Appendixes

215

Appendix A

_—————

External Commands
and Functions

This appendix describes HyperCard's external command and function interface. In
addition to general information about external commands and functions, this
appendix contains specific information that requires a reading knowledge of Pascal or
C to be understood. This appendix does not include information about how to write
code, nor does it explain how to use a compiler or assembler to create an executable
resource,

Definitions, usés, and éxumplas

External commands and functions are extensions to the HyperTalk built-in command
and function set. HyperCard includes interface procedures that make extending
HyperTalk in this way convenient and practical for expert programmers.

XCMD and XFCN resources

External commands and functions are executable Macintosh code resources, written
in a Macintosh programming language (such as Pascal, C, or 68000 assembly
language), which are attached to the HyperCard application or a stack with a resource
editor such as ResEdit. The resource type of an external command is "XCMD' and the
resource type of an external function is 'XFCN', They are often named by their
fesource types: external commands are termed “ex-commands” (written XCMDs),
and external functions are “ex-functions” (written XFCNs).

217

XCMDs and XFCNs are handled in much the same way by HyperCard: they are
separately compiled and attached by a resource mover to stacks or the HyperCard
application; they use the object hierarchy in the same way; and they communicate
with HyperCard through the same parameter block data structure.

A Macintosh code resource is a compiled (or assembled) executable code module, An
XCMD' or "XFCN' resource has no header bytes; it is invoked by a jump instruction to
its entry point. These resources are simpler than Macintosh drivers; they can't have
any global (or static) data, and they can't be larger than 32K bytes in size. (For more
details about these restrictions, see “Guidelines for Writing XCMDs and XFCNs," later
in this appendix.)

After they have been created and attached to HyperCard or a stack, external
commands and functions are called from HyperTalk in much the same way that built-
in commands or user-defined message and function handlers are called.

For detailed information on Macintosh resources, see Inside Macintosh, published
by Addison-Wesley.

Uses for XCMDs and XFCNs

External commands and functions can provide access to the Macintosh Toolbox and
to some of HyperCard's own intemal routines; they can provide fast processing speed
for time-critical operations; and they can override built-in HyperTalk commands 1o
provide custom solutions. XCMDs or XFCNs can be used for serial port input and
output routines, custom search-and-replace routines, color graphics display routines,
file input and output routines, and 50 on.

A typical use for an XCMD would be as an interface for a driver, allowing HyperCard

to control an external device such as a videodisc player. Such an interface would have
three parts: the driver, the XCMD, and a HyperTalk handler. The driver would be
completely separate from HyperCard. (See Volume II of Inside Macintosh for
information about writing drivers.) The XCMD would be small; its purpose would be
to convert HyperTalk messages to the appropriate driver calls. The HyperTalk handler
would call the XCMD with various parameters directing it to open or close the driver
or to perform a specific control call.

218 Appendix A: External Cormmands and Functions

Guidelines for writing XCMDs and XFCNs

XCMDs and XFCNs can call most of the Macintosh Toolbox traps and routines, but
they have certain limitations and restrictions. They can't do everything that an
application can do because they are guests in HyperCard's heap. In that regard they

are more like desk accessories than applications. Here are some guidelines for writing
XCMDs and XFCNs:

0 Do not initialize the various Macintosh managers by calling their initialization
routines, That is, don't call InitGraf, InitFonts, InitWindows, and so on,

0 Do not rely upon having lots of RAM available for your XCMD. There is some extra
space in HyperCard's heap, but if HyperCard is running in 750K under
MultiFinder™, for example, an XCMD should not be bigger than about 32K.

€ Do not use register A5 of the 68000-family processor. The value in A5 belongs to
HyperCard, and it points to HyperCard's global data, jump table, and other things
that constitute an “A5 world.” XCMDs do not currently have their own AS world,

0 XCMDs cannot have global darta.

0 Because they cannot have global data, XCMDs cannot use string literals with MPW
C (MPW C makes string literals into global data). To circumvent this restriction, use
'STR ' rescurces or put the strings in a short assembly-language glue file.

0 XCMDs cannot have a jump table, so they cannot have code segments. This

restriction imposes a 32K limit on the size of XCMDs for 68000-based machines
(the 68020 suppornts longer branches),

0 XCMDs can, however, allocate small chunks of memory by standard NewHandle
calls. (You can also allocate memory with NewPtr calls, but they should be used
sparingly to avoid heap fragmentation.)

O If your XCMD allocates some memory in the heap, it should alse deallocate the
memory,

O If an XCMD allocates a handle to save state information between invocations of the
XCMD, then you must pass the handle back to HyperCard o be stored somewhere
in the current stack, such as in a hidden field. You must to convert the handle from
a long integer to a string, because all values are treated as strings by HyperTalk.

0 Since HyperCard jumps blindly to the start of an XCMD's code, it is important that
the main routine actually ends up at the start of the XCMD, In other words, the
XCMD glue must follow the main routine, so the link order is vitally important.

o If, as you write, the size of your XCMD begins to approach 32K, consider
converting it to a driver,

Definltions. uses, and examples

Flash: an example XCMD

An example external command included with HyperCard is f£lash, which inverts
the screen display (changes the black pixels to white and vice versa) a specified
number of times. A version of £lash written and compiled in MPW Pascal has
already been attached to the HyperCard application file (that is, 1o HyperCard itself).

Flash is invoked from HyperCard just like a HyperTalk command. That is, you send
the message flash to HyperCard from the Message box or from an executing script,
The flash message takes one parameter: an integer, The flash XCMD inverts the
screen display twice that many times. For example, the following handler, in response
toa mouseUp message, sendsthe flash message and its parameer. When the
message reaches HyperCard, it invokes the flash external command, which inverts
the screen display 20 times:

on mouselp
flash 10
end mouselp

The screen display flashes (is inverted and inverted back again) 10 times.

Flash listing in MPW Pascal

Here's the Pascal listing for £lash:

{k

* Flash.p - A sample HyperCard XCMD to highlight the screen
- Ceopyright Apple Computer, Inc. 1987-1968.

- All Rights Reserved.

* *F W

* Build inatructions:

-

pascal Flash.p —-o Flash.p.o
* Link Flash.p.o —-sg Flash -zt ¥CMD=0 -m ENTRYPOQINT =-o StackName

W
"1

{5R-]

155 Flash |} { Segment name must be same as command name }

220 Appendix A: External Commands and Functions

{h
* DummyUnit is what HyperTalk jumps to when running the XCMD,

* Also note that XCMDs do not ourrently support their own A5 World,
* thus MO GLOBAL VARIABLES are allowed. If the link fails then that
means the Pascal compiler generated AS-ralative code. (This may

* happen if you try to use the Pascal libraries, for axample,)
&

")

UNIT DummyUnit;

INTERFLRCE

USES MemTypes, QuickDraw, HyperXCmd;

PROCEDURE EntryFoint (paramPtr: XCmdPtr):

IMPLEMENTATION

TYPE Str3l = String[3l];

PROCEDURE Flash (paramPtr: XCmdPtr); FORWARD;
PROCEDURE EntryPoint (paramPtr: XCmdPtr);

BEGIN

Flash (paramPtr) ;
END;

PROCEDURE Flash(paramPtr: XCmdPrr);:
VAR flashCount: INTEGER;

again: INTEGER;
port: GrafPtr;
BLE: Str2535;

when: LongInt;
ticksPtr: *LongInty

{51 XCmdGlue.inc |}

Definitions, uses, and examples

BEGIN
ZaroToPas (paramPtr” .parama[l]*,.str); { first param is flash count }
flashCount := StrToMum(str);
GatPort (port):;
ticksPtr := Pointer ($16A);

IF (paramPtr”.paramCount <> 1) OR (flashCount < 1)
THEN flashCount := 3;

FOR again := 1 TO 2 * flashCount DO
BEGIN
when := ticksPtr® + 4;
InvertRect (port”.portRect);
REPEAT UNTIL ticksPtr®™ >= when;
END;
END;

END.

Flash listing in MPW C

Here's a version of flash written in MPW C:

Ilia
b Flash.c - A sample HyperCard XCMD to highlight the screen
* = Copyright Apple Computer, Inc. 1987-1988.
. - All Rights Reserved.

ol Build instructions:

* ¢ Flash.c -o Flash.c.o
" Link Flash.c.o -sg CFlash -rt XCMD=S5 -go StackName

#define _ SEG__ CFlash /* Segment name must be the same as command name *

finclude <Hypar¥Cmd.h> /* HT interface and #includes Types.h, Memory.h */
#inaluda =QuickDraw.h>

pascal void MacsBugi) extern OxASFF; /* useful for debugging */

222 Appendix A: External Commands and Functions

Your routine MUST be the first code that is generated in the file, as
HyperTalk simply JS5R= to the start of the XCMD segment in mEmory.
Therefore the XCmdGlue.c file must be included after the main routine,
being CFlash in this sample XCMD. Alsc note that ¥CMDs do not currently
support their own AS World, thus NO GLOBAL VARIABLES are allowed.

If the link fails then that means tha C compiler generated AS-relative

code. (This happens if you try to use the ¢ libraries or use atrings
in the code. Use a S5TR resource instead.)

-
W
&

* F % * »

*/

pascal void CFlash(paramPtr)
XCmdBlockPtr paramPer;
{
ashort flashCount, again;
GrafPtr port;
Ser255 atrx;

deroToPas (paramPtr, * (paramPtr->params[0]), Este); /* get flash count */
flashCount = StrToNum(paramPtr, kstr); /* convert to num */
if (paramPtr->paramCount != 1) flashCount = 3; /* default if no param */
if (flashCount < 1) flashCount = 3; /* must be positivae */
GetFort (&port) ;
for (again = 1; again <= flashCount; again++) {

InvertRect (4port->portRect);

InvertRect (fport->portRect);

finclude <XCmdGlue.c> /* C routines for HyperCard callbacks */

Definitions, uses, and examples

gy

Flash listing in 68000 assembly language

Here's the 68000 assembly language listing for £lash:

* Flash.a

- All

Rights Reserwved.

* Build Instructions:

AFlash

@l

22

g3

224

ASm

Flash.a -o Flash.a.o

- B sample HyperCard XCMD in 8000 Assembly

- Copyright Apple Computer, Inc. 1988.

Link Flash.a.o -sg AFlash -rt XCMD=7 =-a StackName

INCLUDE 'QuickEqu.a’
INCLUDE 'Traps.a'
SEG 'AFlash’

FROC

link a6, #-4

move.l d4,={(sp}

move.l &(ad),al

move.l 2(al),al
move.l (al),al

move.w #3,d4
move.b (al)+,dl
emp.b #'0°.dl

blt.s a2

amp . b #'9',dl

bgt.s Az

and.w #5000F,dl
move.w dl,dd

paa =4 (ab)
GetPort

bra.s @4

move.l -d4(ag),ald

pea portRect (al)

_InverBect

move.l -d4(ag),al

peaa portRect (al)

_InverRect

Segname must be same as command nase
usas al,al,dl

Save

; gat paramPtr in a temp req

get handle to flashCount (as ¢ string)

; deraf

SerTolum dafault cesult

; get a char
: test for a number

less than valid

; greater than wvalid

. mask to value of lagal char

gtick value into result

; var result of GetPFort

get inte DBRA loop

; get port
; address of portRect

; get port
; address of portRect

Appendix A: External Commands and Functions

@4 divea dd, @83

move.l (sp)+,d4 ; restore

unlk a6

move.l (sp}+,al ; rts Pascal style
add. 1 #4,a7

Jmg (a0)

EMND

Peek: an example XFCN

An example external function is peek, which returns the contents of a memory
location whose address is passed with the function call. Peek is not already attached
to the HyperCard application like the flash XCMD; you must compile it yourself
and amtach it to HyperCard or a stack with a resource editor like ResEdit (see “Attaching
an XCMD or XFCN" later in this appendix).

Peek listing in MPW Pascal
Here's the Pascal listing for peek:

* Peek.p - A sample HyperCard XFCN to return the contents of memory
* = Copyright Apple Computer, Inc. 1987,19B8.

* = All Rights Reserved.
&

* Build instructions:

* Pascal Peek.p -o Peek.p.o
* Link Paek.p.o -sg Peek -rt XFCN=1 -m ENTRYPOINT -o StackNama

*)
{5R=]
{%5 Peek } { Segment name must be same as command name)

:*

* DummyUnit is what HyperTalk jumps to when running the XCFN.

* Alsc note that XCFNs do not currently support their own AS World,
* thus HO GLOBAL VARIABLES are allowed, If the link fails then that
* means the Pascal compiler generated AS-relative code. (This may

* happen if you try to use the Pascal libraries, for example.)

")

Definitions, usas, and examples 225

UNIT DummyUnit;

INTERFACE

USES MemTypes, HyperkKCmd;

PROCEDURE EntryPoint (paramPtr: XCmdPUr);

IMPLEMENTATION

TYPE Str3l = String(3l];

WordPtr = “~INTEGER;
LongPtr = “Longlnt;

PROCEDURE Peek (paramPtr: XCmdPtr); FORWARD;
PROCEDURE EntryFoint (paramPtr: XCmdPtr):
BEEGIN

FPeak (paramPLr];
END;
PROCEDURE Peek (paramPtr: XCmdPtr):
VAR peekhddr,peekSize, peekVal: LongInt;

str: S5tr235;

181 xemdGlue.ine }

226 Appendix A: External Commands and Functions

BEGIN
WITH paramfFtr® DO
BEGIN
{ first param is addr }
ZeroToPas (params[1]", str); |
peckhAddr := StrToMum(str);

| second param, if given, is size }
peekSiza 1= 1r
IF paramCount = Z THEM
BEGIN
ZeroToPas (parama (2], atr) ;
peekSize := StrToNum(str):
END;

CASE peekSize OF
1l: peekval := BAND (3000000FF, Ptr (paekhddr) =) ;
2: peekVal := BRND [S0000FFFF, WordPt ¢ (BAND ($FFFFFFFE, peekhddr))~} ;
i: peekVal := LongPte (BAND (SFEFFFEFE, peckaddr)) ~;
OTHERWISE peekVal := 0;
END;

BEr := NumToStr (paakval);
returnValue := PasToZero(str);
END;
EMD;

END.

Definitions, uses. and examples 227

Peek listing in MPW C
Here's the MPW C code listing for peek:

,-"*

" peek.c - A sample HyparCard XFCN to return the contents of mamory
" - Cepyright Apple Computer, Inc. 1987,1988.

* - All Rights Reserved.

* Build instructions:

* C Peak.c -0 Peeck.c.o
* Link Peek.c.c -sg CPeek -rt XKECN=6& -o StackName

of)
gdefine _ SEG__ CPeek /* Segment namé must be the same as command name */
$include <HyperXCmd.h> /* HT interface and #includes Types.h, Memory.h */
pascal void MacsBug{) extern OxROFF; /* useful for debugging *f

§define PEEKBYTE (address) *{{char *) address)
#dafine PEEHWORD (address) *((short =) address)
fdefine PEEKLONG (address) *((long *) address)

" Yaur routine MUST be the first code that is generated in the file, as

o HyperTalk simply J5Ra to the start of the XFCH segment in memory.

*# Therefore the XCmdGlue.c file must ba included after the main routine,

% being CPeek in this sample ¥FCH. Also note that XFCHs do not currently
* support their own A3 World, thus MO GLOBAL VARIABLES are allowed.

*# If the link fails then that means the C compiler generated AS-relative

* code. (This happens if you try to use tha C libraries or use strings

* in tha cede, Use a STR rescurce instead.)

*f

228 Appendix A: External Commands and Functions

pascal vold CPeek (paramPtr)
XCmdBlockPLr paramPer;

char str[256];

short arge;

long peekhddr, peckSize, peekVal;
Handle argvl, argv2;

argoc = paramPtr->paramCount;
argvl = paramFtr->params[0];
argvZ = paramPtr->params[1];

ZeroToPas (pazamPtr, *argvl, str); /* Ctop string */
peekhddr = StrToMum({paramPtr, astr); /= get addrass =/

if {arge == 2) |
ZercToPas (paramPtr, *argvi, strl; /* Ctob string */
peekSize = StrToNum(paramPtr, str); /* get size +/
I
elge
peekSize = 1;

switch (peaksize) |
case 1: peekVal = PEEKBYTE (peekAddr); break:
case IZ: peekVal = PEEKWORD (peekaddr) ; break;
casea 4: peekVal = PEEKLONG (peekhddr): break;
default: peskVal 0

1
NumTesStr (paramPtr, peekVal, str);

f* XFCH: make sure Lo return a result, the only change from an XCMD */
paramPtr->returnValue = PasToZero (paramPtr, str);

#include <XCmdGlue.c>

Peek is invoked just like a user-defined function handler. That is, you put the function
name in a HyperTalk statement followed by one argument within parentheses—an
integer representing the memory location whose contents you want HyperCard to
return, For example:

on mouselp
put peek(0) into msg
&nd mouseUp

The current contents of memory address 0 are displayed in the Message box.

