
Apple II Reference Manual
For//e Only

Notice
Apple Computer, Inc . reserves the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of All Warranties and Liabilities
Apple Computer , Inc . makes no warranties , either express or implied, with
respect to this manual or with respect to the software described in this
manual , its quality, performance , merchantability , or fitness for any
particular purpose . Apple Computer, Inc. software is sold or licensed " as
is. " The entire risk as to its quality and performance is with the buyer.
Should the programs prove defective following their purchase , the buyer
(and not Apple Computer , Inc ., its distributor, or its retailer) assumes the
entire cost of all necessary servicing , repair , or correction and any
incidental or consequential damages . In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental , or consequential damages resulting
from any defect in the software , even if Apple Computer , Inc . has been
advised of the possiblity of such damages . Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply
to you .

This manual is copyrighted. All rights are reserved. This document may
not , in whole or part , be copied , photocopied, reproduced , translated or
reduced to any electronic medium or machine readable form without prior
consent , in writing , from Apple Computer, Inc .

© 1982 by Apple Computer, Inc .
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer , Inc.

Simultaneously published in the U.S.A and Canada.

Warning
This equipment has been certified to comply with the limits for a
Class 8 computing device, pursuant to Subpart J of Part 15 of FCC
Rules . Only peripherals (computer input/output devices , terminals ,
printers , etc .) certified to comply with the Class 8 limits may be
attached to this computer. Operation with non-certified peripherals is
likely to result in interference to radio and TV reception .

Written by Allen Watson of the Apple PCSD
Publications Department

Reorder Apple Product A2L2005

Apple II Reference Manual

ii

Radio and Television Interference
The equipment described in this manual generates and uses radio­
frequency energy . If it is not installed and used properly, that is , in
strict accordance with our instructions, it may cause interference
with radio and television reception .

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specifications in
Subpart J , Part 15, of FCC rules . These rules are designed to
provide reasonable protection against such interference in a
residential installation . However, there is no guarantee that the
interference will not occur in a particular installation, especially if
you use a " rabbit ear" television antenna. (A " rabbit ear" antenna is
the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference
by turning it off . If the interference stops, it was probably caused
by the computer or its peripheral devices. To further isolate the
problem:

• Disconnect the peripheral devices and their input/output cables
one at a time . If the interference stops , it is caused by either
the peripheral device or its 1/0 cable. These devices usually
require ·shielded 1/0 cables . For Apple peripheral devices, you
can obtain the proper shielded cable from your dealer. For non­
Apple peripheral devices, contact the manufacturer or dealer
for assistance.

If your computer does cause interference to radio or television ,...-.
reception , you can try to correct the interference by using one or -..
more of the following measures:-.
• Turn the TV or radio antenna until the interference stops. .._,

• Move the computer to one side or the other of the TV or radio .

• Move the computer farther away from the TV or radio.

• Plug the computer into an outlet that is on a different circuit
than the TV or radio . (That is, make certain the computer and
the radio or television set are on circuits controlled by different
circuit breakers or fuses .)

• Consider installing a rooftop television antenna with coaxial
cable lead-in between the antenna and TV.

-

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
helpful the following booklet, prepared by the Federal
Communications Commission :

"How to Identify and Resolve Radio- TV Interference Problems "

This booklet is available from the U.S. Government Printing Office,
Washington , DC 20402, stock number 004-000-00345-4.

iii

-

-

Table of Contents

Foreword
xiii Contents of This Manual
xv Symbols Used in This Manual

Introduction
1 Removing the Cover
5 The Keyboard
5 The Speaker
5 The Power Supply
6 The Circuit Board
7 Connectors on the Circuit Board
8 Connectors on the Back Panel

Built-in I /0 Devices
11 The Keyboard
13 Reading the Keyboard
17 The Video-display Generator
19 Text Modes
19 Text Character Sets
21 40-column versus 80-column Text
22 Graphics Modes
22 Low-resolution Graphics
23 High-resolution Graphics
26 Display Pages
27 Display Mode Switching
29 Addressing Display Pages Directly
35 Secondary Inputs and Outputs
35
36
37

The Speaker
Cassette Input and Output
The Hand Control Connector Signals

xi

1

9

v

37 Annunciator Outputs
38 Strobe Output
38 Switch Inputs
39 Analog Inputs
40 Summary of Secondary 1/0 Locations

Built-in I /0 Firmware 41
43 Using the 1/0 Subroutines
44 Apple II Compatibility
45 The 80-column Firmware
47 The Old Monitor
47 The Standard 1/0 Links
48 Standard Output Features
48 CDUT Output Subroutine
50 Control Characters with CDUT1

50 The Stop-List Feature
50 The Text Window
52 Inverse and Flashing Text
53 Standard Input Features
54 RDKEY Input Subroutine
54 KEY IN Input Subroutine
55 Escape Codes with KEY I N

56 Cursor Motion in Escape Mode
56 GETLN Input Subroutine
58 Editing with GETLN

58 Cancel Line
58 Backspace
58 Retype

Memory Organization 59

4 61 Main Memory Map -63 RAM Memory Allocation
63 Reserved Memory Pages
64 Page Zero
64 The 6502 Stack
64 The Input Buffer
65 Link-address Storage
65 The Display Buffers
68 Bank-switched Memory
69 Setting Bank Switches
71 Auxiliary Memory and Firmware
73 Memory Mode Switching
76 Auxiliary-memory Subroutines

77 Moving Data to Auxiliary Memory
78 Transferring Control to Auxiliary Memory
79 The Reset Routine
80 The Cold-start Procedure
80 The Warm-start Procedure
81 Forced Cold Start
81 The Reset Vector
83 Automatic Self-test

Using the Monitor 85
87 Invoking the Monitor
88 Syntax of Monitor Commands
89 Monitor Memory Commands
89 Examining Memory Contents
89 Memory Dump
92 Changing Memory Contents
92 Changing One Byte
93 Changing Consecutive Locations
94 Moving Data in Memory
96 Comparing Data in Memory
97 Monitor Register Command
97 Examining and Changing Registers
98 Monitor Cassette Tape Commands
98 Saving Data on Tape
99 Reading Data from Tape

101 Miscellaneous Monitor Commands
101 Display Inverse and Normal
102 Back to BASIC
102 Redirecting Input and Output
103 Hexadecimal Arithmetic
104 Special Tricks with the Monitor
104 Multiple Command Lines
104 Filling Memory
106 Repeating Commands
106 Creating Your Own Commands
107 Machine-language Programs
107 Running a Program
108 Disassembled Programs
110 The Mini-Assembler
113 Mini-Assembler Instruction Formats
115 Summary of Monitor Commands

Programming for Accessory Cards 119

6 121 Peripheral-card Memory Spaces
122 Peripheral-card 1/0 Space
122 Peripheral-card ROM Space
123 Expansion ROM Space
125 Peripheral-card RAM Space
126 1/0 Programming Suggestions
127 Finding the Slot Number
127 1/0 Addressing
128 RAM Addressing
129 Changing the Standard 1/0 Links
131 Using Interrupts
131 Other Uses of 1/0 Memory Space
132 Switching 1/0 Memory

Hardware Implementation 134

7 137 Environmental Specifications
138 The Power Supply
139 The Power Connector
140 The 6502 Microprocessor
141 6502 Timing
143 The Custom Integrated Circuits
143 The Memory Management Unit
145 The Input/Output Unit
147 The PAL Circuit
148 Memory Addressing
148 ROM Addressing
149 RAM Addressing
149 Dynamic-RAM Refreshment
151 Dynamic-RAM Timing
152 The Video Display
153 The Video Counters
154 Display Memory Addressing
154 Display Address Mapping
158 Video Display Modes
158 Text Displays
160 Low-resolution Display
161 High-resolution Display
163 Video Output Signals
164 Built-in 1/0 Circuits
164 The Keyboard
165 Connecting a Keypad
166 Cassette 1/0
166 The Speaker
167 Game 1/0 Signals

A

B

D

169 Expanding the Apple lie
169 The Expansion Slots
169 The Peripheral Address Bus
170 The Peripheral Data Bus
170 Loading and Driving Rules
170 Interrupt and DMA Daisy Chains
174 Video Signals on Slot 7
174 The Auxiliary Slot
175 80-column Display Signals

The 6502 Instruction Set

Tables

Directory of Built-in Subroutines

Differences Between the Apple lie
and Apple II Plus

Glossary

Bibliography

Index
266 Numbers
266 Cast of Characters

185

197

217

225

231

253

257

List of Figures

3 Figure 1-1. Exploded Diagram of the Apple lie
4 Figure 1-2. Removing the Cover
4 Figure 1-3. The Apple lie With the Cover Off
5 Figure 1-4. Apple lie Keyboard
6 Figure 1-5. Circuit Board
7 Figure 1-6. Expansion Slots
8 Figure 1-7. Auxiliary Slot
8 Figure 1-8. Back Panel Connectors

12 Figure 2-1 . The Keyboard
21 Figure 2-2. 40-column Text Display
22 Figure 2-3. 80-column Text Display
25 Figure 2-4. High-resolution Display Bits
31 Figure 2-5. Map of 40-column Text Display
32 Figure 2-6. Map of 80-column Text Display
33 Figure 2-7. Map of Low-resolution Graphics

,_

Display
34 Figure 2-8. Map of High-resolution Graphics

Display -
62 Figure 4-1 . System Memory Map
63 Figure 4-2. RAM Allocation Map ,_
68 Figure 4-3. Bank-switched Memory Map
72 Figure 4-4. Memory Map with Auxiliary Memory

124 Figure 6-1 . Expansion ROM Enable Circuit !
125 Figure 6-2. ROM Disable Address Decoding
132 Figure 6-3. 1/0 Memory Map -• 142 Figure 7-1. 6502 Timing Signals
143 Figure 7-2. The MMU Pinouts
145 Figure 7-3. The IOU Pinouts

,...

147 Figure 7-4. The PAL Pinouts
149 Figure 7-5. The 2364 ROM Pinouts ..-
149 Figure 7-6. The 2316 ROM Pinouts • 149 Figure 7-7. The 2333 ROM Pinouts -
150 Figure 7-8. The 64K RAM Pinouts
152 Figure 7-9. RAM Timing Signals i
155 Figure 7-10. Display Address Transformation -
156 Figure 7-11 . 40-column Text Display Memory
159 Figure 7-12. Video Timing Signals -
171 Figure 7-13. Peripheral-signal Timing
179 Figure 7-14a. Schematic Diagram, part 1
180 Figure 7-14b. Schematic Diagram, part 2
181 Figure 7 -14c. Schematic Diagram, part 3
182 Figure 7-14d. Schematic Diagram, part 4

X

I

List of Tables

12 Table 2-1.
13, 197 Table 2-2.
14, 198 Table 2-3a.
15, 199 Table 2-3b.
16, 200 Table 2-4.

18 Table 2-5.
20, 201 Table 2-6.
23, 201 Table 2-7.
25, 201 Table 2-8.
27, 202 Table 2-9.
28, 203 Table 2-10.
38, 204 Table 2-11.
40, 205 Table 2-12.

43 Table 3-1 .
44 Table 3-2.

48, 206 Table 3-3a.
49, 207 Table 3-3b.

52, 207 Table 3-4.
53 Table 3-5.

55, 208 Table 3-6.
57 Table 3-7.

66 Table 4-1.
66 Table 4-2.
67 Table 4-3.
67 Table 4-4.

69, 209 Table 4-5.
75, 210 Table 4-6.

76 Table 4-7.
77 Table 4-8.
78 Table 4-9.

82, 211 Table 4-10.

114 Table5-1.

122, 212 Table 6-1 .
123, 212 Table 6-2.
125, 213 Table 6-3.
128, 214 Table 6-4.
133, 214 Table 6-5.

Apple lie Keyboard Specifications
Keyboard Memory Locations
Keys and ASCII Codes
Keys and ASCII Codes
The ASCII Character Set
Video Display Specifications
The Display Character Sets
Low-resolution Graphics Colors
High-resolution Graphics Colors
Video Display Page Locations
Display Soft Switches
Annunciator Memory Locations
Secondary 1/0 Memory Locations

Standard 1/0 Subroutines
Apple II Mode
Control Characters with coun
Control Characters with coun ,
continued
Text Window Memory Locations
Text Format Control Values
Escape Codes
Prompt Characters

Monitor Zero-page Usage
Applesoft Zero-page Usage
Integer BASIC Zero-page Usage
DOS 3.3 Zero-page Usage
Bank Select Switches
Auxiliary-memory Select Switches
Auxiliary-memory Routines
Parameters for AUXMDVE Routine
Parameters for XFER Routine
Page 3 Vectors

Mini-assembler Address Formats

Peripheral-card 1/0 Memory Locations
Peripheral-card ROM Memory Locations
Peripheral-card RAM Memory Locations
Peripheral-card 1/0 Base Addresses
1/0 Memory Switches

137 Table 7-1.

138 Table 7-2.
139 Table 7-3.
140 Table 7-4.
141 Table 7-5.
144 Table 7-6.
146 Table 7-7.
147 Table 7-8.
150 Table 7-9.
151 Table 7-10.
157 Table 7-11.
158 Table 7-12.

160 Table 7-13.
163 Table 7-14.
165 Table 7-15.
165 Table 7-16.
166 Table 7-17.
168 Table 7-18.
172 Table 7-19a.
173 Table 7-19b.
174 Table 7-19c.
176 Table 7-20a.
177 Table 7-20b.
178 Table 7-20c.

Summary of Environmental
Specifications
Power Supply Specifications
Power Connector Signal Specifications
6502 Microprocessor Specifications
6502 Timing Signal Descriptions
The MMU Signal Descriptions
The IOU Signal Descriptions
The PAL Signal Descriptions
RAM Address Multiplexing
Dynamic RAM Timing Signals
Display Memory Addressing
Memory Address Bits for Display
Modes
Character-Generator Control Signals
Internal Video Connector Signals
Keyboard Connector Signals
Keypad Connector Signals
Speaker Connector Signals
Game 1/0 Connector Signals
Expansion Slot Signals
Expansion Slot Signals, continued
Expansion Slot Signals, continued
Auxiliary Slot Signals
Auxiliary Slot Signals, continued
Auxiliary Slot Signals, continued

-
-
-
-
-
-

-
-

-

Foreword

This is the reference manual for the Apple lie personal computer.
It contains detailed descriptions of all of the hardware and
firmware that make up the Apple lie and provides the technical
information that peripheral-card designers and programmers
need. There is an Addendum, bound separately, that contains
source listings of the built-in firmware.

This manual contains a lot of information about the way the
Apple lie works, but it doesn't tell you how to use the Apple lie.
For this, you should read the other Apple lie manuals, especially
the following:

• The Apple lie Owner's Manual

• The Applesoft Tutorial

This manual is designed to answer the question, What's inside
the box? It describes the internal operation of the Apple lie as
completely as possible in a single volume. The criterion for
deciding to include an item of information was whether it would
help an assembly-language programmer or peripheral designer.

Contents of This Manual
The material in this manual is presented roughly in order of
increasing intimacy with the hardware; the farther you go in the
manual , the more technical the material becomes. The main
subject areas are

• Introduction : Foreword and Chapter 1

• Use of built-in features : Chapters 2 and 3

• How the memory is organized: Chapter 4

• Information for programmers: Chapters 5 and 6

xiii

xiv

• Hardware implementation: Chapter 7

• Additional information : Appendices and Addendum

Chapter 1 identifies the main parts of the Apple lie and tells
where in the manual each part is described.

The next two chapters describe the built-in input and output
features of the Apple lie. This part of the manual includes
information you need for low-level programming on the Apple lie.
Chapter 2 describes the built-in 1/0 features and Chapter 3 tells
you how to use the firmware that supports them.

Chapter 4 describes the way the Apple lie's memory space is
organized, including the allocation of programmable memory for
the video display buffers.

Chapter 5 is a user manual for the Monitor that is included in the
built-in firmware . The Monitor is a system program that you can
use for program debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral­
card connectors and gives guidelines for their use.

Chapter 7 is a detailed description of the hardware that
implements the features described in the earlier chapters. This
information is included primarily for programmers and peripheral­
card designers, but it will also help you if you just want to
understand more about the way the Apple lie works.

Additional reference information appears in the appendices.
Appendix A is the manufacturer's description of the 6502
instruction set. ~

Appendix B contains additional copies of some of the tables that
appear in the body of the manual. The ones you will need to ~
refer to often are duplicated here for easy reference.

Appendix C is a directory of the built-in 1/0 subroutines, including
their functions and starting addresses.

Appendix D lists the differences between the Apple lie and the
earlier Apple II and Apple II Plus models and tells you which
sections to look at for more information.

-

-
-

-

-

•

Captions, definitions, and other short
items appear in marginal glosses like
this.

Following Appendix D is a glossary defining many of the
technical terms used in this manual. Some terms that describe
the use of the Apple lie are defined in the glossaries of the other
manuals listed above.

Following the appendices, there is a selected bibliography of
sources of additional information .

The Addendum to this manual contains the source listing of the
Monitor firmware. You can refer to it to find out more about the
operation of the Monitor subroutines listed in Appendix C.

Symbols Used in This Manual

Special text in this manual is set off in several different ways, as
shown in these examples.

Information that appears on the display screen is
set off by this screen-shaped outline.

Warning
Important warnings appear in boxes like this.

Information that is useful but is incidental to the text appears in grey
boxes like this. You may want to skip over such boxes and return to
them later.

-

-

-

-

-
-
-

Introduction

4 Removing the Cover
5 The Keyboard
5 The Speaker
5 The Power Supply
6 The Circuit Board
7 Connectors on the Circuit Board
8 Connectors on the Back Panel

Introduction

Chapter 1

-

-
Figure 1-1 Exploded Diagram of the
Apple lie

Introduction

This first chapter introduces you to the Apple lie itself. It shows
you what the inside looks like, identifies the major components
that make up the machine, and tells you where to find
information about each one. These major components are shown
in the diagram in Figure 1.1.

Introduction 3

Figure 1-2 Removing the Cover

Figure 1-3 The Apple lie with the
Cover Off

Removing the Cover
Remove the cover of the Apple lie by pulling up on the back
edge until the fasteners on either side pop loose, then move the
cover an inch or so towards the rear of the machine to free the
front of the cover, as shown in Figure 1-2. What you will see is
shown in Figure 1-3.

Warning
There is a red LED (light-emitting diode) inside the Apple lie, in the
left rear corner of the circuit board. If the LED is on, it means that
the power is on and you must turn it off before you insert or
remove anything. To avoid damaging the Apple lie, don't even
THINK of changing anything inside it without first turning off the
power.

Introduction

Figure 1-4 Apple lie Keyboard

The Keyboard
The keyboard is the Apple lie's primary input device. As shown in
Figure 1-4, it has a normal typewriter layout, upper- and
lowercase, with all of the special characters in the ASCII
character set. (ASCII stands for American Standard Code for
Information Interchange.) The keyboard is fully integrated into the
machine; its operation is described in the first part of Chapter 2.
Firmware subroutines for reading the keyboard are described in
Chapter 3.

The Speaker
The Apple lie has a small loudspeaker in the bottom of the case,
as shown in Figure 1-1. The speaker enables Apple lie programs
to produce a variety of sounds that make the programs more
useful and interesting. The way programs control the speaker is
described in Chapter 2.

The Power Supply
The power supply is inside the flat metal box along the left side
of the interior of the Apple lie. It provides power for the main
board and for any peripheral cards installed in the Apple lie.

The power supply produces four different voltages: + 5V, -5V,
+ 12V, and -12V. It is a high-efficiency switching supply, and
includes special circuits that protect it and the rest of the
Apple lie against short circuits and other mishaps. Complete
specifications of the Apple lie power supply appear in Chapter 7.

The Keyboard

Figure 1-5 Circuit Board

The power switch and the socket for the power cord are mounted
directly on the back of the power supply's metal case. This
mounting ensures that all the circuits that carry dangerous
voltages are inside the power supply. Do not defeat this design
feature by attempting to open the power supply.

The Circuit Board
All of the electronic parts of the Apple lie are attached to the
circuit board, which is mounted flat in the bottom of the case.

Figure 1-5 shows the main integrated circuits (ICs) in the
Apple lie. They are the central processing unit (CPU}, the
keyboard encoder and read-only memory (ROM), the two
interpreter ROMs, and the custom integrated circuits: the Input
Output Unit (IOU) and the Memory Management Unit (MMU).

The CPU is a 65028 microprocessor. The 65028 is a high-speed
version of the 6502, which is an eight-bit microprocessor with a
sixteen-bit address bus. It uses instruction pipelining for faster
processing than comparable microprocessors. In the Apple lie,
the 65028 runs at 1 MHz and performs up to 500,000 eight-bit
operations per second. The specifications of the 65028 are given
in Chapter 7; the 6502 instruction set is given in Appendix A.

The keyboard is decoded by an AY -3600-type integrated circuit
and a read-only memory (ROM). These devices are described in
Chapter 7.

The interpreter ROMs are integrated circuits that contain the
Applesoft BASIC interpreter. The ROMs are described in
Chapter 7. The Applesoft language is described in the Applesoft
Tutorial and the Applesoft Reference Manual.

Two of the large IC's are custom-made for the Apple lie: the
MMU and the IOU. The MMU IC contains most of the logic that
controls memory addressing in the Apple lie. The organization of
the memory is described in Chapter 4; the circuitry in the MMU
itself is described in Chapter 7.

The IOU IC contains most of the logic that controls the built-in
input/output features of the Apple lie. These features are
described in Chapter 2 and Chapter 3; the IOU circuits are
described in Chapter 7.

Introduction

-

-
-

--
-

-

--

-

-....
-....

--
.. -
.... ..

Figure 1-6 Expansion Slots

Connectors on The Circuit Board
The seven slots lined up along the back of the Apple lie circuit
board are the expansion slots, sometimes called peripheral slots
(see Figure 1-6). These slots make it possible to attach additional
hardware to the Apple lie. Chapter 6 tells you how your programs
deal with the devices that plug into these slots; Chapter 7
describes the circuitry for the slots themselves.

The large slot next to the left-hand side of the circuit board is the
auxiliary slot (Figure 1-7). If your Apple lie has an Apple lie SO­
column text card, it will be installed in this slot. The 80-column
display option is fully integrated into the Apple lie; it is described
along with the other display features in Chapter 2. The hardware
and firmware interfaces to this card are described in Chapter 7.

Connectors on The Circuit Board 7

Figure 1-7 Auxiliary Slot

Figure 1-8 Back Panel Connectors

There are also smaller connectors for game 1/0 and for an
internal RF (radio frequency) modulator. These connectors are
described in Chapter 7.

Connectors on the Back Panel
The back of the Apple lie has two miniature phone jacks for
connecting a cassette recorder, an RCA-type jack for a video
monitor, and a 9-pin D-type miniature connector for the hand
controls, as shown in Figure 1-8. In addition to these, there are
spaces for additional connectors used with the peripheral cards
installed in the Apple lie. The installation manuals for the
peripheral cards contain instructions for installing the
peripheral connectors.

Introduction

Chapter 2

Built-in I /0 Devices -
-

11 The Keyboard
13 Reading the Keyboard
17 The Video-display Generator
19 Text Modes - Text Character Sets 19
21 40-column versus 80-column Text
22 Graphics Modes - 22 Low-resolution Graphics
23 High-resolution Graphics
26 Display Pages
27 Display Mode Switching

.- 29 Addressing Display Pages Directly
35 Secondary Inputs and Outputs
35 The Speaker
36 Cassette Input and Output
37 The Hand Control Connector Signals
37 Annunciator Outputs
38 Strobe Output
38 Switch Inputs
39 Analog Inputs
40 Summary of Secondary 1/0 Locations

' -

Built-in 1/0 Devices 9

-
-

Chapter 2

Built-in 1/0 Devices

This chapter describes the input and output (1/0) devices built
into the Apple lie in terms of their functions and the way they are
used by programs. The built-in 1/0 devices are

• keyboard

• video-display generator

• speaker

• cassette input and output

• game input and output

At the lowest level , programs use the built-in 1/0 devices by
reading and writing to dedicated memory locations. This chapter
lists these locations for each 1/0 device. It also gives the
locations of the internal soft-switches that select the different
display modes of the Apple lie. For descriptions of the built-in
1/0 hardware, refer to Chapter 7.

This method of input and output - loading and storing directly to
specific locations in memory - is not the only method you can use.
For many of your programs, it may be more convenient to call the
built-in 1/0 routines stored in the Apple lie's firmware. These
firmware routines are described in Chapter 3.

The Keyboard
The primary input device of the Apple lie is its built-in keyboard.
The keyboard has 63 keys and is similar to the keyboard of a
typewriter. The Apple lie keyboard has automatic repeat on all
keys : hold the key down to repeat. It also has N-key rollover,
which means that you can hold down any number of keys while
typing another. Of course, if you hold the keys down much longer

The Keyboard

Figure 2-1 The Keyboard

Table 2-1 Apple lie Keyboard
Specifi cations

12

than the length of time you would hold them down during normal
typing , the automatic-repeat function will start repeating the last
key you pressed .

The keyboard arrangement shown in Figure 2-1 is the standard
one used in the United States. The specifications for the
keyboard are given in Table 2-1. Apple lie's manufactured for
sale in Europe have a slightly different standard keyboard
arrangement and include provisions for switching between two
different arrangements.

In addition to the keys normally used for typing characters, there
are four cursor-control keys with arrows: left, right, down, and up.
The cursor-control keys can be read the same as other keys;
their codes are $08, $15, $0A, and $08 (see Table 2-3a).

Number of keys: 63

Character encoding : ASCII

Number of codes :

Special keys :

128

I CONTROL I. I SHIFT 1.1 CAPS LOCK I, ~.
I RESET I. I LEFT-ARROW I. I RIGHT-ARROW I.
@!> -ARROW I. I DOWN-ARROW I. I OPEN-APPLE I.
I SOLID-APPLE I

Rollover: N-key

Electrical interface: AY-5-3600 keyboard encoder

Built-in 1/0 Devices

-
Table 2-2 Keyboard Memory
Locations

Hexadecimal refers to the base-16
number system, which uses the ten
digits 0 through 9 and the six letters A
through F to represent values from 0
to 15.

Four special keys, I CONTROL I, I SHIFT I , CAPS LOCK , and ~
change the codes generated by the other keys. The CONTROL

key is similar to the ASCII CTRL key. Three other keys have
special functions: the I RESET I key, and two keys marked with
apples, one outlined, or open, and one solid, or closed. Pressing
the I RESET I key with the I CONTROL I key depressed resets the
Apple lie, as described in Chapter 4. The Apple keys are
connected to the one-bit game inputs, described later in this
chapter.

The electrical interface between the Apple lie and the keyboard is
a ribbon cable with a 26-pin connector. This cable carries the
keyboard signals to the encoding circuitry on the main board. A
complete description of the electrical interface to the keyboard is
given in Chapter 7.

Reading the Keyboard

The keyboard encoder and ROM generate all 128 ASCII codes,
so all of the special character codes in the ASCII character set
are available from the keyboard. Machine-language programs
obtain character codes from the keyboard by reading a byte from
the keyboard-data location shown in Table 2-2.

Location
Hex Decimal Description

$COOO 49152 - 16384 Keyboarddataandstrobe

$C01 0 49168 - 16368 Any-key-down flag and Clear-strobe switch

Your programs can get the code for the last key pressed by
reading the keyboard-data location. Table 2-2 gives this location
in three different forms: the hexadecimal value used in assembly
language, indicated by a preceeding dollar sign ($) ; the decimal
value used in Applesoft BASIC, and the complementary decimal
value used in Apple Integer BASIC. (Integer BASIC requires that
values greater than 32767 be written as the number obtained by
subtracting 65536 from the value. These are the decimal
numbers shown as negative in the tables; refer to the Apple II
BASIC Programming Manual.) The low-order seven bits of the
byte at the keyboard location contain the character code; the
high-order bit of this byte is the strobe bit, described below.

The Keyboard 13

Table 2-3b Keys and ASCII Codes,
continued

Codes are shown here in hexadecimal;
to find the decimal equivalents, use
Table 2-4.

\

location. This location is a combination flag and switch; the flag
tells whether any key is down, and the switch clears the strobe
bit. The switch function of this memory location is called a soft
switch because it is controlled by software. In this case, it
doesn't matter whether the program reads or writes, and it
doesn't matter what data the program writes: the only action that
occurs is the resetting of the keyboard strobe. Similar soft
switches, described later, are used for controlling other functions
in the Apple lie.

Any time you read the Any-key-down flag, you also clear the
keyboard strobe. If your program needs to read both the flag and
the strobe, it must read the strobe bit first.

Key Normal Control Shift Both

]} 50 1D 70 1D
, _ 60 60 7E 7E

A 61 01 41 01

8 62 02 42 02

c 63 03 43 03

D 64 04 44 04

E 65 05 45 05

F 66 06 46 06

G 67 07 47 07

H 68 08 48 08

I 69 09 49 09

J 6A OA 4A OA

K 68 08 48 08

L 6C oc 4C oc
M 60 OD 40 OD

N 6E OE 4E OE

0 6F OF 4F OF
p 70 10 50 10

Q 71 11 51 11

R 72 12 52 12

s 73 13 53 13

T 74 14 54 14

u 75 15 55 15

v 76 16 56 16

w 77 17 57 17

X 78 18 58 18
y 79 19 59 19

z 7A 1A 5A 1A

The Keyboard

Table 2-4 The ASCII Character Set

Dec Hex Char

0 00 NUL

1 01 SOH

2 02 STX

3 03 ETX

4 04 EOT

5 05 ENO

6 06 ACK

7 07 BEL

8 08 BS

9 09 HT

10 OA LF

11 OB VT

12 OC FF

13 OD CA

14 OE SO

15 OF Sl
16 10 OLE

17 11 DC1

18 12 DC2

19 13 DC3

20 14 DC4

21 15 NAK

22 16 SYN

23 17 ETB

24 18 CAN

25 19 EM

26

27

28

29

30

31

1A

18

1C

1D

1E

1F

SUB

ESC

~
GS
AS

us

After the keyboard strobe has been cleared, it remains low until
another key is pressed. Even after you have cleared the strobe,
you can still read the character code at the keyboard location.
The data byte has a different value, because the high-order bit is
no longer set, but the ASCII code in the seven low-order bits is
the same until another key is pressed. Tables 2-3a and 2-3b
show the ASCII codes for most of the keys on the keyboard of
the Apple lie. ~

Dec Hex Char

32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 29

42 2A

SP

..

$

%

&

43 28 +
44 2C

45 20

46 2E

47 2F I
48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58

59

60

61

62

63

3A

38

3C

30

3E

3F

<

>
?

Built-in 1/0 Devices

Dec Hex Char

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

@

A

B

c
D

E

F

G

H

73 49 I

74 4A J

75 48 K

76 4C L

77 40 M

78 4E N

79 4F 0
80 50 p

81 51 0

82 52 A

83 53 s
84 54 T

85 55 u
86 56 v
87 57 w
88 58 X

89 59 y

90

91

92

93

94

95

5A

58

5C

50

5E

5F

z
[

\

"

Dec Hex Char

96 60

97 61 a
98 62 b

99 63 c
100 64 d

101 65 e
102 66

103 67 g

104 68 h

105 69

106 6A

107 68 k

108 6C

109 60 m

110 6E n

111 6F o
112 70 p

113 71 q

114 72

115 73 s
116 74

117 75 u

118 76 v

119 77 w

120 78 X

121 79 y

122 7A

123 78

124 7C

125 70

126 7E

127 7F

z
{

I
}

DEL

l

There are several special-function keys that do not enerate
ASCII codes. For example, youcannotreadthe CONTROL , (""I s=-H,_,I,...,F=T~I

and I CAPS LOCK I keys directly, but pressing one of these keys
alters the character codes produced by the other keys.

Another key that doesn't generate a code is the I RESET I key,
located at the upper-right corner of the keyboard; it is connected
directly to the Apple lie's circuits. Pressing the I RESET I key with
the I CONTROL I key depressed normally causes the system to stop
whatever program it's running and restart itself. This restarting
process is called the reset routine, and it is described in
Chapter 4.

Two more special keys are marked with two versions of the
Apple logo and located on either side of the space bar. The key
with the outlined apple is the I OPEN-APPLE I key; the key with the
solid-color apple is the I SOLID-APPLE I key. These keys are
connected to the one-bit game inputs, which are described later
in th \s chaptr Pressing them in combination with the I CONTROL I
and RESET keys causes the built-in firmware to perform special
reset and self-test cycles, described with the reset routine in
Chapter 4.

The Video Display Generator
The primary output device of the Apple lie is the video display.
You can use any ordinary video monitor, either color or black­
and-white, to display video information from the Apple lie. An
ordinary monitor is one that accepts composite video compatible
with the standard set by the NTSC (National Television
Standards Committee). If you use Apple lie color graphics with a
black-and-white monitor, the display will appear as different
shades of gray.

If you are only using 40-column text and graphics modes, you
can use a television set for your video display. If the TV set has
an input connector for composite video, you can connect it
directly to your Apple lie; if it does not, you'll need to attach an
RF video modulator between the Apple lie and the television set.

With the 80-column text card installed, the Apple lie can produce an
80-column text display. However, if you use an ordinary color or
black-and-white television set, SO-column text will be too blurry to
read. For a clear 80-column display, you must use a high-resolution
video monitor with a bandwidth of 14 MHz or greater.

The Video Display Generator

Table 2-5 Video Display
Specifications

The specifications for the video display are summarized in
Table 2-5.

Display modes:

Text capacity:

Character set:

40-column text
SO-column text with optional card
Low-resolution color graphics
High-resolution color graphics

24 lines by 40 columns
24 lines by 80 columns with
optional card

96 ASCII characters
(uppercase and lowercase)

Display formats : Normal, Inverse, Flashing

Low-resolution graphics: 16 colors, 40 horizontal by
48 vertical

High-resolution graphics: 6 colors, 280 horizontal by
192 vertical

The video signal produced by the Apple lie is NTSC-compatible - I
composite color video. It is available at three places: the RCA- _....J
type phono jack on the back of the Apple lie, the single Molex­
type pin on the main circuit board near the back on the right
side, and one of the group of four Molex-type pins in the same
area on the main board. Use the RCA-type phono jack to
connect a video monitor or an external video modulator; use the
Molex pins to connect the type of video modulator that fits inside
the Apple lie case. For a full description of the video signal and
the connections to the Molex-type pins, refer to the section
"Video Output Signals" in Chapter 7.

The Apple lie can produce four different kinds of video display:

• Text, 24 lines of 40 characters

• Text, 24 lines of 80 characters (with optional card)

• Low-resolution graphics, 40 by 48, in 16 colors

• High-resolution graphics, 280 by 192, in 6 colors

I

Built-in 1/0 Devices

--

--
-

-

Either of the two text modes can display all 96 ASCII characters:
the upper- and lowercase letters, numbers, and symbols.

Either of the graphics displays can have four lines of text, either
40-column or 80-column, at the bottom of the screen. Graphics
displays with text at the bottom are called mixed-mode displays.

The low-resolution graphics display is an array of colored blocks,
40 wide by 48 high, in any of sixteen colors. In mixed mode, the
four lines of text replace the bottom eight rows of blocks, leaving
40 rows of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide
by 192 high. There are six colors available in high-resolution
displays, but a given dot can only use four of the six colors. In
mixed mode, the four lines of text replace the bottom 32 rows of
dots, leaving 160 rows of 280 dots each.

Text Modes

The text characters displayed include the upper- and lowercase
letters, the ten digits, punctuation marks, and special characters.
Each character is displayed in an area of the screen that is
seven dots wide by eight dots high. The characters are formed
by a dot matrix five dots wide, leaving two blank columns of dots
between characters in a row. Except for lowercase letters with
descenders, the characters are only seven dots high, leaving one
blank line of dots between rows of characters.

The normal display has white (or other single color) dots on a
black background. Characters can also be displayed as black
dots on a white background; this is called inverse format.

Text Character Sets

The Apple lie can display either of two text character sets: the
primary set or an alternate set. The forms of the characters in
the two sets are actually the same, but the available display
formats are different. The display formats are

• normal, with white dots on a black screen;

• inverse, with black dots on a white screen ; and

• flashing, alternating between normal and inverse.

The Video Display Generator

Table 2-6 The Display Character Sets

To identify particular characters and
values, refer to Table 2-4.

20

With the primary character set, the Apple lie can display
uppercase characters in all three formats : normal, inverse, and
flashing. Lowercase letters can only be displayed in normal
format. The primary character set is compatible with most
software written for the Apple II and Apple II Plus models, which
can display text in flashing format but don't have lowercase
characters.

The alternate character set sacrifices the flashing format for a
complete inverse format. With the alternate character set, the
Apple lie can display uppercase letters, lowercase letters,
numbers, and special characters in either normal format or
inverse format.

You select the character set by means of the alternate-text soft
switch, described below in the section " Display Mode Switching".
Table 2-6 shows the character codes in decimal and hexadecimal
for the Apple lie primary and alternate character sets in normal ,
inverse, and flashing formats.

Primary Character Set: Alternate Character Set:
Hex Values Character Type Format Character Type Format

$00-$1F Uppercase letters Inverse Uppercase letters Inverse

$20-$3F Special characters Inverse Special characters Inverse

$40-$5F Uppercase letters Flashing Uppercase letters Inverse

$60-$7F Special characters Flashing Lowercase letters Inverse

$80-$9F Uppercase letters Normal Uppercase letters Normal

$AO-$BF Special characters Normal Special characters Normal

$CO-$DF Uppercase letters Normal Uppercase letters Normal

$EO-$FF Lowercase letters Normal Lowercase letters Normal

e·uilt-in 1/0 Devices

..-.

~
- I

...-..

...--

_J

•
Figure 2-2 40-column Text Display

Each character on the screen is stored as one byte of display
data. The low-order six bits make up the ASCII code of the
character being displayed. The remaining two (high-order) bits
select inverse or flashing format and uppercase or lowercase
characters. In the primary character set, bit 7 selects inverse or
normal format and bit 6 controls character flashing. In the
alternate character set, bit 6 selects between upper- and
lowercase, according to the ASCII character codes, and flashing
format is not available.

40-co/umn versus 80-co/umn Text

The Apple lie has two modes of text display: 40-column and SO­
column. (The SO-column display mode described in this manual is
the one you get with the SO-column text card or other auxiliary­
memory card installed in the auxiliary slot.) The number of dots
in each character does not change, but the characters in SO­
column mode are only half as wide as the characters in 40-
column mode. Compare Figure 2-2 and Figure 2-3. On an
ordinary color or black-and-white television set, the narrow
characters in the SO-column display blur together; you must use
the 40-column mode to display text on a television set.

J LIST 0.100
10 REM APPLESOFT CHARACTER DEMO

40

50

60
65
70

80

90

100

]

TEXT • HOME
PRINT • PRINT "Applesoft Char
acter DeMo"

PRINT •.PRINT "Which characte
r ~Ft--"

PRIRf- INPUT "PriMar~ CP ' or
Alternate (A) 7";A$­

IF LEN CA S) < 1 THEN 50
LET A$= LEFTS CAS,!)
IF AS "P" TH EN POKE 49166,

H
I~ AS = "A" TH EN POKE 49167.

H
P~INT • PRINT "

e saMe line.
PRINT " in Nn
RSE .then FL~

[
!!

rintinq th . -

then INUE
PRINT

The Video Display Generator 21

• Figure 2-3 SO-column Text Display

22

Graphics Modes

The Apple lie can produce video graphics in either of two
different modes. Both graphics modes treat the screen as a
rectangular array of spots. Normally, your programs will use the
features of some high-level language to draw graphics dots,
lines, and shapes in these arrays; this section describes the way
the resulting graphics data are stored in the Apple lie's memory.

Low-resolution Graphics

In the low-resolution graphics mode, the Apple lie displays an
array of 48 rows by 40 columns of colored blocks. Each block
can be any one of sixteen colors, including black and white. On
a black-and-white monitor or television set, these colors appear
as black, white, and three shades of gray. There are no blank
dots between blocks; adjacent blocks of the same color merge to
make a larger shape.

Data for the low-resolution graphics display is stored in the same
part of memory as the data for the 40-column text display. Each
byte contains data for two low-resolution graphics blocks. The
two blocks are displayed one atop the other in a display space
the same size as a 40-column text character, seven dots wide 9Y
eight dots high.

Half a byte - four bits, or one nybble - is assigned to each
graphics block. Each nybble can have a value from 0 to 15, and
this value determines which one of sixteen colors appears on the

Built-in 1/0 Devices

Table 2-7 Low-resolution Graphics
Colors

Colors may vary, depending upon the
controls on the monitor or television
set.

I

screen. The colors and their corresponding nybble values are
shown in Table 2-7. In each byte, the low-order nybble sets the
color for the top block of the pair, and the high-order nybble sets
the color for the bottom block. Thus, a byte containing the
hexadecimal value $D8 produces a brown block atop a yellow
block on the screen.

Nybble Value Color Nybble Value Color
Decimal Hex Decimal Hex

0 $0 Black 8 $8 Brown

$1 Magenta 9 $9 Orange

2 $2 Dark Blue 10 $A Grey 2

3 $3 Purple 11 $B Pink

4 $4 Dark Green 12 $C Light Green

5 $5 Grey 1 13 $D Yellow

6 $6 Medium Blue 14 $E Aquamarine

7 $7 Light Blue 15 $F White

As explained below in the section "Display Pages", the text
display and the low-resolution graphics display use the same
area in memory. Most programs that generate text and graphics
clear this part of memory when they change display modes, but it
is possible to store data as text and display it as graphics, or
vice-versa. All you have to do is change the mode switch,
described in the section "Display Mode Switching", without
changing the display data. This usually produces meaningless
jumbles on the display, but some programs have used this
technique to good advantage for producing complex low­
resolution graphics displays quickly.

High-resolution Graphics

In the high-resolution graphics mode, the Apple lie displays an
array of colored dots in 192 rows and 280 columns. The colors
available are black, white, purple, green, orange, and blue,
although the colors of the individual dots are limited, as
described below. Adjacent dots of the same color merge to form
a larger colored area.

The Video Display Generator

/

I

Data for the high-resolution graphics displays are stored in either
of two 8192-byte areas in memory. These areas are called high­
resolution Page 1 and Page 2; think of them as buffers where
you can put data to be displayed. Normally, your programs will
use the features of some high-level language to draw graphics
dots, lines, and shapes to display; this section describes the way
the resulting graphics data are stored in the Apple lie's memory.

The Apple lie high-resolution graphics display is bit-mapped : each
dot on the screen corresponds to a bit in the Apple lie's memory.
The seven low-order bits of each display byte control a row of
seven adjacent dots on the screen, and forty adjacent bytes in
memory control a row of 280 (7 times 40) dots. The least
significant bit of each byte is displayed as the leftmost dot in a
row of seven, followed by the second-least significant bit, and so
on, as shown in Figure 2-4. The eighth bit (the most significant)
of each byte is not displayed; it selects one of two color sets, as
described below.

On a black-and-white monitor, there is a simple correspondence
between bits in memory and dots on the screen. A dot is white if
the bit controlling it is on (1), and the dot is black if the bit is off
(0). On a black-and-white television set, pairs of dots blur
together; alternating black and white dots merge to a continuous
grey.

On an NTSC color monitor or a color television set, a dot whose
controlling bit is off (0) is black. If the bit is on , the dot will be
white or a color, depending on its position, the dots on either
side, and the setting of the high-order bit of the byte. Call the
left-most column of dots column zero , and assume (for the
moment) that the high-order bits of all the data bytes are off (0).
If the bits that control them are on, dots in even-numbered
columns, 0, 2, 4, and so forth , are purple, and dots in odd­
numbered columns are green - but only if the dots on either
side are black. If two adjacent dots are both on , they are both
white.

You select the other two colors, blue and orange, by turning the
high-order bit (bit 7) of a data byte on (1). The colored dots
controlled by a byte with the high-order bit on are either blue or
orange : the dots in even-numbered columns are blue, and the
dots in odd-numbered columns are orange - again, only if the
dots on either side are black. Within each horizontal line of seven
dots controlled by a single byte, you can have black, white, and

Built-in 1/0 Devices J

Table 2-8 High-resolution Graphics
Colors

Colors may vary, depending on the
adjustment of the monitor or television
set.

Figure 2-4 High-resolution Display Bits

Bits in Data Byte

0

Dots on Graphics Screen

I

one pair of colors. To change the color of any dot to one of the
other pair of colors, you must change the high-order bit of its
byte, which affects the colors of all seven dots controlled by the
byte.

In other words, high-resolution graphics displayed on a color
monitor or television set are made up of colored dots, according
to the following rules:

• Dots in even columns can be black, purple, or blue.

• Dots in odd columns can be black, green, or orange.

• If adjacent dots in a row are both on, they are both white.

• The colors in each row of seven dots controlled by a single
byte are either purple and green, or blue and orange,
depending on whether the high-order bit is off (0) or on (1).

These rules are summarized in Table 2-8. The blacks and whites
are numbered to remind you that the high-order bit is different. --
Bits 0-6 Bit 7 Off Bit 7 On

Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
Odd columns on Green Orange
Adjacent columns on White 1 White 2

The peculiar behavior of the high-resolution colors reflects the
way NTSC color television works. The dots that make up the
Apple lie video signal are spaced to coincide with the frequency
of the color subcarrier used in the NTSC system. Alternating
black and white dots at this spacing cause a color monitor or TV
set to produce color, but two or more white dots together do not.
For more details about the way the Apple lie produces color on a
TV set, see Chapter 7. For information about the way NTSC
color television works, see the magazine articles listed in the
bibliography.

The Video Display Generator 25

Display Pages

The Apple lie generates its video displays using data stored in
specific areas in memory. These areas, called display pages,
serve as buffers where your programs can put data to be
displayed. Each byte in a display buffer controls an object at a
certain location on the display. In text mode, the object is a
single character; in low-resolution graphics, the object is two
stacked colored blocks; and in high-resolution mode, it is a line
of seven adjacent dots.

The 40-column-text and low-resolution-graphics modes use two
display pages of 1024 bytes each. These are called text Page 1
and Text Page 2, and they are located at 1024-2047 (hexadecimal
s 40 o- s 7FF)and 20 48-3071 ($800- SBFF) in main memory. Normally,
only Page 1 is used, but you can put text or graphics data into
Page 2 and swit9h displays instantly. Either page can be
displayed as 40jcolumn text, low-resolution graphics, or mixed­
mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the
40-column mode - 1920 bytes - but it cannot switch pages. The
80-column text display uses a combination page made up of text
Page 1 in main memory plus another page in auxiliary memory
located on the 80-column text card . This additional memory is NOT
the same as text Page 2 - in fact, it occupies the same address
space as text Page 1 , and there is a special soft switch that enables
you to store data into it (see the section "Display Mode Switching",
below). The built-in firmware 1/0 routines described in Chapter 3
take care of this extra addressing automatically; that is one reason
to use those routines for all your normal text output.

