini-assembler)
SEF 3V (MEMORY VERIFY)
Sca ;K (IN#SLOT)
SEC ;S (search for 2 bytes)
SA9 ;7P (PR#SLOT)
$BB ;"B (BASIC COLD START)
SA6 ;'=' (SUBTRACTION)
SAL ;'+' (ADDITION)
$06 sM (MEMORY MOVE)
$95 ;'<" (DELIMITER FOR MOVE, VFY)
507 ;N (SET NORMAL VIDEO)
s02 R (SET INVERSE VIDEQ)
$05 ;L (DISASSEMBLE 20 INSTRS)
SFO W (WRITE TO TAPE)
500 He (EXECUTE PROGRAM)
SEB ;R (READ FROM TAPE)
$93 ;'t" (MEMORY FILL)
SA7 ;'+' (ADDRESS DELIMITER)
s5c6 ;'CR' (END OF INPUT)
Appendix I: Monitor ROM Listings 371

FFE2:99 731 DFB $99 3 BLANK

FFE3: 132 *

FFE3: 733 * Table of low order monitor routine dispatch
FFE3: 734 * addresses. High byte always $FE

FFE3: 735 *

FFE3:B2 736 SUBTBL DFB >BASCONT-1 ;"°C (BASIC warm start)

FFE4:C9Y 737 DFB >USR-1 N (not used)

FFE5:8E 738 DFB >REGZ-1 ;"E (open and display registers)
FFE6:F0 739 DFB >MINI-1 ;mini assembler

FFE7:35 740 DFB >VFY-1 iV (memory verify)
FFE8:8C 741 DFB >INPRT-1 ;7K (IN#SLOT)

FFE9:D6 742 DFB >SEARCH-1 ;search for pattern
FFEA:96 743 DFB >0UTPRT-1 ;~P (PR#SLOT)

FFEB:AF 744 DFB >XBASIC-1 ;"B (BASIC cold start)
FFEC:17 745 DFB >SETMODE-1 ;'=" (subtraction)
FFED:17 746 DFB >SETMODE-1 ;'+' (addition)

FFEE:2B 747 DFB >MOVE-1 M (memory move)
FFEF:1F 748 DFB >LT-1 ;'<¢" (delim for move,vfy)
FFF0:83 749 DFB >SETNORM-1 ;N (set normal video)
FFF1:7F 750 DFB >SETINV-1 ;I (set inverse video)
FFF2:5D 751 DFB >LIST-1 H o (disassemble 20 instrs)
FFF3:CC 752 DFB DWRITE-1 ;W (write to tape)
FFF4:B5 753 DFB >GO0-1 :G (execute program)
FFF5:FC 754 DFB >READ-1 R (read from tape)
FFF6:17 155 DFB >SETMODE-1 ;':' (memory fill)
FFF7:17 756 DFB >SETMODE-1 ;'.' (address delimiter)
FFFB:F5 757 DFB >CRMON-1 ;'CR' (end of input)
FFF9:03 758 DFB >BLANK-1 ;BLANK

FFFA: 759 *

FFFA:FB 03 760 DW NMI ; NON-MASKABLE INTERRUPT VECTOR
FFFC:62 FA 761 DW RESET sRESET VECTOR

FFFE:FA C3 762 DW IRQ ; INTERRUPT REQUEST VECTOR
0000: 19 INCLUDE MINI

0000 : |

0000 2 * Apple //e Mini Assembler

0000: 3 %

0000: 4 * Got mnemonic, check address mode

0000: 5 %

Cc4C8: C4CB 6 ORG C30RG+S1C8

C4C8: 7 *

C4C8:20 13 FF 8 aMOD1 JSR NNBL ;get next non-blank
C4CB:84 34 9 STY YSAV jsave Y

C4CD:DD B4 F9 10 CMP CHARIL,X

C4D0:DO 13 C4E5 11 BNE AMOD2

C4D2:20 13 FF 12 JSR NNBL ;get next non-blank
C4D5:DD BA F9 13 CMP CHAR2,X

C4D8:FO 0D C4E7 14 BEQ AMOD3

C4DA:BD BA F9 15 LDA CHAR2,X ;done yet?

C4DD:FO 07 C4E6 16 BEQ AMOD4

C4DF:C9 A4 17 CMP #5A4 ;if "$" then done

C4E1:F0 03 C4E6 18 BEQ AMOD4

C4E3F:AL 34 19 LDY YSAV sjrestore Y

C4E5:18 20 AMOD2 CLC

C4E6:88 21 AMOD4 DEY

e

C4E7:26 44 22 AMOD3 ROL AS5L jshift bit into format

C4E9:E0 03 23 CPX #803

C4EB:DO OD C4FA 24 BNE AMOD6

C4ED:20 A7 FF 25 JSR GETNUM

C4F0:A5 3F 26 LDA A2H ;get high byte of address

C4F2:F0 01 C4F5 27 BEQ AMOD5 Hod

C4F4:EB 28 INX

C4F5:86 35 29 AMODS STX YSAV1

C4F7:A2 03 30 LDX #503

C4F9:88 31 DEY

C4FA:86 3D 32 AMOD6 STX AlH

C4FC:CA 33 DEX

C4FD:10 C9 C4C8 34 BPL AMODI

C4FF:60 35 RTS

€500: 36 *

CF3A: CF3A 37 ORG CBORG+S73A

CF34: 38 *

CF3A: 39 * Calculate offset byte for relative addresses

CF3A: 40 *

CF3A:E9 81 41 REL SBC #881 jcalc relative address

CF3C:4A 42 LSR A

CF3D:D0O 14 CF53 43 BNE GOERR ;bad branch

CF3F:A4 3F 44 LDY A2H

CF41:A6 3E 45 LDX AZL

CF43:D0 O1 CF46 46 BNE RELI

CFr45:88 47 DEY ;point to offset

CF46:CA 48 REL1 DEX ;jdisplacement - 1

CF47:BA 49 TXA

CF48:18 50 CLC

CF49:E5 3A 51 S5BC PCL ;jsubtract current PCL

CF4B:85 3E 52 STA A2ZL ;jand save as displacement

CF4D:10 01 CF50 53 BPL REL2 ;check page

CF4F:C8 54 INY

CF50:98 55 REL2 TYA jget page

CF51:E5 3B 56 SBC PCH jcheck page

CEF53:D0 40 CF95 57 GOERR BNE MINIERR ;jdisplay error

CF55: 58 *

CF55: 59 * Move instruction to memory

CF55: 60 *

CF55:A4 2F 61 MOVINST LDY LENGTH ;get instruction length

CF57:B9 3D 00 62 MOVL LDA AlH,Y jget a byte

CF5A:91 3A 63 STA (PCL),Y ;and move it

CF5C:88 64 DEY

CF5D:10 F8 CF57 65 BPL MOVl

CF5F: 66 *

CF5F: 67 * Display instruction

CF5F: 68 *

CE5F:20 48 F9 69 JSR PRBLNK ;print blanks to make ProD0S work

CF62:20 1A FC 70 JSR UP smove up 2 lines

CF65:20 lA FC 71 JSR UP

CF68:4C E3 FC i JMP DISLIN jdisassemble it, =>DOINST

CF6B: 73 *

CFoB: 74 * Compare disassembly of all known opcodes with

CF63B: 75 * the one typed in until a match is found
Appendix I: Monitor ROM Listings 373

CF6B: 76 *

CF6B:AS 3D 77 GETOP LDA AlH ;get opcode

CF6D:20 8E F8 78 JSR INSDS2 ;determine mnemonic index
CF70:AA 719 TAX ;X = index

CF71:BD 00 FA 80 LDA MNEMR,X ;get right half of index
CF74:C5 42 81 CMP A4L ;jdoes it match entry?

CF76:D0 13 CF8B 82 BNE NXTOP ;=>try next opcode

CF78:BD CO F9 83 LDA MNEML,X ;jget left half of index
CF7B:C5 43 84 CMP A4H ;jdoes 1t match entry?

CF7D:D0 OC CF8B 85 BNE NXTOP ;=»no, try next opcode
CF7F:AS5 44 86 LDA ASL ;found opcode, check address mode
CFBl:A4 2E 87 LDY FORMAT jget addr. mode format for that opcode
CF83:C0 9D 88 CPY #S9D ;is it relative?

CF85:F0 B3 CF3A 89 BEQ REL ;=>yes, calc relative address
CFB87:C5 2E 90 CMP FORMAT ;does mode match?

CF89:F0 CA CF55 91 BEQ MOVINST ;=>yes, move instruction to memory
CF8B:C6 3D 92 NXTOP DEC AlH ;jelse try next opcode

CF8D:D0 DC CF6B 93 BNE GETOP ;j=7go try it

CFBF:Eb 44 94 INC ASL selse try next format

CF91:C6 35 95 DEC YSAV1

CF93:F0 D6 CF6B 96 BEQ GETOP ;=>go try next format

CF95: 97 *

CF95: 98 * Point to the error with a caret, beep, and fall
CF95: 99 * into the mini-assembler.

CF95: 100 #*

CF95:A4 34 101 MINIERR LDY YSAV ;get position

CF97:98 102 ERR2 TYA

CF98:AA 103 TAX

CF99:4C D2 FC 104 JMP ERR3 ;display error, =>DOINST
CF9C: 105 *

CEI0¢ 106 * Read a line of input. If prefaced with " ", decode
CF9C: 107 * mnemonic. If "$" do monitor command. Otherwise parse
CF9C: 108 * hex address before decoding mnemonic.

CF9C: 109 *

CF9C:20 C7 FF 110 DOINST JSR ZMODE jclear mode

CF9F:AD 00 02 111 LDA $200 ;get first char in line
CFA2:C9 AQ 112 CMP #SA0 ;if blank,

CFA4:F0 12 CFB8 113 BEQ DOLIN ;=>go attempt disassembly
CFA6:C9 8D 114 CMP #$8D ;is it return?