Definitions, uses. and examples 229

Accessing an XCMD or XFCN
You access XCMDs and XFCNs from HyperTalk using the regular message syntax and

user-defined function call syntax. The message or function call is passed through the
HyperCard object hierarchy,

Invoking XCMDs and XFCNs

You invoke an XCMD as you do a message handler. That is, you type the name of the
XCMD followed by its parameters in a HyperTalk script or in the Message box.
Separate the parameters (if there are more than one) with commas, and put quotation
marks around parameters of more than one word. When the script executes or when
you send the Message box contents by pressing Return or Enter, HyperCard sends the
message through the normal object hierarchy, For external commands, the
Macintosh resource name correlates (o the message name—the first word in the
MEeSsage.

Similarly, you call an XFCN in a HyperTalk statement in the same way you would a
user-defined function (use parentheses rather than the word the), which calls a
function handler somewhere farther along the hierarchy. Enclose any parameters
within parentheses, separate them (if more than one) with commas, and put quotation
marks around parameters of more than one word. If the function takes no parameters,
append empty parentheses after it. For external functions, the Macintosh resource
name correlates to the function name—the word preceding parentheses in the
function call.

You can pass a maximum of 16 parameters to an XCMD or XFCN.

Object hierarchy

External commands and functions use the object hierarchy in the same way as message
and function handlers and built-in commands and functions. External commands
and functions can be attached to any stack or to the HyperCard application.

If a stack receives a message or function call for which it has no handler, then before
passing the message or function call to the next object, it checks to see if it has an
external command or function of the same name. When HyperCard receives a
message or function call, it checks to see if it has an external command or function
before it looks for a built-in command or function.

Thar is, HyperCard searches for message and function handlers, XCMDs and XFCN,
and built-in commands and functions through the hierarchy shown in Figure A-1.

Chapter 2 discusses the message-passing hierarchy, including the dynamic path, in
detail.

230 Appendix A: External Commands and Functions

[Messoges and function calls j

- -

Fleld handlers Button handlers

Card
handlers

Background
handiars

Stock
handlars

Stack
XKCMDs and XFChs

sy Home stack
Hanclers

Home stack
XCMDs and XFCNs

HyperCard
)(CMI;Egnd XFCNs
r tam fila

X and XFCNs

HyperCord commands
and functions

[T& T#%

T&

T

Current card ==
handlers

Curent background
Dynamic | hordiers
path

Current stack
handlers

LR Current stack
\ XCMDs and XFCMs

Figure A-1
Message-passing hlerarchy, including XCMDs and XFCNs

Accessing an XCMD ar XFCN 231

Parameter block data structure '

If HyperCard matches a message or function call with an external command or
function, it passes a single argument to the XCMD or XFCN: a pointer (0 a parameter
block called an X¥CmdBlock. All communication between HyperCard and the XCMD
or XFCN passes through the parameter block. In Pascal, the parameter block data
structure isa record;inCit'sa struct.

HyperCard uses the first two fields of the parameter block to pass information to the
XCMD or XFCN before invoking its execution. The XCMD or XFCN uses the other data
fields in the XCmdBlock o pass back results and to communicate with HyperCard
during execution.

The parameter block is listed in both Pascal and C in the respective definition
interface files later in this appendix. The Pascal parameter block is also shown here for
convenience:

TYPE

*CmdPtr = “XCmdBlock;
XCmdBlock =

RECORD
paramCount: INTEGER;
params i ARRAY([1l..16] OF Handle;

returnValue: Handle;
passFlag: BOOLEARM;

entryPolint: ProcPtr; { to call back to HyperCard }
raguest: INTEGER;
result: INTEGER;
inArgs: ARRAY[1..8] OF LongInt;
cutArgs: ARRAY[l..4] OF LongIntj;
END;

232 Appendix A: Extermnal Commands and Functions

Passing parameters to XCMDs and XFCNs

Before calling the XCMD or XFCN, HyperCard places the number of parameters and
handles to the parameter strings in two fields of the XCmdBlock: paramCount and
params,

ParamCount

HyperCard puts an integer representing the parameter count in fleld paramCount,
You can pass a maximum of 16 parameter strings.

Params

HyperCard evaluates the parameters and puts their values into memaory as zero-
terminated ASCII strings. Before it invokes the XCMD or XFCN, HyperCard puts the
handles to the parameter strings into the params array.

Passing back results to HyperCard

When an XCMD or XFCN finishes executing, HyperCard examines rwo fields of the
ACmdBlock: returnValue and passFlag.

ReturnValue

An XCMD or XFCN can optionally store one zero-terminated string to communicate
the result of its execution. HyperCard will look for a handle to the result string in the
returnValue field of the XCmdBlock. Storing a result string is optional for an
XCMD; it is expected of an XFCN, but it's not required. If you store a result string
handle into returnValue inanXCMD, the user can get it by using the HyperTalk
function the result (useful for explaining why there was an error). For an XFCN,
HyperCard uses the returnValue string to replace the function call itself in the
HyperTalk statement containing the call. If you don't store anything, the result is the
cmply string,

PassFlag

When an XCMD or XFCN terminates, HyperCard examines the Boolean value of the
passFlaqg field. If passFlag is false (the normal case), control passes back to the
previously executing handler (or to HyperCard's idle state if no handler was
executing). If passFlag istrue, HyperCard passes the message or function call to
the next object in the hierarchy. This has the same effect as the pass control
slatement in a script.

Parameter block data structure 233

Callbacks

The remaining five fields of the XCmdBlock record have to do with calling
HyperCard back in the middle of execution of an XCMD or XFCN. You use the
callback mechanism to obtain data or request HyperCard to perform an action.
HyperCard has 29 callback requests (see “Request Codes” later in this appendix). The
five XCmdBlock fields that compose the callback interface are entryPoint,
request, result, inArgs,and outArgs.

EntryPoint

When HyperCard sets up the XCmdBlock data structure before passing control to an
XCMD or XFCN, it places an address in entryPoint. The XCMD or XFCN uses this
address to execute a jump instruction to pass control to HyperCard for the callback.

Request

Before executing the jump instruction, the XCMD or XFCN puts an integer
representing the callback request it’s making into the request field. The request
codes are listed in “Callback Procedures and Functions” later in this appendix.

Result

After it completes the callback request, HyperCard places an integer result code in the
result field. The result code can be 0, 1, or 2. If the callback executed successfully,
the result is 0; if it failed, the result is 1; if the callback request is not implemented in
HyperCard, the result is 2,

InArgs

The XCMD or XFCN sends up to eight arguments to HyperCard as long integers in the
inArgs array. Depending on the callback request, HyperCard expects arguments in
certain elements of the inArgs array. In many callbacks, the arguments are pointers
to zero-terminated strings. The callback arguments are shown in Pascal in “Callback
Procedures and Functions” later in this appendix.

OutArgs

After it executes the callback request, HyperCard returns up to four long integers (or
other types, such as handles) to the XCMD or XFCN as elements of the outArgs

array. The arguments HyperCard returns from callbacks are shown in Pascal in
“Callback Procedures and Functions” later in this appendix.

234 Appendix A: External Commands and Functions

Callback procedures and functions

If you want to manage a callback o HyperCard yourself, you can define the
XCmdBlock data structure in your XCMD or XFCN. Then you can put values you want
to send to HyperCard in inArgs, puta request code in request, and execute a
jump instruction to the address HyperCard places in entryPoint, | IyperCard
returns values in outArgs and a result code in result,

However, if you use MPW Pascal or C, you can take advantage of interface definition
and “glue” files. (The definition and glue files are listed later in this appendix and are
also available on disk from APDA, the Apple Programmer's and Developer's
Association. Information about APDA is listed ar the end of this appendix.) The
definition and glue files provide simple procedure and function calls that you can use
inside your XCMD or XFCN to handle callback requests more easily. Include them
when you compile your XCMD or XFCN.

The Pascal code for an XCMD or XFCN should include the definition file
HyperXCmd.p atthe beginning of the USES clause and the glue file
XCmdGlue.inc atthe end withthe $T directive. There must be an argument of type
ACmdPtr passed by HyperCard to the XCMD or XFCN. In the glue routines, all
strings are Pascal strings unless noted as zero-terminated strings (which have no length
byte; the end of the string is indicated by a null byte). In general, if a handle is
returned, the XCMD or XFCN is responsible for disposing of it.

Definition interface files

The MPW Pascal definition interface file is HyperXCmd.p. The MPW C definiton
interface file is Hyperxcmd.h. These files define the XCmdBlock parameter hlock
described earlier in this appendix. They also define the constants representing the
callback result codes and request codes.

Definition file in MPW Pascal
The interface definition file in MPYW Pascal is as follows:

{*

* HyperXCmd.p = Interface to HyperTalk callback routines
* - Copyright Apple Computer, Inc. 1387,1988.
* = All Rights Reserved.

*)

UNIT HyperXCmd;

Callback procedures and functions 235

INTERFACE

CONET

{ result codes]

xressuoo = 0;
*rasFail = 1;
xresNot Imp = 2

{ request codes |}
xreqSendCardMessage = 1;

xregEvalExpr - i
xregStringLength = 3
xregStringMatch = Az
xregSendiHCMeassage - 5;
xreqfercBytes = G
xreqPasTofero = 1
xregZeroToPas = B;
xregitrTolong = 3
xregstrTolum = 10;
xragStrToBool = 11;
xreqitrToExt m 127
xreqLongToStr = 13;
xreglumToStr = l4;
sxregiumToHax = 15;
xreqBoolToStr = 16;
xregExtToSte = 17;
xregGetGlobal = 18:
xreqietGlobal - 19;
xreqGetFieldByName = 20;
xreqEetFieldByNum = 21;
xreqGetFieldByID = 22;
xregSetFieldByName = 23;
rxragsetFieldByNum = 24
xregSetFieldByID - 25;
xreqgstringBgual = 26;
sregReturnToPas - 27
xragicanToReturn = 28;
xregScanToZero = 39;

236 Appandix A: External Commands and Functions

TYPE

XCmdPer = “XCmdBlock;
ACmdBlock =

RECORD
paramCount : INTEGER;
params: ARRAY[1..16] OF Handle;
returnvValue: Handlea;
passFlag: BOOLERN;
entryPoint: ProcPtr; | to call back to HyperCard }
regquast: INTEGER;
reault: INTEGER;
inArgs: ARRAY([1..B] OF LongInt;
outArgs: ARRAY[1..4) OF LonglInt;
END;

END;

Definition file in MPW C

The interface definition file in MPW C includes the parameter block definition, the
result and request code constants, and forward definitions for the glue routines. The
definition file is as follows:

_I,-'i
» HyperXCmd.h = Intarfaces for HyperTalk callback routines
. = Copyright Apple Computer, Inc. 1987,1988,
K = All Rights Reserved,
-

® #include this file before your program.
* #include "XCmdGlue.c" after your code.

"

#include <Types.h>
#include <Memory.h:>

pascal veoid Debugger () extern 0xAY9FF;

Callback procedures and functicns 237

238

typedef astruot XCmdBlock {

short paramCount;
Handle params[1€];
Handle returnValuea;
Boolean passFlag;
void {*entryPFoint) () ; I
short request;
shart rasult;
long inArga[8];
long outArgs (4] ;

} XCmdBlock, *XCmdBlockPtr;
typedef struct Strdl {

char guts[32];
} Stril, *Str3lPtr;

/* result codas */

fdefine xresfucc 0
#define xreasFall 1
$¢dafine xresMotImp 2

/* regquest codes ¥/

fdafine xregSendCardMessage
fdefine xregEvalExpr
#define xregStringlength
fdafine *ragScringMatch
#define aregl3endHCHMessage
#dafine xregleroBytes
fdefine xregPasToZero
#define xreqiercToPas
#define xregStrToLong
fdefine xragqStrTolum
#define xreq8trToBool
#dafine xreqStrToExt
fdefine xreglongTosStr
#define ®xreglumToStr
fdefine xreglumToHex
gdafine xregBoolToStr
fdefine xregExtToStr
#define xreqGetGlobal

to call back to HyperCard */

oW oe =1 g & W R

12
13
14
15
16
17
18

Appeandix A: External Commands and Functions

#define xreqSetGlobal 18
fdefine xregGetFieldByName 20
f#define xregGetFieldByNum 21
#dafine xreqBetFieldByID 22
#define xregSetFieldByNama 23
#define xregSetFieldByNum 24
fdafine xreqSetFieldByID 25
fdefine xregStringEqual 26
#define xragReturnToPas 27
#dafine xregScanToReturn 28
#define xregScanToZerc 39 /* was supposed to ba 231 Oopsl */

/* Forward definitiens of glue routines. Main program
must ineclude XCmdGlue.c after its routines. w/

pascal veoid SendCardMessage (paramPtr,msg)

¥CmdBlockPtr pacamPtr; StringPtr msg ; extern;
pascal Handle EvalExpr (paramPtr,expr)

XCmdBlockPtr paramPtr; StringPtr eXpr; extern;
pascal long Stringlength(paramPtr, strPtr)

ACmdBlockPtr paramPLe; StringPtr strPLr; extern;
pascal Ptr StringMatch(paramPtr,pattern,target)

XCmdBlockPtr paramPtr; StringPtr pattern;

Ptr targat; axtern;
pascal void SendHCHessage (paramPtr,msg)

KCmodBlockPtr paramPtr; StringPtr msg; axtarn;
pascal vold ZeroBytes(paramPLr,dstPtr, longCount)

¥CmdBlockPrr paramPtr; Ptr dstPtr;

long longCount; extern;
pascal Handle PasToZero(paramPtr,pasStr)

¥CmdBlockPtr paramPtr; StringPtr passStr; extern;
pascal void ZercToPas (paramPtr, zeroStr, pasStr)

HimdBlockPtx paramPtr; char *zeroStr;

StringPtr pasStr; axtern;
pascal long StrTolong(paramPtr, strPtr)

XCmdBlockPtr paramPtr; Str3l = atrPtr; extern;
pascal long StrToNum(paramPtr,str)

XCmdBlockPtr paramPtr; Str3l * gtr; extern;
pascal Boolean StrToBool (paramPtr,str)

XCmdBlockPtr paramPtr; 8tril # str; extern;
pascal void StrTeExt (paramPLr,str,myext)

XCmdBlockPLe pacamPtr; Stril = atr;

extended * my&xt ; extern;

Cdllback procedures and functions 239

pascal void LongToStr (paramPtr, posNum, mysts)

XCmdBlockPte paramPtr; long posHum;
8tr3l * mystr; exXbern;
pascal void HumToStr {paramPtr, num, mystrs)
¥CmdBlockPEr paramPte; long num;
Bbr3l * mystr; extern;
pascal void NumToHex (paramPtr, num, nDigits, mystz)
¥CmdBlockPLtr paramPFtr; long num;
ghort nDigits; Str3l * mystr; extern;
pascal vold BoolTosStr (paramftr, bool, myste)
XCmdBlockPtr paramPtr; Boolean bool;
stril * mystr; extern;
pascal wvoid ExtTasStr (paramPtr, myext mystr)
¥CmdBlockPtr paramPtr; extended * myext;
Str3l * mystr; extern;
pascal Handle GetGlobal (paramPtr,globMame)
XCmdBlockPEr paramPtr; StringPtr globMame; extern;
pascal wvolid SetGlobal (paramPtr, globName, glebValue)
XCmdBlockPLz paramPtr; SrringPtr globName;
Handle glebValue; extern;
pascal Handle GetFieldnyNametpu:amptt,cardfieldflag.fieldNnmeh
¥CmdBlockPLro paramPtr; Boolean cardFieldrlag;
BtringFtr fieldName; extern;
pascal Handle GetFieldbyWum(paramptr, cazdfieldFlag, fieldium)
¥CmdBlockPtr paramFtr; Boolean cardFieldfFlag;
short fieldlum; extarn;
pascal Handle Get?ieldByID{paramft:,nardFialdElag,Iie]dln}
XCmdBlockPtr paramPtr; Boolean cardFieldFlag;
short fialdID; extern;
pascal wveoid SULFieldEyNamu{paramFlr,cardFiﬂldElag,IiEBdName,fiEldValJ
¥CmdBlaockPtr paramPtr; Boolean cardFieldFlag;
BtringPtr fieldName; Handle fieldval; extern;
pascal void SetFieldByNum{pa:amPt:,ﬂardFialdFlag,ijelduum,fialdValJ
XCmdBlockPtr paramPtr; Boolean cardFieldFlag;
short fialdNum; Handle fieldval; extern;
pascal void ScLFﬁeldHyIDipnramrtr,cardFieldFlag.fieldID,Eialdval}
XCmdBlockPtr paramPtr; Boolean cardFieldFlagy
short fieldID; Handle fieldval; extern;

Appendix A: External Commands and Functions

pascal Boolean StringEqual (paramPtr,strl,stz2)
XCmdBElockPtr paramPtrc; Str3l * arrl;
Seral » str; extarn;
pascal wvoid ReturnToPas (paramPtr, zerosStr, passtr)
XCmdBlockPtr paramPtr; Ptr zeroStr;
StringPtr pasStr; extern;
pascal void ScanToReturn(paramPtr, scanHndl)
XCmdBlockPtr paramPtrc; PEr * scanHndl; extern;
pascal void ScanToZerc{paramPtr, scanHndl)
XCmdBlockPtr paramPtr; Ptr scanHndl; extern;
Glue routines

The MPW Pascal callback glue routines file is XCmdGlue. inc. The MPW C definition
file is XCmdGlue.c. These files define the interface procedures and functions that
handle callback requests for XCMDs and XFCNs written in the same language. The first
line of each procedure or function definition shows the name and parameters that you
use to call it.