The high-resolution graphics mode also has two display pages,
but each page is 8192 bytes long. In the 40-column text and low­
resolution graphics modes each byte controls a display area
seven dots wide by eight dots high. In high-resolution graphics
mode each byte controls an area seven dots wide by one dot
high. Thus, a high-resolution display requires eight times as
much data storage, as shown in Table 2-9.

Built-in 1/0 Devices

Table 2-9 Video Display Page
Locations

*Note: 80-column mode uses the
1024-byte page-1 locations in both
main and auxiliary memory. The
PAGE2 switch is used to select one
or the other for storing data (see the
section "Display Mode Switching").

I

Lowest Highest
Display mode Page Address Address

40-column Text, $400 1 024 S7FF 2047
Low-resolution
Graphics 2 $800 2048 SBFF 3071

80-column Text 1. $400 1024 S7FF 2047

High-resolution $2000 8192 $3FFF 16383
Graphics

2 $4000 16384 $5FFF 24575

Display Mode Switching

You select the displaf mode that is appropriate for your
·application by reading or writing to a reserved memory location
called a soft switch. In the Apple lie, most soft switches have
three memory locations reserved for them: one for turning the
switch on, one for turning it off, and one for reading the current
state of the switch.

Table 2-1 0 shows the reserved locations for the soft switches
that control the different display modes. For example, to switch
from mixed-mode to full-screen graphics in an assembly-language
program, you could use the instruction:

STA $C052

To do this in a BASIC program, you could use the instruction:

POKE 49234, 0

The table gives the switch locations in three forms: hexadecimal,
decimal, and negative decimal. You can use the hexadecimal
values in your machine-language programs. Use the decimal
values in PEEK or POKE commands in Applesoft BASIC; the
negative values are for Integer BASIC.

You may not need to deal with these functions by reading and
writing directly to the memory locations in this table. Many of the
functions shown here are selected automatically if you use the
display routines in the various high-level languages on the Apple lie.

The Video Display Generator

Some of the soft switches in Table 2-10 are marked read or
write. Those soft switches share their locations with the keyboard
data and strobe functions. In the original Apple II , memory
locations from $COOO to $C01 F (49152 to 49183} were used only for
the keyboard data and strobe functions. In the Apple lie, these ,........
locations are used the same way, but only when you read to get
data and write to clear the strobe. To perform the function shown

.-J in the table, use the operation listed there. Soft switches that are
not marked may be accessed by either a read or a write. When
writing to a soft switch, it doesn't matter what value you write;
the action occurs when you address the location, and the value ~
is ignored.

~ Table 2-10 Display Soft Switches Location

(1) This mode is only effective when
Name Function Hex Decimal Notes

J graphics-mode switch is ON.
(2) This switch has a different function ALTCHARSET Alternate char. set on $COOF 49167 - 16369 Write
when the 80-column text card's Alternate char. set off $COOE 49166 - 16370 Write
auxiliary text page is enabled for Read AL TCHARSET switch $C01E 49182 - 16354 Read
writing . Refer to the next section ,
"Addressing Display Pages Directly".

TEXT Text mode on $C051 49233 - 16303
(3) This switch changes the function of Text mode off (graphics) $COSO 49232 - 16304
the PAGE2 switch for addressing the Read TEXT switch $C01A 49178 - 16358 Read
auxil iary text memory on the extended
80-column text card. The next section
describes how to do this. MIXED Mixed-mode on $C053 49235 - 16301

(4) Reading this location returns the Mixed-mode off $C0 52 49234 - 16302

state of the vertical blanking Read MIXED switch $C01 B 49179 - 16357 Read

signal VBL . The function of VBL is
described in Chapter 7 in the section PAGE2 Page 2 on $COSS 49237 - 16299 2
"Video Output Signals." Page 2 off (Page 1) $C054 49236 - 16300 2

Read PAGE2 switch $C01C 49180 - 16356 Read

HIRES Hi-res mode on $C057 49239 - 16297
Hi-res mode off $C0 56 49238 - 16298
Read H I REs switch $C01D 49181 - 16355 Read

80COL 80-column display on $COOD 49165 - 16371 Write
80-column display off $COOC 49164 - 16372 Write
Read 80CDL switch $C01F 49183 - 16353 Read

80STORE Store in auxiliary memory $C001 49153 - 16383 Write, 3
Store in main memory $COOO 49152 - 16384 Write, 3
Read 80STORE switch $C018 49176 - 16360 Read

VBL Read vertical blanking $C019 49177 - 16359 Read , 4

28 Built-in 1/0 Devices

I

Any time you read a soft switch , you get a byte of data.
However, the only information the byte contains is the state of
the switch, and this occupies only one bit - bit 7, the high-order
bit. The other bits in the byte are unpredictable. If you are
programming in machine language, the switch setting is the sign
bit ; as soon as you read the byte, you can do a Branch Plus if
the switch is off, or Branch Minus if the switch if on .

If you read a soft-switch from a BASIC program, you get a value
between 0 and 255. Bit 7 has a value of 128, so if the switch is
on, the value will be equal to or greater than 128; if the switch is
off, the value will be less than 128.

Addressing Display Pages Directly

Before you decide to use the display pages directly, consider the
alternatives. Most high-l~~el languages enable you to write
statements that control tMe text and graphics displays. Similarly, if
you are programming in assembly language, you may be able to
use the display features of the built-in 1/0 firmware . You should
store directly into display memory only if the existing programs
can't meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6, 2-7,
and 2-8. All of the different display modes use the same basic
addressing scheme: characters or graphics bytes are stored as
rows of 40 contiguous bytes, but the rows themselves are not
stored at locations corresponding to their locations on the display.
Instead, the display address is transformed so that three rows
that are eight rows apart on the display are grouped together and
stored in the first 120 locations of each block of 128 bytes ($80
hexadecimal) . By folding the display data into memory this way,
the Apple lie, like the Apple II , stores all 960 characters of
displayed text within 1 K bytes of memory. For a full description of
the way the Apple lie handles its display memory, refer to the
section "Display Memory Addressing" in Chapter 7.

The high-resolution graphics display is stored in much the same
way as text, but there are eight times as many bytes to store,
because eight rows of dots occupy the same space on the
display as one row of characters. The subset consisting of all the
first rows from the groups of eight is stored in the first 1024
bytes of the high-resolution display page. The subset consisting
of all the second rows from the groups of eight is stored in the
second 1024 bytes, and so on for a total of 8 times 1024, or

The Video Display Generator 29

8192 bytes. In other words, each block of 1024 by1es in the high­
resolution display page contains one row of dots out of every
group of eight rows. The individual rows are stored in sets of
three forty-by1e rows, the same way as the text display.

All of the display modes except 80-column mode can use either
of two display pages. The display maps show addresses only for
each Page 1. To obtain addresses for text or low-resolution
graphics Page 2, add 1024 ($400); to obtain addresses for high­
resolution Page 2, add 8192 ($2000).

The 80-column display works a little differently. Half of the data is
stored in the normal text Page-1 memory, and the other half is
stored in memory on the 80-column text cardliSfng the same
addresses. The display circuitry fetches by1es from these two
memory areas simultaneously and displays them sequentially:
first the byte from the 80-column text card memory, then the byte
from the main memory. The main memory stores the characters
in the odd columns of the display, and the 80-column text card
memory stores the characters in the even columns.

To store display data on the 80-column text card, first turn on the
80STDRE soft switch by writing to location 491 53 (hexadecimal sco o 1
or complementary -1 6383). With 80 STD RE on, the page-select switch
PAGE2 selects between the portion of the 80-column display stored
in Page 1 of main memory and the portion stored in the SO­
column text card memory. To select the 80-column text card , turn
the PAGE2 soft switch on by reading or writing at location 49237 .
For more details about the way the displays are generated, see
Chapter 7.

Built-in 1/0 Devices

I

Figure 2-5 Map of 40-column Text
Display

0 NM'">tl()<Dr---com

$400 1024

$480 1 152

$500 1280

$580 1408

$600 1536

$680 1664

$700 1792

$780 1920

$428 1064

$4A8 1192

$528 1320

$5A8 1448

$628 1576

$6A8 1704

$728 1832

$7A8 1960

$450 1104

$4 00 1232

$550 1360

$500 1488

$650 1616

$60 0 1744

$750 1872

$7 0 0 2000

0 NM'Q"lO<.Of"--COO'>O N("')'VlOC.Of'-...C()(j)O NC"')-.;tl[)(()f"'-..COO'>
NNNNC\J C\.iC\JNNN(")C")C"')C"')C"')(")C")C")C")("')

\
I

The Video Display Generator

Figure 2-6 Map of 80-column Text
Display

MAIN
MEMORY

AUXILIARY
MEMORY

$400

$480

$500

$580

$600

$680

$700

$780

$428

$4A8

$528

$5A8

$628

$6A8

$728

$7A8

$450

$400

$550

$500

$650

$600

$750

$700

1024

1152

1280

1408

1536

1664

1792

1920

1064

1192

1320

1448

1576

1704

1832

1960

1104

1232

1360

1488

1616

1744

1872

2000

$00 $01 $02 $03 $04 $05 $06
012 3 4 56

$00 $01 $02 $03 $04 $05 $06 $07
0 1 2 3 4 5 6 7

ll

~

I
li
1\

J
I
~

ll

\
_j
J

1/
l1

~

~
J

32 Built-in 1/0 Devices

I
'
\
J
,
\
L
\

I
I
\
\

I
\
\
}

I

$49 $4A $48 $4C $40 $4E $4F
73 74 75 76 77 78 79

$49 $4A $48 $4C $40 $4E $4F
73 74 75 76 77 78 79

11

'

I

Figure 2-7 Map of Low-resolution
Graphics Display

$400

$480

$500

$580

$600

$680

$700

$780

$428

$4A8

$528

$5A8

$628

$6A8

$728

$7A8

$450

$40 0

$550

$50 0

$650

$60 0

$750

$7 0 0

1024

1152

1280

1408

1536

1664

1792

1920

1064

1192

1320

1448

1576

1704

1832

1960

1104

1232

1360

1488

16 16

1744

1872

2000

0 N('l')""\tL()<.Of'--COO'><(CO() O WlLO N(T)-.;tl[)CO,...._COO'><(CO()OW U. O NC")<qlOCOf'--

~££££~££££££££££~~~~~~~~~~~;~~~~~~~~~~~~

0
0 NM...,.L{)<er--..rocn

The Video Display Generator

Figure 2·8 Map of High-resolution
Graphics Display

Or-NC')Vt0<0f"-..OJO')

$2000 8192

$2080 8320

$2100 8448

$2180 8576

$2200 8704

$2280 8832

$2300 8960

$2380 9088

$2028 8232

$20A8 8360

$2128 8488

$21A8 8616

$2228 8744

$22A8 8872

$2328 9000

$23A8 9128

$2050 8272

$2000 8400

$2150 8528

$2100 8656

$2250 8784

$2200 8912

$2350 9040

$2300 9168

34

0 N('l')-.;ttO<Or--comO C\J(")"d'lO<Df'-..COO>O N('l')-.;tlOCDf"-..COO>
NNNNNNNNNN("')('I')C')('I')C")C')('I')C')C')(")

~- --- _ -........

\ I I I I 0 $0000

I I I 1024 $0400
1\
\ I I 2048 $0800
\

I I 3072 $0COO

_1
I I \ 4096 $1000

I I 5120 $1400

1\
I I \ 6144 $1800

I I I I 7168 $ 1COO

Built-in 1/0 Devices

I

Secondary Inputs and Outputs
In addition to the primary 1/0 devices -the keyboard and
display - there are several secondary input and output devices
in the Apple lie. These devices are

• The speaker (output)

• Cassette input and output

• Annunciator outputs

• Strobe output

• Switch inputs

• Analog (hand control) inputs

\
These devices are similar in operation to the soft switches
described in the previous section: you control them by reading or
writing to dedicated memory locations. Action takes place any
time your program reads or writes to one of these locations;
information written is ignored.

Some of these devices toggle - change state - each time they
are accessed. If you write using an indexed store operation, the
Apple lie's 6502 microprocessor activates the address bus twice
during successive clock cycles, causing a device that toggles each
time it is addressed to end up back in its original state. For this
reason, you should read, rather than write, to such devices.

The Speaker

The Apple lie has a small speaker mounted toward the front of
the bottom plate. The speaker is connected to a soft switch that
toggles; it has two states, off and on, and it changes from one to
the other each time it is accessed. Electrical specifications of the
speaker circuit appear in Chapter 7.

If you switch the speaker once, it emits a click; to make longer
sounds, you access the speaker repeatedly. You should always
use a read operation to toggle the speaker. If you write to this
soft switch, it switches twice in rapid succession. The resulting
pulse is so short that the speaker doesn't have time to respond;
it doesn't make a sound.

The soft switch for the speaker uses memory location 49200
(hexadecimal SC030). From Integer BASIC, use the complementary
address -1 6336. You can make various tones and buzzes with the

Secondary Inputs and Outputs

speaker by using combinations of timing loops in your program.
There is also a routine in the built-in firmware to make a beep
through the speaker. This routine is called BELL 1 ; it is described in
Appendix C.

Cassette Input and Output

There are two miniature phone jacks on the back panel of the
Apple lie. You can use a pair of standard cables with miniature
phone plugs to connect an ordinary cassette tape recorder to the
Apple lie and save programs and data on audio cassettes.

The phone jack marked with a picture of an arrow poi~~ng
towards a cassette is the output jack. It is connected to a toggled
soft switch, like the speaker switch described above. The signal
at the phone jack switches from zero to 25 millivolts or from 25
millivolts to zero each time you access the soft switch. Detailed
electrical specifications for the cassette input and output are
given in Chapter 7.

If you connect a cable from this jack to the microphone input of a
cassette tape recorder and switch the recorder to record mode,
the signal changes you produce by accessing this soft switch will
be recorded on the tape. The cassette output switch uses
memory location 491 84 (hexadecimal $co 2 o; complementary value
-1 6352). Like the speaker, this output will toggle twice if you write
to it, so you should only use read operations to control the
cassette output.

The standard method for writing computer data on audio tapes
uses tones with two different pitches to represent the binary
states zero and one. To store data, you convert the data into a
stream of bits, and convert the bits into the appropriate tones. To
save you the trouble of actually programming the tones, and to
ensure consistency among all Apple II cassette tapes, there is a
built-in routine for producing cassette data output. This routine,
called WRITE , is described in Appendix C.

The phone jack marked with a picture of an arrow coming from a
cassette is the input jack. It accepts a cable from the cassette
recorder's earphone jack. The signal from the cassette is 1 volt
(peak-to-peak) audio. Each time the instantaneous value of this
audio signal changes from positive to negative, or vice-versa, the
state of the cassette input circuit changes from zero to one or
vice-versa. You can read the state of this circuit at memory
location 49248 (hexadecimal SC060 , or complementary decimal
-16288).

Built-in 1/0 Devices

When you read this location , you get a byte, but only the high­
order bit (bit 7) is valid. If you are programming in machine
language, this is the sign bit, so you can perform a Branch Plus
or Branch Minus immediately after reading this byte. BASIC is
too slow to keep up with the audio tones used for data recording
on tape, but you don't need to write the program: there is a built­
in routine for reading data from a cassette . It is called READ, and it
is described in Appendix C.

The Hand Control Connector Signals

Several inputs are available on a 9-pin D-type miniature
connector on the back of the Apple lie: three one-bit inputs, or
switches, and four analog inputs. These signals are also
available on the sixteen-pin IC connector on the main circuit
board, along with four one-bit outp~nd a data strobe. You can
access all of these signals from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin
connector. The rotary controls use two analog inputs, and the
push-buttons use two one-bit inputs. However, you can also use
these inputs and outputs for many other jobs. For example, two
analog inputs can be used with a two-axis joystick. Complete
electrical specifications of these inputs and outputs are given in
Chapter 7; Table 7-18 shows the connector pin numbers.

Annunciator Outputs

The four one-bit outputs are called annunciators. Each
annunciator can be used to turn a lamp, a relay, or some similar
electronic device on and off. For electrical specifications of the
annunciator outputs, refer to Chapter 7.

Each annunciator is controlled by a soft switch, and each switch
uses a pair of memory locations. These memory locations are
shown in Table 2-11 . Any reference to the first location of a pair
turns the corresponding annunciator off; a reference to the
second location turns the annunciator on. There is no way to
read the state of an annunciator.

Secondary Inputs and Outputs 37

Table 2-11 Annunciator Memory
Locations

*Pin numbers given are tor the 16-pin
IC connector on the circuit board.

38

Annunciator Address
No. Pin* State Decimal Hex

0 15 off 49240 -16296 sco5B
on 49241 -1 6295 SC059

14 off 49242 -1 6294 SC05A
on 49243 -1 6293 SC058

2 13 off 49244 -16292 SC05C
on 49245 -16291 SC05D

3 12 off 49246 -1 6290 SC05E
on 49247 - 16289 SC05F

Strobe Output

The strobe output is normally at + 5 volts, but it drops to zero for
about half a microsecond any time its dedicated mem6ry location
is accessed. You can use this signal to control functiohs such as
data latching in external devices. If you use this signal ,
remember that memory is addressed twice by a write ; if you
need only a single pulse, use a read operation to activate the
strobe. The memory location for the strobe signal is 49216
(hexadecimal SC040 or complementary -16320).

Switch Inputs

The three one-bit inputs can be connected to the output of
another electronic device or to a pushbutton. When you read a
byte from one of these locations, only the high-order bit - bit
7- is valid information; the rest of the byte is undefined. From
machine language, you can do a Branch Plus or Branch Minus
on the state of bit 7. From BASIC, you read the switch with a
PEEK and compare the value with 128. If the value is 128 or
greater, the switch is on.

The memory locations for these switches are 49249 through
49251 (hexadecimal SC061 through SC063, orcomplementary
-16287 through -16285), as shown in Table 2-12. Switch 0
and switch 1 are permanently connected to the I OPEN-APPLE I and
I SOL I D-APPLE I keys on the keyboard; these are the ones normally
connected to the buttons on the hand controls. Some software
for the older models of the Apple II uses the third switch, switch

Built-in 1/0 Devices

2, as a way of detecting the shift key. This technique requires a
hardware modification known as the single-wire shift-key mod.

To perform this modification on your Apple lie, all you have to do is
solder across the broken circle labelled xs on the main circuit board.
Early production Apple lies, identified by a circuit board part number
ending in -A, have the shift-key mod active; you can remove it by
breaking the circuit at xs . Remember to turn off the power before
changing anything inside the Apple lie. Also remember that changes
such as this are at your own risk and may void the warranty.

Warning
If you make the shift-key modification and connect a joystick or
other hand control that uses switch 2, you must be careful never to
close the switch and press the \sH 1FT !key at the same time: doing
this produces a short circuit that causes the power supply to turn
off. When this happens, any programs or data in the computer's
internal memory are lost.

Analog Inputs_
The four analog inputs are designed for use with 150K ohm
variable resistors or potentiometers. The variable resistance is
connected between the +5V supply and each input, so that it
makes up part of a timing circuit (refer to Chapter 7 for details).
The circuit changes state when its time constant has elapsed,
and the time constant varies as the resistance varies. Your
program can measure this time by counting in a loop until the
circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset
the timing circuits. Accessing memory location 49264 (hexadecimal
$C07.o or complementary -16272) does this. As soon as you reset
the timing circuits, the high bits of the bytes at locations 49252
through 49255 (hexadecimal $C064 through $C067 or complementary
-16284 through -1 6281) are set to one. If you PEEK at them from
BASIC, the values will be 128 or greater. Within about 3
miUiseconds, these bits will change back to zero - byte values
less than 128 - and remain there until you reset the timing
circuits again. The exact time each of the four bits remains high
is directly proportional to the resistance connected to the
corresponding input. If these inputs are open - no resistances
are connected - the corresponding bits may remain high
indefinitely.

To read the analog inputs from machine language, you can use
a program loop that resets the timers and then increments a
counter until the bit at the appropriate memory location changes

Secondary Inputs and Outputs

to zero, or you can use the built-in routine. It is called PREAD , and
it is described in Appendix C. BASIC and other high-level
languages also include convenient means of reading the analog
inputs: refer to your language manuals.

Summary of Secondary I /0 Locations

Table 2-12 shows the memory locations for all of the built-in 1/0

~ devices except the keyboard and display. As explained above,
some soft switches should only be accessed by means of read
operations; those switches are marked.

Table 2-12 Secondary 1/0 Memory Address ~ Locations Function _./"'Decimal Hex Notes

For connector identification and pin numbers, refer to Tables 7-17 and Speaker 49200 -1 6336 $C030 Read
7-18. ~

Cassette Out 49184 - 16352 $C020 Read
Cassette In 49248 - 16288 $C060 Read ~
Annunciator 0 On 49241 - 16295 $C0 59
Annunciator 0 Off 49240 - 16296 $C0 58 ~

Annunciator 1 On 49243 - 16293 $C05B
Annunciator 1 Off 49242 - 16294 $C05A
Annunciator 2 On 49245 - 16291 $C05D It· «
Annunciator 2 Off 49244 - 16292 $C05C

..-
Annunciator 3 On 49247 - 16289 $C05F
Annunciator 3 Off 49246 - 16290 $C05E

Strobe Output 49216 - 16320 $C040 Read
......-

Switch Input 0 49249 -1 6287 $C061 Read-
(ioPEM- APPLEI key)

Switch Input 1 49250 - 16286 $C062 Read

(i SOLID- APPLE I key) w:: Switch Input 2 49251 - 16285 $C063 Read

Analog Input Reset 49264 - 16272 SC070

Analog Input 0 49252 - 1628 4 $C064 Read
Analog Input 1 49253 - 1628 3 $C065 Read
Analog Input 2 49254 - 16282 $C066 Read
Analog Input 3 49255 -1 6281 $C067 Read

Built-in 1/0 Devices

L:
L

I

Built-in I /0 Firmware

44 Using the 1/0 Subroutines
44 Apple II Compatibility/
45 The 80-column Firmware
47 The Old Monitor
47 The Standard 1/0 Links
48 Standard Output Features
48 GOUT Output Subroutine
50 Control Characters with COUT1
50
50
52
53
53
54
55
56
56
58
58
58
58

The Stop-List Feature
The Text Window
Inverse and Flashing Text

Standard Input Features
RDKEV Input Subroutine
KEVIN Input Subroutine

Escape Codes with KEVIN
Cursor Motion in Escape Mode

GETLN Input Subroutine
Editing with GETLN

Cancel Line
Backspace
Retype

Built-in 1/0 Firmware

I

The Monitor, or System Monitor, is a
computer program that is used to
operate the computer at the machine
level.

Table 3-1 Standard 1/0 Subroutines

Chapter 3

Built-in 1/0 Firmware

Almost every program on the Apple lie takes input from the
keyboard and sends output to the display. The Monitor and the
Applesoft and Integer BASICs do this by means of standard 1/0
subroutines that are built into the Apple lie's firmware. Many
applications programs also use the standard 1/0 subroutines, but
programs written in Pascal do not; Pascal has its own 1/0
subroutines.

This chapter describes the features of these subroutines as they
are used by the Monitor and by the BASIC interpreters, and tells
you how to use the standard subroutines in your assembly­
language programs.

High-level languages already include convenient methods for
handling most of the functions described in this chapter. You should
not need to use the standard 1/0 subroutines in your programs
unless you are programming in assembly language.

Subroutine
Name

COUT

RDKEY

KEY IN

GETLN

Location

SFDED

SF DOC

SFD1B

SFD6A

Built-in 1/0 Firmware

Description

Character Out: sends a character to the display.

Read Key : displays the blinking cursor; goes to the
standard input routine , normally KEY IN .

Key In: with 80-column firmware active , displays
checkerboard cursor. Accepts a character from the
keyboard .

Get Line: displays the prompt character; accepts a
sequence of characters by means of RDKEY.

Table 3-2 Apple II Mode

The standard 1/0 subroutines listed in Table 3-1 are fully
described in this chapter. The Apple lie firmware also contains
many other subroutines that you might find useful. Those
subroutines are described in Appendix C. Two of the built-in
subroutines, AUXMOVE and XFER , can help you use the optional
auxiliary memory; those subroutines are described in Chapter 4.

Using the 1/0 Subroutines
Before you use the standard 1/0 subroutines, you should
understand a little about the way they are used. The Apple lie
firmware operates differently with different options such as the
80-column text card. This section describes general situations
that affect the operation of the standard 1/0 subroutines. Specific
instances are described in the sections devoted to the individual
subroutines.

Apple II Compatibility

Compared to older Apple II models, the Apple lie has some
additional keyboard and display features. To run programs that
were written for the older models, you can make the Apple lie
resemble an Apple II Plus by turning those features off. The
features that you can turn off and on to put the Apple lie into and
out of Apple II mode are listed in Table 3-2.

Apple lie Apple II Mode

Keyboard: Uppercase and lowercase Uppercase only

Display Characters: Inverse and normal only Flashing, inverse, and
normal

Display size: 40-column ; also 40-column only
80-column, with optional
card

If the Apple lie does not have an 80-column text card installed in
the auxiliary slot, it is almost in Apple II mode as soon as you
turn it on or reset it. One exception is the keyboard , which is
both uppercase and lowercase. To be compatible with older
software, you have to switch the Apple lie keyboard to uppercase
by pressing the I CAPS LOCK I key.

Built-in 1/0 Firmware

Statements in Applesoft and Integer BASIC must be typed in
uppercase letters. I CAPS LO CK I will take care of th is, but it makes it
inconvenient to use lowercase letters in PRINT statements. If the
80-column fi rmware is active (see below), you can use
uppercase-restrict mode, which forces typed letters to uppercase
except inside quotation marks (see Table 3-6).

Another feature that is different on the Apple lie is the displayed
character set. Older Apple lis display only uppercase characters ,
but they display them three ways: normal , inverse, and flashing.
The Apple lie can display uppercase characters all three ways,
and it can display lowercase characters in the normal way. This
combination is called the primary character set. When the
Apple lie is first turned on or reset, it displays the primary
character set.

The Apple lie has another character set, called the alternate
character set , that displays a full set of normal and inverse
uppercase and lowercase characters, but can 't display flashing
characters. The primary and alternate character sets are
described in Chapter 2. You can switch character sets at any
time by means of the AL TCHARSET soft switch, also described in
Chapter 2.

The 80-column Firmware

There are a few features that are normally available only with the
optional 80-column display. These features are identified in
Tables 3-3a and 3-3b and Table 3-6. The firmware that supports
these features is built into the Apple lie, but it is normally active
only if an 80-column text card is installed in the auxiliary slot.

When you turn on power or reset the Apple lie, the 80-column
firmware is inactive and the Apple lie displays the primary
character set, even if an 80-column text card is installed. When
you activate the 80-column firmware as described below, it
switches to the alternate character set.

The built-in 80-column firmware is implemented as if it were
installed in expansion slot 3. Programs written for older Apple lis
with 80-column display cards installed in slot 3 will run properly
on an Apple lie with an 80-column text card.

Using the 1/0 Subroutines 45

46

If the Apple lie has an 80-column text card and you want to use
the 80-column display, you can activate the built-in firmware from
BASIC by typing

PR#3

To activate the 80-column firmware from the Monitor, type 3 and
press I CONTROL 1- P. Notice that this is the same procedure you
use to activate a card in expansion slot 3. Any auxiliary card
installed in the auxiliary slot takes precedence over a card
installed in expansion slot 3 : see the section "Switching 1/0
Memory" in Chapter 6 for details.

Even though you activated the 80-column firmware by typing PRI3,
you should never deactivate it by typing PR'O , because that just
disconnects the firmware, leaving several soft switches still set for
80-column operation. Instead, type the sequence~ I CONTROL I - Q

(see Table 3-6).

If there is no SO-column text card in your Apple lie, you can still
activate the 80-column firmware and use it with a 40-column
display. First, set the I NTC 3ROM soft-switch located at
scooA (49162) ; this switch is described in Chapter 6 in the section
"Switching 1/0 Memory" . Then type PR' 3 to transfer control to the
firmware .

When the 80-column firmware is active without a card in the
auxiliary slot, it does not work quite the same as it does with a
card. The functions that clear the display (CLREOL, CLEOLZ,
CLREOP , and HOME) work as if the firmware were inactive: they
always clear to black, even in inverse format. Also, interrupts are
locked out throughout long operations such as clearing the
display. With a card installed, the firmware enables interrupts
periodically during these long operations.

Warning
If you do not have either an 80-column text card in the auxiliary slot
or a terminal card of some kind in expansion slot 3, don't try to
activate the firmware by simply typing PR'3 . Typing PR'3 with no card
installed transfers control to the empty connector, with unpredictable
results.

Programs activate the 80-column firmware by transferring control
to address s c 30 o. If there is no card in the auxiliary slot, you must
set the I NTC3ROM soft switch first. To deactivate the SO-column
firmware from a program, write a I CONTROL 1-u character via
subroutine COUT.

Built-in 1/0 Firmware

The Old Monitor

The older model Apple lis and Apple II Pluses included a different
version of the System Monitor. It had the same standard 1/0
subroutines, but a few of their features were different; for
example, there were no arrow keys for cursor motion. When you
start the Apple lie with a DOS or BASIC disk and it loads Integer
BASIC into the bank-switched area in RAM, it loads the old
Monitor (sometimes called the Autostart Monitor) along with it.
When you type I NT from Applesoft to activate Integer BASIC, you
also activate this copy of the old Monitor, which remains active
until you either type FP to switch back to Applesoft, which uses
the new Monitor in ROM, or type

PRI3

to activate the 80-column firmware. Part of the firmware's
initialization procedure checks to see which version of the
Monitor is in RAM. If it finds the old Monitor, it replaces it with a
copy of the new Monitor from ROM. After the firmware has
copied the new Monitor into RAM, it remains there until the next
time you start up the system.

The Standard I /0 Links

When you call one of the character 1/0 subroutines (CDUT and
RDKE Y), the first thing that happens is an indirect jump to an
address stored in programmable memory. Memory locations used
for transferring control to other subroutines are sometimes called
vectors; in this manual, the locations used for transferring control
to the 1/0 subroutines are called the //0 links. In a Apple lie
running without a Disk Operating System, each 1/0 link is
normally the address of the body of the subroutine (CDUT1 or
KEY IN). If a Disk Operating System (DOS) is running, one or both
of these links hold the addresses of the corresponding DOS 1/0
routines instead. (DOS maintains its own links to the standard
1/0 subroutines.)

By calling the 1/0 subroutines that jump to the link addresses
instead of calling the standard subroutines directly, you ensure
that your program will work properly in conjunction with other
software, such as DOS or a printer driver, that changes one or
both of the 1/0 links. For the purposes of this chapter, we shall
assume that the 1/0 links contain the addresses of the standard
1/0 subroutines CDUT1 and KEVIN. For more information about the
1/0 links, see the section "Changing the Standard 1/0 Links" in
Chapter 6.

Using the 1/0 Subroutines

Table 3.3a Control Characters with
COUT1 .

(1) Only available when 80-column
firmware is active.
(2) Only works from the keyboard.
(3) Doesn't work from the keyboard.

48

Standard Output Features
The standard output routine is named cour, pronounced G-out,
which stands for character out. cour normally calls CDUT1, which
sends one character to the display, advances the cursor position,
and scrolls the display when necessary. CDUT1 restricts its use of
the display to an active area called the text window, described
below.

COUT Output Subroutine

Your program makes a subroutine call to SFDED with a character
in the accumulator. CDUT then passes control via the output link
csw to the current output, normally coun , which takes the
character in the accumulator and writes it out. If the accumulator

Control ASCII Apple lie Action Notes
Character Name Name Taken by COUT1

I CONTROL 1- G (BEL) bell Produces a 1 000 Hz tone for
0.1 second.

I CONTROL 1- H (BS) backspace Moves cursor position one
space to the left; from left edge
of window, moves to right end
of line above.

I CONTROL 1- J (LF) line feed Moves cursor position down to
next line in window; scrolls if
needed.

I CONTROL 1- K (VT) clear EOS Clears from cursor position to
the end of the window.

I CONTROL 1- L (FF) clear Moves cursor position to
upper-left corner of window and
clears window.

I CONTROL 1- M (CR) return Moves cursor position to left
end of next line in window;
scrolls if needed.

I CONTROL 1- N (SO) normal Sets display format normal. 1, 3

I CONTROL 1- 0 (SI) inverse Sets display format inverse. 1' 3

I CONTROL I - Q (DC1) 40-column Sets display to 40-column.

I CONTROL 1- R (DC2) 80-column Sets display to 80-column.1

I CONTROL 1- 5 (DS3) stop-list Stops sending characters to the 1' 2
display, until a key is pressed.

Built-in 1/0 Firmware

Table 3-3b Control Characters with
COUT1 , continued

(1) Only available when 80-column
firmware is active.
(2) gotoXY is not supported under
BASIC: see the Apple Pascal
Operating System Reference Manual.

I

contains an uppercase or lowercase letter, a number, or a
special character, the accumulator contains a control character,
CDUT1 either performs one of the special functions described
below or ignores the character.

Each time you send a character to coun , it displays the character
at the current cursor position, replacing whatever was there, and
then advances the cursor position one space to the right. If the
cursor position is already at the right-hand edge of the window,
CDUT1 moves it to the left-most position on the next line down. If
this would move the cursor position past the end of the last line
in the window, COUT1 scrolls the display up one line and sets the
cursor position at the left end of the new bottom line.

Control ASCII Apple lie Action Taken by COUT1 Notes
Character Name Name

I CONTROL 1- u (NAK) quit Deactivates 80-column
firmware, homes cursor,
and clears screen.

I CONTROL 1- v (SYN) scroll Scrolls the display down
one line, leaving the cursor
in the current position.

I CONTROL I - w (ETB) scroll-up Scrolls the display up one
line, leaving the cursor in
the current position.

I CONTROL 1- y (EM) home Moves cursor position to
upper-left corner of window
(but doesn't clear).

I CONTROL 1- z (SUB) clear line Clears the line the cursor
position is on.

I CONTROL 1- \ (FS) fwd. space Moves cursor position one
space to the right ; from
right edge of window,
moves it to left end of line
below.

ICONTROLj - J (GS) clear EOL Clears line from cursor
position to the right edge of
the window.

I CONTROL 1- " (AS) gotoXY Using the next two 1' 2
characters, minus 32, as
one-byte X and Y values,
moves the cursor position
to CH = X, CV = Y.

Standard Output Features 49

50

The cursor position is controlled by the values in memory
locations 36 and 37 (hexadecimal S24 and $25) . These locations
are named CH , for cursor horizontal, and cv , for cursor vertical.
COUT1 does not display a cursor, but the input routines described
below do, and they use this cursor position. If some other routine
displays a cursor, it will not necessarily put it in the cursor
position used by COUT1.

Control Characters with C 0 UT 1
COUT1 does not display control characters. Instead, the control
characters listed in Tables 3-3a and 3-3b are used to initiate
some action by the firmware. Other control characters are
ignored. Most of the functions listed here can also be invoked
from the keyboard, either by typing the control character listed or
by using the appropriate escape code, as described in the
section "Escape Codes with KEY IN " . The stop-list function ,
described separately, can only be invoked from the keyboard.

The Stop-list Feature

When you are using any program that displays text via COUT1 , you
can make it stop updating the display by holding down the
I CONTROL I key and pressing the s key. Whenever COUT1 gets a
carriage return from the program, it checks to see if you have
typed a I CONTROL 1- s . If you have, COUT1 stops and waits for you to
press another key. When you want COUT1 to resume, press
another key; COUT1 will send the carriage return it got earlier to
the display, then continue normally. The character code of the
key you pressed to resume displaying is ignored unless it is a
I CONTROL 1-c . coun passes I CONTROL 1-c back to the program; if
it is a BASIC program, this enables you to terminate the program
while in stop-list mode.

The Text Window

After starting up the computer or after a reset, COUT1 uses the
entire display. However, you can restrict COUT1 's activity to any
rectangular portion of the display you wish. The active portion of
the display is called the text window . COUT1 puts characters only
into the window; when it reaches the end of the last line in the
window, it scrolls only the contents of the window.

Built-in 1/0 Firmware

-

You can set the top, bottom, left side, and width of the text
window by storing the appropriate values into four locations in
memory. This enables your programs to control the placement of
text in the display and to protect other portions of the screen
from being written over by new text.

Memory location 32 (hexadecimal $20) contains the number of the
leftmost column in the text window. This number is normally 0,
the number of the leftmost column in the display. In a 40-column
display, the maximum value for this number is 39 (hexadecimal
$27) ; in an 80-column display, the maximum value is 79
(hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text
window. For a 40-column display, it is normally 40 (hexadecimal
$28); for an 80-column display, it is normally 80 (hexadecimal
$50) . CDUT1 truncates the width to an even value.

Warning
Be careful not to let the sum of the window width and the leftmost
position in the window exceed the width of the display you are using
(40 or 80). If this happens, it is possible for CDUT1 to put characters
into memory locations outside the display page, possibly destroying
programs or data.

Memory location 34 (hexadecimal $22) contains the number of the
top line of the text window. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

Memory location 35 (hexadecimal $23) contains the number of the
bottom line of the screen, plus 1. It is normally 24 (hexadecimal
$18) for the bottom line of the display. Its minimum value is 1.

Warning
Any time you change the boundaries of the text window, you should
make sure that the current cursor position (stored at CH and cv) is
inside the new window. If it is outside, it is possible for CDUT1 to put
characters into memory locations outside the display page, possibly
destroying programs or data.

Standard Output Features 51

Table 3-4 Text Window Memory
Locations

Window Location
Parameter

Dec Hex

Left Edge 32 $20

Width 33 $21

Top Edge 34 $22

Bottom Edge 35 $23

Minimum Normal Values: Maximum Values:
Value: 40col. BOcol. 40col. BOcol.

Dec

0

0

0

Hex Dec Hex Dec Hex Dec Hex Dec

$0 0 $0 0 $0 39 $27 79

$0 40 $28 80 $50 40 $28 80

$0 0 $0 0 $0 23 $17 23

$1 24 $18 24 $18 24 $18 24

Table 3-4 summarizes the memory locations and the possible
values for the window parameters .

Inverse and Flashing Text

Hex

$4F

$50

$17

$18

Subroutine coun can display text in normal format, inverse
format , or, with some restrictions, flashing format. The display
format for any character in the display depends on two things:
the character set being used at the moment, and the setting of
the two high-order bits of the character's byte in the display
memory.

As it sends your text characters to the display, CDUT1 sets the
high-order bits according to the value stored at memory location
so (hexadecimal $32}. If that value is 255 (hexadecimal $FF),
CDUT1 sets the characters to display in normal format ; if the value
is 63 (hexadecimal $3F), CDUT1 sets the characters to inverse-
format. If the value is 127 (hexadecimal $7F) and if you have
selected the primary character set, the characters will be
displayed in flashing format. Note that flashing format is not
available in the alternate character set.

To control the display format of the characters , routine CDUT1 uses
the value at location 5o as a logical mask to force the setting of
the two high-order bits of each character byte it puts into the
display page. It does this by performing the logical AND function
on the data byte and the mask byte. The result byte contains a 0
in any bit that was 0 in the mask. The version of CDUT1 in the SO­
column firmware changes only the high-order bit of the data.

Built-in 1/0 Firmware

Table 3-5 Text Format Control Values

Note: These mask values apply only to
the primary character set (see text) .

Mask value Display format
Dec Hex

255 $FF Normal , uppercase and lowercase

127 $7F Flashing, uppercase and symbols

63 $3F Inverse, uppercase and lowercase

If the SO-column firmware is inactive and you store a mask value at
location so with zeros in its low-order bits, coun will mask out those
bits in your text. As a result, some characters will be transformed
into other characters. You should set the mask only to the values
given in Table 3-5.

If you set the mask value at location 5o to 127 (hexadecimal
$7F), the high-order bit of each result byte will be 0, and the
characters will be displayed either as lowercase or as flashing,
depending on which character set you have selected. Refer to
the tables of display character sets in Chapter 2. In the primary
character set, the next-highest bit, bit 6, selects flashing format
with uppercase characters. With the primary character set you
can display lowercase characters in normal format and uppercase
characters in normal, inverse, and flashing formats. In the
alternate character set, bit 6 selects lowercase or special
characters. With the alternate character set you can display
uppercase and lowercase characters in normal and inverse
formats. Switching between character sets is described in the
section "Display Mode Switching" in Chapter 2.

Standard Input Features
The Apple lie's firmware includes two different subroutines for
reading from the keyboard . One subroutine is named RDKEY , which
stands for read key. It calls the standard character input
subroutine KEY IN, which accepts one character at a time from the
keyboard. The other subroutine is named GEI.L.N, which stands for
get line. By making repeated calls to RDKEY, GETLN accepts a
sequence of characters terminated with a carriage return. GETUi
also provides on-screen editing features: see the section "Editing
with GETLN" .

Standard Input Features 53

54

RDKEY Input Subroutine

A program gets a character from the keyboard by making a
subroutine call to RDKEY at memory location SFDOC . RDKEY sets the
character at the cursor position to flash , then passes control via
the input link KSW to the current input subroutine, which is
normally KEY IN.

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to
the display (normally by using the CDUT routine, described above).
The cursor displayed by RDKEY is a flashing version of whatever
character happens to be at that position on the screen. It is
usually a space, so the cursor appears as a blinking rectangle.

The method RDKEY uses to display a cursor works as it did on the
older model Apple lis, which don't display lowercase characters.
If you are running an Integer BASIC program with the 80-column
firmware inactive, the RDKEY -style cursor is still appropriate. With
lowercase characters or with the alternate character set, this
method of displaying a cursor is no longer satisfactory.

KEY I N Input Subroutine

KEY IN is the standard input subroutine. When called , it waits until
the user presses a key, then returns with the key code in the
accumulator.

The problem of displaying a cursor without using flashing format
is handled by KEY IN . If the 80-column firmware is inactive, KEY IN
displays a cursor by alternately storing a checkerboard block in
the cursor location, then storing the original character, then the
checkerboard again. If the firmware is active, KEY IN displays a
steady inverse space (rectangle), unless you are in escape
mode, when it displays a plus sign (+) in inverse format.
(Escape mode is described in the next section.)

KEY IN also generates a random number. While it is waiting for the
user to press a key, KEY IN repeatedly increments the 16-bit
number in memory locations 78 and 79 (hexadecimal $4E and $4F) .
This number keeps increasing from 0 to 65535, then starts over
again at 0. The value of this number changes so rapidly that
there is no way to predict what it will be after a key is pressed. A
program t~reads from the keyboard can use this value as a
random number or as a seed for a pseudo-random number
routine.

Built-in 1/0 Firmware

..

--
-

-
-
-
-

-
-

Table 3-6 Escape Codes

(1) Old-style cursor-control key : see
text.
(2) Cursor-control key : see text.
(3) This code functions only when the
80-column firmware is active.

I

When the user presses a key, KEY IN accepts the character, stops
displaying the cursor, and returns to the calling program with the
character in the accumulator.

Escape Codes with KEY I N

KEY IN has many special functions that you invoke by typing
escape codes on the keyboard. An escape code is obtained by
pressing the I ESC I key, releasing it, and then pressing some
other key, as shown in Table 3-6. The notation in the table-
I ESC I 1 -means press the I ESC I key, release it, then press the
character that follows.

Escape Code Function Notes

[ill]@ Clears the window and homes the cursor

[}]£]A Moves the cursor up one line

[}]£] B Moves the cursor right one space

ITill c Moves the cursor left one space

~D Moves the cursor down one line

I ESC I E Clears to the end of the line

~F Clears to the bottom of the window

~I Moves the cursor up one line and turns on 2

[}]£] t escape mode

~J Moves the cursor left one space and turns on 2

[ill]-- escape mode

~K Moves the cursor right one space and turns on 2

@£]-- escape mode

~M Moves the cursor down one line and turns on 2

[}]£] ~ escape mode

~R Turns on restricted-cas.e mode 3

~T Turns off restricted-case mode 3

~4 Switches to 40-column mode, homes the 3

'-....___
cursor, and clears the screen

~a Switches to 80-column mode, homes the 3
cursor, and clears the screen

[ill] I CONTROL I -Q Deactivates the 80-column firmware 3

Standard Input Features 55

Table 3-6 includes three sets of cursor-control keys. The first set
consists of the I ESC I key followed by A, B, c , or D. The letter keys
can be either uppercase or lowercase. These keys are the
standard cursor-motion keys on older Apple II models; they are
present on the Apple lie primarily for compatability with programs
written for old machines.

Cursor Motion in Escape Mode

The second and third set of cursor-control keys are listed
together because they activate escape mode. In escape mode,
you can keep using the cursor-motion keys without pressing the
I ESC I key again. This enables you to perform repeated cursor
moves by holding down the appropriate key.

When the 80-column firmware is active, you can tell when KEY IN

is in escape mode: it displays a plus sign in inverse format as
the cursor. You leave escape mode by typing any key other than
a cursor-motion key.

The escape codes with the directional arrow keys are the
standard cursor-motion keys on the Apple lie. The escape codes
with the I , J , K, and M keys are the standard cursor-motion keys
on the Apple II Plus, and are present on the Apple lie for
compatability with the Apple II Plus. On the Apple lie, the escape
codes with the I , J , K, and M keys function with either uppercase
or lowercase letters.

GETLN Input Subroutine

Programs often need strings of characters as input. While it is
possible to call RDKEY repeatedly to get several characters from
the keyboard , there is a more powerful subroutine you can use.
This routine is named GETLN , which stands for get line, and it
starts at location s FDGA . Using repeated calls to RDKE Y, GETLN

accepts characters from the standard input subroutine - usually
KEY IN - and puts them into the input buffer located in the
memory page from S200 to S2FF. GETLN also provides the user with
on-screen editing and control features, described below in the
section "Editing with GETLN" .

The first thing GETLN does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the
user that the program is waiting for input. Different programs use
different prompt characters, helping to remind the user which
program is requesting the input. For example, an INPUT statement
in a BASIC program displays a question mark (?) as a prompt.

Built-in 1/0 Firmware

I

Table 3-7 Prompt Characters
*Note: Mini-assembler is available only
with Integer BASIC active.

The prompt characters used by the different programs on the
Apple lie are shown in Table 3-7.

GETLN uses the character stored at memory location (hexadecimal
S33) as the prompt character. In an assembly-language program,
you can change the prompt to any character you wish. In BASIC,
changing the prompt character has no effect, because both
BASIC interpreters and the Monitor restore it each time they
request input from the user.

Prompt
Character

?

>

Program Requesting Input

User's BASIC program (INPUT statement)

Integer BASIC

Applesoft BASIC

Firmware Monitor

Mini-assembler*

As the user types the character string, GETLN sends each
character to the standard output routine- normally CDUT1

which displays it at the previous cursor position and puts the
cursor at the next available position on the display, usually
immediately to the right. As the cursor travels across the display,
it indicates the position where the next character will be
displayed.