CFA8:D0 01 CFAB 115 BNE GETI1 ;=»’no, continue

CFAA:60 116 RTS jelse return to Monitor

CFAB: 117 *

CFAB:20 A7 FF 118 GETI1 JSR GETNUM ;parse hexadecimal input
CFAE:C9 93 119 CMP #5893 1look for "ADDR:"

CFBO:DO E5 CF97 120 GOERR2 BNE ERR2 ;no ":", display error
CFB2:8A 121 TXA ;X nonzero if address entered
CFB3:FQ E2 CF97 122 BEQ ERR2 ;no "ADDR", display error
CFB5: 123 *

CFB5:20 78 FE 124 JSR AlPCLP ;ymove address to PC

CFB8:A9 03 125 DOLIN LDA #8503 ;get starting opcode

CFBA:85 3D 126 STA AlH jand save

CFBC:20 13 FF 127 NXTCH JSR NNBL ;get next non-blank

CFBF:DA 128 ASL A ;jvalidate entry ‘
CFCO:E9 BE 129 SBC {#S$BE

. CFC2:C9 C2 130 CMP #5C2
CFC4:90 D1 CF97 131 BCC ERR2 ;=>flag bad mnemonic
CFC6: 132 *
CFC6: 133 * Form mnemonic for later comparison
. CFC6: 134 *
CFC6:0A 135 ASL A
CFC7:0A 136 ASL A
CFC8:A2 04 137 LDX #5804
CFCA:0A 138 NXTMN ASL A
CFCB:26 42 139 ROL AS4L
CFCD:26 43 140 ROL A4H
CFCF:CA 141 DEX
. CFDO:10 F8 CFCA 142 BPL NXTMN
CFD2:ChH 3D 143 DEC AlH ;jdecrement mnemonic count
CFD4:FQO Fé CFCA 144 BEQ NXTMN
CFD6:10 E4 CFBC 145 BPL NXTCH
. CFD8:A2 05 146 LDX {#85 jindex into address mode tables
CFDA:20 C8 C4 147 JSR AMOD1 ;do this elsewhere
CFDD:A5 44 148 LDA ASL ;get format
CFDF:0A 149 ASL A
. CFEO:0A 150 ASL A
CFE1:05 35 151 ORA YSAV1
CFE3:C9 20 152 CMP #S20
CFE5:B0 06 CFED 153 BCS AMOD7
. CFE7:46 35 154 LDX YSAVI ;get our format
CFE9:F0 02 CFED 155 BEQ AMOD?7
CFEB:09 80 156 ORA #S$80
CFED:85 44 157 AMOD7 STA ASL ;update format
. CFEF:84 34 158 STY YSAV jupdate position
CFF1:B89 00 02 159 LDA $0200,Y ;get next character
CFF4:C9 BB 160 CMP #SBB e b oa. Wi
CFF6:F0 04 CFFC 161 BEQ AMODS ;=>yes, skip comment
. CFF8:C9 8D 162 CMP #$8D ;is it carriage return
CFFA:DO B4 CFBO 163 BNE GOERR2
CFFC:4C 6B CF 164 AMODS JMP GETOP ;get next opcode
CFFF: 165 *
. CFFF:00 166 DFB $00 ;byte for making CTOD checksum ok
. Appendix I; Monitor ROM Listings 375

Glossary

accumulator: The register in the
65C02 microprocessor where most
computations are performed.

ACIA: Acronym for Asychronous
Communications Interface
Adapter. The ACIA is a chip that
converts data from parallel to serial
form and vice versa. Its internal
registers control and keep track of
the sending and receiving of data.
Firmware and software set and
change the status of these internal
registers.

acronym: A word formed from the
initial letters of a name or phrase,
such as ROM, from read-only
memory.

address: A number that specifies a
single byte of memory. Addresses
can be given as decimal integers or
as hexadecimal integers. A 64K
system has addresses ranging from
0 to 65535 (in decimal) or from
$0000 to $FFFF (in hexadecimal).

algorithm: A step-by-step
procedure for solving a problem or
accomplishing a task.

analog: Represented in terms of a
physical quantity that can vary
smoothly and continuously over a

range of values. For example, a
conventional 12-hour clock face is
an analog device that represents the
time of day in terms of the angles of
the clock's hands. Compare digital.

analog data: Data in the form of
continuously variable physical
quantities. Compare digital
data.

analog signal: A signal that varies
continuously over time,

analog-to-digital converter: A
device that converts quantities from
analog to digital form. For example,
hand controls used on Apple 11
family computers convert the
position of the control dial (an
analog quantity) into a discrete
number (a digital quantity) that
changes abruptly even when the
dial is turned smoothly.

AND: A logical operator that
produces a true result if both of its
operands are true, a false result if
either or both of its operands are
false; compare OR, exclusive OR,
NOT.

ANSI: Acronym for American
National Standards Institute,
which sets standards for many
fields and is the most common
standard for terminals.

Apple ITe: A transportable
personal computer in the Apple II
family, with a disk drive and
80-column capability built in.

Apple Ile: A personal computer in
the Apple II family.

Apple Ile 80-Column Text Card:
A peripheral card that plugs into the
Apple Ile's auxiliary slot and
converts the computer’s display of
text from 40-column width to
80-column width.

Apple Ile Extended 80-Column
Text Card: A peripheral card that
plugs into the Apple Ile's auxiliary
slot and converts the computer’s
display of text from 40-column
width to 80-column width while
extending its memory capacity by
64K bytes.

Apple II Pascal: A software
system that lets you create and
execute programs written in the
Pascal programming language,
adapted by Apple Computer from
the UCSD (University of California,
San Diego) Pascal Operating System
and sold for use with the Apple II
family of computers.

Applesoft BASIC: An extended
version of the BASIC programming
language used with the Apple II
family of computers. An interpreter
for creating and executing programs
in Applesoft is built into the
computer's firmware. Compare
Integer BASIC.

application program: A program
that puts the resources and
capabilities of the computer to use
for some specific purpose or task,
such as word processing, data base
management, or graphics. Compare
system program.

argument: The value on which a
function operates.

arithmetic expression: A
combination of numbers and
arithmetic operators (such as

3 + 5) that indicates some operation
to be carried out.

arithmetic operator: An
operator, such as +, that combines
numeric values to produce a
numeric result. Compare
relational operator, logical
operator.

ASCII: Acronym for American
Standard Code for Information
Interchange, pronounced ASK ee.
A code in which the numbers from 0

378

to 127 stand for text characters—
including the letters of the alphabet,
the digits 0 through 9, punctuation
marks, special characters, and
control characters—used for
representing text inside a computer
and for transmitting text between
computers or between a computer
and a peripheral device.

assembler: A language translator
that converts a program written in
assembly language into an
equivalent program in machine
language.

assembly language: A low-level
programming language in which
individual machine-language
instructions are written in a
symbolic form more easily
understood by a human programmer
than machine language itself.

asserted: Made true (positive in
positive-true logic; negative in
negative-true logic).

asynchronous transmission:

Not synchronized by or with a
clocking signal. Transmission in
which each information character is
individually synchronized, usually
by the use of start and stop bits. The
gap between each character isn’t
necessarily fixed. Compare
synchronous transmission.

Glossary

auxiliary slot: The special
expansion slot inside the Apple Ile
used for the Apple 80-Column Text
Card or Extended 80-Column Text
Card.

base address: In indexed
addressing, the fixed component of
an address.

BASIC: Acronym for Beginner’s
All-purpose Symbolic Instruction
Code. A high-level programming
language designed to be easy to
learn and use. Two versions of
BASIC are available from Apple
Computer for use with all Apple II
family systems: Applesoft (built into
firmware) and Integer BASIC
(provided on the ProDOS User’s
Disk).

baud: Unit of signaling speed taken
from the name Baudot. The speed in
bauds is equal to the number of
discrete conditions or signal events
per second regardless of the
information content of those signals.
Often equated (though not
precisely) with bits per second.
Compare bit rate.

=4

binary: The representation of
numbers in terms of powers of two,
using the two digits 0 and 1.
Commonly used in computers
because the values 0 and 1 can
easily be represented in physical
form in a variety of ways, such as
the presence or absence of current,
positive or negative voltage, or a
white or black dot on the display
screen. A single binary digit—a 0 or
a 1—is called a bit.

binary digit: The smallest unit of
information in the binary number
system, Also called a bit.

binary operator: An operator that
combines two operands to produce a
result; for example, + is a binary
arithmetic operator, <Cis a binary
relational operator, and OF is a
binary logical operator. Compare
unary operator.

bit: The smallest item of useful
information a computer can handle.
Usually represented asa 1ora 0.
Eight bits equal one byte.

bit rate: The speed at which bits
are transmitted, usually expressed
as bps or bits per second.
Compare baud.

board: See printed-circuit
board.

body: The statements or
instructions that make up a part of a
program, such as a loop or a
subroutine.

boot: To start up a computer by
loading a program into memory
from an external storage medium
such as a disk. Often accomplished
by first loading a small program
whose purpose is to read the larger
program into memory. The program
is said to pull itself up by its own
bootstraps—hence the term
bootstrapping or booting.

boot disk: See startup disk.
bootstrap: See boot.
bps: Sec bit rate.

branch: To send program
execution to a line or statement
other than the next in sequence.

BREAK: A SPACE (0) signal, sent
over a communication line, of long
enough duration to interrupt the
sender. This signal is often used to
end a session with a time-sharing
service.

BRK: Aninstruction that causes
the 65C02 microprocessor to halt.

buffer: A memory area that holds
information until it can be
processed.

bug: An error in a program that
causes it not to work as intended.

bus: A group of wires that transmit
related information from one part of
a computer system to another.

byte: A sequence of eight bits that
represents an instruction, a letter, a
number, or a punctuation mark.

cable: A group of wires used to
carry information between two
devices. How many wires are used
varies with the type of connection.

call: To request the execution of a
subroutine or function.

card: See peripheral card.

carriage return: An ASCII
character (decimal 13) that
ordinarily causes a printer or
display device to place the
subsequent character on the left
margin.

carrier: The background signal on
a communication channel that is
modified to carry the information.
Under RS232-C rules, the carrier
signal is equivalent to a continuous
MARK (1) signal; a transition to 0
then represents a start bit.

379

carry flag: A status bit in the
65C02 microprocessor, used to hold
the high-order bit (the carry bit) in
addition and subtraction.

central processing unit: See
processor.

character: Any symbol that has a
widely understood meaning. Some
characters—such as letters,
numbers, and punctuation—can be
displayed on the monifor screen and
printed on a printer. Others are used
to control various functions of the
computer. See control character.

character code: A number used to
represent a text character for
processing by a computer system.

character set: The entire set of
characters that can be either shown
on a monitor or used to code
computer instruction. In a printer,
the entire set of characters that the
printer is capable of printing.

circuit board: A collection of
integrated circuits (chips) on a
board.

Clear To Send: An RS232-C signal
from a DCE to a DTE that is
normally kept false until the DCE
makes it true, indicating that all
circuits are ready to transfer data
out.

code: (1) A number or symbol used
to represent some piece of
information in a compact or easily
processed form. (2) The statements
or instructions making up a
program.

cold start: The process of starting
up the Apple Il when the power is
first turned on (or as if the power
had just been turned on) by loading
the operating system into main
memory, then loading and running a
program.

column: A vertical arrangement of
graphics points or character spaces
on the monitor screen.

command: A word or character
that causes the computer to do
something.

compiler: A language translator
that converts a program written in a
high-level programming language
into an equivalent program in some
lower-level language (such as
machine language) for later
execution. Compare interpreter.

composite video: A video signal
that includes both display
information and the synchronization
(and other) signals needed to
display it.