Glue routines in MPW Pascal

The first procedure defines the jump instruction with which the XCMD or XFCN passes

control to HyperCard to carry out its callback request. The MPW Pascal glue routines
are as follows:

{I

* XCMDGlue.inc - Implementation of HyperTalk callback reutines

* = Copyright Apple Computer, Inc. 1987,1988.
= All Rights Reserved.

*

{ Assumes the XCHMD has included this file and
has named its argument "paramPtz" }

Callback proceduras and functions 241

PROCEDURE DoJsr(addr: ProcPtr); INLINE $205F,54E90:

FUMCTION StringMatch(pattern: Str235; target: Ptr): Ptr;
BEGIN
WITH paramPtr® DO
BEGIN
inArgs(l] := ORD(Epattern);
inArgsa[2] := ORD(target):
request ;= xregStringMatch;
DoJsc (enteyPoint) ;
StringMatch := Ptr{outhrga([l]);
END;
END;

FUNCTION PasTofero(str: Str253): Handle;

BEGIN
WITH paramPtr® DO
EEGIHN
inArgs([l] := ORD(@str};
request (= XregPasToZero;
DoJsr (entryPelnt);
PasTelerc := Handle (outArgs(l]);
END;
END;

PROCEDURE ZercToPas(zeroStr: Ptr; VAR pasStr: 5tr233);

BEGIN
WITH paramPtr™ DO
BEGIN
inkrga[l] := ORD(zerosStr);
inArgs (2] := ORD(@passtr);
request 1= xregieroToPas;
DoJdsr (entryPoint)
END;
END;

242 Appendix A: External Commands and Functions

FUNCTION StrTolong{str: Str3l): LonglInt;
BEGIN
WITH paramPrc” DO
BEGIN
inhrgs([l] := QRD(@str);
request := xreqStrTolong:
DoJdsr (antryPoint) ;
StrToLong := outArgs(l];
END;
END;

FUNCTION StrToMum(str: Str3l): LongInt:
BEGIN
WITH paramPtr" DO
BEGIN
inArgs[l] := CRD{@str);
requast := xreqStrToNum;
DoJsr (entryPoint) ;
StrToNum := outArgs[l)];
END;
END;

FUNCTION StrToBool (str: Strll): BOOLEAN;
BEGIN
WITH paramPtr”* DO
BEGIN
inArgs[1l] := ORD(@str);
raquast := xregStrToBool;
DoJsr (entryPoint) ;
BtrToBool := BOOLEAN (outArgs[l]);
END;
END;

FUNCTION StrToExt(str: Stril): Extended;
VAR x: Extended;

BEGIN
WITH paramPtr® DO
BEGIN
inArga[l] := ORD(@str);
inArga[2] := ORD(@x);
request := xreqStrToBExt;
DoJsc (entryPoint) ;
StrToExt := x;
END
END;

Cdllback proceduras and functions

243

FUNCTION LongToStr (pesium: LongInt): Stril;
VAR str: Str3l;
BEGIN
WITH paramPtrc” DO
BEGIN
inArgs[l] := posNum;
inArgs[2] := ORD(BsLr);
request := xreglLongToStr;
Dodsr (entryPolint) ;
LongToStr := sLr;
END;
END;

FUNCTION NumToStr(num: LongInt): Stril;
VAR str: S5tr3l;

BEGIN
WITH paramPtr™ DO
BEGIN
inArga[l] := num;
inArgs[2] := QRD(@str);
request = xreglumToStr;
podsr (entryFoint) ;
HumTeStr := str;
END;
END;

FUNCTION NumToHex(num: LongInt; nDigits: INTEGER): Stril;
VAR str: Stxr3l;

BEGIN
WITH paramPtr® DO
BEGIH
inArgs[l] := num;
inArgs[2] := nDigits;
inArgs[3] := ORD(@str);
request = xreglumToHex;
Dodsr (entryPelint);
HumToHex := SLr;
EMD
ERD;

244 Appendix A: External Commands and Functions

FUNCTION ExtToStr({num: Extended): Str3l:
VAR str: Stril;

BEGIN
WITH paramPtr™ DO
BEGIN
inArgs(1] := ORD(@num);
inArga[2] := ORD(@str);
request := xreqExtToStr;
Dodsr (entryPoint) ;
ExXtTaStr := str;
END;
END;

FUNCTION BoolToStr(bocl: BOOLEAN): Stril:
VAR str: Str3l;

BEGIN
WITH paramPtr™ DO
BEGIN
inArgs[l] := LoangInt (bool);
inArgs[2] := ORD{@str);
request = xreqgBoolToStr;
DoJsr (entryPoint) ;
BoolToStr := str;
END;
END;

PROCEDURE SendCardMessage (msg: Str255):
BEGIN
WITH paramPtr® DO
BEGIN
inArgs([l] := ORD(Bmsg);
request := xreqgSendCardMeassage;
Dodsr (entryPoint);
END;
END;

PROCEDURE SendHCMessage (msg: Stri255);
BEGIN
WITHE paramPtr® DO
BEGIN
inArgs[l] := ORD(8msg);
request = xreagSendHCMessage;
Dodar {entcyPoint) ;
END ;
END;

Callback procedures and functions

245

FUNCTION EvalExpr(expr: Str253): Handle;

BEGIH
WITH paramPtr® DO
BEGIN
inArgs[l] := ORD(Rexpr);
. request := xregEvalExpr;
DoJdsr (entryPoint);
EvalExpr := Handle (outhArga[l]);
END;
END;

FUNCTION StringLength{strPtr: Prr): Longlnt;

BEGIN
WITH paramPtr”™ DO
BEGIN

inArga[l] := ORD(strPtr}:

request := xregStringLength;

DoJdsr (entryPoint) ;

Stringlength := ocutArgs[l]:
! END;
| END;

FUNCTION GetGlobal (globNama: Str255): Handle;

BEGIHN
WITH paramPtrc™ DO
BEGIHN
inArgs[l] := ORD(@globName) ;
request = AregGetGlobal;
podsr {(entryPolint) ;
GatGlocbal := Handle (outhrgs(ll):
END;
END ;

PROCEDURE SetGlebal (globName: Str2S55; globValue: Handle);

BEGIN
WITH paramPte® DO
BEGIN
inkrgs (1] := ORD(@globName);
inhrga[2] := ORD(glcbValua);
request = ’regSetGlobal;
DoJar (entryPoint) ;
END;
END;

246 Appendix A: External Commands and Functions

FUNCTION GetFieldByName (cardFieldFlag: BOOLEAN; fieldMame: Str255): Handle;
BEGIN
WITH paramPtr” DO
BEGIN
inArgs[l] := ORD{oardFieldFlag);
inArgs[2] := ORD(@fialdName);
request := xreqGetFieldByName;
DoJsr (entryPoint);
GetFieldByName := Handle (outArgs[l]);
END;
EMND

FUNCTTON GetFieldByMum(cardFieldFlag: BOOLEAN; fieldMum: INTEGER): Handle;

BEGIN
WITH paramPtc® DO
BEGIN
inArgs([l] := ORD(cardFieldFlaq);
inArga[2] = fieldNum;
request := xregGetFieldByNum;
DoJsr (entryFPodint) ;
GetFieldByNum := Handle (outArgs([1]);
EHD;
END;

FUNCTION GetFieldByID (cardFfieldFlag: BOOLEAN; fieldID: INTEGER): Handle:

BEGIN
WITH paramPtr® DO
BEGIN
inArgsa(l] := ORD(cardFieldFlag);
inArgs[2] := fieldID;
requeat := xregGetFieldByID;
Dodsr (entryPoint) »
GetFieldByID := Handle(outArgs[1]):
END;
END;

Callback procedures and functions 247

PROCEDURE SctFisldByName (cardFieldFlag: BOOLEAN; fieldMame: S5tr2i5; fieldval: Handle);

BEGIHN
WITH paramPtr™ DO
BEGIN
inArgs[l] := ORD{cardFieldFlaq);
inArgs([2] := ORD(@fieldName];
inArgs[3] := ORD(fieldVal):
request = xregSetFieldByName;
Dodsr{entryPolint}) ;
END;
END 7

PROCEDURE SetFieldByMum(cardFieldFlag: BOOLEARN; fieldNum: INTEGER; fieldval: Handle);

BEGIN
WITH paramPtr® DO
BEGIHN
inArgs[l] := ORD(cardFieldFlag);
inArgs[2] := fieldNum:
inArgs([3] := ORD(fieldval);:
request := xregietFisldByNum;
Dodsr {entryPodnt) ;
END;
END;

PROCEDURE SetFieldBylID(cardFieldFlag: BOCLEAN; fieldID: INTEGER: fieldval: Handle);

BEGIN
WITH paramPtr™ DO
BEGIN
inArgs (1] := ORD{cardFieldFlag);
inArgs[2] := fieldID;
inArgs[3] := ORD{fieldVal};
request 1= xregSetFleldByID;
pDodsr (entryPolnt) ;
END ;
EHD;

FUNCTION StringEqual (strl,strZ: Stri55): BOOLEAN;

BEGIN
WITH paramPtr™ DO
REGIN
inArgs[1l] := ORD({@strl);
inArga[2] := ORD(Batri);
requast := xregStringBgqual;
DoJsrlenteyPolnt) ;
tringBgual := BOOLEAM {outhArgs[1]);:
END;
END;

248 Appendix A: External Commands and Functions

PROCEDURE ReturnToPas (zeroStr: Ptr; VAR pasStr: Str255);

BEGIN
WITH paramPtr”™ DO
BEGIN
inArgs[l] := ORD(zaroStr);
inArgs (2] := ORD(@passStr):
reajgquest = xXregHeturnToPas;
Dodsr (entryPoint};
END;
END;

PROCEDURE ScanToReturn (VAR scanPtr: Ptr);
BEGIN
WITH paramPtr™ DO
BEGIN
inArgs([l] := ORD(8scanPtr};
request := xregScanToReturn;
DoJar (entryPoint) ;
EHD;

END;

PROCEDURE ScanToZero (VAR scanPtr: Ptr);
BEGIN
WITH paramPtz® DO
BEGIN
inArgs[l] := ORD(@scanPtr};
request := xregScanToZers;
Dedsr (entryPoint) ;
END;
END;

PROCEDURE ZeroBytes (dstPtr: Ptr; lengCeunt: LonglInt);

BEGIN
WITH paramPtr" DO
BEGIN
inArga(l] := ORD(dstPtr);
inArgs[2] := longCount;
request := xregleroBytes;
DoJdsr (entryPolint) ;
END;
ENWD;

Cuallback procedures and functions 249

Glue routines in MPW C
The glue routines in MPW C follow:

‘i*

" KemdGlue.c - Implementation of HyperTalk caliback routines
" - Copyright Apple Computer, Inc. 1987,1988.

* = All Righta Reservad.

. #include "HyperXCmd.h" before your program.
" $include thias file after your code.

*

*/

pascal void SendCardMessage (paramPtr,mag)
*CmdBlockPtr paramPtr; StringPtr mag;
/* Send a HyperCard message (a command with arguments) to the current card.
masg is a pointer to a Paacal format string. */

paramPtr->inArgs[0] = (long)msg;
paramPtr->request = xregsSendCardMassage;
paramPtr->antryFoint () ;

pascal Handle EvalExpr (paramPtr,expr)
¥CmdBRlockPtr paramPtr; tringPLr axpr;
/* Evaluate a HyperCard expression and return the answer. The answer is
a handle to a zero-terminated string. */

paramPtr->inArgs [0] = {(leng)expr;

paramPtr->reguest = xredgiEvalExpr;
paramPte-rentryPoint {});

return (Handle)paramPtr=>cuthrgs([d];

250 Appendix A: External Commands and Functions

pascal long Stringlength (paramPtr,strPtr)
XCmdBlockPtr paramPtr; StringPtr strPtr;
{* Count the characters from where strPtr peints until the next zero byte.
Does not count the zero itself. strPrtr must be a sero-terminated string. */

paramPtr->inArga (0] = (long)stcPtr;
paramPtr=>request = xregStringlength;
paramPtr->entryPoint();

return (long)paramPLr->outlrgs[0];

pascal Ptr StringMatch(paramPtr,pattern,target)
¥CmdBlockPtr paramPtr; StringPtr pattern; Ptr target;
/* Perform case-insensitive match looking for pattern anywhere in
target, returning a pointer to first character of the first match,
in target or WIL if no match found. pattern is a Pascal string,
and target is a zero-terminated string. »/

paramPtr->inArgs (0] = (long)pattern;
paramPLr=>inhArgs[l] = (long)target;
paramPtr->request = xregStringMatch;
paramPtr->entryPoint ()

return (Ptr)paranPtr->outhArgs(0];

pascal void SendHCMessage (paramPtr, mag)
XCmdBlockFtr paramPtr; StringPtr msg;
/* Send a HyperCard message (a command with arquments) to HyperCard.
m3g is a pointes to a Pascal format string. %/

paramPtr=>infArga (0] = {(long)msg:
paramPtr->request = xregSendHCMessage;
paramPtr-»antryFoint () ;

Callback procedures and functions 251

pascal void ZercBytes (paramPtr,dstPtr, longCount)
XCmdBlockPrr paramPtr; Ptr datPtr; leng longCount:;
/* Write zeros intc memory starcting at destPtr and going for longCount
numbar of bytas. */

paramPtr->inArga(0) = (long)dstPtr;
paramPtr->inArgs[l] = longCount;

I paramPtr->regquest = xregieroBytes;
| paramPtr-rentryPoint () ;

| pascal Handle PasTolero(paramPtr,pasStr)
- XCmdBlockPrr paramPtr; StringPtr passtr;

/* Convert a Pascal string to a zero-terminated string. Returns a handle
to a new zero-terminatad string. The caller must dispose the handle.
You'll need to do this for any result or argument you send from
your XCMD to HyperTalk. */

paramPtr->inArgs (0] = (long)pasStr;
paramPtr->request = xregfasToZero;
paramPtr=rentryPoint{};

return (Handle)paramPtr=>outArgs (0] ;

pascal wvoid ZeroToFas (paramPtr, zeroStr,passtr)
XCmdBlockPtr paramPtr; char ®zaroStr; StringPtr passtr;
/* Pill the Pascal string with the contents of the zero-terminated
string. You create the Pascal string and pass it in az a VAR
parameter. Useful for converting the arguments of any XCMD to
Pascal strings. */

paramPtr->inhrgs[0] = (long)zeroBtry
paramPtr->inArgs([l] = (long)passtr;
paramPtr=>request = xreqferoToFas;
paramPtr->entryPoint () ;

252 Appendix A: External Commands and Functions

pascal long StrTelong(paramPtr,strPtr)
XCmdBlockFtr paramPtr; Str3l strPtr;
/* Convert a string of ASCII decimal digits to an unsigned long integer. */
[
paramPtr->inArgs[0] = (long)strPtes
paramPtr->request = xregStrTeLong;
paramPtr->entryPoint () ;
return (long)paramPtr->outArgs[0];

pascal long StrToNum(paramPEr, str)
KCmdBlockPtr paramPtr; Stxil = str;
/* Convert a string of ASCII decimal digits to a signed long integer.
Megative sign is allowed, v/

paramPtr->inArga[0] = (long)str;
paramPtr=>reguest = xregStrToMum;
paramPtr->antryPoint {);

return paramPtr->outhArgs([0];

pascal Boolean StrToBool (paramPtr, str)

XCmdBlockPtr paramPtr; Str3l = atr;
/* Convert the Pascal strings 'true' and '"false' to booleans. */
{

paramPtr->inArgs[0] = (long)str;

paramPtr->request = xregStrToBool;

paramPtr->entryPoint () ;

return (Boolean)paramPtr->outArgs[0];

pascal void StrToBExt(paramPtr, str,myext)
XCmdBlockPtr paramPtr; Stril *» BLY; extenced * myext ;
/* Convert a string of ASCII decimal digits to an extended long integer.
Instead of returning a new extended, as Pascal does, it axpacts you
to create myext and pass it in to be filled. »/

paramPtr->inArgs[0] = (long)str;
paramPtr->inArgs[1l] = {(long)myext;
paramPtr=>reguest = xregStrToExt;
paramPtr-»entryPoint () ;

Callback procedures and functions

253

pascal void LongToStr (paramPLr, posNum,mystr)
XCmdBlockPtr paramPtr; long posium; Str3l * mystr;
/* Conwvert an unsigned long integer to a Pascal string. Instead of

returning a new string, as Pascal does, it expects you to
{ create mystr and pass it in to be filled. */

paramPtr=>inArgs [0] = (long)posbum;
paramPtr->inArgs[l] = (long)mystre:

paramPtr->regquest = xregLongToStr;
paramPtr->entcyPeoint ()¢

pascal void NumToStr (paramPtr, num, mystr)
¥CmdBlockPtr paramPtr; long nam; Stril * mystr;
/* Convert a signed long integer to a Pascal string. Instead of
| returning a new string, as Pascal does, it expects you to
creata mystr and pass it in to be filled. */

paramPtr->inArgs[0] = num;

paramPtr->inArgs[l] = {(longlmystr;
h paramPrr-»request = xreglumTostr;

paramPtr->entryPoint();

paascal void MumToHex (paramPtr,num,nDigits,mystr)
XCmdBlockPtr paramPtr; long num;
short nDigits; Str3l * mystr:
/* Convert an unsigned long integer to a hexadecimal number and put it
into a Pascal string. Instead of returning a new string, as
Pascal does, it expacts you to create mystr and pass it in to be filled.

