il

l[l-_l[‘ IU EU l[[LD ‘D LU ’s[’ ’J—r"” (”

I

ab b

Apple I

Reference Manual
For Ile Only

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this manual or with respect to the software described in this
manual, its quality, performance, merchantability, or fitness for any
particular purpose. Apple Computer, Inc. software is sold or licensed “‘as
is.” The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase, the buyer
(and not Apple Computer, Inc., its distributor, or its retailer) assumes the
entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been
advised of the possiblity of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

© 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

Warning

This equipment has been certified to comply with the limits for a
Class B computing device, pursuant to Subpart J of Part 15 of FCC
Rules. Only peripherals (computer input/output devices, terminals,
printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is
likely to result in interference to radio and TV reception.

Written by Allen Watson of the Apple PCSD
Publications Department

Reorder Apple Product A2L.2005

o W W o oY o O O O W

i

|

Radio and Television Interference

The equipment described in this manual generates and uses radio-
frequency energy. If it is not installed and used properly, that is, in
strict accordance with our instructions, it may cause interference
with radio and television reception.

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specifications in
Subpart J, Part 15, of FCC rules. These rules are designed to
provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that the
interference will not occur in a particular installation, especially if
you use a ‘“‘rabbit ear” television antenna. (A “rabbit ear” antenna is
the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference
by turning it off. If the interference stops, it was probably caused
by the computer or its peripheral devices. To further isolate the
problem:

e Disconnect the peripheral devices and their input/output cables
one at a time. If the interference stops, it is caused by either
the peripheral device or its 1/0 cable. These devices usually
require -shielded 1/O cables. For Apple peripheral devices, you
can obtain the proper shielded cable from your dealer. For non-
Apple peripheral devices, contact the manufacturer or dealer
for assistance.

If your computer does cause interference to radio or television
reception, you can try to correct the interference by using one or
more of the following measures:

e Turn the TV or radio antenna until the interference stops.

e Move the computer to one side or the other of the TV or radio.

e Move the computer farther away from the TV or radio.

e Plug the computer into an outlet that is on a different circuit
than the TV or radio. (That is, make certain the computer and
the radio or television set are on circuits controlled by different
circuit breakers or fuses.)

e Consider installing a rooftop television antenna with coaxial
cable lead-in between the antenna and TV.

COTO'BO'FY 'BLOYRLO'EL TR TRl TR TR TR\ MRl IR\ TRy TR TEL

|

\

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
helpful the following booklet, prepared by the Federal
Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems”

This booklet is available from the U.S. Government Printing Office,
Washington, DC 20402, stock number 004-000-00345-4.

® E O O E e o OEOEOmOEOmOmEmmE EyOrR

A

Table of Contents

. Foreword

xiii
XV

Contents of This Manual
Symbols Used in This Manual

Pl Introduction

1

2

o~NOGTOT O =

11

13
17
19
19
21

22
22
23
26
27
29
35
35
36
37

Removing the Cover

The Keyboard

The Speaker

The Power Supply

The Circuit Board

Connectors on the Circuit Board
Connectors on the Back Panel

I Built-in 1/0 Devices

The Keyboard
Reading the Keyboard
The Video-display Generator
Text Modes
Text Character Sets
40-column versus 80-column Text
Graphics Modes
Low-resolution Graphics
High-resolution Graphics
Display Pages
Display Mode Switching
Addressing Display Pages Directly
Secondary Inputs and Outputs
The Speaker
Cassette Input and Output
The Hand Control Connector Signals

Cotents

37

Annunciator Outputs

38 Strobe Output

38 Switch Inputs

39 Analog Inputs

40 Summary of Secondary I/O Locations

N Built-in 1/0 Firmware 41

3 43 Using the I/O Subroutines

44 Apple Il Compatibility

45 The 80-column Firmware

47 The Old Monitor

47 The Standard 1/O Links

48 Standard Output Features

48 COUT Qutput Subroutine

50 Control Characters with COUT1

50 The Stop-List Feature

50 The Text Window

52 Inverse and Flashing Text

53 Standard Input Features

54 RDKEY Input Subroutine
54 KEYIN Input Subroutine
55 Escape Codes with KEYIN
56 Cursor Motion in Escape Mode
56 GETLN Input Subroutine
58 Editing with GETLN
58 Cancel Line
58 Backspace
58 Retype
I Memory Organization 59

4 61
63
63

64

64

64

65

65

68

69

71

73

76

vi

Main Memory Map
RAM Memory Allocation
Reserved Memory Pages
Page Zero
The 6502 Stack
The Input Buffer
Link-address Storage
The Display Buffers
Bank-switched Memory
Setting Bank Switches
Auxiliary Memory and Firmware
Memory Mode Switching
Auxiliary-memory Subroutines

R A A AT A T A T I I A T T A T A T A T A T

77
78
79
80
80
81
81
83

Moving Data to Auxiliary Memory

Transferring Control to Auxiliary Memory

The Reset Routine
The Cold-start Procedure
The Warm-start Procedure
Forced Cold Start
The Reset Vector
Automatic Self-test

I Using the Monitor

5]

87
88
89
89
89
92
92
93
94
96
97
97
98
98
99
101
101
102
102
103
104
104
104
106
106
107
107
108
110
113
115

Invoking the Monitor
Syntax of Monitor Commands
Monitor Memory Commands
Examining Memory Contents
Memory Dump
Changing Memory Contents
Changing One Byte
Changing Consecutive Locations
Moving Data in Memory
Comparing Data in Memory
Monitor Register Command
Examining and Changing Registers
Monitor Cassette Tape Commands
Saving Data on Tape
Reading Data from Tape
Miscellaneous Monitor Commands
Display Inverse and Normal
Back to BASIC
Redirecting Input and Output
Hexadecimal Arithmetic
Special Tricks with the Monitor
Multiple Command Lines
Filling Memory
Repeating Commands
Creating Your Own Commands
Machine-language Programs
Running a Program
Disassembled Programs
The Mini-Assembler
Mini-Assembler Instruction Formats
Summary of Monitor Commands

85

vii

NN Programming for Accessory Cards

6

121
122
122
123
125
126
127
127
128
129
131
131
132

Peripheral-card Memory Spaces
Peripheral-card 1/O Space
Peripheral-card ROM Space
Expansion ROM Space
Peripheral-card RAM Space

I/O Programming Suggestions
Finding the Slot Number
I/O Addressing
RAM Addressing

Changing the Standard 1/O Links

Using Interrupts
Other Uses of 1/O Memory Space
Switching I/O Memory

Hardware Implementation

137
138
139
140
141

143
143
145
147
148
148
149
149
151

152
153
154
154
158
158
160
161

163
164
164
165
166
166
167

Environmental Specifications
The Power Supply
The Power Connector
The 6502 Microprocessor
6502 Timing
The Custom Integrated Circuits
The Memory Management Unit
The Input/Output Unit
The PAL Circuit
Memory Addressing
ROM Addressing
RAM Addressing
Dynamic-RAM Refreshment
Dynamic-RAM Timing
The Video Display
The Video Counters
Display Memory Addressing
Display Address Mapping
Video Display Modes
Text Displays
Low-resolution Display
High-resolution Display
Video Output Signals
Built-in 1/0 Circuits
The Keyboard
Connecting a Keypad
Cassette 1/0
The Speaker
Game 1/O Signals

119

134

e, IEl ey rE) reEl rEl TR TR IRy MEl TR

M O oE e IE

!

|

g

l | | U| 0| m| b|

169 Expanding the Apple lle
169 The Expansion Slots

169 The Peripheral Address Bus
170 The Peripheral Data Bus

170 Loading and Driving Rules

170 Interrupt and DMA Daisy Chains
174 Video Signals on Slot 7

174 The Auxiliary Slot

175 80-column Display Signals

The 6502 Instruction Set

Tables

Directory of Built-in Subroutines

Differences Between the Apple lle
and Apple Il Plus

Glossary

Bibliography

Index

266 Numbers
266 Cast of Characters

185

197

217

225

231

253

257

x

N List of Figures

34

62
63
68
72

124
125
132

142
143
145
147
149
149
149
150
152
155
156
159
171
179
180
181
182

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.

Figure 2-8.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

Figure 6-1.
Figure 6-2.
Figure 6-3.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14a
Figure 7-14b
Figure 7-14c
Figure 7-14d

Exploded Diagram of the Apple lle
Removing the Cover

The Apple lle With the Cover Off
Apple lie Keyboard

Circuit Board

Expansion Slots

Auxiliary Slot

Back Panel Connectors

The Keyboard

40-column Text Display
80-column Text Display
High-resolution Display Bits
Map of 40-column Text Display
Map of 80-column Text Display
Map of Low-resolution Graphics
Display

Map of High-resolution Graphics
Display

System Memory Map

RAM Allocation Map

Bank-switched Memory Map
Memory Map with Auxiliary Memory

Expansion ROM Enable Circuit
ROM Disable Address Decoding
I/O Memory Map

6502 Timing Signals

The MMU Pinouts

The 10U Pinouts

The PAL Pinouts

The 2364 ROM Pinouts

The 2316 ROM Pinouts

The 2333 ROM Pinouts

The 64K RAM Pinouts

RAM Timing Signals

Display Address Transformation
40-column Text Display Memory
Video Timing Signals
Peripheral-signal Timing
Schematic Diagram, part 1
Schematic Diagram, part 2
Schematic Diagram, part 3
Schematic Diagram, part 4

m m

|\

1

=) = 1= T 0 1 1 T A b = =N = ™™

1B

12
13, 197
14, 198
15, 199
16, 200

18
20, 201
23, 201
25, 201
27, 202
28, 203
38, 204
40, 205

43
44
48, 206
49, 207

52, 207
53
55, 208
57

66
66
67
67
69, 209
75, 210
76
77
78
82, 211

114

122, 212
123, 212
125, 213
128, 214
133, 214

{2 £

F

I List of Tables

Table 2-1.
Table 2-2.
Table 2-3a.
Table 2-3b.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.
Table 2-11.
Table 2-12.

Table 3-1.
Table 3-2.
Table 3-3a.
Table 3-3b.

Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.

Table 5-1.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.

Apple lle Keyboard Specifications
Keyboard Memory Locations
Keys and ASCII Codes

Keys and ASCII Codes

The ASCII Character Set

Video Display Specifications

The Display Character Sets
Low-resolution Graphics Colors
High-resolution Graphics Colors
Video Display Page Locations
Display Soft Switches
Annunciator Memory Locations
Secondary 1/0O Memory Locations

Standard /O Subroutines

Apple Il Mode

Control Characters with couT1
Control Characters with couTt1,
continued

Text Window Memory Locations
Text Format Control Values
Escape Codes

Prompt Characters

Monitor Zero-page Usage
Applesoft Zero-page Usage
Integer BASIC Zero-page Usage
DOS 3.3 Zero-page Usage

Bank Select Switches
Auxiliary-memory Select Switches
Auxiliary-memory Routines
Parameters for auxmove Routine
Parameters for xFEr Routine
Page 3 Vectors

Mini-assembler Address Formats

Peripheral-card I/O Memory Locations
Peripheral-card ROM Memory Locations
Peripheral-card RAM Memory Locations
Peripheral-card I/O Base Addresses

I/O Memory Switches

Xi

137

138
139
140
141
144
146
147
150
151
157
158

160
163
165
165
166
168
172
173
174
176
177
178

Table 7-1.

Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.
Table 7-10.
Table 7-11.
Table 7-12.

Table 7-13.
Table 7-14.
Table 7-15.
Table 7-16.
Table 7-17.
Table 7-18.

Table 7-19a.
Table 7-19b.
Table 7-19c.
Table 7-20a.
Table 7-20b.
Table 7-20c.

Summary of Environmental
Specifications
Power Supply Specifications

Power Connector Signal Specifications

6502 Microprocessor Specifications
6502 Timing Signal Descriptions
The MMU Signal Descriptions
The IOU Signal Descriptions

The PAL Signal Descriptions
RAM Address Multiplexing
Dynamic RAM Timing Signals
Display Memory Addressing
Memory Address Bits for Display
Modes

Character-Generator Control Signals
Internal Video Connector Signals
Keyboard Connector Signals
Keypad Connector Signals
Speaker Connector Signals

Game 1/O Connector Signals
Expansion Slot Signals
Expansion Slot Signals, continued
Expansion Slot Signals, continued
Auxiliary Slot Signals

Auxiliary Slot Signals, continued
Auxiliary Slot Signals, continued

T T T T TTT ™™™ TTT™TTT T

K & &6 kb E |H 13 A | A T 1A 1T T 1 1 |

Foreword

This is the reference manual for the Apple lle personal computer.
It contains detailed descriptions of all of the hardware and
firmware that make up the Apple lle and provides the technical
information that peripheral-card designers and programmers
need. There is an Addendum, bound separately, that contains
source listings of the built-in firmware.

This manual contains a lot of information about the way the
Apple lle works, but it doesn't tell you how to use the Apple lle.
For this, you should read the other Apple Ile manuals, especially
the following:

e The Apple lle Owner's Manual

e The Applesoft Tutorial

This manual is designed to answer the question, What's inside
the box? It describes the internal operation of the Apple lle as
completely as possible in a single volume. The criterion for

deciding to include an item of information was whether it would
help an assembly-language programmer or peripheral designer.

Contents of This Manual

The material in this manual is presented roughly in order of
increasing intimacy with the hardware; the farther you go in the
manual, the more technical the material becomes. The main
subject areas are

e Introduction: Foreword and Chapter 1

® Use of built-in features: Chapters 2 and 3

e How the memory is organized: Chapter 4

e Information for programmers: Chapters 5 and 6

xiii

xiv

e Hardware implementation: Chapter 7

e Additional information: Appendices and Addendum

Chapter 1 identifies the main parts of the Apple lle and tells
where in the manual each part is described.

The next two chapters describe the built-in input and output
features of the Apple lle. This part of the manual includes
information you need for low-level programming on the Apple lle.
Chapter 2 describes the built-in I/O features and Chapter 3 tells
you how to use the firmware that supports them.

Chapter 4 describes the way the Apple lle’s memory space is
organized, including the allocation of programmable memory for
the video display buffers.

Chapter 5 is a user manual for the Monitor that is included in the
built-in firmware. The Monitor is a system program that you can
use for program debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral-
card connectors and gives guidelines for their use.

Chapter 7 is a detailed description of the hardware that
implements the features described in the earlier chapters. This
information is included primarily for programmers and peripheral-
card designers, but it will also help you if you just want to
understand more about the way the Apple lle works.

Additional reference information appears in the appendices.
Appendix A is the manufacturer's description of the 6502
instruction set.

Appendix B contains additional copies of some of the tables that
appear in the body of the manual. The ones you will need to
refer to often are duplicated here for easy reference.

Appendix C is a directory of the built-in I/O subroutines, including
their functions and starting addresses.

Appendix D lists the differences between the Apple lle and the
earlier Apple Il and Apple Il Plus models and tells you which
sections to look at for more information.

T BT ™ " " ™ M " T ™ ™™ ™ ™M T "R

=

15 T S A " T % Y S Y % S 5 1 5 4

11

kbl

it

1\

i
il

A

Captions, definitions, and other short
items appear in marginal glosses like
this.

Following Appendix D is a glossary defining many of the
technical terms used in this manual. Some terms that describe
the use of the Apple lle are defined in the glossaries of the other
manuals listed above.

Following the appendices, there is a selected bibliography of
sources of additional information.

The Addendum to this manual contains the source listing of the
Monitor firmware. You can refer to it to find out more about the
operation of the Monitor subroutines listed in Appendix C.

Symbols Used in This Manual

Special text in this manual is set off in several different ways, as
shown in these examples.

Information that appears on the dxsplay screen is
set off by this screen-shaped outline.

Warning
Important warnings appear in boxes like this.

Information that is useful but is incidental to the text appears in grey

boxes like this. You may want to skip over such boxes and return to
them later.

Wl N

1 3

= I= = =

iz

Introduction

E——
W

-
T
el
-

E
— 4 Removing the Cover
— 5 The Keyboard
- 5 The Speaker
e 5 The Power Supply
il 6 The Circuit Board
= 7 Connectors on the Circuit Board
o 8 Connectors on the Back Panel
.
E
-
E
-
s
=
il
—
sl
_—
—
i
S

Introduction

~ Chapter 1

ik

Introduction

Ik

ik

This first chapter introduces you to the Apple lle itself. It shows
you what the inside looks like, identifies the major components
that make up the machine, and tells you where to find
information about each one. These major components are shown
in the diagram in Figure 1.1.

1184

14

Figure 1-1 Exploded Diagram of the
Apple lle

11 1 3 1 4 Bt L 1 4 4

i

||

ki

Introduction 3

I Removing the Cover

Remove the cover of the Apple lle by pulling up on the back
edge until the fasteners on either side pop loose, then move the
cover an inch or so towards the rear of the machine to free the
front of the cover, as shown in Figure 1-2. What you will see is
shown in Figure 1-3.

Figure 1-2 Removing the Cover

Figure 1-3 The Apple lle with the
Cover Off

Warning

There is a red LED (light-emitting diode) inside the Apple lle, in the
left rear corner of the circuit board. If the LED is on, it means that
the power is on and you must turn it off before you insert or
remove anything. To avoid damaging the Apple lle, don't even
THINK of changing anything inside it without first turning off the
power.

TP T ™ ™ T T O™ T TPl OELOMEL

4 Introduction

_ The Keyboard

__J The keyboard is the Apple lle’s primary input device. As shown in
- Figure 1-4, it has a normal typewriter layout, upper- and
lowercase, with all of the special characters in the ASCII
il character set. (ASCII stands for American Standard Code for
o Information Interchange.) The keyboard is fully integrated into the
machine; its operation is described in the first part of Chapter 2.
ol Firmware subroutines for reading the keyboard are described in
— Chapter 3.
: Figure 1-4 Apple lle Keyboard
il
il
il
il
il

BN The Speaker

The Apple lle has a small loudspeaker in the bottom of the case,
as shown in Figure 1-1. The speaker enables Apple lle programs
to produce a variety of sounds that make the programs more
useful and interesting. The way programs control the speaker is
described in Chapter 2.

The Power Supply

The power supply is inside the flat metal box along the left side
of the interior of the Apple lle. It provides power for the main
board and for any peripheral cards installed in the Apple lle.

The power supply produces four different voltages: +5V, —5V,
+12V, and —12V. It is a high-efficiency switching supply, and
includes special circuits that protect it and the rest of the

Apple lle against short circuits and other mishaps. Complete
specifications of the Apple lle power supply appear in Chapter 7.

11 S S | O Il 14

The Keyboard 5
Ei i e

—
—

Figure 1-5 Circuit Board

The power switch and the socket for the power cord are mounted
directly on the back of the power supply’s metal case. This
mounting ensures that all the circuits that carry dangerous
voltages are inside the power supply. Do not defeat this design
feature by attempting to open the power supply.

The Circuit Board

All of the electronic parts of the Apple lle are attached to the
circuit board, which is mounted flat in the bottom of the case.

Figure 1-5 shows the main integrated circuits (ICs) in the
Apple lle. They are the central processing unit (CPU), the
keyboard encoder and read-only memory (ROM), the two
interpreter ROMs, and the custom integrated circuits: the Input
Output Unit (I0U) and the Memory Management Unit (MMU).

The CPU is a 6502B microprocessor. The 6502B is a high-speed
version of the 6502, which is an eight-bit microprocessor with a
sixteen-bit address bus. It uses instruction pipelining for faster
processing than comparable microprocessors. In the Apple lle,
the 6502B runs at 1 MHz and performs up to 500,000 eight-bit
operations per second. The specifications of the 6502B are given
in Chapter 7; the 6502 instruction set is given in Appendix A.

The keyboard is decoded by an AY-3600-type integrated circuit
and a read-only memory (ROM). These devices are described in
Chapter 7.

The interpreter ROMs are integrated circuits that contain the
Applesoft BASIC interpreter. The ROMs are described in
Chapter 7. The Applesoft language is described in the Applesoft
Tutorial and the Applesoft Reference Manual.

Two of the large IC’s are custom-made for the Apple lle: the
MMU and the IOU. The MMU IC contains most of the logic that
controls memory addressing in the Apple lle. The organization of
the memory is described in Chapter 4; the circuitry in the MMU
itself is described in Chapter 7.

The 10U IC contains most of the logic that controls the built-in
input/output features of the Apple lle. These features are
described in Chapter 2 and Chapter 3; the IOU circuits are
described in Chapter 7.

Introduction

IEl EL [El [El

IE\

£l

Il 1ElL [El 1E)

|

K|

\ELUEL LKL

i 9

— Connectors on The Circuit Board

EE (ER 1EY IR KT MET RET AR dET RRT RET RV AR

1%

11

11

Figure 1-6 Expansion Slots

The seven slots lined up along the back of the Apple lle circuit
board are the expansion slots, sometimes called peripheral slots
(see Figure 1-6). These slots make it possible to attach additional
hardware to the Apple lle. Chapter 6 tells you how your programs
deal with the devices that plug into these slots; Chapter 7
describes the circuitry for the slots themselves.

The large slot next to the left-hand side of the circuit board is the
auxiliary slot (Figure 1-7). If your Apple lle has an Apple lle 80-
column text card, it will be installed in this slot. The 80-column
display option is fully integrated into the Apple lle; it is described
along with the other display features in Chapter 2. The hardware
and firmware interfaces to this card are described in Chapter 7.

Connectors on The Circuit Board ' 7

Figure 1-7 Auxiliary Slot

Figure 1-8 Back Panel Connectors

There are also smaller connectors for game 1/O and for an
internal RF (radio frequency) modulator. These connectors are
described in Chapter 7.

Connectors on the Back Panel

The back of the Apple lle has two miniature phone jacks for
connecting a cassette recorder, an RCA-type jack for a video
monitor, and a 9-pin D-type miniature connector for the hand
controls, as shown in Figure 1-8. In addition to these, there are
spaces for additional connectors used with the peripheral cards
installed in the Apple lle. The installation manuals for the
peripheral cards contain instructions for installing the
peripheral connectors.

Introduction

Chapter 2

= Built-in 1/0 Devices

11 The Keyboard

il 13 Reading the Keyboard

- 17 The Video-display Generator
19 Text Modes

il 19 Text Character Sets
= 21 40-column versus 80-column Text
22 Graphics Modes
el 22 Low-resolution Graphics
- 23 High-resolution Graphics

26 Display Pages
27 Display Mode Switching

—
- 29 Addressing Display Pages Directly
35 Secondary Inputs and Outputs
el 35 The Speaker
- 36 Cassette Input and Output
. 37 The Hand Control Connector Signals
o 37 Annunciator Outputs
- 38 Strobe Output
38 Switch Inputs
3 39 Analog Inputs
= 40 Summary of Secondary I/O Locations
-
—)
: .-E
—
p—_
] f
]
sl

Built-in 1/O Devices 9

a]
‘ I
- ‘
il] ‘
: “j‘l“u‘};
| i
7 o i
| ‘ | it \
|l ‘
l I i \wam” I
! ‘w‘m\ i
| ! i
!
it
)
i

Capter o

Built-in 1/0 Devices

This chapter describes the input and output (I/O) devices built
into the Apple lle in terms of their functions and the way they are
used by programs. The built-in 1/O devices are

e keyboard

® video-display generator
® speaker

e cassette input and output

e game input and output

At the lowest level, programs use the built-in I/O devices by
reading and writing to dedicated memory locations. This chapter
lists these locations for each I/O device. It also gives the
locations of the internal soft-switches that select the different
display modes of the Apple lle. For descriptions of the built-in
I/O hardware, refer to Chapter 7.

This method of input and output — loading and storing directly to
specific locations in memory — is not the only method you can use.
For many of your programs, it may be more convenient to call the
built-in 1/O routines stored in the Apple lle’s firmware. These
firmware routines are described in Chapter 3.

The Keyboard

The primary input device of the Apple lle is its built-in keyboard.
The keyboard has 63 keys and is similar to the keyboard of a
typewriter. The Apple lle keyboard has automatic repeat on all
keys: hold the key down to repeat. It also has N-key rollover,
which means that you can hold down any number of keys while
typing another. Of course, if you hold the keys down much longer

1191 { T Ll|Ll 19 ST 8 B 4 A 3 4 3 4 A 4 4 A |

The Keyboard 11

than the length of time you would hold them down during normal
typing, the automatic-repeat function will start repeating the last
key you pressed.

-
L
>
b

The keyboard arrangement shown in Figure 2-1 is the standard

one used in the United States. The specifications for the m
keyboard are given in Table 2-1. Apple lle’s manufactured for =
sale in Europe have a slightly different standard keyboard 4
arrangement and include provisions for switching between two T
different arrangements. b
, I I — —e 2
Figure 2-1 The Keyboard =
ESC ; C; g 3 g’ g g g (9 ()) | * | oceere | Preser "L"-
TAB {) | —
QJW]JE|R]T]JY]JU]IJ]O]P]C] \ L"“
CONTROL A S D F G H J K L RETURN
SHIFT < > ? SHIFT _‘
z|x|c]v|B|N[M] .]"]~ jr.
2] |3 @[] -]]!
p—
In addition to the keys normally used for typing characters, there
are four cursor-control keys with arrows: left, right, down, and up. E
The cursor-control keys can be read the same as other keys; =
their codes are $08, $15, $0A, and $0B (see Table 2-3a).
—
L
Table 2-1 Apple lle Keyboard Number of keys: 63
Specifications .
Character encoding: ASCII l_‘-—
Number of codes: 128
—
Special keys: [CONTROL, [SHIFT],[CAPS LOCK), [ESC], e
RESET |, [LEFT-ARROW], [RIGHT-ARROW],
[UP-ARROW |, [DOWN-ARROW |, [OPEN-APPLE], c
SOLID-APPLE s
Rollover: N-key i
b
Electrical interface: ~ AY-5-3600 keyboard encoder ==
—A
L
|
_‘
e
=—gn
|
e

k

12 Built-in 1/O Devices

= _ I

{1 S 4 A Bt Y L 4 Y Y A Y A O

il

i

Table 2-2 Keyboard Memory
Locations

Hexadecimal refers to the base-16
number system, which uses the ten
digits 0 through 9 and the six letters A
through F to represent values from 0
to 15.

Four special keys, [CONTROL |,[SHIFT], [CAPSLOCK |, and [ESC
change the codes generated by the other keys. The | CONTROL
key is similar to the ASCIlI CTRL key. Three other keys have
special functions: the key, and two keys marked with
apples, one outlined, or open, and one solid, or closed. Pressing
the key with the key depressed resets the
Apple lle, as described in Chapter 4. The Apple keys are
connected to the one-bit game inputs, described later in this
chapter.

The electrical interface between the Apple lle and the keyboard is
a ribbon cable with a 26-pin connector. This cable carries the
keyboard signals to the encoding circuitry on the main board. A
complete description of the electrical interface to the keyboard is
given in Chapter 7.

Reading the Keyboard

The keyboard encoder and ROM generate all 128 ASCII codes,
so all of the special character codes in the ASCII character set
are available from the keyboard. Machine-language programs
obtain character codes from the keyboard by reading a byte from
the keyboard-data location shown in Table 2-2.

Location

Hex Decimal Description

$C000 49152 —16384 Keyboard data and strobe

$C010 49168 —16368 Any-key-down flag and Clear-strobe switch

Your programs can get the code for the last key pressed by
reading the keyboard-data location. Table 2-2 gives this location
in three different forms: the hexadecimal value used in assembly
language, indicated by a preceeding dollar sign ($); the decimal
value used in Applesoft BASIC, and the complementary decimal
value used in Apple Integer BASIC. (Integer BASIC requires that
values greater than 32767 be written as the number obtained by
subtracting 65536 from the value. These are the decimal
numbers shown as negative in the tables; refer to the Apple Il
BASIC Programming Manual.) The low-order seven bits of the
byte at the keyboard location contain the character code; the
high-order bit of this byte is the strobe bit, described below.

The Keyboard 13

(O A O L LA A L L A A

Table 2-3b Keys and ASCII Codes,
continued

Codes are shown here in hexadecimal;
to find the decimal equivalents, use
Table 2-4.

location. This location is a combination flag and switch; the flag
tells whether any key is down, and the switch clears the strobe
bit. The switch function of this memory location is called a soft
switch because it is controlled by software. In this case, it
doesn’t matter whether the program reads or writes, and it
doesn’t matter what data the program writes: the only action that
occurs is the resetting of the keyboard strobe. Similar soft
switches, described later, are used for controlling other functions

in the Apple lle.

Any time you read the Any-key-down flag, you also clear the
keyboard strobe. If your program needs to read both the flag and
the strobe, it must read the strobe bit first.

Key Normal Control Shift Both
1} 5D 1D 7D 1D
Ve 60 60 7E 7E
A 61 01 41 01
B 62 02 42 02
C 63 03 43 03
D 64 04 44 04
E 65 05 45 05
F 66 06 46 06
G 67 07 47 07
H 68 08 48 08
| 69 09 49 09
J 6A 0A 4A 0A
K 6B 0B 4B 0B
L 6C oC 4C oc
M 6D 0D 4D oD
N 6E OE 4E OE
O 6F OF 4F OF
P 70 10 50 10
Q 71 11 51 1
R 72 12 52 12
S 73 13 53 13
T 74 14 54 14
U 75 15 55 15
Vv 76 16 56 16
w Y &4 17 57 17
X 78 18 58 18
b 79 19 59 19
Z 7A 1A 5A 1A

The Keyboard

After the keyboard strobe has been cleared, it remains low until

another key is pressed. Even after you have cleared the strobe, -
you can still read the character code at the keyboard location. | P
The data byte has a different value, because the high-order bit is -
no longer set, but the ASCII code in the seven low-order bits is _—
the same until another key is pressed. Tables 2-3a and 2-3b L
show the ASCII codes for most of the keys on the keyboard of
the Apple lle. -
Table 2-4 The ASCII Character Set —_u‘
_—
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char &‘
0 00 NUL 32 20 SP 64 40 @ 9%6 60 T
1 01 SOH 33 21 ! 65 41 A 97 61 a e
2 02 STX 34 22 © 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 ¢ e
4 04 EOT 3 24 8 68 44 D 100 64 d L
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f et
7 07 BEL 39 27 71 47 G 103 67 g e
8 08 BS 40 28 72 48 H 104 68 h
9 09 HT 41 29) 73 49 | 105 69 i o
10 O0A LF 42 2A ot 74 4AJ 106 6A j L
11 0B VT 43 2B+ 75 4B K 107 6B Kk
12 0C FF 44 2C 76 4C L 108 6C | T
13 0D CR 45 2D - 77 4D M 109 6D m e
14 0E SO 46 2E . 78 4E N 110 6E n
15 OF SI 47 2F / 79 4F O 111 6F o e
16 10 DLE 48 30 O 80 50 P 112 70 p Lo
17 11 DCt 49 31 1 81 51 Q 113 71 g
18 12 DC2 50 32 2 82 52 R 114 72 r e
19 13 DC3 51 33 3 83 53 S 115 73 s |
20 14 DC4 52 34 4 84 54 T 116 74t
21 15 NAK 53 35 5 8 55 U 117 75 u -
22 16 SYN 54 36 6 86 56 V 18 76 v b
23 17 ETB 55 37 7 87 57 W 19 77w J
24 18 CAN 56 38 8 88 58 X 120 78 «x
25 19 EM 57 39 9 89 59 Y 121 79 y E‘
26 1A SUB 58 3A 90 5A Z 122 7A z
27 1B ESC 59 3B 91 5B [123 7B { .
28 1C 55 60 3C < 92 5C \ 124 7C | Lt
29 1D GS 61 3D = 93 5D | 125 7D}
30 1E RS 62 3E > 94 B5E A~ 126 7E ~
31 1F US 63 3F 2 95 SF 127 7F DEL el
Ed

Built-in 1/O Devices

[\ L L U‘[T'U'I!—U'[| LN U A U A

There are several special-function keys that do not generate

ASClIcodes. Forexample, youcannotreadthe CONTROL |, [SHIFT |

and keys directly, but pressing one of these keys

alters the character codes produced by the other keys.

