

€. Macmtos . HyperCarde Script

Language Guide
The HyperTalk~ Language

A

Yy

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrd San juan

& APPLE COMPUTER, INC.

Copyright © 1988 by Apple
Computer, Inc,

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America,

Apple, the Apple logo,
HyperCard, ImageWriter,
LaserWriter, Macintosh, and
SANE are registered trademarks
of Apple Computer, Inc.

APDA, Finder, HyperTalk,
MultiFinder, and Stackware arc
trademarks of Apple Computer,
Inc.

MacPaint is a registered trade-
mark of CLARIS Corporation.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dinghats are registered trade-
marks of Interational Typeface
Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark of Adobe Systems
Incorporated,

e e

Varityper is a registered trade-
mark, and VT600 is a trademark,
of AM International, Inc.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17632-7
ABCDEFGHIJ-DO-898
First printing, July 1988

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
TMPLIED WARRANTIES OF
MERCHANTABILTTY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED TN
DURATION TO NINETY (90}
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
TMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even il advised of the
passibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEL] OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized 1o make any modifica-
tion, extension, or addition to this
WRITANLY.

Some states do not allow the exclu-
sion or imittion of implied warran-
ties or lability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state,

Con’ren'r_s

Figures and tables xiv

Preface About This Guide xvli

What's in this book? xvili
Notation conventions xx

Chapter | HyperTalk Basics 1

What is HyperTalk? 2
Objects 2
Buttons and fields 2
Cards, backgrounds, and stacks 3
Messages 4
r, Scripts 4
Handlers 4
Message handlers 5
Function handlers 5
Where's the script? 6
The script editor 7
3 Manipulating text 8
Searching and printing 8
Formatting scripts 9
Line length 9
Chapter summary 10

Chapter 2

Chapter 3

v Contents

Handling Messages 11

The HyperCard environment 12
Sending messages 12
System messages 13
Statements as messages 13
Message box messages 14
Messages resulting from commands 14
Receiving messages 15
Obiject hierarchy 16
Where messages go 16
Messages to buttons and fields 17
The current hierarchy 18
The target 20
The dynamic path 21
The go command and the dynamic path 22
The send keyword and the dynamic path 23
Handlers calling handlers 25
Subroutine calls 25
Recursion 26
Using the hierarchy 27
Sharing handlers 27
Intercepting messages 29
Parameter passing 30
Chapter summary 32

Naming Objects 33

Object descriptors 34
Object names 33
Object ID numbers 35
Object numbers 30
Special ordinals 37
Object numbers and tab order 37
Special object descriptors 37
Stack descriptors 38
MNaming a stack 39
Combining object descriptors 40
Chapter summary 40

Chapterd Values 41

Sources of values 42
Constants 42
Literals 42
Functions 43
Properties 43
Numbers 44
Standard Apple Numerics Environment 44
Precision 44
Number handling 45
Containers 45
Fields 45
Variables 48
The selection 47
The Message box 48
Complex expressions 48
Factors 49
HyperTalk operators 50
Operator precedence 50
Operators and expression lype 51
Chunk expressions 53
Syntax 53
Characters 54
Words 55
ltems 55
Lines 55
Ranges 56
Chunks and containers 57
Chunks as destinations as well as sources 57
MNonexistent chunks 57
Chapter summary 58

Chapter5 Keywords 59

Keywords in message handlers 60
Cn 61
End 61
Exit 61
Pass 62
Remumn 62
Message handler example 62

Contents

I

Keywords in function handlers 63
Function 64
End &4
Exit 64
Pass 65
Retum 63
Function handler example 66
Repeat 66
Repeat 66
Repeat forever 67
Repeat for 67
Repeat until 67
Repeat while 68
Repeat with 68
Exit 69
Next 69
End 70
If 70
Single-statement If structure 70
Multiple-statement If structure 71
Nested If structures 72
Do 72
Global 73
Send 74

Chapteré System Messages 75

Messages and commands 76
Messages sent to a button 77
Messages sent to a field 78
Messages sent to the current card 80

Chapter7 Commands 85

Redefining commands 86
Syntax description notation &7
Add 88

Answer 89

ArrowKey 90

Ask 92

Beep 93

Choose 94

Contents

Click 95

Close file 97
Close printing 98
Convert 98
Delete 100
Dial 101
Divide 102
DoMenu 103
Drag 104

Edirt script 105
EnterKey 105
Find 106
FunctionKey 108
Get 109

Go 110

Help 111

Hide 111
Multply 113
Open 114
Open file 115
Open printing 116
Play 117

Pop card 118
Print card 119
Print 120

Push 121

Put 122

Rezadd 123
Reset paint 125
ReturnKey 125
Set 126

Show cards 127
Show 128

Sort 130
Subtract 131
TabKey 131
Type 132
Visual 133
Wait 135

Write 136

Contents

vl

Chapter 8 Funclions 137

Function calls 138
Syntax description notation 139
Abs 140

Annuity 140
Atan 141
Average 142
CharToNum 142
ClickLoc 143
CommandKey 143
Compound 144
Cos 145

Date 145
DiskSpace 140
Exp 147

Expl 147

Exp2 148

Length 148

Ln 149

Lnl 149

Log2 150

Max 150

Min 151

Mouse 151
MouseClick 152
MouseH 153
MouseLoc 153
MouseV 154
Mumber 154
MNumToChar 156
Offset 157
OptionKey 158
Param 158
ParamCount 159
Params 160
Random 160
Result 161
Round 163

wili Contents

Seconds 163
ShiftKey 164
Sin 164
Sound 165
Sqrt 166
Tan 166
Target 167
Ticks 168
Time 169
Tool 170
Trune 171
Value 172
Version 172