Glossary

computer: An electronic device
that performs predefined
(programmed) computations at high
speed and with great accuracy. A
machine that is used to store,
transfer, and transform information.

computer language: See
programming language.

computer system: A computer
and its associated hardware,
firmware, and software.

conditional branch: A branch
that depends on the truth of a
condition or the value of an
expression. Compare
unconditional branch.

configuration: The hardware and
software arrangement of a system.

connector: A physical device such
as a plug, socket, or jack, used to
connect two devices to one another.

console: The Apple Ile’s video
display and keyboard together make
up the console. This is the part of
the Apple Ile you communicate with
directly.

constant: A symbol in a program
that represents a fixed, unchanging
value. Compare variable.

[ConTROL : A key that when
pressed in conjunction with another
key makes that other key behave
differently.

(ConTROL HRESET : This
combination of keystrokes usually
causes an Applesoft program or
command to stop immediately. If a
program disables the

(ConTROL HRESET | feature, you
need to turn the computer off to get
the program to stop.

control character: A non-printing
character that controls or modifies
the way information is printed or
displayed. Control characters have
ASCII values between 0 and 31, and
are typed from a keyboard by
holding down while
pressing some other key. For
example, the character Control-M
(ASCII code 13) means “return to
the beginning of the line” and is

equivalent to pressing [RETURN].

control code: One or more
non-printing characters included in
a text file whose function is to
change the way a printer prints the
text. See control character.

controller card: A peripheral card
that connects a device such as a
printer or disk drive to an Apple Ile
and controls the operation of the
device,

copy-protect: To prevent someone
from duplicating the contents of a
disk. Compare write-protect.

CPU: Abbreviation for central
processing unit. See processor.

current input device: The source,
such as the keyboard or a modem,
from which a program is currently
receiving its input.

current output device: The
destination, such as the display
screen or a printer, to which a
program is currently sending its
output.

cursor: A symbol displayed on the
screen that marks where the user's
next action will take effect or where
the next character typed from the
keyboard will appear.

DAC: See digital-to-analog
converter.

data: Information, especially raw
or unprocessed information, used or
operated on by a program.

Gle)S8Ary

data bits: The computer sends
and receives information as a string
of bits. These are called data bits.

Data Carrier Detect: An RS232-C
signal from a DCE (such as a
modem) to a DTE (such as an

Apple Ile) indicating that a
communication connection has
been established.

Data Communication
Equipment: As defined by the
RS232-C standard, any device that
transmits or receives information.
Usually this is a modem. However,
when a modem eliminator is used,
the Apple Ile itself looks like a DCE
to the other device, and the other
device looks like a DCE to the
Apple Ile.

data set: A device that performs
the modulation /demodulation
control functions necessary to
provide the compatibility between
business machines and
communications facilities. See
modem.

Data Set Ready: An RS232-C
signal from a DCE toa DTE
indicating that the DCE has
established a connection.

381

Data Terminal Equipment: As
defined by the RS232-C standard,
any device that generates or absorbs
information, thus acting as a
terminus of a communication
connection.

Data Terminal Ready: An
RS232-C signal from a DTE to a DCE
indicating a readiness to transmit or
receive data.

DCD: See Data Carrier Detect.

DCE: See Data Communication
Equipment.

debug: To locate and correct an
error or the cause of a problem or
malfunction in a computer system.
Typically used to refer to
software-related problems, Compare
troubleshoot.

decimal: The common form of
number representation used in
everyday life, in which numbers are
expressed in terms of powers of ten,
using the ten digits 0 through 9.

default: A value, action, or setting
that is assumed or set in the
absence of explicit instructions
otherwise.

deferred execution: The saving
of an instruction in a program for
execution at a later time as part of a
complete program; occurs when the
statement is typed with a line
number, Compare immediate
execution.

(DELETE : A key on the upper-right
corner of the Apple Ile and Ilc

keyboards that, when pressed,
usually erases the character
immediately preceding the cursor.

delimiter: A character that is used
to mark the beginning or end of a
sequence of characters, and which
therefore is not considered part of
the sequence itself. For example,
Applesoft uses the double quotation
mark (") as a delimiter for string
constants: the string DOG consists
of the three characters D, O, and G,
and does not include the quotation
marks. In written English, the space
character is used as a delimiter
between words.

demodulate: To recover the
information being transmitted by a
modulated signal; for example, a
conventional radio receiver
demodulates an incoming broadcast
signal to convert it into sound
emitted by a speaker.

device: A piece of computer
hardware—such as a disk drive, a
printer, or a monitor—other than
the computer itself, Devices may be
built in or peripheral.

device driver: A program that
manages the transfer of information
between the computer and a
peripheral device.

device handler: See device
driver.

digit: (1)One of the characters 0
through 9, used to express numbers
in decimal form. (2) One of the
characters used to express numbers
in some other form, such as 0 and 1
in binary or 0 through 9 and A
through F in hexadecimal.

digital: Represented in a discrete
(noncontinuous) form, such as
numerical digits. For example,
contemporary digital clocks display
the time in numerical form (such as
2:57) instead of using the positions
of a pair of hands on a clock face.
Compare analog.

digital data: Data that can be
represented by digits—that is, data
that are discrete rather than
continuously variable. Compare
analog data.

digital-to-analog converter: A
device that converts quantities from
digital to analog form.

DIP: See dual in-line package.

DIP switch: A bank of tiny
switches, each of which can be
moved manually one way or the
other to represent one of two values
(usually on and off).

disassembler: A language
translator that converts a
machine-language program into an
equivalent program in assembly
language, more easily understood by
a human programmer. The opposite
of an assembler.

disk: An information-storage
medium consisting of a flat,
circular, magnetic surface on which
information can be recorded in the
form of small magnetized spots, in a
manner similar to the way sounds
are recorded on tape.

disk controller card: A circuit
board that provides the connection
between one or two disk drives and
the Apple Ile.

disk drive: A device that reads
information from disks into the
memory of the computer and writes
information from the memory of the
computer onto a disk.

disk envelope: A removable
protective paper sleeve used when
handling or storing a disk. It must be
removed before inserting the disk in
a disk drive. Compare disk jacket.

diskette: A term sometimes used
for the small (5%-inch), flexible
disks on which information is
stored.

disk jacket: A permanent
protective covering for a disk,
usually made of black paper or
plastic. The disk is never removed
from the jacket, even when inserted
in a disk drive. Compare disk
envelope.

disk operating system: One of
several optional software systems
for the Apple II family of computers
that enables the computer to control
and communicate with one or more
disk drives.

Disk II drive: One of a number of
types of disk drive made and sold by
Apple Computer for use with the
Apple Il family of computers. It uses
5%-inch flexible (floppy) disks.

disk-resident: Stored or held
permanently on a disk.

Glossary

display: v. To exhibit information
visually. 7. (1) Information
exhibited visually, especially on the
screen of a display device, such as a
video monitor. (2) A display device.

display color: The color currently
being used to draw high-resolution
or low-resolution graphics on the
display screen.

display device: A device that
exhibits information visually, such
as a television set or video monitor.

DOS 3.2: Anearly Apple I
operating system. DOS stands for
Disk Operating System. 3.2 is the
version number.

DOS 3.3: One of the operating
systems used by the Apple II family
of computers. DOS stands for Disk
Operating System. 3.3 is the
version number.

drive: See disk drive.

DSR: See Data Set Ready.

DTE: See Data Terminal
Equipment.

DTR: See Data Terminal Ready.

383

dual in-line package: An
integrated circuit packaged in a
narrow rectangular box with a row
of metal pins along each side. Often
referred to as a DIP switch,

Dvorak keyboard: An alternate
keyboard layout, also known as the
simplified keyboard.

effective address: In
machine-language programming,
the address of the memory location
on which a particular instruction
actually operates, which may be
arrived at by indexed addressing or
some other addressing method.

80-column text card: A circuit
board that converts the computer’s
display of text from 40 columns to
80 columns.

80/40 column switch: A switch,
either hardware or software, that
controls the number of horizontal
columns or characters across your
screen. A television can display a
maximum of 40 characters across,
while a video monitor can display 80
characters across the screen.

embedded: Contained within. For
example, the string
HUMPTY DUMPTY is said fo contain
an embedded space.

emulate: To behave in an identical
way. The Apple 11 2780,/3780
Protocol Emulator and the Apple 11
3270 BSC Protocol Emulator, for
example, allow your Apple I1, II
Plus, or e, together with the Apple
Communications Protoeol Card
(ACPC), to emulate the operations
of IBM 3278 and 3277 terminals and
3274 and 8271 control units.

end-of-command mark: A
punctuation mark used to separate
commands sent to a peripheral
device such as a printer or plotter.
Also called a command
terminator.

end-of-line character: Any
character that tells the printer that
the preceding text constitutes a full
line and may now be printed.

error code: A number or other
symbol representing a type of error.

error message: A message
displayed or printed to notify the
user of an error or problem in the
execution of a program.

Escape character: An ASCII
character that allows you to perform
special functions when used in
combination keypresses.

Glossary

escape mode: A state of the
computer, entered by pressing
(ESc], in which certain keys on the
keyboard take on special meanings
for positioning the cursor and
controlling the display of text on the
screen.

escape sequence: A sequence of
keystrokes, beginning with [Esc],
used for positioning the cursor and
controlling the display of text on the
screen.

even parity: Use of an extra bit set
to 0 or 1 as necessary to make the
total number of 1 bits (among the
data bits plus the parity bit) an even
number,

even/odd parity check: A check
that tests whether the number of
digits in a group of binary digits is
even (even parity check) or odd
(odd parity check).

exclusive OR: A logical operator
that produces a true result if one of
its operands is true and the other
false, a false result if its operands
are both true or both false. Cornpare
OR, AND, and NOT.

execute: To perform the actions
specified by a program command or
sequence of commands.

expansion slot: A connector
inside the Apple Ile in which a
peripheral card can be installed.
Sometimes called a peripheral
slot.

expression: A formulaina
program that describes a calculation
to be performed.

FIFO: Firstin, first out.

file: An ordered collection of
information stored as a named unit
on a peripheral storage medium
such as a disk.

firmware: Software stored
permanently in hardware: programs
in read-only memory (ROM). Such
programs (for example, the
Applesoft Interpreter and the
Monitor program) are built into the
corputer at the factory. They can
be executed at any time but cannot
be modified or erased from main
memory. Compare hardware,
software.

fixed-point: A method of
representing nurbers inside the
computer in which the decimal
point (more correctly, the binary
point) is considered to occur at a
fixed position within the number.
Typically, the point is considered to

lie at the right end of the number so
that the number is interpreted as an
integer. Compare floating-point.

flag: A variable whose contents
(usually 1 or 0, standing for {rue or
false) indicate whether some
condition holds or whether some
event has occurred. Used to control
the program’s actions at some later
time.

flexible disk: A disk made of
flexible plastic. Often called a
floppy disk. Compare rigid disk.

floating-point: A method of
representing numbers inside the
computer in which the decimal
point (more correctly, the binary
point) is permitted to float to
different positions within the
number. Sorme of the bits within the
number itself are used to keep track
of the point’s position. Compare
fixed-point.

floppy disk: See flexible disk.

format: ». The form in which
information is organized or
presented. ». (1) To specify or
control the format of information.
(2) To prepare a blank disk to
receive information by dividing its
surface into tracks and sectors. Also
initialize.