Another key that doesn’t generate a code is the key,
located at the upper-right corner of the keyboard; it is connected
directly to the Apple lle’s circuits. Pressing the key with
the key depressed normally causes the system to stop
whatever program it's running and restart itself. This restarting
process is called the reset routine, and it is described in

Chapter 4.

Two more special keys are marked with two versions of the

Apple logo and located on either side of the space bar. The key
with the outlined apple is the key; the key with the
solid-color apple is the [SOLID-APPLE] key. These keys are
connected to the one-bit game inputs, which are described later

in this chapter. Pressing them in combination with the
and keys causes the built-in firmware to perform special
reset and self-test cycles, described with the reset routine in
Chapter 4.

The Video Display Generator

The primary output device of the Apple lle is the video display.
You can use any ordinary video monitor, either color or black-
and-white, to display video information from the Apple lle. An
ordinary monitor is one that accepts composite video compatible
with the standard set by the NTSC (National Television
Standards Committee). If you use Apple lle color graphics with a
black-and-white monitor, the display will appear as different
shades of gray.

If you are only using 40-column text and graphics modes, you
can use a television set for your video display. If the TV set has
an input connector for composite video, you can connect it
directly to your Apple lle; if it does not, you'll need to attach an
RF video modulator between the Apple lle and the television set.

With the 80-column text card installed, the Apple lle can produce an
80-column text display. However, if you use an ordinary color or
black-and-white television set, 80-column text will be too blurry to
read. For a clear 80-column display, you must use a high-resolution
video monitor with a bandwidth of 14 MHz or greater.

e

The Video Display Generator

_’El

Table 2-5 Video Display
Specifications

The specifications for the video display are summarized in
Table 2-5.

40-column text

80-column text with optional card
Low-resolution color graphics
High-resolution color graphics

Display modes:

Text capacity: 24 lines by 40 columns
24 lines by 80 columns with

optional card

96 ASCII characters
(uppercase and lowercase)

Character set:

Display formats: Normal, Inverse, Flashing

Low-resolution graphics: 16 colors, 40 horizontal by
48 vertical

High-resolution graphics: 6 colors, 280 horizontal by
192 vertical

The video signal produced by the Apple lle is NTSC-compatible
composite color video. It is available at three places: the RCA-
type phono jack on the back of the Apple lle, the single Molex-
type pin on the main circuit board near the back on the right
side, and one of the group of four Molex-type pins in the same
area on the main board. Use the RCA-type phono jack to
connect a video monitor or an external video modulator; use the
Molex pins to connect the type of video modulator that fits inside
the Apple lle case. For a full description of the video signal and
the connections to the Molex-type pins, refer to the section
“Video Output Signals” in Chapter 7.

The Apple lle can produce four different kinds of video display:

e Text, 24 lines of 40 characters

e Text, 24 lines of 80 characters (with optional card)
e Low-resolution graphics, 40 by 48, in 16 colors

e High-resolution graphics, 280 by 192, in 6 colors

Built-in I/0O Devices

L TV EL'EL TL T

BLELENELE

\ !

't

{ {1 §

't

!E‘

f—
-
(=1

18 Y S Y 5 Y % Y S A & AN % Y S Y A &Y A

i

11

{ {1

111

Either of the two text modes can display all 96 ASCII characters:
the upper- and lowercase letters, numbers, and symbols.

Either of the graphics displays can have four lines of text, either
40-column or 80-column, at the bottom of the screen. Graphics
displays with text at the bottom are called mixed-mode displays.

The low-resolution graphics display is an array of colored blocks,
40 wide by 48 high, in any of sixteen colors. In mixed mode, the
four lines of text replace the bottom eight rows of blocks, leaving
40 rows of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide
by 192 high. There are six colors available in high-resolution
displays, but a given dot can only use four of the six colors. In
mixed mode, the four lines of text replace the bottom 32 rows of
dots, leaving 160 rows of 280 dots each.

Text Modes

The text characters displayed include the upper- and lowercase
letters, the ten digits, punctuation marks, and special characters.
Each character is displayed in an area of the screen that is
seven dots wide by eight dots high. The characters are formed
by a dot matrix five dots wide, leaving two blank columns of dots
between characters in a row. Except for lowercase letters with
descenders, the characters are only seven dots high, leaving one
blank line of dots between rows of characters.

The normal display has white (or other single color) dots on a
black background. Characters can also be displayed as black
dots on a white background; this is called inverse format.
Text Character Sets

The Apple lle can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in
the two sets are actually the same, but the available display
formats are different. The display formats are

® normal, with white dots on a black screen;

® jnverse, with black dots on a white screen; and

® flashing, alternating between normal and inverse.

The Video Display Generator 1 9

With the primary character set, the Apple lle can display

uppercase characters in all three formats: normal, inverse, and

flashing. Lowercase letters can only be displayed in normal
format. The primary character set is compatible with most

software written for the Apple Il and Apple Il Plus models, which

can display text in flashing format but don’t have lowercase

characters.

The alternate character set sacrifices the flashing format for a
complete inverse format. With the alternate character set, the

Apple lle can display uppercase letters, lowercase letters,
numbers, and special characters in either normal format or

inverse format.

You select the character set by means of the alternate-text soft
switch, described below in the section “Display Mode Switching™.
Table 2-6 shows the character codes in decimal and hexadecimal
for the Apple lle primary and alternate character sets in normal,

inverse, and flashing formats.

Table 2-6 The Display Character Sets

Primary Character Set:

Alternate Character Set:

Ta Weisiify paticitar shaisciars and Hex Values Character Type Format Character Type Format

values, refer to Table 2-4.
$00-$1F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse
$40-$5F Uppercase letters Flashing Uppercase letters Inverse
$60-$7F Special characters Flashing Lowercase letters Inverse
$80-$9F Uppercase letters Normal Uppercase letters Normal
$A0-$BF Special characters Normal Special characters Normal
$C0-$DF Uppercase letters Normal Uppercase letters Normal
SEO-$FF Lowercase letters Normal Lowercase letters Normal

Built-in 1/O Devices

BL'EV'ELO'EVOEL BV OBLOELORLOELOFL OBV OEL OEL O

[

f'] r T'I
ik (15 &k

| L)

B
]

I

I
b

|

r-lr
1"

o o B B
13 \LI 1% 1% i

|

]
k

|

&

EE

|

Figure 2-2 40-column Text Display

Each character on the screen is stored as one byte of display
data. The low-order six bits make up the ASCII code of the
character being displayed. The remaining two (high-order) bits
select inverse or flashing format and uppercase or lowercase
characters. In the primary character set, bit 7 selects inverse or
normal format and bit 6 controls character flashing. In the
alternate character set, bit 6 selects between upper- and
lowercase, according to the ASCII character codes, and flashing
format is not available.

40-column versus 80-column Text

The Apple lle has two modes of text display: 40-column and 80-
column. (The 80-column display mode described in this manual is
the one you get with the 80-column text card or other auxiliary-
memory card installed in the auxiliary slot.) The number of dots
in each character does not change, but the characters in 80-
column mode are only half as wide as the characters in 40-
column mode. Compare Figure 2-2 and Figure 2-3. On an
ordinary color or black-and-white television set, the narrow
characters in the 80-column display blur together; you must use
the 40-column mode to display text on a television set.

CHARACTER DEMO

Char

characte

The Video Display Generator 21

Figure 2-3 80-column Text Display

22

Graphics Modes

The Apple lle can produce video graphics in either of two
different modes. Both graphics modes treat the screen as a
rectangular array of spots. Normally, your programs will use the
features of some high-level language to draw graphics dots,
lines, and shapes in these arrays; this section describes the way
the resulting graphics data are stored in the Apple lle’'s memory.

Low-resolution Graphics

In the low-resolution graphics mode, the Apple lle displays an
array of 48 rows by 40 columns of colored blocks. Each block
can be any one of sixteen colors, including black and white. On
a black-and-white monitor or television set, these colors appear
as black, white, and three shades of gray. There are no blank
dots between blocks; adjacent blocks of the same color merge to
make a larger shape.

Data for the low-resolution graphics display is stored in the same
part of memory as the data for the 40-column text display. Each
byte contains data for two low-resolution graphics blocks. The
two blocks are displayed one atop the other in a display space
the same size as a 40-column text character, seven dots wide by
eight dots high.

Half a byte — four bits, or one nybble — is assigned to each
graphics block. Each nybble can have a value from 0 to 15, and
this value determines which one of sixteen colors appears on the

Built-in 1/0 Devices

| =
9

T

F LT

-

1

screen. The colors and their corresponding nybble values are
shown in Table 2-7. In each byte, the low-order nybble sets the
color for the top block of the pair, and the high-order nybble sets
the color for the bottom block. Thus, a byte containing the
hexadecimal value $D8 produces a brown block atop a yellow
block on the screen.

Table 2-7 Low-resolution Graphics Nybble Value Color Nybble Value Color
Colors Decimal Hex Decimal Hex

Colors may vary, depending upon the

controls on the monitor or television 0 $0 Black 8 $8 Brown

set 1 $1 Magenta 9 $9 Orange

2 $2 Dark Blue 10 $A Grey 2

3 $3 Purple 11 $B Pink

4 $4 Dark Green 12 $C Light Green
5 $5 Grey 1 13 $D Yellow

6 $6 Medium Blue 14 $E Aguamarine

$7 Light Blue 15 $F White

As explained below in the section “Display Pages”, the text
display and the low-resolution graphics display use the same
area in memory. Most programs that generate text and graphics
clear this part of memory when they change display modes, but it
is possible to store data as text and display it as graphics, or
vice-versa. All you have to do is change the mode switch,
described in the section “Display Mode Switching”, without
changing the display data. This usually produces meaningless
jumbles on the display, but some programs have used this
technique to good advantage for producing complex low-
resolution graphics displays quickly.

High-resolution Graphics

In the high-resolution graphics mode, the Apple lle displays an /
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as

described below. Adjacent dots of the same color merge to form

a larger colored area.

-
-
-
-
-
-
-
!:: ,
-
L
.
.
.
.
L.

The Video Display Generator 23

24

Data for the high-resolution graphics displays are stored in either
of two 8192-byte areas in memory. These areas are called high-
resolution Page 1 and Page 2; think of them as buffers where
you can put data to be displayed. Normally, your programs will
use the features of some high-level language to draw graphics
dots, lines, and shapes to display; this section describes the way
the resulting graphics data are stored in the Apple Ile’s memory.

The Apple lle high-resolution graphics display is bit-mapped: each
dot on the screen corresponds to a bit in the Apple lle’s memory.
The seven low-order bits of each display byte control a row of
seven adjacent dots on the screen, and forty adjacent bytes in
memory control a row of 280 (7 times 40) dots. The least
significant bit of each byte is displayed as the leftmost dot in a
row of seven, followed by the second-least significant bit, and so
on, as shown in Figure 2-4. The eighth bit (the most significant)
of each byte is not displayed; it selects one of two color sets, as
described below.

On a black-and-white monitor, there is a simple correspondence
between bits in memory and dots on the screen. A dot is white if
the bit controlling it is on (1), and the dot is black if the bit is off
(0). On a black-and-white television set, pairs of dots blur
together; alternating black and white dots merge to a continuous

grey.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on, the dot will be
white or a color, depending on its position, the dots on either
side, and the setting of the high-order bit of the byte. Call the
left-most column of dots column zero, and assume (for the
moment) that the high-order bits of all the data bytes are off (0).
If the bits that control them are on, dots in even-numbered
columns, 0, 2, 4, and so forth, are purple, and dots in odd-
numbered columns are green — but only if the dots on either
side are black. If two adjacent dots are both on, they are both
white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange: the dots in even-numbered columns are blue, and the
dots in odd-numbered columns are orange — again, only if the
dots on either side are black. Within each horizontal line of seven
dots controlled by a single byte, you can have black, white, and

Built-in I/O Devices

O | O O O O o Y O O O O O O O

.

A O\ O A A € R € £ L A L |

Table 2-8 High-resolution Graphics

Colors

Colors may vary, depending on the

adjustment of the monitor or television

set.

Figure 2-4 High-resolution Display Bits

Bits in Data Byte

6 5

4

3

2

1

(O} I

2

3

4

5

6

Dots on Graphics Screen

one pair of colors. To change the color of any dot to one of the
other pair of colors, you must change the high-order bit of its
byte, which affects the colors of all seven dots controlled by the

byte.

In other words, high-resolution graphics displayed on a color
monitor or television set are made up of colored dots, according
to the following rules:

e Dots in even columns can be black, purple, or blue.

e Dots in odd columns can be black, green, or orange.

e |f adjacent dots in a row are both on, they are both white.

e The colors in each row of seven dots controlled by a single
byte are either purple and green, or blue and orange,
depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 2-8. The blacks and whites
are numbered to remind you that the high-order bit is different.

Bits 0-6 Bit 7 Off Bit 7 On
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
QOdd columns on Green Orange
Adjacent columns on White 1 White 2

The peculiar behavior of the high-resolution colors reflects the
way NTSC color television works. The dots that make up the
Apple lle video signal are spaced to coincide with the frequency
of the color subcarrier used in the NTSC system. Alternating
black and white dots at this spacing cause a color monitor or TV
set to produce color, but two or more white dots together do not.
For more details about the way the Apple Ile produces color on a
TV set, see Chapter 7. For information about the way NTSC
color television works, see the magazine articles listed in the
bibliography.

The Video Display Generator 25

26

Display Pages

The Apple lle generates its video displays using data stored in
specific areas in memory. These areas, called display pages,
serve as buffers where your programs can put data to be
displayed. Each byte in a display buffer controls an object at a
certain location on the display. In text mode, the object is a
single character; in low-resolution graphics, the object is two
stacked colored blocks; and in high-resolution mode, it is a line
of seven adjacent dots.

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1
and Text Page 2, and they are located at 1024-2047 (hexadecimal
$400-$7FF)and2048-3071 ($800-$BFF)inmainmemory. Normally,
only Page 1 is used, but you can put text or graphics data into
Page 2 and switgh displays instantly. Either page can be
displayed as 40/column text, low-resolution graphics, or mixed-
mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the
40-column mode — 1920 bytes — but it cannot switch pages. The
80-column text display uses a combination page made up of text
Page 1 in main memory plus another page in auxiliary memory
located on the 80-column text card. This additional memory is NOT
the same as text Page 2 — in fact, it occupies the same address
space as text Page 1, and there is a special soft switch that enables
you to store data into it (see the section “Display Mode Switching”,
below). The built-in firmware 1/O routines described in Chapter 3
take care of this extra addressing automatically; that is one reason
to use those routines for all your normal text output.

The high-resolution graphics mode also has two display pages,
but each page is 8192 bytes long. In the 40-column text and low-
resolution graphics modes each byte controls a display area
seven dots wide by eight dots high. In high-resolution graphics
mode each byte controls an area seven dots wide by one dot
high. Thus, a high-resolution display requires eight times as
much data storage, as shown in Table 2-9.

1 O O { O { O O f W O O O O O O O W

Built-in 1/O Devices

14 o ¢ Y L

[(g

Table 2-9 Video Display Page
Locations

*Note: 80-column mode uses the
1024-byte page-1 locations in both
main and auxiliary memory. The
PAGE 2 switch is used to select one
or the other for storing data (see the
section “Display Mode Switching”).

Lowest Highest

Display mode Page Address Address
40-column Text, 1 $400 1024 $7FF 2047
Low-resolution
Graphics 2 $800 2048 $BFF 3071
80-column Text 1* $400 1024 $7FF 2047
High-resolution 1 $2000 8192 $3FFF 16383
Graphics

2 $4000 16384 $S5FFF 24575

Display Mode Switching

You select the display mode that is appropriate for your
application by reading or writing to a reserved memory location
called a soft switch. In the Apple lle, most soft switches have
three memory locations reserved for them: one for turning the
switch on, one for turning it off, and one for reading the current
state of the switch.

Table 2-10 shows the reserved locations for the soft switches
that control the different display modes. For example, to switch
from mixed-mode to full-screen graphics in an assembly-language
program, you could use the instruction:

STA $C052
To do this in a BASIC program, you could use the instruction:
POKE 49234,0

The table gives the switch locations in three forms: hexadecimal,
decimal, and negative decimal. You can use the hexadecimal
values in your machine-language programs. Use the decimal
values in PEEK or POKE commands in Applesoft BASIC; the
negative values are for Integer BASIC.

You may not need to deal with these functions by reading and
writing directly to the memory locations in this table. Many of the
functions shown here are selected automatically if you use the
display routines in the various high-level languages on the Apple lle.

The Video Display Generator

Table 2-10 Display Soft Switches

(1) This mode is only effective when
graphics-mode switch is ON.

(2) This switch has a different function
when the 80-column text card's
auxiliary text page is enabled for
writing. Refer to the next section,
“Addressing Display Pages Directly”.
(3) This switch changes the function of
the PAGE 2 switch for addressing the
auxiliary text memory on the extended
80-column text card. The next section
describes how to do this.

(4) Reading this location returns the
state of the vertical blanking

signal VBL . The function of VBL is
described in Chapter 7 in the section
“Video Output Signals.”

Some of the soft switches in Table 2-10 are marked read or
write. Those soft switches share their locations with the keyboard
data and strobe functions. In the original Apple Il, memory
locations from $C000 to $C01F (49152 to 49183) were used only for
the keyboard data and strobe functions. In the Apple lle, these
locations are used the same way, but only when you read to get
data and write to clear the strobe. To perform the function shown
in the table, use the operation listed there. Soft switches that are
not marked may be accessed by either a read or a write. When
writing to a soft switch, it doesn’'t matter what value you write;
the action occurs when you address the location, and the value
is ignored.

Location

Name Function Hex Decimal Notes
ALTCHARSET Alternate char. set on $CO0F 49167 -16369 Write

Alternate char. set off $COOE 49166 —-16370 Write

Read ALTCHARSET switch $CO01E 49182 -16354 Read
TEXT Text mode on $C051 49233 -16303

Text mode off (graphics) $C050 49232 -16304

Read TEXT switch $C01A 49178 -16358 Read
MIXED Mixed-mode on $C053 49235 -16301 1

Mixed-mode off $C052 49234 -16302 1

Read MIXED switch $C01B 49179 -16357 Read
PAGE2 Page 2 on $C055 49237 -16299 2

Page 2 off (Page 1) $C054 49236 -16300 2

Read PAGE 2 switch $C01C 49180 -16356 Read
HIRES Hi-res mode on $C057 49239 -16297 1

Hi-res mode off $C056 49238 -16298 1

Read HIRES switch $C01D 49181 -16355 Read
80COL 80-column display on $C00D 49165 -16371 Write

80-column display off $C00C 49164 -16372 Write

Read 80COL switch $C01F 49183 -16353 Read
80STORE Store in auxiliary memory $C001 49153 -16383 Write, 3

Store in main memory $C000 49152 -16384 Write, 3

Read 80STORE switch $C018 49176 —-16360 Read
VBL Read vertical blanking $C019 49177 -16359 Read, 4

Built-in 1/O Devices

T T T T TTTHETTTTHT T T T T

S A A

Any time you read a soft switch, you get a byte of data.
However, the only information the byte contains is the state of
the switch, and this occupies only one bit — bit 7, the high-order
bit. The other bits in the byte are unpredictable. If you are
programming in machine language, the switch setting is the sign
bit; as soon as you read the byte, you can do a Branch Plus if
the switch is off, or Branch Minus if the switch if on.

If you read a soft-switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is
on, the value will be equal to or greater than 128; if the switch is
off, the value will be less than 128.

Addressing Display Pages Directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-ltjzel languages enable you to write
statements that control the text and graphics displays. Similarly, if
you are programming in assembly language, you may be able to
use the display features of the built-in I/O firmware. You should
store directly into display memory only if the existing programs
can’'t meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6, 2-7,
and 2-8. All of the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as
rows of 40 contiguous bytes, but the rows themselves are not
stored at locations corresponding to their locations on the display.
Instead, the display address is transformed so that three rows
that are eight rows apart on the display are grouped together and
stored in the first 120 locations of each block of 128 bytes ($80
hexadecimal). By folding the display data into memory this way,
the Apple lle, like the Apple Il, stores all 960 characters of
displayed text within 1K bytes of memory. For a full description of
the way the Apple lle handles its display memory, refer to the
section “Display Memory Addressing” in Chapter 7.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store,
because eight rows of dots occupy the same space on the
display as one row of characters. The subset consisting of all the
first rows from the groups of eight is stored in the first 1024
bytes of the high-resolution display page. The subset consisting
of all the second rows from the groups of eight is stored in the
second 1024 bytes, and so on for a total of 8 times 1024, or

The Video Display Generator

8192 bytes. In other words, each block of 1024 bytes in the high-
resolution display page contains one row of dots out of every
group of eight rows. The individual rows are stored in sets of
three forty-byte rows, the same way as the text display.

All of the display modes except 80-column mode can use either
of two display pages. The display maps show addresses only for
each Page 1. To obtain addresses for text or low-resolution
graphics Page 2, add 1024 ($400); to obtain addresses for high-
resolution Page 2, add 8192 ($2000).

The 80-column display works a little differently. Half of the data is
stored in the normal text Page-1 memory, and the other half is
stored in memory on the 80-column text card using the same
addresses. The display circuitry fetches bytes from these two
memory areas simultaneously and displays them sequentially:
first the byte from the 80-column text card memory, then the byte
from the main memory. The main memory stores the characters
in the odd columns of the display, and the 80-column text card
memory stores the characters in the even columns.

To store display data on the 80-column text card, first turn on the
80STORE soft switch by writing to location 49153 (hexadecimal $C001
orcomplementary -16383). With 80STORE on, the page-select switch
PAGE?2 selects between the portion of the 80-column display stored
in Page 1 of main memory and the portion stored in the 80-
column text card memory. To select the 80-column text card, turn
the PAGE2 soft switch on by reading or writing at location 49237.
For more details about the way the displays are generated, see
Chapter 7.

Built-in I/O Devices

[|

I TV TL T

M T T T

T TV TILTL T

T

TL T T

-
-
N
B
-
-
B
-
B

B

Figure 2-5 Map of 40-column Text

Display
v BR8 8220388828355 0500500 0o oBlgagny
O NEYH OO e R, e g RS ASN TS E e R8s 8S

$400 1024

$480 1152

$500 1280

$580 1408

$600 1536

$680 1664

$700 1792 |
$780 1920 !
$428 1064

$4A8 1192

$528 1320

$5A8 1448

$628 1576

$6A8 1704

$728 1832

$7A8 1960

$450 1104

$4D0 1232

$550 1360

$500 1488

$650 1616

$6D0 1744

$750 1872

$7D0 2000

The Video Display Generator

31

Figure 2-6 Map of 80-column Text

Display

MAIN $00 $01 $02 $03 $04 $05 $06
MEMORY 0 1 2 3 4 5 6
AUXILIARY $00 $01 $02 $03 $04 $05 $06 $07

MEMORY 0 1 2 3 4

5 6 7

$400 1024

$480 1152

$500 1280

TN

$580 1408

$600 1536

$680 1664

$700 1792

$780 1920

$428 1064

$4A8 1192

$528 1320

$5A8 1448

$628 1576

$6A8 1704

$728 1832

$7A8 1960

$450 1104

$4D0 1232

$550 1360

$5D0 1488

\\——/

$650 1616

$6D0 1744

$750 1872

$7D0 2000

32

$49 $4A $4B $4C $4D $4E S$4F

73

$49 $4A $4B $4C $4D S4E S$4F

73

74

74

78

75

76

76

77

77

78

78

79

79

T T

T~

Built-in 1/O Devices

LLYE T T T T T TTOATTTTHTITET

Figure 2-7 Map of Low-resolution
Graphics Display

O~ AN MT W OKNODOOTLCDOAOWWLO~NMTWONODOCNDOODO WHL O ANMIT WO~
3338330333333 38233060000bbrbbbhbhobddsdssosod
e S BEcNDe CCNRPIROER E S NN AORT TSR TR
$400 1024
$480 1152
$500 1280
$580 1408
$600 1536
$680 1664
$700 1792
$780 1920
$428 1064
$4A8 1192
$528 1320
$5A8 1448
$628 1576
$6A8 1704
$728 1832
$7A8 1960
$450 1104
$4DO 1232
$550 1360
$5D0 1488
$650 1616
$6D0 1744
$750 1872
$7D0 2000
The Video Display Generator

Figure 2-8 Map of High-resolution
Graphics Display

S-N3328588388gULO N0 T0ere0IR0OWLE DTSy
L A A e A A A A A Y Y - B A A A~ 2 A A = - - S 7 S S < A S = S A~ - T ™ T - S 2 S o - S = A = 2
DR EB O e S TR O e RN eE s8R
$2000 8192
$2080 8320
$2100 8448
$2180 8576
$2200 8704
$2280 8832
$2300 8960
$2380 9088
$2028 8232
$20A8 8360
$2128 8488 1
$21A8 8616 =4
$2228 8744 \ ~
$22A8 8872 \ 0 0000
$2328 9000
$23A8 9128 102480400
§2060 BRRe 2048 $0800
$20D0 8400
$2150 8528 \ 3072 $0C00
$21D0 8656 \
Sonen G 4096 $1000
$2200 8912
5120 $1400
$2350 9040
$23D0 9168 \ 6144 $1800
7168 $1C00
34 Built-in I/O Devices

I T\ T TLLTY

T TV LT T TEITLT

BT\ T\ 't

S S ¢ 4 [f';[r'i[!_.['ll

Secondary Inputs and Outputs

In addition to the primary /O devices — the keyboard and
display — there are several secondary input and output devices
in the Apple lle. These devices are

® The speaker (output)

e (Cassette input and output
® Annunciator outputs

e Strobe output

e Switch inputs

e Analog (hand control) inputs

These devices are similar in operation to the soft switches
described in the previous section: you control them by reading or
writing to dedicated memory locations. Action takes place any
time your program reads or writes to one of these locations;
information written is ignored.

Some of these devices toggle — change state — each time they
are accessed. If you write using an indexed store operation, the
Apple lle’s 6502 microprocessor activates the address bus twice
during successive clock cycles, causing a device that toggles each
time it is addressed to end up back in its original state. For this
reason, you should read, rather than write, to such devices.

The Speaker

The Apple lle has a small speaker mounted toward the front of
the bottom plate. The speaker is connected to a soft switch that
toggles; it has two states, off and on, and it changes from one to
the other each time it is accessed. Electrical specifications of the
speaker circuit appear in Chapter 7.

If you switch the speaker once, it emits a click; to make longer
sounds, you access the speaker repeatedly. You should always
use a read operation to toggle the speaker. If you write to this
soft switch, it switches twice in rapid succession. The resulting
pulse is so short that the speaker doesn’t have time to respond;
it doesn’t make a sound.

The soft switch for the speaker uses memory location 49200
(hexadecimal $c030). From Integer BASIC, use the complementary
address -16336. You can make various tones and buzzes with the

Secondary Inputs and Outputs

speaker by using combinations of timing loops in your program.
There is also a routine in the built-in firmware to make a beep
through the speaker. This routine is called BELL1; it is described in
Appendix C.

Cassette Input and Output

There are two miniature phone jacks on the back panel of the
Apple lle. You can use a pair of standard cables with miniature
phone plugs to connect an ordinary cassette tape recorder to the
Apple lle and save programs and data on audio cassettes.

The phone jack marked with a picture of an arrow poin\ing
towards a cassette is the output jack. It is connected to ‘a toggled
soft switch, like the speaker switch described above. The signal
at the phone jack switches from zero to 25 millivolts or from 25
millivolts to zero each time you access the soft switch. Detailed
electrical specifications for the cassette input and output are
given in Chapter 7.

If you connect a cable from this jack to the microphone input of a
cassette tape recorder and switch the recorder to record mode,
the signal changes you produce by accessing this soft switch will
be recorded on the tape. The cassette output switch uses

memory location 49184 (hexadecimal $C020; complementary value
-16352). Like the speaker, this output will toggle twice if you write
to it, so you should only use read operations to control the
cassette output.

The standard method for writing computer data on audio tapes
uses tones with two different pitches to represent the binary
states zero and one. To store data, you convert the data into a
stream of bits, and convert the bits into the appropriate tones. To
save you the trouble of actually programming the tones, and to
ensure consistency among all Apple Il cassette tapes, there is a
built-in routine for producing cassette data output. This routine,
called WRITE, is described in Appendix C.

The phone jack marked with a picture of an arrow coming from a
cassette is the input jack. It accepts a cable from the cassette
recorder’s earphone jack. The signal from the cassette is 1 volt
(peak-to-peak) audio. Each time the instantaneous value of this
audio signal changes from positive to negative, or vice-versa, the
state of the cassette input circuit changes from zero to one or
vice-versa. You can read the state of this circuit at memory
location 49248 (hexadecimal $C060, or complementary decimal
-16288).

Built-in 1/O Devices

| Y YO O YO O YO A W

5
i
B
N
L
L
3
N
L
L.
B
B

When you read this location, you get a byte, but only the high-
order bit (bit 7) is valid. If you are programming in machine
language, this is the sign bit, so you can perform a Branch Plus
or Branch Minus immediately after reading this byte. BASIC is

too slow to keep up with the audio tones used for data recording
on tape, but you don’'t need to write the program: there is a built-
in routine for reading data from a cassette. It is called READ, and it
is described in Appendix C.

The Hand Control Connector Signals

Several inputs are available on a 9-pin D-type miniature
connector on the back of the Apple lle: three one-bit inputs, or
switches, and four analog inputs. These signals are also
available on the sixteen-pin IC connector on the main circuit
board, along with four one-bit outputs and a data strobe. You can
access all of these signals from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin
connector. The rotary controls use two analog inputs, and the
push-buttons use two one-bit inputs. However, you can also use
these inputs and outputs for many other jobs. For example, two
analog inputs can be used with a two-axis joystick. Complete
electrical specifications of these inputs and outputs are given in
Chapter 7; Table 7-18 shows the connector pin numbers.

Annunciator Outputs

The four one-bit outputs are called annunciators. Each
annunciator can be used to turn a lamp, a relay, or some similar
electronic device on and off. For electrical specifications of the
annunciator outputs, refer to Chapter 7.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-11. Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the
second location turns the annunciator on. There is no way to
read the state of an annunciator.

Secondary Inputs and Outputs 5;“737

Table 2-11 Annunciator Memory
Locations

*Pin numbers given are for the 16-pin
IC connector on the circuit board.