Chapter 9 Properties 173

Retrieving and setting properties 174

Object properties 174
Name property 175
ID property 175

Environmental properties 176

Global properties 176
BlindTyping 176
Cursor 177
DragSpeed 177
EditBkgnd 177
Language 178
LockMessages 178
LockRecent 178
LockScreen 179
NumberFormat 179
PowerKeys 180
TextArrows 180
UserLevel 181

Window properties 181
Location 182
Rectangle 182
Visible 183

Contents ix

Painting properties 183
Brush 184
Centered 184
Filled 185
Grid 185
LineSize 185
Multiple 186
MultiSpace 186
Pattern 186
PolySides 187
TextAlign 188
TextFont 188
TextHeight 188
TextSize 189
TextStyle 189

Stack properties 190
FreeSize 190
Name 190
Script 191
Size 191

Background properties 192
1D 192
Name 192
Number 192
Script 193

Card properties 193
ID 193
Mame 194
Number 194
Script 194

X Contents

Ficld properties 195

D 195
Location 196
LockText 196
Name 197
Number 197
Rectangle 197
Script 198
Scroll 1958
ShowLines 199
Style 199
TextAlign 200
TextFont 200
Textteight 201
TextSize 201
TextStyle 202
Visible 202
WideMargins 202

Bumon properties 203

AuroHilite 203
Hilite 204

Icon 204

ID 205
Location 205
Name 205
Number 206
Rectangle 206
Script 207
ShowName 207
Style 207
TextAlign 208
TextFont 208
TextHeight 208
TextSize 209
TextStyle 200
Visible 209

Chapter 10 Constants 211

Contents

%l

Appendix A External Commands and Functions 217

Definitions, uses, and examples 217
XCMD and XFCN resources 217
Uses for XCMDs and XFCNs 218
Guidelines for writing XCMDs and XFCNs 219
Flash: an example XCMD 220
Flash listing in MPW Pascal 220
Flash listing in MPW C 222
Flash listing in 68000 assembly language 224
Peek: an example XFCN 225
Peek listing in MPW Pascal 225
Peek listing in MPW C 228
Accessing an XCMD or XFCN 230
Invoking XCMDs and XFCNs 230
Object hierarchy 230
Parameter block data structure 232
Passing parameters 1o XCMDs and XFCNs 233
ParamCount 233
Params 233
Passing back results to HyperCard 233
RemurnValue 233
PassFlag 233
Callbacks 234
EntryPoint 234
Request 234
Result 234
InArgs 234
OutArgs 234
Callback procedures and functions 235
Definition interface files 235
Definition file in MPW Pascal 235
Definition file in MPW C 237
Glue routines 241
Glue routines in MPW Pascal 241
Glue routines in MPW C 250
Artaching an XCMD or XFCN 260
HyperCard Developer's Toolkit 260

Appendix B ControlKey Parameters 261

Appendix C Extended ASCIl Table 263

%1l Contenfs

f

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Cperator Precedence Table 266

HyperCard Limits 267

HyperTalk Changes in HyperCard Version 1.2 269
New system messages 269
New and enhanced commands 270
Lock screen and unlock screen 270
Select 271
Find 271
Hide and show 272
New and enhanced functions 273
Enhancement to number function 273
Enhancement to version function 274
Functions for found text 275
Functions for selected text 275
ScreenRect function 276
New and enhanced properties 276
AutoTab 276
CantDelete 277
CantModify 277
ShowPict 277
UserModify 278
Cursor 278
Properties of screen rectangles
New operator 280
New synonyms 281
New shortcuts 281
Command-Tab 281
Command-Option 282
Shift-Command-Option 282
Other Command-Option key combinations 282

278

HyperTalk Syntax Summary 283
Syntax description notation 283

HyperTalk Vocabulary 288

Glossary 305
Index 311

xiil

Contents

Elg_aés_;a tables

Chapter 1

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Table 1-1

Chapter 2

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13

Chapter 3
Figure 3-1

Figure 3-2
Figure 3-3

xiv Figures and tables

Hondling Messages 11

HyperTalk Basics |

HyperCard objects 3

The Obijects menu 6

Button Info dialog box 7

Script editor box 8

Nested control structures 9

Seript editor command summary 10

Matching messages with handlers 15

Object hierarchy 16

Layered buttons and fields 17

Message traversing current hierarchy 18
Command is sent as a message 19

The target 20

Static path before the go command executes 22
Dynamic path after the go command executes 23
Using the send keyword 24

Handler in card script 28

Handler in stack script 28

Intercepting a message 29

Parameter passing 31

Naming Objects 33

Card Info dialog box and descriptions for
same card 35

A pathname 38

New Stack dialog box 39

E Chapter 4

Chapter &

Chapter 7

Chapter 9

Chapter 10

Appendix A

Appendix B

Values 41

Figure 4-1 Manipulating the selection 47
Figure 4-2 The Message box 48

Figure 4-3 Lines in a field 55

Figure 4-4 Chunk expressions 56

Figure 4-5 Combining chunks and objects 58
Table 4-1 Operator precedence 50

Table 4-2 HyperTalk operators 51

System Messages 75

Table 6-1 Messages sent to a button 77

Table 6-2 Messages sent to a field 79

Table 6-3 Messages sent to the current card 80
Commands 85

Figure 7-1 Answer command dialog boxes 89
Figure 7-2 Ask command dialog box 92

Figure 7-3 Tools palette 94

Table 7-1 Effects of the arrowKey command 90
Properties 173

Figure 9-1 An Obiject Info dialog box 175

Figure 9-2 Brush shape dialog and property values 184
Figure 9-3 Patterns palette and property values 187
Figure 9-4 The scroll property 199