GETLN stores the characters in its buffer, starting at memory
location s 2 o o and using the X register to index the buffer. GETLN

continues to accept and display characters until the user presses
the I RETURN I key; then it clears the remainder of the line the
cursor is on, stores the carriage-return code in the buffer, sends
the carriage-return code to the display, and returns to the calling
program.

The maximum line-length that GETLN can handle is 255 characters.
If the user types more than this, GETLN sends a backs lash (\)and
a carriage return to the display, cancels the line it has accepted
so far, and starts over. To warn the user that the line is getting
full, GETLN sounds a bell (tone) at every keypress after the 248th.

Standard Input Features

In the Apple II and the Apple II Plus, the GETLN routine converts all
inputs to uppercase. GETLN in the Apple lie does not do this , even in
Apple II mode. To get uppercase input for BASIC, use the

CAPS LOCK key or switch to restricted-case mode using the escape
sequence shown in Table 3-6. With restricted-case active, letters are
automatically shifted to uppercase except inside quotation marks.

Editing with GETLN
Subroutine GETU-1 provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. For an
introduction to editing with these features, refer to the Applesoft
Tutorial . Any program that uses GETLN for reading the keyboard
has these features.

Cancel Line

Any time you are typing a line, pressing I CONTROL 1-x causes
GETLN to cancel the line. GETLN displays a backslash (1) and
issues a carriage return , then displays the prompt and waits for
you to type a new line. GETLN takes the same action when you
type more than 255 characters, as described above.

Backspace

When you press the I LEFT-ARROW I key, GETLN moves its buffer
pointer back one space, effectively deleting the last character in
its buffer. It also sends a backspace character to routine COUT ,

which moves the display position and the cursor back one space.
If you type another character now, it will replace the character
you backspaced over, both on the display and in the line buffer.
Each time you press the I LEFT-ARROW I key, it moves the cursor left
and deletes another character, until you reach the beginning of
the line. If you then press the I LEFT-ARROW I key one more time,
you have effectively cancelled the line, and GETLN issues a
carriage return and displays the prompt.

Retype

The I RIGHT-ARROW I key has a function that is complementary to
the backspace function . When you press the I RIGHT - ARROW I key,
GETLN picks up the character at the display position just as if it
had been typed on the keyboard. You can use this procedure to
pick up characters that you have just deleted by backspacing
across them. You can use the backspace and retype functions
with the cursor-motion functions to edit data on the display (see
the earlier section "Cursor Motion in Escape Mode").

Built-in 1/0 Firmware

Chapter 4

Memory Organization

61 Main Memory Map
63 RAM Memory Allocation
63 Reserved Memory Pages
64 Page Zero
64 The 6502 Stack
64 The Input Buffer
65 Link-address Storage
65 The Display Buffers
68 Bank-switched Memory
69 Setting Bank Switches
71 Auxiliary Memory and Firmware
73 Memory Mode Switching
76 Auxiliary-memory Subroutines
77 Moving Data to Auxiliary Memory
78 Transferring Control to Auxiliary Memory
79 The Reset Routine
80 The Cold-start Procedure
80 The Warm-start Procedure
81 Forced Cold Start
81 The Reset Vector
83 Automatic Self-test

I Memory Organization

I

Chapter 4

Memory Organization

The Apple lie's 6502 microprocessor can address 65,536 (64K)
memory locations (K stands for 1 024; refer to the glossary) . All of
the Apple lie 's programmable storage (RAM, for random-access
memory) , read-only storage (ROM, for read-only memory) and
input and output devices are allocated locations in this 64K
address space. Some functions share the same addresses- but
not at the same time. For information about these shared
address spaces, see the section "Bank-switched Memory" in this
chapter and the sections "Other Uses of 1/0 Memory Space"
and "Expansion ROM Space" in Chapter 6.

All input and output in the Apple lie is memory mapped. In this
chapter, the 1/0 memory spaces are described simply as blocks
of memory. For details of the built-in 1/0 features, refer to the
descriptions in Chapters 2 and 3. For information about 1/0
operations with peripheral cards, refer to Chapter 6.

People often refer to the Apple lie's memory in 256-byte blocks
called pages. One reason for this is that a one-byte address
counter or index register can specify one of 256 different
locations. Thus, page 0 consists of memory locations from o to
255 (hexadecimal so to SFF) , inclusive. Page 1 consists of
locations 256 to 511 (hexadecimal $1 o o to S1 FF - note that the
page number is the high-order part of the hexadecimal address).
Don't confuse this kind of page with the display buffers in the
Apple lie, which are sometimes referred to as Page 1 and
Page 2.

Main Memory Map
The map of the main memory address space in Figure 4-1
shows the functions of the major areas of memory. For more
details on the 1/0 space from 48K to 52K (SCOOO through SCFFF) ,

Main Memory Map

Figure 4-1 System Memory Map

refer to Chapter 2 and Chapter 6; the bank-switched memory in
the memory space from 52K to 64K (SDOOO through SFFFF) is
described below.

FFFF
BANK-

ROM SWITCHED

RAM

0000
CFFF I cooo 110 I
BFFF

8000
7FFF

MAIN

RAM

4000
3FFF

0000

Memory Organization

-
-

Figure 4-2 RAM Allocation Map

I

BFFF

8000

?FFF

6000

5FFF

Pege 2}
4000 High-resolution

3FFF
graphics
display buffers

Page 1

2000

1 FFF

Page 2} Text and low-resolution
Page 1 graphics display buffers

0000
Reserved pages

RAM Memory Allocation
As Figure 4-1 shows, the major portion of the Apple lie's memory
space is allocated to programmable storage (RAM). Figure 4-2
shows the areas allocated to RAM. The main RAM memory
extends from location 0 to location 49151 (hex $BFFF), and
occupies pages 0 through 191 (hexadecimal $BF). There is also
RAM storage in the bank-switched space from 53248 to 65535
(hexadecimal $DOOO to $FFFF), described in a separate section of
this chapter, and auxiliary RAM on the 80-column text card or the
extended 80-column text card, described in Chapter 6.

Reserved Memory Pages

Most of the Apple lie's RAM is available for storing your
programs and data. However, a few RAM pages are reserved for _
the use of the Monitor firmware and the BASIC interpreters. The
reserved pages are described below.

The system does not prevent your using these pages, but if you do
use them, you must be careful not to disturb the system data they
contain, or you will cause the system to malfunction.

RAM Memory Allocation

64

Page Zero

Several of the 6502 microprocessor's addressing modes require
the use of addresses in page zero, also called zero page. The
Monitor, the BASIC interpreters, and DOS all make extensive use
of page zero.

To use indirect addressing in your assembly-language programs,
you must store base addresses in page zero. At the same time,
you must avoid interfering with the other programs that use page
zero - the Monitor, the BASIC interpreters, and the Disk
Operating Systems. One way to avoid conflicts is to use only
those page-zero locations not already used by other programs.
Tables 4-1, 4-2, 4-3, and 4-4 show the locations in page zero
used by the Monitor, Applesoft BASIC, Integer BASIC, and
DOS 3.3.

As you can see from the tables, page zero is pretty well used
up, except for a few bytes here and there. It's hard to find more
than one or two bytes that aren't used by either BASIC or the
Monitor or DOS. Rather than trying to squeeze your data into an
unused corner, you may prefer a safer alternative: save the
contents of part of page zero, use that part, then restore the
previous contents before you pass control to another program.

The 6502 Stack

The 6502 microprocessor uses page 1 as the stack - the place
where subroutine return addresses are stored, in first-in , last-out
sequence. Many programs also use the stack for temporary
storage of the registers (via push and pull operations). You can
do the same, but you should use it sparingly. The stack pointer
is eight bits long, so the stack can hold only 256 bytes of
information at a time. When you store the 257th byte in the
stack, the stack pointer repeats itself, or wraps around, so that
the new byte replaces the first byte stored, which is now lost.
This writing over old data is called stack overflow, and when it
happens, the program continues to run normally until the lost
information is needed, whereupon the program terminates
catastrophically.

The Input Buffer

The GETLN input routine, which is used by the Monitor and the
BASIC interpreters, uses page 2 as its keyboard-input buffer.
The size of this buffer sets the maximum size of input strings.
(Note: Applesoft only uses the first 237 bytes, although it permits

Memory Organization

....-
'

I

you to type all 256.) If you know that you won't be typing any
long input strings, you can store temporary data at the upper end
of page 2.

Link-Address Storage

The Monitor and DOS 3.3 both use the upper part of page 3 for
link addresses or vectors. Table 4-1 0 shows the part of page 3
the Monitor uses; refer to the DOS Manual to see how DOS
uses page 3.

BASIC programs sometimes need short machine-language
routines. These routines are usually stored in the lower part of
page 3.

The Display Buffers

The primary text and low-resolution-graphics display buffer
occupies memory pages 4 through 7 (locations 1024 through 2047,
hexadecimal $0400 through S07FF). This entire 1024-byte area is
called display Page 1 , and it is not usable for program and data
storage. There are 64 locations in this area that are not
displayed on the screen ; these locations are reserved for use by
the peripheral cards (see Chapter 6).

Display Page 2, the alternate text and low-resolution-graphics
display buffer, occupies memory pages 8 through 11 (locations
2048 through 3071 , hexadecimal $0800 through SOBFF). Most
programs do not use Page 2 for displays, so they can use this
area for program or data storage.

The primary high-resolution-graphics display buffer, called high­
resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through
s 3FFF). If your program doesn't use high-resolution graphics, this
area is usable for programs or data.

High-resolution-graphics Page 2 occupies memory pages 64
through 95 (locations 16384 through 24575 , hexadecimal $4000

through $5FFF). Most programs use this area for program or data
storage.

For more information about the display buffers, see Chapter 2.

RAM Memory Allocation

Table 4-1 Monitor Zero-page Usage

Table 4-2 Applesoft Zero-page Usage

High Nybble
of Address

$00

$1 0

$20

$30

$40

$50

$60

$70

sao
$90

SAO

sao
$CO

$00

$EO

SFO

High Nybble
of Address

soo
$1 0

$20

$30

$40

$50

$60

$70

sao
$90

SAO

sao
sco
$00

SEO

SFO

Low Nybble of Address
$0 $1 $2 $3 $4 $5 $6 $7 sa $9 SA sa $C $0 $E SF

•
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • •

Low Nybble of Address
SO S1 $2 $3 $4 $5 S6 S7 sa $9 SA sa SC SO SE SF

• • • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • •

Memory Organization

Table 4-3 Integer BASIC Zero-page High Nybble Low Nybble of Address
Usage of Address so $1 $2 $3 $4 $5 $6 $7 $8 $9 SA $8 sc SO SE SF

soo •
$1 0

$20

$30

$40 • • • •
$50 • • • • • • • • • • •
$60 • • • • • • • • • • • • • • • •
$70 • • • • • • • • • • • • • • • •
$80 • • • • • • • • • • • • • • • •
$90 • • • • • • • • • • • • • • • •
SAO • • • • • • • • • • • • • • • •
$80 • • • • • • • • • • • • • • • •
sco • • • • • • • • • • • • • • • •
$00 • • • • • • • • • • • • • • • •
SEO

SFO • •

Table 4-4 DOS 3.3 Zero-page Usage High Nybble Low Nybble of Address
of Address so $1 $2 $3 $4 $5 $6 $7 $8 $9 SA $8 SC SO SE SF

soo
$10

$20 • • • • • • • •
$30 • • • • • • •
$40 • • • • • • • • • • • • •
$50

$60 • • • • •
$70 •
sao
$90

SAO •
$80 •
sco • • • •
SOO •
SEO

SFO

I RAM Memory Allocation

Figure 4-3 Bank-switched Memory Map

68

Bank-switched Memory
The memory address space from 52K to 64K (hexadecimal $0000

through $FFFF) is doubly allocated: it is used for both ROM and
RAM. The 12K bytes of ROM (read-only memory) in this address
space contain the Monitor and the Applesoft BASIC interpreter.
Alternatively, there are 16K bytes of RAM in this space. The
RAM is normally used for storing either the Integer BASIC
interpreter or part of the Pascal Operating System (purchased
separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple lie is
able to run software written for the Apple II and Apple II Plus
because it uses this part of memory in the same way they do. It
is convenient to have the Applesoft interpreter in ROM, but the
Apple lie, like an Apple II with a language card, is also able to
use that address space for other things when Applesoft is not
needed.

You may also be wondering how 16K bytes of RAM is mapped
into only 12K bytes of address space. The usual answer is that
it's done with mirrors, and that isn't a bad analogy: the 4K-byte
address space from 52K to 56K (hexadecimal $0000 through $OFFF)

is used twice.

Switching different blocks of memory into the same address
space is called bank switching. There are actually two examples
of bank-switching going on here: first, the entire address space
from 52K to 64K ($0000 through $FFFF) is switched between ROM
and RAM, and second, the address space from 52K to 56K ($0000

to $OFFF) is switched between two different blocks of RAM.

FFFF

RAM

EOOO ROM

DFFF I RAM RAM
0000

Memory Organization

Table 4-5 Bank Select Switches

(1) This switch write-enables RAM
and read-enables ROM.
(2) Two successive reads to this
switch enables RAM both for reading
and writing.

I

Setting Bank Switches

You switch banks of memory in the same way you switch other
functions in the Apple lie : by using soft switches. These soft
switches do three things : select either RAM or ROM in this
memory space ; enable or inhibit writing to the RAM (write­
protect); and select the first or second 4K-byte bank of RAM in
the address space $0000 to $DFFF.

Warning
Do not use these switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 4-5 shows the addresses of the soft switches for enabling
all combinations of reading and writing in this memory space. All
of the hexadecimal values of the addresses are of the form $C08x.

Notice that several addresses perform the same function: this is
because the soft switches are activated by combinations of
address bits . For example, any address of the form $C08x with a
1 in the low-order bit enables the RAM for writing . Similarly, bit 3
of the address selects which 4K block of RAM to use for the
address space $DOOO-$DFFF ; if bit 3 is 0, the first bank of RAM is
used, and if bit 3 is 1, the second bank is used .

Switch Write Read Read 4K RAM Bank:
Address RAM RAM ROM First Second Notes

scoso • •
SC081 • • •
SC082 • •
SC083 • • • 2

SC084 • •
scoss • • •
SC086 • •
SC087 • • • 2

scoss • •
SC089 • • •
SCOSA • •
SCOSB • • • 2

scosc • •
SCOSD • • •
SCOSE • •
SCOSF • • • 2

Bank-switched Memory 69

When RAM is not enabled for reading , the ROM in this address
space is enabled. Even when RAM is not enabled for reading , it
can still be written to if it is write-enabled.

When you turn power on or reset the Apple lie, it initializes the
bank switches for reading the ROM and writing the RAM, using
the second bank of RAM. Note that this is different from the
reset on the Apple II Plus, which didn't affect the bank-switched
memory (the language card). On the Apple lie, you can't use the
reset vector to return control to a program in bank-switched
memory, as you could on the Apple II Plus.

When you are using Integer BASIC on the Apple lie, reset works
correctly, restarting BASIC with your program intact. This happens
because the reset vector transfers control to DOS, and DOS resets
the switches for the current version of BASIC.

Note that you can't read one RAM bank and write to the other; if
you select either RAM bank for reading, you get that one for writing
as well.

You can't read from ROM in part of the bank-switched memory and
read from RAM in the rest: specifically, you can't read the Monitor in
ROM while reading bank-switched RAM. If you want to use the
Monitor firmware with a program in bank-switched RAM, first copy
the Monitor from ROM (locations $FSOO through $FFCB} into lower
RAM and then into bank-switched RAM.

To see how to use these switches, look at the following section
of an assembly-language program:

AD B3 co LOA $COB3 SELECT 2ND 4K BANK
READ/WRITE

AD B3 co LOA $COB3 BY TWO CONSECUTIVE READS
A9 DO LDA #$00 SET UP ...
B5 01 STA BEGIN ... NEW ...
A9 FF LDA I$FF . . . MAIN-MEMORY ...
B5 02 STA END ... POINTERS ...
20 97 C9 JSR RAMTST ... FOR 12K BANK

AD BB co LOA $COBB SELECT 1ST 4K BANK
20 97 C9 JSR RAMTST USE ABOVE POINTERS

AD B3 co LOA $COBB SELECT 1ST BANK &
WRITE PROTECT

Memory Organization

I

A9 80 LOA 1'$80
EG 1 0 II'IC TSTI'IUM
20 58 C9 JSR WPTS 11'1 IT

AD 80 co LOA scoao SELECT 21'10 BAI'IK &
WRITE PROTECT

EG 1 0 II'IC TSTI'IUM
A9 01 LOA I'PAT12K
20 58 C9 JSR WPTSII'IIT

AD BB co LOA $COBB SELECT 1ST BAI'IK &
READ/WRITE

AD BB co LOA $COBB BY TWO CONSECUTIVE READS
EG OE II'IC RWMODE FLAG RAM 11'1 READ/WRITE
EG 1 0 II'IC TSTI'IUM
A9 08 LOA IPAT4K
20 58 C9 JSR WPTSII'IIT

The LOA instruction, which performs a read operation to the
specified memory location, is used for setting the soft switches.
The unusual sequence of two consecutive LOA instructions
performs the two consecutive reads that write-enable this area of
RAM; in this case, the data that are read are not used.

Auxiliary Memory and Firmware
By installing an optional card in the auxiliary slot, you can add
more memory to the Apple lie. One such card is the 80-column
text card, which has 1 K bytes of additional RAM for expanding
the text display from 40 columns to 80 columns.

Another optional card, the extended 80-column text card, has
64K of additional RAM. A 1 K-byte area of this memory serves
the same purpose as the memory on the 80-column text card:
expanding the text display to 80 columns. The other 63K bytes
can be used as auxiliary program and data storage. If you use
only 40-column displays, the entire 64K bytes is available for
programs and data.

Warning
Do not attempt to use the auxiliary memory from a BASIC program.
The BASIC interpreter uses several areas in main RAM, including
the stack and the zero page. If you switch to auxiliary memory in
these areas, the BASIC interpreter fails and you must reset the
system and start over.

Auxiliary Memory and Firmware

Figure 4-4 Memory map with Auxiliary
Memory FFFF

MAIN AUXILIARY

BANK- BANK-
ROM

SWITCHED SWITCH ED

I RAM I RAM
DOOO
CFFF I 1/0 I cooo
BFFF

MAIN

RAM
8000 AUXILIARY

7FFF RAM

6000
5FFF

4000 High-resolution

3FFF graphics display buffers
·:

2000 ·-

1FFF

Text and low-resolution {
graphics display buffers

0000 Stack and zero page -

As you can see by studying the memory map in Figure 4-4, the
auxiliary memory is broken into two large sections and one small
one. The largest section is switched into the memory address
space from 51 2 to 491 51 ($20 o through SBFFF). This space includes
the display buffer pages : as described in Chapter 2, space in
auxiliary memory is used for one half of the 80-column text
display. You can switch to the auxiliary memory for this entire
memory space, or you can switch just the display pages: see the
section "Memory Mode Switching" , below.

If the only reason you are using auxiliary memory is for the SO­
column display, note that you can store into the display page in
auxiliary memory by using the BOSTDRE and PAGE2 soft switches
described in the section " Display Mode Switching" in Chapter 2.

Memory Organization

]
-- ,

I

--- --~- ------------~-- --~-

The other large section of auxiliary memory is switched into the
memory address space from 52K to 64K (SDOOO through SFFFF).
This memory space and the switches that control it are described
above in the section "Bank-switched Memory". If you use the
auxiliary RAM in this space, the soft switches have the same
effect on the auxiliary RAM that they do on the main RAM: the
bank switching is independent of the auxiliary-RAM switching.

Note that the soft switches for the bank-switched memory, described
in the previous section, do not change when you switch to auxiliary
RAM. In particular, if ROM is enabled in the bank-switched memory
space before you switch to auxiliary memory, the ROM will still be
enabled after you switch. Any time you switch the bank-switched
section of auxiliary memory in and out, you must also make sure
that the bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched
space, you also switch the first two pages, from o to 511 (SOOOO
through S01 FF). This part of memory contains page zero, which is
used for important data and base addresses, and page one,
which is the 6502 stack. The stack and zero page are switched
this way so that system software running in the bank-switched
memory space can maintain its own stack and zero page while it
manipulates the 48K address space (from $0200 to SBFFF) in either
main memory or auxiliary memory.

Memory Mode Switching

Switching the 48K section of memory is performed by two soft
switches: the switch named RAMRD selects main or auxiliary
memory for reading, and the one named RAMWRT selects main or
auxiliary memory for writing. As shown in Table 4-6, each switch
has a pair of memory locations dedicated to it, one to select
main memory, and the other to select auxiliary memory. Enabling
the read and write functions independently makes it possible for
a program whose instructions are being fetched from one
memory space to store data into the other memory space.

Warning
Do not use these switches without careful planning. Careless
switching between main and auxiliary memories is almost certain to
have catastrophic effects on the operation of the Apple lie. For
example, if you switch to auxiliary memory with no auxiliary memory
card installed, the program that is running will stop and you will
have to reset the Apple lie and start over.

Auxiliary Memory and Firmware 73

Writing to the soft-switch at location scoo3 turns RAMRD on and
enables auxiliary memory for reading; writing to location scoo2
turns RAMRD off and enables main memory for reading. Writing to
the soft-switch at location scoos turns RAMWRT on and enables the
auxiliary memory for writing ; writing to location SC004 turns RAMWRT
off and enables main memory for writing . By setting these
switches independently, you can use any of the four
combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high­
resolution graphics Page 1 can be used as part of the address
space from $0200 to SBFFF by using RAMRD and RAMWRT as described
above. These areas in auxiliary RAM can also be controlled
separately by using the switches described in the section
"Display Mode Switching" in Chapter 2. Those switches are
named BOSTORE, PAGE2 , and HIRES.

As shown in Table 4-6, the BOSTDRE switch functions as an
enabling switch: with it on, the PAGE2 switch selects main memory
or auxiliary memory. With the HI RES switch off, the memory space
switched by PAGE 2 is the text display Page 1 , from $ o 4 o o to so 7F F;
with HI RES on, PAGE2 switches both text Page 1 and high-resolution
graphics Page 1, from $2000 to S3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control
switches take priority: if BOSTDRE is off, RAMRD and RAMWRT work for
the entire memory space from $0200 to SBFFF, but if
BOSTDRE is on, RAMRD and RAMWRT have no effect on the display
page. Specifically, if BOSTDRE is on and HI RES is off, PAGE2 controls
text Page 1 regardless of the settings of RAMRD and RAMWRT.
Likewise, if BOSTDRE and HI RES are both on, PAGE2 controls both text
Page 1 and high-resolution graphics Page 1 , again regardless of
RAMRD and RAMWRT.

A single soft switch named AL TZP (for alternate zero page)
switches the bank-switched memory and the associated stack
and zero page area between main and auxiliary memory. As
shown in Table 4-6, writing to location scoog turns AL TZP on and
selects auxiliary-memory stack and zero page; writing to the soft
switch at location scooa turns AL TZP off and selects main-memory
stack and zero page for both reading and writing. The section
"Auxiliary-memory Routines", below, describes firmware that you
can call to help you switch between main and auxiliary memory.

Memory Organization

I

When these switches are on, auxiliary
memory is being used; when they are
off, main memory is being used.

Table 4-6 Auxiliary-memory Select
Switches

(1) When 80 STORE is on, the PAGE2
switch selects main or auxiliary display
memory.
(2) When 80STORE is on , the HI RES
switch enables you to use the PAGE2
switch to switch between the
high-resolution Page-t area in main
memory or auxiliary memory.

There are three more locations associated with the auxiliary­
memory switches. The high-order bits of the bytes you read at
these locations tell you the settings of the three soft switches
described above. The byte you read at location $C013 has its high
bit set to 1 if RAMRD is on (auxiliary memory is read-enabled), or 0
if RAMRD is off (the 48K block of main memory is read-enabled).
The byte location $co 1 4 has its high bit set to 1 if RAMWRT is on
(auxiliary memory is write-enabled), or 0 if RAMWRT is off (the 48K
block of main memory is write-enabled). The byte at location
$co 1 6 has its high bit set to 1 if AL TZP is on (the bank-switched
area, stack, and zero page in the auxiliary memory are selected),
or 0 if AL TZP is off (these areas in main memory are selected).

Name Function

RAMRD Read auxiliary memory
Read main memory
Read RAMRDswitch

RAMWRT Write auxiliary memory
Write main memory
Read RAMWRTswitch

80STORE On : access display page
Off: use RAMRD. RAMWRT
Read 80 STORE switch

PAGE2 Page 2 on (Aux. memory)
Page 2 off (Main memory)
Read PAGE2 switch

HIRES On: access hi-res pages
Off : use RAMRD , RAMWRT
Read HIREs switch

AL TZP Auxiliary stack & z. p.
Main stack & zero page
Read AL TZP switch

Auxiliary Memory and Firmware

Hex

SC003
SC002
SC013

scoos
SC004
SC014

SCOOt
scooo
SC018

scoss
SC054
SC01C

SC057
SC056
SC01D

SC009
scoo8
SC016

Location Notes
Decimal

49155 - 16381 Write
49154 - 16382 Write
49171 - 16365 Read

49157 - 16379 Write
49156 - 16380 Write
49172 - 16354 Read

49153 - 16383 W~e

491 52 - 16384 Write
491 76 - 16360 Read

49237 - 16299
49236 - 16300
49180 - 16356 Read

49239 - 16297 2
49238 - 16298 2
49181 - 16355 Read

49161 - 16373 W~e
49160 - 16374 W~e

491 74 - 1 6352 Read

Table 4-7 Auxiliary-memory Routines

76

In order to have enough memory locations for all of the soft
switches and remain compatible with the Apple II and Apple II Plus,
the soft switches listed in Table 4-6 share their memory locations
with the keyboard functions listed in Table 2-2. The operations­
read or write- shown in Table 4-6 for controlling the auxiliary
memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Auxiliary-memory Subroutines

If you want to write assembly-language programs that use
auxiliary memory but you don't want to manage the auxiliary
memory yourself, you can use the built-in auxiliary-memory
subroutines. These subroutines make it possible to use the
auxiliary memory without having to manipulate the soft switches
described in the previous section.

The subroutines described below make it easier to use auxiliary
memory, but they do not protect you from errors. You still have to
plan your use of auxiliary memory to avoid catastrophic effects on
your program.

You use these built-in subroutines the same way you use the l/0
subroutines described in Chapter 3: by making subroutine calls to
their starting locations. Those locations are shown in Table 4-7.

Subroutine Location Description
Name

AUXMOVE $C311

XFER $C314

Moves data blocks between main and auxiliary memory

Transfers program control between main and auxiliary
memory

Memory Organization

-

-

Table 4-8 Parameters for AUXMDVE
Routine

I

Moving Data to Auxiliary Memory

In your assembly-language programs, you can use the built-in
subroutine named AUXMOVE to copy blocks of data from main
memory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set the carry bit to
select the direction of the move - main to auxiliary or auxiliary
to main.

Warning
Don 't try to use AUXMDVE to copy data in page zero or page one (the
6502 stack) or in the bank-switched memory (snooo -SFFFF). AUXMDVE
uses page zero all during the copy, so it can't handle moves in the
memory space switched by AL TZP.

The pairs of bytes you use tor passing addresses to this
subroutine are called A1 , A2, and A4, and they are used tor
parameter passing by several of the Apple lie's built-in routines.
The addresses of these byte pairs are shown in Table 4-8.

Name Location Parameter passed

Carry 1 = Move from main to auxiliary memory
0 = Move from auxiliary to main memory

A1L S3C Source starting address, low-order byte
A1H $3D Source starting address, high-order byte

A2L S3E Source ending address. low-order byte
A2H S3F Source ending address, high-order byte

A4L $42 Destination starting address, low-order byte
A4H $43 Destination starting address, high-order byte

Auxiliary Memory and Firmware

Table 4-9 Parameters for XFER
Routine

Put the addresses of the first and last bytes of the block of
memory you want to copy into A 1 and A2. Put the starting
address of the block of memory you want to copy the data to
into A4.

The AUXMDVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit; to copy data from auxiliary memory to
main memory, clear the carry bit.

When you make the subroutine call to AUXMDVE, the subroutine
copies the block of data as specified by the A registers and the
carry bit. When it is finished, the accumulator and the X and Y
registers are just as they were when you called it.

Transferring Control to Auxiliary Memory

You can use the built-in routine named XFER to transfer control to
and from program segments in auxiliary memory. You must set
up three parameters before using x FER: the address of the routine
you are transferring to, the direction of the transfer (main to
auxiliary or auxiliary to main), and which page zero and stack
you want to use.

Name or Parameter passed
Location

Carry 1 = Transfer from main to auxiliary memory
0 = Transfer from auxiliary to main memory

Overflow 1 = Use page zero and stack in auxiliary memory
0 = Use page zero and stack in main memory

$3ED Program starting address, low-order byte
$ 3EE Program starting address, high-order byte

Put the transfer address into the two bytes at locations $ 3ED and
$ 3EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer
to a program in auxiliary memory; clear the carry bit to transfer to
a program in main memory. Use the overflow bit to select which
page zero and stack you want to use : clear the overflow bit to
use the main memory; set the overflow bit to use the auxiliary
memory.

Memory Organization -

I

After you have set up the parameters, pass control to the XFER
routine by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current
stack, then sets up the soft switches for the parameters you have
selected and jumps to the new program.

Warning
It is the programmer's responsibility to save the current stack pointer
somewhere in the current memory space before using XFER and to
restore it after regaining control. Failure to do so will cause program
errors.

The Reset Routine
To put the Apple. lie into a known state when it has just been
turned on or after a program has malfunctioned, there is a
procedure called the reset routine. The reset routine is built into
the Apple lie's firmware, and it is initiated any time you turn
power on or press the [RESET I key while holding down the
I CONTROL I key. The reset routine puts the Apple lie into its normal
operating mode and restarts the resident program.

When you initiate a reset, hardware in the Apple lie sets the
memory-controlling soft switches to normal: main board RAM and
ROM are enabled, and, if there is an SO-column text or extended
SO-column text card in the auxiliary slot, expansion slot 3 is
allocated to the built-in SO-column firmware. Auxiliary RAM is
disabled and the bank-switched memory space is set up to read
from ROM and write to RAM, using the second bank at soooo.

The reset routine sets the display-controlling soft switches to
display 40-column text Page 1 using the primary character set,
then sets the window equal to the full 40-column display, puts
the cursor at the bottom of the screen and sets the display
format to normal.

The reset routine sets the keyboard and display as the standard
input and output devices by loading the standard 1/0 links (see
Chapter 6). It turns annunciators 0 and 1 off and annunciators 2
and 3 on, clears the keyboard strobe, turns off any active
accessory-card ROM (see Chapter 6) and outputs a bell (tone) .

The Apple lie has three types of reset: power-on reset, also
called cold-start reset; warm-start reset; and forced cold-start
reset. The procedure described above is the same for any type
of reset. What happens next depends on the reset vector. The
reset routine checks the reset vector to determine whether it is

The Reset Routine

80

valid or not, as described below in the section, "The Reset
Vector" . If the reset was caused by turning the power on, the
vector will not be valid, and the reset routine will perform the
cold-start procedure. If the vector is valid, the routine will perform
the warm-start procedure.

The Cold-start Procedure

If the reset vector is not valid , either the Apple lie has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
"Apple)[" at the top of the display. It loads the reset vector and
the validity-check byte as described below, then starts checking
the expansion slots to see if there is a disk drive controller card
in one of them, starting with slot 7 and working down. If it finds a
controller card, it initiates the bootstrap (startup) routine that
resides in the controller card 's firmware. The bootstrap then loads
the Disk Operating System from the disk in drive 1 . When DOS
has been loaded, it displays other messages on the screen. If
there is no disk in the disk drive , the drive motor just keeps
spinning until you press I CONTROL 1-1 RESET [. For more information
about DOS and the startup procedure, see the DOS Manual.

If the reset routine doesn't find a controller card, or if you press
I CONTROL 1-1 RESET [again before the startup procedure has been
completed, the reset routine will continue without using the disk,
and pass control to the built-in Applesoft interpreter.

The Warm-start Procedure

Whenever you press I CONTROL 1-1 RESET [when the Apple lie has
already completed a cold-start reset, the reset vector is still valid
and it is not necessary to reinitialize the entire system. The reset
routine simply uses the vector to transfer control to the resident
program, which is normally the built-in Applesoft interpreter. If the
resident program is indeed Applesoft, your Applesoft program
and variables are still intact. If you are using DOS, it is the
resident program and it restarts either Applesoft or Integer
BASIC, whichever you were using when you pressed rl '::--C::cON:-::T:;;:R::-:0:::-:-L-[­

[RESET I.

A program in bank-switched RAM cannot use the reset vector to
regain control after a reset, because the reset routine enables ROM
in the bank-switched memory space. If you are using Integer
BASIC, which is in the bank-switched RAM, you are also using
DOS, and it is DOS that controls the reset vector and restarts
BASIC.

Memory Organization -

Forced Cold Start

If a program has loaded the reset vector to point to the beginning
of the program, as described below, pressing I CONTROL 1-1 RESET

causes a warm-start reset that uses the vector to transfer control
to that program. If you want to stop such a program without
turning the power off and on, you can force a cold-start reset by
holding down the I CONTROL I key and the I OPEN-APPLE I key, then
pressing and releasing the I RESET I key.

When you want to stop a program unconditionally - for example, to
start up the Apple lie with some other program - you should use
theforcedcold-startreset, I CONTROL[- IDPEI'I-APPLEJ-1 RESET J, instead of
turning the power off and on.

Whenever you press I CONTROL 1-1 RESET I, firmware in the Apple lie
always checks to see whether either[APPLE [key is down. If the
I SOLID-APPLE [keyisdown,withorwithoutthel OPEN-APPLE [key,
the firmware performs the self-test described below. If only the
I OPEN-APPLE I key is down, the firmware starts a forced cold-start
reset. First, it destroys the program or data in memory by writing
two bytes of arbitrary data into each page of main RAM. The two
bytes that get written over in page 3 are the ones that contain
the reset vector. The reset routine then performs a normal cold­
start reset.

The Reset Vector

When you reset the Apple lie, the reset routine transfers control
to the resident program by means of an address stored in
page 3 of main RAM. This address is called a vector because it
directs program control to a specified destination. There are
several other vector addresses stored in page 3, as shown in
Table 4-10, including the interrupt vectors described in Chapter 6,
and the DOS vectors described in the DOS Manual.

The cold-start reset routine stores the starting address of the
built-in Applesoft interpreter, low-order byte first, in the reset
vector address at locations 1 o 1 o and 1 o 11 (hexadecimal $ 3F2 and
$ 3F3). It then stores a validity-check byte, also called the power­
up byte, at location 1 o 1 2 (hexadecimal s 3F 4). The validity-check
byte is computed by performing an exc 1 us i ve-OR of the second
byte of the vector with the constant 165 (hexadecimal $A5). Each
time you reset the Apple lie, the reset routine uses this byte to
determine whether the reset vector is still valid.

The Reset Routine

Table 4-10 Page 3 Vectors

You can change the reset vector so that the reset routine will
transfer control to your program instead of to the Applesoft
interpreter. For this to work, you must also change the validity­
check byte to the exc 1 us i ve-OR of the high-order byte of your new
reset vector with the constant 165 ($A5). If you fail to do this,
then the next time you reset the Apple lie, the reset routine will
determine that the reset vector is invalid and perform a cold-start
reset, eventually transferring control to the disk bootstrap routine
or to Applesoft.

Vector address
Decimal Hex

1008
1009

1 01 0
1011

1012

1013
1014

S3FO
S3F1

S3F2
S3F3

S3F4

S3FS
S3F6

1015 S3F7

1016
1 017

S3F8
S3F9

1018 S3FA

1019
1020

S3FB
S3FC

1 021 S3FD

1022
1023

S3FE
S3FF

Vector function

Address of the subroutine that handles BRK requests
(normally S59, SFA).

Reset vector (see text).

Power-up byte (see text).

Jump instruction to the subroutine that handles Applesoft
"&" commands (normally S4C , ssa, SFF).

Jump instruction to the subroutine that handles user
(I CONTROL J-Y) commands.

Jump instruction to the subroutine that handles
non-maskable interrupts.

Interrupt vector (address of the subroutine that handles
interrupt requests).

Memory Organization

The reset routine has a subroutine that generates the validity­
check byte tor the current reset vector. You can use this
subroutine by doing a subroutine call to location -11 69

(hexadecimal $FB6F) . When your program finishes, it can return
the Apple lie to normal operation by restoring the original reset
vector and again calling the subroutine to fix up the validity-check
byte.

Automatic Self-test

If you reset the Apple lie by holding down the I CONTROL I key and
the [SOLID-APPLE I key while pressing and releasing the I RESET I
key, the reset routine will start running the built-in self-test.
Successfully running this test assures you that the Apple lie is
operational .

Warning
The self-test routine tests the Apple lie's programmable memory by
writing and then reading it. All programs and data in programmable
memory when you run the self-test are destroyed.

The self-test takes several seconds to run. While it is running ,
the display changes from black to white and back twice. If the
test finishes normally, the Apple lie displays an "OK" message
and waits for you to request a normal reset.

If the self-test detects something wrong, it displays an error
message and stops. If you have been running programs prior to
running the self-test, some soft-switches could be on , causing the
self-test to fail and display an error message. If this happens,
turn the power ott for several seconds, then turn it back on and
run the self-test again. If it still fails, there is really something
wrong ; to get it corrected, contact your Apple dealer for service.

The Reset Routine 83

Using The Monitor

87 Invoking the Monitor
88 Syntax of Monitor Commands
89 Monitor Memory Commands
89 Examining Memory Contents
89 Memory Dump
92 Changing Memory Contents
93 Changing One Byte
93 Changing Consecutive Locations
94 Moving Data in Memory
96 Comparing Data in Memory
97 Monitor Register Command
97 Examining and Changing Registers
98 Monitor Cassette Tape Commands
98 Saving Data on Tape
99 Reading Data from Tape

1 01 Miscellaneous Monitor Commands
101 Display Inverse and Normal
102 Back to BASIC
1 02 Redirecting Input and Output
103 Hexadecimal Arithmetic
104 Special Tricks with the Monitor
1 04 Multiple Command Lines
1 04 Filling Memory
1 06 Repeating Commands
106 Creating Your Own Commands
1 07 Machine-language Programs
107 Running a Program
108 Disassembled Programs
110 The Mini-Assembler
113 Mini-Assembler Instruction Formats
115 Summary of Monitor Commands

Using the Monitor

Chapter 5

Using The Monitor

The System Monitor is a set of subroutines in the Apple lie
firmware. The Monitor provides a standard interface to the built-in
1/0 devices described in Chapter 2. The 1/0 subroutines
described in Chapter 3 are part of the System Monitor.

The Disk Operating System and the BASIC interpreters use
these subroutines by direct calls to their starting locations, as
described for the 1/0 subroutines in Chapter 3; the starting
addresses for all of the standard subroutines are listed in
Appendix C. If you wish, you can call the standard subroutines
from your programs in the same fashion .

You can perform most of the Monitor functions directly from the
keyboard. This chapter tells you how to use the Monitor to

• look at one or more memory locations

• change the contents of any location

• write programs in machine language to be executed directly
by the Apple lie's microprocessor

• save blocks of data and programs onto cassette tape and
read them back in again

• move and compare blocks of memory

• invoke other programs from the Monitor

Invoking the Monitor
The System Monitor starts at memory location $FF69 (decimal
65385 or -151). To invoke the Monitor, you make a CALL statement
to this location from the keyboard or from a BASIC program.
When the Monitor is running, its prompting character, an asterisk
(*), appears on the left side of the display screen, followed by a
blinking cursor.

Invoking the Monitor 87

Syntax of Monitor Commands

To give a command to the Monitor, you type a line on the
keyboard, then press I RETURN I. The Monitor accepts the line using
the standard 1/0 subroutine GETLN described in Chapter 3. A
Monitor command can be up to 255 characters in length, ending
with a carriage return.

A Monitor command can include three kinds of information:
addresses, data values, and command characters. You type
addresses and data values in hexadecimal notation. Hexadecimal
notation uses the ten decimal digits (0-9) and the first six letters
(A-F) to represents the sixteen values from 0 to 15. A pair of
hexadecimal digits represents values from 0 to 255, corresponding
to a byte, and a group of four hexadecimal digits can represent
values from 0 to 65,536, corresponding to a word. Any address
in the Apple lie can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor
accepts any group of hexadecimal digits. If there are fewer than
four digits in the group, it adds leading zeros; if there are more
than four hexadecimal digits, the Monitor uses only the last four
digits. It follows a similar procedure when the command syntax
calls for two-digit data values.

Each command you type consists of one command character,
usually the first letter of the command name. The Monitor
recognizes 22 different command characters. Some of them are
punctuation marks, some are uppercase letters, and some are
control characters. Note: although the Monitor recognizes and
interprets them, control characters typed on an input line do not
appear on the screen. (See the "Summary of Monitor
Commands" at the end of the chapter.)

This chapter contains many examples of the use of Monitor
commands. In the examples, the commands and values you type
are shown in a normal typeface and the responses of the Monitor
are in a computer typeface. Of course, when you perform the

Using the Monitor

-
- ·

examples, all of the characters that appear on the display screen
will be in the same typeface. Some of the data values displayed
by your Apple lie may differ from the values printed in these
examples, because they are variables stored in programmable
memory.

Monitor Memory Commands
When you use the Monitor to examine and change the contents
of memory, it keeps track of the address of the last location
whose value you inquired about and the address of the location
that is next to have its value changed. These are called the last
opened location and the next changeable location.

Examining Memory Contents

When you type the address of a memory location and press
I RETURN I. the Monitor responds with the address you typed, a
dash, a space, and the value stored at that location, like this:

•EOOO

• EOOO- 20

*33

0033-AA
*

Each time the Monitor displays the value stored at a location, it
saves the address of that location as the last opened location
and as the next changeable location.

Memory Dump

When you type a period (.)followed by an address, and then
press I RETURN I, the Monitor displays a memory dump: the data
values stored at all the memory locations from the one following
the last opened location to the location whose address you typed
following the period. The Monitor saves the last location
displayed as both the last opened location and the ne.xt
changeable location. In these examples, the amount of data
displayed by the Monitor depends on how much larger than the
last opened location the address after the period is.

Monitor Memory Commands

•
•20

0020- 00

* .28

0021- 2S 00 1S OF oc 00 00
002S- AS 06 DO 07

•300

0300- ss

... 315

0301- BS 00 OS OA OA OA ss
030S- 00 OS cs DO F4 A6 2B AS
031 o- OS S5 27 AD cc 03

* .32A

0316- S5 41
031S- S4 40 SA 4A 4A 4A 4A OS
0320- co S5 3F AS 5D S5 3E 20
032S- 43 03 20 ..

A memory dump includes several different items of information.
The first line in the dump begins with the address of the location
following the last opened location; all other lines begin with
addresses that end alternately in zeros and eights, and there are
never more than eight data values displayed on a single line in a
memory dump.

When the Monitor performs a memory dump, it starts at the
location immediately following the last opened location and
displays that address and the data value stored there. It then
displays the values of successive locations up to and including
the location whose address you typed, but only up to eight
values on a line. When it reaches a location whose address is a
multiple of eight-that is, one that ends with an 8 or a 0-it
displays that address as the beginning of a new line, then
continues displaying more values.

Using the Monitor

•

After the Monitor has displayed the value at the location whose
address you specified in the command, it stops the memory
dump and sets that location as both the last opened location and
the next changeable location. If. the address specified on the
input line is less than the address of the last opened location, the
Monitor displays only the address and value of the location
following the last opened location.

You can combine the two commands, opening a location and
dumping memory, by simply concatenating them: type the first
address, a period, and the second address. This combination of
two addresses separated by a period is called a memory range .

*300.32F

0300- 99 89 00 08 OA OA OA 99
0308- 00 08 ca Do F4 AS 28 A9
0310- 09 85 27 AD cc 03 85 41
0318- 84 40 SA 4A 4A 4A 4A 09
0320- co 85 3F A9 SD 85 3E 20
0328- 43 03 20 4S 03 AS 3D 4D

*30.40

0030- AA 00 FF AA 05 C2 05 C2
0038- 18 FD DO 03 3C 00 40 00
0040- 30

* E015.E025

E015- 4C ED FD
E018- A9 20 cs 24 80 oc A9 8D
E020- AO 07 20 ED FD A9
*

Pressing the I RETURN I key by itself causes the Monitor to display
one line of a memory dump; that is, a memory dump from the
location following the last opened location to the next multiple-of­
eight boundary. The Monitor saves the address of the last
location displayed as the last opened location and the next
changeable location.

Monitor Memory Commands 91

•

I

I
I

ooos- oo

· I RETURN I

00 00

" I RETURN I

0008- 00 00 00 00 00 00 00 00

•32

0032- FF

"I RETURN I

AA 00 C2 OS C2

"I RETURN I

0038- 18 FD DO 03 3C 00 3F 00
"

Changing Memory Contents

The previous section showed you how to display the values
stored in the Apple lie's memory; this section shows you how to
change those values. You can change any location in
RAM (programmable memory) and you can also change the soft
switches and output devices by changing the locations assigned
to them.

Warning
Use these commands carefully. If you change the zero-page
locations used by Applesoft and DOS, you may lose programs or
data stored in memory.

Using the Monitor

Changing One Byte

The previous commands keep track of the next changeable
location ; these commands make use of it. In the next example,
you open location 0, then type a colon followed by a value.

• 0000- 00

•:5F

The contents of the next changeable location have just been
changed to the value you typed, as you can see by examining
that location :

0000- SF
•

You can also combine opening and changing into one operation
by typing an address followed by a colon and a value. In the
example, you type the address again to verify the change.

•302:42

•302

0302- 42
•

When you change the contents of a location, the value that was
contained in that location disappears, never to be seen again.
The new value will remain until you replace it with another value.

Changing Consecutive Locations

You don't have to type a separate command with an address,
a colon , a value, and I RETURN I for each location you want to
change. You can change the the values of up to eighty-five

Monitor Memory Commands

94

consecutive locations at a time (or even more, if you omit leading
zeros from the values) by typing only the initial address and
colon followed by all the values separated by spaces, and ending
with I RETURN 1. The Monitor will duly store the consecutive values
in consecutive locations, starting at the location whose address
you typed. After it has processed the string of values, it takes the
location following the last changed location as the next change­
able location. Thus, you can continue changing consecutive
locations without typing an address on the next input line by
typing another colon and more values. In these examples, you
first change some locations, then examine them to verify the
changes.