Annunciator Address

No. Pin* State Decimal Hex

0 15 off 49240 —-16296 $C058
on 49241 —16295 $C0S9

1 14 off 49242 —16294 $CO05A
on 49243 —16293 $C0SB

2 13 off 49244 —-16292 $C0SC
on 49245 —16291 $CO0SD

3 12 off 49246 —16290 $COSE
on 49247 —16289 $COSF

Strobe Output

The strobe output is normally at +5 volts, but it drops to zero for
about half a microsecond any time its dedicated memory location
is accessed. You can use this signal to control functions such as
data latching in external devices. If you use this signal,
remember that memory is addressed twice by a write; if you
need only a single pulse, use a read operation to activate the
strobe. The memory location for the strobe signal is 49216
(hexadecimal $C040 or complementary -16320).

Switch Inputs

The three one-bit inputs can be connected to the output of
another electronic device or to a pushbutton. When you read a
byte from one of these locations, only the high-order bit — bit
7 — is valid information; the rest of the byte is undefined. From
machine language, you can do a Branch Plus or Branch Minus
on the state of bit 7. From BASIC, you read the switch with a
PEEK and compare the value with 128. If the value is 128 or
greater, the switch is on.

The memory locations for these switches are 49249 through

49251 (hexadecimal $C061 through $C063, orcomplementary
-16287 through -16285), as shown in Table 2-12. Switch 0

and switch 1 are permanently connected to the and
[SOLID-APPLE | keys on the keyboard; these are the ones normally
connected to the buttons on the hand controls. Some software

for the older models of the Apple Il uses the third switch, switch

Built-in I/O Devices

-~
L s
|
g
]
i—£
|
ol
L...4
;\
L.
L.
L
L .
—
L
I
R
-
h—!
-
L

2, as a way of detecting the shift key. This technique requires a
hardware modification known as the single-wire shift-key mod.

To perform this modification on your Apple lle, all you have to do is
solder across the broken circle labelled xé on the main circuit board.
Early production Apple lles, identified by a circuit board part number
ending in -A, have the shift-key mod active; you can remove it by
breaking the circuit at x6. Remember to turn off the power before
changing anything inside the Apple lle. Also remember that changes
such as this are at your own risk and may void the warranty.

Warning

If you make the shift-key modification and connect a joystick or
other hand control that uses switch 2, you must be careful never to
close the switch and press the[SHIFT]key at the same time: doing
this produces a short circuit that causes the power supply to turn
off. When this happens, any programs or data in the computer’s
internal memory are lost.

Analog Inputs -

The four analog inputs are designed for use with 150K ohm
variable resistors or potentiometers. The variable resistance is
connected between the +5V supply and each input, so that it
makes up part of a timing circuit (refer to Chapter 7 for details).
The circuit changes state when its time constant has elapsed,
and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset
the timing circuits. Accessing memory location 49264 (hexadecimal
$C070 or complementary -16272) does this. As soon as you reset
the timing circuits, the high bits of the bytes at locations 49252
through 49255 (hexadecimal $C064 through $C067 orcomplementary
-16284 through -16281) are set to one. If you PEEK at them from
BASIC, the values will be 128 or greater. Within about 3
milliseconds, these bits will change back to zero — byte values
less than 128 — and remain there until you reset the timing
circuits again. The exact time each of the four bits remains high

is directly proportional to the resistance connected to the
corresponding input. If these inputs are open — no resistances
are connected — the corresponding bits may remain high
indefinitely.

To read the analog inputs from machine language, you can use

a program loop that resets the timers and then increments a
counter until the bit at the appropriate memory location changes

Secondary Inputs and Outputs :,};39

Table 2-12 Secondary I/0 Memory
Locations

For connector identification and pin
numbers, refer to Tables 7-17 and
7-18.

to zero, or you can use the built-in routine. It is called PREAD, and
it is described in Appendix C. BASIC and other high-level
languages also include convenient means of reading the analog

inputs: refer to your language manuals.

Summary of Secondary 1/0 Locations

Table 2-12 shows the memory locations for all of the built-in 1/O

devices except the keyboard and display. As explained above,
some soft switches should only be accessed by means of read
operations; those switches are marked.

Address
Function — Decimal Hex Notes
Speaker 49200 -16336 $C030 Read
Cassette Out 49184 -16352 $C020 Read
Cassette In 49248 -16288 $C060 Read
Annunciator 0 On 49241 -16295 $C059
Annunciator 0 Off 49240 -16296 $C058
Annunciator 1 On 49243 -16293 $CO0SB
Annunciator 1 Off 49242 -16294 $CO5A
Annunciator 2 On 49245 -16291 $COSD
Annunciator 2 Off 49244 -16292 $CO05C
Annunciator 3 On 49247 -16289 $COSF
Annunciator 3 Off 49246 -16290 $COSE
Strobe Output 49216 -16320 $C040 Read
Switch Input 0 49249 -16287 $C061 Read
(|OPEN-APPLE| key)
Switch Input 1 49250 -16286 $C062 Read
(| SOLID-APPLE |key)
Switch Input 2 49251 -16285 $C063 Read
Analog Input Reset 49264 -16272 $C070
Analog Input 0 49252 -16284 $C064 Read
Analog Input 1 49253 -16283 $C065S Read
Analog Input 2 49254 -16282 $C066 Read
Analog Input 3 49255 -16281 $C067 Read

Built-in 1/O Devices

T 'EL'EE'EE'EE'ELELELEE T T ™M T BB B R

Built-in 1/O Firmware

44 Using the I/O Subroutines

44 Applell Compatibi:it)/

45 The 80-column Firmware

47 The Old Monitor

47 The Standard I/O Links

48 Standard Output Features

48 COUT Output Subroutine

50 Control Characters with COUT1
50 The Stop-List Feature

50 The Text Window

52 Inverse and Flashing Text

53 Standard Input Features

53 RDKEY Input Subroutine

54 KEYIN Input Subroutine

55 Escape Codes with KEYIN
56 Cursor Motion in Escape Mode
56 GETLN Input Subroutine

58 Editing with GETLN

58 Cancel Line
58 Backspace
58 Retype

-
=
-
=
=
=
=
s
=
=
=
=
=
L.
L.
L.
=

Built-in I/O Firmware

LA L L L L L L LIl

B
B
B

The Monitor, or System Monitor, is a
computer program that is used to
operate the computer at the machine
level.

Table 3-1 Standard I/0 Subroutines

| hapter 3

Built-in 1/0 Firmware

Almost every program on the Apple lle takes input from the
keyboard and sends output to the display. The Monitor and the
Applesoft and Integer BASICs do this by means of standard 1/O
subroutines that are built into the Apple lle’s firmware. Many
applications programs also use the standard I/O subroutines, but
programs written in Pascal do not; Pascal has its own |/O
subroutines.

This chapter describes the features of these subroutines as they
are used by the Monitor and by the BASIC interpreters, and tells
you how to use the standard subroutines in your assembly-
language programs.

High-level languages already include convenient methods for
handling most of the functions described in this chapter. You should
not need to use the standard I/O subroutines in your programs
unless you are programming in assembly language.

Subroutine

Name Location Description

couT $FDED Character Out: sends a character to the display.

RDKEY $FDOC Read Key: displays the blinking cursor; goes to the
standard input routine, normally KEY IN.

KEYIN $FD1B Key In: with 80-column firmware active, displays
checkerboard cursor. Accepts a character from the
keyboard.

GETLN $FD6BA Get Line: displays the prompt character; accepts a

sequence of characters by means of RDKEY.

Built-in 1/O Firmware

Table 3-2 Apple Il Mode

The standard 1/O subroutines listed in Table 3-1 are fully
described in this chapter. The Apple lle firmware also contains
many other subroutines that you might find useful. Those
subroutines are described in Appendix C. Two of the built-in
subroutines, AUXMOVE and XFER, can help you use the optional
auxiliary memory; those subroutines are described in Chapter 4.

Using the 1/0 Subroutines

Before you use the standard I/O subroutines, you should
understand a little about the way they are used. The Apple lle
firmware operates differently with different options such as the
80-column text card. This section describes general situations
that affect the operation of the standard I/O subroutines. Specific
instances are described in the sections devoted to the individual
subroutines.

Apple Il Compatibility

Compared to older Apple Il models, the Apple lle has some
additional keyboard and display features. To run programs that
were written for the older models, you can make the Apple lle
resemble an Apple Il Plus by turning those features off. The
features that you can turn off and on to put the Apple lle into and
out of Apple Il mode are listed in Table 3-2.

Apple lle Apple Il Mode
Keyboard: Uppercase and lowercase Uppercase only
Display Characters: Inverse and normal only Flashing, inverse, and
normal
Display size: 40-column; also 40-column only
80-column, with optional
card

If the Apple lle does not have an 80-column text card installed in
the auxiliary slot, it is almost in Apple Il mode as soon as you
turn it on or reset it. One exception is the keyboard, which is
both uppercase and lowercase. To be compatible with older
software, you have to switch the Apple lle keyboard to uppercase

by pressing the key.

Built-in 1/0 Firmware

L i L A T W L

I E T

—

—

i[’ lm

——

A

Statements in Applesoft and Integer BASIC must be typed in
uppercase letters. will take care of this, but it makes it
inconvenient to use lowercase letters in PRINT statements. If the
80-column firmware is active (see below), you can use
uppercase-restrict mode, which forces typed letters to uppercase
except inside quotation marks (see Table 3-6).

Another feature that is different on the Apple lle is the displayed
character set. Older Apple lls display only uppercase characters,
but they display them three ways: normal, inverse, and flashing.
The Apple lle can display uppercase characters all three ways,
and it can display lowercase characters in the normal way. This
combination is called the primary character set. When the
Apple lle is first turned on or reset, it displays the primary
character set.

The Apple lle has another character set, called the alternate
character set, that displays a full set of normal and inverse
uppercase and lowercase characters, but can’t display flashing
characters. The primary and alternate character sets are
described in Chapter 2. You can switch character sets at any
time by means of the ALTCHARSET soft switch, also described in
Chapter 2.

The 80-column Firmware

There are a few features that are normally available only with the
optional 80-column display. These features are identified in
Tables 3-3a and 3-3b and Table 3-6. The firmware that supports
these features is built into the Apple lle, but it is normally active
only if an 80-column text card is installed in the auxiliary slot.

When you turn on power or reset the Apple lle, the 80-column
firmware is inactive and the Apple lle displays the primary
character set, even if an 80-column text card is installed. When
you activate the 80-column firmware as described below, it
switches to the alternate character set.

The built-in 80-column firmware is implemented as if it were
installed in expansion slot 3. Programs written for older Apple lls
with 80-column display cards installed in slot 3 will run properly
on an Apple lle with an 80-column text card.

Using the 1/0O Subroutines 45

If the Apple lle has an 80-column text card and you want to use
the 80-column display, you can activate the built-in firmware from
BASIC by typing

PR#3

To activate the 80-column firmware from the Monitor, type 3 and
press -P. Notice that this is the same procedure you
use to activate a card in expansion slot 3. Any auxiliary card
installed in the auxiliary slot takes precedence over a card
installed in expansion slot 3: see the section “Switching 1/O
Memory” in Chapter 6 for details.

Even though you activated the 80-column firmware by typing PR#3,

you should never deactivate it by typing PR#0, because that just
disconnects the firmware, leaving several soft switches still set for
80-column operation. Instead, type the sequence| ESC || CONTROL |-G
(see Table 3-6). ‘

If there is no 80-column text card in your Apple lle, you can still
activate the 80-column firmware and use it with a 40-column
display. First, set the INTC3ROM soft-switch located at

$C00A (49162); this switch is described in Chapter 6 in the section
“Switching 1/0 Memory”. Then type PR#3 to transfer control to the
firmware.

When the 80-column firmware is active without a card in the
auxiliary slot, it does not work quite the same as it does with a
card. The functions that clear the display (CLREOL, CLEOLZ,
CLREOP, and HOME) work as if the firmware were inactive: they
always clear to black, even in inverse format. Also, interrupts are
locked out throughout long operations such as clearing the
display. With a card installed, the firmware enables interrupts
periodically during these long operations.

Warning

If you do not have either an 80-column text card in the auxiliary slot
or a terminal card of some kind in expansion slot 3, don't try to
activate the firmware by simply typing PR#3. Typing PR#3 with no card
installed transfers control to the empty connector, with unpredictable
results.

Programs activate the 80-column firmware by transferring control
to address $C300. If there is no card in the auxiliary slot, you must
set the INTC3ROM soft switch first. To deactivate the 80-column

firmware from a program, write a | CONTROL |-U character via
subroutine COUT.

Built-in 1/O Firmware

T TR TR TL R TR TR R A

-
N
N
B
=
L
L
L
n
L
I:’; _
L
L.
L

The OId Monitor

The older model Apple Ils and Apple Il Pluses included a different
version of the System Monitor. It had the same standard 1/0
subroutines, but a few of their features were different; for
example, there were no arrow keys for cursor motion. When you
start the Apple lle with a DOS or BASIC disk and it loads Integer
BASIC into the bank-switched area in RAM, it loads the old
Monitor (sometimes called the Autostart Monitor) along with it.
When you type INT from Applesoft to activate Integer BASIC, you
also activate this copy of the old Monitor, which remains active
until you either type FP to switch back to Applesoft, which uses
the new Monitor in ROM, or type

PR#3

to activate the 80-column firmware. Part of the firmware’s
initialization procedure checks to see which version of the
Monitor is in RAM. If it finds the old Monitor, it replaces it with a
copy of the new Monitor from ROM. After the firmware has
copied the new Monitor into RAM, it remains there until the next
time you start up the system.

The Standard I/O Links

When you call one of the character 1/O subroutines (COUT and
RDKEY), the first thing that happens is an indirect jump to an
address stored in programmable memory. Memory locations used
for transferring control to other subroutines are sometimes called
vectors; in this manual, the locations used for transferring control
to the 1/O subroutines are called the //O links. In a Apple lle
running without a Disk Operating System, each I/O link is
normally the address of the body of the subroutine (COUT1 or
KEYIN). If a Disk Operating System (DOS) is running, one or both
of these links hold the addresses of the corresponding DOS 1/O
routines instead. (DOS maintains its own links to the standard

I/O subroutines.)

By calling the 1/O subroutines that jump to the link addresses
instead of calling the standard subroutines directly, you ensure
that your program will work properly in conjunction with other
software, such as DOS or a printer driver, that changes one or
both of the I/O links. For the purposes of this chapter, we shall
assume that the 1/O links contain the addresses of the standard
I/O subroutines COUT1 and KEY IN. For more information about the
I/O links, see the section “Changing the Standard 1/O Links” in
Chapter 6.

Using the I/O Subroutines

I Standard Output Features

Table 3.3a Control Characters with
couT1.

(1) Only available when 80-column
firmware is active.
(2) Only works from the keyboard.

(3) Doesn’t work from the keyboard.

48

The standard output routine is named COUT, pronounced C-out,

which stands for character out. COUT normally calls COUT1, which
sends one character to the display, advances the cursor position,
and scrolls the display when necessary. COUT1 restricts its use of

the display to an active area called the text window, described

below.

COUT Output Subroutine

Your program makes a subroutine call to $FDED with a character
in the accumulator. COUT then passes control via the output link
CSW to the current output, normally couT1, which takes the
character in the accumulator and writes it out. If the accumulator

Control ASCIl Applelle Action Notes
Character Name Name Taken by COUT1

CONTROL |- G (BEL) bell Produces a 1000 Hz tone for
0.1 second.

CONTROL |- H (BS) backspace Moves cursor position one
space to the left; from left edge
of window, moves to right end
of line above.

CONTROL |- J (LF) line feed Moves cursor position down to
next line in window; scrolls if
needed.

CONTROL |- K (VT) clear EOS Clears from cursor position to 1
the end of the window.

CONTROL |- L (FF) clear Moves cursor position to 1
upper-left corner of window and
clears window.

CONTROL |- M (CR) return Moves cursor position to left
end of next line in window;
scrolls if needed.

CONTROL |- N (SO) normal Sets display format normal. 1,3

CONTROL - 0 (SI) inverse Sets display format inverse. 1,3

CONTROL |- @ (DC1) 40-column Sets display to 40-column. 1

CONTROL |- R (DC2) 80-column Sets display to 80-column.1

CONTROL |- S (DS3) stop-list Stops sending characters to the 1, 2

display, until a key is pressed.

Built-in 1/O Firmware

TOEL'ELO'ELO'EE'EEOELOEEEEOEEOEL OB OB OB EL EL TEL

L
L
5
L
L
L
L
L
L
L
B
L
B
B
B

Table 3-3b Control Characters with
COUT1, continued

(1) Only available when 80-column
firmware is active.

(2) gotoXY is not supported under
BASIC: see the Apple Pascal
Operating System Reference Manual.

contains an uppercase or lowercase letter, a number, or a
special character, the accumulator contains a control character,
COUT1 either performs one of the special functions described
below or ignores the character.

Each time you send a character to COUT1, it displays the character
at the current cursor position, replacing whatever was there, and
then advances the cursor position one space to the right. If the
cursor position is already at the right-hand edge of the window,
COUT1 moves it to the left-most position on the next line down. If
this would move the cursor position past the end of the last line

in the window, COUT1 scrolls the display up one line and sets the
cursor position at the left end of the new bottom line.

Control ASCII Apple lle Action Taken by COUT1 Notes
Character Name Name
CONTROL |- U (NAK) quit Deactivates 80-column 1

firmware, homes cursor,
and clears screen.

CONTROL |-V (SYN) scroll Scrolls the display down 1
one line, leaving the cursor
in the current position.

CONTROL |- W (ETB) scroll-up Scrolls the display up one 1
line, leaving the cursor in
the current position.

CONTROL |- Y (EM) home Moves cursor position to 1
upper-left corner of window
(but doesn't clear).

CONTROL |- 2 (SuUB) clear line Clears the line the cursor 1
position is on.

CONTROL | - \ (FS) fwd. space Moves cursor position one 1

space to the right; from
right edge of window,
moves it to left end of line
below.

CONTROL | -] (GS) clear EOL Clears line from cursor 1
position to the right edge of
the window.

CONTROL |- * (RS) gotoXY Using the next two 1,2

characters, minus 32, as

one-byte X and Y values,
moves the cursor position
to CH=X, CV=Y.

- Standard Output Features 49

The cursor position is controlled by the values in memory
locations 36 and 37 (hexadecimal $24 and $25). These locations
are named CH, for cursor horizontal, and CV, for cursor vertical.
COUT1 does not display a cursor, but the input routines described
below do, and they use this cursor position. If some other routine
displays a cursor, it will not necessarily put it in the cursor
position used by COUT1.

g

| 9§

Control Characters with COUT1

COUT1 does not display control characters. Instead, the control
characters listed in Tables 3-3a and 3-3b are used to initiate
some action by the firmware. Other control characters are
ignored. Most of the functions listed here can also be invoked
from the keyboard, either by typing the control character listed or
by using the appropriate escape code, as described in the
section “Escape Codes with KEYIN”. The stop-list function,
described separately, can only be invoked from the keyboard.

(ly EL

19

E]

The Stop-list Feature

When you are using any program that displays text via COUT1, you
can make it stop updating the display by holding down the

key and pressing the S key. Whenever COUT1 gets a
carriage return from the program, it checks to see if you have
typed a -S. If you have, COUT1 stops and waits for you to
press another key. When you want COUT1 to resume, press
another key; COUT1 will send the carriage return it got earlier to
the display, then continue normally. The character code of the

key you pressed to resume displaying is ignored unless it is a

-C. COUT1 passes -C back to the program; if
it is a BASIC program, this enables you to terminate the program
while in stop-list mode.

K} 1EL

Ol R

F\

The Text Window

After starting up the computer or after a reset, COUT1 uses the
entire display. However, you can restrict COUT1’s activity to any
rectangular portion of the display you wish. The active portion of
the display is called the text window. COUT1 puts characters only
into the window; when it reaches the end of the last line in the
window, it scrolls only the contents of the window.

Built-in 1/0 Firmware

] YO S

-

(k-

B O S e A

You can set the top, bottom, left side, and width of the text
window by storing the appropriate values into four locations in
memory. This enables your programs to control the placement of
text in the display and to protect other portions of the screen
from being written over by new text.

Memory location 32 (hexadecimal $20) contains the number of the
leftmost column in the text window. This number is normally O,

the number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39 (hexadecimal
$27); in an 80-column display, the maximum value is 79
(hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text
window. For a 40-column display, it is normally 40 (hexadecimal
$28); for an 80-column display, it is normally 80 (hexadecimal
$50). COUT1 truncates the width to an even value.

Warning

Be careful not to let the sum of the window width and the leftmost
position in the window exceed the width of the display you are using
(40 or 80). If this happens, it is possible for cOUT1 to put characters
into memory locations outside the display page, possibly destroying
programs or data.

Memory location 34 (hexadecimal $22) contains the number of the
top line of the text window. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the
bottom line of the screen, plus 1. It is normally 24 (hexadecimal
$18) for the bottom line of the display. Its minimum value is 1.

Warning

Any time you change the boundaries of the text window, you should
make sure that the current cursor position (stored at CH and CV) is
inside the new window. If it is outside, it is possible for COUT1to put
characters into memory locations outside the display page, possibly
destroying programs or data.

Standard Output Features

Table 3-4 Text Window Memory

Locations

Window
Parameter

Location

Dec Hex

Minimum Normal Values:
Value: 40col. 80col. 40col. 80col.
Dec Hex

Maximum Values:

Dec Hex Dec Hex Dec Hex Dec Hex

Left Edge
Width
Top Edge

Bottom Edge

32 %20
33 $21
34 $22

35 $23

$0 0 $0 0 $0 39 %27 79 $4F
$0 40 $28 80 $50 40 $28 80 $50
$0 0 $0 0 $0 23 $17 23§17

$1 24 %18 24 $18 24 $18 24 $18

52

Table 3-4 summarizes the memory locations and the possible
values for the window parameters.

Inverse and Flashing Text

Subroutine COUT1 can display text in normal format, inverse
format, or, with some restrictions, flashing format. The display
format for any character in the display depends on two things:
the character set being used at the moment, and the setting of
the two high-order bits of the character’s byte in the display
memory.

As it sends your text characters to the display, COUT1 sets the
high-order bits according to the value stored at memory location
50 (hexadecimal $32). If that value is 255 (hexadecimal $FF),
COUT1 sets the characters to display in normal format; if the value
is 63 (hexadecimal $3F), COUT1 sets the characters to inverse
format. If the value is 127 (hexadecimal $7F) and if you have
selected the primary character set, the characters will be
displayed in flashing format. Note that flashing format is not
available in the alternate character set.

To control the display format of the characters, routine COUT1 uses
the value at location 50 as a logical mask to force the setting of
the two high-order bits of each character byte it puts into the
display page. It does this by performing the logical AND function

on the data byte and the mask byte. The result byte contains a 0
in any bit that was 0 in the mask. The version of COUT1 in the 80-
column firmware changes only the high-order bit of the data.

il

Built-in I/O Firmware

—

-
-
P
|
E
e
;
—
h—
el
i
e
|
o

Table 3-5 Text Format Control Values Mask value Display format

Dec Hex
Note: These mask values apply only to

the primary character set (see text).

255 $FF Normal, uppercase and lowercase
127 $7F Flashing, uppercase and symbols
63 $3F Inverse, uppercase and lowercase

If the 80-column firmware is inactive and you store a mask value at
location 50 with zeros in its low-order bits, COUT1 will mask out those
bits in your text. As a result, some characters will be transformed
into other characters. You should set the mask only to the values
given in Table 3-5.

If you set the mask value at location 50 to 127 (hexadecimal
$7F), the high-order bit of each result byte will be 0, and the
characters will be displayed either as lowercase or as flashing,
depending on which character set you have selected. Refer to
the tables of display character sets in Chapter 2. In the primary
character set, the next-highest bit, bit 6, selects flashing format
with uppercase characters. With the primary character set you
can display lowercase characters in normal format and uppercase
characters in normal, inverse, and flashing formats. In the
alternate character set, bit 6 selects lowercase or special
characters. With the alternate character set you can display
uppercase and lowercase characters in normal and inverse
formats. Switching between character sets is described in the
section “Display Mode Switching” in Chapter 2.

Standard Input Features

The Apple lle’s firmware includes two different subroutines for
reading from the keyboard. One subroutine is named RDKEY, which
stands for read key. It calls the standard character input
subroutine KEY IN, which accepts one character at a time from the
keyboard. The other subroutine is named GETLN, which stands for
get line. By making repeated calls to RDKEY, GETLN accepts a
sequence of characters terminated with a carriage return. GETLN
also provides on-screen editing features: see the section “Editing
with GETLN".

L A

L

Standard Input Features 53

[

RDKEY Input Subroutine

A program gets a character from the keyboard by making a
subroutine call to RDKEY at memory location $FD0C. RDKEY sets the
character at the cursor position to flash, then passes control via
the input link KSW to the current input subroutine, which is
normally KEYIN.

EL [l El

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to

the display (normally by using the COUT routine, described above).
The cursor displayed by RDKEY is a flashing version of whatever
character happens to be at that position on the screen. It is
usually a space, so the cursor appears as a blinking rectangle.

Fl

Fl

The method RDKEY uses to display a cursor works as it did on the
older model Apple lls, which don’t display lowercase characters.

If you are running an Integer BASIC program with the 80-column
firmware inactive, the RDKEY-style cursor is still appropriate. With
lowercase characters or with the alternate character set, this
method of displaying a cursor is no longer satisfactory.

1%

IF

KEY IN Input Subroutine

KEYIN is the standard input subroutine. When called, it waits until
the user presses a key, then returns with the key code in the
accumulator.

Fl

IFl

The problem of displaying a cursor without using flashing format
is handled by KEYIN. If the 80-column firmware is inactive, KEYIN
displays a cursor by alternately storing a checkerboard block in
the cursor location, then storing the original character, then the
checkerboard again. If the firmware is active, KEYIN displays a
steady inverse space (rectangle), unless you are in escape
mode, when it displays a plus sign (+) in inverse format.

(Escape mode is described in the next section.)

IFl IF]

IF|

KEYIN also generates a random number. While it is waiting for the
user to press a key, KEYIN repeatedly increments the 16-bit
number in memory locations 78 and 79 (hexadecimal $4E and $4F).
This number keeps increasing from 0 to 65535, then starts over
again at 0. The value of this number changes so rapidly that
there is no way to predict what it will be after a key is pressed. A
program tgakreads from the keyboard can use this value as a
random number or as a seed for a pseudo-random number
routine.

'El

IF]

IE|

'F

Built-in 1/O Firmware

Escape Codes with KEYIN

KEYIN has many special functions that you invoke by typing
escape codes on the keyboard. An escape code is obtained by
pressing the key, releasing it, and then pressing some
other key, as shown in Table 3-6. The notation in the table —

— means press the key, release it, then press the
character that follows.

When the user presses a key, KEYIN accepts the character, stops
displaying the cursor, and returns to the calling program with the
character in the accumulator.

Table 3-6 Escape Codes Escape Code

Function

Notes

(1) Old-style cursor-control key: see

text. @

(2) Cursor-control key: see text.

(8) This code functions only when the (Esc] A

80-column firmware is active.
B
c
D
£
¥

[Esc] 1
[Esc) 4

[ESc]y
[Escl<

[EsC]k
(Esc j>

[Escm
[Esc]y

(€sc)
=3k
(€5¢) 4

4 o Y Y €

\
(Esc] e

[Esc] (canTroL] -a

Clears the window and homes the cursor
Moves the cursor up one line

Moves the cursor right one space

Moves the cursor left one space

Moves the cursor down one line

Clears to the end of the line

Clears to the bottom of the window

Moves the cursor up one line and turns o
escape mode .

Moves the cursor left one space and turns on
escape mode

Moves the cursor right one space and turns on
escape mode

Moves the cursor down one line and turns on
escape mode

Turns on restricted-case mode
Turns off restricted-case mode

Switches to 40-column mode, homes the
cursor, and clears the screen

Switches to 80-column mode, homes the
cursor, and clears the screen

Deactivates the 80-column firmware

\ I\t

Standard Input Features

55

Table 3-6 includes three sets of cursor-control keys. The first set
consists of the key followed by A, B, C, or D. The letter keys
can be either uppercase or lowercase. These keys are the
standard cursor-motion keys on older Apple || models; they are
present on the Apple lle primarily for compatability with programs
written for old machines.

Cursor Motion in Escape Mode

The second and third set of cursor-control keys are listed
together because they activate escape mode. In escape mode,
you can keep using the cursor-motion keys without pressing the
key again. This enables you to perform repeated cursor
moves by holding down the appropriate key.

When the 80-column firmware is active, you can tell when KEYIN
is in escape mode: it displays a plus sign in inverse format as
the cursor. You leave escape mode by typing any key other than
a cursor-motion key.

The escape codes with the directional arrow keys are the
standard cursor-motion keys on the Apple lle. The escape codes
with the I, J, K, and M keys are the standard cursor-motion keys
on the Apple Il Plus, and are present on the Apple lle for
compatability with the Apple Il Plus. On the Apple lle, the escape
codes with the I, J, K, and M keys function with either uppercase
or lowercase letters.

GETLN Input Subroutine

Programs often need strings of characters as input. While it is
possible to call RDKEY repeatedly to get several characters from
the keyboard, there is a more powerful subroutine you can use.
This routine is named GETLN, which stands for get line, and it
starts at location $FD6A. Using repeated calls to RDKEY, GETLN
accepts characters from the standard input subroutine — usually
KEYIN — and puts them into the input buffer located in the
memory page from $200 to $2FF. GETLN also provides the user with
on-screen editing and control features, described below in the
section “Editing with GETLN".

d T T O O W O O O ¢

i

The first thing GETLN does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the
user that the program is waiting for input. Different programs use
different prompt characters, helping to remind the user which
program is requesting the input. For example, an INPUT statement
in a BASIC program displays a question mark (?) as a prompt.

T T T

Built-in 1/O Firmware

The prompt characters used by the different programs on the
Apple lle are shown in Table 3-7.

GETLN uses the character stored at memory location (hexadecimal
$33) as the prompt character. In an assembly-language program,
you can change the prompt to any character you wish. In BASIC,
changing the prompt character has no effect, because both
BASIC interpreters and the Monitor restore it each time they
request input from the user.

Table 3-7 Prompt Characters Prompt Program Requesting Input
*Note: Mini-assembler is available only Character
with Integer BASIC active.

? User's BASIC program (INPUT statement)
> Integer BASIC

] Applesoft BASIC

Firmware Monitor

! Mini-assembler*

As the user types the character string, GETLN sends each
character to the standard output routine — normally COUT1 —
which displays it at the previous cursor position and puts the
cursor at the next available position on the display, usually
immediately to the right. As the cursor travels across the display,
it indicates the position where the next character will be
displayed.

GETLN stores the characters in its buffer, starting at memory
location $200 and using the X register to index the buffer. GETLN
continues to accept and display characters until the user presses
the key; then it clears the remainder of the line the
cursor is on, stores the carriage-return code in the buffer, sends
the carriage-return code to the display, and returns to the calling
program.

The maximum line-length that GETLN can handle is 255 characters.
If the user types more than this, GETLN sends a backslash (\)and
a carriage return to the display, cancels the line it has accepted
so far, and starts over. To warn the user that the line is getting
full, GETLN sounds a bell (tone) at every keypress after the 248th.