Constants 211

Table 10-1 HyperTalk constants 213

External Commands 217

Figure A-1 Message-passing hierarchy, including XCMDs

and XFCNs 231

Controlkey Parameters 261

Table B-1 ControlKey message parameter values 262

Figures and tables %y

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

xvl Figures and tables

Extended ASCIl Table 263

Table C-1 Control character assignments 264
Tahle C-2 Character assignments in Macintosh Courier
font 265

Operator Precedence Table 266
Table D-1 Operator precedence 266

HyperCard Umits 267
Table E-1 HyperCard limits 267

HyperTalk changes in HyperCard Version 1.2 269

Table F-1 New system messages 269
Table F-2 New HyperTalk synonyms 281
Table F-3 MNew shortcuts 282

HyperTalk Syntax Summary 283

Table -1 HyperTalk command syntax 284
Table G-2 HyperTalk function syntax 283

HyperTalk Vocabulary 288
Table H-1 HyperTalk vocabulary 288

Preface

About This Guide

This book provides detailed information about HyperTalk™, the scripting language of
HyperCard®. Even a small knowledge of HyperTalk enables you to customize buttons
and other parts of HyperCard stacks for your own purposes, and you can use

HyperTalk to make the stacks that vou create act the way you want.

To get the most out of this book, you should have read the HyperCard User's Guide,
and you should have used HyperCard enough to be familiar with its basic features.
While you're using HyperCard, you can find information about HyperTalk in the
HyperCard Help system. The Help system makes use of some of HyperCard's best
features, such as computer-supported cross-referencing and fast text searching.

Some of the concepts in this book, such as message handling and objects, may be new
to you. Use this guide as it suits your own style of learning: you might be the kind of
person who understands best by thoroughly studying the explanations, or you might
be the kind who learns by skimming the material and then playing with
HyperTalk—writing scripts or copying the examples and trying them out.

What's in this book?
Here's a brief description of the contents of this guide:

Chapter 1, “HyperTalk Basics,” introduces the basic concepls of HyperTalk, showing
how it is used in the HyperCard environment. This chapter also explains how to create
and modify scripts in HyperCard objects.

Chapter 2, “Handling Messages," describes how HyperTalk works, how it carries out
actions, and how it responds to events in the HyperCard environment.

Chapter 3, “Naming Objects,” explains how to refer to objects—the parts of
HyperCard that contain HyperTalk scripts and that respond to and initiate actions.

Chapter 4, “Values," explains how to create and refer to HyperTalk's values—the
information it acts upon. It also describes HyperTalk's operators and explains how
HyperTalk evaluates expressions,

Chapter 5, “Keywords,” describes the handlers within which you write all HyperTalk
scripts, to enable objects to respond to messages and function calls. It also describes
the control structures of HyperTalk that let you specify how and when sections of
scripts execute, and it describes other keywords: do, global, and send.

Chapter 6, “System Messages,” describes the messages that HyperCard generates in
response to events (such as mouse clicks) that happen in its environment.

Chapter 7, “Commands,” describes each of HyperTalk's built-in commands—the
action statements that make HyperCard do things.

Chapter 8, “Functions,” describes HyperTalk’s built-in functions—named values that
reflect conditions in the HyperCard environment.

Chapter 9, “Properties,” describes the properties of HyperCard
objects—characteristics that determine how objects look and act.

Chapter 10, “Constants,” describes HyperTalk's built-in constants—named values
that don't change.

xwili Praface: About This Guide

e SIS S o T W = [N CUTU * CUCR B R R)

Appendix A, “External Commands and Functions,” contains general information
about XCMDs and XFCNs, extensions to HyperTalk that can be written by expert
programmers (o increase the power of HyperCard.

Appendix B, “ControlKey Parameters,” lists the values generated by various
keystrokes in combination with the Control key.

Appendix C, “Extended ASCII Table,” lists the decimal values of the standard
Macintosh character set used by HyperCard.

Appendix D, “Operator Precedence Table,” summarizes the order in which
HyperTalk performs operations when it evaluates expressions.

Appendix E, “HyperCard Limits," lists various minimum and maximum sizes and
numbers of elements defined in HyperCard.

Appendix F, “HyperTalk Changes in HyperCard Version 1.2," explains the
differences in the language appearing with version 1.2,

Appendix G, “HyperTalk Syntax Summary,” shows the syntax of HyperTalk's
command and function parameters in abbreviated form.

Appendix H, “HyperTalk Vocabulary,” lists alphabetically each of the primary terms
that HyperTalk understands along with its category, a page reference to where it is
explained in this guide, and provides a brief description of its meaning.

What's in this book? ®ix

Notation conventions

Before you read this guide, you should know about a few typographic conventions
Words or phrases in typewriter type are HyperTalk language elements or are
those that you type to the computer literally, exactly as shown. New terms are shown in
boldface type when first used or defined.

In descriptions of HyperTalk syntax for commands and other language elements,
words in italic type describe general elements, not specific names—you must
substitute the actual instances. Square brackets ([1) enclose optional elements which
may be included if you need them. (Don't type the square brackets.) In some cases,
optional elements change what the message does; in other cases they are helper words
that have no effect except 1o make the message more readable. Syntax descriptions for
some language elements have particular formats shown at the beginning of their
chapters.