•300:69 01 20 ED FD 4C 0 3

*300

• 0300- 69

•I RETURN I

01 20 ED FD 4C 00 03

*1 0:0 1 2 3

*:4 5 6 7

* 10.17

0010- 00 01 02 03 04 05 06 07
*

Moving Data in Memory

You can copy a block of data stored in a range of memory
locations from one area in memory to another by using the - J

Monitor's MOVE command. To move a range of memory, you mustJ
tell the Monitor both where the data is now situated in memory
- the source locations - and where you want the copy to go -
the destination locations. You give this information to the Monitor
by means of three addresses: the address of the first location in
the destination and the addresses of the first and last locations in
the source. You specify the starting and ending addresses of the
source range by separating them with a period. You separate the
destination address from the range addresses with a less-than

Using the Monitor -

character (<), which you may think of as an arrow pointing in the
direction of the move. Finally, you tell the Monitor that th is is a
MOVE command by typing the letter M. The format of the complete
MOVE command looks like this:

{ destination} < { start} . { end} M

When you type the actual command, the words in curly braces
should be replaced by hexadecimal addresses, and the braces
and spaces should be omitted. Here are some examples of
memory moves. First, you examine the values stored in one
range of memory, then store several values in another range of
memory; the actual MOVE commands end with the letter M:

•O.F

Ill 0000- SF 00 OS 07 00 00 00 00
0008- 00 00 00 00 00 00 00 00

•300:A9 80 20 ED FD A9 45 20 DA FD 4C 00 03

•300.30C

0300- A9 8D 20 ED FD A9 4S 20
0308- DA FD 4C 00 03

*0< 300.30CM

*O.C

0000- A9 8D 20 ED FD A9 4S 20
0008- DA FD 4C 00 03

•310 8.AM

*310.312

0310- DA FD 4C

*2< 7.9M

*O.C

0000- A9 8D 20 DA FD A9 4S 20
0008- DA FD 4C 00 03
*

Monitor Memory Commands 95

The Monitor moves a copy of the data stored in the source range
of locations to the destination locations. The values in the source
range are left undisturbed. The Monitor remembers the last
location in the source range as the last opened location, and the
first location in the source range as the next changeable location.
If the second address in the source range specification is less
than the first, then only one value (that of the first location in the
range) will be moved.

If the destination address of the MOVE command is inside the
source range of addresses, then strange (and sometimes
wonderful) things happen: the locations between the beginning of
the source range and the destination address are treated as a
sub-range and the values in this sub-range are replicated
throughout the source range. See the section "Special Tricks with
the Monitor" for an interesting application of this feature.

Comparing Data in Memory

You can use the VERIFY command to compare two ranges of
memory using the same format you use to move a range of
memory from one place to another. In fact, the VERIFY command
can be used immediately after a MOVE to make sure that the move
was successful. The VERIFY command, like the MOVE command,
needs a range and a destination. The syntax of the VERIFY
command is:

{destination} < {start} . {end} v

The Monitor compares the values in the source locations with the
values in the locations beginning at the destination address. If
any values don't match, the Monitor displays the address at
which the discrepancy was found and the two values that differ.
In the example, you store data values in the range of locations
from o to so, copy them to locations starting at S300 with the MOVE
command, and then compare them using the VERIFY command.
When you use the VERIFY command after you change the value
at location 6 to s E 4, it detects the change.

Using the Monitor

•0:07 F2 E9 F4 F4 E5 EE AO E2 F9 AO C3 C4 C5

•300< 0.DM

•300< 0.DV

•6:E4

•300< 0.DV

Ill 0006-E4 <EE>
•

If the VERIFY command finds a discrepancy, it displays the
address of the location in the source range whose value differs
from its counterpart in the destination range. If there is no
discrepancy, VERIFY displays nothing. The VERIFY command
leaves the values in both ranges unchanged. The last opened
location is the last location in the source range, and the next
changeable location is the first location in the source range, just
as in the MOVE command. If the ending address of the range is
less than the starting address, the values of only the first
locations in the ranges will be compared. Like the MOVE command,
the VERIFY command also does unusual things if the destination
address is within the source range; see the section "Special
Tricks with the Monitor".

Monitor Register Command
Even though the actual contents of the 6502's internal registers
are changing as you use the Monitor, you can examine the
values that the registers contained at the time the Monitor gained
control , either because you called it or because the program you
are debugging stopped at a break (BRK). You can also store
new register values that will be used when you execute a
program from the Monitor using the GO command, described
below.

Examining and Changing Registers

When you call the Monitor, it stores the contents of the 6502
registers in memory. The registers are stored in the order A, X,
Y, P (processor status register), and S stack pointer) , starting at
locatio{l $45 (decimal 69). When you give the Monitor a GO
command, the Monitor loads the registers from these five
locations before it executes the first instruction in your program.

Monitor Register Commands 97

98

Typing I CONTROL 1-E and pressing I RETURN I invokes the Monitor's
EXAMINE command, which displays the stored register values and
sets the location containing the contents of the A-register as the
next changeable location. After using the EXAMINE command, you
can change the values in these locations by typing a colon and
then typing the new values separated by spaces. In the following
example, you display the registers, change the first two, and then
display them again to verify the change.

•I CONTROL 1-E

Ill A=OA X=FF Y=DB P=BO S=FB

• :BO 02

•I CONTROL 1-E

A=BO X=02 Y=DB P=BO S=FB
"

Monitor Cassette Tape Commands
The Apple lie has two jacks for connecting an audio cassette
tape recorder. With a recorder connected , you can use the
Monitor commands described below to save the contents of a
range of memory onto a standard cassette and recall it again for
later use.

Saving Data on Tape

The Monitor's WRITE command saves the contents of up to 65,536
memory locations on cassette tape. To save a range of memory
on tape, give the Monitor the starting and ending addresses of
the range, followed by the letter w (for WRITE), like this:

{ start} . { end} w

Don't press I RETURN I yet: first, put the tape recorder in record
mode and let the tape run for a second, then press I RETURN 1. The
Monitor will write a ten-second tone onto the tape and then write
the data. The tone acts as a leader: later, when the Monitor
reads the tape, the leader enables the Monitor to get in step with
the signal from the tape. When the Monitor is finished writing the
range you specified, it will sound a bell (beep) and display a
prompt. You should rewind the tape and label it with the memory
range that's on the tape and what it's supposed to be.

Using the Monitor

Here's a small example you can save and use later to try out the
READ command. Remember that you must start the cassette
recorder in record mode before you press I RETURN I after typing
the WRITE command.

•O.FF FF AD 30 CO 88 DO 04 C6 01 FO 08 CA
DO F6 A6 00 4C 02 00 60

•0.14

Ill 0000- FF FF AD 30 CO 88 DO 04
0008- C6 01 FO 08 CA DO F6 A6
0010- 00 4C 02 00 60

•0.14W

*

It takes about 35 seconds total to save the values of 4,096
memory locations preceded by the ten-second leader onto tape.
This works out to an average data transfer rate of about 1,350
bits per second.

The WRITE command writes one extra value on the tape after it
has written the values in the memory range. This extra value is
the checksum, which is the eight-bit partial sum of all values in
the range. When the Monitor reads the tape, it uses this value to
determine if the data has been written and read correctly (see
below).

Reading Data from Tape

Once you've saved a memory range onto tape with the Monitor's
WRITE command, you can read that memory range back into the
computer by using the Monitor's READ command. The data values
you've stored on the tape need not be read back into the same
memory range from whence they came; you can tell the Monitor
to put those values into any memory range in the computer's
memory, provided that it's the same size as the range you
saved. The format of the READ command is the same as that of
the WRITE command, except that the command letter is R:

{start} . {end} R

Monitor Cassette Tape Commands 99

Once again, after typing the command, don't press I RETURN).
Instead, start the tape recorder in play mode and wait a few
seconds. Although the WRITE command puts a ten-second leader
tone on the beginning of the tape, the READ command needs only
three seconds of this leader to lock on to the signal from the
tape. You should let a few seconds of tape go by before you
press I RETURN I to allow the tape recorder's output to settle down
to a steady tone.

This example has two parts. First, you set a range of memory to
zero, verify the contents of memory, and then type the READ
command, but don't press I RETURN).

•0:0

•0.14

Ill 0000- 00 00 00 00 00 00 00 00
0008- 00 00 00 00 00 00 00 00
0010- 00 00 00 00 00

•0.14R

Now start the cassette running in play mode, wait a few seconds,
and press I RETURN). After the Monitor sounds the bell (beep) and
displays the prompt, examine the range of memory to see that
the values from the tape were read correctly:

• 0.14

Ill 0000- FF FF AD 30 CO 88 DO 04
0008- C6 01 FO 08 CA DO F6 A6
0010- 00 4C 02 00 60
•

After the Monitor has read all the data values on the tape, it
reads the checksum value. It computes the checksum on the
data it read and compares it to the checksum from the tape. If
the two checksums differ, the Monitor sends a beep to the
speaker and displays "ERR". This warns you that there was a
problem reading the tape and that the values stored in memory
aren't the values that were recorded on the tape. If the two
checksums match, the Monitor will just send out a beep and ~ J
display a prompt.

Using the Monitor

Miscellaneous Monitor Commands

These Monitor commands enable you to change the video
display format from normal to inverse and back, and to assign
input and output to peripherals in expansion slots.

Display Inverse and Normal

You can control the setting of the inverse-normal mask location
used by the COUT subroutine (described in Chapter 3) from the
Monitor so that all of the Monitor's output will be in inverse
format. The INVERSE command, I , sets the mask such that all
subsequent inputs and outputs are displayed in inverse format.
To switch the Monitor's output back to normal format, use the
NORMAL command, t-1 .

•O.F

Ill 0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

•O.F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

•O.F

0000- OA OB OC OD OE OF DO 04
0008- C6 01 FO 08 CA DO F6 A6

*

Miscellaneous Monitor Commands

102

Back to BASIC

Use the BASIC command, I CONTROL 1-B , to leave the Monitor and
enter the BASIC that was active when you entered the Monitor.
Normally, this is Applesoft BASIC, unless you deliberately
switched to Integer BASIC. Any program or variables that you
had previously in BASIC will be lost. If you want to re-enter
BASIC with your previous program and variables intact, use the
CONTINUE BASICcommand, I CONTROL J-c . If you are using the
AppleDiskOperatingSystem(DOS),press l CONTROL J-1 RESET I or
type

3DOG

to return to the language you were using, with your program and
variables intact.

If you type the latter command, make sure that the third character
you type is a zero, not a letter 0. The letter G is the Monitor's GO
command, described below in the section "Machine-language
Programs" .

Redirecting Input and Output

The PRINTER command, activated by a I CONTROL 1- P , diverts all
output normally destined for the screen to an interface card in a
specified exapnsion slot, from 1 to 7. There must be an interface
card in the specified slot, or you will lose control of the computer
and your program and variables may be lost. The format of the
command is

{slot number} I CONTROL [-P

APR INTER command to slot number 0 will switch the stream of
output characters back to the Apple lie's video display.

Warning
Don't give the PRINTER command with slot number 0 to deactivate the
80-column firmware, even though you used this command to
activate it in slot 3. The command works, but it just disconnects the
firmware, leaving some of the soft-switches set for 80-column
display.

Using the Monitor

•

In much the same way that the PR I !HER command switches the
output stream, the KEYBOARD command substitutes the interface
card in a specified expansion slot for the Apple lie's normal input
device, the keyboard . The format for the KEYBOARD command is:

{ slot number} I CONTROL 1-K

A slot number of 0 for the KEYBOARD command directs the Monitor
to accept input from the Apple lie's built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents of
the BASIC commands PR" and I~'~" . For more information on the
way those commands work, refer to the section "The Standard 1/0
Links" in Chapter 3.

Hexadecimal Arithmetic

The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats :

{ value} + { value}
{ value} - { value}

The Apple lie performs the arithmetic and displays the result, as
shown in these examples:

•20+13

=33

•4A-C

"' 3E

•FF+ 4

"' 03

•3-4

=FF

*

Miscellaneous Monitor Commands

Special Tricks with the Monitor
This section describes some more complex ways of using the
Monitor commands.

Multiple Command Lines

You can put as many Monitor commands on a single line as you
like, as long as you separate them with spaces and the total
number of characters in the line is less than 254. Adjacent
single-letter commands such as L, s, I , and N need not be
separated by spaces.

You can freely intermix all of the commands except the STORE (:)

command. Since the Monitor takes all values following a colon
and places them in consecutive memory locations, the last value
in a STORE must be followed by a letter command before another
address is encountered. You can use the NORMAL command as the
required letter command in such cases ; it usually has no effect
and can be used anywhere.

In the following example, you display a range of memory, change
it, and display it again, all with one line of commands.

* 300.307 300:18 69 1 N 300.302

Ill 0300- 00 00 00 00 00 00 00 00
0300- 18 69 01
*

If the Monitor encounters a character in the input line that it does
not recognize as either a hexadecimal digit or a valid command
character, it executes all the commands on the input line up to
that character, then grinds to a halt with a noisy beep and
ignores the remainder of the input line.

Filling Memory

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern
in the first locations in the range :

•300:11 22 33

*

Using the Monitor

•

Remember the number of values in the pattern: in this case, it is
3. Use the number to compute addresses for the MOVE command,
like this:

{start+number} < {start} . {end-number} M

This MOVE command will first replicate the pattern at the locations
immediately following the original pattern, then replicate that
pattern following itself, and so on until it fills the entire range.

•303 < 300.32DM

•300.32F

0300- 11 22 33 11 22 33 11 22
0308- 33 11 22 33 11 22 33 11
031 o- 22 33 11 22 33 11 22 33
031 a- 11 22 33 11 22 33 11 22
0320- 33 11 22 33 11 22 33 11
0328- 22 33 11 22 33 11 22 33
•

You can do a similar tric!< with the VERIFY command to check
whether a pattern repeats itself through memory. This is
especially useful to verify that a given range of memory locations
all contain the same value. In this example,-you first fill the
memory range from $30 o to s 32 o with zeros and verify it, then
change one location and verify again, to see the VERIFY
command detect the discrepancy:

•300 :0

•301 < 300. 31 FM

•301 < 300.31 FV

•304:02

•301 < 300.31 FV

• 0303-00 (02)
0304-02 <oo>
•

Special Tricks with the Monitor

106

Repeating Commands

You can create a command line that repeats one or more
commands over and over. You do this by beginning the part of
the command line that you want to repeat with a letter command,
such as N, and ending it with the sequence 34: n, where n is a
hexadecimal number that specifies the position in the line of the
command where you want to start repeating ; for the first
character in the line, n= O. The value for n must be followed with
a space in order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an
index register to step through the input buffer, starting at location
S200. Each time the Monitor executes a command, it stores the
value of the index at location s 34 ; when that command is
finished , the Monitor reloads the index register with the value at
location s 34. By making the last command change the value at
location $34 , you change this index so that the Monitor picks up
the next command character from an earlier point in the buffer.

The only way to stop a loop like this is to press [CONTROL I­
I RESET I ; that is how this example ends.

* N 300 302 34:0

• 0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
0300- 11
0302- 33
030
*

Creating your Own Commands

The USER command, I CONTROL 1-v , forces the Monitor to jump to
memory location S3F8 . You can put a JMP instruction there that
jumps to your own machine-language program. Your program
can then examine the Monitor's registers and pointers or the
input buffer itself to obtain its data. For example, here is a

Using the Monitor

-

-
-'

program that displays everything on the input line after the
I CONTROL 1-Y . The program starts at location $300; the command
line that starts with s 3F8 stores a jump to s 30 o at location s 3F8.

•300 :A4 34 89 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF

•3F8:4C 00 03

•I CONTROL 1-Y THIS IS A TEST

Ill THIS IS A TEST

"

Machine-Language Programs
The main reason to program in machine language is to get more
speed. A program in machine language can run much faster than
the same program written in high-level languages such as BASIC
or Pascal , but the machine-language version usually takes a lot
longer to write. There are other reasons to use machine
language: you might want your program to do something that
isn't included in your high-level language, or you might just enjoy
the challenge of using machine language to work directly on the
bits and bytes.

If you have never used machine language before, you'll need to
learn the 6502 instructions listed in Appendix A. To become
proficient at programming in machine language, you'll have to spend
some time at it, and study one of the books on 6502 programming
listed in the Bibliography.

You can get a hexadecimal dump of your program, move it
around in memory, or save it on tape and recall it again using
the commands described in the previous sections. The Monitor
commands in this section are intended specifically for you to use
in creating , writing , and debugging machine-language programs.

Running a Program

The Monitor command you use to start execution of your
machine-language program is the GO command. When you type
an address and the letter G, the Apple lie starts executing
machine language instructions starting at the specified location. If
you just type the G, execution starts at the last opened location .

Machine-language Programs

The Monitor treats this program as a subroutine: it should end
with an RTS (return from subroutine) instruction to transfer control
back to the Monitor.

The Monitor has some special features that make it easier tor
you to write and debug machine-language programs, but before
you get into that, here is a small machine-language program that
you can run using only the simple Monitor commands already
described. The program in the example merely displays the
letters A through Z: you store it starting at location $30 o, examine
it to be sure you typed it correctly, then type 300G to start it
running .

•300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60

•300.30C

Ill 0300- A9 C1 20 ED FD 18 69 01
0308- C9 DB DO F6 60

Since programs that translate assembly
language into machine language are
called assemblers, a program like the
Monitor's L 1ST command that translates
machine language into assembly
language is called a disassembler.

The word mnemonic comes from the
same root as memory and refers to
short acronyms that are easier to
remember than the hexadecimal
operation codes themselves : for
example, for clear carry you write CLC
instead of S1 a.

108

*300G

ABCDEFGHIJKLMNOPQRSTUVWXYZ
*

Disassembled Programs

Machine-language code in hexadecimal isn't the easiest thing in
the world to read and understand. To make this job a little
easier, machine-language programs are usually written in
assembly language and converted into machine-language code
by programs called assemblers.

The Monitor's LIST command displays machine-language code in
assembly-language form. Instead of unformatted hexadecimal
gibberish, the LIST command displays each instruction on a
separate line, with a three-letter instruction name, or mnemonic,
and a formatted hexadecimal operand. The LIST command also
converts the relative addresses used in branch instructions to
absolute addresses.

Using the Monitor

........

-
--

•

The Monitor LIST command has the format:

{ location} L

The LIST command starts at the specified location and displays
as much memory as it takes to make up a screenfull (20 lines) of
instructions, as shown in the following example:

•300L

0300- A9 C1 LOA 1$C1
0302- 20 ED FD JSR SFDED
0305- 18 CLC
0306- 69 01 ADC 1$01
0308- C9 DB CMP #$08
030A- DO F6 BI'IE $0302
030C- 60 RTS
0300- 00 BRK
030E - 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0315- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK
*

The first seven lines of this example are the assembly-language
form of the program you typed in the previous example. The rest
of the lines are BRK instructions only if this part of memory has
zeros in it: other values will be disassembled as other
instructions.

The Monitor saves the address that you specify in the LIST
command, but not as the last opened location used by the other
commands. Instead, the Monitor saves this address as the
program counter, which it uses only to point to locations within
programs. Whenever the Monitor performs a LIST command, it
sets the program counter to point to the location immediately
following the last location displayed on the screen, so that if you
type another LIST command it will display another screenfull of
instructions, starting where the previous display
left ott.

Machine-language Programs 109

The Mini-assembler

Without an assembler, you have to write your machine language
program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands
covered in the previous sections. That is exactly what you did
when you ran the previous examples.

The Integer BASIC interpreter includes an assembler called the
Apple Mini-assembler that enables you to type programs into the
Apple lie using the same assembly-language format that the LIST
command displays. It is called a mini-assembler because it
doesn't include symbolic labels, an important feature of all full­
sized assemblers like the Assembler/Editor in the DOS Tool Kit
(Apple product number A2D0029).

Before you can use the Mini-assembler, the Apple lie has to be
running Integer BASIC. When you start up the computer using
DOS or either BASIC, the Apple lie loads the Integer BASIC
interpreter from the file named I NT BAS I c into the bank-switched
RAM.

To run Integer BASIC after you have started up the computer
with DOS, type

INT

The Apple lie displays the Integer prompt character (>) and a
cursor.

If you have not activated the 80-column firmware since you started
up with DOS, the cursor now looks like a blinking rectangle: it is
actually a space character displayed in flashing format. This is
evidence that the old Monitor is operating (see Chapter 3). The old
Monitor is loaded into RAM along with Integer BASIC and the mini­
assembler; the next time you activate the 80-column firmware, it
copies the current version of the Monitor from ROM into RAM. Once
this has happened, the current Monitor is active even with Integer
BASIC, and the cursor is either a blinking checkerboard or a steady
rectangle.

Now enter the Monitor by typing

CALL -151

Using the Monitor

After you enter the Monitor from Integer BASIC, invoke the Mini­
assembler by typing:

F666G

This is just the GO command described above starting the
program stored at location $F666 -the mini assembler. You can
tell that the mini-assembler is running because it displays an
exclamation point (!)as its prompt character. While the mini­
assembler is running, you can execute any Monitor command by
preceding it with a dollar sign ($). Aside from that, the Mini­
assembler has an instruction set and syntax all its own.

The Mini-assembler saves one address, that of the program
counter. Before you start to type a program, you must set the
program counter to point to the location where you want the Mini­
assembler to store your program. Do this by typing the address
followed by a colon.

After the colon, type the mnemonic for the first instruction in your
program, followed by a space and the operand of the instruction
(formats for operands are listed Table 5-1). Now press I RETURN I.
The Mini-assembler converts the line you typed into hexadecimal,
stores it in memory beginning at the location of the Program
Counter, and then disassembles it again and displays the
disassembled line. It then displays a prompt on the next line.

Now the Mini-assembler is ready to accept the second instruction
in your program. To tell it that you want the next instruction to
follow the first , don't type an address or a colon: just type a
space and the next instruction's mnemonic and operand, then
press I RETURN 1. The Mini-assembler assembles that line and waits
for another.

If the line you type has an error in it, the Mini-assembler beeps
loudly and displays a circumflex (") under or near the offending
character in the input line. Most common errors are the result of
typographical mistakes: misspelled mnemonics, missing
parentheses, and so forth. The Mini-assembler also rejects the
input line if you forget the space before or after a mnemonic or
include an extraneous character in a hexadecimal value or
address. If the destination address of a branch instruction is out
of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-assembler flags this as
an error.

The Mini-assembler 111

II

•
! 300:LDX #02

0300- A2 02 LDX #$02

! LOA $0,X

0302- 85 00 LDA $00,X

! STA $10,X

0304- 95 10 STA $10,X

! DEX

0306- CA DEX

! STA $C030

0307- BD 30 co STA $C030

! BPL $302

030A- 1 0 FG BPL $0302

! BRK

030C- 00 BRK
!

There are two ways to leave the Mini-assembler and recenter the
Monitor. One way is to type the Monitor command, FF69G ,

preceded by a dollar sign:

! $FF69G

*

Another way to leave the Mini-assembler is to press I CONTROL I­
I RESET I, which warm-starts BASIC, then type

CALL-151

Using the Monitor

........

-

•

Your assembly language program is now stored in memory. You
can display it with the L 1ST command:

*300L

0300- A2 02 LOX #$02
0302- 85 00 LOA soo,x
0304- 95 1 0 STA S10,X
0306- CA OEX
0307- 80 30 co STA SC030
030A- 1 0 F6 BPL $0302
030C- 00 BRK
0300- 00 BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0315- 00 BRK
0316- 00 BRK
0317- 00 BRK
0318- 00 BRK
0319- 00 BRK
*

Mini-assembler Instruction Formats

The Apple Mini-assembler recognizes 56 mnemonics and 13
addressing formats used in 6502 assembly-language
programming. The mnemonics are standard, as used in the
Synertek Programming Manual (Apple part number A2L0003), but
the addressing formats are somewhat different. Table 5-1 shows
the Apple standard address-mode formats for 6502 assembly
language.

An address consists of one or more hexadecimal digits. The
Mini-assembler interprets addresses the same way the Monitor
does: if an address has fewer than four digits, the Mini-assembler
adds leading zeros ; if the address has more than four digits, then
it uses only the last four .

In this book, dollar signs (s) in addresses signify that the addresses
are in hexadecimal notation. They are ignored by the Mini­
assembler and may be omitted when typing programs.

There is no syntactical distinction between the absoluij3 and zero­
page addressing modes. If you give an instruction to the Mini­
assembler that can be used in both absolute and zero-page
mode, the Mini-assembler assembles that instruction in absolute
mode if the operand for that instruction is greater than s FF , and it
assembles it in zero-page mode if the operand is less than S1 o o.

The Mini-assembler 113

Table 5-1 Mini-assembler Address
Formats

*Note: Accumulator and
Implied-address instructions have no
operands.

114

Addressing Mode

Accumulator

Implied

Immediate

Absolute

Zero page

Indexed zero page

Indexed absolute

Relative

Indexed indirect

Indirect indexed

Absolute indirect

Format

IS{ value}

s{ address}

s{ address}

s{ address}, X
s{ address}, Y

s{ address}, X
s{ address}, Y

s{ address}

(s{ address}, X)

(s{ address}), Y

(s{ address})

Notes

Instructions in accumulator mode and implied addressing mode
need no operands.

Branch instructions, which use the relative addressing mode,
require the target address of the branch. The Mini-assembler
calculates the relative distance to use in the instruction
automatically. If the target address is more than 127 locations
distant from the instruction, the Mini-assembler sounds a bell
(beep), displays a circumflex (") under the target address, and
does not assemble the line.

If you give the Mini-assembler the mnemonic for an instruction
and an operand, and the addressing mode of the operand cannot
be used with the instruction you entered, the Mini-assembler will
not accept the line.

Using the Monitor

-

-

Summary of Monitor Commands
Here is a summary of the Monitor commands, showing the
syntax diagram for each one. The Mini-assembler commands are
included, even though they are only available when Integer
BASIC is active (see the section "The Mini-assembler").

Examining Memory

{ adrs}

{ adrs1 }.{adrs2}

I RETU RN I

Examines the value contained
in one location.

Displays the values contained
in all locations between
{adrs1 } and { adrs2} .

Displays the values in up to
eight locations following the
last opened location.

Changing the Contents of Memory

{ adrs}:{val } { val } ...

:{val}{ val } ...

Moving and Comparing

{ dest}<{start}.{ end}M

{ dest}<{ start}.{ end}V

Stores the values in
consecutive memory locations
starting at { adrs} .

Stores values in memory
starting at the next changeable
location.

Copies the values in the range
{ start}.{end} into the range
beginning at {dest}.

Compares the values in the
range { start}.{end} to those in
the range beginning at {dest}.

Summary of Monitor Commands

The Register Command

I CONT RO L 1-E

Cassette Tape Commands

{ start}.{ end}W

{ start}.{ end} R

Displays the locations where
the contents of the 6502's
registers are stored and opens
them for changing.

Writes the values in the
memory range { start}.{ end}
onto tape, preceded by a ten­
second leader.

Reads values from tape,
storing them in memory
beginning at { start} and
stopping at { end}. Prints "ERR "
if an error occurs.

Miscellaneous Monitor Commands

I CONTROL 1-B

I coNTROL 1-c

{ val}+{val }

{ val }-{val }

Using the Monitor

Sets Inverse display mode.

Sets Normal display mode.

Enters the language currently
active (usually Applesoft).

Returns to the language
currently active (usually
Applesoft) .

Adds the two values and prints
the hexadecimal result.

Subtracts the second value
from the first and prints the
result.

The Mini-assembler is only available
when Integer BASIC is active.

{ slot} [COtHRO C] -P

I CONTROL 1-Y

Running and Listing Programs

{ adrs}G

{ adrs} L

The Mini-assembler

F666G

${ command}

$FF69G

Summary of Monitor Commands

Diverts output to the device
whose interface card is in slot
number { slot}. If { slot}=O,
accepts input from the
keyboard .

Jumps to the machine
language subroutine at location
$3FB.

Transfers control to the
machine language program
beginning at { adrs} .

Disassembles and displays 20
instructions, starting at { adrs }.
Subsequent L 's display 20
more instructions.

Invokes the Mini-assembler.

Executes a Monitor command
from the Mini-assembler.

Leaves the Mini-assembler.

.........

-..
...-...
-
....-

-
I
I

Programming for
Peripheral Cards

121 Peripheral-card Memory Spaces
122 Peripheral-card 1/0 Space
122 Peripheral-card ROM Space
123 Expansion ROM Space
125 Peripheral-card RAM Space
126 1/0 Programming Suggestions
127 Finding the Slot Number
127 1/0 Addressing
128 RAM Addressing
129 Changing the Standard 1/0 Links
131 Using Interrupts
131 Other Uses of 1/0 Memory Space
132 Switching 1/0 Memory

Programming for Peripheral Cards

6

Chapter 6

Programming for
Peripheral Cards

The seven expansion slots on the Apple lie's main circuit board
are used for installing circuit cards containing the hardware and
firmware needed to interface peripheral devices to the Apple lie.
These slots are not simple 1/0 ports ; peripheral cards can
access the Apple lie's data, address, and control lines via these
slots. The expansion slots are numbered from 1 to 7, and certain
signals, described below, are used to select a specific slot.

The older Apple II and Apple II Plus models have an eighth
expansion slot: slot number 0. On those models, slot 0 is normally
used for a language card or a ROM card ; the functions of the
Apple II Language Card are built into the main circuit board of the
Apple lie.

Peripheral-card Memory Spaces
Because the Apple lie's 6502 microprocessor does all of its 1/0
through memory locations, portions of the Apple lie's memory
space have been allocated for the exclusive use of the cards in
the expansion slots. In addition to the memory locations used for
actual 1/0 , there are memory spaces available for programmable
memory (RAM) in the main memory and for read-only memory
(ROM or PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are
described below. Those memory spaces are used for small
dedicated programs such as 1/0 drivers. Peripheral cards that
contain their own driver routines in firmware like this are called
intelligent peripherals. They make it possible for you to add
peripheral hardware to your Apple lie without having to change
your programs, provided that your programs follow normal
practice for data input and output.

Peripheral-card Memory Spaces

Table 6-1 Peripheral-card 1/0
Memory Locations

Note: The enabling signal is marked
with a prime, to indicate that it is an
active-low signal.

Peripheral-card I /0 Space

Each expansion slot has the exclusive use of sixteen memory
locations for data input and output in the memory space
beginning at location SC090. Slot 1 uses locations SC090 through
SC09F, slot 2 uses locations scoAO through SCOAF, and so on
through location scoFF , as shown in Table 6-1.

These memory locations are used for different 1/0 functions,
depending on the design of each peripheral card . Whenever the
Apple lie addresses one of the sixteen 1/0 locations allocated to
a particular slot, the signal on pin 41 of that slot, called DEVICE
SELECT' , switches to the active (low) state. This signal can be
used to enable logic on the peripheral card that uses the four
low-order address lines to determine which of its sixteen 1/0
locations is being accessed.

Slot Locations Enabled by

SC090-SC09F DEVICE SELECT'

2 SCOAO-SCOAF DEVICE SELECT'

3 SCOBO-SCOBF DEVICE SELECT'

4 scoco-scocF DEVICE SELECT'

5 SCODO-SCODF DEVICE SELECT'

6 SCOEO-SCOEF DEVICE SELECT '

7 SCOFO-SCOFF DEVICE SELECT'

Peripheral-card ROM Space

One 256-byte page of memory space is allocated to each
peripheral card. This space is normally used for read-only
memory (ROM or PROM) on the card with driver programs that

-

control the operation of the peripheral device connected to the -
card .

The page of memory allocated to each expansion slot begins at
location SCnOO, where n is the slot number, as shown in Table 6-2
and Figure 6-3. Whenever the Apple lie addresses one of the

Programming for Peripheral Cards

-
-

I

Table 6-2 Peripheral-card ROM
Memory Locations

Note : The enabling signal is marked
with a prime, to indicate that it is an
active-low signal.

256 ROM memory locations allocated to a particular slot, the
signal on pin 1 of that slot, called 110 SELECT', switches to the
active (low) state. This signal enables the ROM or PROM
devices on the card, and the eight low-order address lines
determine which of the 256 memory locations is being accessed.

Slot Locations Enabled by

2

3

4

5

6

7

$C100-$C1FF 1/0 SELECT'

$C200-$C2FF I /0 SELECT'

$C300-$C3FF I /0 SELECT'

$C400 - $C4FF I /0 SELECT'

$CSOO-$CSFF I /0 SELECT'

$C600-$C6FF I /0 SELECT'

$C700-$C7FF 110 SELECT'

If there is an 80-column text card installed in the auxiliary slot, some
of the functions normally associated with slot 3 are performed by
the 80-column text card and the built-in 80-column firmware. With a
80-column text card installed, the 110 SELECT' signal is not available
for slot 3, so firmware in ROM on a card in slot 3 will not run.

Expansion ROM Space

In addition to the small areas of ROM memory allocated to each
expansion slot, peripheral cards can use the 2K-byte memory
space from scaoo to SCFFF for larger programs in ROM or PROM.
This memory space is called expansion ROM space (see the
memory map in Figure 6-3). Besides being larger, the expansion
ROM memory space is always at the same locations regardless
of which slot is occupied by the card, making programs that
occupy this memory space easier to write. (See the section "1/0
Programming Suggestions", below.)

This memory space is available to any peripheral card that needs
it. More than one peripheral card can have expansion ROM on it,
but only one of them can be active at a time.

Peripheral-card Memory Spaces

Each peripheral card that uses expansion ROM must have a
circuit on it to enable the ROM. The circuit does this by a two-
stage process: first, it sets a flip-flop when the II o SELECT' signal,
pin 1 on the slot, becomes active (low); second , it enables the
expansion ROM devices when the I /0 STROBE' signal, pin 20 on
the slot, becomes active (low). Figure 6-1 shows a typical ROM­
enable circuit.

The I /0 SELECT' signal on a particular slot becomes active
whenever the Apple lie's 6502 microprocessor addresses a
location in the 256-byte ROM address space allocated to that
slot. The I 1 o STROBE' signal on all of the expansion slots becomes ~
active (low) when the 6502 addresses a location in the
expansion-ROM memory space, $C800-$CFFF . The I /0 STROBE'

signal is used to enable the expansion-ROM devices on a
peripheral card (see Figure 6-1).

If there is an 80-column text card installed in the auxiliary slot, some ~
of the functions normally associated with slot 3 are performed by
the text card and the built-in 80-column firmware. With the text card
installed, the I 10 STROBE' signal is not available on slot 3, so firmware
in expansion ROM on a card in slot 3 will not run.

Figure 6-1 Expansion ROM Enable -
Circuit

124

(110 SELECT'~ s
ENABLE 1

LATCH
($CFFF' }-- R 2K BYTE ENABLE 2
(110 STROBE) .. ROM

(ADDRESS '
AO TO A10

./

A program on a peripheral card can get exclusive use of the
expansion ROM memory space by referring to location $CFFF in
its initialization phase. This location is special: all peripheral cards
that use expansion ROM must recognize a reference to $CFFF as
a signal to reset their ROM-enable flip-flops and disable their
expansion ROMs. Of course, doing so also disables the
expansion ROM on the card that is about to use it, but the next
instruction in the initialization code sets the flip-flop on the
expansion-ROM enable circuit on the card. Once this has been
done, this card has exclusive use of the expansion memory
space and its program can jump directly into the expansion
ROM.

As described above, the expansion-ROM disable circuit resets
the enable flip-flop whenever the 6502 addresses location $CFFF.

Programming for Peripheral Cards

-
-
-
-

-

Figure 6-2 ROM Disable Address
Decoding

Table 6-3 Peripheral-card RAM
Memory Locations

*Note : The RAM locations normally
allocated to slot 3 are taken over by
any card installed in the auxiliary slot.

To RESET, ROM enable
flip-flop

To do this , the peripheral card must detect the presence of SCFFF
on the address bus. You can use the I /0 STROBE' signal for part
of the address decoding, since it is active for addresses from
s cao o through s c FFF. If you can afford to sacrifice some ROM
space, your can simplify the address decoding even further and
save circuitry on the card . For example, if you give up the last
256 bytes of expansion ROM space, your disable circuit only
needs to detect addresses of the form SCFxx , and you can use
the minimal disable-decoding circuitry shown in Figure 6-2.

Peripheral-card RAM Space

There are 56 bytes of main memory allocated to the peripheral
cards , eight bytes per card, as shown in Table 6-3. These 56
locations are actually in the RAM memory reserved for the text
and low-resolution graphics displays, but these particular
locations are not displayed on the screen and their contents are
not changed by the built-in output routine COUT1 . Programs in
ROM on peripheral cards use these locations for temporary data
storage.

Base Slot Number
Address 2 3* 4 5 6 7

$0478 $0479 S047A $0478* $047C $0470 $047E S047F

S04F8 S04F9 $04FA $04FB* S04FC $04FO $04FE $04FF

$0578 $0579 $057A $0578* $057C $0570 S057E S057F

$05F8 $05F9 S05FA $05F8* S05FC S05FO $05FE S05FF

$0678 $0679 S067A $0678* $067C $0670 S067E $067F

S06F8 $06F9 $06FA $06F8* $06FC S06FO $06FE $06FF

$0778 $0779 $077A $0778* S077C $0770 S077E S077F

S07F8 $07F9 $07FA S07F8* S07FC S07FO $07FE $07FF

Peripheral-card Memory Spaces 125

A program on a peripheral card can use the eight base
addresses shown in the table to access the eight RAM locations
allocated for its use, as shown in the next section, "1/0
Programming Suggestions".

I /0 Programming Suggestions
A program in ROM on a peripheral card should work no matter
which slot the card occupies. If the program includes a jump to
an absolute location in one of the 256-byte memory spaces, then
the card will only work when it is plugged into the slot that uses
that memory space. If you are writing the program for a
peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

To function properly no matter which slot a peripheral card is
installed in, the program in the card's 256-byte memory space must
not make any absolute references to itself. Instead of using jump
instructions, you should force conditions on branch instructions,
which use relative addressing.

The first thing a peripheral-card subroutine should do is to save
the contents of the 6502's registers. One way to do this is to use
the monitor subroutine IDSAVE. This subroutine, which starts at
location SFF4A , stores the registers in zero-page memory locations
S45-S49 . A companion subroutine, IDREST, restores the registers
from these memory locations. Your program should call IDREST ,
which starts at location sF F 3F, just before it returns control to the
program that called it.

This method of saving the registers is convenient, but it is not
always safe. If a second subroutine calls I OS AVE , or if an interrupt
occurs, the new register contents get saved in the same
locations, and the old ones get destroyed. It is safer, though
somewhat slower, to save the registers on the stack, and restore
them just before returning control to the calling program.

Most single-character 1/0 is done via the 6502's accumulator. A
character being output through your subroutine will be in the
accumulator with its high bit set when your subroutine is called.
Likewise, if your subroutine is performing character input, it must
leave the character in the accumulator with its high bit set when
it returns to the calling program.

Programming for Peripheral Cards

Finding the Slot Number

The memory addresses used by a program on a peripheral card
differ depending on which expansion slot the card is installed in.
Before it can refer to any of those addresses, the program must
somehow determine the correct slot number. One way to do this
is to execute a JSR (Jump to Subroutine) to a location with an RTS
(Return from Subroutine) instruction in it, and then derive the slot
number from the return address saved on the stack, as shown in
the following example.

PHP
SEI
JSR $FF58
TSX
LDA $0100,X
AND #$OF
PLP

save status
inhibit interrupts
-> a known RTS instruction
get high byte of the ...
. . . return address from stack
low-order digit is slot no.
restore status

The slot number can now be used in addressing the memory
allocated to the peripheral card , as shown below.

I /0 Addressing

Once your peripheral-card program has the slot number, it can
use it to address the 1/0 locations allocated to the slot. Table 6-4
shows how these locations are related to sixteen base addresses
starting with $COSO . Notice that the difference between the base
address and the desired 1/0 location has the form $no , where n
is the slot number. Starting with the slot number in the
accumulator, the following example computes this difference by
four left shifts , then loads it into an index register and uses the
base address to specify one of sixteen 1/0 locations.

ASL
ASL
ASL
ASL
TAX
LDA $C080,X

get n into ...

... hiqh-order nybble ...

... of index register.
load from first 1/0 location

You must make sure that you get an appropriate value into the
index register when you address 1/0 locations this way. For
example, starting with 1 in the accumulator, the instructions in the
above example perform an LOA from location sco9o , the first 1/0
location allocated to slot 1. If the value in the accumulator had been
0, the LOA would have accessed location scoao , thereby setting the
soft switch that selects the second bank of RAM at location soooo
and enables it for reading (see Chapter 5).

1/0 Programming Suggestions

Table 6-4 Peripheral-card 1/0 Base
Addresses

128

Base Connector Number
Address 2 3 4 5 6 7

$COSO $C090 SCOAO SCOBO scoco SCODO SCOEO SCOFO

SC081 SC091 SCOA1 SCOB1 SCOC1 SC OD1 SCOE1 SCOF1

SC082 SC092 SCOA2 SCOB2 SCOC2 SCOD2 SCOE2 SCOF2

SC083 $C093 SCOA3 SCOB3 SCOC3 $COD3 SCOE3 SCOF3

SC084 SC094 SCOA4 SCOB4 SCOC4 SCOD4 SCOE4 SCOF4

SC085 SC095 SCOAS SCOBS scocs SCODS SCOES SCOFS

$C086 SC096 SCOA6 SCOB6 SCOC6 SCOD6 SCOE6 SCOF6

SC087 SC097 SCOA7 SCOB7 SCOC7 SCOD7 $COE7 SCOF7

SC088 SC098 SCOA8 SCOB8 SCOC8 SCOD8 SCOE8 SCOF8

SC089 $C099 SCOA9 SCOB9 SCOC9 SCOD9 SCOE9 SCOF9

SC08A $C09A SCOAA SCOBA SCOCA SCODA SCOEA SCOFA

SC08B SC09B SCOAB SCOBB SCOCB SCODB SCOEB SCOFB

scoac SC09C SCOAC SCOBC scocc SCODC SCOEC SCOFC

SC08D SC09D SCOAD SCOBD SCOCD SCODD $COED SCOFD

SC08E SC09E SCOAE SCOBE SCOCE SCODE SCOEE SCOFE

SC08F SC09F SCOAF SCOBF SCOCF SCODF SCOEF SCOFF

RAM Addressing

A program on a peripheral card can use the eight base
addresses shown in Table 6-3 to access the eight RAM locations
allocated for its use. The program does this by putting its slot
number into the Y index register and using indexed addressing
mode with the base addresses. The base addresses can be
defined as constants because they are the same no matter which
slot the peripheral card occupies.

If you start with the correct slot number in the accumulator (by
using the example shown earlier), the following example uses all
eight RAM locations allocated to the slot.

Programming for Peripheral Cards

TAY
LOA $0478,Y
STA $04F8,Y
LOA $0578,Y
STA $05F8,Y
LOA $0678,Y
STA $06F8,Y
LOA $0778,Y
STA $07F8 , Y

Warning
Peripheral-card programs must not store data at the base-address
locations themselves; the RAM at those locations is used by the
Disk Operating System. DOS stores the first byte of the ROM
location of the expansion slot that is currently active ($Cn) in
location $ 7F8 , and the first byte of the ROM location of the slot
holding the controller card for the startup disk drive in location $5F8 .

Changing the Standard I /0 Links

There are two pairs of locations in the Apple lie that are used for
controlling character input and output. They are called the 1/0
links (see Chapter 3). In a Apple lie running without a Disk
Operating System, the 1/0 links normally contain the starting
addresses of the standard input and output routines KEY IN and
COUT1 . If a disk operating system is running, one or both of the
links will hold the addresses of the DOS input and output
routines.

The link at locations $36 and $37 (decimal 54 and 55) is called csw ,
for Character output Switch. Individually, location $36 is called
CSWL (CSW Low) and location $37 is called CSWH (CSW High). This link
holds the starting address of the subroutine the Apple lie is
currently using for single-character output. This address is
normally $ FOFO , the address of routine coun , described in
Chapter 3.

When you issue a PR~'n from BASIC or ann [CONTROL 1- P from the
Monitor, the Apple lie changes this link address to the first
address in the ROM memory space allocated to slot number n.
That address has the form $ Cn o o. Subsequent calls for character
output are thus transferred to the program on the peripheral card.
That program can use the instruction sequences given above to
find its slot number and use the 1/0 and RAM locations allocated
to it. When it is finished , the program can execute an RTS (Return

1/0 Programming Suggestions 129

from Subroutine) instruction to return control to the calling
program, or jump to the output routine COUT1 at location $FDFO to
display the output character (which must be in the accumulator)
on the screen, then let COUT1 return to the calling program.

A similar link at locations $38 and $39 (decimal 56 and 57) is
called KSW, for Keyboard input Switch. Individually, location $38 is
called KSWL (for KSW Low) and location$ 39 is called KSWH (KSW High).
This link holds the starting address of the routine currently being
used for single-character input. This address is normally $FD18,
the starting address of the standard input routine KEY IN (see
Chapter 3).

When you issue an I N#n command from BASIC or an
n I CONTROL 1-K from the monitor, the Apple lie changes this
link address to $ Cn o o, the beginning of the ROM memory space
that is allocated to slot number n. Subsequent calls for character
input are thus transferred to the program on the peripheral card.
That program can use the instruction sequences given above to
find its slot number and use the 1/0 and RAM locations allocated
to it. The program should put the input character, with its high bit
set, into the accumulator and execute an RTS (Return from
Subroutine) instruction to return control to the program that
requested input.

When the Disk Operating System (DOS) is running, one or both
of the standard 1/0 links hold addresses of the Disk Operating
System's input and output routines. The DOS has internal
locations that hold the addresses of the character input and
output routines that are currently active.

If a program that is running with DOS changes the standard link
addresses, either directly or via I i'l' and PR' commands, DOS is
disconnected from the system.

To avoid disconnecting DOS each time they initiate 1/0 to a slot,
BASIC programs that run with DOS must always issue an IN" or
a PR" command from inside a PRINT statement that starts with a
I CONTROL 1-o character. For assembly-language programs, there is
a DOS subroutine call to use when changing the link addresses.
After changing csw or KSW , the program calls this subroutine at
location $3EA (decimal 1 002) . The subroutine transfers the link
address to a location inside DOS and then restores the DOS
address in the standard link location. Refer to the section on
input and output link registers in the DOS Manual for further
details.

Programming for Peripheral Cards

Using Interrupts

Although programs running on the Apple lie do not normally use
interrupts, it is possible to do so. To use interrupts on the
Apple lie, your peripheral card must be able to send an interrupt
request (IRQ I) to the 6502 microprocessor, and you must store
the address of your interrupt-handling routine in the user interrupt
vector, as described below.

Interrupt priority is handled by a daisy-chain arrangement using
two pins, I NT IN and I NT oUT , on each expansion slot. As
described in Chapter 7, each peripheral card breaks the chain
when it makes an interrupt request. On peripheral cards that
don't use interrupts, these pins should be connected together.
The daisy chain gives priority to the peripheral card in slot 7: if
this card opens the connection between I NT IN and I NT OUT , or if
there is no card in this slot, interrupt requests from cards in slots
1 through 6 can't get through. Similarly, slot 6 controls IRQ from
slots 1 through 5, and so on down the line.