paramPtr->inArgs[0] = pum;
paramPtr->inArgs[1l] = nDigits;
paramPtr=>inArgs[2] = (long)mystr;
paramPtr->reguest = xregNumToHex;
paramPtr->entryPoint () ;

254 Appendix A: External Commands and Functions

pascal void BoolToStr (paramPtr,bool,mystr)
XCmdBlockPtr paramPtr; Boolean bool; Str31 * mystr;
/* Caonvert a boolean to 'true' or 'falsa’'. Instead of returning
a4 new string, as Pascal does, it expects you to create mystr
and pass it in to be filled. */

paramPtr->inArgs (0] = {longlbool;
paramFtr->inArgs[l] = (long)mystr;
paramftr->request = xreqBoolToStr:
paramPtr=->antryPoint () ;

pascal woid ExtTeStr (paramPtr, myext,mystr)
KCmdBlockFtr paramPtr; extended * myext; S8trdl * mystr:
/* Convert an extended long integer to decimal digits in a string.
Instead of returning a new string, as Pascal does, it expects
¥You to create mystr and pass it in to be filled. #/

paramPtr->inArgs [0] = (long)myesxt;
paramPtr->infrgs[l] = (leng)mystr;
paramPLr->request = xreqExtToStr;
paramPtr->rantryPoint () ;7

pascal Handle GetGlobal (paramPtr,globMName)
XCmdBlockPtr paramPtr; StringPktr globName;
/* Return a handle to a zero-terminated string containing the value of
the specified HyperTalk global variable. */
{
paramPtr->inArgs[0] = {long)globName;
pParamPtr->request = xreqGetGlobal;
pParamPtr->antryPoint () ;
return (Handle)paramPtr->cuthrgs[0];

Callback procedures and functions 255

pascal void SetGlobal (paramPtr, globName, globValue)

XCmdBlockPtr paramPtr; StringPtr globilame; Handle globValue;
/* et the value of the specified HyperTalk global variable to be
the zero-terminated string in globValue. The contents of the

fiandle are copied, so you must still dispose it afterwards. */

paramPtr->inArgs (0] = {long) glcbtame;
paramPtr->inArgs(l] = {long)globValue;
paramPtr-»request = xregSetGlobal;
paramPtr->entryPeint ()

pascal Handle GﬂtFieldByHameiparamktr,cnrdrieldrlaq,fieldﬂamei
¥omdBlockPtr paramPtr; Boolean cardFieldFlag;
Stringftr fieldName;
/* Return a handle to a zero-terminated string containing the value of
field fisldMame on the current card. You must dispose the handle. ®/

paramPtr->inArgs (0] = (long}cardFieldFlag;
paramPtr-»inhrgs[l] = {long) fieldNamsa;
| paramFtr->request = xregsetFieldByName;
paramPtr->entryFeint ()
| return (Handle)paramPtr->outhrgs[0];

pascal Handle GﬂtFiﬂldByNumiparamPtr,:ardFicldPlaq,fieldNum]
XCmdBlockPrr paramPtr; Boolaan cardFieldFlag;
short fieldNum;
/* Return a handle to a zoro-terminated string containing the value of
fiald fieldMum on the current card. You must dispose the handle. */

! paramPLr->inArgs (0] = (long)cardFieldFlag;
paramPtr->inArgs[l] = fieldNum;
paramPtr->request = xregietEFieldByNum;

paramPtr-rentryFoint ()
return :HandlejparamPn:—}outnrqa[D];

256 Appendix A: External Commands and Functlions

pascal Handle Get?ieldﬂyln{paramPtr,cardPieldFlug.fialdrn]
XCmdBlockPLr paramPtry Boolean cardFiaeldFlag;
short fialdlip;
/* Return a handle to a Taro-terminated string containing the value of
tha field whise ID is fieldID. You must dispose the handle. */
{
paramPtr->inArgs[0] = {long) cardFialdrlag;
ParamPtr->inArgs([l] = fieldID:
paramPtr->request = xreqEetFieldByID;
paramPtr->entcyPoint () ;
return (Handle)paramPtr->outArgs([0];

pascal wvoid SetFilldByNamE{pa:lmPEr,cardFieldFlaq,fieldName,fieldUaL]
KCmdBlockFtr paramPte; Boolean cardFieldFlag;
StringPtr fieldMNama; Handle fieldval;
/* Set the value of field fieldName to be the zero-terminated string
in fieldval. The contents of the Handle are copied, so you must
still dispose it afterwards. */

paramPtr->inArgs[0] = (long) cardFieldFlag;
paramPtr-»inArgs(l] = {(long) fieldMame:
paramPtr->infArgs [2] = (long) fieldval:
paramPtr->rrequest = XreqgSetFieldByName;
paramPtr->entryPoint () ;

pascal wveoid SetFieldByHum{paramFtr,cardFialdFlaq,tieldﬂum,fieldVaL]
XCmdBlockPtr paramPir; Boolean cardFieldrlag;
short fieldNum; Handle fieldval;
/* Bet the value of field fieldNum to be the zero-terminated string
in fieldval. The contents of the Handle are copied, so you must
atill dispose it afterwards. =/

paramFte->ipnhrgs[0] = tlong)cardrieldFlag;
paramPtr->inArgs[1l] = fialdNum;
paramPtr->inhrgs [2] = (long) fieldVal;
pParamPtr=>request = xregletFieldByNum;
ParamPtr=>enteyPoint ()

Callback procedures and functions 257

258

pascal wvoid setFialdByIntparamPtr.cardfleldFlaq,fielalﬂ,fieldVal;
¥CpdBlocgkPty paramPtr: Boolean cardFieldFlag;
short fieldlID; Handle fieldval;
/% Set the value of the field whose ID is fialdID to be the zero=
tarminated string in field¥al. The contents of the Handlea are
copied, so you must erill dispose it afterwards. */

paramPrr->inArgs[0] = {long) cardFieldFlag;
parnmPt:—vlnnrgﬁ[lj = fieldID;
paramPtr->inArgs (2] = (long) £ieldval;
paramPtr->reguest = xragSetFieldByID;
paramPLr->entryFoint ()

pascal Boolean stringEqual (paramPrr,strl, strZ)
¥emdBlockPtr paramPLr; Stril * strl; Stridl ®
/* Return true if the two strings have the same characters.
case insensitive compare of the strings. *f

paramPtr->inArgs (0] = {long) strl;
paramrt;—>inhrqs[1] = (long)stri;
paramPtr->request = xragStringBgual;
paramPLr->entryPoint ()7

return (Boolean)paramPtr-routArgs[0];

Appendix A: External Commands and Functions

stri;

pascal wvoid RaturnTuPasfparam?tr,zeraStr,pasSLrJ
XCmdBlockPtr paramPtr; Ptr =zeroStrc: StringPtr passtr;
f* zeroStr points into a zero-terminated string. Collect the
characters from there to the next carriage Return and return
them in the Pascal string pasStr. If a Return is not found,
collect chars until the end of the string. =/

paramPtr->inArgs (0] = (long)zeroStr;
paramPtr->inArgs[1] = (long)pasStr;
paramPtr=>request = xreqReturnToPas;
ParamPtr->entryPoint () ;

pascal wvoid ScanTeReturn (paramPrr, scanHnedl)
HCmdBlockPtr paramPtr; Ftr » scanHndl;
/* Move the pointer scanPtr along a zero-terminated
string until it points at a Return character
or a zaro byte, «/

ParamPtr->inArgs (0] = {long) scanHndl;
paramPFtr-rrequest = xregScanToReturn;
paramPtr=->entryPoint () ;

pascal wvoid ScanToZerc (paramPtr, scanBndl)
XCmdBlockPLr paramPrry Ftr * scanindl;
/* Move the pointer scanPtr along a zero-terminated
string until it points at a zero byte. =/
{
paramPtr->inArgs (0] = (long)scandndl:
paramPtr->request = xreqScanTolero:
ParamPtr->entryPoint (),

Callback procedures and functions

259

Attaching an XCMD or XFCN

To attach an existing XCMD or XFCN (one that has already been compiled or
assembled into a resource) to one of your stacks, use a resource editor such as ResEdit.
The following steps describe the procedure using ResEdit:

1. Launch ResEdit

Select and open the stack containing the XCMD' or "XFCN' resource you want.
Select and open the resource type of XCMD' or 'XFCN',

Select and open the particular resource you want by name.

Press Command-C to copy the resource,

Select and open the stack you want to paste the resource into.

If your stack has no resource fork, ResEdit will display a dialog box asking if you
want o open one. Click OK. ResEdit will open a window.

Press Command-V to paste the resource into your stack.

o o

Click the close box on the window, When ResEdit asks if you want to save the file,
click Yes.

10. Quit ResEdir.

Hyper(f:urd Davalnper's- Tnul_kit

A disk containing the MPW Pascal and C definition and glue files described in this
appendix is available from APDA, the Apple Programmer’s and Developer's

il Association, exclusively to APDA members. You can order the disk and preliminary
documentation in a package called the HyperCard Developer’s Toolkit.

For membership and ordering information contact:

Apple Programmer's and Developer's Association
[290 8W 43rd Street

Renton, WA 98055

Telephone: (206) 251-6548

260 Appendix A: External Commands and Functions

= —
—

Appendix B

ControlKey Parameters

This appendix lists the parameter variable values generated by HyperCard in response
to different keys pressed in combination with the Control key.

When you press the Control key in combination with another key, HyperCard sends
the system message controlKey to the current card with one integer parameter
value:

controlKey war

The message can be intercepted by a handler placed anywhere in the object hierarchy
between the current card and HyperCard. For example, the following handler causes
the Control-P key combination to print the current card:

on contralKey whichKey
if whichKey = 16 then
doMenu "Print Card®
exit controlKey
end if
pass controlKey
end controlKey

The controlKey system message is listed in Chapter 6.

Table B-1 lists the parameter values generated by various keys of the Apple Extended
Keyboard pressed in combination with the Control key. Parameter values 1 through 31
fepresent American Standard Code for Information Interchange (ASCII) character
code values for combinations of the Control key and letter keys. Some of the

parameter values can be generated by more than one key. The parameter value is not
affected by pressing the Shift key along with the Control key and the other key.

261

Table B-1

Controlkey message parameter values

Parameter value Key(s) Farameter value Kay(s)

1 a, Home 7 Esc, Clear, Left-bracket (1)
2 b 28 Backslash (\), Left Arrow
3 ¢, Enter 29 Righr bracket (1), Right Arrow
4 d, End 30 Up Amrow

5 e, Help 3 Hyphen (-), Down Arrow
[§] f 39 Single Quotation Mark (')
T g 42 Astersk (")

8 h, Delete 43 Plus(+)

0 i, Tab e Comma ()

10 i 45 Minus (-

11 k, Page Up 46 Period (.)

12 1, Page Down 47 Slash (/)

13 m, Return 48 0

14 n 49 1

15 o 50 2

16 p, all function keys 51 3

17 q 52 4

18 [53 5

19 5 54 6

20 t 55 7

21 u 56 8

22 v 57 9

23 w 59 Semicolon (;)

24 X 61 Equal (=)

25 y 90 Tilde (~)

20 z 127 Forward Delete

242 Appendix B: ControlKey Parameters

|

|

Appendix

Extended ASCIl Table

This appendix lists the character assignments for the 256 single-byte character values
used by Macintosh,

There are 256 possible 8-bit binary values, from 00000000 to 11 111111. Of these, the
first 128 (from 00000000 to 01111111) have been assigned to a standard set of

characters and commands used in dara processing and communication. These
assignments form the ASCII character set, (ASCH stands for American Standard Code
Jor Information Interchange)

The remaining 128 binary values, those for which the most significant bit (first digit) is
1 instead of 0, are not assigned in the ASCII standard. Because they have higher
numerical values that the first 128 characters, they are often referred to as high-ASCIT
characters.

This appendix lists all character values by their decimal equivalent.

Table C-1 lists the first 32 characters, the Contral characters, which have no printable-
character representation, with the standard abbreviation for each and its meaning,

263

Table C-1
| Control character assignments

: Valua Name Meaning Value Name Meaning
0 NUT Null 16 DLE Data link escape
1 S0OH Start of heading 17 DC1 Device control 1
2 STX Start of text 18 DC2 Device control 2
3 ET® End of text 19 DCc3 Device control 3
4 EQT End of transmission 20 DC4 Device control 4

| 5 ENQ Enquiry 21 NAK Negative acknowledge
6 ACK Acknowledge 22 SYN Synchronous idle
7 BEL Bell 23 ETE End of transmission block
8 BS Backspace 24 CAN Cancel
9 HT Horizontal tab 25 EM End of medium
10 LF Line feed 26 SUB Substitute
11 VT Vertical tab 27 ESC Escape
12 FF Form feed 28 FS File separator
13 CR Carriage return 29 GS Group separator

' 14 50 Shift out 30 RS Record separator

J 15 81 Shift in 31 us Unit separator

! Table C-2 lists the remaining 224 character values with the characters to which they are

| assigned in the Macintosh Courier font.

264 Appendix C: Extended ASCII Table

| Table C-2
Character assignments in Macintosh Courier font
Value Character Value Character Value Character Value Character Value Character
52 SPACE 77 M 122 z 167 & 212 b
33 ! 78 N 123 ¢ 168 o 213 -
34 m 78 o 124 168 @ 214+
A5 # a0 B 125 170 ™ 215 ¢
36 5 81 Q 126 - i 216 ¢
37 % B2 R 127 DEL 172 o 217 %
3R & 83 5 128 A& 173 =+ 218 -
39 ' 84 T 126 A 174 E 219 =
40 { B5 o 130 ¢ 175 @ 220 «
41) a6 v 131 g 176 = 221 >
42 - 87 W 132 R 177 ¢+ 222 fi
43 + BE X 133 & 178 < 223 11
44 F a9 Y 134 1 179 2 224 %
45 - a0 2 135 & 180 ¥ 225 -
a6 P 91 [136 & 181 p 226
47 / 92 \ 137 =& 182 @ 22T
i8 o 93] 138 = 183 X 228 W
49 1 94 - 139 5 184 [I 229 &
50 2 45 140 & 185 = 230 B
51 3 96 ' 141 ¢ 186 | 231 A
52 4 a7 a 142 & 187 @ 232 B
53 5 28 b 143 & 1868 «®© 233 B
54 & g9 o 144 & 189 Q 234 %
55 7 100 d 145 @ 190 = 235 %
56 8 101 e 146 ¢ 191 = 236 1
57] 102 f 147 i 192 237 1
55 - 103 g 148 3 193 238 o
59 : 104 h 149 194 o 239 o
60 < 105 4 150 & 195 4 240 o
61 - 106 4§ 151 ¢4 186 ¢ 241 o
62 > 107 k 152 & 197 = 242 ¢
63 ? 108 1 153 & 198 A 243 0
fhd @ 108 m 154 & 199 & 244 o
65 A 110 n 155 & 200 w» 245 1
66 B 111 o 156 a 201 . 246 -
67 c 112 p 157 10 202 247 -
68 D 113 g 158 o 203 A 248
69 E 114 r 159 ¢ 204 3 249 -
70 F 115 =& 160 ¢ 205 B 250 -
71 G 116 t 161 ¢ 206 g 251 -
72 H 117 «u 162 ¢ 207 o 252
73 I 118 w 163 £ 208 - 258 -
74 J 119 w 164 5 200 - 254
75 ¥ 120 x 165 210 = 255 -
76 L 121 g 166 ¢ 211

It Stands for a nonbreaking space

Appendix C: Extended ASCIl Table 265

iﬁpendii?

| Operator Precedence Table

This appendix shows the order of precedence of HyperTalk's operators. In a complex
expression containing more than one operator, HyperCard performs the operation
indicated by operators with lower-numbered precedence before those with higher-
numbered precedence. Operators of equal precedence are evaluated left-to-right,
except for exponentiation, which goes right-to-left. If you use parentheses,
HyperCard evaluates the innermost parenthetical expression first.

Chapter 4 discusses expression evaluation.

Table D-1
Operator precedence
Order Operators Type of oparator
1 () Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
3 o Exponentiation for numbers
4 * / div mod Multiplication and division for numbers
S i Addition and subtraction for numbers
6 & && Concatenation of text
' 7 > < <= =8 2 Comparison for numbers or text
i= in contains Comparison for text
is not in Comparison for text
= is 4is not <> # Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values

266

*

Appendix E

HyperCard Limits

This appendix lists various minimum and maximum sizes and numbers of elements
defined in HyperCard,

The maximum limits shown in this appendix are theoretical, Some of them are lower
in practice, For example, HyperCard currently brings an entire card into memory at
once, so the maximum size of a card is limited by available memory. It's possible thar
a card with a lot of text and long scripts, created while running HyperCard on a
Macintosh with 2 megabytes of RAM, would not be able to be opened on a Macintosh
with 1 megabyte. The current useful size of a card (or background) is therefore between
50 and 100 kilobytes.

The term pary, in this appendix and internally in HyperCard, refers to buttons or
fields. The value represented by LonglInt is2,147,483,647; the value represented by
Integer is32,767.