L
L
3
3
3
L
L
L
3
L.
=
-
L
L
L
L

Standard Input Features 57

In the Apple Il and the Apple Il Plus, the GETLN routine converts all
inputs to uppercase. GETLN in the Apple lle does not do this, even in
Apple | mode. To get uppercase input for BASIC, use the

CAPS LOCK key or switch to restricted-case mode using the escape
sequence shown in Table 3-6. With restricted-case active, letters are
automatically shifted to uppercase except inside quotation marks.

Editing with GETLN

Subroutine GETLN provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. For an
introduction to editing with these features, refer to the Applesoft
Tutorial. Any program that uses GETLN for reading the keyboard
has these features.

Cancel Line

Any time you are typing a line, pressing [CONTROL]-X causes
GETLN to cancel the line. GETLN displays a backslash (/) and
issues a carriage return, then displays the prompt and waits for
you to type a new line. GETLN takes the same action when you
type more than 255 characters, as described above.

Backspace

When you press the key, GETLN moves its buffer
pointer back one space, effectively deleting the last character in
its buffer. It also sends a backspace character to routine COUT,
which moves the display position and the cursor back one space.
If you type another character now, it will replace the character
you backspaced over, both on the display and in the line buffer.

Each time you press the key, it moves the cursor left

and deletes another character, until you reach the beginning of
the line. If you then press the key one more time,
you have effectively cancelled the line, and GETLN issues a
carriage return and displays the prompt.

Retype

The [RIGHT-ARROW | key has a function that is complementary to
the backspace function. When you press the [RIGHT-ARROMW | key,
GETLN picks up the character at the display position just as if it
had been typed on the keyboard. You can use this procedure to
pick up characters that you have just deleted by backspacing
across them. You can use the backspace and retype functions
with the cursor-motion functions to edit data on the display (see
the earlier section “Cursor Motion in Escape Mode").

Built-in 1/O Firmware

A T A L O O O T A O ¢

TLEL T

'hapter 4

Memory Organization

61
63
63
64
64
64
65
65
68
69
71

73
76
77
78
79
80
80
81

81

83

S Y

Main Memory Map
RAM Memory Allocation
Reserved Memory Pages
Page Zero
The 6502 Stack
The Input Buffer
Link-address Storage
The Display Buffers
Bank-switched Memory
Setting Bank Switches
Auxiliary Memory and Firmware
Memory Mode Switching
Auxiliary-memory Subroutines
Moving Data to Auxiliary Memory
Transferring Control to Auxiliary Memory
The Reset Routine
The Cold-start Procedure
The Warm-start Procedure
Forced Cold Start
The Reset Vector
Automatic Self-test

Memory Organization

Chaptr 4

Memory Organization

The Apple lle’s 6502 microprocessor can address 65,536 (64K)
memory locations (K stands for 1024; refer to the glossary). All of
the Apple lle’s programmable storage (RAM, for random-access
memory), read-only storage (ROM, for read-only memory) and
input and output devices are allocated locations in this 64K
address space. Some functions share the same addresses — but
not at the same time. For information about these shared
address spaces, see the section “Bank-switched Memory” in this
chapter and the sections “Other Uses of I/O Memory Space”

and “Expansion ROM Space” in Chapter 6.

All input and output in the Apple lle is memory mapped. In this
chapter, the I/O memory spaces are described simply as blocks
of memory. For details of the built-in I/O features, refer to the
descriptions in Chapters 2 and 3. For information about 1/0
operations with peripheral cards, refer to Chapter 6.

People often refer to the Apple lle’s memory in 256-byte blocks
called pages. One reason for this is that a one-byte address
counter or index register can specify one of 256 different
locations. Thus, page 0 consists of memory locations from 0 to
255 (hexadecimal $0 to $FF), inclusive. Page 1 consists of
locations 256 to 511 (hexadecimal $100 to $1FF — note that the
page number is the high-order part of the hexadecimal address).
Don’t confuse this kind of page with the display buffers in the
Apple lle, which are sometimes referred to as Page 1 and

Page 2.

Main Memory Map

The map of the main memory address space in Figure 4-1
shows the functions of the major areas of memory. For more
details on the 1/0O space from 48K to 52K ($C000 through $CFFF),

[l_l_[‘rr'ﬁ_ﬂ_[r['_[l_[!_[| B U U U LR

Main Memory Map - 61

refer to Chapter 2 and Chapter 6; the bank-switched memory in
the memory space from 52K to 64K ($D000 through $FFFF) is
described below.

Tl

—_—
Figure 4-1 System Memory Map FFFF E‘
BANK-
ROM SWITCHED ir‘
RAM -
D000 —
CFFF V
1/0 EE'
€000
BFFF
."-‘
—
P
8000 [T
7FFF -
MAIN —
RAM —
5 s
e
4000
3FFF —
—
,...‘
Hawas
P
0000 T
P
-
——
e
P
foanca
.-4
o
-

Memory Organization

- .

- e — e
I Figure 4-2 RAM Allocation Map BFFF
-]
_—]
L 8000
I 7FFF
- 6000

o 5FFF

Page 2
R ¢ High-resolution
4000
- graphics
display buffers
Page 1
u
. Page 2 | Text and low-resolution
I o Page 1 [graphics display buffers
-«—— Reserved pages

_— -

RAM Memory Allocation

As Figure 4-1 shows, the major portion of the Apple lle’s memory
space is allocated to programmable storage (RAM). Figure 4-2
shows the areas allocated to RAM. The main RAM memory
extends from location 0 to location 49151 (hex $BFFF), and
occupies pages 0 through 191 (hexadecimal $BF). There is also
RAM storage in the bank-switched space from 53248 to 65535
(hexadecimal $D000 to $FFFF), described in a separate section of
this chapter, and auxiliary RAM on the 80-column text card or the
extended 80-column text card, described in Chapter 6.

Reserved Memory Pages

Most of the Apple lle’s RAM is available for storing your

programs and data. However, a few RAM pages are reserved for
the use of the Monitor firmware and the BASIC interpreters. The
reserved pages are described below.

The system does not prevent your using these pages, but if you do
use them, you must be careful not to disturb the system data they
contain, or you will cause the system to malfunction.

L (gt [TU_U'U'[’[

RAM Memory Allocation

Page Zero

Several of the 6502 microprocessor’'s addressing modes require
the use of addresses in page zero, also called zero page. The

Monitor, the BASIC interpreters, and DOS all make extensive use

of page zero.

To use indirect addressing in your assembly-language programs,
you must store base addresses in page zero. At the same time,
you must avoid interfering with the other programs that use page
zero — the Monitor, the BASIC interpreters, and the Disk
Operating Systems. One way to avoid conflicts is to use only
those page-zero locations not already used by other programs.
Tables 4-1, 4-2, 4-3, and 4-4 show the locations in page zero
used by the Monitor, Applesoft BASIC, Integer BASIC, and

DOS 3.8.

As you can see from the tables, page zero is pretty well used
up, except for a few bytes here and there. It's hard to find more
than one or two bytes that aren’t used by either BASIC or the
Monitor or DOS. Rather than trying to squeeze your data into an
unused corner, you may prefer a safer alternative: save the
contents of part of page zero, use that part, then restore the
previous contents before you pass control to another program.

The 6502 Stack

The 6502 microprocessor uses page 1 as the stack — the place
where subroutine return addresses are stored, in first-in, last-out
sequence. Many programs also use the stack for temporary
storage of the registers (via push and pull operations). You can
do the same, but you should use it sparingly. The stack pointer
is eight bits long, so the stack can hold only 256 bytes of
information at a time. When you store the 257th byte in the
stack, the stack pointer repeats itself, or wraps around, so that
the new byte replaces the first byte stored, which is now lost.
This writing over old data is called stack overflow, and when it
happens, the program continues to run normally until the lost
information is needed, whereupon the program terminates
catastrophically.

The Input Buffer

The GETLN input routine, which is used by the Monitor and the
BASIC interpreters, uses page 2 as its keyboard-input buffer.
The size of this buffer sets the maximum size of input strings.

(Note: Applesoft only uses the first 237 bytes, although it permits

Memory Organization

R A H BN DT THTTTTTMTTETT

you to type all 256.) If you know that you won'’t be typing any
long input strings, you can store temporary data at the upper end
of page 2.

Link-Address Storage

The Monitor and DOS 3.3 both use the upper part of page 3 for
link addresses or vectors. Table 4-10 shows the part of page 3
the Monitor uses; refer to the DOS Manual to see how DOS
uses page 3.

BASIC programs sometimes need short machine-language
routines. These routines are usually stored in the lower part of
page 3.

The Display Buffers

The primary text and low-resolution-graphics display buffer
occupies memory pages 4 through 7 (locations 1024 through 2047,
hexadecimal $0400 through $07FF). This entire 1024-byte area is
called display Page 1, and it is not usable for program and data
storage. There are 64 locations in this area that are not

displayed on the screen; these locations are reserved for use by
the peripheral cards (see Chapter 6).

Display Page 2, the alternate text and low-resolution-graphics
display buffer, occupies memory pages 8 through 11 (locations
2048 through 3071, hexadecimal $0800 through $0BFF). Most
programs do not use Page 2 for displays, so they can use this
area for program or data storage.

The primary high-resolution-graphics display buffer, called high-
resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through
$3FFF). If your program doesn’t use high-resolution graphics, this
area is usable for programs or data.

High-resolution-graphics Page 2 occupies memory pages 64
through 95 (locations 16384 through 24575, hexadecimal $4000
through $5FFF). Most programs use this area for program or data
storage.

For more information about the display buffers, see Chapter 2.

| S Y Y L L

RAM Memory Allocation 65

Table 4-1 Monitor Zero-page Usage

Table 4-2 Applesoft Zero-page Usage

High Nybble
of Address

Low Nybble of Address

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $SA $B SC $D SE

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B0O
$CO
$DO
$EO
$FO

High Nybble
of Address

Low Nybble of Address

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C

$D $E

$F

$00
$10 e o o o o
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B0O
$CO
$DO
$EO
$FO

Memory Organization

T LT 'EE'EE B FL LT T BETEOBLELELE

(o

Table 4-3 Integer BASIC Zero-page
Usage

Table 4-4 DOS 3.3 Zero-page Usage

High Nybble Low Nybble of Address

of Address $0 $1 $2 $3 $4 $5 S5 $7

$8 $9 $A $B $C S$D SE SF

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B0
$CO
$DO
$EO
$FO

High Nybble Low Nybble of Address
of Address $0 $1 $2 $3 $4 $5 o

$7 $8 $9

$B

$C $D SE SF

$00

$10

$20

$30

$40 e o o o o
$50

$60

$70 L
$80

$90

$A0

$B0 °
$CO

$DO0

$EO

$FO

RAM Memory Allocation

e Bank-switched Memory

Figure 4-3 Bank-switched Memory Map

68 Memory Organization

The memory address space from 52K to 64K (hexadecimal $D000
through $FFFF) is doubly allocated: it is used for both ROM and
RAM. The 12K bytes of ROM (read-only memory) in this address
space contain the Monitor and the Applesoft BASIC interpreter.
Alternatively, there are 16K bytes of RAM in this space. The
RAM is normally used for storing either the Integer BASIC
interpreter or part of the Pascal Operating System (purchased
separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple lle is
able to run software written for the Apple Il and Apple Il Plus
because it uses this part of memory in the same way they do. It
is convenient to have the Applesoft interpreter in ROM, but the
Apple lle, like an Apple Il with a language card, is also able to
use that address space for other things when Applesoft is not
needed.

You may also be wondering how 16K bytes of RAM is mapped
into only 12K bytes of address space. The usual answer is that

it's done with mirrors, and that isn’t a bad analogy: the 4K-byte
address space from 52K to 56K (hexadecimal $D000 through $DFFF)
is used twice.

Switching different blocks of memory into the same address
space is called bank switching. There are actually two examples
of bank-switching going on here: first, the entire address space
from 52K to 64K ($D000 through $FFFF) is switched between ROM
and RAM, and second, the address space from 52K to 56K ($D000
to $DFFF) is switched between two different blocks of RAM.

FFFF
RAM
E000 ROM
DFFF
RAM RAM
D000

I A TL'E' D' D T T T T TR T T THTT

Table 4-5 Bank Select Switches

(1) This switch write-enables RAM
and read-enables ROM.

(2) Two successive reads to this
switch enables RAM both for reading

S (Y Y A 0 A

Setting Bank Switches

You switch banks of memory in the same way you switch other
functions in the Apple lle: by using soft switches. These soft
switches do three things: select either RAM or ROM in this
memory space; enable or inhibit writing to the RAM (write-
protect); and select the first or second 4K-byte bank of RAM in
the address space $D000 to $DFFF.

Warning

Do not use these switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 4-5 shows the addresses of the soft switches for enabling
all combinations of reading and writing in this memory space. All
of the hexadecimal values of the addresses are of the form $C08x.
Notice that several addresses perform the same function: this is
because the soft switches are activated by combinations of
address bits. For example, any address of the form $C08x with a

1 in the low-order bit enables the RAM for writing. Similarly, bit 3
of the address selects which 4K block of RAM to use for the
address space $D000-$DFFF; if bit 3 is 0, the first bank of RAM is
used, and if bit 3 is 1, the second bank is used.

Switch Write Read Read 4K RAM Bank:
Address RAM RAM ROM First Second Notes

$C080 L4 °

$C081 . ® 1
$C082 b

$C083 . L 2
$C084 . ®

$C085 . . 1
$C086 ®

$C087 L4 * 2
$Cco088 L

$C089 . ° ° 1
$CO08A L °

$C08B . Ld 2
$Co8C L4

$C08D . L 1
$CO8E L

$CO8F ° ° ° 2

Bank-switched Memory

70

When RAM is not enabled for reading, the ROM in this address
space is enabled. Even when RAM is not enabled for reading, it
can still be written to if it is write-enabled.

When you turn power on or reset the Apple lle, it initializes the
bank switches for reading the ROM and writing the RAM, using
the second bank of RAM. Note that this is different from the
reset on the Apple Il Plus, which didn’t affect the bank-switched
memory (the language card). On the Apple lle, you can’t use the
reset vector to return control to a program in bank-switched
memory, as you could on the Apple Il Plus.

When you are using Integer BASIC on the Apple lle, reset works
correctly, restarting BASIC with your program intact. This happens
because the reset vector transfers control to DOS, and DOS resets
the switches for the current version of BASIC.

Note that you can’t read one RAM bank and write to the other; if
you select either RAM bank for reading, you get that one for writing
as well.

You can't read from ROM in part of the bank-switched memory and
read from RAM in the rest: specifically, you can't read the Monitor in
ROM while reading bank-switched RAM. If you want to use the
Monitor firmware with a program in bank-switched RAM, first copy
the Monitor from ROM (locations $F800 through $FFCB) into lower
RAM and then into bank-switched RAM.

To see how to use these switches, look at the following section
of an assembly-language program:

AD 83 CO LDA $C083 3 SELECT 2ND 4K BANK

READ/WRITE
AD 83 CO LDA $C083 ; BY TWO CONSECUTIVE READS
A9 DO LDA #$DO 5 SET UP...
85 01 STA BEGIN $ »eeNEW. ..
A9 FF LDA #S$FF ; ...MAIN-MEMORY...
85 02 STA END 3 «s«POINTERS....

20 97 C9 JSR RAMTST ...FOR 12K BANK

AD 8B CO LDA $CO08B SELECT 1ST 4K BANK
20 97 C9 JSR RAMTST ; USE ABOVE POINTERS

AD 83 CO LDA $C088 ;7 SELECT 1ST BANK &
WRITE PROTECT

—e

Memory Organization

O O O O

| !

T

[

) !

T\ Tl T

bk [IE ikl L Ll

S WL

A9 80 LDA #$80

E6 10 INC TSTNUM

20 58 C9 JSR WPTSINIT

AD 80 CO LDA $C080 ;3 SELECT 2ND BANK &
WRITE PROTECT

E6 10 INC TSTNUM

A9 01 LDA #PAT12K

20 58 C9 JSR WPTSINIT

AD 8B CO LDA $C08B 3 SELECT 1ST BANK &
READ/WRITE

AD 8B CO LDA $C08B ; BY TWO CONSECUTIVE READS

E6 OE INC RWMODE 3 FLAG RAM IN READ/WRITE

E6 10 INC TSTNUM

A9 08 LDA #PAT4K

20 58 C9 JSR WPTSINIT

The LDA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches.
The unusual sequence of two consecutive LDA instructions
performs the two consecutive reads that write-enable this area of
RAM; in this case, the data that are read are not used.

Auxiliary Memory and Firmware

By installing an optional card in the auxiliary slot, you can add

more memory to the Apple lle. One such card is the 80-column
text card, which has 1K bytes of additional RAM for expanding
the text display from 40 columns to 80 columns.

Another optional card, the extended 80-column text card, has
64K of additional RAM. A 1K-byte area of this memory serves
the same purpose as the memory on the 80-column text card:
expanding the text display to 80 columns. The other 63K bytes
can be used as auxiliary program and data storage. If you use
only 40-column displays, the entire 64K bytes is available for
programs and data.

Warning

Do not attempt to use the auxiliary memory from a BASIC program.
The BASIC interpreter uses several areas in main RAM, including
the stack and the zero page. If you switch to auxiliary memory in
these areas, the BASIC interpreter fails and you must reset the
system and start over.

Auxiliary Memory and Firmware

Figure 4-4 Memory map with Auxiliary

Gl MAIN AUXILIARY

BANK- BANK-

SWITCHED SWITCHED

RAM RAM
D000
CFFF 10
C000
BFFF

MAIN
RAM
8000 AUXILIARY
7FFF RAM
6000
SFFF
4000 High-resolution
3FFF graphics display buffers
2000
1FFF
Text and low-resolution
graphics display buffers

0000

Stack and zero page —»

As you can see by studying the memory map in Figure 4-4, the
auxiliary memory is broken into two large sections and one small
one. The largest section is switched into the memory address
space from512t049151 ($200 through $BFFF). This space includes
the display buffer pages: as described in Chapter 2, space in
auxiliary memory is used for one half of the 80-column text
display. You can switch to the auxiliary memory for this entire
memory space, or you can switch just the display pages: see the
section “Memory Mode Switching”, below.

If the only reason you are using auxiliary memory is for the 80-
column display, note that you can store into the display page in
auxiliary memory by using the 80STORE and PAGE2 soft switches
described in the section “Display Mode Switching” in Chapter 2.

Memory Organization

EE'EE B 'BE'EEEEELELELEN IR L OBY OER L

L
L
5
L
8
L
L
5
5
L
B
B
B
B
B

The other large section of auxiliary memory is switched into the
memory address space from 52K to 64K ($D000 through $FFFF).
This memory space and the switches that control it are described
above in the section “Bank-switched Memory”. If you use the
auxiliary RAM in this space, the soft switches have the same
effect on the auxiliary RAM that they do on the main RAM: the
bank switching is independent of the auxiliary-RAM switching.

Note that the soft switches for the bank-switched memory, described
in the previous section, do not change when you switch to auxiliary
RAM. In particular, if ROM is enabled in the bank-switched memory
space before you switch to auxiliary memory, the ROM will still be
enabled after you switch. Any time you switch the bank-switched
section of auxiliary memory in and out, you must also make sure
that the bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched
space, you also switch the first two pages, from 0 to 511 ($0000
through $01FF). This part of memory contains page zero, which is
used for important data and base addresses, and page one,
which is the 6502 stack. The stack and zero page are switched
this way so that system software running in the bank-switched
memory space can maintain its own stack and zero page while it
manipulates the 48K address space (from $0200 to $BFFF) in either
main memory or auxiliary memory.

Memory Mode Switching

Switching the 48K section of memory is performed by two soft
switches: the switch named RAMRD selects main or auxiliary
memory for reading, and the one named RAMWRT selects main or
auxiliary memory for writing. As shown in Table 4-6, each switch
has a pair of memory locations dedicated to it, one to select
main memory, and the other to select auxiliary memory. Enabling
the read and write functions independently makes it possible for
a program whose instructions are being fetched from one
memory space to store data into the other memory space.

Warning

Do not use these switches without careful planning. Careless
switching between main and auxiliary memories is almost certain to
have catastrophic effects on the operation of the Apple lle. For
example, if you switch to auxiliary memory with no auxiliary memory
card installed, the program that is running will stop and you will
have to reset the Apple lle and start over.

Auxiliary Memory and Firmware 73

Writing to the soft-switch at location $C003 turns RAMRD on and
enables auxiliary memory for reading; writing to location $C002
turns RAMRD off and enables main memory for reading. Writing to
the soft-switch at location $C005 turns RAMWRT on and enables the
auxiliary memory for writing; writing to location $C004 turns RAMWRT
off and enables main memory for writing. By setting these
switches independently, you can use any of the four

combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high-
resolution graphics Page 1 can be used as part of the address
space from $0200 to $BFFF by using RAMRD and RAMWRT as described
above. These areas in auxiliary RAM can also be controlled
separately by using the switches described in the section

“Display Mode Switching” in Chapter 2. Those switches are
named 80STORE, PAGE2, and HIRES.

As shown in Table 4-6, the 80STORE switch functions as an
enabling switch: with it on, the PAGE2 switch selects main memory
or auxiliary memory. With the HIRES switch off, the memory space
switched by PAGE2 is the text display Page 1, from $0400 to $07FF;
with HIRES on, PAGE 2 switches both text Page 1 and high-resolution
graphics Page 1, from $2000 to $3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control
switches take priority: if 80STORE is off, RAMRD and RAMWRT work for
the entire memory space from $0200 to $BFFF, but if

80STORE is on, RAMRD and RAMWRT have no effect on the display
page. Specifically, if 80STORE is on and HIRES is off, PAGE2 controls
text Page 1 regardless of the settings of RAMRD and RAMWRT.
Likewise, if B0STORE and HIRES are both on, PAGE 2 controls both text
Page 1 and high-resolution graphics Page 1, again regardless of
RAMRD and RAMWRT.

A single soft switch named ALTZP (for alternate zero page)
switches the bank-switched memory and the associated stack

and zero page area between main and auxiliary memory. As
shown in Table 4-6, writing to location $C009 turns ALTZP on and
selects auxiliary-memory stack and zero page; writing to the soft
switch at location $C008 turns ALTZP off and selects main-memory
stack and zero page for both reading and writing. The section
“Auxiliary-memory Routines”, below, describes firmware that you
can call to help you switch between main and auxiliary memory.

Memory Organization-

J N YO YO O O O O O O O O O

B
N
i
|
i
N
=
-
-
n
-
B
L.
L.
L.
|

When these switches are on, auxiliary
memory is being used; when they are
off, main memory is being used.

Table 4-6 Auxiliary-memory Select
Switches

(1) When 80STORE is on, the PAGE2
switch selects main or auxiliary display
memory.

(2) When 80STORE is on, the HIRES
switch enables you to use the PAGE2
switch to switch between the
high-resolution Page-1 area in main
memory or auxiliary memory.

There are three more locations associated with the auxiliary-
memory switches. The high-order bits of the bytes you read at
these locations tell you the settings of the three soft switches
described above. The byte you read at location $C013 has its high
bit set to 1 if RAMRD is on (auxiliary memory is read-enabled), or 0
if RAMRD is off (the 48K block of main memory is read-enabled).
The byte location $C014 has its high bit set to 1 if RAMWRT is on
(auxiliary memory is write-enabled), or 0 if RAMWRT is off (the 48K
block of main memory is write-enabled). The byte at location
$C016 has its high bit set to 1 if ALTZP is on (the bank-switched
area, stack, and zero page in the auxiliary memory are selected),
or 0 if ALTZP is off (these areas in main memory are selected).

Name Function Location Notes
Hex Decimal

RAMRD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 49154 -16382 Write
Read RAMRD switch $C013 49171 -16365 Read

RAMWRT Write auxiliary memory $C00S 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -16354 Read

80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $C000 49152 -16384 Write
Read 80STORE switch $C018 49176 -16360 Read

PAGE2 Page 2 on (Aux. memory) $C055S 49237 -16299 1
Page 2 off (Main memory) $C054 49236 -16300 1

Read PAGE?2 switch $C01C 49180 -16356 Read
HIRES On: access hi-res pages $C057 49239 -16297 2

Off: use RAMRD, RAMWRT $C05S6 49238 -16298 2

Read HIRES switch $C01D 49181 -16355 Read
ALTZP Auxiliary stack & z. p. $C009 49161 -16373 Write

Main stack & zero page $C008 49160 -16374 Write

Read ALTZP switch $Co016 49174 -16352 Read
Auxiliary Memory and Firmware 75

Table 4-7 Auxiliary-memory Routines

76

In order to have enough memory locations for all of the soft
switches and remain compatible with the Apple Il and Apple Il Plus,
the soft switches listed in Table 4-6 share their memory locations
with the keyboard functions listed in Table 2-2. The operations —
read or write — shown in Table 4-6 for controlling the auxiliary
memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Auxiliary-memory Subroutines

If you want to write assembly-language programs that use
auxiliary memory but you don’t want to manage the auxiliary
memory yourself, you can use the built-in auxiliary-memory
subroutines. These subroutines make it possible to use the
auxiliary memory without having to manipulate the soft switches
described in the previous section.

The subroutines described below make it easier to use auxiliary
memory, but they do not protect you from errors. You still have to
plan your use of auxiliary memory to avoid catastrophic effects on
your program.

You use these built-in subroutines the same way you use the 1/0
subroutines described in Chapter 3: by making subroutine calls to
their starting locations. Those locations are shown in Table 4-7.

Subroutine Location Description

Name
AUXMOVE $C311 Moves data blocks between main and auxiliary memory
XFER $C314 Transfers program control between main and auxiliary

memory

Memory Organization

]
g
>
j
=
.
;j

s]

=
=
=
!:?!
._k—;.;
-
L
|
=
|
=
|
-
|
o
=
s
L.
L
L.
s

Table 4-8 Parameters for AUXMOVE
Routine

Moving Data to Auxiliary Memory

In your assembly-language programs, you can use the built-in
subroutine named AUXMOVE to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set the carry bit to
select the direction of the move — main to auxiliary or auxiliary
to main.

Warning

Don't try to use AUXMOVE to copy data in page zero or page one (the
6502 stack) or in the bank-switched memory ($D000-$FFFF). AUXMOVE
uses page zero all during the copy, so it can’'t handle moves in the
memory space switched by ALTZP.

The pairs of bytes you use for passing addresses to this
subroutine are called A1, A2, and A4, and they are used for
parameter passing by several of the Apple lle’s built-in routines.
The addresses of these byte pairs are shown in Table 4-8.

Name Location Parameter passed

Carry 1 = Move from main to auxiliary memory
0 = Move from auxiliary to main memory

A1L $3C Source starting address, low-order byte
A1H $3D Source starting address, high-order byte
A2L $3E Source ending address, low-order byte

A2H $3F Source ending address, high-order byte
AdL $42 Destination starting address, low-order byte
A4H $43 Destination starting address, high-order byte

Auxiliary Memory and Firmware

Table 4-9 Parameters for XFER
Routine

78

Put the addresses of the first and last bytes of the block of
memory you want to copy into A1 and A2. Put the starting
address of the block of memory you want to copy the data to
into A4.

The AUXMOVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit; to copy data from auxiliary memory to
main memory, clear the carry bit.

When you make the subroutine call to AUXMOVE, the subroutine
copies the block of data as specified by the A registers and the
carry bit. When it is finished, the accumulator and the X and Y
registers are just as they were when you called it.

Transferring Control to Auxiliary Memory

You can use the built-in routine named XFER to transfer control to
and from program segments in auxiliary memory. You must set
up three parameters before using XFER: the address of the routine
you are transferring to, the direction of the transfer (main to
auxiliary or auxiliary to main), and which page zero and stack

you want to use.

Name or Parameter passed
Location

Carry 1 = Transfer from main to auxiliary memory
0 = Transfer from auxiliary to main memory

Overflow 1 = Use page zero and stack in auxiliary memory
0 = Use page zero and stack in main memory

$3ED Program starting address, low-order byte
$3EE Program starting address, high-order byte

Put the transfer address into the two bytes at locations $3ED and
$3EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer
to a program in auxiliary memory; clear the carry bit to transfer to
a program in main memory. Use the overflow bit to select which
page zero and stack you want to use: clear the overflow bit to
use the main memory; set the overflow bit to use the auxiliary
memory.

Memory Organization

T TL TL TL Ty TL EL §

TV T TL T

TLTLTLT

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current
stack, then sets up the soft switches for the parameters you have
selected and jumps to the new program.

Warning

It is the programmer’s responsibility to save the current stack pointer
somewhere in the current memory space before using XFER and to
restore it after regaining control. Failure to do so will cause program
errors.

The Reset Routine

To put the Apple.lle into a known state when it has just been
turned on or after a program has malfunctioned, there is a
procedure called the reset routine. The reset routine is built into
the Apple lle’s firmware, and it is initiated any time you turn
power on or press the key while holding down the

CONTROL | key. The reset routine puts the Apple lle into its normal
operating mode and restarts the resident program.

When you initiate a reset, hardware in the Apple lle sets the
memory-controlling soft switches to normal: main board RAM and
ROM are enabled, and, if there is an 80-column text or extended
80-column text card in the auxiliary slot, expansion slot 3 is
allocated to the built-in 80-column firmware. Auxiliary RAM is
disabled and the bank-switched memory space is set up to read
from ROM and write to RAM, using the second bank at $D000.

The reset routine sets the display-controlling soft switches to
display 40-column text Page 1 using the primary character set,
then sets the window equal to the full 40-column display, puts
the cursor at the bottom of the screen and sets the display
format to normal.

The reset routine sets the keyboard and display as the standard
input and output devices by loading the standard 1/O links (see
Chapter 6). It turns annunciators 0 and 1 off and annunciators 2
and 3 on, clears the keyboard strobe, turns off any active
accessory-card ROM (see Chapter 6) and outputs a bell (tone).

The Apple lle has three types of reset: power-on reset, also
called cold-start reset; warm-start reset; and forced cold-start
reset. The procedure described above is the same for any type
of reset. What happens next depends on the reset vector. The
reset routine checks the reset vector to determine whether it is

The Reset Routine

valid or not, as described below in the section, “The Reset
Vector”. If the reset was caused by turning the power on, the
vector will not be valid, and the reset routine will perform the
cold-start procedure. If the vector is valid, the routine will perform
the warm-start procedure.

The Cold-start Procedure

If the reset vector is not valid, either the Apple lle has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
“Apple][at the top of the display. It loads the reset vector and
the validity-check byte as described below, then starts checking
the expansion slots to see if there is a disk drive controller card
in one of them, starting with slot 7 and working down. If it finds a
controller card, it initiates the bootstrap (startup) routine that
resides in the controller card’s firmware. The bootstrap then loads
the Disk Operating System from the disk in drive 1. When DOS
has been loaded, it displays other messages on the screen. If
there is no disk in the disk drive, the drive motor just keeps
spinning until you press [CONTROL |-[RESET |. For more information
about DOS and the startup procedure, see the DOS Manual.

If the reset routine doesn’t find a controller card, or if you press
(CONTROL |-[RESET Jagain before the startup procedure has been
completed, the reset routine will continue without using the disk,
and pass control to the built-in Applesoft interpreter.