When the IRQ 1 line on the 6502 microprocessor is activated
(pulled low), the 6502 transfers control through the vector in
locations SFFFE - SFFFF. This vector is the address of the Monitor's
interrupt handler, which determines whether the request is due to
an external IRQ or a BRK instruction and transfers control to the
appropriate routine via the vectors stored in memory page 3. The
BRK vector is in locations S3F0-$3F1 and the IRQ vector is in
locations S3FE- S3FF (see Table 4-10). The Monitor normally stores
the address of its reset routine in the IRQ vector; you should
substitute the address of your program's interrupt-handling
routine.

Other Uses of I /0 Memory Space
The portion of memory space from location scooo through SCFFF
(decimal 49152 through 53247) is normally allocated to 1/0 and
program memory on the peripheral cards, but there are two other
functions that also use this memory space: the built-in self-test
firmware and the 80-column display firmware. The soft switches
that control the allocation of this memory space are described
below.

Other Uses of 1/0 Memory Space

Figure 6-3 1/0 Memory Map

CFFF

INTERNAL

ROM
PERIPHERAL

AND
EXPANSION

PERIPHERAL
ROM

EXPANSION

ROM

INTERNAL

CBOO ROM
SLOT #7 ROM

C700
SLOT #6 ROM

C600
SLOT #5 ROM

C500
SLOT #4 ROM

C400
SLOT #3 ROM INTERNAL ROM

C300
SLOT # 2 ROM

C200
SLOT # 1 ROM

C100
INTERNAL SOFT SWITCHES AND PERIPHERAL 1/0

cooo

Switching I /0 Memory

The built-in firmware uses two soft switches to control the
allocation of the 1/0 memory space from scooo to SCFFF. The
locations of these soft switches, SLDTCXRDM and SLDTC3RDM, are
given in Table 6-5.

Like the display switches described in Chapter 2, these soft switches
share their locations with the keyboard data and strobe functions.
The switches are activated only by writing, and the states can be
determined only by reading, as indicated in Table 6-5.

When SLDTC3RDM is on, the 256-byte ROM area at SC300 is
available to a peripheral card in slot 3, which is the slot normally
used for a terminal interface. If a card is installed in the auxiliary
slot when you turn on the power or reset the Apple lie, the
SLDT3RDM switch is turned off. Turning SLDTC3RDM off disables

Programming for Peripheral Cards -

Table 6-5 1/ 0 Memory Switches Name Function Location Notes
Hex Decimal

SLDTC3ROM Slot ROM at SC300 SCOOB 49163 - 16373 Write

Internal ROM at SC300 SCOOA 49162 - 16374 Write

Read SLOTC3ROM switch SC01 7 49175 - 16361 Read

SLOTCXROM Slot ROM at $Cx00 SC007 49159 - 16377 Write

Internal ROM at $Cx00 SC006 49158 - 16378 Write

ReadSLOTCXROMswitch SC015 49173 - 16363 Read

peripheral-card ROM in slot 3 and enables the built-in 80-column
firmware, as shown in Figure 6-3. The 80-column firmware is
assigned to slot-3 address space because slot 3 is normally used
with a terminal interface, so the built-in firmware will work with
programs that use slot 3 this way.

Installing an 80-column text card in the auxiliary slot makes it
impossible to run any peripheral card that has built-in firmware in
slot 3. If an 80-column text card is not installed, a peripheral card in
slot 3 will work properly.

The bus and 1/0 signals are always available to a peripheral
card in slot 3, even when the 80-column hardware and firmware
are operating. Thus it is always possible to use this slot for any
1/0 accessory that does not have built-in firmware.

When SLDTCXRDM is active (high), the 1/0 memory space from
$C1 oo to $C7FF is allocated to the expansion slots, as described
previously. Setting SLDTCXRDM inactive (low) disables the peripheral­
card ROM and selects built-in ROM in all of the 1/0 memory
space except the part from $COOO to $CDFF (used for soft switches
and data 1/0), as shown in Figure 6-3. In addition to the SO­
column firmware at $C300 and $CBOO , the built-in ROM includes
firmware that performs the self-test of the Apple lie's hardware.

Setting SLDTCXRDM low enables built-in ROM in all of the 1/0 memory
space (except the soft-switch area), including the SC300 space, which
contains the 80-column firmware.

Other Uses of 1/0 Memory Space 133

--
-.. -

137 Environmental Specifications
138 The Power Supply
139 The Power Connector
140 The 6502 Microprocessor --141 6502 Timing ~
143 The Custom Integrated Circuits
143 The Memory Management Unit -145 The Input/Output Unit
147 The PAL Circuit
148 Memory Addressing -148 ROM Addressing • 149 RAM Addressing
149 Dynamic-RAM Refreshment
151 Dynamic-RAM Timing
152 The Video Display
153 The Video Counters -154 Display Memory Addressing
154 Display Address Mapping
158 Video Display Modes ..-
158 Text Displays
160 Low-resolution Display
161 High-resolution Display -163 Video Output Signals
164 Built-in 1/0 Circuits
164 The Keyboard

ii: 165 Connecting a Keypad
166 Cassette 1/0
166 The Speaker
167 Game 1/0 Signals

Hardware Implementation

Chapter 7

Hardware Implementation

169 Expanding the Apple lie
169 The Expansion Slots
169 The Peripheral Address Bus
170 The Peripheral Data Bus
170 Loading and Driving Rules
170 Interrupt and DMA Daisy Chains
174 Video Signals on Slot 7
174 The Auxiliary Slot
175 SO-column Display Signals

Hardware Implementation

Table 7-1 Summary of Environmental
Specifications

Chapter 7

Hardware Implementation

Most of this manual describes functions - what the Apple lie
does. This chapter, on the other hand , describes objects: the
pieces of hardware the Apple lie uses to carry out its functions.
If you are designing a piece of peripheral hardware to attach to
the Apple lie, or if you just want to know more about how the
Apple lie is built, you should study this chapter.

Environmental Specifications
The Apple lie is quite sturdy when used in the way it was
intended. Table 7-1 defines the conditions under which the
Apple lie is designed to function properly.

Operating Temperature : 0° to 45oc (30° to 115°F)

Relative Humidity: 5% to 85%

Line Voltage : 107 to 132 VAG

You should treat the Apple lie with the same kind of care as any
other electrical appliance. You should protect it from physical
violence, such as hammer blows or defenestration. You should
protect the mechanical keyboard and the electrical connectors
inside the case from spilled liquids, especially those with
dissolved contaminants, such as coffee and cola drinks.

In normal operation, enough air flows through the slots in the
case to keep the insides from getting too hot, althoug~ some of
the parts inside the Apple lie normally get rather warm to the
touch. If you manage to overheat your Apple lie, by blocking the
ventilation slots in the top and bottom for example, the first
symptom will be erratic operation. The memory devices in the
Apple lie are sensitive to heat: when they get too hot, they

Environmental Specifications 137

Table 7-2 Power Supply
Specifications

*Intermittent operation : The Apple lie
can safely operate for up to twenty
minutes at the higher load if followed
by at least ten minutes at normal
load.

occasionally change a bit of data. The exact result .depends on
what kind of program you are running and on just which bit of
memory is affected.

The Power Supply
The power supply in the Apple lie operates on normal household
AC power and provides enough low-voltage electrical power
for the built-in electronics plus a full complement of peripheral
cards, including disk controller cards and communications
interfaces. The basic specifications of the power supply are listed
in Table 7-2.

The Apple lie's power cord should be plugged into a three-wire
110- to 120-volt outlet. You must connect the Apple lie to a
grounded outlet or to a good earth ground. Also, the line voltage
must be in the range given in Table 7-2. If you try to operate the
Apple lie from a power source with more than 140 volts, you will
damage the power supply.

Line voltage:

Maximum power consumption :

Supply voltages :

Maximum supply currents:

Maximum case temperature :

1 O?V to 132V AC

60W continuous
BOW intermittent•

+ 5V ± 3%
+ 11 .8V ± 6%

- 5.2V ± 10%
- 12V ±10%

+ 5V: 2.5A
+ 12V: 1.5A continuous,

2.5A intermittent•
- 5V: 250mA

- 12V: 250mA

The Apple lie uses a custom-designed switching-type power
supply. It is small and lightweight, and it generates less heat than
other types of power supplies do.

The Apple lie's power supply works by converting the AC line
voltage to DC and using this DC voltage to power a variable­
frequency oscillator. The oscillator drives a small transformer with
many separate windings to produce the different voltages
required. A circuit compares the voltage of the +5-volt supply
with a reference voltage and feeds an error signal back to the

Hardware Implementation

-

-

Table 7-3 Power Connector Signal
Specifications

oscillator circuit. The oscillator circuit uses the error signal to
control the frequency of its oscillation and keep the output
voltages in their normal ranges.

The power supply includes circuitry to protect itself and the other
electronic parts of the Apple lie by turning off all four supply
voltages whenever it detects one of the following malfunctions:

• any supply voltage short-circuited to ground;

• the power-supply cable disconnected;

• any supply voltage outside the normal range.

Any time one of these malfunctions occurs, the protection circuit
stops the oscillator, and all the output voltages drop to zero. After
about half a second, the oscillator starts up again. If the
malfunction is still occurring, the protection circuit stops the
oscillator again. The power supply will continue to start and stop
this way until the malfunction is corrected or the power is turned
off.

Warning
If you think the power supply is broken, do not attempt to repair it
yourself. The power supply is in a sealed enclosure because some
of its circuits are connected directly to the power line. Special
equipment is needed to repair the power supply safely, so see your
Apple dealer for service.

The Power Connector

The cable from the power supply is connected to the main circuit
board by a six-pin connector with a strain-relief catch . The
connector pins are identified in Table 7-3 and Figure 7-14d.

Pin Number Name Description

1,2 Ground Common electrical ground

3 + 5V +5V from power supply

4 + 12V + 12V from power supply

5 - 12V - 12V from power supply

6 - 5V - 5V from power supply

The Power Supply 139

Table 7-4 6502 Microprocessor
Specifications

The 6502 Microprocessor
The Apple lie uses a 65028 microprocessor as its central
processing unit (CPU). The 65028 in the Apple lie runs at a
clock rate of 1.023 MHz and performs up to 500,000 eight-bit
operations per second. You should not use the clock rate as a
criterion for comparing different types of microprocessors. The
6502 has a simpler instruction cycle than most other
microprocessors and it uses instruction pipelining for faster
processing. The speed of the 6502 with a 1 MHz clock is
equivalent to other types of microprocessors with clock rates up
to 2.5MHz.

The 6502 has a sixteen-bit address bus, giving it an address
space of 64K (2 to the sixteenth power or 65536) bytes. The
Apple lie uses special techniques to address a total of more than
64K: see the sections "Bank-switched Memory" and "Auxiliary
Memory and Firmware" in Chapter 4 and the section "Switching
1/0 Memory" in Chapter 6.

Type : 65028

Register complement: Accumulator (A)

Register size:

Data bus:

Address bus:

Address range:

Interrupts:

Operating voltage :

Power dissipation :

Index Registers (X, Y)
Stack Pointer (S)
Processor Status (P)

Eight bits

Eight bits wide

Sixteen bits wide

65,536 (64K)

IRQ (maskable)
NMI (nonmaskable)
BRK (programmed)

+ 5V (± 5%)

500mW (typical)

Hardware Implementation

Table 7-5 6502 Timing Signal
Descriptions

6502 Timing

The operation of the Apple lie is controlled by a set of
synchronous timing signals, sometimes called clock signals. In
electronics, the word clock is used to identify signals that control
the timing of circuit operations. The Apple lie doesn't contain the
kind of clock you tell time by, although its internal timing is
accurate enough that a program running on the Apple lie can
simulate such a clock.

The frequency of the oscillator that generates the master timing
signal is 14.31818 MHz. Circuitry in the Apple lie uses this clock
signal, called 14M, to produce all the other timing signals. These
timing signals perform two major tasks : controlling the computing
functions, and generating the video display. The timing signals
directly involved with the operation of the 6502 are described in
this section. Other timing signals are described in the sections
"RAM Addressing", "Video Display Modes", and "The Expansion
Slots" .

The main 6502 timing signals are listed in Table 7-5, and their
relationships are diagrammed in Figure 7-1 . The 6502 clock
signals are ~ 1 and ~o . complementary signals at a frequency of
1.02273 MHz. If you need more information about the 6502 itself,
refer to the Synertek Hardware Manual (Apple product number
A2L0002). The Apple lie signal named ~o is equivalent to the
signal called ~2 in the hardware manual (it isn't identical: it's a
tiny bit early) .

Signal Name

14M

7M

Q3

cf>O

c/>1

Description

Master oscillator, 14.31818 MHz; also SO-column dot clock.

Intermediate timing signal and 40-column dot clock.

Intermediate timing signal , 2.04545 MHz with asymmetrical duty
cycle .

Phase 0 of 6502 clock, 1.022727 MHz; Complement of cf> 1.

Phase 1 of 6502 clock, 1.022727 MHz; Complement of cf>O.

The 6502 Microprocessor

11 Figure 7-1 6502 Timing Signals

14M

7M

03 1._ 490 ns -.1
<1>0 ----~ ~~ ---CP-U--ph-a-se--~----

1.__ 490 ns -.1
r---------~ r----

<1> 1

----..1 1._ 11 0 ns (max) 1 5 ns (min) -.l j.._
ADDR

1

30 ns (min) I

75 ns (max) -. j.- 4-1.__
DATA from 6502 (write) X ><=

50 ns (min) _____.., 1...-
DATA to 6502 (read) ===>CJC

1 0 ns (min) -----..11.._

The operations of the 6502 are related to the clock signals in a
simple way: address during cf> 1, data during cj>o. The 6502 puts
an address on the address bus during cj> 1. This address is valid
not later than 11 0 nanoseconds after cf> 1 goes high and remains
valid through all of cj>o. The 6502 reads or writes data during cj>o .
If the 6502 is writing , the read/write signal is low during cj>o and
the 6502 puts data on the data bus. The data is valid not later
than 75 nanoseconds after Oo goes high. If the 6502 is reading,
the read/write signal remains high. Data on the data bus must be
valid no later than 50 nanoseconds before the end of cj>o .

Hardware Implementation

-

-

Figure 7-2 The MMU Pinouts

GND
AO
4>0
03

PRAS'

RAO
RA1
RA2
RA3
RA4
RAS
RA6
RA7
R/W'
INH'

DMA'
EN80'

KBD'
ROMEN2 '
ROMEN1 '

1 '-../ 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32

10 31
11 30
12 29
13 28
14 27
15 26
16 25
1 7 24
18 23
19 22
20 21

A1
A2
A3
A4
AS
A6
A?
A8
A9
A10
A11
A12
A13
A14
A15
+SV
Cxxx
RAMEN'
R/W' 245
MD?

The Custom Integrated Circuits
Most of the circuitry that controls memory and 1/0 addressing in
the Apple lie is in three custom integrated circuits called the
Memory Management Unit (MMU), the Input-Output Unit (IOU),.
and the Programmed Array Logic device (PAL). The soft switches
used for controlling the various 1/0 and addressing modes of the
Apple lie are addressable flags inside the MMU and the IOU.
The functions of these two devices are not as independent as
their names suggest; working together, they generate all of the
addressing signals. For example, the MMU generates the
address signals for the CPU, while the IOU generates similar
address signals for the video display.

The Memory Management Unit

The circuitry inside the MMU implements these soft switches,
which are described in the following chapters:

Page 2 display (PAGE2): Chapter 2
Hi-res mode (HI RES) : Chapter 2
Store to 80-column card (SO STORE): Chapter 2
Select bank 2: Chapter 4
Enable bank-switched RAM: Chapter 4
Read auxiliary memory (RAMRD): Chapter 4
Write auxiliary memory (RAMWRT): Chapter 4
Auxiliary stack and zero page (AL TZP) : Chapter 4
Slot ROM for connector #3 (SLDTC3RDM): Chapter 6
Slot ROM in 1/0 space (SLOTCXRDM): Chapter 6

The 64K dynamic RAMs used in the Apple lie use a multiplexed
address, as described below in the section "Dynamic-RAM Timing".
The MMU generates this multiplexed address for memory reading
and writing by the 6502 CPU.

The Custom Integrated Circuits

Table 7-6 The MMU Signal Pin Number Name Description
Descriptions

GND Power and signal common

2 AO 6502 address input

40-26 A1-A15 6502 address input

3 <PO Clock phase 0

4 Q3 Timing signal

5 PRAS ' Memory Row-address strobe

6-13 RAO-RA7 Multiplexed address output

I I
14 R/W' 6502 read-write control signal

15 INH' Inhibits main memory

I
16 DMA' Controls data bus for DMA transfers

17 ENSO ' Enables auxiliary RAM

18 KBD' Enables keyboard data bit 0-6

19 RDMEN2 ' Enables built-in firmware ROM #2

20 RDMEN1 ' Enables built-in firmware ROM #1

21 MD7 State of MMU flags

22 RW ' 245 Controls 74LS245 data-bus buffer

23 RAMEN ' Enables main RAM

24 cxxx Enables peripheral-card memory

25 + SV Power

144 Hardware Implementation

Figure 7-3 The IOU Pinouts

GND
GR

SEGA
SEGB

vc
80VID

CASSO
SPKR
MD?
ANO
AN1
AN2
AN3
R/W'

RESET'
(n .c .)
RAO
RA1
RA2
RA3

1 "-.__/ 40

2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32

10 31
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

HO
SYNC'
WNDW'
CLRGAT'
RA10'
RA9'
VID6
VID7
KSTRB
AKD
COxx
A6
+5V
03
<1>0
PRAS'
RA7
RA6
RA5
RA4

The Input/Output Unit

The circuitry inside the Input/Output Unit (IOU) implements the
following soft switches, all described in Chapter 2:

Page 2 display (PAGE2)
Hi-res mode (HI RES)
Text mode (TEXT)
Mixed mode (MIXED)
80-column display (BOCDL)
Character-set select (AL TCHARSET)
Any-key-down
Annunciators
Vertical blanking (VBL)

The 64K dynamic RAMs used in the Apple lie require a multiplexed
address, as described below in the section "Dynamic-RAM Timing".
The IOU generates this multiplexed address for the data transfers
required for display and memory refresh during clock phase 1. The
way this address is generated is described below in the section
"Video Display Generation".

The Custom Integrated Circuits

Table 7-7 The IOU Signal Pin Number Name Description
Descriptions

Note : Pin 16 is not connected . GND Power and signal common

2 GR Graphics mode enable

3,4 SEGA, Display vertical counter bits
SEGB

5 vc Display vertical counter bit

6 SOVID ' 80-column video enable

7 CASSO Cassette output signal

8 SPKR Speaker output signal

9 MD7 Internal flags to data bus

10-13 ANO-AN3 Annunciator outputs

14 R/W ' 6502 read-write control signal

15 RESET ' Power on and reset output

17-24 RAO-RA7 Multiplexed RAM address (phase 0)

25 PRAS ' Row-address strobe (phase 0)

26 q,o Master clock phase 0

27 Q3 Intermediate timing signal

28 + SV Power

29 A6 Address bit 6 from 6502

30 coxx ' 1/0 address enable

31 AKD Any-key-down signal

32 KSTRB Keyboard strobe signal

33, 34 VID7. VID6 Video display control bits

35,36 RA9 ', RA1 0' Video display control bits

37 CLRGAT ' Color-burst gate (enable)

38 WNDW ' Display blanking signal

39 SYNC ' Display synchronization signal

40 HO Display horizontal timing signal

Hardware Implementation

The PAL Circuit

A Programmed Array Logic device, type PAL 16R8, generates
several timing and control signals in the Apple lie. These signals
are listed in Table 7-8.

The Custom Integrated Circuits 147

148

Memory Addressing
The 6502 microprocessor can address 65,536 locations. The
Apple lie uses this entire address space, and then some: some
areas in memory are used tor more than one function. The
following sections describe the memory devices used in the
Apple lie and the way they are addressed. Input and output also
use portions of the memory address space; refer to the section
"Peripheral-card Memory Spaces" in Chapter 6 tor information.

ROM Addressing

In the Apple lie, the following programs are permanently stored in
two type 2364 8K by 8-bit ROMs (read-only memory) :

• Applesoft editor and interpreter

• Monitor

• 80-column display firmware

• Self-test routines

These two ROMs are enabled by two signals called RDMEN1 and
RDMEN2 . The ROM enabled by RDMEN1, sometimes called the
Diagnostics ROM, occupies the memory address space from
sc 1 oo to SDFFF. The address space from SC30 o to SC3FF and from
scsoo to SCFFF contains the 80-column display firmware. Those
address spaces are normally assigned to ROM on a peripheral
card in slot 3; tor a discussion of the way the 80-column
firmware overrides the peripheral card , see the section "Other
Uses of 1/0 Memory Space" in Chapter 6.

Two other portions of the Diagnostics ROM, addressed from
sc 1 o o to SC2FF and from SC400 to SC7FF , contain the built-in self-test
routines . These address spaces are normally assigned to the - I
peripheral cards; when the self-test programs are running , the
peripheral cards are disabled.

The remainder of the Diagnostics ROM, addressed from soooo to
SDFFF, contains part of the Applesoft BASIC interpreter.

The ROM enabled by RDMEN2 , sometimes called the Monitor ROM,
occupies the memory address space from SEOOO to SFFFF . This
ROM contains the rest of the Applesoft interpreter, in the address
space from SEOOO to SEFFF, and the Monitor subroutines, from
SFOOO to SFFFF .

Hardware Implementation -

Figure 7-5 The 2364 ROM Pinouts

"-./
+5V 1 28 +5V
A12 2 27 +5V

A7 3 26 +5V
A6 4 25 A8
A5 5 24 A9
A4 6 23 A11
A3 7 22 ROMENx'
A2 8 21 A10
A1 9 20 CE'
AO 10 19 MD7

MDO 11 18 MD6
MD1 12 17 MD5
MD2 13 16 MD4
GND 14 15 MD3

Figure 7-6 The 2316 ROM Pinouts

A7
A6
A5
A4
A3
A2
A1
AO

MDO
MD1
MD2
GND

"-./
1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

+5V
A8
A9
+5V
KBD'
GND*
ENKBD'
(n .c)

MD6
MD5
MD4
MD3

Figure 7-7 The 2333 ROM Pinouts

"-../
VID4 1 24 +5V
VID3 2 23 VID5
VID2 3 22 RA9
VID1 4 21 GR
VI DO 5 20 WNDW'

vc 6 19 RA10
SEGB 7 18 ENVID'
SEGA 8 17 07

DO 9 16 06
01 10 15 05
02 11 14 04

GND 12 13 03

The other ROMs in the Apple lie are a type 2316 ROM used for
the keyboard character decoder and a type 2333 ROM used for
character sets tor the video display. This 2333 ROM is rather
large because it includes a section of straight-through bit­
mapping for the graphics modes. This way, graphics display
video can pass through the same circuits as text without
additional switching circuitry.

RAM Addressing

The RAM (programmable) memory in the Apple lie is used both
for program and data storage and for the video display. The
areas in RAM that are used for the display are accessed both by
the 6502 microprocessor and by the video display circuits. In
some computers, this dual access results in addressing conflicts
(cycle stealing) that can cause temporary dropouts in the video
display. This problem does not occur in the Apple lie, thanks to
the way the microprocessor and the video circuits share the
memory.

The memory circuits in the Apple lie take advantage of the two­
phase system clock described in the section "System Timing" to
interleave the microprocessor memory accesses and the display
memory accesses so that they never interfere with each other.
The microprocessor reads or writes to RAM only during .po, and
the display circuits read data only during 1> 1.

Dynamic-RAM Refreshment

The image on a video display is not permanent; it fades rapidly
and must be refreshed periodically. To refresh the video display,
the Apple lie reads the data in the active display page and sends
it to the display. To prevent visible flicker in the display, and to
conform to standard practice for broadcast video, the Apple lie
refreshes the display sixty times per second.

The dynamic RAM devices used in the Apple lie also need a
kind of refresh, because the data is stored in the form of electric
charges which diminish with time and must be replenished every
so often. The Apple lie is designed so that refreshing the display
also refreshes the dynamic RAMs. The next few paragraphs
explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by
the structure of the devices themselves. The individual data cells
in each RAM device are arranged in a rectangular array of rows

Memory Addressing

Table 7-9 RAM Address Multiplexing

Figure 7-8 The 64K RAM Pinouts

'-.._../

+5V 1 16 GND
MDx 2 15 CAS'
R/W' 3 14 MDx
RAS' 4 13 RA1
RA? 5 12 RA4
RA5 6 11 RA3
RA6 7 10 RA2
+5V 8 9 RAO

150

and columns. When the device is addressed, the part of the
address that specifies a row is presented first, followed by the
address of the column. Splitting information into parts that follow
each other in time is called multiplexing. Since only half of the
address is needed at one time, multiplexing the address reduces
the number of pins needed for connecting the RAMs.

Different manufacturers' 64K RAMs have cell arrays of either 128
rows by 512 columns or 256 rows by 256 columns. Only the row
portion of the address is used in refreshing the RAMs.

Now consider how the display is refreshed. As described later in
this chapter in the section "The Video Counters", the display
circuitry generates a sequence of 8,192 memory addresses in
high-resolution mode; in text and low-resolution modes, this
sequence is the 1 ,024 display-page addresses repeated eight
times. The display address cycles through this sequence 60
times a second, or once every 17 milliseconds. The way the low­
order address lines are assigned to the RAMs, the row address
cycles through all 256 possible values once every half-millisecond
(see Table 7-9). This more than satisfies the refresh
requirements of the dynamic RAMs.

Mux'd Address Row Address Co lumn Address

RAO AO A9

RA1 A1 A6

RA2 A2 A10

RA 3 A3 A11

RA4 A4 A12

RAS AS A1 3

RA6 A7 A1 4

RA 7 AS A15

Hardware Implementation

Table 7-10 Dynamic RAM Timing
Signals

Dynamic-RAM Timing

The Apple lie's microprocessor clock runs at a moderate speed ,
about 1.023 MHz, but the interleaving of CPU and display cycles
means that the RAM is being accessed at a 2 MHz rate, or a
cycle time of just under 500 nanoseconds. Data for the CPU is
strobed by the falling edge of <f>o , and display data is strobed by
the falling edge of <f> 1, as shown in Figure 7-9.

The RAM timing looks complicated because the RAM address is
multiplexed, as described in the previous section. The MMU
takes care of multiplexing the address for the CPU cycle, and the
IOU performs the same function for the display cycle. The
multiplexed address is sent to the RAM ICs over the lines
labelled RAO-RA7. Along with the other timing signals, the PAL
generates two signals that control the RAM addressing: Row­
address Strobe (RAS) and Column-address Strobe (CAS) .

Signal Name Description

cfJO Clock phase 0 (CPU phase)

¢ 1 Clock phase 1 (display phase)

RAS Row-address strobe

CAS Column-address strobe

Q3 Alternative column-address strobe

RAO-RA7 Multiplexed address bus

MDO-MD7 Internal data bus

Memory Addressing

Figure 7-9 RAM Timing Signals

152

7M

03

<1>0
CPU phase

<1>1 video phase

The Video Display
The Apple lie produces a video signal that creates a display on a
standard video monitor or, if you add an RF modulator, on a
black-and-white or color television set. The video signal is a
composite made up of the data that is being displayed plus the
horizontal and vertical synchronization signals that the video
monitor uses to arrange the lines of display data on the screen.

Apple lie's manufactured for sale in the U.S. generate a video signal
that is compatible with the standards set by the NTSC (National
Television Standards Committee). Apple lie's manufactured for sale
in European countries generate video that is compatible with the
standard used there, which is called PAL (for Phase Alternating
Lines). This manual describes only the NTSC version of the video
circuits.

Hardware Implementation

The display portion of the video signal is a time-varying voltage
generated from a stream of data bits, where a one corresponds
to a voltage that generates a bright dot, and a zero to a dark
dot. The display bit stream is generated in bursts that correspond
to the horizontal lines of dots on the video screen. The signal
named WNDW 1 is low during these bursts.

During the time intervals between bursts of data, nothing is
displayed on the screen. During these intervals, called the
blanking intervals , the display is blank and the WNDW 1 signal is
high . The synchronization signals, called sync for short, are
produced by making the signal named SYNC 1 low during portions
of the blanking intervals. The sync pulses are at a voltage
equivalent to blacker-than-black video and don't show on the
screen.

The Video Counters

The address and timing signals that control the generation of the
video display are all derived from a chain of counters inside the
IOU. Only a few of these counter signals are accessible from
outside the IOU, but they are all important in understanding the
operation of the display generation process, particularly the
display memory addressing described in the next section.

The horizontal counter is made up of seven stages: HO , H1 , H2 , H3 ,

H4 , HS , and HPE 1
• The input to the horizontal counter is the 1 MHz

signal that controls the reading of data being displayed. The
complete cycle of the horizontal counter consists of 65 states.
The six bits HO through HS count normally from 0 to 63, then start
over at 0. Whenever this happens, HPE 1 forces another count with
HO through HS held at zero, thus extending the total count to 65.

The IOU uses the forty horizontal count values from 25 through
64 in generating the low-order part of the display data address,
as described below in the section "Display Address Mapping".
The IOU uses the count values from 0 to 24 to generate the
horizontal blanking, the horizontal sync pulse, and the color-burst
gate.

When the horizontal count gets to 65, it signals the end of a line
by triggering the vertical counter. The vertical counter has nine
stages : VA , VB , vc , vo , V1 , V2 , V3 , V4 , and vs . When the vertical
count reaches 262, the IOU resets it and starts counting again
from zero. Only the first 192 scanning lines are actually
displayed ; the IOU uses the vertical counts from 192 to 261 to

The Video Display

154

generate the vertical blanking and sync pulse. Nothing is
displayed during the vertical blanking interval. (The vertical line
count is 262 rather than the standard 262.5 because, unlike ·
normal television , the Apple lie's video display is not interlaced.)

Animation displays sometimes have an erratic flicker caused by
changing the display data at the same time it is being displayed.
You can avoid this on the Apple lie by reading the vertical-blanking
signal (VEL) at location s co 19 and only changing display data while
VBL is low (data value less than 128).

Display Memory Addressing

As described in Chapter 2 in the section "Addressing Display
Pages Directly" , data bytes are not stored in memory in the
same sequence in which they appear on the display. You can
get an idea of the way the display data is stored by using the
Monitor to set the display to graphics mode, then storing data
starting at the beginning of the display page at hexadecimal $400
and watching the effect on the display. If you do this, you should
use the graphics display instead of text to avoid confusion : the
text display is also used for Monitor input and output.

If you want your program to display data by storing it directly into
the display memory, you must first transform the display
coordinates into the appropriate memory addresses, as shown in
Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary.
They will not (alas!) eliminate that necessity.

The address transformation that folds three rows of forty display
bytes into 128 contiguous memory locations is the same for all
display modes, so it is described first. The differences among the
different display modes are described in the section "Video
Display Modes", below.

Display Address Mapping

Consider the simplest display on the Apple lie, the 40-column
text mode. To address forty columns requires six bits, and to
address twenty-four rows requires another five bits, for a total of
eleven address bits. Addressing the display this way would
involve 2048 (two to the eleventh power) bytes of memory to
display a mere 960 characters. The 80-column text mode would
require 4096 bytes to display 1920 characters. The leftover

Hardware Implementation

Figure 7-10 Display Address
Transformation

chunks of memory that were not displayed could be used for
storing other data, but not easily, because they would not be
contiguous.

Instead of using the horizontal and vertical counts to address
memory directly, the circuitry inside the IOU transforms them into
the new address signals described below. The transformed
display address must meet the following criteria:

• Map the 960 bytes of 40-column text into only 1 024 bytes.

• Scan the low-order address to refresh the dynamic RAMs.

• Continue to refresh the RAMs during video blanking.

The requirements for RAM refreshing are discussed above, in the
section "Dynamic-RAM Refreshment".

The transformation involves only horizontal counts H3, H4, and HS,
and vertical counts V3 and V4. Vertical count bits VA, VB, and vc
address the lines making up the characters, and are not involved
in the address transformation. The remaining low-order count
bits, HO, H1 , H2, vo, V1 , and V2 are used directly, and are not
involved in the transformation.

The IOU performs an addition that reduces the five significant
courit bits to four new signals called so, 51, 52, and 53, where s
stands for sum. Figure 7-10 is a diagram showing the addition in
binary form, with V3 appearing as the carry in and HS appearing
as its complement HS' . A constant value of one appears as the
low-order bit of the addend. The carry bit generated with the sum
is not used.

H5'

V4

S3

V3

H5

S2

H4

V4

S1

V3

H3

so

Carry in

Augend

Addend

Sum

If this transformation seems terribly obscure, try it with actual
values. For example, for the upper-left corner of the display, the
vertical count is zero and the horizontal count is 24: HO, H1, H2,
and HS are zeros and H3 and H4 are ones. The value of the sum
is zero, so the memory location for the first character on the
display is the first location in the display page, as you might
expect.

The Video Display 155

I
I

I
r;l

~-

Figure 7-11 40-column Text Display
Memory. Memory locations marked with
an asterisk (*) are reserved for use by
peripheral 1/0 firmware : refer to the
section " Peripheral-card RAM Space",
in Chapter 6.

156

Horizontal bits HO . H1 , and H2 and sum bits so , 51 , and 52 make up
the transformed horizontal address (AO through A6 in Table 7-11).
As the horizontal count increases from 24 to 63, the value of the
sum (53 52 51 SO) increases from zero to four and the transformed
address goes from 0 to 39, relative to the beginning of the
display page.

The low-order three bits of the vertical row counter are vo , V1 •

and V2 . These bits control address bits A 7, AS , and A9 , as shown
in Table 7-11 , so that rows 0 through 7 start on 128-byte
boundaries. When the vertical row counter reaches 8, vo , V1 , and
V2 are zero again, and V3 changes to one. If you do the addition
in Figure 7-1 0 with H equal to 24 (the horizontal count for the first
column displayed) and v equal to 8, the sum is 5 and the
horizontal address is 40: the first character in row 8 is stored in
the memory location 40 bytes from the beginning of the display
page.

$400

$480

$500

$580

$600

$680

$700

$780

1..---------128 bytes ----------.1

.....- 40 bytes ___...,..._ 40 bytes ___...,..._ 40 bytes ___...,~
bytes

row 0 row 8 row 16 .
row 1 row 9 row 17 *

row 2 row 10 row18 *

row 3 row 11 row 19 *

row 4 row 12 row 20 *

row 5 row 13 row 21 *

row 6 row 14 row 22 *

row 7 row 15 row 23 *

Figure 7-11 shows how groups of three forty-character rows are
stored in blocks of 120 contiguous bytes starting on 128-byte
address boundaries. This diagram is another way of describing
the display mapping shown in Figure 2-5. Notice that the three
rows in each block of 120 bytes are not adjacent on the display.

Hardware Implementation

Table 7-11 Display Memory
Addressing

*For these address bits, see text and
Table 7-12.

Memory Display
Address Bit Address Bit

AD HO

A1 H1

A2 H2

A3 so

A4 51

AS 52

A6 53

A7 vo

AS V1

A9 V2

A10

A11

A12

A13

A14

A15 G~D

Table 7-11 shows how the signals from the video counters are
assigned to the address lines. HO. H1 , and H2 are horizontal-count
bits, and vo, V1 , and V2 are vertical-count bits. 5o, 51 , 52 and 53

are the folded address bits described above. Address bits
marked with asterisks (*) are different for different modes: see
Table 7-12 and the next three sections.

The Video Display

Table 7-12 Memory Address Bits for
Display Modes

158

Address Bit Display Mode:
Text and Lo-Res Hi-Res

A10 80VID + PG2 ' VA

A11 80VID' • PG2 VB

A12 0 vc

A13 0 80VID + PG2 '

A14 0 80VID' • PG2

Video Display Modes

The different display modes all use the address-mapping scheme
described in the previous section, but they use different-sized
memory areas in different locations. The next three sections
describe the addressing schemes and the methods of generating
the actual video signals for the different display modes.

Text Displays

The text and low-resolution graphics pages begin at memory
locations $400 and $800. Table 7-12 shows how the display-mode
signals control the address bits to produce these addresses.
Address bits A10 and A11 are controlled by PG2 and BOVID, which
are set by the display-page and SO-column-video soft switches.
Address bits A12, A13, and A14 are set to zero. Notice that aoviD
active inhibits PG2: there is only one display page in SO-column
mode.

The low-order six bits of each data byte reach the character
generator directly, via the video data bus vI DO-vI DS. The two high­
order bits are modified by the IOU to select between the primary
and alternate character sets and are sent to the character
generator on lines RA9 and RA1 o .

The data for each row of characters are read eight times, once
for each of the eight lines of dots making up the row of
characters. The data bits are sent to the character generator
along with VA , VB, and vc, the low-order bits from the vertical
counter. For each character being displayed, the character
generator puts out one of eight stored bit patterns selected by
the three-bit number made up of VA , VB , and vc.

Hardware Implementation

Figure 7-12 Video Timing Signals

14M

The bit patterns from the character generator are loaded into the
7 4166 parallel-to-serial shift register and output as a serial bit
stream that goes to the video output circuit. The shift register is
controlled by signals named LOPS 1 (for load parallel-to-serial
shifter) and vI 07M (for video 7 Mhz). In 40-column mode, LOPS 1

strobes the output of the character generator into the shift
register once each microsecond, and vI 07M shifts the bits out at 7
MHz.

The addressing for the 80-column display is exactly the same as
for the 40-column display: the 40 columns of display memory on
the 80-column card are addressed in parallel with the 40 columns
in main memory. The data from these two memories reach the
video data bus (lines VIDO-VI07) via separate 74LS374 three-state
buffers. These buffers are loaded simultaneously, but their
outputs are sent to the character generator alternately by cf>o and
cf> 1. In 80-column mode, LOPS I loads data from the character
generator into the shift register twice during each microsecond,
once during cf>o and once during cf> 1, and vI 07M runs at 14 MHz to
shift the data bits out twice as fast.

7M

~O ~~~----------~~~--c-pu--ph-a-se--~----------~----------~----------~
I I

~ 1 _j video phase ~~--------__J

I x==x
I

l DATA BUS

+
VIDEO BUFFER X x ________________ _
LOPS' (40-column mode) I

~ t
X VIDEO BUS (40-column mode)

SHIFT REGISTER (40-column mode)

VID7M (40-column mode)

The Video Display

X

Table 7-13 Character-generator
Control Signals

Low-Resolution Display

In the graphics modes, VA and VB are not used by the character
generator, so the IOU uses lines SEGA and SEGB to transmit HO and
HIRES' , as shown in Table 7-13.

Display mode SEGA SEGB SEGC

Text VA VB vc

Graphics HO HIRES ' vc

The low-resolution graphics display uses vc to divide the eight
display lines corresponding to a row of characters into two
groups of four lines each. Each row of data bytes is addressed
eight times, the same as in text mode, but each byte is
interpreted as two nybbles. Each nybble selects one of sixteen
colors. During the upper four of the eight display lines, vc is low
and the low-order nybble determines the color. During the lower
four display lines, vc is high and the high-order nybble
determines the color.

The bit patterns that produce the low-resolution colors are read
from the character-generator ROM in the same way the bit
patterns for characters are produced in text mode. The 7 4166
parallel-to-serial shift register converts the bit patterns to a serial
bit stream for the video circuits.

The video signal generated by the Apple lie includes a short
burst of 3.58 MHz signal that is used by an NTSC color monitor
or color TV set to generate a reference 3.58 MHz color signal.
The Apple lie's video signal produces color by interacting with
this 3.58 MHz signal inside the monitor or TV set. Different bit
patterns produce different colors by changing the duty cycles and
delays of the bit stream relative to the 3.58 MHz color signal. To
produce the small delays required for so many different colors,
the shift register runs at 14 MHz and shifts out 14 bits during
each cycle of the 1-MHz data clock. To generate a stream of
fourteen bits from each eight-bit pattern read from the ROM, the
output of the shift register is connected back to the register's
serial input to repeat the same eight bits; the last two bits are
ignored the second time around.

Hardware Implementation

-

Each bit pattern is output for the same amount of time as a
character: 1.02 microseconds. Because that is exactly enough
time for three and a half cycles of the 3.58 MHz color signal, the
phase relationship between the bit patterns and the signal
changes by a half cycle for each successive pattern. To
compensate for this, the character generator puts out one of two
different bit patterns for each nybble, depending on the state of
HO, the low-order bit of the horizontal counter.

High-Resolution Display

The high-resolution graphics pages begin at memory locations
$2000 and s 4000 (decimal8192 and 16384). These page addresses
are selected by address bits A1 3 and A1 4. In high-resolution mode,
these address bits are controlled by PG2 and sov I D, the signals
controlled by the display-page (PAGE2) and 80-column-video
(BOCOL) soft switches. As in text mode, BOVID inhibits addressing of
the second page because there is only one page of 80-column
text available for mixed mode.

In high-resolution graphics mode, the display data are still stored
in blocks like the one shown in Figure 7-11, but there are eight
of these blocks. As Table 7-11 and Table 7-12 show, vertical
counts VA , VB , and vc are used for address bits A1 o, A11, and A1 2,
which address eight blocks of 1024 bytes each. Remember that
in the display VA , VB, and vc count adjacent horizontal lines in
groups of eight. This addressing scheme maps each of those
lines into a different 1 024-byte block. It might help to think of it
as a kind of eight-way multiplexer: it's as if eight text displays
were combined to produce a single high-resolution display, with
each text display providing one line of dots in turn , instead of a
row of characters.

The high-resolution bit patterns are produced by the character­
generator ROM. In this mode, the bit patterns simply reproduce
the eight bits of display data. The low-order six bits of data reach
the ROM via the video data bus VIDO-VIDS. The IOU sends the
other two data bits to the ROM via RA9 and RA1 o.

The high-resolution colors described in Chapter 2 are produced
by the interaction between the video signal the bit patterns
generate and the 3.58 MHz color signal generated inside the
monitor or TV set. The high-resolution bit patterns are always
shifted out at 7 MHz, so each dot corresponds to a half-cycle of
the 3.58 MHz color signal. Any part of the video signal that

The Video Display

162

produces a single white dot between two black dots, or vice­
versa, is effectively a short burst of 3.58 MHz and is therefore
displayed as color. In other words, a bit pattern consisting of
alternating ones and zeros gets displayed as a line of color. The
high-resolution graphics subroutines produce the appropriate bit
patterns by masking the data bits with alternating ones and
zeros.

To produce different colors, the bit patterns must have different
phase relationships to the 3.58 MHz color signal. If alternating
ones and zeros produce a certain color, say green, then
reversing the pattern to zeros and ones will produce the
complementary color, purple. As in the low-resolution mode, each
bit pattern corresponds to three and a half cycles of the color
signal, so the phase relationship between the data bits and the
color signal changes by a half cycle for each successive byte of
data. Here, however, the bit patterns produced by the hardware
are the same for adjacent bytes; the color compensation is
performed by the high-resolution software, which uses different
color masks for data being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing
relationships to the 3.58 MHz color signal. In high-resolution
mode, the Apple lie produces two more colors by delaying the
output of the shift register by half a dot (70 ns), depending on
the high-order bit of the data byte being displayed. (The high­
order bit doesn't actually get displayed as a dot, because at
7 MHz there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the
shift register, high-order data bit 07 is also sent to the PAL. If 07
is off, the PAL transmits shift-register timing signals LOPS I and
vI 07M normally. If 07 is on , the PAL delays LOPS 1 and vI 07M by 70
nanoseconds, the time corresponding to half a dot. The bit
pattern that formerly produced green now produces orange; the
pattern for purple now produces blue.

A note about timing: For 80-column text, the shift register is clocked
at twice normal speed. When 80-column text is used with graphics
in mixed mode, the PAL controls shift-register timing signals LDPS'
and vI D7M so that the graphics portion of the display works correctly
even when the text window is in SO-column mode.

Hardware Implementation

Table 7-14 Internal Video Connector
Signals

'
Video Output Signals

The stream of video data generated by the display circuits
described above goes to a linear summing circuit built around
transistor 01 where it is mixed with the sync signals and the
color burst. Resistors R3, R5, R7, R10, R13, and R15 adjust the
signals to the proper amplitudes, and a tank circuit (L3 and C32)
resonant at 3.58 MHz conditions the color burst.

The resulting video signal is an NTSC-compatible composite­
video signal that can be displayed on a standard video monitor.
The signal is similar to the EIA (Electronic Industries Association)
standard positive composite video (see Table 7-14). This signal is
available in two places in the Apple lie:

• At the phono jack on the back of the Apple lie. The sleeve of
this jack is connected to ground and the tip is connected to
the video output through a resistor network that attenuates it
to about 1 volt and matches its impedance to 75 ohms.

• At the internal video connector on the Apple lie circuit board
near the RCA jack, J13 in Figure 7-14c. It is made up of four
Molex-type pins, 0.25 inches tall , on 0.10 inch centers. This
connector carries the video signal, ground, and two power
supplies, as shown in Table 7-14.

Pin Number Name Description

GROUND System common ground

2 VIDEO NTSC-compatible positive composite video. White
level is about 2.0 volts, black level is about 0.75
volts, and sync level is 0.0 volts. This output is not
protected against short circuits.

3 -sv - 5 volt power supply

4 + 12V + 12 volt power supply

The Video Display 163

164

Built-in 1/0 Circuits
The use of the Apple lie's built-in 1/0 features is described in
Chapter 2. This section describes the hardware implementation of
all of those features except the video display described in the
previous sections. The IOU (Input/Output Unit) generates the
output signals for the speaker, the cassette interface, and the
annunciators directly. The other 1/0 features are handled by
smaller ICs, as described below.

The addresses of the built-in 1/0 features are described in
Chapter 2 and listed in Table 2-2, Table 2-11 , and Table 2-12. All
of the built-in 1/0 features except the displays use memory
locations between scooo and SC070 (decimal 49152 and 49264).

The 1/0 address decoding is performed by three ICs: a 74LS138,
a 74LS154, and a 74LS251 .

The 74LS138 decodes address lines AS , AS , A1 o , and A11 to select
address pages on 256-byte boundaries starting at s coo o (decimal
49152). When it detects addresses between $coo o and scoFF , it
enables the IOU and the 74LS154. The 74LS154 in turn decodes
address lines A4 , AS , AG , and A7 to select 16-byte address areas
between scooo and SCOFF . Addresses between scoso and SCOGF

enable the 74LS251 that multiplexes the hand control switches
and paddles ; addresses between SC070 and SC07F reset the
NE558 quadruple timer that interfaces to the hand controls, as
described below in the section "Game 1/0 Signals".

The Keyboard

The Apple lie's keyboard is a matrix of keyswitches connected to
an A Y -3600-type keyboard decoder via a ribbon cable and a 26-
pin connector. The AY-3600 scans the array of keys over and ~.

over to detect any keys pressed. The scanning rate is set by the
external resistor-capacitor network made up of C70 and R32. The
debounce time is also set externally, by C71 .