The figures listed in this appendix pertain to version 1.2 of HyperCard; some of them
may change in future versions,

Table E-1
HyperCard limits
Item Limitt
Stack limits
Stack size 512 megabytes
Minimum stack size 4896 bytes
Maximum total number of bitmaps, cards and

backgrounds per stack 16,777,216
Maximum stack name size 31 characters

Maximum stack script size 30,000 characters

returninField message, HyperCard sends a tabKey
message to the field if the following conditions are true:

0 returnInField is not intercepted by a handler

0 the field is not a scrolling field

O the insertion point or selection is on the last line

O the field's autoTab property (described in this appendix) is

true

Otherwise, HyperCard inserts a retum character into the field.
The tabKey message, if it's not intercepted, causes HyperCard
to place the insertion point in the next field.

New and anhun;:ad commands

HyperCard version 1.2 includes three new HyperTalk commands: lock screen,
unlock screen,and select. In addition, three HyperTalk commands have been
enhanced: the find command has two new options, and the hide and show
commands can operate on the card or background picture.

Lock screen and unlock screen

The lock screen and unlock screen commands have the following syntax:

lock screen
unlock screen [with wvisualEffect]

VisualEffect is any of the forms of the visual command described in Chapter 7.

The lock screen command sets the lockScreen global property to true,
preventing HyperCard from updarting the screen. If you go to another card or do other
actions that change the appearance of the screen, those changes are not displayed
until the lockScreen propeny becomes false.

The unlock screen command setsthe lockScreen propertyto false,
allowing HyperCard to update the screen. In addition, the with wvisualEffect
option specifies a single visual transition that occurs as the screen is updated.

Visual effects can't be compounded using unlock screen, as they can be using the
visual command. Visual effects compounded by the visual command are not
executed until 2 go command is encountered. HyperCard flushes unexecuted visual
effects and sets lockScreen to false atidle time (in effect, at the end of all
pending handlers),

270 Appendix F: HyperTalk Changes in HyperCard Version 1.2

ﬁ___—

Select

select objectDescriptor

select [preposition] chunkExpression of SieldDescriptor
select [preposition] text of fieldDescriptor

select empty

ObjectDescriptor is the descriptor of a button or field, or me or target; preposition
is before or after;and fieldDescriptoris the descriptor of a field. (Button and
field descriptors and the special descriptor me are explained in Chapter 3. The
special descriptor target is explained in Chapter 2.)

The select objectDescriptor form chooses the a ppropriate tool and selects the
object specified, as though you had chosen the tool and clicked the object manually
with the mouse. The other forms select text in the specified field. Before and
after can be used to place the insertion point relative o the specified text or chunk
of text. Using a chunk expression without a prepaosition selects the entire chunk,
highlighting the characters in the chunk. The select empty form deselects
highlighted text or removes the insertion point, The following lines are examples of
the select command:

select button 1 -- chooses button tool and selects card button 1

select before char 1 of field 7 -- Places insertion point at start of field
salect after text of field 2 -- places insertion point at end of field
select char 1 to 5 of card field ? —- selacts first five characters of field

ﬁnd

The new options for the find command are invoked by the following forms of
syntax in addition to those shown in Chapter 7:

find whole expression [in field SieldDesignator)
find string expression [in field fieldDesignator)

Expression yields any string of characters, and JfieldDesignator is a background field
name, number, or ID number,

The find whole form (also invoked by pressing Shift-Command-F) lets you search
for a specific word or phrase, including spaces. For HyperCard to find a match, all the
characters must be in the same ficld, and they must be in the same consecutive order
as they appear in the string derived from exfrression,

In the following example, expression is a literal, yielding the string of characters
between the double quotation marks:

find whole "apple Computer"

MNew and enhanced commands 21

The example finds a card with a field that has the phrase Apple Computer in it; it won't
find Apple Computers or This apple is a computer. (The £ind command without
whole would find a match in all three cases.) Find whole won't find partial-word
marches, and it pays no arention to case or diacritical marks: apple Cempiiter and
aPPle cOmpnuter are seen as the same,

When you use find without whole, HyperCard finds a card that contains every
word in the string derived from expression, but the words can appear in different order
or in different fields. That is, with find whole, interword spaces are part of the
search string; without whole the spaces delimit separate search strings, With every
form of f£ind, you can limit the search to a specific background field.

The find string form lets you search for a contiguous string of characters,
including spaces, regardless of word boundaries. (Find whole searches for
characters at the beginnings of words.) For HyperCard to find a match, all the
characters must be in the same field, and they must be in the same order as in the

string derived from expression. For strings without spaces, find string works the
sameas find chars.

In this example:

find string "ple Computer"

HyperCard finds the string in Apple compuders bul not in compulers, not apples. (The
find command without string would not find a match in either case.)

Hide and show

The hide and show commands in version 1.2 operate on the bitmap pictures on
cards and backgrounds, as well as the menu bar, card window, Message box, Tools
and Patterns palettes, and buttons and fields, as described in Chapter 7. The syntax
for the new forms is:

hide card picture
hide picture of cardDescriptor

hide background picture
hide picture of backgroundDescripitor

show card picture
show picture of cardDescripior

show background picture
show picture of backeroundDescripior

CardDescriptoryields the descriptor of a card in the current stack, and
backgroundDescriptor yields the descriptor of a background in the current stack, as
described in Chapter 3, “Naming Objects."

272 Appendix F: HyperTalk Changes In HyperCard Version 1.2

The picture formofthe hide command removes from view the graphic bitmap
on the card or background, and the picture form of the show command displays
iL.

Hidden card and background pictures are not displayed when the Browse, Button, or
Field tools are chosen, but if you amempt 1o use a Paint tool manually, a dialog box
appears asking if you want to make the picture visible; clicking OK displays the picture.
(You can draw on hidden pictures from a script.) Whether or not you are in Edit
background mode determines whether your actions pertain to the card or background
picture.

The following example,

show picture of card 3

makes the graphic bitmap of the third card in the current stack visible, setting the
card’s showPict propertyto true. If the picture were visible before you issued the
show picture command, of course, there would be no effect.

New and enhanced functions

HyperCard version 1.2 has two enhancements to existing functions and nine new
functions.

Enhancement to number function
The number function has been enhanced by the following form:
the number of cards of backgroundDescriptor

BackgroundDescripior yields the descriptor of a background in the current stack, as
described in Chapter 3, “Naming Objects.”

This form of the number function retums the number of cards that are associated
with the specified background. For example,

get the number of cards of background 3

New and enhanced functions 273

Enhancement to version function
The version function has been enhanced by the two following forms:

the [long] version [of HyperCard]
the version of stackDescripior

StackDescriptor yields the descriptor of any stack currently available to your
Macintosh, as described in Chapter 3, *Naming Objects.”

The long modifier, when used with the version [of HyperCard] form,
returns the standard Macintosh version resource format (see Inside Macintosh for
details). For example,

put the long version -- returns 01208000 for HyperCard wersion 1.2

The version of stackDescriptor form returns a five-item string including the
following items:

o the version of HyperCard that created the stack

the version of HyperCard last used to compact the stack

the oldest version of HyperCard that changed the stack since it was last compacted
the version of HyperCard that last changed the stack

O O 0O Q

the date when the stack was most recently modified and closed (in seconds since
midnight, January 1, 1904)

All versions are returned in the long form, and the version numbers are separated
by commas, Items 1 through 4 are set to 00000000 if the version of HyperCard is less
than 1.2. For example, if old stack were created with HyperCard version 1.1,
then edited and compacted with version 1.2,

put the version of stack "ald stack"
would put the following value in the Message box:
A0000000, 01208000, 01208000,01208000, 2660687462

You can use the convert command, described in Chapter 7, to change item 5 into
a more readable format.

274 Appendix F: HyperTalk Changes In HyperCard Version 1.2

Functions for found text

the foundText
the foundChunk
the foundLine
the foundField

These functions return information about text found by the £ind command, The
foundText function returns the characters that are enclosed in the box after the
find command has executed successfully; for example, the commands

find "Hyper®
put the foundText

would put HyperCard in the Message box if it were the word containing the
matching string. The foundChunk function returns a chunk expression describing
the location of the text in the box; for example, if field 1 contained Now is the time,
the commands

find "Mow"
put the foundChunk

would put char 1 to 3 of bkgnd field 1 intothe Message box, The
foundLine function returns a chunk expression describing the line in which the
beginning of the text was found, ina formsuch as line 1 of card field 2. The
foundField function returns the descriptor of the field in which the text was found,
inaformsuchas card field 2.

Functions for sal&ctad text

the selectedText
the selectedChunk
the selectedLine
the selectedField

These functions return information about text that is currently selected. The
selectedText function returns the selected text itself. The selectedChunk
function returns a chunk expression describing the location of the selected text, the
selectedLine returnsa chunk expression describing the line containing the
selected text, and the selectedField returns the descriptor of the field containing
the selected text. The forms of the expressions returned by these functions are like
those returned by the functions for found text, described in the previous section.

Mew and enhanced functions 275

ScreenRect function

the screenRect
screenRect ()

The screenBect function retums the rectangle of the screen in which HyperCard's
menu bar is displayed; the value retumned is four integers, separated by commas,
representing the pixel offsets of the left, top, right, and bottom edges, respectively,
from the top-left comer of the screen.

See also “Properties of screen rectangles,” in the next section.

New and enhanced properties

HyperCard version 1.2 has five new HyperTalk properties: autoTab, cantDelete,
cantModify, showPict, and userModify. All five properies can have values of
true or false. In addition, version 1.2 has an enhanced cursor global
property and eight new ways to specify aspects of the screen rectangles of buttons,
fields, and windows.

AutoTab
set autoTab of field 3 to true

The autoTab property pertains to any nonscrolling field in the current stack. When
autoTab is true, pressing Return with the insertion point in the last line of that field
moves the insertion point to the next field on that card by sending the tabKey
message to the current card,

{Normal tabbing order is followed: if the field you're leaving is a card field, the
insertion point moves to the next higher-numbered card field or to the lowest-
numbered background field if no higher-numbered card field exists; if the field you're
leaving is a background field, the insertion point moves to the next higher-numbered
background field or to the lowest-numbered card field if no higher-numbered
background field exists.)

The autoTab property can also be set by clicking the Auto Tab check box in the
Field Info dialog box of the nonscrolling field.

274 Appendix F: HyperTalk Changes in HyperCard Verslon 1.2

CantDelete

set cantDelete of this card to true

The cantDelete property pertains to any card or background in the current stack,
ar to any stack accessible to your Macintosh. It controls whether or not the user can
delete the specified card, background, or stack. This property checks or unchecks the
“Can't delete” option in the object Info dialog box of the specified object.

The cantDelete property is also autcnnatcally set when the user sets
cantModify, as described in the following section.

CantModify
set cantModify of this stack teo true

The cantModify property pertains to any stack accessible to your Macintosh, It
controls whether or not the stack can be changed in any way. This property checks or
unchecks both the “Can't modify” stack option and the “Can't delete stack” option in
the Protect Stack dialog box. (If the user has checked “Can't delete stack,” however,
and a script sets cantModify to true andthen false, “Can't delete stack” is left
checked.)

When you set cantModify from a script, you override whatever the user has set by
hand in the Protect Stack dialog box. Setting cantModify to false does not,
however, override protection provided by media that are write-protected in other

ways.
See also the userModify property, later in this appendix,

ShowPict

set showPict of this card to false

The showPict property pertains toa card ora background in the current stack. It
controls whether or not the specified card or background picture is displayed. Setting
the showPict propeny of a card or backgroundto false is the same as hiding it
with the picture form of the hide command, described in this appendix; setting
itto true isthe same as showing it with the picture form ofthe show

commangd,

When the showPict property of the current card or backgroundis false andyou
attempt to use a Paint tool on it manually, a dialog box appears asking if you want to
make the picture visible; clicking OK sets the showPict propeny o true and the
picture appears. (You can draw on hidden pictures from a script.)

Mew and enhanced properties 277

set userModify to true

The userModify property is a global property pertaining to HyperCard itself. It
controls whether or not a user can type into fields or use Paint tools on a card thar has
been write-protected. A card is write-protected under the following circumstances:

0 The stack is on a CD-ROM.
0 The stack is on a file server in a folder whose access privileges are set to Read Only,

0O The “Locked” box is checked in the stack’s Get Info dialog box in the Finder’s File
menu.

O The stack is on a locked 3.5-inch disk.
o “Can't modify stack” is checked in the stack’s Protect Stack dialog box.

Cursor
set cursor to busy

The curscr property has been enhanced to accept eight cursor names by default:
arrow, busy, cross, hand, iBeam, none, plus,and watch. You can also
set the cursor to the ID number or name of any available 'CURS' resource, as explained
in Chapter 9. The busy cursor is HyperCard's beach ball—each time it's set, it turns
45° clockwise, so you can make it appear to spin by setting it inside a repeat loop:

on mouselp
repeat until tha mouseClick
get cursor to busy
wait 2 ticks
end repeat
end mouselp

Properties of screen rectangles

The properties described in this section pertain to the screen rectangles of buttons and
fields, the Tools and Patterns palettes, the Message box, and the card window.

the left of partOrWindow

ParOrWindow yields the descriptor of a button or field in the current stack, as
described in Chapter 3, “Naming Objects,” or the name of one of the windows listed
above, as described in Chapter 9, “Properties.”

278 Appendix F: HyperTalk Changes in HyperCard Version 1.2

Youusethe left property to determine or change item 1 of the value of the
rectangle propery (left, top, right, bottom) when applied to the specified object
or window,

the top of partOrWindow

Youusethe top property to determine or change item 2 of the value of the
rectangle property (left, top, right, botiom) when applied to the specified object
or window,

the right of partOrWindow

You use the right property to determine or change item 3 of the value of the
rectangle propery (left, top, right, bottom) when applied to the specified object
or window,

the bottom of pantOrWindow

You use the bottem propeny to determine or change item 4 of the value of the
rectangle property (left, top, right, bottom) when applied to the specified object
or window,

the topLeft of pantCrWindow

Youuse the topLeft property to determine or change items 1 and 2 of the value of
the rectangle propery (left, top, right, bottom) when applied to the specified
object or window,

the bottomRight of parOrWindow

You use the bottomRight property to determine or change items 3 and 4 of the
value of the rectangle propenty (left, top, right, bottom) when applied to the
specified object or window. The bottomRight property can be abbreviated
botRight,

the width of pantOrWindow

Youuse the width property to determine the horizontal distance in pixels occupied
by the rectangle of the specified object or window. You can change the width of a
button or field rectangle with the set command, but you can't set that property of a
window.,

the height of panOrWindow

You use the height properny to determine or change the vertical distance in pixels
occupied by the rectangle of the specified object or window. You can change the
height of a button or field rectangle with the set command, but you can't set that
propenty of a window,

When you set the width or height of a button or field, its location property (center
coordinate) remains the same.

Mew and enhanced properties 279

New operator

HyperCard version 1.2 has one new operator: within, It pertains to the screen
rectangles of buttons and fields, the Tools and Patterns palettes, the Message box, and
the screen on which HyperCard's menu bar is displayed. The syntax of an expression
in which within is valid is the following;

point is [not] within rectangls

Point is an expression that yields a list of two integers separated by a comma and
rectangle is an expression that yields a list of four integers separated by commas.

The within operator tests whether or not a point lies inside a rectangle; it results in
a Boolean value: true or false. The following example handler, placed in a
button script, is invoked when you click the button, It waits until you move the pointer
outside the button rectangle, then beeps when you move the pointer back inside the
bution rectangle:

on mousallp
wait until the mouseLoc is not within rect of me
repeat until the mouseloc iz within rect of me
get cursor to busy == spin beach ball while we wait
end repeat
beep
and mouselp

280 Appendix F: HyperTalk Changes in HyperCard Version 1.2

New synonyms

HyperCard version 1.2 has twelve new synonyms (or abbreviations) for HyperTalk
terms, which are shown in Table F-2. (The new abbreviations are additions, not
replacements for the older terms.)

Table F-2

MNew HyperTalk synonyms

New synonym Term

bg background

bgs backgrounds

btns buttons

cd card

cds cards

fld field

flds fields

grey gray

pict picture

sac Becs Of seconds

second secs or seconds

tick ticks

New shortcuts

HyperCard version 1.2 has several new keyboard shortcuts that allow you to edit scripts
of objects more easily.

Command-Tab

In all versions of HyperCard, pressing Command-Tab chooses the Browse tool. In
version 1.2, two additional shortcuts are available: holding down the Command key
and pressing Tab twice in rapid succession chooses the Button tool; holding down the
Command key and pressing Tab three times in rapid succession chooses the Field
tool. The period of time defining rapid succession is 30 ticks (one-half second),

New shortcuts 23

Command-Option

While using the Browse tool, you can press the Command and Option keys
simultaneously to display the outline of all visible buttons (those whose visible
propery is £ rue), While the buttons are displayed this way, you can click one to edit
its scripl.

While using the Button tool, you can use the Command-Option combination to
display all buttons (visible and hidden). However, the click-to-edit shortcut works for
the visible buttons only. The user level must be set to Scripting o edit scripts.

Shift-Command-Option

While using the Browse tool, you can press the Shift, Command, and Option keys
simultanecusly to display the outline of all visible fields (those whose visible property
is true). While the fields are displayed this way, you can click one to edit its script.