It doesn't matter whether you use uppercase or lowercase letters in commands or
variable names; message names that are formed from two words are shown in small
letters with a capital in the middle (11 keThis) merely 1o make them more readable,
The keywords of and in are interchangeable—the syntax descriptions use the one
that sounds more natural,

iX Praface: About This Guide

Chapter |

HyperTalk Basics

This chapter explains HyperTalk’s place in the HyperCard system, describes some of
HyperTalk's characteristics, and shows how to create and edit the scripts of HyperCard
objects. Stc

Most concepts are discussed only briefly in this chapter, with more detailed discussion

left for later chapters

P Bur
What is HyperTalk?
HyperTalk is the scripting language of the HyperCard environment. It allows you lo B
perform actions on HyperCard objects: buttons, fields, cards, backgrounds, and
stacks.

You use HyperTalk to send messages to and from HyperCard objects. You generale a

message by (among other means) clicking the mouse, opening a card, or typing a

statement into the Message box. How a given object responds to a particular message

depends on the object’s script. All HyperCard scripts are wrirten in HyperTalk. Fis

abjecis a

There are five kinds of objects in HyperCard: buttons, fields, cards, backgrounds, and
stacks. (See Figure 1-1.)

Fi
Buttons and fields "
Buttons are action objects or “hot spots™ on the screen. For example, clicking a
button with the Browse tool can take you to the nextcard ina stack. C

Fields contain editable text. The Browse tool hand pointer changes to an I-beam
when it's over an unlocked field. (The card or background might also contain Paint
text characters. Such characters are not editable once they are placed; they become
part of the picture on the card or background.)

2 Chapter 1: HyperTalk Basics

Figure 1-1
HyperCard objects

Cards, backgrounds, and stacks

The basic unit of information is the card: when you look at the screen of a Macintosh®
computer running HyperCard, what you see foremost is a card. Each card is

associated with one background, and a background may be (and usually is) shared by
more than one card. The card overlays the background; both are the size of the card
window, which is the size of the original Macintosh screen (512 by 342 pixels). What
you see in the card window belongs to the card, or, if an area of the card is

transparent, to the background The card and background both can contain pictures,
which are bitmaps, and burtons and fields. Cards are grouped in stacks; each stack is a
Macintosh file.

The card that is currently displayed, the background associated with it, and the stack
they are in are termed the current card, background, and stack. The concept of being
current doesn't apply to buttons or fields.

Chapter 3 contains details about referring to objects.

What is HyperTalk?

—

Messages

HyperCard objects interact with each other, with the user, with HyperCard, and with
the Macintosh environment by sending messages. Some messages are descriptions of
things that happen in the environment, such as that the mouse has been clicked or a
card opened: these are system messages. They are like news flashes announced to
the community of objects. For example, if you click the mouse button down,
HyperCard sends the message mouseDown; when you let the mouse button up,
HyperCard sends the message mouseUp.

Messages are sent to various objects in a particular order. For example, system
messages generated by the mouse go first 1o the topmost button or field (if any) under
the pointer on the screen. Next those messages go to the card, then to the background,
then the stack, then the Home stack, and finally to HyperCard itself. (You'll find a
detailed discussion of this hierarchical sequence in Chapter 2.)

HyperTalk commands are also messages—orders to do some particular thing, like
add two numbers or go to another card. A command, whether executed in a script or
typed into the Message box, is sent as a message.

Scripts

Every HyperCard object has a script (although the script can be completely empty). A
script is a collection of any number of handlers. The lines inside a handler are
HyperTalk statements; each statement ends with a return character. Statements always
appear within handlers in a script. Any part of a statement following HyperTalk’s
double-hyphen comment character (-=) is ignored by HyperCard.

Handlers

A handler is a collection of HyperTalk statements; a handler is invoked when a
particular message is received by the object whose seript contains the handler. A
simple handler looks like this:

on mouselUp
go to next card
and mouselp
The first line of a handler always begins with one of two words—either on {which
begins a message handler) or function (which begins a function handler). The last

statement of a handler always begins with the keyword end. All HyperTalk statements
always appear within handlers in a script.

4 Chapter 1: HyperTalk Basics

You must place handlers in the scripts of objects that will receive the messages you

want the handlers to respond to. The message-passing hierarchy, which determines
where messages are sent, is described in Chapter 2.

Message handlers

The example shown above is a message handler. This paricular message handler is
in the script of a button; it handles the message mouseUp, and goes to the next card.

The message to which a handler responds begins with the word following the word on.
In this case, the message is mouseUp. When you release the mouse button while the
Browse tool is inside a button's rectangle on the screen, HyperCard sends the message
mouselp to the button. HyperCard locks in the button's script for a handler

matching the mouseUp message. If it finds a match, it executes the HyperTalk

statements berween on mouseUp and end mouseUp—in this case, go to next
card.

Function handlers

In addition to message handlers, scripts can contain user-defined function
handlers. Function handlers begin with the word function in place of the word

on; the name of the function they handle is the second word. A function handler looks
like this:

function day
return first item of the long date
end day

This function handler responds to a HyperTalk statement containing the function's
- name followed by parentheses—a function call. Here's an example:

put day() into meszsage box

The function call is day () —the rest of the line and the function call together form a
statement. When the function call is made, HyperCard looks for the matching

function handler. If it finds one, it executes the lines between function day and
end day. The value derived from the expression first item of the long
date isreturned to the put statement in place of day (). In the example, the value
returned by the function (Friday, for example) is put into the Message box.