The AY-3600's outputs include five bits of key code plus
separate lines for i CONTROL I, I SHIFT I, any-key-down, and keyboard
strobe. The any-key-down and keyboard-strobe lines are
connected to the IOU, which addresses them as soft switches.
The key-code lines, along with I CONTROL I and I SHIFT I, are inputs
to a separate 2316 ROM. The ROM translates them to the
character codes that are enabled onto the data bus by signals
named KBD' and ENKBD'. The KBD' signal is enabled by the MMU
whenever a program reads location s coo o , as described in
Chapter 2.

Hardware Implementation

Table 7-15 Keyboard Connector
Signals

Table 7-16 Keypad Connector Signals

Pin Number Name Description

1, 2, 4,
6, 8, 10,
23 , 25 ,
12, 22 YO-Y9 Y -direction key-matrix connections

3 + 5 + 5 volt supply

5, 7, 9, 15 n. c.

LCNTL ' Line from I CONTROL I key

13 GND System common ground

14, 16,
20 , 21 ' 19,
26 , 17 XO-X7 X-direction key-matrix connections

24 LSHFT' Line from I SHIFT I key

Connecting a Keypad

There is a smaller connector wired in parallel with the keyboard
connector. You can connect a ten-key numeric pad to the
Apple lie via this connector.

Pin Number

1' 2 , 5,
3,4, 6

7

9, 11 '
10, 8

Name

YO-YS

n. c.

X4-X7

Built-in 1/0 Circuits

Description

Y-direction key-matrix connections

X-direction key-matrix connections

165

II

Table 7-17 Speaker Connector
Signals

166

Cassette I /0

The two miniature phone jacks on the back of the Apple lie are
used to connect an audio cassette recorder for saving programs.
The output signal to the cassette recorder comes from a pin on
the IOU via resistor network R6 and R9, which attenuates the
signal to a level appropriate for the recorder's microphone input.
Input from the recorder is amplified and conditioned by a type
7 41 operational amplifier and sent to one of the inputs of the
74LS251 input multiplexer.

The signal specifications for cassette 1/0 are:

Input: 1 volt (nominal) from recorder Earphone or Monitor
output. Input impedance is 12K ohms.

Output: 25 millivolts to recorder Microphone input. Output
impedance is 1 00 ohms.

The Speaker

The Apple lie's built-in loudspeaker is controlled by a single bit of
output from the IOU (Input Output Unit). The signal from the IOU
is AC coupled to 05, an MPSA 13 Darlington transistor amplifier.
The speaker connector is a Molex KK1 00 connector, J18 in
Figure 7-14b, with two square pins 0.25 inches tall and on 0.10-
inch centers.

A light-emitting diode is connected in parallel across the speaker
pins such that, when the speaker is not connected, the diode
glows whenever the speaker signal is on. This diode is used as
a diagnostic indicator during assembly and testing of the
Apple lie.

Pin Number

2

Name Description

SPKR Speaker signal. This line will deliver about 0.5
watts into an 8-ohm speaker.

+ 5 + 5V power supply. Note that the speaker is not
connected to system ground.

Hardware Implementation

-

-

-
--
-

Game I /0 Signals

Several 1/0 signals that are individually controlled via soft
switches are collectively referred to as the game signals. Even
though they are normally used for hand controls, these signals
can be used for other simple 1/0 applications. There are five
output signals: the four annunciators, numbered AO through A3,

and one strobe output. There are three one-bit inputs, called
switches and numbered swo through SW2, and four analog inputs,
called paddles and numbered PDLO through PDL3.

The annunciator outputs are driven directly by the IOU (Input
Output Unit). These outputs can drive one TTL (transitor-transitor
logic) load each; for heavier loads, you must use a transistor or a
TTL buffer on these outputs. These signals are only available on
the 16-pin internal connector (see Table 7-18).

The strobe output is a pulse transmitted any time a program
reads or writes to location s co 4 o. The strobe pin is connected to
one output of the 7 4LS154 address decoder. This TTL signal is
normally high; it goes low during cf>O of the instruction cycle that
addresses location SC040. This signal is only available on the 16-
pin internal connector (see Table 7-18).

The game inputs are multiplexed along with the cassette input
signal by a 74LS251 eight-input multiplexer enabled by the COGX'
signal from the 74LS154 1/0 address decoder. Depending on the
low-order address, the appropriate game input is connected to bit
7 of the data bus.

The switch inputs are standard low-power Shottky TTL inputs. To
use them, connect each one to 220-ohm pull-up resistors
connected to the +5-volt supply and through single-pole,
momentary-contact pushbutton switches to ground.

The hand-control inputs are connected to the timing inputs of an
NE558 quadruple 555-type analog timer. Addressing SC07X sends
a signal from the 74LS154 that resets all four timers and causes
their outputs to go to one (high). A variable resistance of up to
150K ohms connected between one of these inputs and the + 5V
supply controls the charging time of one of four 0.022-microfarad
capacitors. When the voltage on the capacitor passes a certain
threshold, the output of the NE558 changes back to zero (low).

Built-in 1/0 Circuits 167

II

Table 7-18 Game 1/0 Connector
Signals

168

Programs can determine the setting of a variable resistor by
resetting the timers and then counting time until the selected
timer input changes from high to low. The resulting count is
proportional to the resistance.

The game 1/0 signals are all available on a 16-pin DIP socket
labelled GAME 1/0 on the main circuit board inside the case.
The switches and the paddles are also available on a D-type
miniature connector on the back of the Apple lie; see J8 and J15
in Figure 7-14d.

Internal- Back-panel- Signal Description
Connector Connector Name
Pin Number Pin Number

2 +SV + 5 power supply. Total
current drain from this pin
must not exceed 1 OOmA.

2, 3, 4 7, 1, 6 PBO-PB2 Switch inputs. These are
standard 74LS inputs.

5 STROBE ' Strobe output. This line goes
low during cf>O of a read or
write instruction to location
SC040.

6, 10, 7, 11 5, 8, 4, 9 PDLO-PDL3 Hand control inputs. Each of
these should be connected
to a 150K-ohm variable
resistor connected to + 5V.

8 3 GND System ground.

15, 14, 13, 12 ANO-Ati3 Annunciators. These are
standard 74LS TTL outputs
and must be buffered to
drive other than TTL inputs.

9, 16 n. c. Nothing is connected to
these pins.

Hardware Implementation

....-.

Expanding the Apple lie
The main circuit board of the Apple lie has eight empty card
connectors or slots on it. These slots make it possible to add
features to the Apple lie by plugging in peripheral cards with
additional hardware. Chapter 6 describes the Standards for
programming peripheral cards for the Apple lie. This section
describes the hardware that supports them , including all of the
signals available on the expansion slots.

The Expansion Slots

The seven connectors lined up across the back part of the
Apple lie's main circuit board are the expansion slots, also called
peripheral slots or simply slots, numbered from 1 to 7. They are
50-pin PC-card edge connectors with pins on 0.1 0-inch centers.
A PC card plugged into one of these connectors has access to
all of the signals necessary to perform input and output and to
execute programs in RAM or ROM on the card. These signals
are described briefly in Tables 7-19a, 7-19b, and 7-19c. The
following paragraphs describe the signals in general and mention
a few points that are often overlooked. For further details, refer
to the schematic diagram in Figures 7-14a, 7-14b, 7-14c, and 7-14d.

The Peripheral Address Bus

The 6502's address bus is buffered by two 74LS244 octal three­
state buffers. These buffers, along with a buffer in the 6502's
R/W' line, are enabled by a signal derived from the DMA' daisy­
chain on the expansion slots. Pulling the peripheral line DMA' low
disables the address and R I w' buffers so that peripheral DMA
circuitry can control the address bus. The DMA address and
R/W' signals supplied by a accessory card must be stable all
during ¢o of the instruction cycle, as shown in Figure 7-13.

Another signal that can be used to disable normal operation of
the Apple lie is I NH'. Pulling I NH' low disables all of the memory
in the Apple lie except the part in the 1/0 space from $coo o to
SCFFF. A peripheral card that uses either INH' or DMA' must
observe proper timing; in order to disable RAM and ROM cleanly,
the disabling signal must be stable all during ¢o of the instruction
cycle (refer to the timing diagram in Figure 7 -13).

The peripheral devices should use I/O SELECT' and
DEVICE SELECT' as enables. Most peripheraiiCs require their

Expanding the Apple lie 169

170

enable signals to be present for a certain length of time before
data is strobed into or out of the device. Remember that I /0
SELECT' and DEVICE SELECT' are only asserted during </>0 high.

The Peripheral Data Bus

' The Apple lie has two versions of the 6502 data bus: an internal
bus, MDO -MD7 , connected directly to the 6502; and an external bus,
DO- D7, driven by a 7 4LS245 octal bidirectional bus buffer. The
6502 is fabricated with MOS circuitry, so it can drive capacitive
loads of up to about 130 pF. If peripheral cards are installed in
all seven slots, the loading on the data bus can be as high as
500 pF, so the 74LS245 drives the data bus for the peripheral
cards. The same argument applies if you use MOS devices on
peripheral cards: they don't have enough drive for the fully­
loaded bus, so you should add buffers.

Loading and Driving Rules

Tables 7-19a, 7-19b, and 7-19c show the drive requirements and
loading limits for each pin on the expansion slots. The address
bus, the data bus, and the R I w' line should be driven by three­
state buffers. Remember that there is considerable distributed
capacitance on these busses and that you should plan on
tolerating the added load of up to six additional peripheral cards.
MOS devices such as PIAs and ACIAs cannot switch such heavy
capacitive loads. Connecting such devices directly to the bus will
lead to possible timing and level errors.

Interrupt and DMA Daisy Chains

The interrupt requests (IRQ' and NM I ') and the direct-memory
access (DMA') signal are available at all seven expansion slots. A
peripheral card requests an interrupt or a DMA transfer by pulling
the appropriate output line low (active). If two peripheral cards
request an interrupt or a DMA transfer at the same time, they will
contend for the data and address busses. To prevent this, two
pairs of pins on each connector are wired as a priority daisy
chain . The daisy-chain pins for interrupts are I NT IN and I NT OUT ,

and the pins for DMA are DMA IN and DMA oUT, as shown for J 1-J7 in
Figure 7-14d.

Each daisy chain works like this: the output from each connector
goes to the input of the next higher numbered one. For these
signals to be useful for cards in lower numbered connectors, all
of the higher numbered connectors must have cards in them, and
all of those cards must connect DMA IN to DMA OUT and I NT IN to I NT

OUT . Whenever an accessory card uses pin DMA', it must do so

Hardware Implementation

Figure 7-13 Peripheral-signal Timing

only if its DMA IN line is active, and it must disable its DMA OUT line
while it is using DMA'. The I NT IN and I NT oUT lines must be used
the same way: enable the card's interrupt circuits with IN1 IN, and
disable INT OUT whenever IRQ' or NMI' is being used.

14M

?M

03--......1'

I
4>0 --...;1

CPU phase

I
4>1---'' video phase

ADDRESS
~I ,._ 11 0 ns (max) 1 5 ns (min) -..J ~

5 AO·A 15, R/W't
11NH', DMA' ~

PERIPHERAL SELECT

~
1/0 SELECT' !
DEVICE SELECT
1/0 STROBE'

Expanding the Apple lie

Table 7-19a Expansion Slot Signals Pin Number Name Description

*Loading limits are for each card.
110 SELECT Normally high; goes low during cf>O when the 6502

addresses location $CnXX , where n is the
connector number. This line can drive 10 LS TTL
loads. •

2-17 AO-A15 Three-state address bus. The address becomes
valid during cf>1 and remains valid during cf>O. Each
address line can drive 5 LS TTL loads. •

18 R/W' Three-state read/ write line. Valid at the same time
as the address bus; high during a read cycle, low
during a write cycle. It can drive 2 LS TTL loads. •

19 SYNC' Composite horizontal and vertical sync, on
expansion slot 7 ONLY. This line can drive 2 LS
TTL loads.•

20 1/0 Normally high; goes low during cf>O when the 6502

STROBE' addresses a location between $C800 and
$CFFF. This line can drive 4 LS TTL loads.

21 RDY Input to the 6502. Pulling this line low during cf>1
halts the 6502 with the address bus holding the
address of the location currently being fetched.
This line has a 3300 ohm pullup resistor to + 5V.

22 DMA ' Input to the address bus buffers. Pulling this line
low during cf>1 disconnects the 6502 from the
address bus. This line has a 3300 ohm pullup
resistor to +5V

23 !NT OUT Interrupt priority daisy-chain output. Usually
connected to pin 28 (I NT IN).
(Note: on slot 7 ONLY, this pin can be connected
to the graphics-mode signal GR: see tex1 for
details.)

24 DMA OUT DMA priority daisy-chain output. Usually
connected to pin 22 (DMA IN).

25 + SV + 5-volt power supply. A total of 500mA is
available for all accessory cards.

26 GND System common ground.

172 Hardware Implementation

Table 7-19b Expansion Slot Signals, Pin Number Name Description
continued

•Loading limits are for each card. 27 DMA IN DMA priority daisy-chain input. Usually connected
to pin 24 (DMA 0 UT).

28 !NT IN Interrupt priority daisy-chain input. Usually
connected to pin 23 (I NT OUT).

29 NMI ' Non-maskable interrupt to 6502. Pulling this line
low starts an interrupt cycle with the
interrupt-handling routine at location $0 3FB . This
line has a 3300 ohm pullup resistor to + 5V.

30 IRQ ' Interrupt request to 6502. Pulling this line low
starts an interrupt cycle only if the
interrupt-disable (I) flag in the 6502 is not set.
Uses the interrupt-handling routine at location
s 0 3FE . This line has a 3300 ohm pull up resistor
to + 5V.

31 RES ' Pulling this line low initiates a reset routine, as
described in Chapter 4.

32 INH ' Pulling this line low during cjl1 inhibits (disables)
the memory on the main circuit board. This line
has a 3300 ohm pullup resistor to + 5V.

33 - 12V -12 volt power supply. A total of 200mA is
available for all accessory cards.

34 - sv - 5 volt power supply. A total of 200mA is
available for all accessory cards.

35 3.58M 3.58 MHz color reference signal, on slot 7 only.
This line can drive 2 LS TTL loads. •

36 7M System 7 MHz clock. This line can drive 2 LS TTL
loads.•

37 Q3 System 2 MHz asymmetrical clock. This line can
drive 2 LS TTL loads. •

38 cjl1 6502 phase 1 clock. This line can drive 2 LS TTL
loads. •

Expanding the Apple lie 173

Table 7-19c Expansion Slot Signals.
continued

*Loading limits are for each card.

174

Pin Number

39

40

41

42-49

50

Name

11-PSYHC

¢0

DEVICE
SELECT'

DO-D7

+12V

Video Signals on Slot 7

Description

The 6502 signals an operand fetch by driving this
line high during the first read cycle of each
instruction.

6502 phase 0 clock. This line can drive 2 LS TTL
loads. •

Normally high; goes low during ¢0 when the 6502
addresses location SCOnX, where n is the
connector number plus 8. This line can drive 10
LS TTL loads.*

Three-state buffered bi-directional data bus. Data
becomes valid during ¢0 high and remains valid
until ¢0 goes low. Each data line can drive one LS
TTL load. •

+12 volt power supply. A total of 250mA is
available for all accessory cards.

The video signals are available only on the auxiliary slot and not
on the numbered expansion slots, except for slot 7. The video
signals available on expansion slot 7 are SYNC', the composite
horizontal and video sync signal, on pin 19, and 3. SSM, the color
reference signal, on pin 35. Early production Apple lies, identified
by a circuit board part number ending in -A, do not have this
feature.

The signal that enables the graphics modes, named GR, is not
normally available on the numbered expansion slots. You can make
it available on pin 23 of slot 7 by completing the circuit at location
X7 on the main circuit board. Remember to turn off the power
before changing anything inside the Apple lie. Also remember that
changes such as this are at your own risk and may void the
warranty.

The Auxiliary Slot

The large connector at the left side of the Apple lie's main circuit
board is the auxiliary slot. It is a 60-pin PC-card edge connector
with pins on 0.1 0-inch centers. A PC card plugged into this
connector has access to all of the signals used in producing
the video display. These signals are described briefly in Tables

Hardware Implementation

7-20a, 7-20b, and 7-20c. For further details, refer to the
schematic diagram in Figures 7-14a, 7-14b, 7-14c, and 7-14d.

Many of the internal signals that are not available on the
expansion slots are on the auxiliary slot. By using both kinds of
connectors, manufacturing and repair personnel can gain access
to most of the signals needed for diagnosing problems in the
Apple lie.

80-column Display Signals

The additional memory needed for producing an 80-column text
display is on the 80-column text card, along with the buffers that
transfer the data to the video data bus, as described above in
the section "Text Displays". The signals that control the SO­
column text data include the system clocks <:f>o and 1> 1 , the
multiplexed RAM address RAO-RA7, the RAM address-strobe
signals PRAS 1 and PCAS I, and the auxiliary-RAM enable signals,
EN80 1 and R/WBO . The ENB0 1 enable signal is controlled by the
BOSTDRE soft switch described in Chapter 4. Data is sent to the
auxiliary memory via the internal data bus MDO -MD7; the data is
transferred to the video generator via the video data bus vI DO­
VID7.

Expanding the Apple lie

Table 7-20a Auxiliary Slot Signals

176

Pin Number

2

3

4

5

6

7

8

51 , 10, 49,
48, 13, 14,
46, 9

11 ' 12

15

44, 43, 40,
39, 21 ' 20,
17, 16

Name

3.58M

VID7M

SYNC '

PRAS '

vc

C07X '

WNDW '

SEGA

RAO-RA7

ROMEI'f1.
RDMEI'f2

R/W '

MDO-MD7

Description

3.58 MHz video color reference signal. This line
can drive two LS TTL loads.

Clocks the video dots out of the 74166
parallel-to-serial shift register. This line can drive
two LS TTL loads.

Video horizontal and vertical sync signal. This line
can drive two LS TTL loads.

Multiplexed RAM row-address strobe. This line
can drive two LS TTL loads.

Third low-order vertical-counter bit. This line can
drive two LS TTL loads.

Hand-control reset signal. This line can drive two
LS TTL loads.

Video non-blank window. This line can drive two
LS TTL loads.

First low-order vertical counter bit. This line can
drive two LS TTL loads.

Multiplexed RAM-address bus. This line can drive
two LS TTL loads.

Enable signals for the ROMs on the main circuit
board.

Read/ write signal from 6502. This line can drive
two LS TTL loads.

Internal (unbuffered) data bus. This line can drive
two LS TTL loads.

Hardware Implementation

Table 7·20b Auxiliary Slot Signals,
continued

Pin Number

45, 42, 41 ,
38, 22, 19,
18, 15

23

24

25

26

27

28

29

30

31

32

33

34

Name Description

vI DO-vI 07 Video data bus. This three-state bus carries video
data to the character generator.

</>0

CLRGAT '

80VID '

EN80 '

ALTVID '

SEROUT'

ENVID '

+5

GND

14M

PCAS '

LOPS'

6502 clock phase 0. This line can drive two LS
TTL loads.

Color-burst gating signal. This line can drive two
LS TTL loads.

Enables 80-column display timing. This line can
drive two LS TTL loads.

Enable for auxiliary RAM. This line can drive two
LS TTL loads.

Alternative video output to the video summing
amplifier.

Video serial output from 7 4166 parallel-to-serial
shift register.

Normally low; driving this line high disables the
character generator such that the video dots from
the shift register are all high (white), and
alternative video can be sent out via AL TV I D'.
This line has a 1 000 ohm pulldown resistor to
ground.

+ 5 volt power supply.

System common ground.

14.3 MHz master clock signal. This line can drive
two LS TTL loads.

Multiplexed column-address strobe. This line can
drive two LS TTL loads.

Strobe to video parallel-to-serial shift register. This
signal goes low to load the contents of the video
data bus into the shift register. This line can drive
two LS TTL loads.

Expanding the Apple lie 177

Table 7-20c Auxiliary Slot Signals,
continued

Pin Number

35

36

37

47

50

52

53

54

55

56, 57

58

59

60

Name

R/W80

CASEN '

HO

AN3

R/W '

Q3

SEGB

ENFIRM

Description

Read/ write signal for RAM on the 80-column text
card. This line can drive two LS TTL loads.

6502 clock phase 1. This line can drive two LS
TTL loads.

Column-address enable. This signal is disabled
(held high) during accesses to memory on the
auxiliary card . This line can drive two LS TTL
loads.

Low-order horizontal byte counter. This line can
drive two LS TTL loads.

Output of annunciator number 3. This line can
drive two LS TTL loads.

6502 read / write signal. This line can drive two LS
TTL loads.

2 MHz asymmetrical clock. This line can drive two
LS TTL loads.

Second low-order vertical-counter bit. This line
can drive two LS TTL loads.

Normally high; pulling this line low
disables RDM1 and ROM2 on the main ci rcuit
board. This line has a 3300-ohm pull up resistor to
+ 5V.

RA9 ·, RA1 0 · Character-generator control signals from the IOU.
This line can drive two LS TTL loads.

GR Graphics-mode enable signal. This line can drive
two LS TTL loads.

7M 7 MHz timing signal. This line can drive two LS
TTL loads.

ENTMG ' Normally low; pulling this line high disables the
master timing from the PAL. This line has a 1000
ohm pulldown resistor to ground.

Hardware Implementation

Figure 7-14a Schematic Diagram,
part 1

,~··~·~-7~! --...

""" 33
00 •o• Jl 01

WOl 31 02

""' 30 03
•o• 29 04
•o• 28 0'3.>

""" 27 06
WD7 26 07

""

.-------------~--.:·:.~•:,;· :ij"~ ,ZJJ [1·7)14)

tot O lh /OUT :11 (l)

(,
,---9"-<~LE'\;>'',_e_.,. ~,,; <----""!!'""' .. '-'"'- J~-35(4)

LSI2~

:I:
Q) ..,
Q. :e
Q) ..,
CD

3
'0
<D
3
CD
:::1 -Q) -(5'
:::1

Figure 7-14b Schematic Diagram,
part 2

_!!2<;H~B~ J(l rt2 0 C4 l

~".> (QIKU Ol

5 E2UB~ z tJ lOSE l it ~~~: =========~~~====~==============;.;~6 El ~~~05~-)
Al l ~ At! 3 ~z_!_ _ IOSEL.!o lt - JJ 1

..;..o;.;~----------"::'::--------------~~---------------;:---r.·~·.---8z .AI L51311 <lt>t~ !05[L 41t - J 'H <• l
) ~ A2 S~ [QS [LS ti - JS ·t

d.l

,.,

"' h (ll AI Wtl

WDI N /OUT Jt

ENVIOM

(.AP OCK II

KBQIII
, .. . o.

,. 1~;7

Yl

y

y ,.
YS ,.
" " ,. ,.
" '
" ..
" " " 51-if Ttl

(NTUt

•s

t

.. ,,.
~"' f" " 2K -sc

.,.
IlK

., ... ,

C0fX !l

, ~·~o~[o~>._J .. .I

At 0 ~[I 6 9 I~El6~ JGI
~~OSEL~J>-o

C0 6 .U

IJl SPKA

• S

OP O

" ")9 ,,.., .,.

STB ~t

CI7X A

OE\11 t1

n[v2 •
DE'I •
0[\14 .,. ...
DEV6 tt
0[V7 1t

o•
D>
02

OJ
n.
M

01

I(~
AKD

JIS·S C4 l

. ') Jl• 4 1

J2·41

J3· -4 1 ,.,
J 4 "' '
JS· II I

Ji - 4 1

J7· o4 1

"'" ..) J rt-11 •e
J(l ·1] 4 7

J (1 · 71 4 6 (4)
J(t-1} 4 5

J [1 · 1144

J {1·7) 4 3

J (1· 1] 4 2

(J)

LJ>

m
)(

" Q)

::I
a.
::I

tO

Figure 7-14c Schematic Diagram,
part 3

10(0 7)

r--,;,;,~Ro~v~r ~• ~:: r• l
(4JJG-27 :~~7~0: _., ~

I l4lJ0·29--'=-=--------J-------J,__ _ _,~,-0---, f RP! "-'' SIP
":' ~-- 1~ . • , lri'=ffi:;l B ~~~

woljl-1] 1 1 18 2-4 1 ?? · ~~ · r---

111_ ~ ~ :~~--'~'!:~"'~,.,..-';~"':~:;..~------·--------~_,: :! ~~~~.c~=~fl:ntt~~j.:~g~
~ Dl Q2 6 VIOZ VID2 3 A '5 Ol I I I I 05 Q] I~
~ 03 Ol 9 VIDJ Vl03 l. .., 6 Ol 13 10 Q-4

~ D .. U03 Q o4 12 VI04 Vl04 I AT 04 14 5 Ol OS~
~ ~ 14 D5LS374Q'5 10::. Vl05 VIO~ B AS Uf4

OS 15 4 OZ UF!:I

~ :0~ :; 06 06 1;: ~~~ ~ Az
2732

06 IG l 01 LSI66
t---=-'-"-=t207CP 07~ ~ A I 07 IT z 00

Sf~ .l 'l ~ ~ CP

" 1 .--jt---------t+ff--"iv '""

U
,. ,19 .. ~0~ 7 ~ .. ~~5

1t..G;, 1 i
' V06

V1)1

l<l "" ,. ,, "< I W e 14

co:x:r • ... ,.....
'" <STJ" " -· Ill

!>.<JJ " l>l • or •

J e-3,J7-19<-4 l

vc
J~-5 (4)

'""" "' S£<.9
J~~4(4)

"" J \t-8 (o4)
SR

J0 -58,J7- Z3C4)
R.A IG• Jt!l-'57(4)

J 0 - 56(4)

,.
~
~

UE5

• >00

(4) Je -~
FRCT X1' * vco •

LS >O

(I) """'".

....
Q)
N

3
"C
ii
3
C1l
:I
S' -c;·
:I

Figure 7-14d Schematic Diagram,
part 4

Jl

NUMERI C PAD

JZ

JZO
BURN IN

POWER PADS

~
~
~
~

Jl1

KEYBOARD

J.

J4 J5

156 0005
ll

-')~-sc

L2
-12____...........-ll.C

L6
•IZ~•IZC

" .. 5PC--c=•SC
" • 5

J,.
PO'WER CO NNEC TOA

,,
GR

GAWE l /0

Appendices

185 Appendix A: The 6502 Instruction Set
197 Appendix B: Tables
217 Appendix C: Directory of Built-in Subroutines
225 Appendix D: Differences Between the Apple lie and Apple II Plus
231 Glossary
253 Bibliography
257 Index
266 Numbers
266 Cast of Characters

Appendices

The 6502 Instruction Set

The Following Notation Applies to This
Summary:

A Accumulator

X. y Index Reg1sters

M Memory

c Borrow
p Processor Status Reg1ster

s Stack Potnter

-1 Change

No Change

Add

" LOgical AND

Subtracl

v Log tcal Exclustve Gr

I Transfer From :;:.. td.Ck

I Transfer To Stack

Transfer To
Transfer To

v LOgical OR

PC Program Counter

PCH Program Counter Htgh

PCL Program Counter low
OPER Operand

lmmed1ate Address1ng Mode

The 6502 Instruction Set

FIGURE 1 ASL -SHIFT LEFT ONE BIT OPERATION

FIGURE 2 ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

I, MORA ~
YL---7----'I~s_l,__s----'I'--4----'I'--3----'I'-2----'I'--1-'-0----'~
FIGURE 3 ROTATE ONE BIT RIGHT (MEMORY

OR ACCUMULATOR)

3

NOTE 1: BIT- TEST BITS

Btt 6 and 7 are transferred to the status regts ter. If the
result of A 1\ M ts zero then Z=1. otherwtse Z=O

6502 Microprocessor Instructions

ADC Add Memory to Ac cumulat o r w rth LOA Load Accumulator wrth Memory

Carry LOX Load Index X wrth Memory

AND ··ANo·· Memory wrth Accumulator LOY Load Index Y wrth Memory

ASL Sh1tt Lett One B1t !Memory or LSR Sh1lt A1ght one B1t !Memory or

Accumulator! Accumulator!

BCC Branch on Carry Clear NOP No Operatron

BCS Branch on Carry Set ORA "OR" Memory wrth Accumulator

BEO Branch on Result Zero
PHA Push Accumulator on Stack

BIT Test Brts rn Memory wrth
PHP Push Processor Status on Stack

Accumulator
PLA Pull Accumulator from Stack

BMI Branch on Result Mmus
PLP Pull Processor Status from Stack

BNE Branch on Result not Zero

BPL Branch on Result Plus ROL Rotate One Brt Left tMemory or

BRK Force Break Accumulator l

BVC Branch on Overl low Clear ROR Rotate One Brt Rrght !Memory or

BVS Branch on Overf low Set Accumulator r

CLC Clear Carry Flag
RTI Return from lrllerrupt

RTS Return from Subrout1ne
CLD Clear Dec1mal Mode

CLI Clear Interrupt 01sable B1t SBC Subtract Memory from Accumulator

CLV Clear Overflow Flag w1th Borrow

CMP Compare Memory and Accumulator SEC Set Carry Flag

CPX Compare Memory and Index X SED Set Dec1mal Mode

CPY Compare Memory and Index Y SEI Set Interrupt D1sabte Status

DEC Decrement Memory by One STA Store Accumulator m Memory

DEX Decrement Index X by One STX Store Index X 1n Memory

DEY Decrement Index Y by One STY Store Index Y 1n Memory

EOR '"Exclus•ve-or·· Memory w1th TAX Transfer Accumulator to Index X

Accumulator TAY Transfer Accumulator to Index Y

TSX Transfer Stack Po1nter to Index X
INC Increment Memory by One

TXA Transfer Index X to Accumulator
INX Increment Index X by One

INY •ncrement Index Y by One
TXS Transfer Index X to Stack Pomter

TVA Transfer Index Y to Accumulator
JMP Jump to New Locat•on

JSR Jump to New Locat •on Sav•ng

Return Address

186 The 6502 Instruction Set

Programming Model

A

y

X

15

PCH PCL

01 s

0

jNjv j jB)Dj1)zjcj

I I I

Programming Model

p

0

ACCUMULATOR

0

INDEX REGISTER Y

0

INDEX REGISTER X

0

I PROGRAM COUNTER

0

I STACK POINTER

ROCESSOR STATUS REGISTER . ··p ·

CARRY
ZERO
INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND
OVERFLOW
NEGATIVE

188

Instruction Codes

Auembly HEX
Name Operallon Addrusing language OP No ··p·· Status Reg

Description Mode form Code Bytu NZCIOV

ADC
Add memory to A·M-C -A C lmmed1ate ADC •Oper 69 2 vVv'-- "
accumulator w•th carry ze, o Page ADC Oper 65 2

Ze10 Page X ADC Oper .X 75 2
Absolute ADC Oper 6D 3
Absolute X ADC Dper .X 7D 3
Absolute Y ADC Oper .Y 79 3
(1 nd11eCt .XI ADC (Opel .X) 6t 2
(lndlfectl Y ADC (Oper). Y 7t 2

AND
''AND'' memory w1lh AhM -A lmmed1ate AND •Oper 29 2 v v --- -
accumulator Ze10 Page AND Ope' 25 2

Zero Page .X AND Dpe~ . X 35 2
Absolute AND Oper 2D 3
Absolute .X AND Oper .X 3D 3
Absolute .Y AND Oper Y 39 3
(lndl!ect.X) AND (Oper.X) 2t 2
(lnd11ect) Y AND iOper) .Y 3t 2

ASL
Shift left one bit (See F1gure 1) Accumulator ASL A OA 1 .J.J.J- --
(Memory or Accumulator) Zero Page ASL Dper 06 2

Zero Page X ASL Oper .X 16 2
Absolute ASL Oper OE 3
Absolute X ASL Oper .X IE 3

BCC
Branch on carry clear Branch on C•O Relat1ve BCC Dper 90 2 - - --·--

BCS
Branch on carry set Branch on C· 1 Relat1ve BCS Oper BO 2 ------

BEO
Branch on result zero B1anch on Z• 1 Relat1ve BEO Ope1 FO 2 --- --
BIT
Test bits in memory AhM. M7-N. Zero Page BIT 1 Oper 24 2 M7v-- - M&
w1th accumulator M6-v Absolute BIT1 Oper 2C 3

BMI
Branch on result minus Branch on N • 1 Relative BMI Oper 30 2 ------

BNE
Branch on result not zero Branch on Z· O Relat1ve BNE Oper DO 2 ------

BPL
Branch on result plus Branch on N· O Relat1ve BPL oper 10 2 - -- --

BRK
force Break Forced Implied BRK2 00 1 --- 1 - -

Interrupt
PC•2 1 Pt

BVC
Branch on overflow clear Branch on V· O Relative BVC Oper 50 2 -- ----

Note 1: Bits 6 and 7 are transferred to the status register. (f the result of A AND M is zero,
then Z = 1; otherwise Z = 0.

Note 2: A BRK command cannot be masked by setting I.

The 6502 Instruction Set

~ -. ,

Assembly HEX
N1me Oper•llon Addreuing Langu•ge OP No .. p·· SliiUI Reg

OeJcrlplion Mode Form Code ByiOI NICIOV

BVS
Br anc11 on ov erflow set B' anch on Vo 1 Aelat1ve BVS Oper 70 2 - -- - -

CLC
Clea r carry flag o-c lm plred CLC 18 1 - -- o- -
CLD
Clea r dwmal mode o-o lmplred CLD DB 1 - 0 -- - -

CLI
0-1 lmpl red CLI 58 1 --- 0 - -

CLV
Clear overflow flag o -v lm plred CLV 88 1 a-----
CMP
Compare memory and A-M lmmedrale CMP •Oper C9 2 v'v'..J- - -
accumulator Zero Page CMP Oper cs 2

Zero Page. X CMP Oper .X 05 2
Absolute CMP Oper CD 3
Absolute .X CMP Ope r. X DO 3
Absolute Y CMP Oper .Y 09 3
(lndrrecl XI CMP (Oper .X) C1 2
(l ndrrecl i .Y CMP (Oper) .Y 01 2

CPX
Compare memory and X - M lmmedrate CPX •Oper EO 2 ,;,;.,;- --

rndex X Ze ro Page CPX Oper E4 2
Absolute CPX Oper EC 3

CPY
Compare memory and y- M lmmedrate CPY •Oper co 2 .,;..;.,;- --
rndex Y Zero Page CPY Oper C4 2

Absolute CPY Oper cc 3

DEC
Decrement memory M-1-M Zero Page DEC Oper C6 2 v'v'-----
by one Zero Page .X DEC Oper .X D6 2

Absolute DEC Oper CE 3
Absolute .X DEC Oper .X DE 3

DEX
De crement tndex X X -1-X lmplred OEX CA 1 .,;..; - - - -
by one

DEY
Decrement rndex Y Y -1-Y lmplred DEY 88 1 .,;,;-- - -
by one

Instruction Codes 189

Auembly HEX
Nome Oporolion Addroulng longuago OP No. ··p·· Status Rig.

Description Mode Form Code Bytu NZCIDV

EOR
··ExcluSive-or · memory A V M -A Immediate EOA •Oper 49 2 ..;..; - -
w1th accumulator Zero Page EOR Oper 45 2

Zero Page X EOA Oper.X 55 2
Absolute EOA Oper 40 3
Absolute X EOA Oper .X 50 3
Absolute . Y EOR Oper .Y 59 3
(lnduect.X) EOA (Oper.X) 41 2
llnd~rect) . Y EOA (Qper) .Y 51 2

INC
Increment memory M ·1-M Zero Page INC Oper E6 2 ..;..;----
by one Zero Page.X INC Oper.X F6 2

Absolute INC Oper EE 3
Absolute. X INC Oper.X FE 3

INX
Increment 1ndex X by one X· 1-X Implied INX EB 1 ..;..;----

INY
Increment 1ndex Y by one Y • 1-Y Implied INY C8 1 ..;..;----

JMP
Jump to new locat1on (PC.t) -PCL Absolute JMP Oper 4C 3 ------

(PC·2) -PCH lnduect JMP (Oper) 6C 3

JSR
Jump to new locatiOn PC•2 t Absolute JSA Oper 20 3 ------
savmg return address (PC•1) -PCL

(PC•21 -PCH

LOA
load accumulator M-A Immediate LOA •Oper A9 2 N ----
w1th memory Zero Page LOA Oper AS 2

Zero Page.X LOA Oper .X 85 2
Absolute LOA Oper AD 3
Absolute .X LOA Oper ,X 80 3
Absolute .Y LOA Oper.Y 89 3
(lnd~rect . X) LOA (Oper .X) A1 2
(lnd~rect) . Y LOA (Oper).Y 81 2

LOX
load 1ndex X M -x Immediate LOX •Oper A2 2 ..;..;----
w1th memor'/ Zero Page LOX Oper A6 2

Zero Page. Y LOX Oper .Y 86 2
Absolute LOX Oper AE 3
Absolute .Y LOX Oper.Y BE 3

LOY
load 1ndex Y M-Y lmmed1ate LOY •Oper AO 2 ..;..;----
w1th memory Zero Page LOY {)per A4 2

Zero Page.X LOY Oper .X 84 2
Absolute LOY Oper AC 3
Absolute. X LOY Oper .X BC 3

The 6502 Instruction Set

Anembly HEX
Name Operallon Addrualng l.Jnguage OP No. ..,... Statu& Reg.

Oeacrlptlon Mode form Code Byte& NZCIOY

LSR
Shift right one b1t (See Figure 1) Accumulator LSR A 4A 1 0../../---
(memory or accumulator) Zero Page LSR Oper 46 2

Zero Page.X LSR Oper.X 56 2
Absolute LSR Oper 4E 3
Absolute .X LSR Oper.X 5E 3

NOP
No operation No OperatiOn Implied NOP EA 1 ------
ORA
··oR·· memory with A VI~ -A Immediate ORA #Oper 09 2 ..;..;----
accumulator Zero Page ORA Oper 05 2

Zero Page.X ORA Oper.X 15 2
Absolute ORA Oper 00 3
Absolute .X ORA Oper.X 10 3
Absolute.Y ORA Oper.Y 19 3
(Indirect. X) ORA (Oper.X) 01 2
(lnd~rect).Y ORA (Oper) .Y 11 2

PHA
Push accumulator A I Implied PHA 48 1 ------
on stack

PHP
Push processor status P I Implied PHP 08 1 ----- -
on stack

PLA
Pull accumulator A I Implied PLA 68 1 ..;..;----
from stack

PLP
Pull processor status p t Implied PLP 28 1 From Stack
from stack

ROL
Rotate one bit left (See Figure 21 Accumulator ROL A 2A 1 ..;..;..;---
(memory or accumulator) Zero Page ROL Oper 26 2

Zero Page,X ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute.X ROL Oper.X 3E 3

ROR
Rotate one bit r~ght (See Figure 31 Accumulator ROR A 6A 1 ..;..;..;---
!memory or accumulator) Zero Page ROR Oper 66 2

Zero Page.X ROR Oper.X 76 2
Absolute ROR Oper 6E 3
Absotute.X ROR Oper.X 7E 3

Instruction Codes 191

Auembly HE X
NJme Operollon Addressing Language OP No. ··p·· Status Reg

Oucrlpllon Mode Form Code Bytu NZC I DV

RTI
Return from tnterrupt PI PC I Implied RTI 40 1 From StacK

RTS
Return from subroutrne PC I . PC · 1 -PC lmplred ATS

60
1 ~-----

SBC
Subtract memory from A · M · C - A lmmedr ate SBC •Oper E9 2 ..;..;..;-- ,
accumulator with borrow Zero Page SBC Oper ES 2

Zero Page.X SBC Oper .X FS 2
Absolute SBC Oper EO 3
Absolute X SBC Oper .X FO 3
Absolute . Y SBC Oper.Y F9 3
(lndrrect.X) SBC !Oper.X) E1 2
(lndrrecl) Y SBC !Oper) .Y F1 2 J

SEC
Set carry fl ag 1 - c lmplred SEC 38 1 -- 1---

SED
Set decrmal mode 1-0 lmplred SED F8 1 ---- 1 -

SEI
Set interrupt drsable ,_, lmplred SEt 78 1 --- 1--

stat us

STA
Store accumula tor A-M Zero Pa ge STA Oper 85 2 - - ----

m memory Zero Page .X STA Oper .X 95 2
Absolute STA Oper 80 3
Absolute .X STA Oper.X 90 3
Absolute .Y STA Oper .Y 99 3
llndrrect.X) STA (Oper .X) 81 2
(rndrreci).Y STA lOper) . Y 91 2

STX
Store tndex X m memory x -M Zero Page STX Oper 86 2 ------

Zero Page . Y STX Oper. Y 96 2
Absolute STX Oper BE 3

STY
Store rndex Y rn memory Y-M Zer o Page STY Oper 84 2 - -----

Zero Pag e. X STY Oper .X 94 2
Abso lute STY Oper BC 3

TAX
Transfer accumulator A-X Implied TA X AA 1 -../.J ----
to index X

TAY
Transfer accumulator A -Y lmplred TAY A8 1 ,j,j-- - -

to rndex Y

TSX
Transfer stack pornter s - x lmptred TSX BA 1 ..• f..J- ---
to rndex X

The 6502 Instruction Set

Assembly HEX
Name Operollon Addressing Language OP No. ··p·· SlaiUI Rag.

Oucrlpllon Mode Form Code Bylu NlCIDV

TXA
Tr ansfer mdu X X -A lmplred TXA BA 1 ',j- -- -
to accumulator

TXS
Tra nsfe r mdex X to x - s Implied TXS 9A 1 ------
sla ck pornler

TYA
Tran sfer .ndex Y y -A lmplred TVA 96 1 ..j..j----
to ac cumu lator

Instruction Codes

Hex Operation Codes

00 - BRK 2F - 5E - LSA - Absol ute . X

01 - O RA - tlndr rec t . X• 30- BMI SF-

02- 31- AND - llndrrectl . y 60- AT S

03- 32- 61 - ADC - •lndrrect . XI

04 - 33- 62-

05- ORA - Zero Page 34 - 63-

06 - ASL - Zero Page 35- AND - Zero Page . X 64 -
07- 36 - AOL - Zero Page. X 65- AOC - Zero Page

08 - PHP 37- 66 - ADA - Zero Page

09 - ORA - Immed iate 38 - SEC 67-

OA - ASL - Accumulator 39 - AND - Absolute . y 68 - PLA

OB - 3A - 69 - AOC - lmmedrate

oc - 36- 6A - AOR - Accumulator

00 - ORA - Absolute 3C- 66 -

OE - ASL - Abso lute 30 - AND - Absolute. X 6C - JMP - lnd orect

OF- 3E - AOL - A bsol ute . X 60 - ADC - Absolute

10 - BPL 3 F - 6E - ROR - Abso lute

11 - ORA - l lndorectl. Y 40- ATI 6F -

12 - 41 - EOR - llndorec t. XI 70 - BVS

13 - 42- 71 - AOC - l lndorectl . Y
14- 43- 72-
15 - ORA- Zero Page, X 44 - 73-

16 - ASL - Zero Page , X 45 - EOR - Ze ro Page 74 -

17 - 46 - LSR - Zero Page 75 - AOC - Zero Page .

18 - CLC 47 - 76 - ROR - Zero Page .

19 - ORA - Absolute , Y 48 - PHA 77-
lA - 49 - EOR - lmmedoate 78 - SEI
16 - 4A - LSR - Accumu lato r 79- ADC - Abs olute . y

lC - 46 - 7A-

10 - ORA - Absolute , X 4C - JMP - Absolute 76 -

lE - ASL - Absolute . X 40 - EOR - Absolute 7C-

lF - 4E - LSR - Absolute 70 - AOC - Absolute . X

20 - JSR 4F - 7E - ROR - Abso lute. X

21 - AND - llndorect , XI 50 - BVC 7F-

22 - 51 - EOR l lndorectl . Y 80 -

23 - 52 - 81 - STA - l lndorect . XI

24 - BIT - Zero Page 53 - 82 -

25 - AND - Zero Page 54- 83 -

26- ROL - Zero Page 55 - EOR - Zero Page , X 84 - STY - Zero Page

27 - 56 - LSR - Zero Page . X 85 - ST A - Zero Page

28 - PLP 57- 86 - STX - Zero Page

29 - AND - lmmedoate 58 - CLI 87-

2A - ROL - Accumulator 59 - EOR - Abso lute . y 88 - DEY -2B - SA - 89 -

2C - BIT - Absolute 56 - SA - TXA

20 - AND - Absolute 5C - 86-

2E - ROL - Absolute 50 - EOR - Absolute , X BC - STY - Absolute

194 The 6502 Instruction Set

SD - ST A - Ar>solut€'

SE - ST.>. - Aosolute

SF-

90- BCC

91 - STA - 1 1na~rect y

92-

93-

94- STY - Zero Page

95- STA - Zero Page

96- STX - Zero Page

97-

9S- T YA

99 - STA - Absolute . Y

9A- TXS

9B-

9C -
90 - ST A - Absor\Jte X

9E-

9F-

AO - LOY - Immediate

Al- LOA- llndtrect . X

A2 - LOX - lmmeOoate

A3-

A4 - LOY - Zero Page

A5 - L OA - Zero Page

A6 - L OX - Zero Page

A7-

AS- TA Y

A9 - LOA - lmmedoa te

AA - TAX

AB-

AC -LOY - Absolute

A D -Absolute

A E - LOX - Absolute

AF-

BO- B CS

X

X
y

8 1 - LOA- llnO• rect J Y

B2-

B3-

Hex Operation Codes

B• - LD\ - Zer o Page X

B5- LOA - Ze ro Page X

B6 - LOX - Zer o Page Y

B7-

BS- CL

B9 - LOA - Aoso tute Y

BA - TSX

BB -

BC - LOY - Absolute X

BD -LOA - AbSolute X

BE - LOX - Absolute . Y

BF-

CO - CPY - lmmedtate

C 1 - CMP - lnO •rect X

C2-

C3 -

C4 - CPY - Zero Page

C5 - CMP - Zero Page

C6 - DEC - Zero Page

C7-

CS- INY

C9 - CMP - lmmedtate

CA- DEX

CB-

CC - CPY - Aosolute

CD - CMP - Absolu te

CE - DEC - Absolute

CF-

DO- BNE

01 - CMP- lndrrect Y

02-

03-

04-

05 - CMP - Zero Page X

06 - DEC - Zero Page . X

07-

DS- CLD

09 - CMP - Absolute . Y

DA-

DB

DC-

DO -- CMF' - Aosolu te X

DE - DEC - Aosolule X

OF-

EO - CPX - lrnmed•ate

E1 - sse - tlnduect X

E2 -

E3 -

E4- CPX - Zer o Page

E5 - SBC - Zero Page

E6 - INC - Zero Page

E7 -
ES - INX

E9 - SBC - lmmeO •ate

EA NOP

EB

EC - CPX - Absolute

ED - SBC - Absolute

EE - INC - Absolute

EF -
FO- BEO

F 1 - SBC - llndrrectl . Y

F2 -

F3 -

F4 -

F5 - SBC - Zero Page X

F6 - INC - Zero Page. X

F7 -

FS - SED

F9 - SBC - Absolute Y

FA -

FB-

FC -

FD- SBC- Absolute . X

FE - INC - Absolute . X

FF-

Table 2-2 Keyboard Memory
Locations

B

Tables

This appendix contains copies of the tables you will need to refer
to a lot, for example, ASCII codes and soft-switch locations. The
figures all have their original figure numbers so you can refer to
the relevant sections in the text.