Glossary

form feed: An ASCII character
(decimal 12) that causes a printer or
other paper-handling device to
advance to the top of the next page.

FORTRAN: A contraction of the
phrase FORmula TRANslator. A
widely used, high-level
programming language especially
suitable for applications requiring
extensive numerical calculations,
such as in mathematics,
engineering, and the sciences. A
version called Apple II Fortran is
sold by Apple Computer for use with
the Apple 11 Pascal Operating
System.

framing error: In serial data
transfer, absence of the expected
stop bit(s) at the end of a received
character.

frequency: The number of
complete cycles transmitted per
second. Usually expressed in hertz
(cycles per second), kilohertz
(kilocycles per second), or
megahertz (megahertz per second).

full duplex: Capable of
simultaneous, two-way
communication. Compare kalf
duplex.

385

function: A pre-programmed
calculation that can be carried out
on request from any point in a
program. An instruction that
converts data from one form to
another,

GAME 1/0 connector: A special
16-pin connector inside the

Apple Ile originally designed for
connecting hand controls to the
computer, but also used for
connecting some other peripheral
devices. Compare hand-control
connector.

graphics: (1) Information
presented in the form of pictures or
images. (2) The display of pictures
or images on a computer’s video
display screen. Compare text.

half duplex: Capable of
commumnication in only one
direction at a time. Compare full
duplex.

hand-control connector: A 9-pin
connector on the back panel of the

Apple Ile, used for connecting hand
controls to the computer. Compare

GAME 1/0 connector.

hand controls: Optional
peripheral devices, with rotating
dial and pushbuttons, that can be
connected to the Apple Ile hand
control connector. Typically used to
control game-playing programs, but
can be used in more serious
applications as well.

hang: For a program or system to
spin its wheels indefinitely,
performing no useful work.

hardware: The physical
machinery that makes up a
computer system. Compare
firmware, software.

hertz: The unit of frequency of
vibration or oscillation, also called
cycles per second. Named for the
physicist Heinrich Hertz and
abbreviated Hz. The 65C02
microprocessor used in the Apple Ile
operates at a clock frequency of 1
million hertz, or 1 megahertz (MHz).

hexadecimal: The representation
of numbers in terms of powers of
sixteen, using the ten digits 0
through 9 and the six letters A
through F. Hexadecimal numbers
are easier for humans to read and
understand than binary numbers,
but can be converted easily and
directly to binary form. Each
hexadecimal digit corresponds to a

Glossary

sequence of four binary digits, or
bits. Hexadecimal numbers are
preceded by a dollar sign ($).

high ASCII characters: ASCII
characters with decimal values of
128 to 255. Called high ASCII
because their high bit (first binary
digit) is set to 1 (for on) rather than

0 (for off).

high-level language: A
programming language that is
relatively easy for humans to
understand. A single statement in a
high-level language typically
corresponds to several instructions
of machine language. High-level
languages available for the Apple Ile
include BASIC, Pascal, Logo, and
PILOT.

high-order byte: The more
significant half of a memory address
or other two-byte quantity. In the
65C02 microprocessor, the low-order
byte of an address is usually stored
first, and the high-order byte
second.

high-resolution graphics: The
display of graphics on a display
screen as a six-color array of points,
280 columns wide and 192 rows
high. When the text window is in
use, the visible high-resolution
graphics display is 280 by 160
points.

hold time: In computer circuits,
the amount of time a signal must
remain valid after some related
signal has been turned off. Compare
setup time.

Hz: See hertz.
IC: See integrated circuit.

immediate execution: The
execution of an program instruction
as soon as it is typed. Occurs when
the line is typed without a line
number. This means that you can
try out nearly every statement
immediately to see how it works.
Compare deferred execution.

implement: To realize or bring
about; for example, a language
translator implements a particular
language.

IN#: This command designates
the source of subsequent input
characters. It can be used to
designate a device in a slot or a
machine-language routine as the
source of input.

index: (1) A number used to
identify a member of a list or table
by its sequential position. (2) A list
or table whose entries are identified
by sequential position. (3) In
machine-language programming,
the variable component of an

indexed address, contained in an
index register and added to the base
address to form the effective
address.

indexed addressing: A method of
specifying memory addresses used
in machine-language programming.

index register: A registerina
computer processor that holds an
index for use in indexed addressing.
The 65C02 has two index registers,
the X register and the Y register.

index variable: A variable whose
value changes on each pass through
a loop. Often called control
variable or loop variable.

infinite loop: A section of a
program that will repeat the same
sequence of actions indefinitely.

initialize: (1) To set to an initial
state or value in preparation for
some computation. (2) To prepare a
blank disk to receive information by
dividing its surface into tracks and
sectors. Also format.

initialized disk: A disk that is
organized into tracks and sectors.

input: Information transferred into
a computer from some external
source, such as the keyboard, a disk
drive, or a modem.

input/output: Abbreviated I/0.
The means by which information is
transferred between the computer
and its peripheral devices.

input routine: A
machine-language routine that
performs the reading of characters.
The standard input routine reads
characters from the keyboard. A
different input routine might, for
example, read them from an
external terminal.

instruction: A unitof a
machine-language or
assembly-language program
corresponding to a single action for
the computer's processor to
perform.

integer: A whole number
represented inside the computer in
fixed-point, form. Compare real
number.

Integer BASIC: A version of the
BASIC programming language used
by the Apple Il family of computers.
Integer BASIC is older than
Applesoft and capable of processing
numbers in integer (fixed-point)
form only. Compare Applesoft
BASIC.

387

integrated circuit: Networks of
microfine wire that conduct
electrical impulses. They are etched
on silicon wafers and embedded in
black plastic.

interface: The devices, rules, or
conventions by which one
component of a system
communicates with another.

interface card: A peripheral card
that implements a particular
interface (such as a parallel or serial
interface) by which the computer
can communicate with a peripheral
device such as a printer or modem.

interpreter: A language translator
that reads a program instruction by
instruction and immediately
translates each instruction for the
computer to carry out. Compare
compiler.

interrupt: A temporary
suspension in the execution of a
program by a computer in order to
perform some other task, typically
in response to a signal from a
peripheral device or other source
external to the computer.

inverse video: The display of text
on the computer’s display screen in
the form of dark dots on a light (or
other single phosphor color)
background, instead of the usual
light dots on a dark background.

I/0: Input/output. The transfer of
information into and out of a
computer. See input, output.

I/0 device: Input/output device.
A device that transfers information
into or out of a computer. See input,
output, peripheral device.

I/0 link: A fixed location that
contains the address of an
input/output subroutine in the
computer's Monitor program.

joystick: An accessory that moves
creatures and objects in game
programs.

K: Two to the tenth power, or 1024
(from the Greek root kilo, meaning
one thousand); for example, 64K
equals 64 times 1024, or 65,536.

keyboard: The set of keys built
into the Apple Ile, similar to a
typewriter keyboard, used for
entering information into the
computer.

Glossary

keyboard input connector: The
special connector inside the
Apple Ile by which the keyboard is
connected to the computer.

keystroke: The act of pressing a
single key or a combination of keys

(such as on the
keyboard.

keyword: A special word or
sequence of characters that
identifies a particular type of
statement or command, such as
RUN or PRINT.

kilobyte: A unit of information
consisting of 1K (1024) bytes, or 8K
(8192) bits. See K.

KSW: The symbolic name of the
location in the computer's memory
where the standard input link is
stored. KSW stands for keyboard
switch. See 1/0 link.

language: See programming
language.

leading zero: A zero occurring at
the beginning of a number, deleted
by most computing programs.

least significant bit: The

right-hand bit of a binary number as

written down. Its positional value is
Oorl.

LIFO: Acronym for last in, first
out.

line feed: An ASCII character
(decimal 10) that ordinarily causes
a printer or video display to advance
to the next line.

line number; A number
identifying a program line in an
Applesoft program. Line numbers
are necessary for deferred
execution.

line width: The number of
characters that fit on a line on the
screen or on a page.

list: A verb in computer jargon,
meaning to display on a monitor, or
print on a printer, the contents of
the computer memory or a file,

load: To transfer information from
a peripheral storage medium (such
as a disk) into main memory for use;
for example, to transfer a program
into memory for execution.

location: See memory location.

logic board: See main logic
board.

logical operator: An operator,
such as AND, that combines logical
values to produce a logical result.
Compare arithmetic operator,
relational operator.

loop: A section of a program that is
executed repeatedly until a limit or
condition is met, such as an index
variable reaching a specified ending
value.

loop variable: See index
variable.

low-level language: A
programming language that is
relatively close to the form that the
computer’s processor can execute
directly. Low-level languages
available for the Apple Ile include
6502 machine language and 6502
assembly language.

low-order byte: The less
significant half of a memory address
or other two-byte quantity. In the
65C02 microprocessor, the low-order
byte of an address is usually stored
first, and the high-order byte
second.

low-power Schottkey: A typeof
TTL integrated circuit having lower

power and higher speed than a
conventional TTL integrated circuit.

low-resolution graphics: The
display of graphics on a display
screen as a sixteen-color array of
blocks, 40 columns wide and 48
rows high. When the text window is
in use, the visible low-resolution
graphics display is 40 by 40 blocks.

LS: See low-power Schottkey.

machine language: The form in
which instructions to a computer
are stored in memory for direct
execution by the computer’s
processor. Each model of computer
processor (such as the 65C02
microprocessor used in the

Apple Ile) has its own form of
machine language.

main logic board: A large circuit
hoard that holds RAM, ROM, the
microprocessor, custom-integrated
circuits, and other components that
make the computer a computer.

main memory: The memory
component of a computer system
that is built into the computer itself
and whose contents are directly
accessible to the computer.

MARK parity: A bit of value 1
appended to a binary number for
transmission. The receiving device
can then check for errors by looking
for this value on each character.

mask: A pattern of bits for use in
bit-level logical operations.

memory: A hardware component
of a computer system that can store
information for later retrieval. See
main memory, random-access
memory, read-only memory,
read-write memory.

memory location: A unit of main
memory that is identified by an
address and can hold a single item
of information of a fixed size. In the
Apple Ile, a memory location holds
one byte, or eight bits, of
information.

memory-resident: (1) Stored
permanently in main memory as
firmware. (2) Held continually in
main memory even while not in use.
DOS is memory resident.

menu: A list of choices presented
by a program, usually on the display
screen, from which the user can
select.

MHz: Megahertz; one million hertz.
See hertz.

microcomputer: A computer,
such as any of the Apple II family of
computers, whose processor is a
Microprocessor.

microprocessor: A computer
processor contained in a single
integrated circuit, such as the 65C02
microprocessor used in the

Apple Ile.

microsecond: One millionth of a
second. Abbreviated us.

millisecond: One thousandth of a
second. Abbreviated ms.

mode: A state of a computer or
system that determines its behavior.
A manner of operating.

modem: Acronym for
MOdulator/DEModulator; a
peripheral device that enables the
computer to transmit and receive
information over telephone lines by
converting digital signals to analog
signals, and vice-versa.

modulate: To modify or alter a
signal so as to transmit information.
For example, conventional
broadeast radio transmits sound by
modulating the amplitude
(amplitude modulation, or AM) or
the frequency (frequency
modulation, or M) of a carrier
signal.

monitor: See video monitor.