While using the Field tool, you can use the Shift-Command-Option combination to
display all fields (visible and hidden). However, the click-to-edit shorteut works for
the visible fields only, The user level must be set to Scripting to edit scripts.

Other Command-Option key combinations

When you're using any tool, Command-Option-C edits (invokes the script editor for)
the script of the current card, Command-Option-B edits the script of current
background, and Command-Option-S edits the script of the current stack.

The shorteuts introduced with HyperCard version 1.2 are summarized in Table F-3.

Table F-3

New shortcuts

Key press Effect

Command-Tab Choose Browse tool
Command-Tah{2x) Choose Button tool
Command-Tab(3x) Choose Field tool
Command-Option Display buttons; click to edit script
Shift-Command-Option Display fields; click to edit script
Command-Option-C Edit script of current card
Command-Option-B Edit script of current background
Command-Option-5 Edit script of current stack

282 Appendix F; HyperTalk Changes in HyperCard Version 1.2

Appendix G

HyperTalk Syntax Summary

This appendix lists HyperTalk's built-in commands and functions, showing the syntax
of their parameters.

HyperTalk’s built-in commands and functions are described in more detail in
Chapters 7 and 8, respectively. A brief description and page reference for each is
included in Appendix G.

Syntax description notation

The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hypertalk language elements or are those that you type to
the computer literally, exactly as shown. Words in italic type describe general
elements, not specific names—you must substitute the actual instances. Square
brackets ([]) enclose optional elements which may be included if you need them.
(Don't type the square brackets.) In some cases, optional elements change what the
message does; in other cases they are helper words that have no effect except to make
the message more readable,

It doesn't matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(1ikeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable—the syntax descriptions use the one that sounds more
natural.

The terms factor and expression are defined in Chapter 4. Briefly, a factor can be a
constant, literal, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses,

283

Table G-1
HyperTalk cormmmand syntax

add expression to deslination

answer gquestion [with reply [or reply2 [or reply3]1l]
arrowKey keyName

ask [password] gquestion [with defaultAnswer]
heep counl

choose toolName tool

click at location [with key(, key2([, key3]]]
close file fileName

close printing

convert container to format [and formar)
delete chunk [of contatner)

dial expression [with modem [modemCommands)]
divide destination by expression

doMenu menullem

drag from start to finish [with key(, key2(, key3]]]
edit script of object

enterkKey

find [chars] expression [in field fieldDesignator]
find [word] expression [in field fieldDesignator]
functionKey hkeyNumber

get exbression

go [to]l [stack] stackName

go [to] bkgndDescriptor [of [stack] stackName)
go [to] cardDescriptor [of bkgndDescriptor] [of [stack] stackName]
help

hide menuBar

hide window

hide part

multiply destination by expression

open [document with] application

open file fileName

open printing [with dialog]

play "woice” [tempo] ["notes™]

play stop

pop card [preposition destinalion]

print card

print expression cards

print cardDescriptor

print document with application

push cardDescriptor

put expression [preposition destination)

read from file fileName until character

read from file fileName for numberQfCharacters

284 Appendix G: HyperTalk Syntax Surmmary

e e ——————

reset paint
| returnkey
set [the] property [of obfect] to value
| show number cards
| show menuBar
show window [at b, v
! show part [at b, v]
| sort [direction] |[style] by expression
subtract expression from destination
tabKey
| type expression [with keyl, key2[, key31l]
visual [effect] effectName [speed) [to itneage)
wait [for] time [seconds]
wait until condition
wait while condition
Write source to file SileName

Table G-2
HyperTalk function syntax

the abs of factor
abs { expression)
annuity (rate, periods)
the atan of factor
atan {expression)
average { fist)

the charToNum of factor
charTolNum | exfiression)

the clickLon
clickLog ()

the commandKey
commandKey ()

coempound (rale, periods)

Ehe cos of factor
Cos (exprassion)

the [modifier] date
the diskSpace
diskSpace ()

the exp of factor
SXp { expression)

Lhe expl of factor
expl (expression)

the exp2 of facior
8xp2 (exprassion)

the length of factor

Syntax description notation 285

length {expression)
the 1ln of factor

ln {expression)

the 1lnl of factor
1nl (expression)

the log2 of faclor
LogZ (expression)

max (fist)

min {lish)

the mouses

mousea ()

the mouseClick
mouseClick ()

the mouseH

mouseH ()

the mouseLoc
mouselLoc ()

the mouseV
mouseV ()

[the] number of objects
[the] number of chunks in factor
the numToChar of faclor
numToChar (expression)
offset (siringld, siring2)
the optionEey
optionkKey ()

the param of factor
param (expression)

the paramCount
paramCount ()

the params
params ()

the random of factor
random (expression)
the result

result ()

the round of factor
round {expression)

the seconds
seconds ()

the shiftKey
shiftKey ()

the sin of factor
sin (expression)

the sound

28B4 Appendix G: HyperTalk Syntax Summary

sound ()

the sqrt of factor
SQrL (expression)

the tan of faclor
tan { expression)

the target
target ()

the ticks

ticks ()

the [adfective] time
time ()

the tool

tool ()

the trunc of factor
trunc (expression)

the value of factor
value {expression)

the wersion
version()

Syntax description notation 287

| =
- HyperTalk Vocabulary

This appendix lists, in alphabetical order, HyperTalk's native vocabulary—the names
| of its built-in commands and functions, its system messages, keywords, the names of
ohjects and their properties, and various adjectives, constants, ordinals, and other
terms.

This list is not exhaustive—there are other terms with specific meanings recognized by
HyperCard in particular contexts, and they are described with the primary term to

which they relate. For example, the names of the various visual effects are listed with
the visual command in Chapter 7.

The parameter syntax of HyperTalk’s built-in commands and functions is shown in

Appendix G.
|
! Table H-1
HyperTalk vocabulary
Term Category Page Meaning
abbr[eviiated]] Adjective 145,175 Modifies the value returned by the date
function or the name or ID properties.
abs Function 140) Returns absolute value of a number.
add Command 8 Adds the value of an expression to a value in a
container,
after Preposition 122 Used with put command, directing
HyperCard to append a new value following
“ any preexisting value in a container.
all Adjective 127 Specifies total number of cards in stack to
show cards command.
I annuity Function 140 Computes present or future value of an

| ordinary annuity.

288

Table H-1 (contfinued)
HyperTalk vocabulary

Term Category Page Meaning

answer Command e Displays a dialog with question and reply
buttons.

any Ordinal 5 Special ordinal used with object or chunk to
specify a random element within its enclosing
set.

arrowKey Command S0 Takes you to another card.

arrowKey System message a8 sent to current card when an arrow key is
pressed.

ask Command o2 Displays a dialog box with a question and
default answer,

atan Function 141 Returns trigonometric arc tangent of a
number,

autoHilite Property 208 Determines whether or not the specified
button’s hilite property is affected by the
message mouseDown.

average Function 142 Returns the average value of numbers in a list,

background Object 3,3 Generic name of background object; used
with specific designation (go to next
background). Also used to specify
containing object for buttons and,
optionally, fields (background button
2).

backgrounds Object type 154 Specifies backgrounds as type of object to the
number function.

beep Command 93 Causes Macintosh to make a beep sound,

before Preposition 122 Used with put command, directing
HyperCard to place a new value at the
beginning of any preexisting value in a
container.

bkgnd Object 3 Abbreviation for background.

bkands Object type 155 Specifies backgrounds as type of object to the
number function.

blindTyping Property 176 Allows typing into Message box when hidden,

browse Tool ™, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function,

brush Property 1684 Determines the current brush shape.

brush Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

btn Object * Abbreviadon for button.

Appendix H: HyperTalk Vocabulary 289

Table H-1 (confinued)
HyperTalk vocabulary

Term Category Page Meaning]
bucket Tool o4 170 Name of tool from Tools palette; used with |
choose command or returned by the tool .
function.
button Ohbject 3 Generic name of button object; used with a
specific designation (hide button one).
button Tool 94, 170 Name of ool from Tools palette; used with
choose command or retumed by the tool
function.
buttons Object type 154 Specifies buttons as type of object to the
number function,
card Object H Generic name of a card object; used with a
specific designation (go to card
"fred"). Also used to specify containing
object for fields and, optionally, buttons
(card field "date").
cards Object type 154 Specifies cards as type of object to the
number function,
centered Property 184 Determines the Draw Centered setting,
char[acter] Chunk 4 A character of text in any container or
expression.
char [acter]s Chunk type 154 Specifies characters as type of chunk to the
number function.
charTolum Function 142 Returns ASCII value of a character,
choose Command % Changes the current tool.
click Command % Causes same actions as clicking at a specified
location.
clickLoc Function 143 Returns location of most recent click,

closeBackground System message 153

closeCard Systemn message 5
closeField System message 70
closeStack System message B3
close file Command 97
close printing Command &«
commandEey Function 143
compound Function 144
contralKey System message a8
convert Command o8

290 Appendix H: HyperTalk Vocabulary

Sent to current card just before you leave the
current background.

Sent to current card just before you leave it
Sent to unlocked field when it closes,

Sent to current card just before you leave the
current stack.

Closes a previously opened disk file,

Ends a print job.

Returns state of the Command key: up or
down.

Computes present or furure value of a
compound interest-bearing account,

Sent to current card when a combination of
the Control key and another key is pressed.
Converts a date or time to specified format,

Table H-1 (continued)

HyperTalk vocabulary

Term Category Page Meaning

cos Function 145 Returns the cosine of the angle that is passed
1o it

cursor Froperty 177 Sets image appearing at pointer location on
screen. You can only set cursor; you can't get
it.

curve Tool o4, 170 MName of ool from Tools palette; used with
choose command or retumed by the tool
function,

date Function 145 Returns a string representing the current date.

delete Command 100 Removes a chunk of text from a container.

deleteBackground System message 58 Sent to current card just before the
background is deleted.

deleteButton System message 77 Sent to a buiton just before it is deleted.

deleteCard System message 2 4] Sent to current card just before it is deleted,

deleteField System message 79 Sent to a field just before it is deleted,

deleteStack System message =5) Sent to the current card just before a stack is
deleted.

dial Command 101 Generates touch-tone sounds through audio
output or modem attached to serial port.

diskSpace Function 146 Displays the amount of free space available
on the disk containing the current stack.

divide Command 102 Divides the value in a container by the value
of an expression.

do Keyword 72 Sends the value of an expression as a message
to the current card,

doMenu Command 103 Performs a specified menu command.

doMenu System message & Sent to current card when any menu item is
chosen.

down Constant 213 Value returned by various functions to
describe the state of a key or the mouse
burtton.

drag Command 104 Performs same action as a manual drag,

dragSpeed Property 177 Sets pixels-per-second speed at which pointer
moves with drag command.

editBkgnd Properny 177 Determines whether manipulation of buttons,
fields or paintings occurs on current card or
background,

edit script Command 105 Opens the script of a specified object.

eight Constant 213 Suing representation of the numerical
value 8,

eighth Ordinal 36 Designates object or chunk number eight

within its enclosing set.

Appendix H: HyperTalk Vocabulary 291

Table H-1 (confinued)
HyperTalk vocabulary

Term Category Page Meaning

else Keyword i Optionally follows then clauseinan if
structure to introduce an alternative action
clause.

emnpty Constant 213 The null string; same as the literal "".

end Keyword 61, 64, Marks the end of a message handler, function

70,71 handler, repeat loop, or multiple-

statement then or else clauseofan if
structure,

enterKey Command 105 Sends contents of Message box to the current
card.

geraser Tool 94,170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

exit Keyword 61, 64, 69 Immediately ends execution of a message
handler, function handler, or repeat
loop.

exp Function 147 Returns the mathematical exponential of its
argument,

expl Function 147 Returns one less than the mathematical
exponential of its argument.

expZ Function 148 Returns the value of 2 raised to the power
specified by the argument.

false Constant 213 Boolean value resulting from evaluation of a
comparative expression and returned from
some functions.

field Container 43 Generic name of field container; used with
specific designation (put the time into
card field "time")

field Object 23 Generic name of ficld object; used with
specific designation (get name of first
field).

field Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

fields Object type 154 Specifies fields as type of object to the
number function.

fifth Ordinal 30 Designates object or chunk number five
within its enclosing set.

filled Property 185 Determines the Draw Filled setting.

find Command 106 Searches card and background fields for text
strings derived from an expression.

292 Appendix H: HyperTalk Vocabulary

Table H-1 (continued)

HyperTalk vacabulary

Term Category Page Meaning

first Ordinal 36 Designates object or chunk number one
within its enclosing set.,

five Constant 213 String representation of the numerical
value 5.

formFeed Constant 213 The form feed character (ASCII 12), which
starts 4 new page in some file formats,

four Constant 213 String representation of the numerical
value 4.

fourth Ordinal 36 Designates object or chunk number four
within its enclosing set.

freeSize Froperty 190 Determines the amount of free space
available in a specified stack.

functionKey Command 108 Performs Undo, Cut, Copy, or Paste
operations with parameter values of 1, 2, 3, or
4, respectively,

functionKey System message 2% Sent to current card when any function key on
the Apple Extended Keyboard is pressed.

get Command 109 Puts the value of an expression into the local
variable It.

global Keyvword 3 Declares specified variables to be valid
beyond current execution of current handler,

go Command 110 Takes you to a specified card or stack.

grid Property 185 Determines the Grid setting.

help Command 111 Takes you to the first card in the stack named
Help.

hide Command 111 Hides the specified window from view,

hilite Propernty 204 Determines whether a specified button is
highlighted.

icon Froperty 204 Determines the icon that is displayed with a
specified button,

ID Property 35,192 Determines the permanent ID number of a
specified background, card, field, or button.
(See also pages 193, 195, and 205.)

idle System message Sent to the current card repeatedly whenever
nothing else is happening,

if Keyword 70 Introduces a conditional structure containing
stalements to be executed only if a specified
condition s true. '

into Preposition 122 Used with put command, directing

HyperCard to replace any preexisting value in
a container with a new value,

Appendix H: HyperTalk Vocabulary 293

Table H-1 (continued)
HyperTalk vocabulary

Term

Meaning

It

item
items
language

lasso

last

length
line

line

lineFeed
lines
line8ize
1n

1nl

loe[ation]

lockMessages
lockRecent

lockScreen

294 Appendix H: HyperTalk Vocabulary

Property

Property

Property

Property

178
178

179

Local variable that is the default destination
for get, ask, answer, read, and
convert commands.

A piece of text delimited by commas in any
container or expression.

Specifies items as type of chunk to the
number function,

Used to choose language in which scripts are
displayed.

Name of tool from Tools paletie; used with
choose command or retumned by the tool
function.

Special ordinal used with object or chunk to
specify the element whose number is equal to
the total number of elements in its enclosing
set.

Returns the number of characters in the text
string derived from an expression.

A piece of text delimited by return characters
in any container.

Name of tool from Tools palette; used with
choose command or retumed by the tool
function.

The line feed character (ASCII 10), which
stants a new line in some file formats,
Specifies lines as type of chunk to the
number functon.

Determines the thickness of lines drawn with
line and shape tools.

Returns the base-e (natral logarithm) of the
number passed to it.

Returns the base-e (natural logarithm) of the
sum of the number passed to it plus 1.
Dietermines the location at which a window,
field, or button is displayed. (See also pages
196 and 205.)

Prevents HyperCard from sending all
automatic messages such as openCard,
Prevents HyperCard from adding miniature
representations to the Recent card.

Prevents updating of the screen from card to
card.

Table H-1 (continued)

HyperTalk vecabulary

Term Category Page Meaning

lockText Property 196 Allows or prevents text editing in a specified
field.

log2 Function 150 Returns the base-2 logarithm of the number
passed to it

long Adjective 145,175 Maodifies value retumed by date function
and by name and ID properties.

max Function 150 Returns the highest-value number from a list
of numbers,

me Object 37 Specifies object containing the executing
handler,

message [box] Container 48 The Message box.

mid[dle] Ordinal 37 Special ordinal used with object or chunk to
specify the element whose number is equal to
one more than half the total number of
elements in its enclosing set.

min Function 151 Returns the lowest-value number from a list of
numbers.

mouse Function 151 Returns state of the mouse button: up or
down.

mouseClick Function 152 Determines whether the mouse button has
been clicked.

mouseDown System message 77,79, 80 Sent to a button, unlocked field, or the
current card when the mouse button is
pressed down,

mouseEnter System message 78,79 Sent to a button or ficld when the pointer is
first moved inside its rectangle.

moused Function 153 Returns the horizontal offset in pixels of the
pointer from the left edge of the card window.,

mouseleave System message 78,79 Sent 1o a button or field when the pointer is
first removed from its rectangle.

mouseLoc Function 153 Retums the point on the screen where the
pointer is currently locared.

mouseStillDown System message 77, 79,80 Sent to a button, unlocked field, or the
current card repeatedly when the mouse
button is held down.

mouseUp System message 77,79, 80 Sent to a button, unlocked field, or the
current card when the mouse button is
released after having been previously pressed
down within the same object's rectangle.

mousevV Function 154 Returns the vertical offset in pixels of the

pointer from the top of the screen.