Function calls use the same object hierarchy as messages; it's described in Chapter 2.
Message and function handler structures are described in detail in Chapter 5.

Scripts

Where's the script?

You get access to an object’s script by choosing the object from the Objects menu.
The Objects menu has five object Info items, one for each of the five types of objects:
the current card, its background, the stack it belongs to, and the buttons and fields
belonging to the card and background.

Card Info...
Bkqgnd Info...
Slack Info...

Mew Bullon
N Field
New Background

Figure 1-2
The Objects menu

& You must be at level 5: The user level must be set to 5 (click the Scripting button on
the User Preferences card in the Home stack) for you to be able to look at scripts.

To edit the script of the current card, background, or stack, choose the appropriate
Info menu item for the object whose script you want. This action brings up information
about the object in a dialog box (see Figure 1-3). To open the object’s script, click the
Script button.

To get to the script of a button or field, first select the button or field (with the Button
tool or Field tool), then choose the appropriate Info item from the Objects menu. It is
not necessary to be in Edit Background mode to open the script of an existing
background button or field, You must be in Edit Background mode, however, to
create new background buttons and fields. (It may also help you to select background
buttons and fields, because when you're in Edit Background mode, HyperCard
doesn't display card buttons and fields.)

& Chapter 1: HyperTalk Basics

Bullon Name: | Fly

Card button number: 1 Style:

Card bution 10: 3) transparent

[$how name) opague

[Auto hilite L reciangie
Crshadow

I, e @ round rect

|_lcon...] Jeheck bow

[Wj b radio button

[senpt... | I oK q | tancel |

I —
1-3

Button Info diclog box

@ Shortcuts: To get to the Info dialog box of a button or field quickly, double-click the
button or field with the Button or Field tool chosen. To open the script directly,
hold down the Shift key while you double-click the object or choose its Info menu
item from the Objects menu.

The script editor

The HyperCard script editor lets you create and modify handlers in an object's script
(although you can't use it to change the font, size, or style in which the script is
displayed). You don't have access to the menu bar while you're editing.

You have to finish editing the seript and close the dialog box by clicking its OK or
Cancel button before you can do anything else. Closing the script editor box with the
OK button or pressing Enter saves the script with its object; closing it with the Cancel
button leaves the script the way it was when you opened it.

Shortcuts. To save and close a script quickly, press the Enter key. To close the script
quickly without saving changes, press Command-period. To choose the Browse
tool, press Command-Tab.

You can use the arrow keys to move the text insertion point around in the script.

Scripts

—

Seript of stack PragnatiyperCard Stacks:Home

on = Lar Alp
ge LHOm 118
aivd pracilp -

Fu 1T

g tHone I o

erd raiues

T L T S .

an g tileas i nra
aloeal shocks, appl icat o, decusen by, usertione

rat lockEoresn 1o Lius

sal lockPessoges 10 Urus

30 to cord LUper Preferences <©f rtock Humea™
pul card field “User Hass™ into uses T
el powg’Vayr 17 Pl of Bution “Possr Kags® |zasf

| el uierlewl & coard fiald "Usear Lol ™

pet B andTypung to 1i e of Bution Bbimad Tgpareg |
: Find iI | Print | |_I]IR'. | f!nnrpl:i
l —_— = |
|
Figure 1-4

S5cript editor box

Manipulating text

The script editor works in the standard Macintosh text edit manner. The mouse
manipulates an I-beam pointer with which you can place an insertion point or select
text. You perform cut, copy, and paste operations using Comma nd-X, Command-C,
and Command-V, respectively. The selection that you've cut or copied remains in the
Clipboard until you cut or copy again, in case you want to paste the material more than
once. It remains after you close the script, so you can open another script and paste
the material in. You can also paste it into a field as regular text or on a card or
background as Paint text.

Searching and printing

Clicking the Find button in the dialog box (or pressing Command-F) brings up a
search dialog box. The script editor locates and selects the first occurrence, following
the current insertion point, of a string you type into the find window. Searching is not
sensitive to uppercase and lowercase distinctions. Here are additional commands you
can evoke for searching and printing in the Script editor:

o To go to the next occurrence of the same string, press Command-G.

0o To copy the current selection from the script into the find window and to locate its
next occurrence, press Command-H.

o To print the current selection of the script (or, if nothing is selected, the entire
script), press Command-P or click the Print button.

o To select the entire script, press Commancd-A.

a8 Chapter 1: HyperTalk Basics

Formetting scripts

The HyperCard script editor indents nested control structures for you, It automatically
indents all of the lines inside a handler structure when you press the Tab key or close its
dialog box. (See Figure 1-5.) When if and repeat structures are nested inside
each other or within handlers, the lines are indented further, (You can't nest handler
structures inside each other or any other structure.)

@ Error checking: Automatic formatting provides some degree of error checking
while you write a script: if you press the Tab key and the last line isn't flush with the
left margin of the script editor dialog box, you probably left something out or made
a syntax error in a HyperTalk command.

Script of stack Sila:Help Stacks:Help

T H iz empty thar put "the laft cord has he mop coords”
iITH < 310 then == laft zalusn
I H > I30 then
kT L 120
ihin g0 card 10 100G — Hypsee Lalk
alra 9o cord 1D 21958 — How Lo uge Help

17

e
ITH 160 Lhen
Ty 130 Uhen
(R o W go cord 1D 24361 == Breoaizing
&lfe 9o cord 10 BIDD -= Painling
wlza
ifu 150 then ga eard |0 F3597 g i rag
wliw if UV ¢ I20 then go card 10 123862 He&raig
|| alie go cord 1D 10271 == Referance
&l |1
wlzs
if H o« 80 than go Home

e

[Find] [Print | [ok | [cancel)

Figure 1-5
Nested control structures

Line length

The script editor doesn't wrap lines too long to fit in its dialog box. There is no specific
restriction on the length of lines in scripts (although any single script cannot exceed
32,000 characters, including spaces, returns, and other invisible characters). Lines
too long to fit in the dialog box simply extend out of sight.