Glossary

Monitor program: A system
program built into the firmware of
the Apple lle, used for directly
inspecting or changing the contents
of main memory and for operating
the computer at the
machine-language level.

most significant bit: The
leftmost bit of a binary number as
written down. This bit represents 0
or 1 times 2 to the power one less
than the total number of bits in the
binary number. For example, in the
binary number 10000, which
contains five digits, the / represents
1 times two to the fourth power—or
sixteen,

mouse: A small device that you
roll around on a flat surface next to
your Apple II family system. A
small pointer on the screen tracks
the movement of the mouse,

nanosecond: One billionth (in
British usage, one thousand-
millionth) of a second. Abbreviated
ns.

nested loop: A loop contained
within the body of another loop and
executed repeatedly during each
pass through the containing loop.

nested subroutine call: A call to
a subroutine from within the body
of another subroutine.

nibble: A unit of information equal
to half a byte, or four bits. A nibble
can hold any value from 0 to 15.
Sometimes spelled nybble.

NOT: A unary logical operator that
produces a true result if its operand
is false, a false result if its operand
is true. Compare AND, OR,
exclusive OR.

NTSC: (1) Abbreviation for
National Television Standards
Committee. The committee that
defined the standard format used
for transmitting broadcast video
signals in the United States. (2) The
standard video format defined by
the NTSC.

object code: See object
program.

object program: The translated
form of a program produced by a
language translator such as a
compiler or assembler. Also called
object code. Compare source
program.

odd parity: Use of an extra bit set
to 0 or 1 as necessary to make the
total number of 1 bits an odd
number.

opcode: See operation code.

operand: A value to which an
operator is applied. The value on
which an opcode operates.

operating system: The most
fundamental program in a
computer. [t organizes the actions of
the various parts of the computer
and allows it to use other programs.

operation code: The part of a
machine-language instruction that
specifies the operation to be
performed. Often called opcode.

operator: A symbol or sequence of
characters, such as + or AND,
specifying an operation to be
performed on one or more values
(the operands) to produce a result.
See arithmetic operator,
relational operator, logical
operator, unary operator,
binary operator.

option: An argument that is
optional.

OR: A logical operator that
produces a true result if either or
both of its operands are true, a false
result if both of its operands are
false. Compare exclusive OR,
AND, NOT.

Glossary

output: Information transferred
from a computer to some external
destination, such as the display
screen, a disk drive, a printer, or a
modem.

output routine: A
machine-language routine that
performs the sending of characters.
The standard output routine writes
characters to the screen. A different
output routine might, for example,
send them to a printer.

overflow: The condition that
exists when an attempt is made to
put more data into a memory area
than it can hold.

override: To modify or cancel a
long-standing instruction with a
temporary one.

overrun: A condition that occurs
when the processor does not
retrieve a received character from
the receive data register of the
ACIA before the subsequent
character arrives. The ACIA
automatically sets bit 2 (OVR) of its
status register; subsequent
characters are lost. The receive data
register contains the last valid data
word received.

391

page: (1) A segment of main
memory 256 bytes long and
beginning at an address that is an
even multiple of 256 bytes. (2) An
area of main memory containing
text or graphical information being
displayed on the screen. (3) A
screenful of information on a video
display. With the Apple Ile, a page
consists of 24 lines of 40 or 80
characters each.

page zero: See zero page.

parallel interface: An interface
in which many bits of information
(typically eight bits, or one byte) are
transmitted simultaneously over
different wires or channels.
Compare serial interface.

parity: Maintenance of a sameness
of level or count, usually the count
of 1 bit in each character, for error
checking.

Pascal: A high-level programming
language with statements that
resemble English sentences. Pascal
was designed to teach programming
as a systematic approach to problem
solving. Named after the
philosopher and mathematician,
Blaise Pascal.

pass: A single execution of a loop.

PC board: See printed-circuit
board.

peek: Toread information directly
from a location in the computer’s
memory.

peripheral: At or outside the
boundaries of the computer itself,
either physically (as a peripheral
device) or in a logical sense (as a
peripheral card).

peripheral bus: The bus used for
transmitting information between
the computer and peripheral
devices connected to the computer’s
expansion slots.

peripheral card: A removable
printed circuit board that plugs into
one of the expansion slots in the
Apple lle. It expands or modifies the
computer's capabilities by
connecting a peripheral device or
performing some subsidiary or
peripheral function.

peripheral device: An auxiliary
piece of equipment—such as a
video monitor, disk drive, printer, or
modem—used in conjunction with a
computer and under the computer’s
control. Often (but not necessarily)

Glossary

physically separate from the
computer and connected to it by
wires, cables, or some other form of
interface, typically by means of a
peripheral card.

peripheral slot: See expansion
slot.

phase: (1) A stage in a periodic
process. A point in a cycle. For
example, the 65C02 microprocessor
uses a clock cycle consisting of two
phases called ¢0 and ¢1. (2) The
relationship between two periodic
signals or processes. For example, in
NTSC color video, the color of a
point on the screen is expressed by
the instantaneous phase of the
video signal relative to the color
reference signal.

PILOT: Acronym for
Programmed Inquiry, Learning,
Or Teaching. A high-level
programming language designed to
enable teachers to create
computer-aided instruction (CAI)
lessons that include color graphics,
sound effects, lesson text, and
answer checking. A version called
Apple I PILOT is sold by Apple
Computer for use with the Apple II
family of computers.

pipelining: A feature of a
processor that enables it to begin
fetching the next instruction before
it has finished executing the current
instruction. All else being equal,
processors that have this feature
run faster than those without it.

plotting vector: A code
representing a single step in
drawing a shape on the
high-resolution graphics screen,
specifying whether to plot a point at
the current screen position and in
what direction to move (up, down,
left, or right) before processing the
next vector.

point of call: The point ina
program from which a subroutine or
function is called.

pointer: An item of information
consisting of the memory address of
some other item. For example,
Applesoft maintains internal
pointers to (among other things) the
most recently stored variable, the
most recently typed program line,
and the most recently read data
item.

poke: To store information directly
into a location in the computer’s
memory.

pop: To remove the top entry from
a stack.

power supply: A box that draws
electrical power from a power outlet
and converts it to the power the
computer can use to do its
computing.

power supply case: The metal
case inside the Apple Ile that houses
the power supply.

PR#: The PR# command sends
output to aslot or a
machine-language program. It
specifies an output routine in the
ROM on a peripheral card or in a
machine-language routine in RAM
by changing the address of the
standard output routine used by the
computer.

precedence: The order in which
operators are applied in evaluating
an expression,

printed-circuit board: A
hardware component of a computer
or other electronic device,
consisting of a flat, rectangular
piece of rigid material, commonly
fiberglass, to which integrated
circuits and other electronic
components are connected.

Glossary

procedure: In the Pascal
programming language, a set of
instructions that work as a unit;
equivalent to the subprogram in
BASIC.

processor: The hardware
component of a computer that
performs the actual computation by
directly executing instructions
represented in machine language
and stored in main memory.

ProDOS: An Apple Il operating
system designed to support mass
storage devices like the ProFile as
well as flexible disk storage devices.
ProDOS stands for Professional
Disk Operating System.

ProDOS command: Any one of
the 28 commands recognized by
ProDOS. Each has its own syntax,
all can be used within programs,
and all but five (text file
commands) can be used from
immediate mode.

program: 7. A set of instructions
describing actions for a computer to
perform in order to accomplish some
task, conforming to the rules and
conventions of a particular
programming language. In
Applesoft, a sequence of program
lines, each with a different line
number. v. To write a program.

393

programmer: The author of a
program; one who writes programs.

programming: The activity of
writing programs.

programming language: A sef of
rules or conventions for writing
programs.

prompt: n. A message on the
screen. v. To remind or signal the
user that some action is expected,
typically by displaying a distinctive
symbol, a reminder message, or a
menu of choices on the display
screen.

prompt character: A text
character displayed on the screen to
prorpt the user for some action.
Often also identifies the program or
component of the system that is
doing the prompting; for example,
the prompt character | is used by
the Applesoft BASIC interpreter, >
by Integer BASIC, and * by the
system Monitor program. Also called
prompting character.

prompt line: A message displayed
on the screen to prompt the user for
some action. Also called prompting
message.

protocol: A set of rules for sending
and receiving data on a
communications line.

4

push: To add an entry to the top of
a stack.

queue: A list in which entries are
added at one end and removed at
the other, causing entries to be
removed in FIFO (first-in first-out)
order. Compare stack.

radio-frequency modulator: A
device that transforms your
television set into a computer
display device.

RAM: See random-access
memory.

random-access memory (RAM):
Memory in which the contents of
individual locations can be referred
to in an arbitrary or random order;
the readable and writable memory
of the Apple Ile. Its contents are
usually filled with programs from a
disk, and they are lost when the
Apple Ile is turned off. This term is
often used misleadingly to refer to
read-write memory, but, strictly
speaking, both read-only and
read-write memory can be accessed
in random order. Random-access
means that each unit of storage has
a unique address and a method by
which each unit can be immediately
read from or written to. Compare
read-only memory, read-write
memory.

(Glossary

random-access text file: A text
file that is partitioned into an
unlimited number of uniform-length
compartments called records. When
you open a random-access text file
for the first time, you must specify
its record length. No record is placed
in the file until written to. Each
record can be individually read from
or written to—hence,
random-access.

raster: The pattern of parallel
lines making up the image on a
video display screen. The image is
produced by controlling the
brightness of successive dots on the
individual lines of the raster.

read: To transfer information into
the computer’s memory from a
source external to the computer
(such as a disk drive or modem) or
into the computer's processor from a
source external to the processor
(such as the keyboard or main
memory).

read-only memory (ROM):
Memory whose contents can be read
but not written; used for storing
firmware. Information is written
into read-only memory once, during
manufacture; it then remains there
permanently, even when the
computer’s power is turned off, and

can never be erased or changed.
Compare random-access
memory, read-write memory.

read-write memory: Memory
whose contents can be both read
and written; often misleadingly
called random-access memory, or
RAM. The information contained in
read-write memory is erased when
the computer’s power is turned off,
and is permanently lost unless it
has been saved on a more
permanent storage medium, such as
a disk. Compare random-access
memory, read-only memory.

real number: A number that may
include a fractional part;
represented inside the computer in
floating-point form. Compare
integer.

register: A location in a computer
processor where an item of
information is held and modified
under program control.

relational operator: An operator,
such as >, that compares numeric
values to produce a logical result.
Compare arithmetic operator,
logical operator.

reserved word: A word or
sequence of characters reserved by
a programming language for some
special use, and therefore
unavailable as a variable name in a
program.

resident: See memory-resident,
disk-resident.

return address: The pointina
program to which control returns on
completion of a subroutine or
function.