Appendix H: HyperTalk Vocabulary 205

Table H-1 (confinued)

HyperTalk vocabulary

Term

Category

Meaning

polySides
pop card
powerkeys
previicus]
print card
print

push

put

guit

quote
random
read

rect [angle]

rect [angle]

reg(ular]
poly [gon])

repeat

reset paint

Appendix H: HyperTalk Vocabulary

Property
Command
Property

CObject modifier
Command
Command
Command
Command

System message

Constant
Function

Command

Property

Tool

Keyword

Command

Determines the number of sides created by
the Regular Polygon tool.

Retumns you to last card saved with the push
card Command,

Keyboard equivalents of commonly used
painting actions.

Used with card or background to refer
to the one preceding the current one.

Prints the the current card or a specified
number of cards beginning with the current
carc,

Prints the specified document.

Saves the identification of a specified card in
a LIFO memory stack for later retrieval,
Copies the value of an expression into a
conlainer.

Sent to the current card when you choose Quit
HyperCard from the File menu (or press
Command-Q), just before HyperCard goes
away.

The straight double quotation mark
character,

Returns a random integer berween 1 and the
integer derived from a specified expression.
Reads a file previously opened with the open
file command into the local variable It.
Determines the rectangle occupied by a
specified window, field, or button, (See also
pages 197 and 200.)

Name of tool from Toels palette; used with
choose command or retumed by the tool
function.

Name of ool from Tools palette; used with
choose command or retumned by the tool
function.

Introduces a repeat loop, an iterative
structure containing a block of one or more
statements executed multiple times,
Reinstates the default values of all the painting
properties.

Table H-1 (continued)

HyperTalk vocabulary

Term Category Page Meaning

result Function 161 Returns the status of find or go
command previously executed in current
handler.

resume System message 84 Sent to the current card when HyperCard
resumes running after having been
suspended.

return Keyword 62,65 Retumns a value from a function handler or
message handler,

returnkey Command 125 Sends any statement in the Message box to the
current card.

returnkey System message 8l Sent to current card when Return key is
pressed,

round Function 163 Returns the number derived from an
expression, rounded off to the nearest
integer,

round

rect [angle] Tool o4, 170 Name of tool from Tools palette; used with

choose command or returned by the tool
function,

script Property 191 Retrieves or replaces the script of the
specified stack, background, card, field, or
button. (See also pages 193, 194, 198, and
207.)

scroll Property 198 Determines the amount of material that is
hidden above the top of the specified
scrolling field's rectangle.

second Ordinal 36 Designates object or chunk number two within
its enclosing set.

seconds Function 163 Returns the number of seconds between
midnight, January 1, 1904, and the current
time,

zelect Tool o4, 170 Name of ool from Tools palette; used with
choose command or returned by the tool
function.

selection Container 47 Currently selected area of text in a field.

send Keyword 74 Sends a specified message directly to a
specified object.

set Command 126 Changes the state of a specified global,
painting, window, or object property.

seven Constant 213 string representation of the numerical

value 7.

Appendix H: HyperTalk Vocabulary 299

Table H-1 (continued)
HyperTalk vocabulary

Term Category Poge Meaning

seventh Ordinal 36 Designates object or chunk number seven
within its enclosing set.

shiftKey Function 164 Returns the state of the Shift key: up or
down.,

short Adjective 145,175 Modifies value returned by date function
and by name and ID properties.

show cards Command 127 Displays a specified number of cards in the
current stack.

showLines Properny 199 Determines whether or not the text baselines
are visible in a field.

showllame Property 207 Determines whether or not the name of a
specified button is displayed in its rectangle
on the screen.

show Command 128 Displays a specified window or object.

sin Function 164 Returns the sine of the angle that is passed to
it.

six Constant 213 String representation of the numerical
value 6.

sixth Ordinal 36 Designates object or chunk number six within
its enclosing set.

size Property 191 Retums the size of a specified stack.

sort Command 130 Puts all of the cards in a specified stack in
order, according to a specified key
EXPI’CHHH}H.

sound Function 165 Returns the name of the sound that is
currently playing,

space Constant 213 The space character (ASCII 32); same as the
literal " ",

spray [can] Tool 94, 170 Name of tool from Tools palere; used with
choose command or returned by the tool
function.

sqrt Function 160 Returns the square root of a number,

stack Object 38 Generic name of stack object; used with
specific name (go to stack "help™).

startUp System message 5 Sent to the current card (first card of the
Home stack) when HyperCard first begins
running.

style Property 199 Determines the style of a specified field or
button. (See also page 207.)

subtract Command 13 Subtracts the value of an expression from the

value in a container,

300 Appendix H: HyperTalk Vocabulary

Table H-1 (continuad)
HyperTalk vocabulary

Tarm Category Page Meaning
83

Sent to the current card when HyperCard is

suspended by launching ancther application

with the open command.

tab Constant 213 The herizontal tab character (ASCI %),

tabKey Command 13 Places the insertion point in the next
unlocked field on the current background and
card.

abKey System message 8 Sent to current card when Tab key is pressed.

tan Function 166 Returns the tangent of an angle.

target Function 167 Indicates the object that initially received the
message that initiated execution of the current
handler.

ten Constant 213 String representation of the numerical
value 10,

tenth Ordinal 36 Designates object or chunk number ten within
its enclosing set.

text Tool 94, 170 Name of tool from Tools palette; used with
choose command or returned by the tool
function.

textAlign Property 183 Determines the alignment of characters
created with the Paint Text tool, or those ina
field, or those in the name of a button. (See
also pages 200 and 208.)

textArrows Property 180 Determines the functions of the arrow keys.

textFont Property 188 Determines the font of characters created
with the Paint Text tool, or those in a field, or
those in the name of a button. (See also pages
200 and 208.)

textHeight Property 188 Determines the space between the baseline
and characters created with the Paint Text
tool or those in a field. (See also page 201.)

textSize Property 189 Determines the size of Paint text or text in a
field or in the name of a button. (See also
pages 201 and 209.)

textStyle Froperty 182 Determines the style of Paint text or the text in

a field or in the name of a button. (See also

pages 202 and 2090.)

suspend System message

Appendix H: HyperTalk Vocabulary n

Table H-1 (continued)
HyperTalk vocabulary

f
|
|
i
|

Term Calegory Page Meaning
the Special 138 Precedes a flhction name to indicate a
function call 1 one of HyperCard's built-in
functions. You can't call a user-defined
function with the. Also allowed, but not
required, preceding special container names
' (the Message box)and properties.
then Keyword 70 Follows the conditional expression inan if
[structure to introduce the action clause.
third Ordinal 3 Designates object or chunk number three
[within its enclosing set.
' this Object modifier 37 Used with card, background, or stack
‘ | to refer to the current one,
three Constant 213 String representation of the numerical
value 3.
ticks Function 168 Determines the number of ticks since the
Macintosh was wmed on or restarted,
time Function 169 Returns the current time 4s a text string.
tool Function 170 Returns the name of the currently chosen
tool.
true Constant 213 Boolean value resulting from evaluation of a
comparative expression and returmed from
some functions.
trunc Function 17 Determines the integer part of a number,
| two Constant 213 String representation of the numerical
' value 2.
i type Commancl 132 Inserts the specified text at the insertion
| | point.
up Constant 213 Value returned by varous functions to
| describe the state of a key or the mouse
button.
b userLevel Property 181 Determines the user level from 1 to 5.
| value Function 172 Evaluates an expression.
1l version Function 172 Returns the version number of the currently
| running HyperCard application.
visible Propenty 183 Determines whether or not a window, field,
| or button appears on the screen. (See also
pages 202 and 209.)
" visual Commancd 133 Sets up a specified visual transition to the next
| card opened.
1 wait Command 135 Causes HyperCard to pause before executing

302 Appeandix H: HypearTalk Vocatulary

the rest of the current handler,

Table H-1 (continued)
HyperTalk vocabulary

Term Category Page Meaning
wideMargins Froperty 02 Determines whether or not additional space
| is displayed in the margins of a specified
field.
‘ word Chunk 54 Ficce of text in delimited by spaces in any
container or expression.
words Chunk type 154 Specifies words as type of chunk 1o the
number function.
write Command 136 Copies specified text into a specified disk file.
ZETO Constant 213 string representation of the numerical
value 0.

Appendix H: HyperTalk Vocabulary 303

Glossary

actual parameters: See parameters.

background: A type of HyperCard object; a basic
template which is shared by a number of cards.
The background is composed of the background
picture, background field, and background
button.

background button: A button that belongs to a
background; it appears on, and its actions are the
same for, all cards with the same background,
Contrast with card button.

background field: A field that belongs to a
background; its size, position, and text attributes
remain constant on all cards associated with that
particular background, but its text changes from
card to card. Contrast with card field.

background picture: A picture that belongs to a
background; it applies to a series of cards, You see

the Background picture by choosing Background
from the Edit menu. Contrast with card picture.

browse: To wander through HyperCard's stacks,

Browse tool: The ool you use to click buttons and
to set the insertion point in fields.

button: A type of HyperCard object; an action
object or “hot spot” on the screen. For example,
clicking a button with the Browse tool can rake you

to the next card. See also background button,
card button.

Button tool: The tool you use (o create, change,
and select butons.

card: A type of HyperCard object; HyperCard's
basic unit of information.

card button: A button that belongs to a card; it
appears on, and its actions apply to, a single card.
Contrast with background button.

card field: A field that belongs to a card; its size,
position, text attributes, and contents are limited
to the card on which the field is created. Contrast

with background field.

card picture: A picture that belongs to and which
applies only to a specific card. Contrast with

background picture,

chunk: A piece of the character string
representing a value, Valid chunks are characters,
words, items, and lines,

Command Key: The key at the lower-left side of
the keyboard that has a propeller-shaped symbol.
On some keyboards this key also has an Apple
symbol and might be called the Apple key.

command: A response to a particular message; a
command is a built-in message handler residing in
HyperCard. See also external command.

constant: A named value that never changes. For
example, the constant empty stands for the null
string, a value that can also be represented by the
literal expression "".

container: A place where you can store a value,
Containers are: fields, the Message box, the
selection, and variables.

control structure: A block of HyperTalk
statements defined with keywords that enables you
to control the order or the conditions under which
it executes.

current: (adj.) The card, background, or stack
you're using now, For example, the current card is
the one you can see on your screen,

dynamic path: A series of extra objects inserted
into the path through which a message passes when
its static path does not include the current card.
The dynamic path comprises the current card,
current background, and current stack.

expression: A description of how to get a value; a
source of value or complex expression built from
sources and operators.

external command: A command written by a
programmer to extend HyperCard's built-in
command set, attached o a stack or in
HyperCard,

factor: A single element of value in an expression.
See also value.

field: A container in which you type regular (as
opposed to Paint) text. Also, the tool you use to
create a field. HyperCard has two kinds of
fields—card fields and background fields.

Field tool: The tool you use to create, change, and
select fields.

formal parameters: See parameter variables,
function: A named value that HyperCard
calculates each time it is used, The way in which
the value is caleulated is defined internally for
HyperTalk’s built-in functions, and you can define
your own functions with function handlers,

function call: The use of a function name ina
HyperTalk statement or in the Message box,
invoking either a function handler or a built-in
function,

function handler: A handler that executes in
response (o a function call matching its name,

3046 Glossary

General tool: Any HyperCard tool that isn't a
Paint tool. The General tools are Browse, Button,
and Field.

global properties: The properties that determine
aspects of the overall HyperCard environment.
For example, userLevel isa global propeny
which determines the current user level setting.

global variable: A variable that is valid for all
handlers in which it is declared with the glcbal
keyword, Contrast with local variable,

handler: A block of HyperTalk statements
contained in the script of an object that executes in
response to a message or a function call matching
the handler's name. HyperTalk has message
handlers and function handlers.

hicrarchy: See object hierarchy.

Home card: The first card in the Home stack; it is
generally used as a pictorial index to stacks.
Choose Home from the Go menu to get to Home
(or press Command-H). You can also type go
home in the Message box or include itas a
statement in a handler,

HyperTalk: HyperCard's built-in script language
for HyperCard users.

identifier: A character string of any length,
beginning with an alphabetic character,
containing any alphanumeric character and,
optionally, the underscore character. Identifiers
are used for variable and handler names.

keyboard equivalent key: A key you press
together with the Command key to issue a menu

command,

keyword: Any one of the 14 words that have a
predefined meaning in HyperTalk. Examples of
keywords are on, if, do,and repeat.

layer: The order of a button or field relative to
other buttons or fields on the same card or
background. The object created most recently is
ordinarily the topmost object (that is on the front
layer).

literal: An expression denoted by double
quotation marks at either end of a character string;
its value is the string itself.

local variable: A variable that is valid only within
the handler in which it is used (local variables
need not be declared). Contrast with global
variable.

message: A character string you send to an object
from a script or the Message box, or which
HyperCard sends in response to an event. Some
examples of HyperTalk messages are mouseUp,
go, and push card.

Message box: a container that you use to send
messages to objects or to evaluate expressions.

message handler: A handler that executes in
response o a message matching its name,

number: a character string consisting of any
combination of the numerals 0 through 9,
optionally including one period () representing a
decimal value, A number can be preceded by a
hyphen or a minus sign to represent a negative
value.

object: An element of the HyperCard
environment that sends and receives messages,
There are five kinds of HyperCard objects:
buttons, fields, cards, backgrounds, and
stacks.,

object descriptor: Designation used to refer to
an object. An object descriptor is formed by
combining the name of the type of object with a
specific name, number, or ID number. For
example, background button 3 is an object
descriptor.

object hierarchy: The ordering of HyperCard
objects that determines the path through which
MEeSSARES Pass.

object properties: The properties that determine
how HyperCard objects look and act. For

example, the location propeny of a button
determines where it appears on the screen,

on-line help: assistance you can get from an
application program while it's running. In this
guide, on-line help refers to HyperCard's disk-
based Help system.

operator: a HyperTalk language element that you
use in an expression to manipulate or calculate
values.

Paint text: Text you type using the Paint Text tool,
Paint text can appear anywhere, while regular
text must appear in a field created with the Field
tool. When you finalize Paint text by clicking, it
becomes part of a card or background picture,

Paint tool: Any HyperCard tool you use to make
pictures. Tools include Lasso, Brush, Spray,
Eraser, and many others.

painting properties: The properties that control
aspects of HyperCard's painting environment,
which is invoked when you choose a Paint tool. For
example, the brush property determines the
shape of the Brush tool.

palette: The name for a tear-off meno when it's
been torn off, A palette remains visible on the
screen 5o you can use it without having to pull
down the menu. HyperCard has two palettes—
Tools and Patterns.

parameters: Values passed to a handler by a
message or function call. Any expressions after the
first word in a message are evaluated to yield the
parameters; the parameters to a function call are
enclosed in parentheses or, if there is only one, it
can follow of.

parameter variables: Local variables in a
handler which receive the values of parameters
passed with the message or function call initiating
the handler's execution.

picture: Any graphic or part of a graphic, created

with a Paint tool or imported from an external file,
which is part of a card or background,

Glossary 307

point: In printing, the unit of measurement of the
height of a text character; one point is about ¥ of
an inch. When you select a font, you can also
select a point size, such as 10-point, 12-point, and
s0 on. Also, a location on the screen described by
two integers, separated by a comma, representing
horizontal and vertical offsets, measured in pixels
from the top-left corner of the card window or (in
the case of the card window itself) of the screen.

power key: One of a number of keys on the
Macintosh keyboard you can press to initiate a
menu action when a Paint tool is active, Power keys
are enabled when you choose Power Keys from the
Options menu or you check Power Keys in the User
Preferences card in the Home stack.

properties: The defining characteristics of any
HyperCard object and of HyperCard's
environment. See also global properties, object
properties, painting properties, and window
properties.

Recent: A special dialog box that holds pictorial
representations of the last 42 unique cards viewed.
Choose Recent from the Go menu to get the dialog
box. Also, as in recent card, an adjective
describing the card you were on immediately prior
to the current card.

recursion: The continued repeating of an
operation or group of operations. Recursion
oceurs when a handler calls itself,

regular text: Text you type in a field. You use the
Browse tool 1o set an insertion point in a field and
then type, Regular text is editable and searchable,
while Paiat text is not,

script: A collection of handlers written in
HyperTalk and associated with a particular object.

search path: The route the computer must follow
to retrieve a file you ask for.

selection: A container that holds the currently
selected area of text. Note that text found by the
find command is not selected. See also
container,

3pa Glossary

source of value: HyperTalk's most basic
expressions; the language elements from which
values can be derived: constants, containers,
functions, literals, and properties.

stack: A type of HyperCard object which is a
collection of cards; a HyperCard document, See
also card.

static path: The message-passing route defined by
an object’s own hierarchy. For example, the static
path followed by a message sent to (but not
handled by) a button would include the card to
which the button belongs, the background
associated with that card, and the stack containing
them. Contrast with dynamic path.