The Warm-start Procedure

Whenever you press [CONTROL |-[RESET |when the Apple lle has
already completed a cold-start reset, the reset vector is still valid
and it is not necessary to reinitialize the entire system. The reset
routine simply uses the vector to transfer control to the resident
program, which is normally the built-in Applesoft interpreter. If the
resident program is indeed Applesoft, your Applesoft program

and variables are still intact. If you are using DOS, it is the
resident program and it restarts either Applesoft or Integer

BASIC, whichever you were using when you pressed | CONTROL |-
RESET |.

A program in bank-switched RAM cannot use the reset vector to
regain control after a reset, because the reset routine enables ROM
in the bank-switched memory space. If you are using Integer
BASIC, which is in the bank-switched RAM, you are also using
DOS, and it is DOS that controls the reset vector and restarts
BASIC.

Memory Organization

B TOTITMTTTT TT T T TL. T

!

L. TL T T

Forced Cold Start

If a program has loaded the reset vector to point to the beginning
of the program, as described below, pressing | CONTROL |-| RESET
causes a warm-start reset that uses the vector to transfer control
to that program. If you want to stop such a program without
turning the power off and on, you can force a cold-start reset by
holding down the key and the key, then
pressing and releasing the [RESET | key.

When you want to stop a program unconditionally — for example, to
start up the Apple lle with some other program — you should use
theforced cold-startreset, [CONTROL | - [DOPEN-APPLE|-[RESET },instead of
turning the power off and on.

Whenever you press CONTROL J-[RESET |, firmware in the Apple lle
always checks to see whether either| APPLE]key is down. If the
(SOLID-APPLE | key is down, with or without the[DPEN-APPLE | key,
the firmware performs the self-test described below. If only the
key is down, the firmware starts a forced cold-start
reset. First, it destroys the program or data in memory by writing
two bytes of arbitrary data into each page of main RAM. The two
bytes that get written over in page 3 are the ones that contain

the reset vector. The reset routine then performs a normal cold-
start reset.

The Reset Vector

When you reset the Apple lle, the reset routine transfers control
to the resident program by means of an address stored in

page 3 of main RAM. This address is called a vector because it
directs program control to a specified destination. There are
several other vector addresses stored in page 3, as shown in
Table 4-10, including the interrupt vectors described in Chapter 6,
and the DOS vectors described in the DOS Manual.

The cold-start reset routine stores the starting address of the
built-in Applesoft interpreter, low-order byte first, in the reset
vector address at locations 1010 and 1011 (hexadecimal $3F2 and
$3F3). It then stores a validity-check byte, also called the power-
up byte, at location 1012 (hexadecimal $3F4). The validity-check
byte is computed by performing an exclusive-0R of the second
byte of the vector with the constant 165 (hexadecimal $A5). Each
time you reset the Apple lle, the reset routine uses this byte to
determine whether the reset vector is still valid.

The Reset Routine 81

Table 4-10 Page 3 Vectors

82

You can change the reset vector so that the reset routine will
transfer control to your program instead of to the Applesoft
interpreter. For this to work, you must also change the validity-

check byte to the exclusive-0R of the high-order byte of your new

reset vector with the constant 165 ($A5). If you fail to do this,
then the next time you reset the Apple lle, the reset routine will
determine that the reset vector is invalid and perform a cold-start
reset, eventually transferring control to the disk bootstrap routine
or to Applesoft.

Vector address Vector function

Decimal Hex

1008 $3F0 Address of the subroutine that handles BRK requests
1009 $3F1 (normally $59, $FA).

1010 $3F2 Reset vector (see text).

1011 $3F3

1012 $3F4 Power-up byte (see text).

1013 $3FS Jump instruction to the subroutine that handles Applesoft
1014 $3F6 “&" commands (normally $4C, $58, $FF).

1015 $3F7

1016 $3F8 Jump instruction to the subroutine that handles user
1017 $3F9 ([CONTROL | -Y) commands.

1018 $3FA

1019 $3FB Jump instruction to the subroutine that handles

1020 $3FC non-maskable interrupts.

1021 $3FD

1022 $3FE Interrupt vector (address of the subroutine that handles
1023 $3FF interrupt requests).

Memory Organization

1T T T, TL T Tl

T "B TT 'L T T TL Tl

The reset routine has a subroutine that generates the validity-
check byte for the current reset vector. You can use this
subroutine by doing a subroutine call to location -1169
(hexadecimal $FB6F). When your program finishes, it can return
the Apple lle to normal operation by restoring the original reset
vector and again calling the subroutine to fix up the validity-check
byte.

Automatic Self-test

If you reset the Apple lle by holding down the key and
the [SOLID-APPLE | key while pressing and releasing the
key, the reset routine will start running the built-in self-test.
Successfully running this test assures you that the Apple lle is
operational.

Warning

The self-test routine tests the Apple lle’s programmable memory by
writing and then reading it. All programs and data in programmable
memory when you run the self-test are destroyed.

The self-test takes several seconds to run. While it is running,
the display changes from black to white and back twice. If the
test finishes normally, the Apple lle displays an “OK” message
and waits for you to request a normal reset.

If the self-test detects something wrong, it displays an error
message and stops. If you have been running programs prior to
running the self-test, some soft-switches could be on, causing the
self-test to fail and display an error message. If this happens,

turn the power off for several seconds, then turn it back on and
run the self-test again. If it still fails, there is really something
wrong; to get it corrected, contact your Apple dealer for service.

The Reset Routine 83

1 30 W W W W W W W

Chapter 5

Using The Monitor

87 Invoking the Monitor
88 Syntax of Monitor Commands
89 Monitor Memory Commands
89 Examining Memory Contents
89 Memory Dump
92 Changing Memory Contents
93 Changing One Byte
93 Changing Consecutive Locations
94 Moving Data in Memory
96 Comparing Data in Memory
97 Monitor Register Command
97 Examining and Changing Registers
98 Monitor Cassette Tape Commands
98 Saving Data on Tape
99 Reading Data from Tape
101 Miscellaneous Monitor Commands
101 Display Inverse and Normal
102 Back to BASIC
102 Redirecting Input and Output
103 Hexadecimal Arithmetic
104 Special Tricks with the Monitor
104 Multiple Command Lines
104 Filling Memory
106 Repeating Commands
106 Creating Your Own Commands
107 Machine-language Programs
107 Running a Program
108 Disassembled Programs
110 The Mini-Assembler
113 Mini-Assembler Instruction Formats
115 Summary of Monitor Commands

Using the Monitor

Chapter 5

Using The Monitor

The System Monitor is a set of subroutines in the Apple lle
firmware. The Monitor provides a standard interface to the built-in
1/O devices described in Chapter 2. The 1/O subroutines
described in Chapter 3 are part of the System Monitor.

The Disk Operating System and the BASIC interpreters use
these subroutines by direct calls to their starting locations, as
described for the 1/O subroutines in Chapter 3; the starting
addresses for all of the standard subroutines are listed in
Appendix C. If you wish, you can call the standard subroutines
from your programs in the same fashion.

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor to

® |ook at one or more memory locations

e change the contents of any location

e write programs in machine language to be executed directly
by the Apple lle’s microprocessor

® save blocks of data and programs onto cassette tape and
read them back in again

e move and compare blocks of memory

® invoke other programs from the Monitor

Invoking the Monitor

The System Monitor starts at memory location $FF69 (decimal
65385 or -151). To invoke the Monitor, you make a CALL statement
to this location from the keyboard or from a BASIC program.
When the Monitor is running, its prompting character, an asterisk
(*), appears on the left side of the display screen, followed by a
blinking cursor.

Invoking the Monitor 87

To use the Monitor, you type commands at the keyboard. When
you have finished using the Monitor, you return to the BASIC
language you were previously using by pressing -
, by typing -C and pressing , or
by typing 3D0G, which executes the resident program — usually

Applesoft — whose address is stored in a jump instruction at
location $3DO0.

Syntax of Monitor Commands

To give a command to the Monitor, you type a line on the
keyboard, then press [RETURN . The Monitor accepts the line using
the standard I/O subroutine GETLN described in Chapter 3. A
Monitor command can be up to 255 characters in length, ending
with a carriage return.

A Monitor command can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation. Hexadecimal
notation uses the ten decimal digits (0-9) and the first six letters
(A-F) to represents the sixteen values from 0 to 15. A pair of
hexadecimal digits represents values from 0 to 255, corresponding
to a byte, and a group of four hexadecimal digits can represent
values from 0 to 65,536, corresponding to a word. Any address

in the Apple lle can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor

accepts any group of hexadecimal digits. If there are fewer than
four digits in the group, it adds leading zeros; if there are more

than four hexadecimal digits, the Monitor uses only the last four
digits. It follows a similar procedure when the command syntax

calls for two-digit data values.

Each command you type consists of one command character,
usually the first letter of the command name. The Monitor
recognizes 22 different command characters. Some of them are
punctuation marks, some are uppercase letters, and some are
control characters. Note: although the Monitor recognizes and
interprets them, control characters typed on an input line do not
appear on the screen. (See the “Summary of Monitor
Commands” at the end of the chapter.)

This chapter contains many examples of the use of Monitor
commands. In the examples, the commands and values you type
are shown in a normal typeface and the responses of the Monitor
are in a computer typeface. Of course, when you perform the

Using the Monitor

examples, all of the characters that appear on the display screen
will be in the same typeface. Some of the data values displayed
by your Apple lle may differ from the values printed in these
examples, because they are variables stored in programmable
memory.

Monitor Memory Commands

When you use the Monitor to examine and change the contents
of memory, it keeps track of the address of the last location
whose value you inquired about and the address of the location
that is next to have its value changed. These are called the last
opened location and the next changeabie location.

Examining Memory Contents

When you type the address of a memory location and press
(RETURN], the Monitor responds with the address you typed, a
dash, a space, and the value stored at that location, like this:

*E000

*33

Each time the Monitor displays the value stored at a location, it
saves the address of that location as the last opened location
and as the next changeable location.

Memory Dump

When you type a period (.) followed by an address, and then
press [RETURN |, the Monitor displays a memory dump: the data
values stored at all the memory locations from the one following
the last opened location to the location whose address you typed
following the period. The Monitor saves the last location
displayed as both the last opened location and the next
changeable location. In these examples, the amount of data
displayed by the Monitor depends on how much larger than the
last opened location the address after the period is.

Monitor Memory Commands 89

A memory dump includes several different items of information.
The first line in the dump begins with the address of the location
following the last opened location; all other lines begin with
addresses that end alternately in zeros and eights, and there are
never more than eight data values displayed on a single line in a
memory dump.

When the Monitor performs a memory dump, it starts at the
location immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including
the location whose address you typed, but only up to eight
values on a line. When it reaches a location whose address is a
multiple of eight—that is, one that ends with an 8 or a 0—it
displays that address as the beginning of a new line, then
continues displaying more values.

Using the Monitor

L T T A T O O O L L O T L A L ¢

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory
dump and sets that location as both the last opened location and
the next changeable location. If the address specified on the
input line is less than the address of the last opened location, the
Monitor displays only the address and value of the location
following the last opened location.

You can combine the two commands, opening a location and
dumping memory, by simply concatenating them: type the first
address, a period, and the second address. This combination of
two addresses separated by a period is called a memory range.

*300.32F

0300- 99 B9 00 08 0A 0A 0A 9
0308- 00 08 C8 DO F4 A6 2B A
0310- 09 85 27 AD CC 03 85 4
0318- 84 40 8A 4A 4A 4A 4A 0
0320- CO 85 3F A9 5D 85 3E 2
0328- 43 03 20 46 03 A5 3D 4

Pressing the key by itself causes the Monitor to display
one line of a memory dump; that is, a memory dump from the
location following the last opened location to the next multiple-of-
eight boundary. The Monitor saves the address of the last
location displayed as the last opened location and the next
changeable location.

Monitor Memory Commands 91

* [RETURN]

*32

*[RETURN]

* [RETURN |

Changing Memory Contents

i The previous section showed you how to display the values

[" stored in the Apple lle’s memory; this section shows you how to
! change those values. You can change any location in

“ RAM (programmable memory) and you can also change the soft
! switches and output devices by changing the locations assigned
! to them.

A Warning

Use these commands carefully. If you change the zero-page
locations used by Applesoft and DOS, you may lose programs or
data stored in memory.

T T BT T T T 'L B RL

Using the Monitor

Changing One Byte

The previous commands keep track of the next changeable
location; these commands make use of it. In the next example,
you open location 0, then type a colon followed by a value.

«0
B o000- 00

*:5F

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining
that location:

*0
0000- SF
*
You can also combine opening and changing into one operation

by typing an address followed by a colon and a value. In the
example, you type the address again to verify the change.

*302:42
*302
0302- 42
*

When you change the contents of a location, the value that was
contained in that location disappears, never to be seen again.
The new value will remain until you replace it with another value.

Changing Consecutive Locations
You don't have to type a separate command with an address,

a colon, a value, and [RETURN | for each location you want to
change. You can change the the values of up to eighty-five

Monitor Memory Commands 93

consecutive locations at a time (or even more, if you omit leading
zeros from the values) by typing only the initial address and
colon followed by all the values separated by spaces, and ending
with [RETURN . The Monitor will duly store the consecutive values
in consecutive locations, starting at the location whose address
you typed. After it has processed the string of values, it takes the
location following the last changed location as the next change-
able location. Thus, you can continue changing consecutive
locations without typing an address on the next input line by
typing another colon and more values. In these examples, you
first change some locations, then examine them to verify the
changes.

+300:69 01 20 ED FD 4C 0 3

*300

*[RETURN]

01 20 ED FD 4C 00 03

*10:0 1 2 3

*4 567

*10.17

Moving Data in Memory

You can copy a block of data stored in a range of memory
locations from one area in memory to another by using the
Monitor's MOVE command. To move a range of memory, you must
tell the Monitor both where the data is now situated in memory
— the source locations — and where you want the copy to go —
the destination locations. You give this information to the Monitor
by means of three addresses: the address of the first location in
the destination and the addresses of the first and last locations in
the source. You specify the starting and ending addresses of the
source range by separating them with a period. You separate the
destination address from the range addresses with a less-than

O A A O O O O O O O O 4 W L ¢

Using the Monitor

character (<), which you may think of as an arrow pointing in the
direction of the move. Finally, you tell the Monitor that this is a
MOVE command by typing the letter M. The format of the complete
MOVE command looks like this:

{destination} < {start} . {end} M

When you type the actual command, the words in curly braces
should be replaced by hexadecimal addresses, and the braces
and spaces should be omitted. Here are some examples of
memory moves. First, you examine the values stored in one
range of memory, then store several values in another range of
memory; the actual MOVE commands end with the letter M:

+0.F

0000- SF 00
0008- 00 00

05
8 ‘ 00

*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03
*300.30C

0300- A9 8D 20 ED FD A9 45 20
0308- DA FD 4C 00 03

*(0<300.30CM
*0.C

000- A9 8D 20 ED FD A9 45 20
008- DA FD 4C 00 03

0
0
*310 8.AM
*310.312

0310~ DA FD 4C

*2<7.9M
*0.C

80- 9 8D 20 DA FD A9 45 20

00 A
0008- DA FD 4C 00 03
*

Monitor Memory Commands 95

The Monitor moves a copy of the data stored in the source range
of locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location.
If the second address in the source range specification is less
than the first, then only one value (that of the first location in the
range) will be moved.

If the destination address of the MOVE command is inside the
source range of addresses, then strange (and sometimes
wonderful) things happen: the locations between the beginning of
the source range and the destination address are treated as a
sub-range and the values in this sub-range are replicated
throughout the source range. See the section “Special Tricks with
the Monitor” for an interesting application of this feature.

Comparing Data in Memory

You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of
memory from one place to another. In fact, the VERIFY command
can be used immediately after a MOVE to make sure that the move
was successful. The VERIFY command, like the MOVE command,
needs a range and a destination. The syntax of the VERIFY
command is:

{destination} < {start} . {end} V

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If
any values don’t match, the Monitor displays the address at
which the discrepancy was found and the two values that differ.
In the example, you store data values in the range of locations
from 0 to $D, copy them to locations starting at $300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value
at location 6 to $E4, it detects the change.

Using the Monitor

T T TR ' LT T T T e TLE

+0:D7 F2 E9 F4 F4 E5 EE A0 E2 F9 A0 C3 C4 C5
*300<0.DM

*300<0.DV

*6:E4

*300<0.DV

4 (EE

If the VERIFY command finds a discrepancy, it displays the
address of the location in the source range whose value differs
from its counterpart in the destination range. If there is no
discrepancy, VERIFY displays nothing. The VERIFY command
leaves the values in both ranges unchanged. The last opened
location is the last location in the source range, and the next
changeable location is the first location in the source range, just
as in the MOVE command. If the ending address of the range is
less than the starting address, the values of only the first
locations in the ranges will be compared. Like the MOVE command,
the VERIFY command also does unusual things if the destination
address is within the source range; see the section “Special
Tricks with the Monitor”.

Monitor Register Command

Even though the actual contents of the 6502’s internal registers
are changing as you use the Monitor, you can examine the
values that the registers contained at the time the Monitor gained
control, either because you called it or because the program you
are debugging stopped at a break (BRK). You can also store
new register values that will be used when you execute a
program from the Monitor using the GO command, described
below.

Examining and Changing Registers

When you call the Monitor, it stores the contents of the 6502
registers in memory. The registers are stored in the order A, X,
Y, P (processor status register), and S stack pointer), starting at
location $45 (decimal €9). When you give the Monitor a GO
command, the Monitor loads the registers from these five
locations before it executes the first instruction in your program.

Monitor Register Commands 97

Typing | CONTROL |-E and pressing | RETURN | invokes the Monitor’s

EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A-register as the
next changeable location. After using the EXAMINE command, you
can change the values in these locations by typing a colon and
then typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

*[CoNTROL J-E

*:B0 02

+[.coNTROL] -E

A=BO X=02 Y=D8 P=B0 S=F8

Monitor Cassette Tape Commands

The Apple lle has two jacks for connecting an audio cassette
tape recorder. With a recorder connected, you can use the
Monitor commands described below to save the contents of a
range of memory onto a standard cassette and recall it again for
later use.

L TL TL Tl

Tl Il Tl Fl

Fl Fl

Saving Data on Tape

The Monitor's WRITE command saves the contents of up to 65,536
memory locations on cassette tape. To save a range of memory
on tape, give the Monitor the starting and ending addresses of

the range, followed by the letter W (for WRITE), like this:

{start} . {end} W

Don't press yet: first, put the tape recorder in record
mode and let the tape run for a second, then press . The
Monitor will write a ten-second tone onto the tape and then write
the data. The tone acts as a leader: later, when the Monitor
reads the tape, the leader enables the Monitor to get in step with
the signal from the tape. When the Monitor is finished writing the
range you specified, it will sound a bell (beep) and display a
prompt. You should rewind the tape and label it with the memory
range that's on the tape and what it's supposed to be.

Using the Monitor

T 'FL 'FL 'L R

Tl

Here’s a small example you can save and use later to try out the
READ command. Remember that you must start the cassette
recorder in record mode before you press after typing
the WRITE command.

i +OFF FE_AD 30 GO 88 DO 04 C6 01 FO 08 CA
DO F6 A6 00 4C 0
*0.14

*0.14W

- It takes about 35 seconds total to save the values of 4,096
memory locations preceded by the ten-second leader onto tape.
This works out to an average data transfer rate of about 1,350
- bits per second.

The WRITE command writes one extra value on the tape after it
has written the values in the memory range. This extra value is
the checksum, which is the eight-bit partial sum of all values in
the range. When the Monitor reads the tape, it uses this value to
determine if the data has been written and read correctly (see
below).

Reading Data from Tape

Once you've saved a memory range onto tape with the Monitor’s
WRITE command, you can read that memory range back into the
computer by using the Monitor's READ command. The data values
you've stored on the tape need not be read back into the same
memory range from whence they came; you can tell the Monitor
to put those values into any memory range in the computer’s
memory, provided that it's the same size as the range you

saved. The format of the READ command is the same as that of
the WRITE command, except that the command letter is R:

{start} . {end} R

Monitor Cassette Tape Commands “ 99

Tl "L TL Tl Tl

Once again, after typing the command, don’t press [RETURN .
Instead, start the tape recorder in play mode and wait a few
seconds. Although the WRITE command puts a ten-second leader
tone on the beginning of the tape, the READ command needs only
three seconds of this leader to lock on to the signal from the
tape. You should let a few seconds of tape go by before you
press to allow the tape recorder’s output to settle down
to a steady tone.

This example has two parts. First, you set a range of memory to

zero, verify the contents of memory, and then type the READ

command, but don’t press | RETURN |.

*0000000000O0O0OO0COOOOOOOODO

*0.14

Now start the cassette running in play mode, wait a few seconds,
and press [RETURN |. After the Monitor sounds the bell (beep) and
displays the prompt, examine the range of memory to see that

the values from the tape were read correctly:

After the Monitor has read all the data values on the tape, it
reads the checksum value. It computes the checksum on the
data it read and compares it to the checksum from the tape. If
the two checksums differ, the Monitor sends a beep to the
speaker and displays “ERR”. This warns you that there was a
problem reading the tape and that the values stored in memory
aren't the values that were recorded on the tape. If the two
checksums match, the Monitor will just send out a beep and
display a prompt.

Using the Monitor

FL'ELEL "B 'FL'ELEE BT L Bl R

f

_—

— Miscellaneous Monitor Commands

— if These Monitor commands enable you to change the video
display format from normal to inverse and back, and to assign
input and output to peripherals in expansion slots.

Display Inverse and Normal

You can control the setting of the inverse-normal mask location
used by the COUT subroutine (described in Chapter 3) from the
Monitor so that all of the Monitor’s output will be in inverse
format. The INVERSE command, I, sets the mask such that all
subsequent inputs and outputs are displayed in inverse format.
To switch the Monitor’s output back to normal format, use the
NORMAL command, N.

«0.F

- 0000- 0A 0B 0C 0D OE OF DO 04
0008- C6 01 FO 08 CA DO F6 Ab
*|
*0.F
0000- 0A 0B 0C 0D OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6
*N
*0.F
0000- 0A 0B 0C OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

Miscellaneous Monitor Commands 101

Back to BASIC

Use the BASIC command, -B , to leave the Monitor and
enter the BASIC that was active when you entered the Monitor.
Normally, this is Applesoft BASIC, unless you deliberately
switched to Integer BASIC. Any program or variables that you

had previously in BASIC will be lost. If you want to re-enter
BASIC with your previous program and variables intact, use the
CONTINUE BASICcommand, [CONTROL |-C . If you are using the
Apple Disk Operating System (DOS), press(CONTROL |- [RESET | or

type

3D0G

to return to the language you were using, with your program and
variables intact.

If you type the latter command, make sure that the third character
you type is a zero, not a letter O. The letter G is the Monitor’s 60
command, described below in the section “Machine-language
Programs”.

Redirecting Input and Output

The PRINTER command, activated by a -P , diverts all
output normally destined for the screen to an interface card in a
specified exapnsion slot, from 1 to 7. There must be an interface
card in the specified slot, or you will lose control of the computer
and your program and variables may be lost. The format of the
command is

{slot number} | CONTROL |-P

A PRINTER command to slot number 0 will switch the stream of
output characters back to the Apple lle’s video display.

Warning

Don't give the PRINTER command with slot number 0 to deactivate the
80-column firmware, even though you used this command to
activate it in slot 3. The command works, but it just disconnects the
firmware, leaving some of the soft-switches set for 80-column
display.

Using the Monitor

IF|

In much the same way that the PRINTER command switches the
output stream, the KEYBOARD command substitutes the interface
card in a specified expansion slot for the Apple lle’s normal input
device, the keyboard. The format for the KEYBOARD command is:

{slot number} | CONTROL |-K

A slot number of 0 for the KEYBOARD command directs the Monitor
to accept input from the Apple lle’s built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents of
the BASIC commands PR# and IN#. For more information on the
way those commands work, refer to the section “The Standard 1/O
Links” in Chapter 3.

Hexadecimal Arithmetic

The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats:

{value} + {value}
{value} - {value}

The Apple lle performs the arithmetic and displays the result, as
shown in these examples:

+20+13
=33
*4A-C
=3E
*FF+4
-03
*3-4

=FF

Miscellaneous Monitor Commands 103

I Special Tricks with the Monitor

This section describes some more complex ways of using the
Monitor commands.

Multiple Command Lines

You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces and the total
number of characters in the line is less than 254. Adjacent
single-letter commands such as L, S, I, and N need not be
separated by spaces.

You can freely intermix all of the commands except the STORE (:)
command. Since the Monitor takes all values following a colon
and places them in consecutive memory locations, the last value
in a STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases; it usually has no effect
and can be used anywhere.

In the following example, you display a range of memory, change
it, and display it again, all with one line of commands.

+*300.307 300:18 69 1 N 300.302
0 I

If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to
that character, then grinds to a halt with a noisy beep and
ignores the remainder of the input line.

BT’ T T T T T TELT

Filling Memory

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern
in the first locations in the range:

+*300:11 22 33

*

Using the Monitor

'Fl 'Fl 'FI 'F

'Fi

Remember the number of values in the pattern: in this case, it is
3. Use the number to compute addresses for the MOVE command,
like this:

{start+number} < {start} . {end-number} M
This MOVE command will first replicate the pattern at the locations

immediately following the original pattern, then replicate that
pattern following itself, and so on until it fills the entire range.

*303<300.32DM

You can do a similar trick with the VERIFY command to check
whether a pattern repeats itself through memory. This is
especially useful to verify that a given range of memory locations
all contain the same value. In this example,-you first fill the
memory range from $300 to $320 with zeros and verify it, then
change one location and verify again, to see the VERIFY
command detect the discrepancy:

+300:0
*301<300.31FM
*301<300.31FV
*304:02

*301<300.31FV

Special Tricks with the Monitor 105

Repeating Commands

You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of
the command line that you want to repeat with a letter command,
such as N, and ending it with the sequence 34:n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating; for the first
character in the line, n=0. The value for n must be followed with
a space in order for the loop to work properly.

L Tl Tl [E\

r—
This trick takes advantage of the fact that the Monitor uses an e
index register to step through the input buffer, starting at location
$200. Each time the Monitor executes a command, it stores the P
value of the index at location $34; when that command is ;“‘:'
finished, the Monitor reloads the index register with the value at
location $34. By making the last command change the value at —
location $34, you change this index so that the Monitor picks up —
the next command character from an earlier point in the buffer.
e
The only way to stop a loop like this is to press | CONTROL | - “_—-
RESET | ; that is how this example ends.
T
*N 300 302 34:0 =
0300- 11 -
0302- 33 _—
0300~ 11
g o
0302- 33 s
0300~ 14
0302- 33
ot 1} i
0300- 11 —
0302- 33
030
* r———
e
Creating your Own Commands .
The USER command, [CONTROL J-Y , forces the Monitor to jump to
memory location $3F8. You can put a JMP instruction there that —
jumps to your own machine-language program. Your program —
can then examine the Monitor’s registers and pointers or the
input buffer itself to obtain its data. For example, here is a ,
b

Using the Monitor

program that displays everything on the input line after the
- -Y . The program starts at location $300; the command
) line that starts with $3F8 stores a jump to $300 at location $3F8.

|~ *300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF
*3F8:4C 00 03

*(CONTROL J-Y THIS IS A TEST

- THIS 1S A TEST

*

Machine-Language Programs

The main reason to program in machine language is to get more
speed. A program in machine language can run much faster than
the same program written in high-level languages such as BASIC
or Pascal, but the machine-language version usually takes a lot
longer to write. There are other reasons to use machine
language: you might want your program to do something that
isn’t included in your high-level language, or you might just enjoy
the challenge of using machine language to work directly on the
bits and bytes.

If you have never used machine language before, you'll need to
learn the 6502 instructions listed in Appendix A. To become
proficient at programming in machine language, you’ll have to spend
some time at it, and study one of the books on 6502 programming
listed in the Bibliography.

You can get a hexadecimal dump of your program, move it
around in memory, or save it on tape and recall it again using
the commands described in the previous sections. The Monitor
commands in this section are intended specifically for you to use
in creating, writing, and debugging machine-language programs.

Running a Program

The Monitor command you use to start execution of your
machine-language program is the GO command. When you type
an address and the letter G, the Apple lle starts executing
machine language instructions starting at the specified location. If
you just type the G, execution starts at the last opened location.

Machine-language Programs

Since programs that translate assembly
language into machine language are
called assemblers, a program like the
Monitor's L1sT command that translates
machine language into assembly
language is called a disassembler.

The word mnemonic comes from the
same root as memory and refers to
short acronyms that are easier to
remember than the hexadecimal
operation codes themselves: for
example, for clear carry you write cLC
instead of $18.

The Monitor treats this program as a subroutine: it should end
with an RTS (return from subroutine) instruction to transfer control
back to the Monitor.

The Monitor has some special features that make it easier for
you to write and debug machine-language programs, but before
you get into that, here is a small machine-language program that
you can run using only the simple Monitor commands already
described. The program in the example merely displays the
letters A through Z: you store it starting at location $300, examine
it to be sure you typed it correctly, then type 3006 to start it

. ——

running. T

*300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60 F—

*300.30C

0300- A9 C1 20 ED FD 18 69 01 .

0308- C9 DB DO F6 60

*300G -

ABCDEFGHIJKLMNOPQRSTUVWXYZ ——

* -
Disassembled Programs i
Machine-language code in hexadecimal isn’t the easiest thing in —
the world to read and understand. To make this job a little T
easier, machine-language programs are usually written in -
assembly language and converted into machine-language code .
by programs called assemblers. [To
The Monitor's LIST command displays machine-language code in il
assembly-language form. Instead of unformatted hexadecimal [
gibberish, the LIST command displays each instruction on a -
separate line, with a three-letter instruction name, or mnemonic, _
and a formatted hexadecimal operand. The LIST command also o=

converts the relative addresses used in branch instructions to
absolute addresses.

Using the Monitor

The Monitor LIST command has the format:

{location} L

The LIST command starts at the specified location and displays
as much memory as it takes to make up a screenfull (20 lines) of
instructions, as shown in the following example:

*300L

0300- A9 C1 LDA #$C1
0302- 20 ED FD JSR $FDED
0305- 18 CLC

0306- 69 01 ADC #$01
0308- C9 DB CMP #$DB
030A- D0 F6 BNE $0302
030C- 60 RTS

030D- 00 BRK

030E- 00 BRK

030F - 00 BRK

0310~ 00 BRK

0311- 00 BRK

0312~ 00 BRK

0313- 00 BRK

0314- 00 BRK

0315- 00 BRK

0316- 00 BRK

0317- 00 BRK

0318- 00 BRK

0319- 00 BRK

*

The first seven lines of this example are the assembly-language
form of the program you typed in the previous example. The rest
of the lines are BRK instructions only if this part of memory has
zeros in it: other values will be disassembled as other
instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the
program counter, which it uses only to point to locations within
programs. Whenever the Monitor performs a LIST command, it
sets the program counter to point to the location immediately
following the last location displayed on the screen, so that if you
type another LIST command it will display another screenfull of
instructions, starting where the previous display

left off.