RF modulator: See
radio-frequency modulator.

ROM: See read-only memory.

routine: A part of a program that
accomplishes some task subordinate
to the overall task of the program.

row: A horizontal arrangement of
character spaces or graphics points
on the screen.

RS232 cable: Any cable that is

wired in accordance with the RS232
standard, which is the common data
communications interface standard.

run: (1) To execute a program.
(2) To load a program into main
memory from a peripheral storage
medium, such as a disk, and
execute it.

E!i':.\mll':\

save: To transfer information from
main memory to a peripheral
storage medium for later use.

scroll: To change the contents of
all or part of the display screen by
shifting information out at one end
(most often the top) to make room
for new information appearing at
the other end (most often the
bottom), producing an effect like
that of moving a scroll of paper past
a fixed viewing window. See
window.

serial interface: An interfacein
which information is transmitted
sequentially, one bit at a time, over
a single wire or channel, Compare
parallel interface.

setup time: The amount of time a
signal must be valid in advance of
some event. Compare hold time.

silicon: A non-metallic,
semiconducting chemical element
from which integrated circuits are
made. Not to be confused with
silica—that is, silicon dioxide, such
as quartz, opal, or sand—or with
silicone, any of a group of organic
compounds containing silicon.

simple variable: A variable that is
not an element of an array.

simplified keyboard: The
Dvorak keyhoard.

6502: The type of microprocessor
used in the Apple II, II Plus, and
original Ile.

65C02: The type of microprocessor
used in the enchanced Apple Ile and
the Apple Ilc.

slot: A narrow socket inside the
computer where you can install
peripheral device cards.

soft switch: A means of changing
some feature of the computer from
within a program; specifically, a
location in memory that produces
some special effect whenever its
contents are read or written.

software: Instructions that tell the
computer what to do. They're
usually stored on disks. Compare
hardware, firmware.

source program: The original
form of a program given to a
language translator such as a
compiler or assembler for
conversion into another form;
sometimes called source code.
Compare object program.

space character: A text character
whose printed representation is a
blank space, typed by pressing the
bar.

stack: A list in which entries are
added or removed at one end only
(the top of the stack), causing them
to be removed in LIFO (last-in
first-out) order. Compare queue.

standard instruction: An
instruction automatically present
when no superseding instruction
has been received.

start up: To get the system
running. For example, In the
context of ProDOS, starting up is the
process of reading the ProDOS
program (in the files PRODOS and
BASIC.SYSTEM) from the disk, and
running it.

starting value: The value
assigned to the index variable on
the first pass through a loop.

startup disk: A disk containing an
operating system and a self-starting
program.

statement: A unit of a program in
a high-level language that specifies
an action for the computer to
perform, typically corresponding to
several instructions of machine
language.

Glossary

step value: The amount by which
the index variable changes on each
pass through a loop.

string: An item of information
consisting of a sequence of text
characters,

strobe: A signal whose change is
used to trigger some action.

subroutine: A part of a program
that can be executed on request
from any point in the program, and
which returns control to the point of
the request on completion.

synchronous transmission: A
transmission process that requires
an integral number of unit (time)
intervals between any two
significant instances. In
synchronous communications, the
transmitter and receiver are in step
with each other, and characters
being transmitted follow one after
the other at regular intervals.
Compare asynchronous
transmission.

syntax: The rules governing the
structure of statements or
instructions in a programming
language; a representation of a
command that specifies all the
possible forms the command can
take.

system: A coordinated collection of
interrelated and interacting parts
organized to perform some function
or achieve some purpose.

system configuration: See
configuration.

system program: A program that
makes the resources and
capabilities of the computer
available for general purposes, such
as an operating system or a
language translator. Compare
application program.

system software: The component
of a computer system consisting of
system programs.

TAB: An ASCII character that
commands a device such as a
printer to start printing at a preset
location (called a tab stop). There
are two such characters;: horizontal
tab (hex $09) and vertical tab (hex
$0B).

television set: A display device
capable of receiving broadcast video
signals (such as commercial
television) by means of an antenna.
Can be used in combination with a
radio-frequency modulator as a
display device for the Apple Ile.
Compare video monitor.

terminal: A device consisting of a
typewriter-like keyboard and a
display device, used for
communicating between a computer
system and a human user. Personal
computers such as those in the
Apple II family of computers
typically have all or part of a
terminal built into them.

text: (1) Information presented in
the form of characters readable by
humans. (2) The display of
characters on a display screen.
Compare graphics.

text window: An area on the video
display screen within which text is
displayed and scrolled.

traces: Electrical roads that
connect the components on a circuit
board.

transistor-transistor logic
(TTL): (1) A type of integrated
circuit used in computers and
related devices. (2) A standard for
interconnecting such circuits that
defines the voltages used to
represent logical zeros and ones.

troubleshoot: To locate and
correct the cause of a problem or
malfunction in a computer system.
Typically used to refer to
hardware-related problems.
Compare debug.

Glossary

TTL: See transistor-transistor
logic.

turnkey disk: A disk that
executes a specific application
program when you use that disk to
start the computer.

turnkey program: A program,
such as a game or application, that
runs automatically when the disk
that the program is on is used to
start up the computer.

unary operator: An operator that
applies to a single operand; for
example, the minus sign (-)in a
negative number such as -6is a
unary arithmetic operator. Compare
binary operator.

unconditional branch: A branch
that does not depend on the truth of
any condition. Compare
conditional branch.

value: Anitem of information that
can be stored in a variable, such as a
number or a string.

variable: (1) A location in the
computer's memory where a value
can be stored. (2) The symbol used
in a program to represent such a
location. Compare constant.

vector: (1) The starting address of
a program segment, when used as a
common point for transferring
control from other programs. (2) A
memory location used to hold a
vector, or the address of such a
location.

video: (1) A medium for
transmitting information in the form
of images to be displayed on the
screen of a cathode-ray tube. (2)
Information organized or
transmitted in video form.

video monitor: A display device
capable of receiving video signals by
direct connection only, and which
cannot receive broadeast signals
such as commercial television. Can
be connected directly to the
computer as a display device.
Compare television receiver.

volume: A general term referring
to a storage device; a source or
destination of information. A
volume has a name and a volume
directory with the same name. Its
information is organized into files.

window: The portion of a
collection of information (such as a
document, picture, or worksheet)
that is visible on the display screen.

word: A group of bits of a fixed size
that is treated as a unit; the number
of bits in a word is a characteristic
of each particular computer.

write: To transfer information
from the computer to a destination
external to the computer (such as a
disk drive, printer, or modem) or
from the computer’s processor to a
destination external to the processor
(such as main memory).

write-enable notch: The square
cutout on one edge of a disk’s jacket
that permits information to be
written on the disk. If there is no
write-enable notch, or if it is covered
with a write-protect tab,
information can be read from the
disk but not written onto it.

write-protect: To protect the
information on a disk by covering
the write-enable notch with a
write-protect tab, preventing any
new information from being written
onto the disk. Compare copy
protect.

write-protect tab: A small
adhesive sticker used to
write-protect a disk by covering the
write-enable notch.

Glossary

X register: One of the index
registers in the 66C02
microprocessor,

Y register: One of the index
registers in the 66C02
MiCroprocessor.

zero page: The first page (256
bytes) of memory in the Apple Ile,
also called page zero. Since the
high-order byte of any address in
this page is zero, only the low-order
byte is needed to specify a zero-page
address; this makes zero-page
locations more efficient to address,
in both time and space, than
locations in any other page of
memory.

E;tﬂi;)graphy

Addendum to the Design Guidelines. Cupertino, Calif.: Apple Computer,
Inc., 1984.

Apple Il Monitors Peeled. Cupertino, Calif.: Apple Computer, Inc., 1978,

Currently not updated for Apple Ile and Ilc, but a good introduction
to Apple Il series input /output procedures; also useful for histarical
background.

Apple Ile Design Guidelines. Cupertino, Calif.: Apple Computer, Inc., 1982.

Applesoft BASIC Programmer’s Reference Manual, Volumes 1 and 2.
For the Apple I1, Ile, and Ilc. Reading, Mass.: Addison-Wesley,
1982, 1985. ISBN 0-201-17722-6.

Applesoft Tutorial. Reading, Mass.: Addison-Wesley, 1983, 1985.
ISBN 0-201-17724-2.

“Characteristics of Television Systems.” C.C.1.R. Report, Rep. 624
(1970-1974), pp. 22-52.

“Colorimetric Standards in Colour Television.” C.C.LR. Report, Rep. 476-1
(1970-1974), pp. 21-22.

Leventhal, Lance. 6502 Assembly Language Programming. Berkeley,
Calif.: Osborne /McGraw-Hill, 1979.

Sims, H. V. Principles of PAL Colour Television and Related Systems.
London, England: Newnes-Butterworth, 1969, ISBN-0-592-05970-7.

Synertek Hardware manual. Santa Clara, Calif.: Synertek Incorporated,
1976.

Does not contain instructions new to 65C02, but is the only
currently available manufacturer’'s hardware manual for 6500 series
microcomputers.

Bibliography 999

Synertek Programming manual, Santa Clara, Calif.: Synertek,
Incorporated, 1976.

The only currently available manufacturer’s programming manual]
for 6500 series microcomputers. L

“Video-Frequency Characteristics of a Television System to Be Used for the
International Exchange of Prograrnmes Between Countries That
Have Adopted 625-Line Colour or Monochrome Systems.” C.C.LR.,
Recommendation 472-1 (1970-1971), pp. 53-54.

Watson, Allen, III. “A Simplified Theory of Video Graphics, Part 1.” Byte
Vol. 5, No. 11 (November, 1980).

—."A Simplified Theory of Video Graphics, Part I1.” Byte Vol. 5, No. 12
(December, 1980).

———“More Colors for Your Apple.” Byte Vol. 4, No. 6 (June, 1979).

—.“True Sixteen-Color Hi-Res." Apple Orchard Vol. 5, No. 1 (January,
1984).

Wozniak, Steve: “System Description: The Apple I1.” Byfe Vol. 2, No. b
(May, 1977).

—— “SWEET16: The 6502 Dream Machine.” Byte Vol. 2, No. 10
(October, 1977).