You can break a single statement into multiple lines by pressing Option-Return where
you want a line to break. This “soft” return appears in HyperCard scripts as a logical
NOT symbol (-). HyperCard treats lines broken in this way as single HyperTalk
statements continuing to the next actual return character,

% You can't break a literal: You can't put a “soft" return inside a quoted literal
expression. (Literals are described in Chapter 4.)

Scripts

Table 1-1 is a summary of the script editor commands you can evoke from the

keyboard.

Table 1-1

Script editor command surnrmary

Key prass Action

Command-X Cut selection to Clipboard

Command-C Copy selection to Clipboard

Command-V Paste Clipboard contents at insertion point
Command-F Find text string

Command-G Find next cccurrence of same text string
Command-H Find current selection

Command-F Print selection or (if no selection) entire scripl
Command-A Select entire script

Tab Formart script

Option-Return Carry command onto new line (“soft” return)
Enter Save changes and close script
Command-period Close script without saving changes
Chapter summary

Here is 2 summary of the material covered in this chapter:

o HyperTalk controls the properties of HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

0 HyperCard objects interact by sending and receiving messages.

o How an object responds to a message is specified by its script, which is written in
HyperTalk.

o Scripts are collections of message handlers and function handlers.

0 You can create and edit scripts with the HyperCard script editor. '

10 Chapter 1: HyperTalk Basics

This chapter explains how HyperCard objects send and receive messages and how
HyperCard executes scripls.

The HyperCard environment

HyperCard provides the environment in which HyperTalk scripts execute. The
HyperCard environment consists of objects connected by a message-passing
hierarchy and the HyperTalk language through which they communicate.

B T R L ST SR .

Although you could write a stand-alone program in a single HyperTalk script, you

would not be making use of the power and flexibility of the HyperCard environment.
Instead, you use HyperTalk to define the ways in which objects interact with each other 1
and with the user,

HyperCard is user oriented. When using HyperCard, the user opens and closes cards,

reads and changes text in fields, draws pictures on cards, and so on. HyperCard

constantly sends messages to objects in response to these actions (and the user’s |
inactivity when doing nothing), and the objects in tum respond with other messages

and other actions. The basic purpose of HyperTalk scripts is to enable objects to

handle those messages and to specify succeeding actions by sending further messages.

Most of the time, scripts carry out specific actions for the user: setting properties of
objects, going to other cards, and so on. HyperTalk can do automatically almost
everything the user can do manually with the mouse and keyboard,

Sending messages

All HyperCard actions are initiated by messages sent to objects. Messages are sent to
objects in four ways: |

O Anevent (such as a mouse click) can cause HyperCard to send a system message.

o Handler statements (other than keywords) are sent as messages when a handler
eXecutes.

0 HyperCard sends the contents of the Message box as a message when the user
presses Return or Enter.

O

HyperCard sometimes sends a message when it executes a command. ’

12 Chapter 2: Handling Messages

Systemn messages

HyperCard sends system messages constantly in response to events in the Macintosh
environment. For example, if you move the pointer so that it's over a button on the
screen, as soon as the pointer enters the button's rectangle, HyperCard sends the
message mouseEnter to the button. As long as the pointer remains inside the
button rectangle, HyperCard continuously sends the message mouseWithin tothe
button. As soon as you move the pointer outside the button area, HyperCard sends the
message mouseleave to the button.

HyperCard sends other system messages when you press certain keys on the keyboard,
close a field, select a menu item, or when you quit HyperCard. When you open a card,
HyperCard sends the message openCard to the card itself; when you leave the card

itsends closeCard. Similar messages are sent to cards when their backgrounds and

stacks are opened and closed. If nothing at all is happening, HyperCard continuously

sends the message idle to the current card.

One of the most commonly used messages is mouseUp. Buttons often contain
handlers that respond to the mouseUp message; the mouseUp message issentioa
particular button when you click it. (HyperCard actually sends two messages to a
button when it is clicked: mouseDown and mouseUp. The mouseUp message is
sent only if you release the mouse button with the pointer over the same screen button
it was over when you pressed it down.)

HyperCard also sends mouse messages to a locked field when you click it. If the field
isn't locked, mouseDown and mouseUp aren't sent—the click opens the field for
text editing and HyperCard sends the message openField to the field. (You can
send mouse messages to an unlocked field, however, by holding down the Command
key while you click the field.)

Clicking outside all buttons and fields sends mouseDown and mouseUp directly to
the current card.

Chapter 6 describes all of HyperCard's system messages.

Statements as messages

When a handler executes, its statements are sent as messages, first to the object that
contains the currently executing handler, then to succeeding objects in the object
hierarchy (described later in this chapter). When an object gets a message it can
handle—that is, for which it has a handler in its script—the statements contained in
the handler are in turn sent as messages. When all statements in the handler (and in
any other handlers invoked along the way) have executed, the action stops.

Sending messages

Message box messages

When you type something into the Message box and press Return or Enter, HyperCard
does one of two things: either it sends what you typed as a message to the current card,
or, if what you typed is a valid expression, HyperCard evaluates it and puts the result
into the Message box. (See Chapter 4 for an explanation of values.)