Machine-language Programs 109

fz I The Mini-assembler

Without an assembler, you have to write your machine language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands
covered in the previous sections. That is exactly what you did
when you ran the previous examples.

The Integer BASIC interpreter includes an assembler called the
Apple Mini-assembler that enables you to type programs into the
Apple lle using the same assembly-language format that the LIST
command displays. It is called a mini-assembler because it
doesn’t include symbolic labels, an important feature of all full-
sized assemblers like the Assembler/Editor in the DOS Tool Kit
(Apple product number A2D0029).

Before you can use the Mini-assembler, the Apple lle has to be
running Integer BASIC. When you start up the computer using
DOS or either BASIC, the Apple lle loads the Integer BASIC
interpreter from the file named INTBASIC into the bank-switched
RAM.

To run Integer BASIC after you have started up the computer
with DOS, type

INT

The Apple lle displays the Integer prompt character (>) and a
cursor.

If you have not activated the 80-column firmware since you started
up with DOS, the cursor now looks like a blinking rectangle: it is
actually a space character displayed in flashing format. This is
evidence that the old Monitor is operating (see Chapter 3). The old
Monitor is loaded into RAM along with Integer BASIC and the mini-
assembler; the next time you activate the 80-column firmware, it
copies the current version of the Monitor from ROM into RAM. Once
this has happened, the current Monitor is active even with Integer
BASIC, and the cursor is either a blinking checkerboard or a steady
rectangle.

Now enter the Monitor by typing

CALL -151

Using the Monitor

_‘3.:.4
i
—
—i
[
—
—a

Tl

Fl Tl

"'l 'FI 'El 'Fl '"FI El FI TI Tl

'Fi

14}

1!

After you enter the Monitor from Integer BASIC, invoke the Mini-
assembler by typing:

Fe66G

This is just the G0 command described above starting the
program stored at location $F666 — the mini assembler. You can
tell that the mini-assembler is running because it displays an
exclamation point (!) as its prompt character. While the mini-
assembler is running, you can execute any Monitor command by
preceding it with a dollar sign ($). Aside from that, the Mini-
assembler has an instruction set and syntax all its own.

The Mini-assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini-
assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction
(formats for operands are listed Table 5-1). Now press [RETURN J.
The Mini-assembler converts the line you typed into hexadecimal,
stores it in memory beginning at the location of the Program
Counter, and then disassembles it again and displays the
disassembled line. It then displays a prompt on the next line.

Now the Mini-assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first, don’t type an address or a colon: just type a

space and the next instruction’s mnemonic and operand, then
press [RETURN J. The Mini-assembler assembles that line and waits
for another.

If the line you type has an error in it, the Mini-assembler beeps
loudly and displays a circumflex (*) under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing
parentheses, and so forth. The Mini-assembler also rejects the
input line if you forget the space before or after a mnemonic or
include an extraneous character in a hexadecimal value or
address. If the destination address of a branch instruction is out
of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-assembler flags this as
an error.

The Mini-assembler 111

1300:LDX #02
0300- A2 02
! LDA $0,X
0302- BS 00
! STA $10,X

0304- 95 10

! DEX
0306- CA
! STA $CO030

0307- 8D 30 CO
! BPL $302

030A- 10 F6

! BRK

9300- 00

There are two ways to leave the Mini-assembler and re-enter the
Monitor. One way is to type the Monitor command, FF69G,

LDX

LDA

STA

DEX

STA

BPL

BRK

preceded by a dollar sign:

'$FFB9G

*

Another way to leave the Mini-assembler is to press [CONTROL |-
[RESET |, which warm-starts BASIC, then type

CALL-151

Using the Monitor

#$02

$00,X

$10,X

$C030

$0302

—
.o
i
—~a

'l O'ELO'ELO'ELO'FLOEEO'ELEE O'ER RO K

Tl

Your assembly language program is now stored in memory. You
can display it with the L1ST command:

*300L

0300- A2 02 LDX #$02
0302- BS 00 LDA $00,X
0304- 95 10 STA $10,X
0306- CA DEX

0307- 8D 30 CO STA $C030
030A- 10 Fb6 BPL $0302
030C- 00 BRK

030D- 00 BRK

030E- 00 BRK

030F- 00 BRK

0310- 00 BRK

0311- 00 BRK

0312- 00 BRK

0313~ 00 BRK

0314- 00 BRK

0315- 00 BRK

0316- 00 BRK

631 7= "00 BRK

0318- 00 BRK

0319- 00 BRK

*

Mini-assembler Instruction Formats

The Apple Mini-assembler recognizes 56 mnemonics and 13
addressing formats used in 6502 assembly-language
programming. The mnemonics are standard, as used in the
Synertek Programming Manual (Apple part number A2L0003), but
the addressing formats are somewhat different. Table 5-1 shows
the Apple standard address-mode formats for 6502 assembly
language.

An address consists of one or more hexadecimal digits. The
Mini-assembler interprets addresses the same way the Monitor
does: if an address has fewer than four digits, the Mini-assembler
adds leading zeros; if the address has more than four digits, then
it uses only the last four.

In this book, dollar signs ($) in addresses signify that the addresses
are in hexadecimal notation. They are ignored by the Mini-
assembler and may be omitted when typing programs.

There is no syntactical distinction between the absolute and zero-
page addressing modes. If you give an instruction to the Mini-
assembler that can be used in both absolute and zero-page
mode, the Mini-assembler assembles that instruction in absolute
mode if the operand for that instruction is greater than $FF, and it
assembiles it in zero-page mode if the operand is less than $100.

The Mini-assembler 113

Table 5-1 Mini-assembler Address
Formats

*Note: Accumulator and
Implied-address instructions have no
operands.

Addressing Mode Format Notes
Accumulator *
Implied -
Immediate #${value}

Absolute ${address}

Zero page ${address}

Indexed zero page

Indexed absolute

Relative
Indexed indirect
Indirect indexed

Absolute indirect

s{address}, x
s{address}, ¥

s{address}, x
s{address}, Y

${address}
(${address}, x)
(${address}), ¥

(${address})

Instructions in accumulator mode and implied addressing mode

need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-assembler sounds a bell
(beep), displays a circumflex (*) under the target address, and

does not assemble the line.

If you give the Mini-assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, the Mini-assembler will
not accept the line.

Using the Monitor

T TIL TIL T

Tl Tl

'"LOFlLO'ELO'ELO'ELEEOELEE O'TL T

'Fi

Summary of Monitor Commands

Here is a summary of the Monitor commands, showing the
syntax diagram for each one. The Mini-assembler commands are
included, even though they are only available when Integer
BASIC is active (see the section “The Mini-assembler”).

Examining Memory

{adrs} Examines the value contained
in one location.

{adrs1}.{adrs2} Displays the values contained
in all locations between
{adrs1} and {adrs2}.

Displays the values in up to

eight locations following the
last opened location.

Changing the Contents of Memory

{adrs}:{val} {val}... Stores the values in
consecutive memory locations
starting at {adrs}.

{val}{val}... Stores values in memory
starting at the next changeable
location.

Moving and Comparing

{dest} <{start}.{end}M Copies the values in the range
{start}.{end} into the range
beginning at {dest}.

{dest} <{start}.{end}Vv Compares the values in the

range {start}.{end} to those in
the range beginning at {dest}.

Summary of Monitor Commands 115

116

The Register Command

CONTROL |-E

Cassette Tape Commands

{start}.{end}W

{start}.{end}R

Displays the locations where
the contents of the 6502’s
registers are stored and opens
them for changing.

Writes the values in the
memory range {start}.{end}
onto tape, preceded by a ten-
second leader.

Reads values from tape,
storing them in memory
beginning at {start} and

stopping at {end}. Prints “ERR”

if an error occurs.

Miscellaneous Monitor Commands

I

N

[CONTROL | -B

CONTROL |-C

{val}+{val}

{val}—{val}

Using the Monitor

Sets Inverse display mode.
Sets Normal display mode.

Enters the language currently
active (usually Applesoft).

Returns to the language
currently active (usually
Applesoft).

Adds the two values and prints
the hexadecimal result.

Subtracts the second value
from the first and prints the
result.

L BB BL'EEEEEEEETLOTE T TR TR OERTLORLL

{slot} [CONTROL |-P Diverts output to the device
whose interface card is in slot

e number {slot}. If {slot}=0,
accepts input from the
keyboard.

w

- -y Jumps to the machine

. language subroutine at location

sl $3F8.

i Running and Listing Programs

_ {adrs}G Transfers control to the

b machine language program

beginning at {adrs}.

i {adrs}L Disassembles and displays 20
instructions, starting at {adrs}.
Subsequent L’s display 20

il more instructions.

i The Mini-assembler
The Mini-assembler is only available FE666 Invokes the Mini-assembler.

when Integer BASIC is active.

$ {command} Executes a Monitor command
from the Mini-assembler.

$FFB9G Leaves the Mini-assembler.

Summary of Monitor Commands 117

Y I O W W W W E W W

15 131 *

15

11

Chapter 6

Programming for
Peripheral Cards

121 Peripheral-card Memory Spaces
122 Peripheral-card 1/O Space

122 Peripheral-card ROM Space
123 Expansion ROM Space

125 Peripheral-card RAM Space
126 1/O Programming Suggestions
127 Finding the Slot Number

127 1/O Addressing

128 RAM Addressing

129 Changing the Standard I/O Links
131 Using Interrupts

131 Other Uses of I/0O Memory Space
132 Switching I1/0O Memory

Programming for Peripheral Cards

119

‘ L o kT Tl
H\“ i M”“‘””“ i M\uw s, o A \“‘ “Hh‘w |
i Hm i \“‘“‘ “H‘; “HH‘MH ‘\H‘H‘H M“ ‘N‘h M“ ¥ i
. MH\H‘W““ H\‘M ‘ ‘ W\M“ ‘HW ‘ i HHH“UN“U ”\H M w
" ¥ 2y M i ‘mh p
‘M MH“ uu\‘“w “‘WMM “ m\\”‘m“ H\‘” - ‘\HNH

i Vil
o i

re
iy, J 4

i
it
WW
‘
Hw \MH
i \\U
| &
g I g il
iVl i il
S R L r .

\M
i, I H

MMH\H

I
.uH‘

Chapter 6

Programming for
Peripheral Cards

The seven expansion slots on the Apple lle’s main circuit board
are used for installing circuit cards containing the hardware and
firmware needed to interface peripheral devices to the Apple lle.
These slots are not simple I/O ports; peripheral cards can
access the Apple lle’s data, address, and control lines via these
slots. The expansion slots are numbered from 1 to 7, and certain
signals, described below, are used to select a specific slot.

The older Apple Il and Apple Il Plus models have an eighth
expansion slot: slot number 0. On those models, slot 0 is normally
used for a language card or a ROM card; the functions of the
Apple Il Language Card are built into the main circuit board of the
Apple lle.

Peripheral-card Memory Spaces

Because the Apple lle’'s 6502 microprocessor does all of its 1/0
through memory locations, portions of the Apple lle’s memory
space have been allocated for the exclusive use of the cards in
the expansion slots. In addition to the memory locations used for
actual 1/0O, there are memory spaces available for programmable
memory (RAM) in the main memory and for read-only memory
(ROM or PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as /O drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intelligent peripherals. They make it possible for you to add
peripheral hardware to your Apple lle without having to change
your programs, provided that your programs follow normal
practice for data input and output.

Peripheral-card Memory Spaces 121

Table 6-1 Peripheral-card I/O
Memory Locations

Note: The enabling signal is marked
with a prime, to indicate that it is an
active-low signal.

122

Peripheral-card 1/0 Space

Each expansion slot has the exclusive use of sixteen memory
locations for data input and output in the memory space
beginning at location $C090. Slot 1 uses locations $C090 through
$CO9F, slot 2 uses locations $C0A0 through $COAF, and so on
through location $COFF, as shown in Table 6-1.

These memory locations are used for different 1/O functions,
depending on the design of each peripheral card. Whenever the
Apple lle addresses one of the sixteen I/O locations allocated to
a particular slot, the signal on pin 41 of that slot, called DEVICE
SELECT’, switches to the active (low) state. This signal can be
used to enable logic on the peripheral card that uses the four
low-order address lines to determine which of its sixteen I/O
locations is being accessed.

Slot Locations Enabled by

1 $C090-$CO9F DEVICE SELECT’
2 $COAO-$COAF DEVICE SELECT’
3 $C0B0-$COBF DEVICE SELECT’
4 $CO0CO-$COCF DEVICE SELECT’
5 $CODO-$CODF DEVICE SELECT’
6 $COEO-$COEF DEVICE SELECT’
Ui $COFO0-$COFF DEVICE SELECT’

Peripheral-card ROM Space

One 256-byte page of memory space is allocated to each
peripheral card. This space is normally used for read-only
memory (ROM or PROM) on the card with driver programs that
control the operation of the peripheral device connected to the
card.

The page of memory allocated to each expansion slot begins at

location $Cn00, where n is the slot number, as shown in Table 6-2
and Figure 6-3. Whenever the Apple lle addresses one of the

Programming for Peripheral Cards

MR REIM T T T T T T T T T

19

Table 6-2 Peripheral-card ROM
Memory Locations

Note: The enabling signal is marked
with a prime, to indicate that it is an

active-low signal.

256 ROM memory locations allocated to a particular slot, the
signal on pin 1 of that slot, called 1/0 SELECT“, switches to the
active (low) state. This signal enables the ROM or PROM
devices on the card, and the eight low-order address lines
determine which of the 256 memory locations is being accessed.

Slot Locations Enabled by

1 $C100-$C1FF I1/0 SELECT’
2 $C200-$C2FF 1/0 SELECT'
3 $C300-$C3FF 1/0 SELECT’
4 $C400-$C4FF 1/0 SELECT’
5 $CS500-$CSFF 1/0 SELECT’
6 $C600-$C6FF 1/0 SELECT’
T $C700-$C7FF 1/0 SELECT’

If there is an 80-column text card installed in the auxiliary slot, some
of the functions normally associated with slot 3 are performed by

the 80-column text card and the built-in 80-column firmware. With a
80-column text card installed, the 1/0 SELECT* signal is not available
for slot 3, so firmware in ROM on a card in slot 3 will not run.

Expansion ROM Space

In addition to the small areas of ROM memory allocated to each
expansion slot, peripheral cards can use the 2K-byte memory
space from $C800 to $CFFF for larger programs in ROM or PROM.
This memory space is called expansion ROM space (see the
memory map in Figure 6-3). Besides being larger, the expansion
ROM memory space is always at the same locations regardless
of which slot is occupied by the card, making programs that
occupy this memory space easier to write. (See the section “I/O
Programming Suggestions”, below.)

This memory space is available to any peripheral card that needs

it. More than one peripheral card can have expansion ROM on it,
but only one of them can be active at a time.

Peripheral-card Memory Spaces 123

Figure 6-1 Expansion ROM Enable
Circuit

124

Each peripheral card that uses expansion ROM must have a
circuit on it to enable the ROM. The circuit does this by a two-
stage process: first, it sets a flip-flop when the 1/0 SELECT“ signal,
pin 1 on the slot, becomes active (low); second, it enables the
expansion ROM devices when the 1/0 STROBE ‘ signal, pin 20 on
the slot, becomes active (low). Figure 6-1 shows a typical ROM-
enable circuit.

The 1/0 SELECT’ signal on a particular slot becomes active
whenever the Apple lle’s 6502 microprocessor addresses a
location in the 256-byte ROM address space allocated to that

slot. The 1/0 STROBE“ signal on all of the expansion slots becomes
active (low) when the 6502 addresses a location in the
expansion-ROM memory space, $C800-$CFFF. The 1/0 STROBE’
signal is used to enable the expansion-ROM devices on a
peripheral card (see Figure 6-1).

If there is an 80-column text card installed in the auxiliary slot, some
of the functions normally associated with slot 3 are performed by

the text card and the built-in 80-column firmware. With the text card
installed, the 1/0 STROBE “ signal is not available on slot 3, so firmware
in expansion ROM on a card in slot 3 will not run.

LATCH =
:
ENABLE 2 [2K BYTE
(/0 STROBE')— »| ROM
:ADDRESS AO TO A10 -

A program on a peripheral card can get exclusive use of the
expansion ROM memory space by referring to location $CFFF in
its initialization phase. This location is special: all peripheral cards
that use expansion ROM must recognize a reference to $CFFF as
a signal to reset their ROM-enable flip-flops and disable their
expansion ROMs. Of course, doing so also disables the
expansion ROM on the card that is about to use it, but the next
instruction in the initialization code sets the flip-flop on the
expansion-ROM enable circuit on the card. Once this has been
done, this card has exclusive use of the expansion memory
space and its program can jump directly into the expansion

ROM.

As described above, the expansion-ROM disable circuit resets
the enable flip-flop whenever the 6502 addresses location $CFFF.

Programming for Peripheral Cards

4
=

Tl Ml

El 1TE1 'L 'EFIL "L ™1 "1 "FT "L ™1 ™1 ™1 'FL

E|

19

15

|

\i'.!

it

Sl

Kl

Figure 6-2 ROM Disable Address
Decoding

Table 6-3 Peripheral-card RAM
Memory Locations

*Note: The RAM locations normally
allocated to slot 3 are taken over by
any card installed in the auxiliary slot.

} To RESET, ROM enable

flip-flop

A10

I/O STROBE’ >

To do this, the peripheral card must detect the presence of $CFFF
on the address bus. You can use the 1/0 STROBE“ signal for part
of the address decoding, since it is active for addresses from
$C800 through $CFFF. If you can afford to sacrifice some ROM
space, your can simplify the address decoding even further and
save circuitry on the card. For example, if you give up the last
256 bytes of expansion ROM space, your disable circuit only
needs to detect addresses of the form $CFxx, and you can use
the minimal disable-decoding circuitry shown in Figure 6-2.

Peripheral-card RAM Space

There are 56 bytes of main memory allocated to the peripheral
cards, eight bytes per card, as shown in Table 6-3. These 56
locations are actually in the RAM memory reserved for the text
and low-resolution graphics displays, but these particular
locations are not displayed on the screen and their contents are
not changed by the built-in output routine COUT1. Programs in
ROM on peripheral cards use these locations for temporary data
storage.

Base Slot Number

Address 1 2 3* 4 5 6 7
$0478 $0479 $047A $047B* $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB* $04FC $04FD $04FE S$SO04FF
$0578 $0579 $057A $057B* $057C $0S57D $057E $057F
$05F8 $05F9 $0S5FA $0SFB* $0SFC $0SFD $O0SFE $OSFF
$0678 $0679 $067A $067B* $067C $067D $067E $067F
$06F8 $06F9 $06FA $06FB* $06FC $06FD $06FE $06FF
$0778 $0779 $077A $077B* $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB* $07FC $07FD $O07FE $O07FF

Peripheral-card Memory Spaces 125

A program on a peripheral card can use the eight base
addresses shown in the table to access the eight RAM locations
allocated for its use, as shown in the next section, “I/O
Programming Suggestions”.

1/0 Programming Suggestions

A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump to
an absolute location in one of the 256-byte memory spaces, then
the card will only work when it is plugged into the slot that uses
that memory space. If you are writing the program for a
peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

To function properly no matter which slot a peripheral card is
installed in, the program in the card’'s 256-byte memory space must
not make any absolute references to itself. Instead of using jump
instructions, you should force conditions on branch instructions,
which use relative addressing.

The first thing a peripheral-card subroutine should do is to save
the contents of the 6502’s registers. One way to do this is to use
the monitor subroutine I0SAVE. This subroutine, which starts at
location $FF4A, stores the registers in zero-page memory locations
$45-$49. A companion subroutine, IOREST, restores the registers
from these memory locations. Your program should call IOREST,
which starts at location $FF3F, just before it returns control to the
program that called it.

This method of saving the registers is convenient, but it is not
always safe. If a second subroutine calls I0SAVE, or if an interrupt
occurs, the new register contents get saved in the same

locations, and the old ones get destroyed. It is safer, though
somewhat slower, to save the registers on the stack, and restore
them just before returning control to the calling program.

Most single-character 1/O is done via the 6502's accumulator. A
character being output through your subroutine will be in the
accumulator with its high bit set when your subroutine is called.
Likewise, if your subroutine is performing character input, it must
leave the character in the accumulator with its high bit set when
it returns to the calling program.

Programming for Peripheral Cards

i
]
a
.
-
=
=
e
y
~
i

Finding the Slot Number

The memory addresses used by a program on a peripheral card
differ depending on which expansion slot the card is installed in.
Before it can refer to any of those addresses, the program must
somehow determine the correct slot number. One way to do this
is to execute a JSR (Jump to Subroutine) to a location with an RTS
(Return from Subroutine) instruction in it, and then derive the slot
number from the return address saved on the stack, as shown in
the following example.

PHP
SE

JSR $FFS8
TSX

LDA $0100, X

AND #$0F
PLP

save status

inhibit interrupts

-> a known RTS instruction
get high byte of the...
...return address from stack
low-order digit is slot no.
restore status

~E N v v e e v

The slot number can now be used in addressing the memory
allocated to the peripheral card, as shown below.

1/0 Addressing

Once your peripheral-card program has the slot number, it can
use it to address the 1/O locations allocated to the slot. Table 6-4
shows how these locations are related to sixteen base addresses
starting with $C080. Notice that the difference between the base
address and the desired I/O location has the form $n0, where n
is the slot number. Starting with the slot number in the
accumulator, the following example computes this difference by
four left shifts, then loads it into an index register and uses the
base address to specify one of sixteen I/O locations.

ASL ; get n into...

ASL 5

ASL 5

ASL 3 ...high-order nybble...

TAX 3 ... of index register.

LDA $C080,X 3 load from first™“I1/0 location

You must make sure that you get an appropriate value into the
index register when you address 1/O locations this way. For
example, starting with 1 in the accumulator, the instructions in the
above example perform an LDA from location $C090, the first I/O
location allocated to slot 1. If the value in the accumulator had been
0, the LDA would have accessed location $C080, thereby setting the
soft switch that selects the second bank of RAM at location $D000
and enables it for reading (see Chapter 5).

/0 Programming Suggestions 127

Table 6-4 Peripheral-card |/O Base
Addresses

E:.A
Base Connector Number _J
Address 1 2 3 4 5 6 7 —
$C080 $C090 $COA0 $COBO $COCO $CODO $COEO $COFO ,_J
$C081 $C091 $COA1 $COB1 $COC1 $COD1 $COE1 $COF1 k‘
$C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2 ,‘_J
$C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3 "lr‘
$C084 $C094 $CO0A4 $COB4 $CO0C4 $COD4 $COE4 $COF4
$C085 $C095 $COAS $COBS $COCS5 $CODS $COES $COFS &‘
$C086 $C096 $CO0AG $COB6 $CO0C6 $COD6 $COE6 $COF6 ,J
$C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7 Ed
$C088 $C098 $COA8 $COB8 $COC8 $COD8 $COE8 $COF8 __J
$C089 $C099 $CO0A9 $COB9 $COC9 $COD9 $COE9Q $COF9 &d
$C08A $C09A $COAA S$COBA S$COCA $CODA $COEA S$COFA J

[
$C08B $C09B S$COAB $COBB $COCB $CODB $COEB $COFB L
$cosc $C09C $COAC $COBC $COCC $CODC $COEC $COFC __J
$C08D $C09D $COAD $COBD $COCD $CODD $COED $COFD !.-d
$CO8E $CO9E $COAE S$COBE $COCE $CODE $COEE $COFE
$CO8F $CO09F $COAF $COBF $COCF $CODF $COEF S$COFF
RAM Addressing

A program on a peripheral card can use the eight base

addresses shown in Table 6-3 to access the eight RAM locations

allocated for its use. The program does this by putting its slot
number into the Y index register and using indexed addressing
mode with the base addresses. The base addresses can be

defined as constants because they are the same no matter which
slot the peripheral card occupies.

If you start with the correct slot number in the accumulator (by
using the example shown earlier), the following example uses all

eight RAM locations allocated to the slot.

Programming for Peripheral Cards

ML MITLT

TAY
LDA
STA
LDA
STA
LDA
STA
LDA
STA

PAPAPAHPPAND
[elelolelelelslo)]
NNOONUTA D
MNTINTINTIN
00 00 00 00 00 00 0 O
<< << << <<

Warning

Peripheral-card programs must not store data at the base-address
locations themselves; the RAM at those locations is used by the
Disk Operating System. DOS stores the first byte of the ROM
location of the expansion slot that is currently active ($Cn) in
location $7F8, and the first byte of the ROM location of the slot
holding the controller card for the startup disk drive in location $5F8.

Changing the Standard 1/O Links

There are two pairs of locations in the Apple lle that are used for
controlling character input and output. They are called the 1/O
links (see Chapter 3). In a Apple lle running without a Disk
Operating System, the 1/O links normally contain the starting
addresses of the standard input and output routines KEY IN and
COUT1. If a disk operating system is running, one or both of the
links will hold the addresses of the DOS input and output
routines.

The link at locations $36 and $37 (decimal 54 and 55) is called CSK,
for Character output Switch. Individually, location $36 is called
CSWL (CSW Low) and location $37 is called CSWH (CSW High). This link
holds the starting address of the subroutine the Apple lle is
currently using for single-character output. This address is
normally $FDF0, the address of routine COUT1, described in
Chapter 3.

When you issue a PR#n from BASIC or an n -P from the
Monitor, the Apple lle changes this link address to the first
address in the ROM memory space allocated to slot number n.
That address has the form $Cn00. Subsequent calls for character
output are thus transferred to the program on the peripheral card.
That program can use the instruction sequences given above to
find its slot number and use the 1/0 and RAM locations allocated
to it. When it is finished, the program can execute an RTS (Return

I/O Programming Suggestions 129

130

from Subroutine) instruction to return control to the calling
program, or jump to the output routine COUT1 at location $FDF0 to
display the output character (which must be in the accumulator)
on the screen, then let COUT1 return to the calling program.

A similar link at locations $38 and $39 (decimal 56 and 57) is
called KSW, for Keyboard input Switch. Individually, location $38 is
called KSWL (forKSW Low) and location $ 39 is called KSWH (KSW High).
This link holds the starting address of the routine currently being
used for single-character input. This address is normally $FD1B,
the starting address of the standard input routine KEYIN (see
Chapter 3).

When you issue an IN#n command from BASIC or an

n -K from the monitor, the Apple lle changes this
link address to $Cn00, the beginning of the ROM memory space
that is allocated to slot number n. Subsequent calls for character
input are thus transferred to the program on the peripheral card.
That program can use the instruction sequences given above to
find its slot number and use the 1/0O and RAM locations allocated
to it. The program should put the input character, with its high bit
set, into the accumulator and execute an RTS (Return from
Subroutine) instruction to return control to the program that
requested input.

When the Disk Operating System (DOS) is running, one or both
of the standard 1/O links hold addresses of the Disk Operating
System’s input and output routines. The DOS has internal
locations that hold the addresses of the character input and
output routines that are currently active.

If a program that is running with DOS changes the standard link
addresses, either directly or via IN# and PR# commands, DOS is
disconnected from the system.

To avoid disconnecting DOS each time they initiate 1/O to a slot,
BASIC programs that run with DOS must always issue an IN# or
a PR# command from inside a PRINT statement that starts with a
-D character. For assembly-language programs, there is
a DOS subroutine call to use when changing the link addresses.
After changing CSW or KSW, the program calls this subroutine at
location $3EA (decimal 1002). The subroutine transfers the link
address to a location inside DOS and then restores the DOS
address in the standard link location. Refer to the section on
input and output link registers in the DOS Manual for further
details.

Programming for Peripheral Cards

] = 151 IF 13 IF IEl 171 11 e =1 L} S =1 Iy) &l)@l

IE

I

113

Using Interrupts

Although programs running on the Apple lle do not normally use
interrupts, it is possible to do so. To use interrupts on the

Apple lle, your peripheral card must be able to send an interrupt
request (IRQ’) to the 6502 microprocessor, and you must store
the address of your interrupt-handling routine in the user interrupt
vector, as described below.

Interrupt priority is handled by a daisy-chain arrangement using
two pins, INT IN and INT OUT, on each expansion slot. As
described in Chapter 7, each peripheral card breaks the chain
when it makes an interrupt request. On peripheral cards that

don’t use interrupts, these pins should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: if
this card opens the connection between INT IN and INT OUT, or if
there is no card in this slot, interrupt requests from cards in slots

1 through 6 can’t get through. Similarly, slot 6 controls IRQ from
slots 1 through 5, and so on down the line.

When the IRQ’ line on the 6502 microprocessor is activated
(pulled low), the 6502 transfers control through the vector in
locations $FFFE-$FFFF. This vector is the address of the Monitor's
interrupt handler, which determines whether the request is due to
an external IRQ or a BRK instruction and transfers control to the
appropriate routine via the vectors stored in memory page 3. The
BRK vector is in locations $3F0-$3F1 and the IRQ vector is in
locations $3FE-$3FF (see Table 4-10). The Monitor normally stores
the address of its reset routine in the IRQ vector; you should
substitute the address of your program’s interrupt-handling
routine.

Other Uses of 1/0 Memory Space

The portion of memory space from location $C000 through $CFFF
(decimal 49152 through 53247) is normally allocated to 1/0 and
program memory on the peripheral cards, but there are two other
functions that also use this memory space: the built-in self-test
firmware and the 80-column display firmware. The soft switches
that control the allocation of this memory space are described
below.

Other Uses of I/0 Memory Space 131

Figure 6-3 /O Memory Map

CFFF
INTERNAL
ROM
PERIPHERAL
AND
EXPANSION
PERIPHERAL
ROM
EXPANSION
ROM
INTERNAL
C800 ROM
SLOT #7 ROM
C700
SLOT #6 ROM
€600
SLOT #5 ROM
€500
SLOT #4 ROM
C400
SLOT #3 ROM INTERNAL ROM
€300
SLOT #2 ROM
€200
SLOT #1 ROM
€100
INTERNAL SOFT SWITCHES AND PERIPHERAL 1/0
€000

Switching 1/0 Memory

The built-in firmware uses two soft switches to control the
allocation of the 1/O memory space from $C000 to $CFFF. The
locations of these soft switches, SLOTCXROM and SLOTC3ROM, are
given in Table 6-5.

Like the display switches described in Chapter 2, these soft switches
share their locations with the keyboard data and strobe functions.
The switches are activated only by writing, and the states can be
determined only by reading, as indicated in Table 6-5.

When SLOTC3ROM is on, the 256-byte ROM area at $C300 is
available to a peripheral card in slot 3, which is the slot normally
used for a terminal interface. If a card is installed in the auxiliary
slot when you turn on the power or reset the Apple lle, the
SLOT3ROM switch is turned off. Turning SLOTC3ROM off disables

R L O T IO TUTNOTTTTTET T T T

132 Programming for Peripheral Cards

=

Table 6-5 1/0 Memory Switches

Name Function Location Notes
Hex Decimal
SLOTC3ROM Slot ROM at $C300 $C00B 49163 —-16373 Write

Internal ROM at $C300 $CO00A 49162 —-16374 Wirite

Read SLOTC3ROM switch $C017 49175 —-16361 Read

SLOTCXROM Slot ROM at $Cx00 $C007 49159 —-16377 Write
Internal ROM at $Cx00 $C006 49158 —16378 Write

Read SLOTCXROM switch $C015 49173 -16363 Read

peripheral-card ROM in slot 3 and enables the built-in 80-column
firmware, as shown in Figure 6-3. The 80-column firmware is
assigned to slot-3 address space because slot 3 is normally used
with a terminal interface, so the built-in firmware will work with
programs that use slot 3 this way.