Bibliography

vy

fndex

Cast of Characters

* (asterisk) as prompt character 60

* (caret) 122,125

: (colon) as Monitor command 103

> (greater than sign) as prompt
character 60

= 61

& 11, 13, 226

. (period) as Monitor command 100

¢0 (phi 0) 162-164, 170, 171, 180-181

$1 (phi 1) 162-164, 170, 171, 180-181

@2 (phi 2) 162

? (question mark) prompt character 60

=62

] (right bracket) as prompt character
60

® 11, 13, 226
14M signal 163
40-column text 20-21
display pages 27
generation 179
memory map 32, 177
with TV set 16
6502 microprocessor 5, 6
differences from 65C02 206-207
65002 microprocessor Xxix, 5, 6,
206-216
data sheet 208-216
differences from 6502 6, 206-207
specifications 161-164
timing 162-164
65002 stack 75
80COL soft switch 29
80-column firmware xxx, 49-50
activating 49
control characters with 273-275

80-column text 20-21
differences in Apple Il family 227
display pages 27
generation 179
map 33
signals 197
with Applesoft xxx
with Pascal xxx
with TV set 16
80-Column Text Card 84, 132, 149,
268-275
80STORE soft switch 29, 31, 84, 86, 87,
197

A

A register 146
Al 89
A2 89
A4 89
accumulator 136, 148
ACIA 289
address bus 162
address transformation 176
addressing
display pages 30-36, 175-178
1/0 locations 136-137
RAM 138, 170-173
ROM 169
addressing, indirect 75
addressing, relative 119, 125, 135
ALTCHAR soft switch 29
alternate character set 19-20, 226
on original [Te 20
ALTZP soft switch 82, 87, 89
analog inputs 42, 43
animation 229
annunciators 40, 43

any-key-down flag 12
Apple keys 11,13
differences in Apple II family 226
Applesoft BASIC xxx, 12, 103, 233
and lowercase xxxi
and uppercase 48
80-column support xxx
tabbing with original Apple Ile
271-272
use of zero page 77
Apple II compatibility with Apple Ile
48-50
Apple Il family differences 226-230
Apple llc interrupt differences 156
Apple Ile, differences between original
and enhanced xxix-xxxi
ASCII input mode 105
COUT! subroutine 54
interrupt support 130, 148
microprocessor 6
Mini-Assembler 121
Monitor Search command 108
MouseText 16, 20
slot 3 143
tabbing in Applesoft 271-272
using (CAPS_LOCK] 48
Apple ITe 80-Column Text Card 84,
132, 268-275
Apple Ile Extended 80-Column Text
Card 84,132, 268-275
arithmetic, hexadecimal 114
arrow keys 61, 62
ASCII codes 14-15
ASCII input mode 104-105
assemblers 119
assembly language 233
asterisk (*) as prompt character 60
auxiliary firmware 84-91

401

auxiliary memory 84-91
differences in Apple Il family 228
map 85
moving data to 89
soft switches 87
subroutines 88

auxiliary RAM 84

auxiliary slot 7, 49
differences in Apple 1l family 228
signals 197-199

AUXMOVE subroutine 88, 89, 143

B

backspacing 61
bank-switched memory 79-83 , 85, 227
map 80
bank switches 80-83, 85
reading 83
BASIC, Applesoft xxx,12, 103, 233
and lowercase xxxi
and uppercase 48
80-column support Xxx
tabbing with original Apple Ile
271-272
use of page 3 76
use of zero page 77
BASIC, Integer 12, 233
and bank-switched memory 79
and reset 81
and uppercase 48
use of page 3 76
use of zero page 78
BASICIN subroutine 57, 218
address in [/0 link 51
BASIC Monitor command 112
BASICOUT subroutine 63,218
address in 1/0 link 51

baud rate for SSC 280
BEL character 52
BELL subroutine 218
BELLI subroutine 38, 218
bit definition 236
bit mapping of graphics 24-26
booting 268-269
break intructions 1556
BRK handler 155
BRK instruction 155
BRK vector 147
BS character 52
byte definition 237
C
canceling lines 61
CAN character 53
11 |
for older software compatibility 48
caret (") 122,125
carriage returns with SSC 283
cassette I/0 38-39, 189
commands 109-111
soft switches 38
central processing unit (CPU) 6
See also 656C02 microprocessor
CH 51
changing memory contents 103-108
character code 12
character generator ROM 179
character sets, text 19-20
differences among Apple Il models
226-227
CHARGEN signal 185
circuit board 4-5
connectors 6
clear-strobe switch 12

Index

CLEOQLZ subroutine 49, 64, 219
clock rate 161
clock signals 162
CLREOL subroutine 49, 63, 218
CLREOQP subroutine 49, 64, 219
CLRSCR subroutine 64, 219
CLRTOP subroutine 64, 219
cold-start reset 92
colon (:) as Monitor command 103
color graphics with black-and-white
monitors 16
colors
double-high-resolution graphics 26
high-resolution graphics 24-25, 183 £
low-resolution graphics 23 Mﬂ,,n'
command characters, Monitor 99
comma tabbing with original Apple Ile
271-272
complementary decimal values 12
connectors
back panel 8
cassette [/0 8, 38
D-type 8
game /0 7,13
hand control 8, 39-42
9-pin 8, 39
phone jacks 8, 38
power 161
RCA-type jack 8
video monitor 8, 186
control characters 245, 249
with BASICOUT 52-53
with COUT1 52
with 80-column firmware 273-275
with Pascal 1/0 protocol 68-69
Control-U 50
11
Monitor command 112

Monitor command 109
Monitor command 113
[conTroL HP) Monitor command 113
b1

Monitor command 117
COUT subroutine 51, 64,219

deactivating 80-column firmware 50

COUT1 subroutine 51, 64, 134, 219
address in 1/0 link 50
on original Apple Ile 54
cover 2
CP/M 233
starting up with 268
CPU 6
See also 65C02 microprocessor
CR character 53
CROUT subroutine 64,219
CROUTI subroutine 65, 219
CSW link 139
current, supply 159
cursor-control keys 11
cursor motion in escape mode 58-59
cursor position 51-57
custom IC's 164-168
CV 5l
cycle stealing 170

"
L)

D-type connector 8

daisy chains, interrupt and DMA
193-194, 203

data bus 162

data format for SSC 281

DC1 character 53

DC2 character 53

DC3 character 53

decimal values 12
converting to hexadecimal 238-239
negative 240-241
device assignment, peripheral card
144
device identification 144
DEVICE SELECT” signal 131
DHIRES soft switch 29
Diagnostics ROM 169
differences among Apple Il models
226-230
differences between original and
enhanced Apple [le xxix-xxxi
ASCII input mode 105
COUT1 subroutine 54
interrupt support 130, 148
microprocessor 6
Mini-Assembler 121
Monitor Search command 108
MouseText 16, 20
slot 3 143
tabbing in Applesoft 271-272
using [GAPS TooK] 48
disassemblers 119
display, video 16-36
address transformation 176-177

double-high-resolution graphics 185

80-column text 179

formats 17, 56

40-column text 179

generation 173-185, 230
high-resolution graphics 183-184
low-resolution graphics 182-183
memory addressing 175-178
modes 17, 20-26, 28-30, 179-185
pages 26-28, 30-36, 76
refreshing 170

specifications 17

text 179-181

DMA daisy chain 193-194, 203
DOS 3.3 xxix, 140, 232

and uppercase 48

starting up with 269

use of page 3 76

use of zero-page 78
double-high-resolution graphies 17, 18,

25-26

colors 26

display pages 27

generation 185

map 36

memory pages 25
double-high-resolution Page 1 76

E

editing with GETLN 61
80COL soft switch 29
80-colurn firmware xxx, 49-50
activating 49
control characters with 273-275
80-column text 20-21
differences in Apple Il family 227
display pages 27
generation 179
map 33
signals 197
with Applesoft xxx
with Pascal xxx
with TV set 16
80-Column Text Card 84, 132, 149,
268-275
B0STORE soft switch 29, 31, 84, 86, 87,
197
EM character 53
ENBO signal 197

403

enhanced Apple Ile See differences
between original and enhanced
Apple lle

ENKBD' signal 187

entry points for I/0 routines 145-146

escape codes 58-59

escape mode 58-59

ESC character 53

ETB character 53

EXAMINE command 108-109

examining memory 100

expansion ROM space 132-134

expansion slot 3 49

expansion slots 6-7, 130-143

signals 192-196

Extended 80-Column Text Card 84,

132, 268-275

FF character 52
firmware
auxiliary 84-91
80-column xxx, 49-50
1/0 46-69
Monitor subroutines 46-69
Pascal 1.1 protocol 67-69, 144-146
slot 3 67
flag, any-key-down 12
FLASH command 270-271
flashing format 18-19, 56-57
forced cold-start reset 93
FORTRAN 234
40-column text 20-21
display pages 27
generation 179
memory map 32, 177
with TV set 16
FS character 53

{3

game 1/0
connectors 13
signals 190-191
GET command 269
GETLN subroutine 57, 60-62, 220
editing with 61
input buffer 76
line length 61
used by Monitor 99
with 80-column card 269
GETLNI subroutine 220
GETLNZ subroutine 220
GO command 118
graphics, double-high-resolution 17,
18, 25-26
colors 26
display pages 27
generation 185
map 36
memory pages 25
graphics, high-resolution 17, 18, 23-25,
addressing display pages 31, 35
bit patterns 242-243
colors 24-25, 183
display pages 23, 27
generation 183-184
map 35
graphics, low-resolution 17, 18, 22-23,
colors 23
display pages 27
generation 182-183
map 34
with TV set 16
graphics modes 22-26
bit-mapping 24-26
greater than sign (=) as prompt
character 60
GS character 53

H

hand control connectors 8, 39-42
hard disk with Pascal xxxi
hexadecimal arithmetic 114
hexadecimal values 12
converting to decimal 238-239
converting to negative decimal
240-241
high-resolution graphics 17, 18, 23-25
addressing display pages 31, 35
bit patterns 242-243
colors 24-25, 183
display pages 27
generation 183-184
map 35
high-resolution Page 1 23, 27, 76
high-resolution Page 2 23, 76
HIRES soft switch 29, 86, 87
HLINE subroutine 65, 220
HOME command 270-271
HOME subroutine 49, 65, 220
HTAB command xxx
with original Apple [le 272
humidity, operating 158

1,d

1/0
addressing 136-137
circuits 187-191
devices, built-in 10-42
entry points 145-146
firmware, built-in 46-69
links 50-51, 76, 139-140
memory for peripheral cards

130-131

memory map 141
Pascal protocol 67-69, 143, 144-146
switching memory 141-142

[/0 SELECT" signal 131-132

identification byte xxix, 230

IN# command 113

index register 136

indirect addressing 75

input buffer 76

INPUT command 269

input devices See 1/0 devices

input/output See 1/0

Input/Output Unit (I0U) 3, 6, 166-167,
187

inputs
analog 37,42
hand control 37
secondary 37-42, 43
switch 37-41
See also 1/0 devices
INT IN pin 147
INT OUT pin 147
Integer BASIC 12, 233
and bank-switched memory 79
and reset 81
and uppercase 48
use of page 3 70
use of zero page 78
interpreter ROM 5
interrupt handler
built-in 146, 149-150
user's 154
interrupts xxx, 146-156
and card in auxiliary slot 49
daisy chain 193-194, 203
definition 147
original Apple [le differences 148
priority 147
sequence 151
interrupt vector 150
INVERSE command 270-271
inverse display format 18-19, 56-57,
112