If you try to use a keyword other than send in the Message box, HyperCard displays
an error dialog box. A keyword is a word whose meaning is predefined in HyperTalk;
keywords are never sent as messages from scripts but are interpreted directly. The
following list contains all of HyperTalk's keywords:

do next

alse on

end pass

exit repeat

function return

global send !
if then

Send works in the Message box; you use it to direct a message 1o a specific object
rather than sending it to the current card. Chapter 5 explains HyperTalk's keywords.

Messages resulting from commands

HyperCard sometimes sends a system message to the current card while executing a
command. For example, when you create a card with the New Card menu command,
HyperCard sends the message newCard to the card as soon as it's created; when you
delete a card it sends deleteCard. Similar messages are sent when other objects are
created and deleted. These messages are among the results of commands executing,
rather than commands themselves—they are like announcements of what is
happening.

% External commands can send messages: Expen programmers can write definitions
for new commands in development languages such as Pascal, C, and 68000
assembly language. Such external commands act much like built-in HyperTalk
commands. External commands can send messages to the current card when they
execute. See Appendix A for general information about external commands.

14 Chapter 2; Handling Messages

Receiving messages

As senders and receivers of messages, objects all work exactly the same way. Every
object has a script, and the type of object makes no difference to the execution of its
handlers.

& How objects differ: As elements of the HyperCard user interface, objects differ
according to their function: buttons share a set of properties or characteristics that
determine how they look and act; fields also share a set of properties, but it is
different from the set of button properties,

When a message is sent to an object, HyperCard checks the object’s script for a
handler whose name—the second word on the first line of the handler—matches the
message name—the first word of the message. If it finds a match, it executes each
statement in the handler, (See Figure 2-1.) After the handler has run, the message is
sent no further, unless it is explicitly passed with the pass keyword (discussed in

Chapter 5).
if message name R ;
motches any on openStack
B ncKne... global helpExit
..then exacute push recent card
fhe lines in pop card into it
e if "help” is not in it then put it into helpExit
end openStack
Figure 2-1

Matching messages with handlers

If the object has no hancler for the message, the message passes to the next object in
the hierarchy, and the process repeats.

If no object in the hierarchy has a handler matching a message name, HyperCard
looks for a command by that name. Commands are like built-in handlers that cause
some action fo take place; mouseUp and most other system messages have no built-
in handlers and cause no action. If a message gets all the way through the hierarchy
and is not a system message or a command, HyperCard displays an error dialog box
with the words Can't understand followed by the name of the message.

& External commands can be in stacks: External commands can exist in stack files,
as well as in the HyperCard application itself. See Appendix A for general
information aboul external commands,

Recelving messages

—

Object hierarchy

The objects in HyperCard have an object hierarchy. The object hierarchy
determines the path by which messages are passed from one object to another:
buttons and fields are at the same level, followed (in order) by card, background,
stack, and the Home stack (the one stack that HyperCard requires). Any message that
traverses the entire hierarchy goes 1o HyperCard itself.

Where messages go

The position of an object in the hierarchy determines whether or not the object will
receive a given message, and where subsequent messages that the object sends will go.
Most system messages are initially sent by HyperCard to the current card, as shown in
Figure 2-2.

I = CpenCard and
| ofher events

Menu
Messoge box
Keyboard

MNewButon and
olher events

-~ R — Mouse

Figure 2-2
Object higrarchy

[+] Chapter 2; Handling Messages

Messages to buttons and fields

Any mouse message (for example, mouseEnter) is sent inititally to the topmost
button or field, if there are any, under the pointer. Any buttons or fields that are
layered farther under the one initially receiving the message are ignored. Figure 2-3
shows layered buttons and fields. If the topmost button or field doesn't have a handler
for the mouse message, the message is passed to the current card.

Card button
Cord fladd

Background field

Closer)

Background button Farther

Figure 2-3
Layered buttons and fields

& Background buttons and fields come before cards: HyperCard first sends mouse
messages to the topmost button or field under the pointer, whether the button or
field belongs to the card or the background, before passing the message on to the
card, Background buttons and fields, however, are always farther away than card
buttons and fields.

Other than mouse messages, the only system messages that are sent first to buttons are
newButton and deleteButton; for fields they are newField, deleteField,
openField, and closeField. The entry point in the hierarchy for all other system
messages is the current card.

For a complete list of all system messages, see Chapter 6.

Object hierarchy

The current hierarchy

The current hierarchy consists of the buttons and fields belonging to the current card
and its background, the card and background themselves, and their stack. System
messages and those typed directly into the Message box always traverse the current
hierarchy. Messages sent from executing handlers traverse the hierarchy to which
their containing object belongs—in maost cases, the current one. Figure 2-4 shows how
a message traverses the current hierarchy.

Mouselp message sent
by mowuse to button,

Buttons |
and fields J
i
| o
Cﬂrd!. Currant |
I_E{H'l] a
T
iy
Bockgrounds |
Stacks

Home stack |

HyparCard

Figure 2-4
Message traversing current hierarchy

When a handler executes, HyperCard sends each statement as a message, unless it
begins with a keyword. It sends the message first to the object containing the executing
handler, as shown in Figure 2-5. If that object doesn't have a handler for the message,
the message is passed down the object hierarchy; if none of the succeeding objects has
a handler for it, the message ends up at HyperCard itself.