System file: Software your computer uses to
perform its basic operations.

system message: Message sent to an object by
HyperCard in response to an event such asa
mouse click or the creation or deletion of an
object.

target: The object which first receives 4 message.

tear-off menu: A menu that you can convert to a
palette by dragging the pointer beyond the
menu's edge. HyperCard has two tear-off menus—
Tools and Patterns.

text Aeld: Sce feld.

text property: A quality or attribute of a
character's appearance, Properties include style,
font, and size.

tool: An implement you use to do work.
HyperCard has tools for browsing through cards
and stacks, creating text fields, editing text,
making buttons, and creating and editing pictures.

user level: The property of HyperCard ranging
from 1 to 5, usually chosen on the User
Preferences card in the Home stack, that lets you
use HyperCard's tools and abilities. The five user
levels are: Browsing, Typing, Painting,
Authoring, and Scripting.

value: The information on which HyperCard
operates. All HyperCard values can be treated as
strings as characters.

variable: A named container that can hold a value
consisting of a character string of any length,
HyperCard has local variables and global
variables. See also container.,

window properties: The properties that
determine how the Message box and the Tool and
Fattern palettes are displayed. For example, the
visible property determines whether or not the
specified window is displayed on the screen.

Glossary

309

Note: See Appendix H, “HyperTalk
Vocabulary,” for brief descriprions
of HyperTalk keywords,
commands, and other terms,

Cast of Characters

& (concatenate) 55

&& (concatenate with space) 53
/ (divide) 51

= (equal} 52

* {exponent) 52

= (greater than) 52

>= (greater than or equal o} 53
= (greater than or equal ta) 53

{) (grouping} 51

< (less than) 52

<= (less than or equal to) 52

< (less than or equal o) 52

- (minus) 51

* (multiply) 51

<> (not equal) 52

(not equal) 52

+ {plus) 51

A

abbraviated 145, 175
abbreviations 276, 281
abs 140
accessing
WCMD' resources 230-231
"KFCN' resources 230-231
actual parameters, defined 30
add 88
after 122
all 127

and 52

annuity 140
answer B9-00
It and 47
any 37, 54
Apple Programmer's and
Developer's Association
(APDA} 260
arrowKey
command 90-91
system message 82
ASCII table 263-265
ask 92-93
It and 47
assembly language, See GB000
assembly language
atan 141
attaching
HCMDY resources 260
XFCN' resources 260
autoHilite 203
autoTab 276
average 142

background 34

background properties 192-193,
See also specific background
property

backgrounds 154

backgrounds 3

limits 268

barn deoor clese 133

barn door open 133

beep 03

bafore 122

bitmap limit 268

black 133
blindTyping 176
bottom 279
bottamRight 279
browse 94, 170

brush
property 184
ool 94, 170

Brush Shape dialog box 184
bucket 94 170

button
object 34
ool 94, 170

Button Info dialog box 7
button properties 203-2090, See
also specific button proparty
buttons 154
burtons 2-3
defined 2
limits 268
messages o 17
system messages and 77-78

c

C (language), See MPW C
callback procedures and functions
'KCMIY resources 235-259
'WFCN' resources 235-250
cantDelete 277
cantModify 277
Can't understand error message
15
card 34, 133
Card Info dialog box 35
card properties 193-194, See also
specific card property

311

cards 154
cards 3
current 80
defined 3
limits 268
card window 181
centered 184
charactar 54
character assignments
Control character 264
Courier font 205266
characters 154
characters 54
charToMum 142
chackerboard 133
choose 94-95
chunk expressions 53-58
containers and 57-58
synlax 53-54
chunks
defined 33
nonexistent 57
click 48, 9506
clickLeocs 143
closeBackground 83
closeCard 13, BD
closeField 17,79
close file 97
close printing 98
closeStack 83
combining object descriptors 40
commandKey 143
Command key shorteuts 281-282
commands 851306, See also
messages or specific
cormmiarnd
defined 4
enhanced 270-273
external 217-2060
messages resulting from 14
new 270=-273
redefining 86
script editor 10
syslem messages and 76
complex expressions 48-53
compound 144
concatenate (&) 53
concatenate with space (&5) 53
constants 42, 212-213. See also
specific constant

2 Index

defined 42, 212
containers 45—48
chunk expressions and 57-58
defined 45
containa 48 53
Control character assignments 264
controlKey 52
parameters 261-262
Control key 261-262
control structures, nested 9
convert 98-99
Itand 47
cos 145
Courier font character assignments
265
current card, system messages and
8084
current hierarchy 18-19
cursor 177
changes in version 1.2 278
curve 94,170

D

date 145
definition interface file
MPW C version 237-241
MPW Pascal version 235-237
delete 100
deleteBackground 83
dalateButton 17,77
deleteCard 14, 80
deleteField 17,79
deleteStack 83
descriptors. See object descriptors;
stack descriptors
dial 101
diskSpace 146
dissolwve 133
div (divide and truncate) 51
divide 102
divide (/) 51
divide and runcate (div) 51
do 14, 72
deMenu
command 103
system message 83
down 90, 213
drag 48, 104
dragSpeed 177

dynamic path 21-24
defined 21
go and 22-23
send and 23-24

E

e (eighth note) 118
Edit Background mode 6
editBkgnd 177
edit seript 105
eight 36, 213
eighth 306
else 14, 70
ampty 46, 213
end 4, 14, 61, 64, 70, 71
enhanced features 2069-252
anterInField 260
enterKey 81, 105
entryPoint 234
environmental properties 176
equal (=) 52
eraser 94, 170
example external command
(flash) 220-225
example external function (peek)
225-229
ex-commands. See external
commands
ex-functions. See external funclions
exit 14, 25, 61, 64, 69
exp 147
expl 147
exponent (*) 52
CXPressions
chunk 53-58
complex 48-53
defined 42
expression type, operators and 51
exp? 148
extended ASCIH table 263-265
external commands 217-260
example 220-225
external functions 217-260
example 225-229

F

factors 49
false 213

fast 133
field
object 34
ool 94, 170
field properties 195-202. See also
specific field property
fields 154
fields 2-3, 45—i6
defined 2, 45
limits 268
messages o 17
system messages and TE-79
Eifth 36
filled 185
find 48, 106-107
changes in version 1.2 271-272
first 30
five 34, 213
flash (example external
command) 220-225
MPW C version 222-22%
MPW Pascal version 220-222
68000 assembly language version
224-225
formal parameters, defined 30
format 2 'snd ' resources 118
formarting scripts (script editor) 9
formFead 213
foundChunk 275
foundField 275
foundLine 275
foundText 275
found text, functions for 275
four 36, 213
fourth 36
freeSize 190
function 4, 5, 14, 64
function call, defined 5
function handlers 5
defined 5
example 66
keywords in 63-64
functionKey

command 108

system message 82
functions 43, 138-172. See also

specific function
defined 43, 138

enhanced 273-276
external 217-260
new 273-276
for text 275

G

get 109
It and 47
glebal 14, 46, 73
global properties 176-181, See
also specific global property
defined 174
global variables, defined 46
glue routines
MPW C version 250-259
MPW Pascal version 241-249
go 110
dynamic path and 22-23
gray 133
greater than (=) 52
greater than or equal 1o (>=;) 53
grid 185
grouping ((}) 51

H

h Chalf note) 118
handlers 45
calling handlers 25-26
defined 4
function 5, 63-60
message 5, 60-63
sharing 27-28
handling messages 12-32
height 279
help 83, 111
hide 84, 111=112
changes in version 1.2 272-273
hierarchy
current 18=19
defined 3
object 16-24
using 27-30
hilite 204
HyperCard Developer's Toolkit
260
HyperTalk
basics 2-10
changes in version 1.2 269-282

described 2-4

limits 268

synlax summary 283287

vocabulary 288-303
HyperXCmd.h 237-241
HyperXCmd.p 235-237

I J

icon 204

ID 35, 192, 193, 195, 205

identifiers, defined 46

idle 13, 81

I numbers. See object ID

numbers

ID property 175

1f 9 14, 70-72
multiple-statement 71-72
nested 72
single-statement 7071

in 40,53 5

inArgs 234

intercepting messages 29-30

into 122

inverse 133

invoking
WCMDY resources 230
XFCN' resources 230

iris close 133

iris open 133

is 52

ig in 53

is not 52

ia not in 53

It 47

item 55

items 154

ilems 55

K

keyboard shorcuts 2851-282
script editor 10
keywords 60-74. See also specific
keyword
defined 14, 60
in function handlers 63-66
in message handlers G0-63

313

L

language 178
lasso 94, 170
last 37, 54
laft 90, 278-279
length 148
less than (<) 52
less than or equal 1o (<=; £} 52
limits (HyperCard) 267-268
line

chunk 55

tool 94, 170
lineFeed 213
line length (script editor} 9
lines 154
lines 55
lineSize 18%
literals 42—43
1n 149
Inl 149
local variables, defined 46
location 182, 196, 205
lockMessages 178
lockRecent 178
lockScraan 179
lock screen 270
lockText 196
log2 150
long 145, 175
looping. See recursion

M
manipulating text (script editor) 8
max 150
me 37
message 48, 181
Message box 14, 48
message handlers 5
defined 5
example 62-63
keywords in 0003
messages 4. See also commands
defined 2
handling 12-32
intercepting 29-30
Message box 14
receiving 15
resulting from commands 14

314 Index

sending 12-14

statements as 13

system 4, 13, 76-84

to buttons 17

to fields 17

where they go 1620
middle 37, 54
min 151
minus (=} 51
mod 52
mouse 151-152
mousellick 152
mouaebown 13, 77, 79, 80
mouseEnter 13, 78,79
mouseH 153
mouseLeave 13, 78, 79
mousaLoc 153
mousesStillDown 77, 79, 50
mouselp 13, 77,79, 80
mouseV 154
mouseWithin 13, 78, 79
MY C

definition interface file listing

237-241

flash listing 222-223

glue routines listing 250-259

peck listing 228-229
MPW Pascal

definition interface file listing

235-237

flash listing 220-222

glue routines listing 241-249

peek listing 225-227
multipla 186
multiple-statement if 71-72
multiply 113
multiply (*} 51
multiSpace 180
music. Séeplay, sound

N

name 35, 190, 192, 194, 197, 205
name property 173
names, See object names
naming
objects 3440
stacks 39
nested control structures 9
nested 1 72

newBackground 83
newButton 17, 77
newCard 14, BO
new [eatures 209-282
newField 17,79
newdtack B3
New Stack command (File menu)
39
next
keyword 69
object modifier 14, 37
nine 36,213
ninth }b
nonexistent chunks 57
net 52
not equal (<>; #) 52
numbar
function 154=155
property 192, 194, 197, 206
changes in version 1.2 273
numberFormat 44, 179
numbers 44-45. See also object 1D
numbers; object numbers
numToChar 156

0

object descriptors 3438
combining 40
defined 34
special 37-38
object hierarchy 16-24
defined 16
HCMD' resources and 230-231
WFCHW' resources and 230-231
object ID numbers 35-36
Obiject Info dialog box 175
object names 35
object numbers 36-37
object properties 174-173
objects 2-3. See also backgrounds;
burons; cards; fields; stacks
defined 2
naming 34—40
Objects menu 6
of 40, 53, 174
offset 157
an 4, 14, 61
cne 30
open 114

openBackground 83
openCard 13, 80
openField 13,17, 79
open file 115
epen printing 116
opanStack B3
operators 50-53
defined 42
expression type and 51
new 280
precedence of 50, 266
optionKey 158
Option key shommcus 282
or 52
ordinals, special 37
outArgs 234
oval 94, 170

P
painting properties 183-189, See
also specific painting

property
defined 174
Paint text, defined 2, 46
Paint Text tool. See text
param 158
paramCount 159, 233
parameter block data structure
HCOMDY resources and 232-234
"KFCN' resources and 232-234
parameter passing 30-31
parameters, defined 30
parameter variahles 46
defined 30
params 160, 233
Pascal. See MPW Pascal
pass 14, 15, 62, 65
passFlag 233
pathnames 38-39
pattern 186-187
Pattemns palette 187
pattern window 181
peek (example external command)
225-229
MPW C version 228-229
MPW Pascal version 225-227
pencil 94, 170
pi 213
plain 133

play 117-118
plus (+) 51
polygon 94, 170
polySidas 187
pop card 118-119
powerkKeys 180
precedence of operators 50, 266
precision <4
previous 37
print 120-121
print card 119120
printing (script editor) 8
properties 43, 174-209, See also
specific property
background 192-193
button 203=209
card 193-194
defined 34, 43, 174
enhanced 276-279
environmental 176
field 195-202
global 174, 176181
new 276-279
object 174-175
painting 174, 183-189
retrieving 174-176
of screen rectangles 278-279
setting 174-176
stack 190-191
window 174, 181-132
push 121-122
put 46, 48, 122-123

a

g {quartet note) 118
quit 84
quote 213

R

random 160-161
ranges 50
read 123=124
It and 47
recelving messapes 15
recent 37
rectangle
propeny 182, 197-198, 206
ool 94, 170

recurslon 25, 26
redefining commands 56
regular polygon 94, 170
repeat 9, 14, 8570
request 234
reset paint 125
result 161-162, 234
resume 84
retrieving properies 174-176
return 14, 62, 65, 213
returninField 200-270
raturnKay

command 125

system message 81
returnValue 233
right 90, 279
round 163
round rectangle 94, 170

5
a (16th note) 118
SANE (Standard Apple Numerics
Environment) <44
scope of variables 46
screenkect 270
screen rectangles, properties of
278-279

script 191, 193, 194, 198, 207
script editor 7-10

commands 10

formatting scripts 9

line length 9

manipulating text 8

printing 8

searching &
scripts 4-10

defined 2
scroll 198-199
scroll down 133
scroll left 133
scroll right 133
seroll up 133
searching (script editor) 8
second 30
seconds 163-1064
select 94, 170, 271
selectedChunk 275
selectedFiald 275
selectedLine 275

Index 315

selectedText 275
selected text, funclions for 275
selection 47-48
sencd 14, 74
dynamic path and 23-24
sending messages 12-14
set 126, 174
seiling properties 174-176
seven 36, 213
sevanth ﬁﬁ
sharing handlers 27-28
shiftEey 164
Shift key shortcuts 282
short 145, 175
shorcuts, new 2851-282
show 84, 128-129
changes in version 1.2 272-3173
show cards 127
showLines 199
showName 207
showPict 277
sin 164
single-statement if 70=71
six 36, 213
sixth 30
68000 assembly language, flash
listing 224-225
gize 191
slow 133
'snd ' resources 118
sort 130
sound 165
sources of values 42—48
space 213
spray 94, 170
sqrt 166
stack 34, 39
stack descriptors 38-39
stack properties 190-191. See also
specific stack property
stacks 3
defined 3
limits 267
naming 39
Standard Apple Numerics
Environment (SANE) 44
startUp 80
statements, as messages 13
static path, defined 21
style 199, 207

314 Index

subroutine calls 25-26
subtract 131
suspend 83
synonyms, new 281
syntax summary (HyperTalk}
283-287
system messages 13, 76-84. See
also specific message
buttons and 77-78
commands and 76
current card and BO-H4
defined 4
fields and 7879
new 269-270

T

t (32nd note) 118
tab 213
tabKey

command 131

system message 79, 81
Tab key 37

shortcuts 281-282
tab order, object numbers and 37
tan 1650
target 20, 167-168
target 20
ten 36, 213
tenth 55
text 94, 170
text, functions for 275
textAlign 188, 200, 208
textArrows 180
textFont 188, 200, 208
textHeight 188, 201, 208
textSize 189, 201, 209
textstyle 189, 202, 209
the 138, 174
then 14, 70
third 38
this 37
thraea 34, 213
ticks 1068
time 169
to 54
tocl 170
tool window 181
top 279
toplaft 279

true 213
trunc 171
two 36, 213
I‘_ypl:‘- 132

u

unleck screen 270
up 90, 213
userLaval 151
userModify 278

v

valua 172
values 42-58

defined 42

sources of 4248
variables 4647
venetian blinds 133
version 172

changes in version 1.2 274
version 1.2 (HyperCard), changes

to HyperTalk in 269-282

very fast 133
very slow 133
visgible 183, 202, 209
visual 133-134
vocabulary (HyperTalk) 288-303

w

w (whole note) 118
wait 135
white 133
wideMargins 202
width 279
window properties 181-1H2. See
also spectfic window property

defined 174
wipe down 133
wipe left 135
wipe right 133
wipe up 133
within 280
word 55
words 154
words 5% i
write 136 |

XY

% (Gdth note) 118
XCmdBlock 232-234
XCmdGlue, o 250-259
¥CmdGlue.ine 241-249
HKCMD' resources 217-218
accessing 230-231
attaching 260
callback procedures and functions
235-259
example 220-225
guidelines for writing 219
invoking 230
object hierarchy and 230-231
parameter block data structure
and 232-234
uses for 218
AFCN' resources 217-218
accessing 230-231
attaching 260
callback procedures and functions
235-239
guidelines for writing 219
invoking 230
object hierarchy and 230-231
parameter block data structure
and 232-234
uses for 218

tero 213

zoom close 133
zoom in 133
zoom open 133
zoom out 133

Index 317

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop puh[:‘shinﬁ system using
Apple Macintosh® computers
and Microsoft® Word. Proof
pages were created on the Apple
LaserWriter® Plus. Final pages
were created on the Varityper®
VT600™. POSTSCRIPT®, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.
Some of the illustrations were
created using Adobe
Ilustrator™,

Text type is ITC Garamond®

(a downloadable font distributed
by Adobe Systems), Display type
is ITC Avant Garde Gothic®,
Bullets are ITC Zapf Dingbats®,
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width fonr,

qlp,.--r"-"'w-wr-h—-n..._; T T T
i b 'f"""it{f
1) o Sa -