IOREST subroutine 220

I0SAVE subroutine 220

[0U (Input/Output Unit) 5, 6, 166-167,
187

[OUDIS soft switch 29

IRQ vector 147

IRQ’ signal 147

KBD’ signal 187
keyboard 3, 10-15
automatic repeat function 10
circuits 187-188
differences in Apple I1 family 226
memory locations 12
rollover 10
specifications 11
KEYBOARD command 113
keyboard encoder 5, 12
keyboard ROM 5
keyboard strobe 13
KEYIN subroutine 57, 58-59, 221
address in 1/0 link 50
keypad 188
keys and ASCII codes 14-15
KSW link 139

L
language card 83
differences in Apple II family 227
LED 3
(=) key 61
LF character 52
line feeds with SSC 284
links, 1/0 50-51
address storage 70
changing 139-140

LIST command 119
low-resolution graphics 17, 18, 22-23
colors 23
display pages 27
generation 182-183
map 34
with TV set 16

M

machine language 118-120
mapping display addresses 176-177
maps See memory maps
memory
addressing 168
auxiliary 84-91
bank-switched 79-83, 86-88, 227
changing contents 103-108
display 175-178
examining 100
filling 115-116
for peripheral cards 130-135
1/0 space 141-142
organization 72-95
sharing 88
text window locations 55
used by SSC 289
memory dump 100-102
Memory Management Unit (MMU) 5,
6, 164-165
Mmemory maps
auxiliary memory 85
bank-switched areas 80
double-high-resolution graphics 36
80-column text 33
40-column text 32, 177
high-resolution graphics 35
1/0 141
low-resolution graphics 34
main memory 73
RAM 74

405

memory pages, reserved 75-79 0
microprocessor See 65C02 and 6502

period (.) as Monitor command 100
peripheral address bus 192-193, 194

MiCroprocessors © 11:_ 13,226 peripheral cards
Mini-Assembler 121-125 operating systems 232-233 device assignment 144
errors 122 original Apple Ile 1/0 memory space 130-131, 141
instruction formats 124-125 ASCII input mode 105 programming for 130-156
starting 121 COUT!1 subroutine 54 RAM space 134-135

MIXED soft switch 29
Monitor, System 98-128
command summary 125-128
command syntax 99
creating commands 117
enhancements xxvi
firmware subroutines 46-69
returning to BASIC 112
ROM listings 294-375
use of page 3 76
use of zero page 77
Monitor ROM 169
listings 294-375
MouseText characters 17, 19, 247
MOVE command 105, 115
MOVE subroutine 221
MSLOT 150, 154

N

NAK character 53
negative decimal values 12
converting 240
NEXTCOL subroutine 221
9-pin connectors 8, 39
NORMAL command 270-271
normal format 18-19, 112
NTSC standard 16, 24, 173

interrupt support 130, 148
microprocessor 6
Mini-Assembler 121
Monitor Search command 108
MouseText 16, 20
slot 3 143
startup display 6
tabbing in Applesoft 271-272
using (CaPS LOCK] 48
output See I/0
overheating 158

[)
Page 1, double-high-resolution 76
Page 1, high-resolution 23, 27, 76
Page 1, text 27
Page 2, high-resolution 23, 76
Page 2, text 27
page 3 vectors 94
page zero See zero page
PAGE2 soft switch 29, 31, 84, 86, 87
pages, reserved memory 75-79
PAL device 168
parity for SSC 281-282
Pascal xxix, 234, 275
and bank-switched memory 79
1/0 subroutines 46
starting up with 268
Pascal 1.1 firmware protocol 67-69,
143, 144-146
Pascal operating system 232

ROM space 131-132
peripheral data bus 193

differences in Apple I family 230
peripheral slots See expansion slots
¢0 (phi0) 162, 164, 170, 171, 180-181
¢1 (phil) 162, 164, 170, 171, 180-181

¢2 (phi 2) 162
phone jacks 8, 38
PINIT subroutine 67
pipelining 161
PLOT subroutine 65, 221
POKE command 272
power connector 161
power supply 4, 159-160
PR# command 113
PRBL2 subroutine 65, 221
PRBLNK subroutine 221
PRBYTE subroutine 65, 221
PREAD subroutine 42, 67, 222
PRERR subroutine 65, 222
PRHEX subroutine 66, 222
primary character set 19-20
PRINTER command 113
PRNTAX subroutine 66, 222
ProDOS 103, 140, 232
interrupt support 148
starting up with 269
use of page 3 76
use of zero-page 79

ProFile hard disk xxxi

Programmed Array Logic (PAL) device

5, 168
prompt characters 60
PSTATUS subroutine 69
PWRITE subroutine 68

K

Q3 signal 163

question mark (?) prompt character 60

R/W80 signal 197
radio frequency modulator 7
RAM
addressing 138, 170-173
allocation 74-79
auxiliary 84
space for peripheral cards 134-135
timing signals 171-173
RAMRD soft switch 86, 87
RAMWR soft switch 86, 87
random number generator 58
RDALTCHAR soft switch 29
RDALTZP soft switch 82
RDBNK2 soft switch 82
RDCHAR subroutine 222
RDDHIRES soft switch 29
RD80COL soft switch 29
RDSOSTORE soft switch 29
RDHIRES soft switch 29
RDIOUDIS soft switch 29
RDKEY subroutine 47, 57, 60, 222, 269
RDLCRAM soft switch 82
RDMIXED soft switch 29
RDPAGEZ2 soft switch 29
RDTEXT soft switch 29
READ subroutine 39, 222
READ tape command 110-111

refreshing the display 170
registers 146, 162
A register 146
accumulator 136, 148
examining and changing 108-109
index 136
Xregister 146
Y register 146
relative addressing 119, 125, 135
reserved memory pages 75-79
11, 13, 226
reset routine 91-95
and bank switches 81
differences in Apple Il family 229
reset vector 93-94
Monitor command 125
retype function 62
RF modulator 7
RGB-type monitor 185
(=] 62
right bracket (]) as prompt character
60

rollover, N-key 10

ROM
addressing 169
expansion 132-134
interpreter 5
keyboard 5
Monitor listings 294-375
space for peripheral cards 131-132
video 5

ROMENT1 signal 169

ROMENZ signal 169

S

schematic diagram 200-203
SCRN subroutine 66, 223
SEARCH command 108

self-test 13,95
differences in Apple II family 229
SETCOL subroutine 66, 223
SETINV subroutine 223
SETNORM subroutine 223
11
shift-key mod 41
short circuits 160
SI character 53
signals
auxiliary slot 197-199
expansion slot 192-196
game 1/0 connector 191
10U 167
kevboard connector 188
keypad connector 188
MMU 165
PAL device 168
RAM timing 172-173
65C02 timing 163
speaker connector 189
video connector 186
video timing 180-181, 184
signature byte 230
6502 microprocessor 6
differences from 65C02 6, 206-207
65C02 microprocessor xxix, b, 6,
206-216
comparison with 6502 6, 206-207
data sheet 208-216
specifications 161-164
timing 162-164
slot, auxiliary 7,49
slot number, finding 136
slot 3 49, 149
firmware 67
in original Apple Ile 143
slots, expansion 6-7, 130-143
signals 192-196

SLOTC3ROM soft switch 49, 142
SLOTCXROM soft switch 142
SO character 53
soft switches
auxiliary memory 84, 87
bank switches 80-83, 85
differences in Apple Il family 228
display 28-30
for bank switching 83,85
/0 memory 141-142
implemented by 10U 166
implemented by MMU 164
speaker 38
& 11, 13,226
SPC command xxx
speaker 3, 37, 189
connector 189
soft switch 38
specifications, environmental 158
stack pointers 75, 152
stack
auxiliary 152-153
main 152-153
65C02 75
standard 1/0 links 50-51
address storage 76
changing 139-140
starting up 268-269
startup display 6
startup drives xxix-xxx
stop-list feature 54
strobe bit 13
strobe output 40, 43
STSBYTE 287
SUB character 53

subroutines
directory of 218-224
output 62-66
Pascal 1/0 protocol 67-69
standard 1/0 46-69
See also names of subroutines
Super Serial Card 278-293
command character 280
commands 280-287
error codes 287-288
memory use 289-292
scratchpad RAM 292
terminal mode 286-287
switch 0 41,43
switch 1 41,43
switches See soft switches
switch inputs 41, 43
SYN character 53
System Monitor See Monitor, System

T
tabbing
TAB command xxx
with original Apple Ile 271-272
television set 16
temperature
case 159
operating 158
text cards 84, 132, 149, 268-275
text character sets
alternate 19-20
primary 19-20, 226, 227
text display 18-21, 179-181
flashing format 56-57
inverse format 18, 56-57
normal format 18
See also 40-column text and
80-column text

Index

text Page 1 27, 76
text Page 2 27, 76
TEXT soft switch 29
text window 54-55
memory locations 55
timing signals
expansion slots 194
RAM 172-173
65C02 microprocessor 162-164
video 180-181, 184

U
US character 53
user's interrupt handler 154
v
vectors

BRK 147

interrupt 150

IRQ 147

page 3 94

reset 93-94
VERIFY command 107, 116
VERIFY subroutine 223
vertical sync 229
VID7M signal 163
video counters 174-175
video display See display, video
video display pages 23, 25, 26-28
video monitor 16

connector 8, 186
video output signals 186
video ROM 5

video standards 173
VLINE subroutine 66, 224
voltage

line 158

supply 159
VT character 52
VTABZ subroutine 66

W

WAIT subroutine 224
warm-start reset 92

WRITE subroutine 38, 224
WRITE tape command 109-110

X

XFER subroutine 88, 90, 143, 153
X register 146

Index

Yi'
Y register 146

Z
zero page 76, T7-79

409

Apple’ Tle Technical Reference Manual > 42495 FPT

The Official Publication from Apple Computer, Inc.

Written and produced by the people at Apple Computer, this is the definitive,
up-to-date reference manual for the Apple Ile computer. It was written for
professional programmers, designers of peripheral equipment, and more
advanced home users, and it describes—as completely as possible in one
volume—the internal operation of the original and enhanced Apple Ile.

This manual provides detailed descriptions of all the Ile's hardware and
firmware, including input/output features (such as mousetext), memory
organization, and the use of the Monitor firmware. Appendices offer complete
reference information to the 6502 and 65C02 instruction sets and built-in I/O
subroutines, a2 complete source listing of the Monitor firmware, and more.
Anyone who needs technical information on the internal workings of the
original or enhanced Apple Ile will find this book an indispensable guide to
one of the world’s most popular computers.

The Apple Ile Technical Reference Manual was written and produced by
the Apple I User Education Group.

i

Apple Computer, Inc.

20525 Mariani Avenue

Cupertino, California 95014 B2

408 9961010 © 1985. 1983 Agple Cospeser. Inc.
TLX 71576 Pomedin 'S4

Addison-Wesley Publishing Company, Inc. : ISBN 0-20L-17720-X

r