Installing an 80-column text card in the auxiliary slot makes it
impossible to run any peripheral card that has built-in firmware in
slot 3. If an 80-column text card is not installed, a peripheral card in
slot 3 will work properly.

The bus and /O signals are always available to a peripheral
card in slot 3, even when the 80-column hardware and firmware
are operating. Thus it is always possible to use this slot for any
I/O accessory that does not have built-in firmware.

When SLOTCXROM is active (high), the /O memory space from
$C100 to $C7FF is allocated to the expansion slots, as described
previously. Setting SLOTCXROM inactive (low) disables the peripheral-
card ROM and selects built-in ROM in all of the /O memory

space except the part from $C000 to $COFF (used for soft switches
and data 1/O), as shown in Figure 6-3. In addition to the 80-
column firmware at $C300 and $C800, the built-in ROM includes
firmware that performs the self-test of the Apple lle’s hardware.

Setting SLOTCXROM low enables built-in ROM in all of the /O memory
space (except the soft-switch area), including the $C300 space, which
contains the 80-column firmware.

Other Uses of 1/0 Memory Space 133

137
138
139
140
141
143
143
145
147
148
148
149
149
151
152
153
154
154
158
158
160
161
163
164
164
165
166
166
167

Environmental Specifications
The Power Supply
The Power Connector
The 6502 Microprocessor
6502 Timing
The Custom Integrated Circuits
The Memory Management Unit
The Input/Output Unit
The PAL Circuit
Memory Addressing
ROM Addressing
RAM Addressing
Dynamic-RAM Refreshment
Dynamic-RAM Timing
The Video Display
The Video Counters
Display Memory Addressing
Display Address Mapping
Video Display Modes
Text Displays
Low-resolution Display
High-resolution Display
Video Output Signals
Built-in 1/0O Circuits
The Keyboard
Connecting a Keypad
Cassette 1/O
The Speaker
Game 1/O Signals

Hardware Implementation

El 'Fl

IF|

"Bl 'El 'El 'El 'Fi Bl 'Fl1 'FI

'F|

Chapter 7 ’

Hardware Implementation

169 Expanding the Apple lle

169
169
170
170
170
174
174
175

The Expansion Slots
The Peripheral Address Bus
The Peripheral Data Bus
Loading and Driving Rules
Interrupt and DMA Daisy Chains
Video Signals on Slot 7

The Auxiliary Slot
80-column Display Signals

Hardware Implementation 135

Table 7-1 Summary of Environmental
Specifications

Chapter 7

Hardware Implementation

Most of this manual describes functions — what the Apple lle
does. This chapter, on the other hand, describes objects: the
pieces of hardware the Apple lle uses to carry out its functions.
If you are designing a piece of peripheral hardware to attach to
the Apple lle, or if you just want to know more about how the
Apple lle is built, you should study this chapter.

Environmental Specifications

The Apple lle is quite sturdy when used in the way it was
intended. Table 7-1 defines the conditions under which the
Apple lle is designed to function properly.

Operating Temperature: 0°to 45°C (30° to 115°F)
Relative Humidity: 5% to 85%

Line Voltage: 107 to 132 VAC

You should treat the Apple lle with the same kind of care as any
other electrical appliance. You should protect it from physical
violence, such as hammer blows or defenestration. You should
protect the mechanical keyboard and the electrical connectors
inside the case from spilled liquids, especially those with
dissolved contaminants, such as coffee and cola drinks.

In normal operation, enough air flows through the slots in the
case to keep the insides from getting too hot, although some of
the parts inside the Apple lle normally get rather warm to the
touch. If you manage to overheat your Apple lle, by blocking the
ventilation slots in the top and bottom for example, the first
symptom will be erratic operation. The memory devices in the
Apple lle are sensitive to heat: when they get too hot, they

Environmental Specifications 137

Table 7-2 Power Supply
Specifications

*Intermittent operation: The Apple lle
can safely operate for up to twenty
minutes at the higher load if followed
by at least ten minutes at normal
load.

138

occasionally change a bit of data. The exact result depends on
what kind of program you are running and on just which bit of
memory is affected.

The Power Supply

The power supply in the Apple lle operates on normal household
AC power and provides enough low-voltage electrical power

for the built-in electronics plus a full complement of peripheral
cards, including disk controller cards and communications
interfaces. The basic specifications of the power supply are listed
in Table 7-2.

The Apple lle’'s power cord should be plugged into a three-wire
110- to 120-volt outlet. You must connect the Apple lle to a
grounded outlet or to a good earth ground. Also, the line voltage
must be in the range given in Table 7-2. If you try to operate the
Apple lle from a power source with more than 140 volts, you will
damage the power supply.

Line voltage: 107V to 132V AC

60W continuous
80W intermittent*

Maximum power consumption:

Supply voltages: +5V £3%
+11.8V =6%
-5.2V =10%
—12V £10%
Maximum supply currents: +5V: 2.5A

+12V: 1.5A continuous,
2.5A intermittent*
—5V: 250mA
—12V: 250mA

Maximum case temperature: 55°C (130°F)

The Apple lle uses a custom-designed switching-type power
supply. It is small and lightweight, and it generates less heat than
other types of power supplies do.

The Apple lle’s power supply works by converting the AC line
voltage to DC and using this DC voltage to power a variable-
frequency oscillator. The oscillator drives a small transformer with
many separate windings to produce the different voltages
required. A circuit compares the voltage of the +5-volt supply
with a reference voltage and feeds an error signal back to the

Hardware Implementation

Tl ©1 L L BL Bl 'R EL EL T

Fl '"EFl '"El 'Fl

B OEOH

19 1 1" 1% Y ¥ Y % A ik 1!

1

el

Lk

|

Table 7-3 Power Connector Signal
Specifications

oscillator circuit. The oscillator circuit uses the error signal to
control the frequency of its oscillation and keep the output
voltages in their normal ranges.

The power supply includes circuitry to protect itself and the other
electronic parts of the Apple lle by turning off all four supply
voltages whenever it detects one of the following malfunctions:

® any supply voltage short-circuited to ground;

e the power-supply cable disconnected;

e any supply voltage outside the normal range.

Any time one of these malfunctions occurs, the protection circuit
stops the oscillator, and all the output voltages drop to zero. After
about half a second, the oscillator starts up again. If the
malfunction is still occurring, the protection circuit stops the
oscillator again. The power supply will continue to start and stop
this way until the malfunction is corrected or the power is turned

off.

Warning

If you think the power supply is broken, do not attempt to repair it
yourself. The power supply is in a sealed enclosure because some
of its circuits are connected directly to the power line. Special
equipment is needed to repair the power supply safely, so see your

Apple dealer for service.

The Power Connector

The cable from the power supply is connected to the main circuit
board by a six-pin connector with a strain-relief catch. The
connector pins are identified in Table 7-3 and Figure 7-14d.

Pin Number Name Description

1,2 Ground Common electrical ground
3 +5V +5V from power supply

4 +12V +12V from power supply
5 -12V —12V from power supply
6 -5V —5V from power supply

The Power Supply

139

Table 7-4 6502 Microprocessor
Specifications

|
' I The 6502 Microprocessor

The Apple lle uses a 6502B microprocessor as its central
processing unit (CPU). The 6502B in the Apple lle runs at a
clock rate of 1.023 MHz and performs up to 500,000 eight-bit
operations per second. You should not use the clock rate as a
criterion for comparing different types of microprocessors. The
6502 has a simpler instruction cycle than most other
microprocessors and it uses instruction pipelining for faster
processing. The speed of the 6502 with a 1MHz clock is
equivalent to other types of microprocessors with clock rates up
to 2.5MHz.

The 6502 has a sixteen-bit address bus, giving it an address
space of 64K (2 to the sixteenth power or 65536) bytes. The
Apple lle uses special techniques to address a total of more than
64K: see the sections “Bank-switched Memory” and “Auxiliary
Memory and Firmware” in Chapter 4 and the section “Switching
I/O Memory” in Chapter 6.

Type: 6502B

Register complement: Accumulator (A)
Index Registers (X, Y)
Stack Pointer (S)
Processor Status (P)

Register size: Eight bits

Data bus: Eight bits wide

Address bus: Sixteen bits wide

Address range: 65,536 (64K)

Interrupts: 1RQ (maskable)
NMI (nonmaskable)

BRK (programmed)
Operating voltage: +5V (= 5%)

Power dissipation: 500mW (typical)

Hardware Implementation

E'BLE'E'E'BE'BEFLEL LB EL R EL'ERELEL T

=

Table 7-5 6502 Timing Signal
Descriptions

6502 Timing

The operation of the Apple lle is controlled by a set of
synchronous timing signals, sometimes called clock signals. In
electronics, the word clock is used to identify signals that control
the timing of circuit operations. The Apple lle doesn’t contain the
kind of clock you tell time by, although its internal timing is
accurate enough that a program running on the Apple lle can
simulate such a clock.

The frequency of the oscillator that generates the master timing
signal is 14.31818 MHz. Circuitry in the Apple lle uses this clock
signal, called 14M, to produce all the other timing signals. These
timing signals perform two major tasks: controlling the computing
functions, and generating the video display. The timing signals
directly involved with the operation of the 6502 are described in
this section. Other timing signals are described in the sections
“RAM Addressing”, “Video Display Modes”, and “The Expansion
Slots™.

The main 6502 timing signals are listed in Table 7-5, and their
relationships are diagrammed in Figure 7-1. The 6502 clock
signals are ¢1 and ¢o, complementary signals at a frequency of
1.02273 MHz. If you need more information about the 6502 itself,
refer to the Synertek Hardware Manual (Apple product number
A2L0002). The Apple lle signal named ¢o is equivalent to the
signal called ¢2 in the hardware manual (it isn’t identical: it's a
tiny bit early).

Signal Name Description

14M Master oscillator, 14.31818 MHz; also 80-column dot clock.

™ Intermediate timing signal and 40-column dot clock.

Q3 Intermediate timing signal, 2.04545 MHz with asymmetrical duty
cycle.

¢0 Phase 0 of 6502 clock, 1.022727 MHz; Complement of ¢1.

&1 Phase 1 of 6502 clock, 1.022727 MHz; Complement of ¢0.

The 6502 Microprocessor 141

Figure 7-1 6502 Timing Signals

a2

0 I J CPU phase I

<<—— 490 ns —»

d>14| _l l—

— |<—1 10 ns (max) 15 ns (Min) — I<—

ADDR

from 6502 3(>C
30 ns (min)
75 ns (max) —p Iq— _|—> |<—

DATA from 6502 (write) X X

50 ns (min)-—>| |<__
DATA to 6502 (read)

10 ns (min)—>| |<—

The operations of the 6502 are related to the clock signals in a
simple way: address during ¢ 1, data during ¢o. The 6502 puts
an address on the address bus during ¢1. This address is valid
not later than 110 nanoseconds after ¢1 goes high and remains
valid through all of ¢p0. The 6502 reads or writes data during ¢o.
If the 6502 is writing, the read/write signal is low during ¢o and
the 6502 puts data on the data bus. The data is valid not later
than 75 nanoseconds after 0o goes high. If the 6502 is reading,
the read/write signal remains high. Data on the data bus must be
valid no later than 50 nanoseconds before the end of ¢o.

Hardware Implementation

T 'H'EEH T T TT T T T TA TL TL T

TN

GND

AO

%0

Q3

PRAS’
RAO

RA1

RA2

RA3

RA4

RA5

RA6

RA7

R/W’

INH’
DMA’
EN8O’
KBD’
ROMEN2’
ROMEN1’

1 et 40
2 39
3 38
<4 37
5 36
6 35
7 34
8 33
9 32
10 31
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

Figure 7-2 The MMU Pinouts

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10
Al1
A12
A13
A14
A15
+5V
Cxxx
RAMEN’
R/W’ 245
MD7

The Custom Integrated Circuits

Most of the circuitry that controls memory and I/O addressing in
the Apple lle is in three custom integrated circuits called the
Memory Management Unit (MMU), the Input-Output Unit (I0U),
and the Programmed Array Logic device (PAL). The soft switches
used for controlling the various 1/0O and addressing modes of the
Apple lle are addressable flags inside the MMU and the I0OU.
The functions of these two devices are not as independent as
their names suggest; working together, they generate all of the
addressing signals. For example, the MMU generates the
address signals for the CPU, while the IOU generates similar
address signals for the video display.

The Memory Management Unit

The circuitry inside the MMU implements these soft switches,
which are described in the following chapters:

Page 2 display (PAGE2): Chapter 2

Hi-res mode (HIRES): Chapter 2

Store to 80-column card (80STORE): Chapter 2
Select bank 2: Chapter 4

Enable bank-switched RAM: Chapter 4

Read auxiliary memory (RAMRD): Chapter 4

Write auxiliary memory (RAMWRT): Chapter 4
Auxiliary stack and zero page (ALTZP): Chapter 4
Slot ROM for connector #3 (SLOTC3ROM): Chapter 6
Slot ROM in 1/O space (SLOTCXROM): Chapter 6

The 64K dynamic RAMs used in the Apple lle use a multiplexed
address, as described below in the section “Dynamic-RAM Timing"”.
The MMU generates this multiplexed address for memory reading
and writing by the 6502 CPU.

The Custom Integrated Circuits 143

Table 7-6 The MMU Signal Pin Number Name Description

Descriptions
1 GND Power and signal common
2 A0 6502 address input
40-26 A1-A15 6502 address input
3 $0 Clock phase 0
4 Q3 Timing signal
5 PRAS’ Memory Row-address strobe
6-13 RAO-RA7 Multiplexed address output
14 R/W 6502 read-write control signal
15 INH' Inhibits main memory
16 DMA’ Controls data bus for DMA transfers
17 ENSO’ Enables auxiliary RAM
18 KBD' Enables keyboard data bit 0-6
19 ROMEN2' Enables built-in firmware ROM #2
20 ROMEN1' Enables built-in firmware ROM #1
21 MD7 State of MMU flags
22 RW'245 Controls 74LS245 data-bus buffer
23 RAMEN' Enables main RAM
24 CXXX Enables peripheral-card memory
25 +5V Power

144 Hardware Implementation

FE'E'H'B'H'EH T T T TTT TTETT

Figure 7-3 The IOU Pinouts

GND
GR
SEGA
SEGB
vC
80VID
CASSO
SPKR
MD7
ANO
AN1
AN2
AN3
R/W
RESET'
(n.c.)
RAO
RA1
RA2
RA3

/
1 40
2 39
3 38
4 37
5 36
6 35
T 34
8 33
9 32
10 31
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

HO
SYNC’
WNDW'
CLRGAT’
RA10’
RA9’
VID6
VID7
KSTRB
AKD
COxx
A6
+5V
Q3

$0
PRAS’
RA7
RA6
RA5
RA4

The Input/Output Unit

The circuitry inside the Input/Output Unit (IOU) implements the
following soft switches, all described in Chapter 2:

Page 2 display (PAGE2)

Hi-res mode (HIRES)

Text mode (TEXT)

Mixed mode (MIXED)

80-column display (80COL)
Character-set select (ALTCHARSET)
Any-key-down

Annunciators

Vertical blanking (VBL)

The 64K dynamic RAMs used in the Apple lle require a multiplexed
address, as described below in the section “Dynamic-RAM Timing”.
The IOU generates this multiplexed address for the data transfers
required for display and memory refresh during clock phase 1. The
way this address is generated is described below in the section
“Video Display Generation”.

The Custom Integrated Circuits 145

Table 7-7 The IOU Signal Pin Number Name Description a
Descriptions .
Note: Pin 16 is not connected. 1 GND Power and signal common
2 GR Graphics mode enable !
3,4 SEGA, Display vertical counter bits a
SEGB -
5 Ve Display vertical counter bit
6 80VID’ 80-column video enable a
7 CASSO Cassette output signal
8 SPKR Speaker output signal a
' 9 MD7 Internal flags to data bus
{ 10-13 ANO-AN3 Annunciator outputs a
; 14 R/W' 6502 read-write control signal
5 15 RESET’ Power on and reset output a
‘ 17-24 RAO-RA7 Multiplexed RAM address (phase 0) ‘
25 PRAS’ Row-address strobe (phase 0) g
E 26 0 Master clock phase 0
: 27 a3 Intermediate timing signal ﬁ
} 28 +85V Power
; 29 AB Address bit 6 from 6502
; 30 COXX’ 1/0 address enable ;
| 31 AKD Any-key-down signal —
32 KSTRB Keyboard strobe signal &_
; 33, 34 VID?7 VID6 Video display control bits E
g 35, 36 RA9’, RA10’ Video display control bits —
‘ i 37 CLRGAT’ Color-burst gate (enable) E
; 38 WNDW' Display blanking signal -
j 39 SYNC’ Display synchronization signal
40 HO Display horizontal timing signal g
i

Hardware Implementation

l

o L B

e

l‘:l.‘!

Table 7-8 The PAL Signal
Descriptions

14M
™
3.58M
HO

VID7
SEGB
GR
RAMEN’
80VID’
GND

Figure 7-4 The PAL Pinouts

O OWOMNOOO A WN =

—_

20
19
18
17
16
15
14
13
12
11

The PAL Circuit

A Programmed Array Logic device, type PAL 16R8, generates
several timing and control signals in the Apple lle. These signals
are listed in Table 7-8.

Pin Number Name Description

1 14M 14.31818 MHz master timing signal
2 ™ 7.15909 MHz timing signal

3 3.58M 3.579545 MHz timing signal

4 HO Horizontal video timing signal

5 VID7 Video data bit 7

6 SEGB Video timing signal

7 GR Video display graphics-mode enable
8 RAMEN' RAM enable (CAS enable)

9 80VID’ Enable 80-column display mode

10 GND Power and signal common

11 ENTMG Enable master timing

12 LDPS’ Video shift-register load enable

13 VID7M Video dot clock, 7 or 14 MHz

14 1 Phase 1 system clock

15 ¢0 Phase 0 system clock

16 Q3 Intermediate timing and strobe signal
17 PCAS’ RAM Column-address strobe

18 N. C. (This pin is not used.)

19 PRAS’ RAM Row-address strobe

20 +5V Power

The Custom Integrated Circuits 147

14

I Memory Addressing

The 6502 microprocessor can address 65,536 locations. The
Apple lle uses this entire address space, and then some: some
areas in memory are used for more than one function. The
following sections describe the memory devices used in the
Apple lle and the way they are addressed. Input and output also
use portions of the memory address space; refer to the section
“Peripheral-card Memory Spaces” in Chapter 6 for information.

ROM Addressing

In the Apple lle, the following programs are permanently stored in
two type 2364 8K by 8-bit ROMs (read-only memory):

® Applesoft editor and interpreter
e Monitor
e 80-column display firmware

® Self-test routines

These two ROMs are enabled by two signals called ROMEN1 and
ROMEN2. The ROM enabled by ROMEN1, sometimes called the
Diagnostics ROM, occupies the memory address space from
$C100 to $DFFF. The address space from $C300 to $C3FF and from
$C800 to $CFFF contains the 80-column display firmware. Those
address spaces are normally assigned to ROM on a peripheral
card in slot 3; for a discussion of the way the 80-column

firmware overrides the peripheral card, see the section “Other
Uses of I/O Memory Space” in Chapter 6.

Two other portions of the Diagnostics ROM, addressed from
$C100to$C2FF andfrom $C400 to $C7FF, contain the built-in self-test
routines. These address spaces are normally assigned to the
peripheral cards; when the self-test programs are running, the
peripheral cards are disabled.

The remainder of the Diagnostics ROM, addressed from $D000 to
$DFFF, contains part of the Applesoft BASIC interpreter.

The ROM enabled by ROMEN2, sometimes called the Monitor ROM,
occupies the memory address space from $E000 to $FFFF. This
ROM contains the rest of the Applesoft interpreter, in the address
space from $E000 to $EFFF, and the Monitor subroutines, from
$F000 to $FFFF.

Hardware Implementation

AR B LHE T T T T T T

Figure 7-5 The 2364 ROM Pinouts

+5V
A12
A7

A5
A4
A3
A2
A1
AO
MDO
MD1
MD2
GND

A7
A6
A5
A4
A3

A1

AO

MDO

- MD1
MD2

GND

Ny
1 28
2 27
3 26
4 25
5 24
6 23
7 22
8 21
9 20
10 19
11 18
12 17
13 16
14 18

N
24
23
22
21
20
19
18
17
16
15
14
13

O ~NOOA WD =

=l i
N = O ©

+56V
+5V
+5V
A8
A9
Al1
ROMENX’
A10
CE
MD7
MD6
MD5
MD4
MD3

Figure 7-6 The 2316 ROM Pinouts

+5V
A8
A9
+56V
KBD’
GND*
ENKBD’
(n.c.)
MD6
MD5
MD4
MD3

Figure 7-7 The 2333 ROM Pinouts

VID4
VID3
VID2
VID1
VIDO
VC
SEGB
SEGA
DO

D1
D2
GND

N
24
23
22
21
20
19
18
17
16
15
14
13

0 ~NOOOhA N =

S ek gk
N = O ©

+5V
VID5
RA9
GR
WNDW'
RA10
ENVID’
D7

D6

D5

D4

D3

The other ROMs in the Apple lle are a type 2316 ROM used for
the keyboard character decoder and a type 2333 ROM used for
character sets for the video display. This 2333 ROM is rather
large because it includes a section of straight-through bit-
mapping for the graphics modes. This way, graphics display
video can pass through the same circuits as text without
additional switching circuitry.

RAM Addressing

The RAM (programmable) memory in the Apple lle is used both
for program and data storage and for the video display. The
areas in RAM that are used for the display are accessed both by
the 6502 microprocessor and by the video display circuits. In
some computers, this dual access results in addressing conflicts
(cycle stealing) that can cause temporary dropouts in the video
display. This problem does not occur in the Apple lle, thanks to
the way the microprocessor and the video circuits share the
memory.

The memory circuits in the Apple lle take advantage of the two-
phase system clock described in the section “System Timing” to
interleave the microprocessor memory accesses and the display
memory accesses so that they never interfere with each other.
The microprocessor reads or writes to RAM only during ¢0, and
the display circuits read data only during ¢1.

Dynamic-RAM Refreshment

The image on a video display is not permanent; it fades rapidly
and must be refreshed periodically. To refresh the video display,
the Apple lle reads the data in the active display page and sends
it to the display. To prevent visible flicker in the display, and to
conform to standard practice for broadcast video, the Apple lle
refreshes the display sixty times per second.

The dynamic RAM devices used in the Apple lle also need a
kind of refresh, because the data is stored in the form of electric
charges which diminish with time and must be replenished every
so often. The Apple lle is designed so that refreshing the display
also refreshes the dynamic RAMs. The next few paragraphs
explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by

the structure of the devices themselves. The individual data cells
in each RAM device are arranged in a rectangular array of rows

Memory Addressing 149

+5V
MDx
R/W’
RAS’
RA7
RA5
RA6
+5V

150

ONOOO A~ WN =

-/

16
15
14
13
12
il
10

Table 7-9 RAM Address Multiplexing

Figure 7-8 The 64K RAM Pinouts

GND

CAS’

MDx
RA1

RA4
RA3
RA2
RAO

and columns. When the device is addressed, the part of the
address that specifies a row is presented first, followed by the
address of the column. Splitting information into parts that follow
each other in time is called multiplexing. Since only half of the
address is needed at one time, multiplexing the address reduces
the number of pins needed for connecting the RAMs.

Different manufacturers’ 64K RAMs have cell arrays of either 128
rows by 512 columns or 256 rows by 256 columns. Only the row
portion of the address is used in refreshing the RAMs.

Now consider how the display is refreshed. As described later in
this chapter in the section “The Video Counters”, the display
circuitry generates a sequence of 8,192 memory addresses in
high-resolution mode; in text and low-resolution modes, this
sequence is the 1,024 display-page addresses repeated eight
times. The display address cycles through this sequence 60
times a second, or once every 17 milliseconds. The way the low-
order address lines are assigned to the RAMs, the row address
cycles through all 256 possible values once every half-millisecond
(see Table 7-9). This more than satisfies the refresh
requirements of the dynamic RAMs.

Mux’d Address Row Address Column Address
RAO A0 A9

RA1 A1l AB

RA2 A2 A10

RA3 A3 A11

RA4 A4 A12

RAS AS A13

RAG A7 A14

RA7 A8 A15

Hardware Implementation

FL.'"BEFLEE'EE'BEAAEEETEETELEEEEEOER TR TR T

1

12)

1

11 A |& |k 1!

13

Table 7-10 Dynamic RAM Timing
Signals

Dynamic-RAM Timing

The Apple lle’s microprocessor clock runs at a moderate speed,
about 1.023 MHz, but the interleaving of CPU and display cycles
means that the RAM is being accessed at a 2 MHz rate, or a
cycle time of just under 500 nanoseconds. Data for the CPU is
strobed by the falling edge of ¢o, and display data is strobed by
the falling edge of ¢1, as shown in Figure 7-9.

The RAM timing looks complicated because the RAM address is
multiplexed, as described in the previous section. The MMU
takes care of multiplexing the address for the CPU cycle, and the
IOU performs the same function for the display cycle. The
multiplexed address is sent to the RAM ICs over the lines
labelled RAO-RA7. Along with the other timing signals, the PAL
generates two signals that control the RAM addressing: Row-
address Strobe (RAS) and Column-address Strobe (CAS).

Signal Name Description

¢0 Clock phase 0 (CPU phase)

d1 Clock phase 1 (display phase)
RAS Row-address strobe

CAS Column-address strobe

Q3 Alternative column-address strobe
RAO-RA7 Multiplexed address bus
MDO-MD7 Internal data bus

Memory Addressing 151

Figure 7-9 RAM Timing Signals

152

e lnligininlinigigininl

a5 ——oI [L

8 _—I I CPU phase I—

®1 _ | video phase | [

g — | '_i '__;

cas T
l l l

rao-RA7 —— <X >—C X >— X

I The Video Display

The Apple lle produces a video signal that creates a display on a
standard video monitor or, if you add an RF modulator, on a
black-and-white or color television set. The video signal is a
composite made up of the data that is being displayed plus the
horizontal and vertical synchronization signals that the video
monitor uses to arrange the lines of display data on the screen.

Apple lle’s manufactured for sale in the U.S. generate a video signal
that is compatible with the standards set by the NTSC (National
Television Standards Committee). Apple lle’s manufactured for sale
in European countries generate video that is compatible with the
standard used there, which is called PAL (for Phase Alternating
Lines). This manual describes only the NTSC version of the video
circuits.

Hardware Implementation

I T T T T T T TTTTET T LTS

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a one corresponds
to a voltage that generates a bright dot, and a zero to a dark

dot. The display bit stream is generated in bursts that correspond
to the horizontal lines of dots on the video screen. The signal
named WNDW‘ is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen. During these intervals, called the
blanking intervals, the display is blank and the WNDW* signal is
high. The synchronization signals, called sync for short, are
produced by making the signal named SYNC’ low during portions
of the blanking intervals. The sync pulses are at a voltage
equivalent to blacker-than-black video and don’t show on the
screen.

The Video Counters

The address and timing signals that control the generation of the
video display are all derived from a chain of counters inside the
IOU. Only a few of these counter signals are accessible from
outside the 10U, but they are all important in understanding the
operation of the display generation process, particularly the
display memory addressing described in the next section.

The horizontal counter is made up of seven stages: HO, H1, H2, H3,
H4, HS5, and HPE“. The input to the horizontal counter is the 1 MHz
signal that controls the reading of data being displayed. The
complete cycle of the horizontal counter consists of 65 states.

The six bits HO through HS count normally from O to 63, then start
over at 0. Whenever this happens, HPE “ forces another count with
HO through HS held at zero, thus extending the total count to 65.

The IOU uses the forty horizontal count values from 25 through
64 in generating the low-order part of the display data address,
as described below in the section “Display Address Mapping”.
The 10U uses the count values from 0 to 24 to generate the
horizontal blanking, the horizontal sync pulse, and the color-burst
gate.

When the horizontal count gets to 65, it signals the end of a line
by triggering the vertical counter. The vertical counter has nine
stages: VA, VB, VC, V0, V1, V2, V3, V4, and V5. When the vertical
count reaches 262, the IOU resets it and starts counting again
from zero. Only the first 192 scanning lines are actually
displayed; the IOU uses the vertical counts from 192 to 261 to

The Video Display 153

154

generate the vertical blanking and sync pulse. Nothing is
displayed during the vertical blanking interval. (The vertical line
count is 262 rather than the standard 262.5 because, unlike -
normal television, the Apple lle’s video display is not interlaced.)

Animation displays sometimes have an erratic flicker caused by
changing the display data at the same time it is being displayed.
You can avoid this on the Apple lle by reading the vertical-blanking
signal (VBL) at location $C019 and only changing display data while
VBL is low (data value less than 128).

Display Memory Addressing

As described in Chapter 2 in the section “Addressing Display
Pages Directly”, data bytes are not stored in memory in the
same sequence in which they appear on the display. You can
get an idea of the way the display data is stored by using the
Monitor to set the display to graphics mode, then storing data
starting at the beginning of the display page at hexadecimal $400
and watching the effect on the display. If you do this, you should
use the graphics display instead of text to avoid confusion: the
text display is also used for Monitor input and output.

If you want your program to display data by storing it directly into
the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown in
Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary.
They will not (alas!) eliminate that necessity.

The address transformation that folds three rows of forty display
bytes into 128 contiguous memory locations is the same for all
display modes, so it is described first. The differences among the
different display modes are described in the section “Video
Display Modes”, below.

Display Address Mapping

Consider the simplest display on the Apple lle, the 40-column
text mode. To address forty columns requires six bits, and to
address twenty-four rows requires another five bits, for a total of
eleven address bits. Addressing the display this way would
involve 2048 (two to the eleventh power) bytes of memory to
display a mere 960 characters. The 80-column text mode would
require 4096 bytes to display 1920 characters. The leftover

Hardware Implementation

CRAAE LA LA TR T O MM T T TE

Figure 7-10 Display Address
Transformation

chunks of memory that were not displayed could be used for
storing other data, but not easily, because they would not be
contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the 10U transforms them into
the new address signals described below. The transformed
display address must meet the following criteria:

e Map the 960 bytes of 40-column text into only 1024 bytes.
® Scan the low-order address to refresh the dynamic RAMs.

e Continue to refresh the RAMs during video blanking.

The requirements for RAM refreshing are discussed above, in the
section “Dynamic-RAM Refreshment”.

The transformation involves only horizontal counts H3, H4, and HS,
and vertical counts V3 and V4. Vertical count bits VA, VB, and VC
address the lines making up the characters, and are not involved
in the address transformation. The remaining low-order count

bits, HO, H1, H2, V0, V1, and V2 are used directly, and are not
involved in the transformation.