Location
Hex

$COOO

$C010

Tables

Decimal Description

49152 - 16384 Keyboard data and strobe

49168 - 16368 Any-key-down flag and Clear-strobe switch

, I
Table 2-3a Keys and ASCII Codes Key Normal Control Shift Both

Codes are shown here in hexadecimal ;
to find the decimal equivalents, use

I DELETE I 7F 7F 7F 7F
Table 2-4.

I LEFT-ARROW I 08 08 ,08 08

ITAB I 09 09 09 09

I DOWN-ARROW I OA OA OA OA

I UP-ARROW I OB OB OB OB

I RETURN I 00 00 00 00

IR!GHT-ARROWI 15 15 15 15

I ESC I 18 18 18 18

space 20 20 20 20
27 27 22 22

,< 2C 2C 3C 3C
20 20 5F 1F

. > 2E 2E 3E 3E

I ? 2F 2F 3F 3F

0) 30 30 29 29

1! 31 31 21 21

2@ 32 00 40 00
3# 33 33 23 23
4$ 34 34 24 24

5% 35 35 25 25

6 " 36 1E 5E 1E

7& 37 37 26 26

8• 38 38 2A 2A

9(39 39 28 28
38 38 3A 3A

=+ 30 30 28 28

[{ 58 18 78 18 ,, 5C 1C 7C 1C

198 Tables

Table 2-3b Keys and ASCII Codes, Key Normal Control Shift Both
continued

Codes are shown here in hexadecimal ;]} 50 10 70 10
to find the decimal equivalents, use 60 60 ?E 7E
Table 2-4 . A 61 01 41 01

B 62 02 42 02

c 63 03 43 03

0 64 04 44 04

E 65 05 45 05

F 66 06 46 06

G 67 07 47 07

H 68 08 48 08

I 69 09 49 09

J 6A OA 4A OA

K 6B OB 4B OB

L 6C oc 4C oc
M 60 00 40 00

N 6E OE 4E OE

0 6F OF 4F OF
p 70 10 50 10

Q 71 11 51 11

A 72 12 52 12

s 73 13 53 13

T 74 14 54 14

u 75 15 55 15

v 76 16 56 16

w 77 17 57 17

X 78 18 58 18
y 79 19 59 19

z ?A 1A SA 1A

Tables 199

Table 2-4 The ASCII Character Set

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60

1 01 SOH 33 21 65 41 A 97 61 a
2 02 STX 34 22 66 42 8 98 62 b

3 03 ETX 35 23 # 67 43 c 99 63 c

4 04 EOT 36 24 $ 68 44 D 100 64 d

5 05 ENQ 37 25 % 69 45 E 101 65 e

6 06 ACK 38 26 & 70 46 F 102 66 f

7 07 BEL 39 27 71 47 G 103 67 g

8 08 BS 40 28 72 48 H 104 68 h

9 09 HT 41 29 73 49 I 105 69

10 OA LF 42 2A 74 4A J 106 6A

11 08 VT 43 28 + 75 48 K 107 68 k

12 OC FF 44 2C 76 4C L 108 6C

13 OD CR 45 20 77 40 M 109 60 m
14 OE SO 46 2E 78 4E N 110 6E n

15 OF Sl 47 2F I 79 4F 0 111 6F o
16 10 OLE 48 30 0 80 50 p 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72

19 13 DC3 51 33 3 83 53 s 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74

21 15 NAK 53 35 5 85 55 u 117 75 u

22 16 SYN

23 17 ETB

54 36 6

55 37 7

86 56 v
87 57 w

118 76 v

119 77 w :J
24 18 CAN 56 38 8 88 58 X 120 78 X

25 19 EM 57 39 9 89 59 y 121 79 y

26 1A SUB 58 3A 90 SA Z 122 7A z

27 18 ESC 59 38 91 58 [123 78 {

28 1C FS 60 3C < 92 5C \ 124 7C I
29 10 GS 61 30 93 50 125 70 }

30 1 E RS 62 3E > 94 5E " 126 7E

31 1 F US 63 3F ? 95 SF 127 7F DEL

Tables

Table 2-6 The Display Character Sets Primary Character Set: Alternate Character Set:

To identify particular characters and
Hex Values Character Type Format Character Type Format

values, refer to Table 2-4.
$00-$1F Uppercase letters Inverse Uppercase letters Inverse

$20-$3F Special characters Inverse Special characters Inverse

$40-$5F Uppercase letters Flashing Uppercase letters Inverse

$60-$7F Special characters Flashing Lowercase letters Inverse

$80-$9F Uppercase letters Normal Uppercase letters Normal

$AO-$BF Special characters Normal Special characters Normal

$CO-$DF Uppercase letters Normal Uppercase letters Normal

$EO-$FF Lowercase letters Normal Lowercase letters Normal

Table 2-7 Low-resolution Graphics Nybble Value Color Nybble Value Color
Colors Decimal Hex Decimal Hex

Colors may vary, depending upon the
controls on the monitor or television 0 $0 Black 8 $8 Brown
set.

$1 Magenta 9 $9 Orange

2 $2 Dark Blue 10 $A Grey 2

3 $3 Purple 11 $B Pink

4 $4 Dark Green 12 $C Light Green

5 $5 Grey 1 13 $D Yellow

6 $6 Medium Blue 14 $E Aquamarine

7 $7 Light Blue 15 $F White

Table 2-8 High-resolution Graphics Bits 0-6 Bit 7 Off Bit 7 On
Colors

Colors may vary, depending on the Adjacent columns off Black 1 Black 2
adjustment of the monitor or television Even columns on Purple Blue
set. Odd columns on Green Orange

Adjacent columns on White 1 White2

Tables

'I
Table 2-9 Video Display Page Lowest Highest
Locations Display mode Page Address Address

*Note: 80-column mode uses the
1 024-byte page-1 locations in both 40-column Text, $400 1024 $7FF 2047
main and auxiliary memory. The Low-resolution
PAGE2 switch is used to select one Graphics 2 $800 2048 SBFF 3071
or the other for storing data (see the
section "Display Mode Switching"). 80-column Text 1. $400 1024 S7FF 2047

High-resolution $2000 8192 S3FFF 16383
Graphics

2 $4000 16384 S5FFF 24575

-

202 Tables

Table 2-10 Display Soft Switches Location

(1) This mode is only effective when
Name Function Hex Decimal Notes

graphics-mode switch is ON.
(2) This switch has a different function ALTCHARSET Alternate char. set on $COOF 49167 - 16369 Write
when the 80-column text card's Alternate char. set off SCOOE 49166 - 16370 Write
auxiliary text page is enabled for Read AL TCHARSET switch $C01E 49182 - 16354 Read
writing. Refer to the next section,
"Addressing Display Pages Directly." TEXT Text mode on $C051 49233 - 16303
(3) This switch changes the function of Text mode off (graphics) $COSO 49232 - 16304
the PAGE2 switch for addressing the Read TEXT switch $C01A 49178 - 16358 Read
auxiliary text memory on the extended
80-column text card. The next section
describes how to do this. MIXED Mixed-mode on $C053 49235 - 16301
(4) Reading this location returns the Mixed-mode off $C052 49234 - 16302
state of the vertical blanking Read MIXED switch $C01B 49179 - 16357 Read

signal VBL . The function of VBL is
described in Chapter 7 in the section PAGE2 Page 2 on $C055 49237 - 16299 2
"Video Output Signals." Page 2 off (Page 1) $C054 49236 - 16300 2

Read PAGE2 switch $C01C 49180 - 16356 Read

HIRES Hi-res mode on $C057 49239 - 16297
Hi-res mode off $C0 56 49238 - 16298
Read HI RES switch $C01D 49181 -16355 Read

80COL 80-column display on SCOOD 49165 - 16371 Write
80-column display off $COOC 49164 - 16372 Write
Read 80COL switch $C01F 49183 - 16353 Read

80STORE Store in auxiliary memory $C001 49153 - 16383 Write, 3
Store in main memory sco oo 49152 - 16384 Write, 3
Read 80 STO RE switch $C018 49176 -16360 Read

VBL Read vertical blanking $C019 49177 - 16359 Read, 4

Tables

Table 2-11 Annunciator Memory Annunciator Address
Locations No. Pin* State Decimal Hex

*Pin numbers given are for the 16-pin
IC connector on the circuit board. 0 15 off 49240 -16296 $C0 58

on 49241 - 16295 $C0 59

14 off 49242 - 16294 $C05A
on 49243 - 16293 SC05B

2 13 off 49244 - 16292 SC05C
on 49245 - 16291 SC05D

3 12 off 49246 - 16290 SC05E
on 49247 - 16289 $C05F

Tables

Table 2-12 Secondary 1/0 Memory Address
Locations Function Decimal Hex Notes

For connector identification and pin
numbers, refer to Tables 7-17 and Speaker 49200 - 16336 $C030 Read
7-18.

Cassette Out 49184 - 16352 $C020 Read
Cassette In 49248 - 16288 $C060 Read

Annunciator 0 On 49241 - 16295 $C0 59
Annunciator 0 Off 49240 - 16296 scos8

Annunciator 1 On 49243 - 16293 SCOSB
Annunciator 1 Off 49242 - 16294 SCOSA

Annunciator 2 On 49245 - 16291 SCOSD
Annunciator 2 Off 49244 - 16292 scosc

Annunciator 3 On 49247 - 16289 SCOSF
Annunciator 3 Off 49246 - 16290 $COSE

Strobe Output 49216 - 16320 $C040 Read

Switch Input 0 49249 - 16287 $C061 Read

(I OPEN-APPLE I key)

Switch Input 1 49250 -16286 $C062 Read

(I SOLID- APPLE J key)

Switch Input 2 49251 - 16285 $C063 Read

Analog Input Reset 49264 - 16272 $C070

Analog Input 0 49252 - 16284 $C064 Read
Analog Input 1 49253 - 16283 $C065 Read
Analog Input 2 49254 - 16282 $C066 Read
Analog Input 3 49255 - 16281 $C067 Read

Tables

Table 3-3a Control Characters with Control ASCII Apple lie Action Taken by COUT1 Notes

COUT1 Character Name Name

(1) Only available when 80-column
firmware is active.
(2) Only works from the keyboard. I CONTROL 1- G (BEL) bell Produces a 1 000 Hz tone for

(3) Doesn't work from the keyboard.
0.1 second.

I CONTROL 1- H (BS) backspace Moves cursor position one
space to the left; from left edge
of window, moves to right end
of line above.

I COI'HROL 1- J (LF) line feed Moves cursor position down to
next line in window; scrolls if
needed.

I CONTROL 1- K (VT) clear EOS Clears from cursor position to
the end of the window.

I CONTROL 1- L (FF) clear Moves cursor position to upper
left corner of window and clears
window.

I CONTROL 1- M (CR) return Moves cursor position to left
end of next line in window;
scrolls if needed.

I CONTROL J- N (SO) normal Sets display format normal. 1, 3

I CONTROL 1- 0 (SI) inverse Sets display format inverse. 1' 3

I CONTROL 1- Q (DC1) 40-column Sets display to 40-column.

I CONTROL 1- R (DC2) 80-column Sets display to 80-column.

I CONTROL I - s (DS3) stop-list Stops sending characters to the 1' 2
display, until a key is pressed.

206 Tables

Table 3-3b Control Characters with Control ASCII Apple lie Action Taken by COUT1 Notes
COUT1 , continued Character Name Name

(1) Only available when 80-column
firmware is active. I coNTROL I- u (NAK) quit Deactivates 80-column
(2) gotoXY is not supported under firmware , homes cursor,
BASIC: see the Apple Pascal and clears screen.
Operating System Reference Manual.

I CONTROL 1- v (SYN) scroll Scrolls the display down
one line, leaving the cursor
in the current position.

I CONTROL 1- w (ETB) scroll-up Scrolls the display up one
line, leaving the cursor in
the current position.

I CONTROL 1- y (EM) home Moves cursor position to
upper left corner of window
(but doesn't clear).

I CONTROL 1- z (SUB) clear line Clears the line the cursor
position is on.

I CONTROL 1- \ (FS) fwd. space Moves cursor position one
space to the right; from
right edge of window,
moves it to left end of line
below.

ICONTROLI-J (GS) clear EOL Clears line from cursor
position to the right edge of
the window.

I CONTROL 1- A (RS) gotoXY Using the next two 1, 2
characters, minus 32, as
one-by1e X and Y values,
moves the cursor position

Table 3-4 Text Window Memory
to CH = X, CV=Y.

Locations

Window Location Minimum Normal Values: Maximum Values:
Parameter Value: 40col. 80col. 40col. 80col.

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

Left Edge 32 $20 0 $0 0 $0 0 $0 39 $27 79 $4F

Width 33 $21 0 $0 40 $28 80 $50 40 $28 80 $50

Top Edge 34 $22 0 $0 0 $0 0 $0 23 $17 23 $17

Bottom Edge 35 $23 $1 24 $18 24 $18 24 $18 24 $18

Tables

Table 3-6 Escape Codes Escape Code Function Notes

(1) Old-style cursor-control key :
see text. [Iill @ Clears the window and homes the cursor
(2) Cursor-control key : see text

[Iill A (3) This code functions only when the Moves the cursor up one line

80-column firmware is active .
[Iill B Moves the cursor right one space

[Iill c Moves the cursor left one space

ITRJ D Moves the cursor down one line

[}ill E Clears to the end of the line

[}ill F Clears to the bottom of the window

~I Moves the cursor up one line and turns on 2

I ESC It escape mode

[}ill J Moves the cursor left one space and turns on 2

~-
escape mode

I ESC I K Moves the cursor right one space and turns on 2

~-
escape mode

I ESC I M Moves the cursor down one line and turns on 2

I ESC It escape mode

I ESC I R Turns on restricted-case mode 3

I ESC IT Turns off restricted-case mode 3

I ESC 14 Switches to 40-column mode, homes the 3
cursor, and clears the screen

I Esc Is Switches to 80-column mode, homes the 3
cursor, and clears the screen

I ESC II CONTROL 1- Q Deactivates the 80-column firmware 3

208 Tables

Table 4-5 Bank Select Switches Switch Write Read Read 4K RAM Bank:

(1) This switch write-enables RAM
Address RAM RAM ROM First Second Notes

and read-enables ROM.
(2) Two successive reads to this $COSO • • switch enables RAM both for reading

$C081 • • • and writing.
$C082 • •
$C083 • • • 2

$C084 • •
$COBS • • •
$C086 • •
$C087 • • • 2

$C088 • •
$C089 • • •
$C08A • •
$COBB • • • 2

$C08C • •
$COBD • • •
$C08E • •
$C08F • • • 2

Tables

Table 4-6 Auxiliary-memory Select
Switches

(1) When 80STORE is on , the PAGE2
switch selects main or auxiliary display
memory.
(2) When 80STORE is on , the HI RES
switch enables you to use the PAGE2
switch to switch between the
high-resolution page-1 area in main
memory or auxiliary memory.

Name Function

RAMRD Read auxiliary memory
Read main memory
Read RAMRDswitch

RAMWRT Write auxiliary memory
Write main memory
Read RAMWRTswitch

80 STORE On : access display page
Off: use RAMRD. RAMWRT
Read 80 STORE switch

PAGE2 Page 2 on (Aux. memory)
Page 2 off (Main memory)
Read PAGE2 switch

HI RES On: access hi-res pages
Off: use RAMRD, RAMWRT
Read HIRESswitch

AL TZP Auxiliary stack & z. p.

Tables

Main stack & zero page
Read AL TZP switch

Hex

SC003
SC002
SC013

SC0 05
SC004
SC014

SC001
scooo
SC018

SC055
SC054
SC01C

SC057
SC056
SC01D

SC009
SC008
SC016

Location Notes
Decimal

49155 - 16381 Write
49154 - 1638 2 Write
49171 - 16365 Read

49157 - 16379 Write
49156 - 16380 Write
49172 - 16354 Read

491 53 - 16383 Write
491 52 - 16384 Write
49176 - 16360 Read

49237 - 16299
49236 - 16300
491 80 - 16356 Read

49239 - 16297 2
49238 - 16298 2
491 81 - 16355 Read

49161 - 16373 W~e

49160 - 16374 Write
491 74 - 16352 Read

Table 4-10 Page 3 Vectors Vector address
Decimal Hex

1008
1009

1 01 0
1 011

1012

1013
1014

S3FO
S3F1

S3F2
S3F3

S3F4

S3F5
S3F6

1015 S3F7

1016
1 01 7

S3F8
S3F9

1018 S3FA

1019
1020

S3FB
S3FC

1 0 21 S3FD

1022
1023

Tables

S3FE
S3FF

Vector function

Address of the subroutine that handles BRK requests
(normally $59, SFA).

Reset vector (see text).

Power-up byte (see text).

Jump instruction to the subroutine that handles Applesoft
"&" commands(normally S4C, $58, SFF).

Jump instruction to the subroutine that handles user
(I CONTROL 1- Y) commands.

Jump instruction to the subroutine that handles
non-maskable interrupts.

Interrupt vector (address of the subroutine that handles
interrupt requests).

Table 6-1 Peripheral-card 1/0 Slot Locations Enabled by
Memory Locations

Note: The enabling signal is marked SC090-SC09F DEVICE SELECT'
with a prime, to indicate that it is an
active-low signal. 2 SCOAO-SCOAF DEVICE SELECT'

3 SCOBO-SCOBF DEVICE SELECT'

4 scoco-scocF DEVICE SELECT'

5 SCODO-SCODF DEVICE SELECT'

6 SCOEO-SCOEF DEVICE SELECT'

7 SCOFO-SCOFF DEVICE SELECT'

Table 6-2 Peripheral-card ROM Slot Locations Enabled by
Memory Locations

Note: The enabling signal is marked SC100-SC1FF 1/0 SELECT'
with a prime, to indicate that it is an
active-low signal. 2 SC200-SC2FF 1/0 SELECT'

3 SC300-SC3FF 1/0 SELECT'

4 SC400-SC4FF l/0 SELECT'

5 scsoo-scsFF 1/0 SELECT'

6 SC600-SC6FF 1/0 SELECT'

7 SC700-SC7FF 1/0 SELECT'

Tables

Table 6-3 Peripheral-card RAM Base Slot Number
Memory Locations Address 2 3* 4 5 6 7

*Note: The RAM locations normally
allocated to slot 3 are taken over by $0478 $0479 S047A S047B• S047C $0470 S047E S047F
any card installed in the auxiliary slot.

S04F8 S04F9 S04FA S04FB• S04FC S04FO S04FE S04FF

$0578 $0579 S057A S057B• S057C $0570 S057E S057F

S05F8 S05F9 S05FA $05FB• S05FC S05FO S05FE $05FF

$0678 $0679 S067A S067B• S067C $0670 S067E S067F

S06F8 S06F9 S06FA S06FB• S06FC S06FO S06FE S06FF

$0778 $0779 S077A S077B• S077C $0770 S077E S077F

S07F8 S07F9 S07FA $07FB• S07FC S07FO $07FE S07FF

Tables

Table 6-4 Peripheral-card 1/0 Base Base Connector Number
Addresses Address 2 3 4 5 6 7

$COSO $C090 $COAO $COBO $COCO $CODO $COEO $COFO

$C081 $C091 $COA1 $COB1 $COC1 $COD1 $COE1 $COF1

$C082 $C092 $COA2 $COB2 $COC2 $COD2 $COE2 $COF2

$C083 $C093 $COA3 $COB3 $COC3 $COD3 $COE3 $COF3

$C084 $C094 $COA4 $COB4 $COC4 $COD4 $COE4 $COF4

$COBS $C09S $COAS $COBS $COCS $COOS $COES $COFS

$C086 $C096 $COA6 $COB6 $COC6 $COD6 $COE6 $COF6

$C087 $C097 $COA7 $COB7 $COC7 $COD7 $COE7 $COF7

$COBB $C098 $COA8 $COBB $COC8 $COD8 $COE8 $COF8

$C089 $C099 $COA9 $COB9 $COC9 $COD9 $COE9 $COF9

$C08A $C09A $COAA $COBA $COCA $CODA $COEA $COFA

$COBB $C09B $COAB $COBB $COCB $CODB $COEB $COFB

$C08C $C09C $COAC $COBC $COCC $CODC $COEC $COFC

$C08D $C09D $COAD $COBD $COCO $CODD $COED $COFD

$COBE $C09E $COAE $COBE $COCE $CODE $COEE $COFE

$C08F $C09F $COAF $COBF $COCF $CODF $COEF $COFF

Table 6-5 1/ 0 Memory Switches Name Function Location Notes
Hex Decimal

SLOTC3ROM Slot ROM at $C300 $COOB 49163 -16373 Write

Internal ROM at $C300 $COOA 49162 -16374 Write

Read SLOTC3ROM switch $C017 4917S -16361 Read

SLOTCXROM Slot ROM at $Cx00 $C007 491S9 - 16377 Write

Internal ROM at $Cx00 $C006 491S8 -16378 Write

Read SLOTCXROMswitch $C01S 49173 -16363 Read

214 Tables

Directory of Built-in
Subroutines

Here is a list of useful subroutines in the Apple lie's Monitor. To
use these subroutines from machine-language programs, store
data into the specified memory locations or 6502 registers as
required by the subroutine and execute a JSR to the subroutine's
starting address. After the subroutine performs its function , it
returns with the 6502's registers changed as described.

Warning
For the sake of compatability between the Apple II Plus
and the Apple lie, do not jump into the middle of Monitor
subroutines. The starting addresses are the same for all models of
the Apple II , but the actual code is different.

BELL Output a bell character $FF3A

BELL writes a bell (l CONTROL [-G) character to the current output
device. It leaves the accumulator holding $87 .

BELL 1 Send a beep to the speaker $FBDD

BELL 1 generates a 1 kHz tone in the Apple lie's speaker for 0.1
second. It scrambles the A and X registers.

CLREOL Clear to end of line $FC9C

CLREOL clears a text line from the cursor position to the right edge
of the window. CLREOL destroys the contents of A and Y.

CLEOLZ Clear to end of line $FC9E

CLEOL Z clears a text line to the right edge of the window, starting
at the location given by base address BASL indexed by the
contents of the Y register. CLEOLZ destroys the contents of A
andY.

Directory of Built-in Subroutines 217

CLREOP Clear to end of window SFC42

CLREOP clears the text window from the cursor position to the
bottom of the window. CLREOP destroys the contents of A and Y.

CLRSCR Clear the low-resolution screen SF832

CLRSCR clears the low-resolution graphics display to black. If you
call CLRSCR while the video display is in text mode, it fills the
screen with inverse-mode at-sign (@) characters. CLRSCR destroys
the contents of A and Y.

CLRTOP Clear the low-resolution screen SF836

CLRTOP is the same as CLRSCR (above), except that it clears only
the top 40 rows of the low-resolution display.

COUT Output a character SFDED

COUT calls the current character output subroutine. The character
to be output should be in the accumulator. COUT calls the
subroutine whose address is stored in csw (locations S36 and $37),
which is usually the standard character output coun .

COUT1 Output to screen SFDFO

COUT1 displays the character in the accumulator on the Apple lie's
screen at the current output cursor position and advances the
output cursor. It places the character using the setting of the
Normal/Inverse location. It handles the control characters
I RETURH I, linefeed, backspace, and bell. It returns with all registers
intact.

CROUT Generate a I RETURH I SFDSE

CROUT sends a I RETURH I character to the current output device.

CROUT1 1 RETURH I with clear SFDSB

CROUT1 clears the screen from the current cursor position to the
edge of the text window, then calls CROUT .

GETLN Get an input line with prompt SFD6A

GETLN is the standard input subroutine for entire lines of
characters, as described in Chapter 3. Your program calls GETLN

Directory of Built-in Subroutines

with the prompt character in location s 33 ; GETLN returns with the
input line in the input buffer (beginning at location S200) and the
X register holding the length of the input line.

GETLNZ Get an input line SFD67

GETLNZ is an alternate entry point for GETLN that sends a carriage
return to the standard output, then continues into GETLN .

GETLN1 Get an input line, no prompt SFD6F

GETLN1 is an alternate entry point for GETLN that does not issue a
prompt before it accepts the input line. If, however, the user
cancels the input line, either with too many backspaces or with a
I CONTROL 1-x, then GETLN1 will issue the contents of location
s 33 as a prompt when it gets another line.

HLINE Draw a horizontal line of blocks SF819

HL I NE draws a horizontal line of blocks of the color set by SETCOL

on the low-resolution graphics display. Call HL I NE with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal
coordinate in location s 2C. HL I NE returns with A and Y scrambled,
X intact.

HOME Home cursor and clear SFC58

HOME clears the display and puts the cursor in the home position :
the upper left corner of the screen.

lOR EST Restore all registers SFF3F

I OREST loads the 6502's internal registers with the contents of
memory locations s 45 through s 49.

IOSAVE Save all registers $FF4A

I OS AVE stores the contents of the 6502's internal registers in
locations S45 through S49 in the order A, X, Y, P, S. The contents
of A and X are changed and the decimal mode is cleared.

KEVIN Read the keyboard SFD1B

KEY IN is the keyboard input subroutine. It reads the Apple lie's
keyboard, waits for a keypress, and randomizes the random

Directory of Built-in Subroutines

220

number seed at s 4E- s 4F . When a key is pressed, KEY IN removes
the blinking cursor from the display and returns with the keycode
in the accumulator. KEY IN is described in Chapter 3.

MOVE Move a block of memory $FE2C

MOVE copies the contents of memory from one range of locations
to another. This subroutine is the same as the MOVE command in
the Monitor, except it takes its arguments from pairs of locations
in memory, low-byte first. The destination address must be in A4
(S42-S43), the starting source address in A1 (S3C-S3D), and the
ending source address in A2 (S 3E- s 3F) when your program calls
MOVE .

NEXTCOL Increment color by 3 $F85F

NEXTCOL adds 3 to the current color (set by SETCOL) used for low­
resolution graphics.

PLOT Plot on the low-resolution screen $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block's vertical position is
passed in the accumulator, its horizontal position in theY
register. PLOT returns with the accumulator scrambled, but X and
Y intact.

PRBLNK Print 3 spaces SF948

PRBLNK outputs three blank spaces to the standard output device.
On return , the accumulator usually contains sAo, the X register
contains 0.

PRBL2 Print many blank spaces $F94A

PRBL2 outputs from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks
to be output. If X=$00, then PRBL2 will output 256 blanks.

PRBYTE Print a hexadecimal byte SFDDA

PRBYTE outputs the contents of the accumulator in hexadecimal on
the current output device. The contents of the accumulator are
scrambled.

Directory of Built-in Subroutines

PREAD Read a hand control $FB1E

PREAD returns a number that represents the position of a hand
control. You pass the number of the hand control in the X
register. If this number is not valid (not equal to 0, 1, 2, or 3),
strange things may happen. PREAD returns with a number from
$00 to $FF in the Y register. The accumulator is scrambled.

PRERR Print ERR $FF2D

PRERR sends the word ERR , followed by a bell character, to the
standard output device. On return, the accumulator is scrambled.

PRHEX Print a hexadecimal digit $FDE3

PRHEX prints the lower nybble of the accumulator as a single
hexadecimal digit. On return, the contents of the accumulator are
scrambled.

PRNT AX Print A and X in hexadecimal $F941

PRNTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte
output, the X register contains the second. On return, the
contents of the accumulator are scrambled.

RDCHAR Get an input character or Esc code $FD35

RDCHAR is an alternate input subroutine that gets characters from
the standard input subroutine, and also interprets the escape
codes listed in Chapter 3.

RDKEY Get an input character $FDOC

RDKEY is the character input subroutine. It places a blinking cursor
on the display at the cursor position and jumps to the subroutine
whose address is stored in KSW (locations $38 and $39), usually
the standard input subroutine KEY IN, which returns with a
character in the accumulator.

READ Read a record from a cassette $FEFD

READ reads a series of tones at the cassette input port, converts
them to data bytes, and stores the data in a specified range of

Directory of Built-in Subroutines 221

222

l

memory locations. Before calling READ, the address of the first
byte must be in A 1 (S 3C- s 3D) and the address of the last byte in
A2 (S3E-3F.)

READ keeps a running Exc 1 us i ve OR of the data bytes in CHKSUM

(S2E). When the last location has been filled, READ reads one more
byte and compares it with CHKSUM. If equal, READ sends out a beep,
and returns; if not, it sends "ERR" through COUT, sends the beep,
and returns.

SCAN Read the low-resolution graphics screen $F871

SCRN returns the color value of a single block on the low­
resolution graphics display. Call it with the vertical position of the
block in the accumulator and the horizontal position in theY
register. Call it as you would call PLOT (above). The color of the
block will be returned in the accumulator. No other registers are
changed.

SETCOL Set low-resolution graphics color SF864

SETCOL sets the color used for plotting in low-resolution graphics
to the value passed in the accumulator. The colors and their
values are listed in Table 2-7.

SETINV Set Inverse mode SFE80

SET I NV sets the dislay format to inverse. COUT1 will then display all
output characters as black dots on a white background. The Y
register is set to s 3F, all others are unchanged.

SETNORM Set Normal mode $FE84

SETNORM sets the display format to normal. COUT1 will then display
all output characters as white dots on a black background. On
return, the Y register is set to s FF, all others are unchanged.

VERIFY Compare two blocks of memory $FE36

VERIFY compares the contents of one range of memory to
another. This subroutine is the same as the VERIFY command in
the Monitor, except it takes its arguments from pairs of locations
in memory, low-byte first. The destination address must be in A4
(S42-S43), the starting source address in A1 (S3C-S3D), and the
ending source address in A2 (S3E-S3F) when your program calls
VERIFY.

Directory of Built-in Subroutines

VLINE Draw a vertical line of blocks $F828

VL I NE draws a vertical line of blocks of the color set by SETCDL on
the low-resolution display. You should call VL I NE with the
horizontal coordinate of the line in the Y register, the top vertical
coordinate in the accumulator, and the bottom vertical coordinate
in location $20 . VLINE will return with the accumulator scrambled.

WAIT Delay $FCA8

WAIT delays for a specific amount of time, then returns to the
program that called it. The amount of delay is specified by the
contents of the accumulator. With A the contents of the
accumulator, the delay is 1/2(26+27A+ 5A"2) microseconds. WAIT
returns with the accumulator zeroed and the X and Y registers
undisturbed.

WRITE Write a record on a cassette $FECD

WRITE converts the data in a range of memory to a series of
tones at the cassette output port. Before calling WR I TE, the
address of the first data byte must be in A1 ($3C-$3D) and the
address of the last byte in A2 ($3E-$3F) . The subroutine writes a
ten-second continuous tone as a header, then writes the data
followed by a one-byte checksum.

Directory of Built-in Subroutines

Appendix D

Differences Between the
Apple lie and the Apple II
Plus

The Apple lie is the latest model Apple II , and it includes several
improvements over the older models. The improvements and
other differences are listed here in approximately the order you
are likely to encounter them : obvious differences first , technical
details later. Each entry in the list includes references to the
chapters in this manual where the item is described.

Full Keyboard
The Apple lie has a full 62-key uppercase and lowercase
keyboard . The keyboard includes fully-operational I SHIFT I
and I CAPS LOCK I keys. It also includes four directional arrow keys
for moving the cursor. Chapter 2 includes a description of the
keyboard . The cursor-motion keys are described in Chapter 3.

Apple Keys
The keyboard of the Apple lie has two keys marked with the
Apple logo. These keys, called the OPEN-APPLE and
I SOLID-APPLE l keys,areusedwiththe RESET key to select
special reset functions . They are connected to the buttons on the
hand controls, so they can be used for special functions in programs.

Lowercase Display
The Apple lie can display the full ASCII character set, uppercase
and lowercase. For compatibility with older Apple ll 's, the
standard display character set includes flashing uppercase
instead of inverse-format lowercase; you can also switch to an
alternate character set with inverse lowercase and uppercase, but
no flashing . Chapter 2 includes a description of the display
character sets. Chapter 3 tells you how to switch display formats.

Full Keyboard 225

Optional SO-column Display
With the addition of an 80-column text card , the Apple lie can
display 80 columns of text. The 80-column display is completely
compatable with both graphics modes - you can even use it in
mixed mode. (If you prefer, you can use an old-style 80-column
card in an expansion slot instead.) Chapter 2 includes a
description of the 80-column display.

Additional Escape and Control Keys
The display features mentioned above (and many others not
mentioned) can be controlled from the keyboard by escape
sequences and from programs by control characters. Chapter 3
includes descriptions of those escape codes and control
characters.

Built-in Language Card
The 16K bytes of RAM you add to the Apple II Plus by installing
the Language Card is built into the Apple lie, giving it a standard
memory size of 64K bytes. In the Apple lie, this 16K-byte block
of memory is called the Bank-switched Memory. It is described in
Chapter 4.

Optional Auxiliary Memory
By installing an extended 80-column text card, you can add an
alternate 64K bytes of RAM to the Apple lie. Chapter 4 tells you
how to use the additional memory. (Compatibility note: the
extended 80-column text card also provides the 80-column
display option.)

Auxiliary Slot
In addition to the normal expansion slots there is a special slot
that is used either for the optional 80-column text card or for the
extended 80-column text card. This slot is identified in Chapter 1
and described in Chapter 7.

Back Panel and Connectors
The Apple lie has a metal back panel with space for several D­
type connectors. Each peripheral card you add comes with a
connector that you install in the back panel. Chapter 1 includes a
description of the back panel; for details, see the installation
instructions supplied with the peripheral cards. -

Apple lie and Apple II Plus

Additional Soft Switches - Readable, Too
The additional display and memory features of the Apple lie are
controlled by soft switches like the ones on the Apple II Plus. On
the Apple lie, programs can also read the settings of the soft
switches. Chapter 2 describes the soft switches that control the
display features, and Chapter 4 describes the soft switches that
control the memory features.

Built-in Self Test
The Apple lie has additional built-in firmware that includes a self­
test routine. The self-test is intended primarily for testing during
manufacturing, but you can run it to be sure the Apple lie is
working correctly. The self-test is described in Chapter 4.

Forced Reset
Some programs on the Apple II Plus take control of the reset
function to keep users from stopping the machine and copying
the program. The Apple lie has a forced reset that writes over
the program in memory. By using the forced reset, you can
restart the Apple lie without turning power off and on and causing
unnecessary stress on the circuits. The forced reset is described
in Chapter 4.

Interrupt Handling
Even though most application programs don't use interrupts, the
Apple lie provides for interrupt-driven programs. For example, the
80-column firmware periodically enables interrupts while it is
clearing the display (normally a long time to have interrupts
locked out). Interrupts are discussed in Chapter 6.

Vertical Sync for Animators
Programs with animation can now stay in step with the display
and avoid flickering objects in their displays. Chapter 7 includes a
description of the video generation and the vertical sync.

Apple lie Signature Byte
A program can find out whether it's running on an Apple lie or on
an older model Apple II by reading the byte at location s FBB3 in
the System Monitor. In the Apple lie Monitor, this byte's value is
$06; in the Autostart Monitor (the standard Monitor on the
Apple II Plus), its value is $EA. (Note: if you start up with DOS

Additional Soft Switches- Readable, Too

228

and switch to Integer BASIC, the Autostart Monitor is active and
the value at location SFBB3 is $EA, even on an Apple lie.)
Obviously, there are lots of other locations that have different
values in the different versions of the Monitor; location s FBB3 was
chosen because it will have the value $06 even in future
revisions of the Apple lie Monitor.

Hardware Implementation
The hardware implementation of the Apple lie is radically different _, J
from the Apple II and Apple II Plus. Three of the more important
differences are

• The custom ICs: the IOU and MMU;

• The video hardware, which uses ROM to generate both text
and graphics;

• The peripheral data bus, which is fully buffered.

All of these features are described in Chapter 7.

Apple lie and Apple II Plus

r

Glossary

Glossary

6502: The microprocessor used in the Apple lie computer.

accumulator: The register in the 6502 microprocessor where
most computations are performed.

acronym: A word formed from the initial letters of a name or
phrase, such as laser, from Light Amplification by Stimulated
Emission of Radiation.

ADC: See analog-to-digital converter.

address: A number used to identify something, such as a
location in the computer's memory.

analog: Represented in terms of a physical quantity, such as a
voltage, frequency, length, or position, that can vary smoothly
and continuously over a range of values. For example, a
conventional 12-hour clock face (remember those?) is an analog
device that represents the time of day in terms of the angles of
the clock's hands. Compare digital .

analog-to-digital converter: A device that converts quantities
from analog to digital form. For example, the Apple lie's hand
control converts the position of the control dial (an analog
quantity) into a discrete number (a digital quantity) that changes
abruptly even when the dial is turned smoothly.

AND: A logical operator that produces a true result if both of its
operands are true, a false result if either or both of its operands
are false; compare DR, exclu!live DR, NOT .

Apple lie: A personal computer in the Apple II family,
manufactured and sold by Apple Computer.

Apple lie 80-Column Text Card: A peripheral card made and
sold by Apple Computer that plugs into the Apple lie's auxiliary
slot and converts the computer's display of text from 40- to SO­
column width.

Glossary

Apple lie Extended 80-Column Text Card: A peripheral card
made and sold by Apple Computer that plugs into the Apple lie's
auxiliary slot and converts the computer's display of text from 40-
to 80-column width while extending its memory capacity by 64K
bytes.

Applesoft: An extended version of the BASIC programming
language used with the Apple lie computer. An interpreter for
creating and executing programs in Applesoft is built into the
Apple lie system in firmware .

ASCII: American Standard Code for Information Interchange; a
code in which the numbers from o to 1 27 stand for text
characters, used for representing text inside a computer and for
transmitting text between computers or between a computer and
a peripheral device.

assembler: A language translator that converts a program
written in assembly language into an equivalent program in
machine language.

assembly language: A low-level programming language in
which individual machine-language instructions are written in a
symbolic form more easily understood by a human programmer
than machine language itself.

auxiliary slot: The special expansion slot inside the Apple lie
used for the Apple 80-Column Text Card or Extended 80-Column
Text Card.

back panel: The rear face of the Apple lie computer, which
includes the power switch, the power connector, and connectors
for a video display device, a cassette tape recorder, and other
peripheral devices.

bandwidth: A measure of the range of frequencies a device can
handle. In the case of a video monitor, greater bandwidth
enables it to display more information ; to display 80 columns of
text, a monitor should have a bandwidth of at least 12 MHz.

base address: In indexed addressing, the fixed component of an
address.

binary: The representation of numbers in terms of powers of
two, using the two digits o and 1 . Commonly used in computers,
since the values o and 1 can easily be represented in physical
form in a variety of ways, such as the presence or absence of
current, positive or negative voltage, or a white or black dot on
the display screen.

Glossary

binary operator: An operator that combines two operands to
produce a result ; for example, DR is a binary logical operator.
Compare unary operator.

bit: A binary digit (O or 1); the smallest possible unit of
information, consisting of a simple two-way choice, such as yes
or no, on or off, positive or negative, something or nothing.

bit bucket: The final resting place of all information; see write­
only memory.

board: See printed-circuit board.

boot: To start up a computer by loading a program into memory
from an external storage medium such as a disk. Often
accomplished by first loading a small program whose purpose is
to read the larger program into memory. The program is said to
"pull itself in by its own bootstraps" ; hence the term
bootstrapping or booting.

bootstrap: See boot.

buffer: An area of the computer's memory reserved for a
specific purpose, such as to hold graphical information to be
displayed on the screen or text characters being read from some
peripheral device. Often used as an intermediary "holding area"
for transferring information between devices operating at different
speeds, such as the computer's processor and a printer or disk
drive. Information can be stored into the buffer by one device
and then read out by the other at a different speed.

bus: A group of wires that transmit related information, such as
the bits of an address, from one part of a computer system to
another.

byte: A unit of information consisting of a fixed number of bits;
on the Apple lie, one byte consists of eight bits and can hold any
value from o to 255 .

card: See peripheral card.

carrier: A broadcast radio signal that is modulated in order to
transmit information.

carry flag: A status bit in the 6502 microprocessor, used in
addition and subtraction to hold the high-order bit (the carry bit).

cathode-ray tube: An electronic device, such as a television
picture tube, that produces images on a screen coated with
phosphors that emit light when struck by a focused beam of
electrons.

Glossary 233

central processing unit: See processor.

character: A letter, digit, punctuation mark, or other written
symbol used in printing or displaying information in a form
readable by humans.

character code: A number used to represent a text character for
processing by a computer system.

chip: The small piece of semiconducting material (usually silicon)
on which an integrated circuit is fabricated . The word chip
properly refers only to the piece of silicon itself, but is often used
for an integrated circuit and its package; see integrated circuit.

code: (1) A number or symbol used to represent some piece of
information in a compact or easily processed form. (2) The
statements or instructions making up a program.

cold start: The process of starting up the Apple lie when the
power is first turned on (or as if the power had just been turned
on) by loading the operating system into main memory, then
loading and running a program. Compare warm start.

command: A communication from the user to a computer
system (usually typed from the keyboard) directing it to perform
some immediate action.

compiler: A language translator that converts a program written
in a high-level programming language into an equivalent program
in some lower-level language (such as machine language) for
later execution. Compare interpreter.

component: A part; in particular, a part of a computer system.

composite video: A video signal that includes both display
information and the synchronization (and other) signals needed to
display it.

computer: An electronic device for performing predefined
(programmed) computations at high speed and with great
accuracy.

computer system: A computer and its associated hardware,
firmware, and software.

connector: a physical device such as a plug, socket, or jack,
used to connect one hardware component of a system to
another.

Glossary

control character: A character that controls or modifies the
way information is printed or displayed. Control characters have
ASCII codes between o and 31 and are ped from the Apple lie
keyboard by holding down the CONTROL key while typing some
other character. For example, the character I CONTROL 1-M (ASCII
code 1 3) means "return to the beginning of the line" and is
equivalent to the I RETURN I key.

controller card: A peripheral card that connects a device such
as a printer or disk drive to the Apple lie and controls the
operation of the device.

CPU: Central processing unit; see processor.

crash: To cease operating unexpectedly, possibly damaging or
destroying information in the process.

CRT: See cathode-ray tube.

cursor: A marker or symbol displayed on the screen that marks
where the user's next action will take effect or where the next
character typed from the keyboard will appear.

DAC: See digital-to-analog converter.

data: Information; especially information used or operated on by
a program.

debug: To locate and correct an error or the cause of a problem
or malfunction in a computer system. Typically used to refer to
software-related problems; compare troubleshoot.

decimal: The common form of number representation used in
everyday life, in which numbers are expressed in terms of
powers of ten, using the ten digits o to 9.

default: A value , action, or setting that is automatically used by
a computer system when no other explicit information has been
given. For example, if a command to run a program from a disk
does not identify which disk drive to use, the Disk Operating
System will automatically use the same drive that was used in
the last operation.

defenestration: The act of throwing something through, from, or
out of a window. Not recommended handling of an Apple lie.

demodulate: To recover the information being transmitted by a
modulated signal; for example, a conventional radio receiver
demodulates an incoming broadcast signal to convert it into
sound emitted by a speaker.

Glossary

I
I

236

device: (1) A physical apparatus for performing a particular task
or achieving a particular purpose. (2) In particular, a hardware
component of a computer system.

device handler: See device driver.

device driver: A program that manages the transfer of
information between the computer and a peripheral device.

digit: (1) One of the characters o to 9 , used to express numbers
in decimal form. (2) One of the characters used to express
numbers in some other form, such as o and 1 in binary or o to 9
and A to F in hexadecimal.

digital: Represented in a discrete (noncontinuous) form, such as
numerical digits. For example, contemporary digital clocks display
the time in numerical form (such as 2:57) instead of using the
~;>ositions of a pair of hands on a clock face. Compare analog.

digital-to-analog converter: A device that converts quantities
from digital to analog form.

DIP: See dual in-line package.

disassembler: A language translator that converts a machine­
language program into an equivalent program in assembly
language, more easily understood by a human programmer. The
opposite of an assembler.

disk: An information storage medium consisting of a flat, circular
magnetic surface on which information can be recorded in the
form of small magnetized spots, similarly to the way sounds are
recorded on tape.

disk controller card: A peripheral card that connects one or two
disk drives to the Apple lie and controls their operation.

disk drive: A peripheral device that writes and reads information
on the surface of a magnetic disk.

diskette: A term sometimes used for the small (5-1 /4-inch)
flexible disks used with the Apple Disk II drive.

Disk II drive: A model of disk drive made and sold by Apple
Computer for use with the Apple lie computer; uses 5-1 /4-inch
flexible ("floppy") disks.

Disk Operating System: An optional software system for the
Apple lie that enables the computer to control and communicate
with one or more Disk II drives.

display: (1) Information exhibited visually, especially on the
screen of a display device. (2) To exhibit information visually. (3)
A display device.

Glossary

-

display device: A device that exhibits information visually, such
as a television receiver or video monitor.

display screen: The glass or plastic panel on the front of a
display device, on which images are displayed.

DOS: See Disk Operating System.

dual in-line package: An integrated circuit packaged in a narrow
rectangular box with a row of metal pins along each side; similar
in appearance to an armored centipede.

edit: To change or modify; for example, to insert, remove,
replace, or move text in a document.

editor: A program that enables the user to create and edit
information of a particular form; for example, a text editor or a
graphics editor.

effective address: In machine-language programming, the
address of the memory location on which a particular instruction
actually operates, which may be arrived at by indexed addressing
or some other addressing method.

error message: A message displayed or printed to notify the
user of an error or problem in the execution of a program.

escape mode: A state of the Apple lie computer, entered by
pressing the I ESC I key, in which certain keys on the keyboard
take on special meanings for positioning the cursor and
controlling the display of text on the screen.

escape sequence: A sequence of keystrokes beginning with the
I ESC I key, used for positioning the cursor and controlling the
display of text on the screen.

exclusive OR: A logical operator that produces a true result if
one of its operands is true and the other false, a false result if its
operands are both true or both false; compare OR, AND, NOT.

execute: To perform or carry out a specified action or sequence
of actions, such as those described by a program.

expansion slot: A connector inside the Apple lie computer in
which a peripheral card can be installed; sometimes called
peripheral slot.

firmware: Those components of a computer system consisting of
programs stored permanently in read-only memory. Such
programs (for example, the Applesoft interpreter and the Apple
lie Monitor program) are built into the computer at the factory;
they can be executed at any time but cannot be modified or
erased from main memory. Compare hardware, software.