The 10U performs an addition that reduces the five significant
count bits to four new signals called S0, S1, S2, and S3, where S
stands for sum. Figure 7-10 is a diagram showing the addition in
binary form, with V3 appearing as the carry in and HS appearing
as its complement HS’. A constant value of one appears as the
low-order bit of the addend. The carry bit generated with the sum
is not used.

V3 Carry in
H5’ V3 H4 H3 Augend
v4 H5 V4 1 Addend
S3 S2 S1 SO Sum

If this transformation seems terribly obscure, try it with actual
values. For example, for the upper-left corner of the display, the
vertical count is zero and the horizontal count is 24: HO, H1, H2,
and HS are zeros and H3 and H4 are ones. The value of the sum
is zero, so the memory location for the first character on the
display is the first location in the display page, as you might
expect.

The Video Display 155

Figure 7-11 40-column Text Display
Memory. Memory locations marked with
an asterisk (*) are reserved for use by
peripheral I/O firmware: refer to the
section “Peripheral-card RAM Space”,
in Chapter 6.

Horizontal bits HO, H1, and H2 and sum bits S0, S1, and S2 make up
the transformed horizontal address (A0 through A6 in Table 7-11).
As the horizontal count increases from 24 to 63, the value of the
sum (S3 S2 S1 S0) increases from zero to four and the transformed
address goes from 0 to 39, relative to the beginning of the

display page.

The low-order three bits of the vertical row counter are V0, V1,
and V2. These bits control address bits A7, A8, and A9, as shown
in Table 7-11, so that rows 0 through 7 start on 128-byte
boundaries. When the vertical row counter reaches 8, V0, V1, and
V2 are zero again, and V3 changes to one. If you do the addition
in Figure 7-10 with H equal to 24 (the horizontal count for the first
column displayed) and V equal to 8, the sum is 5 and the
horizontal address is 40: the first character in row 8 is stored in
the memory location 40 bytes from the beginning of the display

page.

- 128 bytes —>
8

-— 40 bytes —|<€— 40 bytes — |<&— 40 bytes —»|€—>

bytes
$400 row O row 8 row 16 x
$480 row 1 row 9 row 17 *
$500 row 2 row 10 row 18 *
$580 row 3 row 11 row 19 *
$600 row 4 row 12 row 20 *
$680 row 5 row 13 row 21 *
$700 row 6 row 14 row 22 *
$780 row 7 row 15 row 23 ®

Figure 7-11 shows how groups of three forty-character rows are
stored in blocks of 120 contiguous bytes starting on 128-byte
address boundaries. This diagram is another way of describing
the display mapping shown in Figure 2-5. Notice that the three
rows in each block of 120 bytes are not adjacent on the display.

Hardware Implementation

I TL TL T)

T T TmmTTir:

!

LT

S—

Table 7-11 Display Memory
Addressing

*For these address bits, see text and
Table 7-12.

Memory Display
Address Bit Address Bit
A0 HO

A1 H1

A2 H2

A3 S0

A4 S1

AS S2

AB S3

A7 Vo

A8 V1

A9 ve

A10 i

A11 *

A12 -

A13

A14 :

A1S GND

Table 7-11 shows how the signals from the video counters are
assigned to the address lines. HO, H1, and H2 are horizontal-count
bits, and V0, V1, and V2 are vertical-count bits. S0, S1, S2 and S3
are the folded address bits described above. Address bits

marked with asterisks (*) are different for different modes: see
Table 7-12 and the next three sections.

The Video Display 157

Table 7-12 Memory Address Bits for
Display Modes

Address Bit Display Mode:
Text and Lo-Res Hi-Res
A10 80VID+PG2’ VA
A11 80VID'-PG2 VB
A12 0 ve
A13 0 80VID+PG2’
A14 0 80VID' -PG2

Video Display Modes

The different display modes all use the address-mapping scheme
described in the previous section, but they use different-sized
memory areas in different locations. The next three sections
describe the addressing schemes and the methods of generating
the actual video signals for the different display modes.

Text Displays

The text and low-resolution graphics pages begin at memory
locations $400 and $800. Table 7-12 shows how the display-mode
signals control the address bits to produce these addresses.
Address bits A10 and A11 are controlled by PG2 and 80V1D, which
are set by the display-page and 80-column-video soft switches.
Address bits A12, A13, and A14 are set to zero. Notice that 80VID
active inhibits PG2: there is only one display page in 80-column
mode.

The low-order six bits of each data byte reach the character
generator directly, via the video data bus VID0-VIDS. The two high-
order bits are modified by the 10U to select between the primary
and alternate character sets and are sent to the character
generator on lines RA9 and RA10.

The data for each row of characters are read eight times, once
for each of the eight lines of dots making up the row of
characters. The data bits are sent to the character generator
along with VA, VB, and VC, the low-order bits from the vertical
counter. For each character being displayed, the character
generator puts out one of eight stored bit patterns selected by
the three-bit number made up of VA, VB, and VC.

Hardware Implementation

-
—r
=
;
—
=
=
—
-~
;
;
B
B}

'Fl

- TL.TII N

The bit patterns from the character generator are loaded into the
] 74166 parallel-to-serial shift register and output as a serial bit

sl stream that goes to the video output circuit. The shift register is
controlled by signals named LDPS* (for load parallel-to-serial
shifter) and VID7M (for video 7 Mhz). In 40-column mode, LDPS”*

i strobes the output of the character generator into the shift

register once each microsecond, and VID7M shifts the bits out at 7

MHz.

The addressing for the 80-column display is exactly the same as
for the 40-column display: the 40 columns of display memory on
the 80-column card are addressed in parallel with the 40 columns
in main memory. The data from these two memories reach the
video data bus (lines VID0-VID7) via separate 74LS374 three-state
buffers. These buffers are loaded simultaneously, but their

outputs are sent to the character generator alternately by ¢o and
¢1. In 80-column mode, LDPS’ loads data from the character
generator into the shift register twice during each microsecond,
once during ¢o and once during ¢1, and VID7M runs at 14 MHz to

Figure 7-12 Video Timing Signals) . .
shift the data bits out twice as fast.

%0
_| l cpu phase I l l |

&1 _l video phase l —[l l

patagus X X

' .
VIDEO BUFFER X)<

LDPS’ (40-column mode)

VIDEO BUS (40-column mode) X

X

SHIFT REGISTER (40-column mode)

X X
AR AR R TR TR TR
VID7M (40-column mode) _I—L_l_l__m_u_‘_,_l_l_l_]_‘

The Video Display 159

Table 7-13 Character-generator
Control Signals

160

Low-Resolution Display

In the graphics modes, VA and VB are not used by the character
generator, so the IOU uses lines SEGA and SEGB to transmit H0 and
HIRES’, as shown in Table 7-13.

Display mode SEGA SEGB SEGC
Text VA VB Ve
Graphics HO HIRES' Ve

The low-resolution graphics display uses VC to divide the eight
display lines corresponding to a row of characters into two
groups of four lines each. Each row of data bytes is addressed
eight times, the same as in text mode, but each byte is
interpreted as two nybbles. Each nybble selects one of sixteen
colors. During the upper four of the eight display lines, VC is low
and the low-order nybble determines the color. During the lower
four display lines, VC is high and the high-order nybble
determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit
patterns for characters are produced in text mode. The 74166
parallel-to-serial shift register converts the bit patterns to a serial
bit stream for the video circuits.

The video signal generated by the Apple lle includes a short
burst of 3.58 MHz signal that is used by an NTSC color monitor
or color TV set to generate a reference 3.58 MHz color signal.
The Apple lle’s video signal produces color by interacting with
this 3.58 MHz signal inside the monitor or TV set. Different bit
patterns produce different colors by changing the duty cycles and
delays of the bit stream relative to the 3.58 MHz color signal. To
produce the small delays required for so many different colors,
the shift register runs at 14 MHz and shifts out 14 bits during
each cycle of the 1-MHz data clock. To generate a stream of
fourteen bits from each eight-bit pattern read from the ROM, the
output of the shift register is connected back to the register’s
serial input to repeat the same eight bits; the last two bits are
ignored the second time around.

Hardware Implementation

MM E T T TTTTTTTTTTT

1% D % S| % | % | ¢ 19 S Ik Lk is ik Lk

(e

Each bit pattern is output for the same amount of time as a
character: 1.02 microseconds. Because that is exactly enough
time for three and a half cycles of the 3.58 MHz color signal, the
phase relationship between the bit patterns and the signal
changes by a half cycle for each successive pattern. To
compensate for this, the character generator puts out one of two
different bit patterns for each nybble, depending on the state of
HO, the low-order bit of the horizontal counter.

High-Resolution Display

The high-resolution graphics pages begin at memory locations
$2000 and $4000 (decimal 8192 and 16384). These page addresses
are selected by address bits A13 and A1 4. In high-resolution mode,
these address bits are controlled by PG2 and 80VID, the signals
controlled by the display-page (PAGE2) and 80-column-video
(80COL) soft switches. As in text mode, 80V ID inhibits addressing of
the second page because there is only one page of 80-column
text available for mixed mode.

In high-resolution graphics mode, the display data are still stored
in blocks like the one shown in Figure 7-11, but there are eight
of these blocks. As Table 7-11 and Table 7-12 show, vertical
counts VA, VB, and VC are used for address bits A10, A11, and A12,
which address eight blocks of 1024 bytes each. Remember that
in the display VA, VB, and VC count adjacent horizontal lines in
groups of eight. This addressing scheme maps each of those
lines into a different 1024-byte block. It might help to think of it
as a kind of eight-way multiplexer: it's as if eight text displays
were combined to produce a single high-resolution display, with
each text display providing one line of dots in turn, instead of a
row of characters.

The high-resolution bit patterns are produced by the character-
generator ROM. In this mode, the bit patterns simply reproduce
the eight bits of display data. The low-order six bits of data reach
the ROM via the video data bus VID0-VIDS. The IOU sends the
other two data bits to the ROM via RA9 and RA10.

The high-resolution colors described in Chapter 2 are produced
by the interaction between the video signal the bit patterns
generate and the 3.58 MHz color signal generated inside the
monitor or TV set. The high-resolution bit patterns are always
shifted out at 7 MHz, so each dot corresponds to a half-cycle of
the 3.58 MHz color signal. Any part of the video signal that

The Video Display 161

162

produces a single white dot between two black dots, or vice-
versa, is effectively a short burst of 3.58 MHz and is therefore
displayed as color. In other words, a bit pattern consisting of
alternating ones and zeros gets displayed as a line of color. The
high-resolution graphics subroutines produce the appropriate bit
patterns by masking the data bits with alternating ones and
zeros.

To produce different colors, the bit patterns must have different
phase relationships to the 3.58 MHz color signal. If alternating
ones and zeros produce a certain color, say green, then
reversing the pattern to zeros and ones will produce the
complementary color, purple. As in the low-resolution mode, each
bit pattern corresponds to three and a half cycles of the color
signal, so the phase relationship between the data bits and the
color signal changes by a half cycle for each successive byte of
data. Here, however, the bit patterns produced by the hardware
are the same for adjacent bytes; the color compensation is
performed by the high-resolution software, which uses different
color masks for data being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3.58 MHz color signal. In high-resolution
mode, the Apple lle produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on
the high-order bit of the data byte being displayed. (The high-
order bit doesn’t actually get displayed as a dot, because at
7 MHz there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the
shift register, high-order data bit D7 is also sent to the PAL. If D7
is off, the PAL transmits shift-register timing signals LDPS’ and
VID7M normally. If D7 is on, the PAL delays LDPS‘ and VID7M by 70
nanoseconds, the time corresponding to half a dot. The bit
pattern that formerly produced green now produces orange; the
pattern for purple now produces blue.

A note about timing: For 80-column text, the shift register is clocked
at twice normal speed. When 80-column text is used with graphics
in mixed mode, the PAL controls shift-register timing signals LDPS’
and VID7M so that the graphics portion of the display works correctly
even when the text window is in 80-column mode.

Hardware Implementation

{ S N N W O O O O

L

Table 7-14 Internal Video Connector
Signals

Video Output Signals

The stream of video data generated by the display circuits
described above goes to a linear summing circuit built around
transistor Q1 where it is mixed with the sync signals and the
color burst. Resistors R3, R5, R7, R10, R13, and R15 adjust the
signals to the proper amplitudes, and a tank circuit (L3 and C32)
resonant at 3.58 MHz conditions the color burst.

The resulting video signal is an NTSC-compatible composite-
video signal that can be displayed on a standard video monitor.
The signal is similar to the EIA (Electronic Industries Association)
standard positive composite video (see Table 7-14). This signal is
available in two places in the Apple lle:

e At the phono jack on the back of the Apple lle. The sleeve of
this jack is connected to ground and the tip is connected to
the video output through a resistor network that attenuates it
to about 1 volt and matches its impedance to 75 ohms.

e At the internal video connector on the Apple lle circuit board
near the RCA jack, J13 in Figure 7-14c. It is made up of four
Molex-type pins, 0.25 inches tall, on 0.10 inch centers. This
connector carries the video signal, ground, and two power
supplies, as shown in Table 7-14.

Pin Number Name Description
1 GROUND System common ground
2 VIDEO NTSC-compatible positive composite video. White

level is about 2.0 volts, black level is about 0.75
volts, and sync level is 0.0 volts. This output is not
protected against short circuits.

3 -8V —5 volt power supply

4 +12V +12 volt power supply

The Video Display

164

| I Built-in 1/O Circuits

The use of the Apple lle’s built-in 1/O features is described in
Chapter 2. This section describes the hardware implementation of
all of those features except the video display described in the
previous sections. The 10U (Input/Output Unit) generates the
output signals for the speaker, the cassette interface, and the
annunciators directly. The other 1/O features are handled by
smaller ICs, as described below.

The addresses of the built-in /O features are described in
Chapter 2 and listed in Table 2-2, Table 2-11, and Table 2-12. All
of the built-in 1/O features except the displays use memory
locations between $C000 and $C070 (decimal 49152 and 49264).
The 1/O address decoding is performed by three ICs: a 74LS138,
a 74LS154, and a 74LS251.

The 74LS138 decodes address lines A8, A9, A10, and A11 to select
address pages on 256-byte boundaries starting at $C000 (decimal
49152). When it detects addresses between $C000 and $COFF, it
enables the IOU and the 74LS154. The 74LS154 in turn decodes
address lines A4, AS, AB, and A7 to select 16-byte address areas
between $C000 and $COFF. Addresses between $C060 and $C06F
enable the 74LS251 that multiplexes the hand control switches
and paddles; addresses between $C070 and $C07F reset the
NES558 quadruple timer that interfaces to the hand controls, as
described below in the section “Game /O Signals”.

T

The Keyboard

The Apple lle’s keyboard is a matrix of keyswitches connected to
an AY-3600-type keyboard decoder via a ribbon cable and a 26-
pin connector. The AY-3600 scans the array of keys over and
over to detect any keys pressed. The scanning rate is set by the
external resistor-capacitor network made up of C70 and R32. The
debounce time is also set externally, by C71.

The AY-3600’s outputs include five bits of key code plus
separatelinesfor| CONTROL |, [SHIFT |, any-key-down, andkeyboard
strobe. The any-key-down and keyboard-strobe lines are
connected to the 10U, which addresses them as soft switches.
The key-code lines, along with| CONTROL | and | SHIFT |, are inputs
to a separate 2316 ROM. The ROM translates them to the
character codes that are enabled onto the data bus by signals
named KBD’ and ENKBD‘. The KBD“ signal is enabled by the MMU
whenever a program reads location $C000, as described in
Chapter 2.

Hardware Implementation

T TLTL TV B '6C T IME T T T T T 'O TL T

-]
= Table 7-15 Keyboard Connector Pin Number Name Description
f Signals
1,24,
1 6, 8, 10,
- 23, 25,
12, 22 YO-Y9 Y-direction key-matrix connections
j 3 +5 +5 volt supply
5, 7.9, 15 . 6.
1 1 LCNTL' Line from | CONTROL | key
13 GND System common ground
P 14,16,
= 20, 21, 19,
26,17 X0-X7 X-direction key-matrix connections
7 24 LSHFT' Line from [SHIFT] key
d Connecting a Keypad
There is a smaller connector wired in parallel with the keyboard
- connector. You can connect a ten-key numeric pad to the
- Apple lle via this connector.
i
- Table 7-16 Keypad Connector Signals Pin Number Name Description
i 15:2; 5,
= 3,4,6 Y0-YS Y-direction key-matrix connections
— 7 n.c
P
- 9, 11,
10, 8 X4-X7 X-direction key-matrix connections
|
4
4
A
A

Built-in 1/0 Circuits 165

EI|

Table 7-17 Speaker Connector
Signals

Cassette 1/0

The two miniature phone jacks on the back of the Apple lle are
used to connect an audio cassette recorder for saving programs.
The output signal to the cassette recorder comes from a pin on
the 10U via resistor network R6 and R9, which attenuates the
signal to a level appropriate for the recorder's microphone input.
Input from the recorder is amplified and conditioned by a type
741 operational amplifier and sent to one of the inputs of the
74LS251 input multiplexer.

The signal specifications for cassette 1/O are:

Input: 1 volt (nominal) from recorder Earphone or Monitor
output. Input impedance is 12K ohms.

Output: 25 millivolts to recorder Microphone input. Output
impedance is 100 ohms.

‘A 'Fl 'Fl |

Fl 'l

19}

The Speaker

The Apple lle’s built-in loudspeaker is controlled by a single bit of
output from the IOU (Input Output Unit). The signal from the 10U
is AC coupled to Q5, an MPSA13 Darlington transistor amplifier.
The speaker connector is a Molex KK100 connector, J18 in
Figure 7-14b, with two square pins 0.25 inches tall and on 0.10-
inch centers.

A light-emitting diode is connected in parallel across the speaker
pins such that, when the speaker is not connected, the diode
glows whenever the speaker signal is on. This diode is used as
a diagnostic indicator during assembly and testing of the

Apple lle.

Pin Number Name Description

1 SPKR Speaker signal. This line will deliver about 0.5
watts into an 8-ohm speaker.

2 +5 +5V power supply. Note that the speaker is not
connected to system ground.

Hardware Implementation

WO L EELORE RN

ey

kTR

Game 1/O Signals

Several I/O signals that are individually controlled via soft
switches are collectively referred to as the game signals. Even
though they are normally used for hand controls, these signals
can be used for other simple /O applications. There are five
output signals: the four annunciators, numbered A0 through A3,
and one strobe output. There are three one-bit inputs, called
switches and numbered SWO0 through SW2, and four analog inputs,
called paddles and numbered PDLO through PDL 3.

The annunciator outputs are driven directly by the IOU (Input
Output Unit). These outputs can drive one TTL (transitor-transitor
logic) load each; for heavier loads, you must use a transistor or a
TTL buffer on these outputs. These signals are only available on
the 16-pin internal connector (see Table 7-18).

The strobe output is a pulse transmitted any time a program
reads or writes to location $C040. The strobe pin is connected to
one output of the 74LS154 address decoder. This TTL signal is
normally high; it goes low during ¢0 of the instruction cycle that
addresses location $C040. This signal is only available on the 16-
pin internal connector (see Table 7-18).

The game inputs are multiplexed along with the cassette input
signal by a 74LS251 eight-input multiplexer enabled by the C06X*
signal from the 74LS154 1/O address decoder. Depending on the
low-order address, the appropriate game input is connected to bit
7 of the data bus.

The switch inputs are standard low-power Shottky TTL inputs. To
use them, connect each one to 220-ohm pull-up resistors
connected to the +5-volt supply and through single-pole,
momentary-contact pushbutton switches to ground.

The hand-control inputs are connected to the timing inputs of an
NE558 quadruple 555-type analog timer. Addressing $C07X sends
a signal from the 74LS154 that resets all four timers and causes
their outputs to go to one (high). A variable resistance of up to
150K ohms connected between one of these inputs and the +5V
supply controls the charging time of one of four 0.022-microfarad
capacitors. When the voltage on the capacitor passes a certain
threshold, the output of the NE558 changes back to zero (low).

Built-in /O Circuits

3|| Programs can determine the setting of a variable resistor by

‘ resetting the timers and then counting time until the selected
timer input changes from high to low. The resulting count is
proportional to the resistance.

The game 1/O signals are all available on a 16-pin DIP socket
labelled GAME 1/O on the main circuit board inside the case.
The switches and the paddles are also available on a D-type
miniature connector on the back of the Apple lle; see J8 and J15
in Figure 7-14d.

Table 7-18 Game |/O Connector Internal- Back-panel- Signal Description
Signals Connector Connector Name
o Pin Number Pin Number
1 2 +5V +5 power supply. Total

current drain from this pin
must not exceed 100mA.

2,3,4 71,6 PB0-PB2 Switch inputs. These are
standard 74LS inputs.

5 - STROBE' Strobe output. This line goes
low during ¢0 of a read or

[write instruction to location

| $C040.

6,10, 7, 11 5,8,4,9 PDLO-PDL3 Hand control inputs. Each of
these should be connected
to a 150K-ohm variable
resistor connected to +5V.

8 3 GND System ground.

15, 14, 13, 12 — ANO-AN3 Annunciators. These are
standard 74LS TTL outputs

i and must be buffered to

drive other than TTL inputs.

9,16 — 0./0: Nothing is connected to
these pins.

168 Hardware Implementation

T O O T O O O L O O { R Y

i

'Fi

By (Rl el Ik 1*1 ik 155

19

bk

Expanding the Apple lle

The main circuit board of the Apple lle has eight empty card
connectors or slots on it. These slots make it possible to add
features to the Apple lle by plugging in periphg:al cards with
additional hardware. Chapter 6 describes the standards for
programming peripheral cards for the Apple lle. This section
describes the hardware that supports them, including all of the
signals available on the expansion slots.

The Expansion Slots

The seven connectors lined up across the back part of the

Apple lle’s main circuit board are the expansion slots, also called
peripheral slots or simply slots, numbered from 1 to 7. They are
50-pin PC-card edge connectors with pins on 0.10-inch centers.
A PC card plugged into one of these connectors has access to
all of the signals necessary to perform input and output and to
execute programs in RAM or ROM on the card. These signals
are described briefly in Tables 7-19a, 7-19b, and 7-19c. The
following paragraphs describe the signals in general and mention
a few points that are often overlooked. For further details, refer
to the schematic diagram in Figures 7-14a, 7-14b, 7-14c, and 7-14d.

The Peripheral Address Bus

The 6502’s address bus is buffered by two 74LS244 octal three-
state buffers. These buffers, along with a buffer in the 6502’s
R/W’ line, are enabled by a signal derived from the DMA* daisy-
chain on the expansion slots. Pulling the peripheral line DMA‘ low
disables the address and R/W’ buffers so that peripheral DMA
circuitry can control the address bus. The DMA address and
R/W’ signals supplied by a accessory card must be stable all
during ¢o of the instruction cycle, as shown in Figure 7-13.

Another signal that can be used to disable normal operation of
the Apple lle is INH”. Pulling INH’ low disables all of the memory
in the Apple lle except the part in the 1/0 space from $C000 to
$CFFF. A peripheral card that uses either INH’ or DMA’ must
observe proper timing; in order to disable RAM and ROM cleanly,
the disabling signal must be stable all during ¢o of the instruction
cycle (refer to the timing diagram in Figure 7-13).

The peripheral devices should use 1/0 SELECT’ and
DEVICE SELECT’ as enables. Most peripheral ICs require their

Expanding the Apple lle 169

170

enable signals to be present for a certain length of time before
data is strobed into or out of the device. Remember that 1/0
SELECT’ and DEVICE SELECT’ are only asserted during ¢o high.

The Peripheral Data Bus .

The Apple lle has two versions of the 6502 data bus: an internal
bus, MD0-MD7, connected directly to the 6502; and an external bus,
D0-D7, driven by a 74LS245 octal bidirectional bus buffer. The
6502 is fabricated with MOS circuitry, so it can drive capacitive
loads of up to about 130 pF. If peripheral cards are installed in

all seven slots, the loading on the data bus can be as high as
500 pF, so the 74LS245 drives the data bus for the peripheral
cards. The same argument applies if you use MOS devices on
peripheral cards: they don’'t have enough drive for the fully-
loaded bus, so you should add buffers.

Loading and Driving Rules

Tables 7-19a, 7-19b, and 7-19c show the drive requirements and
loading limits for each pin on the expansion slots. The address
bus, the data bus, and the R/W’ line should be driven by three-
state buffers. Remember that there is considerable distributed
capacitance on these busses and that you should plan on
tolerating the added load of up to six additional peripheral cards.
MOS devices such as PIAs and ACIAs cannot switch such heavy
capacitive loads. Connecting such devices directly to the bus will
lead to possible timing and level errors.

Interrupt and DMA Daisy Chains

The interrupt requests (IRQ‘ and NMI“) and the direct-memory
access (DMA ‘) signal are available at all seven expansion slots. A
peripheral card requests an interrupt or a DMA transfer by pulling
the appropriate output line low (active). If two peripheral cards
request an interrupt or a DMA transfer at the same time, they will
contend for the data and address busses. To prevent this, two
pairs of pins on each connector are wired as a priority daisy
chain. The daisy-chain pins for interrupts are INT IN and INT OUT,
and the pins for DMA are DMA IN and DMA OUT, as shown for J1-J7 in
Figure 7-14d.

Each daisy chain works like this: the output from each connector
goes to the input of the next higher numbered one. For these
signals to be useful for cards in lower numbered connectors, all

of the higher numbered connectors must have cards in them, and
all of those cards must connect DMA IN to DMA OUT and INT IN to INT
0UT. Whenever an accessory card uses pin DMA’ | it must do so

Hardware Implementation

O Y f O O O O O WO O O O W { ™

y

only if its DMA IN line is active, and it must disable its DMA OUT line
while it is using DMA“. The INT IN and INT OUT lines must be used
the same way: enable the card’s interrupt circuits with IN® IN, and
disable INT OUT whenever IRQ‘ or NMI“ is being used.

Figure 7-13 Peripheral-signal Timing 14M”””|“||”””””I””I““”””lI“

™

JEpEpEESpipgEgip gl
w—0d J I LI

. l [CPU phase I

&1 l video phase l I

— - I<—1 10 ns (max) 15 ns (min)-»‘ ,4——
ADDRESS e
%AO-A15, R/W'sl

INH’, DMA’

PERIPHERAL SELECT

I/O SELECT’ _I l_
% DEVICE SELECTS

/O STROBE'

Expanding the Apple lle 171

Table 7-19a Expansion Slot Signals

*Loading limits are for each card.

172

Pin Number

Name

Description

2-17

18

19

20

21

22

23

24

25

26

1/0 SELECT

AD-A15

R/W'

SYNC’

1/0

STROBE'

RDY

DMA’

INT OUT

DMA OUT

+5V

GND

Normally high; goes low during $0 when the 6502
addresses location $CnXX, where n is the
connector number. This line can drive 10 LS TTL
loads.*

Three-state address bus. The address becomes
valid during ¢1 and remains valid during ¢0. Each
address line can drive 5 LS TTL loads.*

Three-state read/write line. Valid at the same time
as the address bus; high during a read cycle, low
during a write cycle. It can drive 2 LS TTL loads.*

Composite horizontal and vertical sync, on
expansion slot 7 ONLY. This line can drive 2 LS
TTL loads.™

Normally high; goes low during ¢0 when the 6502
addresses a location between $C800 and
$CFFF. This line can drive 4 LS TTL loads.

Input to the 6502. Pulling this line low during ¢1
halts the 6502 with the address bus holding the
address of the location currently being fetched.
This line has a 3300 ohm pullup resistor to +5V.

Input to the address bus buffers. Pulling this line
low during ¢1 disconnects the 6502 from the
address bus. This line has a 3300 ohm pullup
resistor to +5V

Interrupt priority daisy-chain output. Usually
connected to pin 28 (INT IN).

(Note: on slot 7 ONLY, this pin can be connected
to the graphics-mode signal GR: see text for
details.)

DMA priority daisy-chain output. Usually
connected to pin 22 (DMA IN).

+5-volt power supply. A total of 500mA is
available for all accessory cards.

System common ground.

Hardware Implementation

T T O O O O O O O O O O O

1

]

(]

¥

1§

1k

15

Table 7-19b Expansion Slot Signals,
continued

*Loading limits are for each card.

Pin Number

27

28

29

30

31

32

33

34

35

36

37

38

INT IN

NMI’

IRQ’

RES'

INH'

-12V

-5V

3.58M

7M™

Q3

al

Description

DMA priority daisy-chain input. Usually connect%d
to pin 24 (DMA OUT).

Interrupt priority daisy-chain input. Usually
connected to pin 23 (INT OUT).

Non-maskable interrupt to 6502. Pulling this line
low starts an interrupt cycle with the
interrupt-handling routine at location $03FB. This
line has a 3300 ohm pullup resistor to +5V.

Interrupt request to 6502. Pulling this line low
starts an interrupt cycle only if the
interrupt-disable (1) flag in the 6502 is not set.
Uses the interrupt-handling routine at location

$ 03FE. This line has a 3300 ohm pullup resistor
to +5V.

Pulling this line low initiates a reset routine, as
described in Chapter 4.

Pulling this line low during ¢1 inhibits (disables)
the memory on the main circuit board. This line
has a 3300 ohm pullup resistor to +5V.

—12 volt power supply. A total of 200mA is
available for all accessory cards.

—5 volt power supply. A total of 200mA is
available for all accessory cards.

3.58 MHz color reference signal, on slot 7 only.
This line can drive 2 LS TTL loads.*

System 7 MHz clock. This line can drive 2 LS TTL
loads.*

System 2 MHz asymmetrical clock. This line can
drive 2 LS TTL loads.*

6502 phase 1 clock. This line can drive 2 LS TTL
loads.*

Expanding the Apple lle

173

Table 7-19¢c Expansion Slot Signals,

*Loading limits are for each card.

Pin Number Name Description

39 mPSYNC The 6502 signals an operand fetch by driving this
line high during the first read cycle of each
instruction.

40 $0 6502 phase 0 clock. This line can drive 2 LS TTL
loads.*

41 DEVICE Normally high; goes low during ¢0 when the 6502

SELECT! addresses location $C0nX, where n is the

connector number plus 8. This line can drive 10
LS TTL loads.*

42-49 D0-D7 Three-state buffered bi-directional data bus. Data

becomes valid during ¢0 high and remains valid

until $0 goes low. Each data line can drive one LS

TTL load.*

50 +12V +12 volt power supply. A total of 250mA is
available for all accessory cards.

Video Signals on Slot 7

The video signals are available only on the auxiliary slot and not
on the numbered expansion slots, except for slot 7. The video
signals available on expansion slot 7 are SYNC’, the composite
horizontal and video sync signal, on pin 19, and 3.58M, the color
reference signal, on pin 35. Early production Apple lles, identified
by a circuit board part number ending in -A, do not have this
feature.

The signal that enables the graphics modes, named GR, is not
normally available on the numbered expansion slots. You can make
it available on pin 23 of slot 7 by completing the circuit at location
X7 on the main circuit board. Remember to turn off the power
before changing anything inside the Apple lle. Also remember that
changes such as this are at your own risk and may void the
warranty.

The Auxiliary Slot

The large connector at the left side of the Apple lle’s main circuit
board is the auxiliary slot. It is a 60-pin PC-card edge connector
with pins on 0.10-inch centers. A PC card plugged into this
connector has access to all of the signals used in producing

the video disp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>