Glossary 237

238

fixed-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is considered to occur at a fixed position within the
number. Typically, the point is considered to lie at the right end
of the number, so that the number is interpreted as an integer.
Compare floating-point.

flexible disk: A disk made of flexible plastic ; often called a
"floppy" disk. Compare rigid disk.

floating-point: A method of representing numbers inside the
computer in which the decimal point (more correctly, the binary
point) is permitted to " float" to different positions within the
number. Some of the bits within the number itself are used to
keep track of the point's position. Compare fixed-point.

GAME 1/0 connector: A special 16-pin connector inside the
Apple lie, originally designed for connecting hand controls to the
computer, but also used for connecting some other peripheral
devices. Compare hand control connector.

graphics: (1) Information presented in the form of pictures or
images. (2) The display of pictures or images on a computer's
display screen. Compare text.

hand control: An optional peripheral device that can be
connected to the Apple lie's hand control connector and has a
rotating dial and a pushbutton; typically used to control game­
playing programs, but can be used in more serious applications
as well.

hand control connector: A 9-pin connector on the Apple lie's
back panel , used for connecting hand controls to the computer.
Compare GAME 1/0 connector.

hardware: Those components of a computer system consisting
of physical (electronic or mechanical) devices. Compare
software, firmware.

hertz: The unit of frequency of vibration or oscillation , also called
cycles per second ; named for the physici$t Heinrich Hertz and
abbreviated Hz. The current provided by a standard power outlet
alternates at a rate of 60 hertz; that is , it changes polarity 60
times each second. The Apple lie's 6502 microprocessor
operates at a clock frequency of 1 million hertz, or 1 megahertz
(MHz).

Glossary

hexadecimal: The representation of numbers in terms of
powers of sixteen, using the sixteen digits o to 9 and A to F.

Hexadecimal numbers are easier for humans to read and
understand than binary numbers, but can be converted easily
and directly to binary form: each hexadecimal digit corresponds
to a sequence of four binary digits, or bits.

high-level language: A programming language that is relatively
easy for humans to understand. A single statement in a high­
level language typically corresponds to several instructions of
machine language.

high-order byte: The more significant half of a memory address
or other two-byte quantity. In the Apple lie's 6502
microprocessor, the low-order byte of an address is usually
stored first and the high-order byte second.

high-resolution graphics: The display of graphics on
the Apple lie's display screen as a six-color array of points, 280
columns wide and 192 rows high.

hold time: In computer circuits, the amount of time a signal
must remain valid after some related signal has been turned off;
compare setup time.

Hz: See hertz.

IC: See integrated circuit.

information: Facts, concepts, or instructions represented in an
organized form.

index: (1) A number used to identify a member of a list or table
by its sequential position. (2) A list or table whose entries are
identified by sequential position. (3) In machine-language
programming, the variable component of an indexed address,
contained in an index register and added to the base address to
form the effective address.

indexed addressing: A method of specifying memory addresses
used in machine-language programming.

index register: A register in a computer processor that holds an
index for use in indexed addressing. The Apple lie's 6502
microprocessor has two index registers, called the x register and
the Y register.

input: (1) Information transferred into a computer from some
external source, such as the keyboard , a disk drive, or a modem.
(2) The act or process of transferring such information.

Glossary 239

240

instruction: A unit of a machine-language or assembly-language
program corresponding to a single action for the computer's
processor to perform.

integer: A whole number, with no fractional part; represented
inside the computer in fixed-point form. Compare real number.

integrated circuit: An electronic component consisting of many
circuit elements fabricated on a single piece of semiconducting
material, such as silicon ; see chip.

interface: The devices, rules, or conventions by which one
component of a system communicates with another.

interface card: A peripheral card that implements a particular
interface (such as a parallel or serial interface) by which the
computer can communicate with a peripheral device such as a
printer or modem.

interpreter: A language translator that reads a program written
in a particular programming language and immediately carries out
the actions that the program describes. Compare compiler.

interrupt: A temporary suspension in the execution of a program
by a computer in order to perform some other task, typically in
response to a signal from a peripheral device or other source
external to the computer.

inverse video: The display of text on the computer's display
screen in the form of black dots on a white (or other single
phosphor color) background, instead of the usual white dots on a
black background.

1/0: Input/output; the transfer of information into and out of a
computer. See input, output.

1/0 device: Input/output device; a device that transfers
information into or out of a computer. See input, output,
peripheral device.

1/0 link: A fixed location that contains the address of an input/
output subroutine in the Apple lie Monitor program.

K: Two to the tenth power, or 1024 (from the Greek root kilo,
meaning one thousand) ; for example, 64K equals 64 times 1024,
or 65,536.

keyboard: The set of keys built into the Apple lie computer,
similar to a typewriter keyboard, for typing information to the
computer.

keystroke: The act of pressing a single key or a combination of
keys (such as I CONTROL 1-c) on the Apple lie keyboard .

Glossary

kilobyte: A unit of information consisting of 1 K (1 024) bytes, or
8K (8192) bits ; see K.

KSW: The symbolic name of the location in the Apple lie's
memory where the standard input link is stored ; stands for
"keyboard switch. " See 1/0 link.

language: See programming language.

language translator: A system program that reads a program
written in a particular programming language and either executes
it directly or converts it into some other language (such as
machine language) for later execution. See interpreter,
compiler, assembler.

load: To transfer information from a peripheral storage medium
(such as a disk) into main memory for use; for example, to
transfer a program into memory for execution.

location: See memory location.

logical operator: An operator, such as AND , that combines
logical values to produce a logical result.

low-level language: A programming language that is relatively
close to the form that the computer's processor can execute
directly. Low-level languages available for the Apple lie include
6502 machine language and 6502 assembly language.

low-order byte: The less significant half of a memory address or
other two-byte quantity. In the Apple lie's 6502 microprocessor,
the low-order byte of an address is usually stored first and the
high-order byte second.

low-power Shottkey: A type of TTL integrated circuit having
lower power and higher speed than a conventional TTL
integrated circuit.

low-resolution graphics: The display of graphics on the
Apple lie's display screen as a sixteen-color array of blocks,
40 columns wide and 48 rows high.

LS: See low-power Shottkey.

machine language: The form in which instructions to a
computer are stored in memory for direct execution by the
computer's processor. Each model of computer processor (such
as the 6502 microprocessor used in the Apple lie) has its own
form of machine language.

Glossary 241

242

main memory: The memory component of a computer system
that is built into the computer itself and whose contents are
directly accessible to the processor.

memory: A hardware component of a computer system that can
store information for later retrieval ; see main memory, random­
access memory, read-only memory, read-write memory,
write-only memory.

memory location: A unit of main memory that is identified by
an address and can hold a single item of information of a fixed
size; in the Apple lie, a memory location holds one byte, or eight
bits , of information.

memory-resident: (1) Stored permanently in main memory, as
firmware. (2) Held continually in main memory even while not in
use, as the Di;:>k Operating System.

MHz: Megahertz; one million hertz. See hertz.

microcomputer: A computer, such as the Apple lie, whose
processor is a microprocessor.

microprocessor: A computer processor contained in a single
integrated circuit , such as the 6502 microprocessor used in the
Apple lie.

microsecond: One millionth of a second; abbreviated J-tS.

millisecond: One thousandth of a second ; abbreviated ms.

mode: A state of a computer or system that determines its
behavior.

modem: Modulator/demodulator; a peripheral device that
enables the computer to transmit and receive information over a
telephone line.

modulate: To modify or alter a signal so as to transmit
information ; for example, conventional broadcast radio transmits
sound by modulating the amplitude (amplitude modulation, or
AM) or the frequency (frequency modulation, or FM) of a carrier
signal.

monitor: See video monitor.

Monitor program: A system program built into the Apple lie in
firmware, used for directly inspecting or changing the contents of
main memory and for operating the computer at the machine­
language level.

nanosecond: One bill ionth (in British usage, one thousand­
millionth) of a second ; abbreviated ns.

Glossary

network: A collection of interconnected, individually controlled
computers, together with the hardware and software used to
connect them.

nibble: A unit of information equal to half a byte, four bits, or
fifty cents ; can hold any value from o to 1 s . Sometimes spelled
nybble.

NOT: A unary logical operator that produces a true result if its
operand is false, a false result if its operand is true; compare AND ,
OR, exclu5ive OR .

NTSC: (1) National Television Standards Committee; the
committee that defined the standard format used for transmitting
broadcast video signals in the United States. (2) The standard
video format defined by the NTSC.

object code: See object program.

object program: The translated form of a program produced by
a language translator such as a compiler or assembler; also
called object code . Compare source program.

op code: See operation code.

operand: A value to which an operator is applied.

operating system: A software system that organizes the
computer's resources and capabilities and makes them available
to the user or to application programs running on the computer.

operation code: The part of a machine-language instruction that
specifies the operation to be performed; often called op code.

operator: A symbol or sequence of characters, such as + or AND ,
specifying an operation to be performed on one or more values
(the operands) to produce a result.

OR: A logical operator that produces a true result if either or both
of its operands are true, a false result if both of its operands are
false; compare exclusive OR, AND , NOT .

output: (1) Information transferred from a computer to some
external destination, such as the display screen, a disk drive, a
printer, or a modem. (2) The act or process of transferring such
information.

page: (1) A screenful of information on a video display,
consisting on the Apple lie of 24 lines of 40 or 80 characters
each. (2) An area of main memory containing text or graphical
information being displayed on the screen. (3) A segment of main
memory 256 bytes long and beginning at an address that is an
even multiple of 256 bytes.

Glossary

244

page zero: See zero page.

parallel interface: An interface in which many bits of information
(typically eight bits, or one byte) are transmitted simultaneously
over different wires or channels. Compare serial interface.

PC board: See printed-circuit board.

peripheral: At or outside the boundaries of the computer itself,
either physically (as a peripheral device) or in a logical sense
(as a peripheral card).

peripheral bus: The bus used for transmitting information
between the Apple lie computer and peripheral devices
connected to the computer's expansion slots.

peripheral card: A removable printed-circuit board that plugs
into one of the Apple lie's expansion slots and expands or
modifies the computer's capabilities by connnecting a peripheral
device or performing some subsidiary or peripheral function .

peripheral device: A device, such as a video monitor, disk
drive, printer, or modem, used in conjunction with a computer.
Often (but not necessarily) physically separate from the computer
and connected to it by wires, cables, or some other form of
interface, typically by means of a peripheral card .

peripheral slot: See expansion slot.

phase: (1) A stage in a periodic process; a point in a cycle; for
example, the 6502 microprocessor uses a clock cycle consisting
of two phases called ¢ 0 and r:P 1. (2) The relationship between
two periodic signals or processes; for example, in NTSC color
video, the color of a point on the screen is expressed by the
instantaneous phase of the video signal relative to the color
reference signal.

pipelining: A feature of a processor that enables it to begin
fetching the next instruction before it has finished executing the
current instruction. All other things equal , processors that have
this feature run faster than those without it.

pointer: An item of information consisting of the memory
address of some other item.

pop: To remove the top entry from a stack.

port: The point of connection , usually a physical connector,
between a computer and a peripheral device, another computer,
or a network.

Glossary

power supply: The hardware component of a computer that
draws electrical power from a power outlet and converts it to the
forms needed by other hardware components .

printed-circuit board: A hardware component of a computer or
other electronic device, consisting of a flat , rectangular piece of
rigid material , commonly fiberglass, to which integrated circuits
and other electronic components are connected.

printer: A peripheral device that writes information on paper in a
form easily readable by humans or literate monkeys.

processor: The hardware component of a computer that
performs the actual computation by directly executing instructions
represented in machine language and stored in main memory.

program: (1) A set of instructions describing actions for a
computer to perform in order to accomplish some task,
conforming to the rules and conventions of a particular
programming language. (2) To write a program.

programming language: A set of rules or conventions for
writing programs.

prompt: To remind or signal the user that some action is
expected, typically by displaying a distinctive symbol , a reminder
message, or a menu of choices on the display screen.

prompt character: A text character displayed on the screen to
prompt the user for some action. Often also identifies the
program or component of the system that is doing the prompting ;
for example, the prompt character l is used by the Applesoft
BASIC interpreter, > by Integer BASIC, and • by the system
Monitor program. Also called prompting character.

prompt message: A message displayed on the screen to
prompt the user for some action. Also called prompting
message.

push: To add an entry to the top of a stack.

radio-frequency modulator: A device for converting the video
signals produced by a computer to a form that can be accepted
by a television receiver.

RAM: See random-access memory.

random-access memory: Memory in which the contents of
individual locations can be referred to in an arbitrary or random
order. This term is often used incorrectly to refer to read-write
memory, but strictly speaking both read-only and read-write

Glossary

246

memory can be accessed in random order. This misuse of the
term random-access is an attempt to confuse new users,
creating a rite of passage and an excellent market for glossaries
of computer terms. Compare read-only memory, read-write
memory, write-only memory.

raster: The pattern of parallel lines making up the image on a
video display screen. The image is produced by controlling the
brightness of successive dots on the individual lines of the raster.

read: To transfer information into the computer's memory from a
source external to the computer (such as a disk drive or modem)
or into the computer's processor from a source external to the
processor (such as the keyboard or main memory).

read-only memory: Memory whose contents can be read but
not written; used for storing firmware. Information is written into
read-only memory once, during manufacture; it then remains
there permanently, even when the computer's power is turned
off, and can never be erased or changed. Compare read-write
memory, random-access memory, write-only memory.

read-write memory: Memory whose contents can both be read
and written; often misleadingly called random-access memory, or
RAM. The information contained in read-write memory is erased
when the computer's power is turned off, and is permanently lost
unless it has been saved on a more permanent storage medium,
such as a disk. Compare read-only memory, random-access
memory, write-only memory.

real number: A number that may include a fractional part;
represented inside the computer in floating-point form. Compare
integer.

register: A location in a computer processor where an item of
information, such as a byte, is held and modified under program
control. Registers in the 6502 microprocessor include the
accumulator (A) , two index registers (X and Y), the stack pointer
(5), the processor status register (P), and the program counter
(PC). The PC register holds two bytes (sixteen bits); the other
registers hold one byte (eight bits) each.

return address: The point in a program to which control returns
on completion of a subroutine.

RF modulator: See radio-frequency modulator.

rigid disk: A disk made of a hard, nonflexible material. Compare
flexible disk.

Glossary

ROM: See read-only memory.

routine: A part of a program that accomplishes some task
subordinate to the overall task of the program.

run: (1) To execute a program. (2) To load a program into main
memory from a peripheral storage medium, such as a disk, and
execute it.

save: To transfer information from main memory to a peripheral
storage medium for later use.

screen: See display screen.

scroll: To change the contents of all or part of the display
screen by shifting information out at one end (most often the top)
to make room for new information appearing at the other end
(most often the bottom), producing an effect like that of moving a
scroll of paper past a fixed viewing window. See viewport,
window.

serial interface: An interface in which information is transmitted
sequentially, one bit at a time, over a single wire or channel.
Compare parallel interface.

setup time: The amount of time a signal must be valid in
advance of some event ; compare hold time.

silicon: A non-metallic, semiconducting chemical element from
which integrated circuits are made. Not to be confused with silica
-that is, silicon dioxide, such as quartz, opal , or sand - or
with silicone , any of a group of organic compounds containing
silicon.

soft switch: A means of changing some feature of the Apple lie
from within a program; specifically, a location in memory that
produces some special effect whenever its contents are read or
written.

software: Those components of a computer system consisting of
programs that determine or control the behavior of the computer.
Compare hardware, firmware.

source code: See source program.

source program: The original form of a program given to a
language translator such as a compiler or assembler for
conversion into another form; sometimes called source code .
Compare object program.

space character: A text character whose printed representation
is a blank space, typed from the keyboard by pressing the I SPACE I
bar.

Glossary

248

stack: A list in which entries are added or removed at one end
only (the top of the stack), causing them to be removed in LIFO
(last-in-first-out) order.

string: An item of information consisting of a sequence of text
characters.

strobe: (1) An event, such as a change in a signal, that triggers
some action. (2) A signal whose change is used to trigger some
action.

subroutine: A part of a program that can be executed on
request from any point in the program, and which returns control
to the point of the request on completion .

system: A coordinated collection of interrelated and interacting
parts organized to perform some function or achieve some
purpose.

television receiver: A display device capable of receiving
broadcast video signals (such as commercial television) by
means of an antenna. Can be used in combination with a radio­
frequency modulator as a display device for the Apple lie
computer. Compare video monitor.

television set: See television receiver.

terminal: A device consisting of a typewriterlike keyboard and a
display device, used for communicating between a computer
system and a human user. Personal computers such as the
Apple lie typically have all or part of a terminal built into them.

text: (1) Information presented in the form of characters readable
by humans. (2) The display of characters on the Apple lie's
display screen. Compare graphics.

text window: An area on the Apple lie's display screen within
which text is displayed and scrolled.

transistor-transistor logic: (1) A family of integrated circuits
used in computers and related devices. (2) A standard for
interconnecting such circuits that defines the voltages used to
represent logical zeros and ones.

troubleshoot: To locate and correct the cause of a problem or
malfunction in a computer system. Typically used to refer to
hardware-related problems; compare debug.

TTL: See transistor-transistor logic.

unary operator: An operator that applies to a single operand ;
for example, the minus sign (-) in a negative number such as -6
is a unary arithmetic operator. Compare binary operator.

Glossary

user: The person operating or controlling a computer system.

user interface: The rules and conventions by which a computer
system communicates with the person operating it.

vector: (1) The starting address of a program segment, when
used as a common point for transferring control from other
programs. (2) A memory location used to hold a vector, or the
address of such a location.

video: (1) A medium for transmitting information in the form of
images to be displayed on the screen of a cathode-ray tube. (2)
Information organized or transmitted in video form. (3) An early
space pioneer.

video monitor: A display device capable of receiving video
signals by direct connection only, and which cannot receive
broadcast signals such as commercial television . Can be
connected directly to the Apple lie computer as a display device.
Compare television receiver.

viewport: All or part of the display screen, used by an
application program to display a portion of the information (such
as a document, picture, or worksheet) that the program is
working on. Compare window.

warm start: The process of restarting the Apple lie after the
power is already on, without reloading the operating system into
main memory and often without losing the program or information
already in main memory. Compare cold start.

window: (1) The portion of a collection of information (such as a
document, picture, or worksheet) that is visible in a viewport on
the display screen ; compare viewport. (2) A viewport. (3) A flat,
rectangular panel , usually made of silica, used in many archaic
structures as a human-to-nature interface.

word: A group of bits of a fixed size that is treated as a unit; the
number of bits in a word is a characteristic of each particular
computer.

wraparound: The automatic continuation of text from the end of
one line to the beginning of the next, as on the display screen or
a printer.

write: To transfer information from the computer to a destination
external to the computer (such as a disk drive, printer, or
modem) or from the computer's processor to a destination
external to the processor (such as main memory).

Glossary

write-only memory: A form of computer memory into which
information can be stored but never, ever retrieved , developed
under government contract in 1975 by Professor Homberg T.
Farnsfarfle. Farnsfarfle's original prototype, approximately one
inch on each side, has so far been used to store more than 100
trillion words of surplus federal information. Farnsfarfle's critics
have denounced his project as a six-million-dollar boondoggle,
but his defenders point out that this excess information would
have cost more than 250 billion dollars to store in conventional
media. Compare read-only memory, read-write memory,
random-access memory.

x register: One of the index registers in the 6502
microprocessor.

Y register: One of the index registers in the 6502
microprocessor.

zero page: The first page (256 bytes) of the Apple lie's memory,
also called page zero. Since the high-order byte of any address
in this page is zero, only the low-order byte is needed to specify
a zero-page address; this makes zero-page locations more
efficient to address, in both time and space, than locations in any
other page of memory.

Glossary

Bibliography

Bibliography

Apple Computer, Inc. : Apple lie Applesoft Reference Manual;
Apple Computer Inc., 1982, Cupertino, CA. Apple product number
A2L2004

-Apple lie Applesoft Tutorial Manual; Apple Computer Inc. ,
1982, Cupertino, CA. Apple product number A2L2003

-Apple II BASIC Programming Manual; Apple Computer Inc.,
1978, Cupertino, CA. Apple product number A2L0005

-Apple II Monitors Peeled; Apple Computer Inc. , 1978,
Cupertino, California. Apple product number D2L0013

-Apple lie Owner's Manual; Apple Computer Inc., 1982,
Cupertino, CA. Apple product number A2L2001

-Programmer's Aid #1 Installation and Operating Manual;
Apple Computer Inc., 1978, Cupertino, California. Apple product
number A2L0011

Leventhal , Lance : 6502 Assembly Language Programming;
Osborne/McGraw-Hill , 1979, Berkeley, CA.

Synertek, Incorporated : Hardware Manual ; Synertek Incorporated,
1976, Santa Clara, CA. Apple product number A2L0002

-Programming Manual; Synertek Incorporated, 1976, Santa
Clara, CA. Apple product number A2L0003

Watson, Allen , Ill : "More Colors for Your Apple"; Byte , Vol. 4,
No. 6, June, 1979. Byte Publications, Inc, Peterborough, NH

- " Simplified Theory of Video Graphics, Part I"; Byte , Vol. 5,
No. 11 , November, 1980. Byte Publications, Inc, Peterborough ,
NH

Bibliography

-"Simplified Theory of Video Graphics, Part II"; Byte , Vol. 5,
No. 12, December, 1980. Byte Publications, Inc. Peterborough,
NH

Wozniak, Steve : "System Description: The Apple II "; Byte , Vol. 2,
No. 5, May, 1977. Byte Publications, Inc. Peterborough, NH

- "SWEET16: The 6502 Dream Machine" ; Byte , Vol. 2,
No. 10, October, 1977. Byte Publications, Inc, Peterborough, NH

Bibliography

Index

A
A1 77-8
A1H 77
A1L 77
A2 77-8
A2H 77
A2L 77
A4 77-8
A4H 77
A4L 77
absolute address 108
accumulator 54, 78-9, 126-8,

140, 185, 187
ADC 188
addition 1 03
address bus 6, 35, 140, 142,

169-70
address decoding, 1/0 164
address space 63, 140, 148
addresses

absolute 108
base 64, 126-129
in Monitor commands 88
Mini-assembler 113
multiplexed 151
RAM 151
relative 1 08, 114, 126

addressing, relative 1 08, 114
126 •

addressing, zero-page 113
AL TCHARSET soft switch 20, 28,

45, 145
alternate character set 19-21 , 45

52-4, 158 •
AL TZP soft switch 74-7, 143
analog input memory locations 40
analog input reset 40
analog inputs 37, 39, 167
AND function 52
AND instruction 188
annunciator memory locations 40

Index

Index

annunciators 35, 37, 79, 164,
167

Any-key-dowr.~ 15, 164
Any-key-down flag 13, 15
Apple II

character sets 20
compatibility 76
GETLN 58
making lie resemble 44
memory use 68

Apple II BASIC Programming
Manual 13

Apple II Plus
character sets 20
compatibility 76
cursor-motion keys 56
GETLN 58
making lie resemble 44
memory use 68
reset 70

Apple keys 12, 17, 38, 40
Apple Mini-assembler 57, 110-14
Applesoft BASIC

and bank-switched memory 68
and page zero 64, 66, 92
and reset routine 80
and 1/0 subroutines 43
decimal addresses with 13, 27
interpreter 6, 148
prompt 57
returning to 102
statements 45

Applesoft Reference Manual 6
Applesoft Tutorial 6, 58
arrow keys 12, 58
ASCII codes 12-17,'21
ASCII character set 5, 16, 19
ASL 188
assemblers 1 08, 11 0
Assembler/Editor 11 0

257

assembly language
and AUXMOVE 77

and bank switching 70
and display pages 29
and 1/0 links 130
and indirect addressing 64
and machine language 1 08-9
and standard subroutines 43
hexadecimal addresses with 13
prompt character 57
with Mini-assembler 11 0-113

asterisk 57, 87
audio cassettes 36, 98
automatic repeat 11
Autostart Monitor 4 7
auxiliary memory 26, 30, 71-78
auxiliary RAM 63, 71 , 79
auxiliary slot 7, 21 , 71

and reset routine 79
and slot 3 46, 123-4, 132-3
signals 174-5

auxiliary-memory subroutines 76
auxiliary-RAM enable signals 175
AUXMDVE subroutine 76-8

8
back panel 8
backspace 58
backspace character 58
bandwidth 17
bank switches 69
bank switching 68-71
bank-switched memory 68-72,

73-4
and reset 79

bank-switched RAM 68-70, 74,
80, 110

base addresses 64, 126-129
BASIC

and auxiliary memory 71
and GETLN 56-7
and 1/0 1 03, 129-30
and reserved memory 71
and soft switches 29
and stop-list mode 50
and taping data 37
and zero page 64
compared to machine

language 1 07
invoking Monitor from 87
reading analog inputs 40
reading switch input 38
returning to from Mini-

assembler 112
returning to from Monitor 88,
102

Index

BASIC, Applesoft
see Applesoft BASIC

BASIC, Integer
see Integer BASIC

BCC 188
BCS 188
BEQ 188
BELL subroutine 36
BIT 188
bit patterns, high-resolution 161
bit, high-order

see high-order bit
bit-mapped 24
black-and-white monitor 24
blanking intervals 153
blanking , horizontal 153
blanking, vertical 154
blinking cursor 43, 54, 87, 110
BMI 188
ENE 188
bootstrap 80
borrow 185
BPL 188
BRK 97, 108, 140, 188
BRK requests 82
BRK vector 131
buffer, bus 170
buffer, input 56-8, 64, 1 06
buffers, display 24, 65
buffers, three-state 170
built-in 80-column firmware

see 80-column firmware
built-in subroutines 76-78
bus buffer 1 70
bus, address 6, 35, 140, 142,

169, 170
bus, data 170
BVC 188
BVS 189

c
CALL -151 87, 110, 112
cancel line 58

CAPS LOCK key 12, 13, 17, 44,
58

card, language 68, 70, 121
cards, peripheral see peripheral

cards and 80-column text card
carry bit 77, 78, 187
CAS 151
cassette 1/0 11 , 35-6, 40, 98,

164, 166
cassette recorder 8, 36, 166
central processing unit 6, 140,

143, 151

CH 50-1
character generator 158-62
Character output Switch 48,129,

130
character set, alternate 19-21 ,

45, 52-4, 158
character set, ASCII 5, 16, 19
character set, primary 19-21 , 45,

53, 79, 158
character sets 19
characters , lowercase 20, 44, 53
characters , uppercase 20, 44, 53
checksum 99, 100
circuit board, main 6, 37, 121,

139, 169, 174
circuit, protection 139
circuits, 1/0 164-168
circumflex 111, 114
CLC 189
CLD 189
clear-strobe switch 13
CLEOLZ 46
CLI 189
clock 141
clock rate 140
clock signals 141 , 142
CLREOL 46
CLREOP 46
CLRGAT' 146, 177
CLV 189
CMP 189
codes, hex operation 194
codes, intruction 188-192
cold-start reset 80
colon (in Monitor commands) 93,

115
color monitor 24, 25, 160
color signal 160-2
color television set 24, 160
color television, NTSC 25
color-burst gate 153
colors 22

high-resolution 24-5, 161
low-resolution 23, 160

Column-address Strobe 151
command characters 88
complementary decimal 13
composite video 17, 163
connectors (see also slots)

0-type miniature 37, 167
for cassette recorder 8
for hand-controls 8 , 37, 167
for video monitor 8

constant , time 39
CONTINUE BAS I C command 102
control characters 50

Index

CONTROL key 12, 13, 17, 50, 164
CONTROL - OPEN - APPlE - RESET
81

CONTROL -B 102, 116
CONTROL -c 50, 88, 102, 116
CONTROL -D 130
CONTROL -E 116
CONTROL -K 103, 130
CONTROL - OPEN-APPLE - RESET
81

CONTROL -p 46 ' 1 02, 117
CONTROL - RESET 79-81 ' 88
CONTROL -s 50
CONTROL - SOLID-APPLE -

RESET
81

CONTROL -U 46
CONTROL - Y 106

controller card , disk drive 80
counter, horizontal 153, 155
counter, program 109, 111
counter, vertical 153, 155
counters, video 153, 157
COUT 43, 46, 47, 58, 101
COUT1 47-53, 57, 129,

130
cover 4
CPU 6 , 140, 143, 151
CPX 189
CPY 189
csw 48, 129, 130
CSWH 129
CSWL 129
currents, supply 138
cursor

blinking 43, 54, 87, 110
checkerboard 43, 11 0
motion 56
plus sign 56
position 49-51 , 57, 79

cursor-control keys 12, 55, 56
cv 50, 51
cycle stealing 149

D
0-type miniature connector 37,

167
daisy chain , priority 170
data bus 170
data strbbe 37, 167,
debounce 164
DEC 189
decimal 13, 27
decimal, complementary 13
decoder, keyboard character 6,

13, 149, 164

DEVICE SELECT' 122, 169, 174
DEX 189
DEY 189
Diagnostics ROM 148
direct-memory access signal 170
disassembler 1 08
disk drive controller card 80
Disk Operating System see DOS
display, video 11, 17-34, 152-62

80-column 46, 159, 175
buffers 65
display memory 154
display mode 27
display pages 26-30, 65,

72, 74
formats 19-20, 52-3
flashing format 19-20, 44, 52-3
high-resolution 161
inverse 19-20, 46, 52-3, 1 01
low-resolution 1 60
mixed-mode 19, 27
normal 19-20, 52-3, 1 01
soft switches 28

DMA IN 170
DMA OUT 170
DMA' 144, 169-170
DOS

and reset 80
and Monitor 87, 102
1/0 links 4 7, 130
link address storage 65
page zero usage 64, 67, 92
RAM addressing 129

DOS Manual 65, 80, 81 , 130
DOS Tool Kit 110

DOWN-ARROW 12
dynamic RAM 143, 145, 149, 151

E
editing 58
EIA 163
Electronic Industries

Association 163
ENBO' 144, 175, 177
environmental specifications 137
EOR 190
ERR 100
error message 83
errors 111

ESC key 12, 13, 54, 56
ESC CONT ROL - Q 46

escape codes 55
escape mode 56
EXAMINE command 98
exclusive-OR 81 , 82
expansion ROM 123-125

Index

expansion slot 3 45, 46, 79
expansion slots 7, 80, 121-33,

169-174
extended 80-column text card 71

F
F666G 111 , 117
FF69G 112, 117
firmware (see also 80-column

firmware)
built-in 1/0 43-58
on peripheral cards 121

flashing display format 19-20, 44,
52-3

flip-flop 124
forced cold-start reset 79 81
format, inverse 19-20 46,

52-57, 101 ' '
FP 47
functions

AND 52
stop-list 50

G
G (Monitor command) 117
Game 1/0 167
GAME 1/0 socket 168
game inputs 37, 167
gate, color-burst 153
GETLN 43, 53, 56-8, 64, 88
GO command 97, 102, 107, 111
gotoXY 49
GR 147, 174, 178
graphics 22-34

high-resolution 18-19, 23-5, 29,
161

low-resolution 18-19, 22-3, 160
mixed-mode 27

grounded outlet 138

H
hand controls 8, 37, 167
hand-control connector 37
hand-control input 35, 167
Hardware Manual 141
hex operation codes 194
hexadecimal 13, 14, 23, 27, 61 ,

88, 113
hexadecimal arithmetic 1 03
high-level languages 29, 43,

1 07 (see also names of
languages)

high-order bit
and cassette 1/0 37
and color determination

24-5, 162

-

:J

and display format 53
and state of soft switches 29, 36
of switch input byte 38

high-resolution bit patterns 161
high-resolution graphics 18-19,

23-5, 29, 161
high-resolution graphics

colors 25, 161
high-resolution Page 1 24, 30,

65, 74
high-resolution Page 2 24, 30, 65
H 1 REs soft switch 28, 7 4-5, 143,

145
HOME 46
horizontal blanking 153
horizontal counter 153, 155
horizontal sync 1 53

I
I (Monitor command) 116
1/0

address decoding 164
built-in devices 11-41
built-in firmware 43-58
circuits 168
drivers 121
links, standard 46, 79,

129-130
memory locations 122, 132
subroutines 43-47, 87

1/ 0 SELECT' 123, 124, 169, 172
I I 0 STROBE I 124, 125, 172
1/0REST 126
1/0SAVE 126
IC 6
IN# 103, 130
IN#n command 130
INC 190
index register 61 , 106, 127, 140,

187
index register Y 78, 187
index register X 78, 128, 187
indirect addressing 64
INH' 144, 169, 173
input buffer 56-58, 64, 1 06
input devices 11-41
input features 53-58
INPUT statement 56-7
input, hand-control 35, 167
Input-Output Unit see IOU
inputs

analog 37, 39
game 167
switch 38, 167

instructions, assembly
language t08-11

Index

instructions, 6502 186
!NT 47, 110
!NT IN 131 , 170
!NT OUT 131 , 170
I NT BAS I C 11 0
I NTC 3ROM soft switch 46
Integer BASIC

and bank-switched memory 68
and the Mini-assembler 11 0
and the old Monitor 47
and RDKEY 54
and reset routine 70, 80
and standard 1/0

subroutines 43
complementary decimal

with 13, 27
page zero usage 64, 67
prompt character 57
returning to 1 02
statements 45

integrated circuit 6
interface 13
interpreter, Applesoft BASIC 6
interpreter, Integer BASIC 110
interrupt handler 131
interrupt priority 131
interrupt requests 131 , 170
interrupt vectors 81-2, 131
interrupt-handling routine 131
interrupts 46, 82, 126, 131 , 170
intruction codes 188-192
intruction cycle 140
INVERSE command 101
inverse display format 19-20, 44,

46, 52-3, 101
INX 190
!NY 190
IOU 6, 7, 143, 145, 153, 155,

164-7
IRQ vector 131 , 140
IRQ' 131 , 170, 173

J
joystick 37
JMP intruction 79, 1 06, 190
JSR instruction 127, 190
Jump to Subroutine 127

K
keyboard 5, 11-17, 43-4, 88, 164
KEYBOARD command 103
keyboard data 13, 28
keyboard encoder 6, 13, 149,

164
Keyboard input Switch 130

261

keyboard strobe 13, 15, 28, 79,
164

keyboard-input buffer 64
KEYII'I 43, 47, 53-56, 129-30
keypad 165
KSW 54, 130
KS WH 130
KSWL 130

L
L (Monitor command) 117
language card 68, 70, 121
languages (see also names of

languages)
assembly 29, 108-9, 113
high-level 29, 43, 107
machine 107-110

last opened location 89-91 , 94,
96, 107, 109

LDA 190
LDX 190
LDY 190
LED 4, 166

LEFT-ARROW key 12, 55
light-emitting diode 4, 166
line voltage 137
link addresses 47, 65, 130
link registers 130
link, input 54
link, output 48
links, standard 1/0 47, 79, 129-

30
LIST command 108-10, 113
loudspeaker 5, 166
low-order bits 13, 24
low-order byte 78
low-resolution graphics 18-19, 22-

3, 160
low-resolution graphics blocks 22
low-resolution graphics colors 23,

160
lowercase characters 20, 44, 53
LSR 191

M
M (Monitor command) 115
machine language 1 07-1 0
main circuit board 6 37 121

139, 169, 174 ' ' '
main memory 30, 73, 75, 77,

78, 121
memory

auxiliary 26, 30, 71-78
bank-switched 68-71 , 74, 79
display 29-34, 154
1/0 122,131

Index

main 30, 73, 75, 77, 78, 127
progammable see RAM
read-only see ROM

memory addressing 148-151
memory dump 89-91
memory locations

1/0 devices 11 , 13, 27, 28, 41
peripheral card 122

Memory Management Unit 6,
143, 151

memory maps 29, 31-4, 62, 63
memory organization 61-83
memory page 1 61 , 73
memory page 2 61
memory page 3 65
memory page zero see zero

page
memory pages 61
memory range 91
microprocessor, 6502 6, 140-142

accumulator 126
circuitry 170
contents of registers 97
data bus 170
interrupt requests 131
instructions 107, 186
memory addressing 61 , 64,

121 , 124,148-151
stack 64, 73
timing 142, 149, 151

Mini-assembler 57, 11 0-14
Mini-assembler commands 117
MIXED soft switch 28, 145
mixed-mode display 19, 27
MMU 6, 143, 151
mnemonic 1 08, 111, 113, 114
Monitor, Autostart 47
Monitor, old 47, 110
Monitor, System 43, 57, 63-6, 87-

117' 129-31 ' 148
Monitor commands 88-107, 109,

115-7
Monitor ROM 148
monitor, black-and-white 22 24
monitor, color 24, 25, 160 '
monitor, video 8, 17, 152
MOVE command 94-7, 105
multiplexed addressing 150-1

N
1'1 (Monitor command) 116
n COI'ITROL-P 129
National Television Standards

Committee see NTSC
next changeable location 89, 91 ,

93, 94, 96

NMI 140
NMI I 170, 173
NOP 191
NORMAL command 101
normal display format 19-20, 52-

3, 101
NTSC 17, 18, 24, 152, 160, 163
NTSC color television 25
numeric pad 165
nybble 22, 160

0
old Monitor 47, 110
opcode 11 0, 194

OPEN-APPLE key 12, 17, 38, 41 ,
81

operand 11 0, 111
operating temperature 137
operation codes 11 0, 194
ORA 191
outlet, grounded 138
output devices 11 , 1 7-41

annunciator 37
cassette 36
strobe 38
video display 17-34

output link 48
output routine, standard 57
overflow 78
overflow bit 78

p
paddles 167
page 1, memory 61, 73
page 3, memory 65
Page 1, high-resolution 24, 30,

65, 71
Page 1, text 26, 32, 65, 74
Page 2, high-resolution 24, 30,

65
Page 2, text 26, 27
page zero see zero page
PAGE2 soft switch 28, 30, 72-5,

143, 145, 161
pages, memory 61
PAL 143, 147, 151
Pascal 43, 1 07
PEEK 14, 27, 38, 39
period (.) 89
peripheral cards 8, 121-133, 138,

169-74
base addresses 127-9
1/0 space 122
ROM space 122, 133
subroutines 126

Index

peripheral devices 121-33, 169-
74

peripheral hardware 137
peripheral slots see expansion

slots
PG2 158, 161
PHA 191
phi 0 141, 142, 144, 146, 147,

151 , 167, 174, 177
phi 1 141 , 142, 147, 151 , 173,

178
phi 2 141
phone jacks 8
PHP 191
pipelining 6, 140
PLA 191
PLP 191
plus sign (inverse format) 56
pointer, stack 64, 79, 140, 185,

187
POKE 27
potentiometers 39
power 4, 5
power connector 139
power consumption 138
power cord 6, 138
power supply 5, 138-9,
power switch 6
power-on reset 79
power-up byte 81-2
PRI 103, 130
PRIQ 46
PRI3 46
PRin 129
PREAD 40
primary character set 19-21 , 45,

53, 79, 158
PRINT statement 45, 130
PRINTER command 102, 103
priority daisy chain 170
processor status register 187
program counter 1 09, 111
program, assembly language 43
programmable memory see RAM
programmable storage 61 , 63
Programmed Array Logic

device 143, 147, 151
PROM 121-3
prompt characters 43, 56, 57

* 87
> 110
! 111

protection circuit 139
pseudo-random number 54
pull-up resistors 167
pushbutton switches 167

263

264

Q
Q3 141 , 144, 146, 147, 151 , 173

R

R (Monitor command) 99-1 00,
116

R/W' 144, 146, 176
R/WBO 175
RAM

and Monitor 4 7
and peripheral cards 121
and reset 79
auxiliary 63, 71 , 79
bank-switched 68-70, 74, 80,

110
dynamic 143, 145, 149, 151
memory access, 61 , 149
reserved memory 63
second bank 70

RAMRD 73-75, 143
RAMWRT 73-75, 143
random number 54
random number, pseudo 54
random-access memory see

RAM
RAS 151
RDKEY 43, 47, 54, 56
reading data 28
reading to secondary 1/0 35
READ command 99-1 00, 116
read only memory see ROM
read/write signal 142
recorder, cassette 8, 36, 166
registers 97, 126, 140, 187 (see

also accumulator)
index 61 , 127, 140, 185, 187
link 130
processor status 140, 187
program counter 187
size of 140
stack pointer 64, 79, 140, 185,

187
relative addressing 1 08, 114, 126
repeating keys 11
RES' 173
reserved memory pages 63

RESET key 12, 13, 17, 79-81 ,
83

reset routine 17, 79-83
reset vector 70, 79-83
RESET' 146
reset, cold-start 80
reset, forced cold-start 81
reset, power-on 79
reset, warm-start 80

Index

resident program 81
resistor, variable 168
resistors, pull-up 167
restricted-case mode 58
Return from Subroutine 108, 127,

129, 130, 192
retype 58
RF modulator 17, 152

RIGHT-ARROW key 12, 58
ROL 191
rollover 11
ROM 6

and bank-switched memory
68-70, 73, 79

and memory addressing 61 ,
148

and the Monitor 47
character-generator 161
Diagnostics 148
expansion 123-5
Monitor 148
peripheral card 125, 132-3

ROR 191
routines 217-223
routines, interrupt-handling 131
Row-address Strobe 151
RT I 192
RTS 108, 127, 129, 130, 192

s
SBC 192
scrolling 49, 50
SEC 192
second bank of RAM 70
SED 192
SEI 192
self test 17, 83, 131, 148

SHIFT key 12, 13, 17, 164
short circuits 5, 139
signal , read/write 142
signals, clock 141-2
signals, timing 141-2, 149, 159,

161 , 162, 169
slot number 126-30
slot, auxiliary see auxiliary slot
slot, expansion see expansion

slots
SLOTC3ROM 132, 133, 143
SLOTC X ROM 132, 143
slots, ventilation 137
soft switches 27, 92, 127, 143,

145 (see also names of
switches)
and self test 83
annunciator 37
auxiliary memory 75
bank select 69, 73-6, 79

definition 15
display 11 , 2S
game 1/0 167
keyboard 1 64
speaker 35

SOLID-APPLE key 12, 17, 3S,
41 ' S1' S3

sounds 5
speaker 5, 11, 35, 164, 166

memory locations 41
soft switches 35

special function keys 17
specifications, environmental 137
STA 192
stack 64, 74, 7S, 126
stack overflow 64
stack pointer 64, 79, 140, 1S5,

1S7
standard 1/0 links 47, 79, 129-31
standard 1/0 subroutines 43-57,

S7
standard input routine see KEY IN
standard output routine see GOUT

startup SO
stop-list feature 50
stop-list function 50
strobe

column-address 151
data 37, 167
keyboard 13, 15, 2S, 79, 164
row-address 151

strobe bit 14
strobe output 35, 3S, 40, 167
STX 192
STY 192
subcarrier, color 25, 160
subroutines 217-223

auxiliary memory 76-79
built-in 76-79
1/0 43-5S, S7
peripheral-card 126
standard input 54, 56

subtraction 103
supply currents 13S
supply voltage 13S
switch 0 3S
switch 1 3S
switch inputs 3S, 167
switches, pushbutton 167
symbolic labels 11 0
SYNC' 146, 153, 174
sync, horizontal 153
Synertek Hardware Manual 141
Synertek Programming

Manual 113

Index

System Monitor see Monitor,
System

T
tape recorder 36, 9S, 166
TA X 192
TAY 192
television set 17, 22, 24, 25, 152
temperature 137
ten-key numeric pad 165
TExT soft switch 2S, 145
text 19-21 , 26-32
text card see SO-column text card
text card , extended SO-column 71
text characters see character

sets
text Page 1 26, 32, 65, 74
text Page 2 26, 27
text window 4S-52, 79
text , 40-column see 40-column

text
text, SO-column see SO-column

text
three-state buffers 170
time constant 39
timing signals 141-2, 149, 159,

1 61 ' 162' 169
toggle 35
transistor-transistor logic 167
TSX 192
TTL 167
TV set see television set
TXA 193
TXS 193
TYA 193

u
UP-ARROW 12
uppercase characters 20, 44, 53
uppercase-restrict mode 45
USER

v
v (Monitor command) 115
validity-check byte SO, S2
variable resistor 16S
VEL 2S, 145, 154
vectors 47, 65, 71

interrupt S1-2, 131
reset 70, 79-S3

ventilation slots 137
VERIFY command 96, 97, 105
vertical blanking 145, 154
vertical counter 153, 155
video counters 153, 157
video display see display, video
video modulator 17, 1S

265

266

video monitor S, 17, 152
video output signal 25, 163
voltage, line 137, 13S
voltage, supply 13S

w
w (Monitor command) 9S-1 00,

116
warm-start reset SO
window, text 4S-52
WNDW' 146, 153, 176
WRITE command 9S-1 00, 116
write-protect 69
writing data 2S
writing to secondary 1/0 35

X
X register 7S, 1S7
XFER 76-9

y
Y register 7S, 12S, 1S7

z
zero page 61, 64, 66-7, 73-S, 92,

113, 126
zero-page addressing 113

Numbers
1 4M 141 , 14 7, 1 77
3. ss MHz color signal 160-2
3. SSM (PAL signal) 147
3. SSM (slot 7 signal) 17 4
3. SSM (auxiliary slot signal) 176
3DOG 102
40-column text 1S, 26, 44, 154
6502 microprocessor

see microprocessor, 6502
6502 stack 73
65028 microprocessor 6, 140
7M 141 , 147, 173, 17S
SO-column display 7, 30, 46, 72,

159, 175
SO-column firmware 45-47, 110,

123-24
COUT1 subroutine 52
deactivating 1 02
in ROM 14S
KEVIN subroutine 54, 56
memory use 131 , 133
reset routine 79

SO-column text 1S, 21 , 30, 44,
154, 162, 175

SO-column text card 7, 17, 21 ,
46, 71 ' 133

SO-column text mode 26

Index

socoL soft switch 2S, 145, 161
so STORE soft switch 2S, 30, 72-

75, 143, 175
BOVID soft switch 15S, 161
BOVID' signal 146, 147, 177

Cast of Characters
1\ 111, 114
? 57
> 57, 110
] 57
* 57, S7
! 57, 111
. S9
$ (in addresses) 113
$ (with Monitor command) 111 ,

117
: (in Monitor commands) 93, 115
+ (inverse format) 56

CONTROL - B 102, 116
CONTROL - C 50, SS, 102, 116
CONTROL -D 130
CONTROL -E 116
CONTROL - K 103, 130
CONTROL - P 46, 102, 117
CONTROL -S 50
CONTROL - U 46
CONTROL - Y 106

<f>O 141 , 142, 144, 146, 147, 150,
167, 174, 177

¢ 1 141 ' 142, 147, 150, 173, 17S
¢ 2 141

-

-

apple! computC!r
,,

20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010
TLX 171576 030-03578