18 Chapter 2: Handling Messages

/‘: on mousellp 1
%ﬂ 1o next ca e
end mousa

p - ~~~,,\||\

and fislds

Cards

Boackgrouwnds

Stacks |
Home stock |

HyperCard

Figure 2-5
Command sent os a message

& Function calls use the message-passing bierarchy: Function calls work like
messages in the way they traverse the object hierarchy. When you make a function
call with the syntax that uses parentheses, HyperCard looks in the script of each
object in the hierarchy for a matching function handler. If none is found, the
function call is passed to HyperCard itself.

Object hierarchy 19

—

The target

The object to which the message is first sent is the target. If HyperCard finds a handler
in the target that matches the message name, the handler’s statements start executing,
If, however, the target has no matching handler, the message is passed down the
hierarchy, HyperCard may find a matching handler in another object, which then
begins executing as shown in Figure 2-6.

Buttons | | | —— —
and fields || R
| L - /| on newButton

—¥f sel autoHilite of larget 1o true
Cards | ‘ f| and newBution

"_'i_'.-"l"

l | A1 —

A [

Boackgrounds e s =
J

Stocks

Home stack

HyperCard

Figure 2-6
The target

The function the target retumns the value of the original target, so that handlers in
succeeding objects can determine where a message was originally sent. In Figure 2-6,
although the executing handler is in the background script, the target, usedinthe
background handler, identifies the button that originally received the message.

20 Chapter 2: Handling Messages

o BT ST =

The dynamic path

When a message is traversing the hierarchy of a card different from the current one,
HyperCard inserts a dynamic path into the static path the message normally follows.
The static path is the route defined by an object’s own hierarchy. For example, a card
passes messages to its own background, the background passes them to its own stack,
and 50 on. When that hierarchy is not the one stemming from the current card (the
one currently visible), HyperCard passes messages through the current card’s
hierarchy as well—that's the dynamic path.

Examples of situations in which a message traverses a hierarchy different from the
current one, invoking the dynamic path, are

0 when an executing handler contains a command that takes you to another card
(suchas go or a command to create or delete the current card)

0 when you use the send keyword to send a message to an object not in the current
hierarchy

When any message that has not been received by a handler reaches the stack,
HyperCard checks to see if the current card is in a different hierarchy. If so,
HyperCard passes the message to the current card, and it traverses the current card,
background, and stack, before it passes to the Home stack.

If any handler receives the message and passes it explicitly with the pass keyword,
HyperCard does not invoke the dynamic path unless the current hierarchy is in a
different stack from the static path. If cither of the hierarchies is in the Home stack, the
message is not passed again to the Home stack,

Object hierarchy

T T

The go command and the dynamic path

Figures 2-7 and 2-8 show how a handler containing a go command invokes the
dynamic path.

|

| an mausallp i
| beep2 E
[go lo card 3 of stack "a” e
.'I beap 3
| l and mousellp
|
1 |/ C

Coards

;lmff]ﬂ'_ijj_% | [I
[]]

I—]ll ;‘

Backgrounds . l [| |

Stacks |

Home stack

HyperCard

Figure 2-7
Static path before the go command executes

In Figure 2-7, the mouseUp handler executes the statement beep 2, which is sent as

a message along the current hierarchy beginning with the button containing the

handler. After the go executes, the current card has changed. Nonetheless, the |
button handler continues 10 execute, sending subsequent statements as messages |
through its own hierarchy. In addition, however, HyperCard now sends messages to

the card, background, and stack of the new current hierarchy, as shown in Figure 2-8, |

22 Chapter 2: Handling Messages

| onmousalp

! beep 2
go to card 3 of stack “a"
beap 3

end mousalp |

;rhzc}nuflds %""—H!IFHJ [l

| | | | | ¢
Cards | |_‘:°3'd_
_ | i |
[—]
Backgrounds . | " |
L __.__l
Stacks = [Hack
L i I
Home stack i |
l
HyperCard
Figure 2-8

Dyniamic path after the go command executes

The send keyword and the dynamic path

It's possible to send a message directly to an object, whether or not it's in the current
hierarchy, by using the send keyword. For example, you can type the following

starement into the Message box:

send "greetings" to stack "a"

HyperCard looks in the script of the object to which the message is sent (in this case,
stack "a") for a matching handler, just as if it were in the current hierarchy. If the
matching handler isn't found (in this case, a handler named greetings), the
message goes down the hierarchy stemming from the object to which it was sent (that
15, from stack "a") Ifthe targetof the send isa stack other than the current one,

HyperCard invokes the dynamic path.

Object hierarchy

23

Figure 2-9 shows the path of a message directed with the send keyword,

_send “greetings" to stack"a”

CC]

I_Ql_l_l

Bockgrounds
l ! T—

Stacks stack
o
Horne stack |
L 1
I =
HyperCard i |
Figure 2-9

Using the send keyword

So the executing handler, the one currently in control, need not belong to any
particular object. It doesn't need to be in the hierarchy belonging to the current card.
Which handler has control is determined solely by which object receives a message,

You can use the send keyword to direct a message to
o any object in the current stack

O any other stack on any disk or file server accessible to your Macintosh (but not any
individual object in those stacks)

O HyperCard itself
For details about the send keyword, see Chapter 5.

24 Chapter 2: Handling Messages

Handlers calling handlers

When a handler executes, HyperCard sends each statement as a message first to the
object containing the executing handler. So other handlers in the same script, as well
as those in any other script lower in the hicrarchy, can be used as subroutines. A
handler can also call itself, which is known as recursion.

Subroutine calls

You can use handlers in HyperCard the way you use procedures or subroutines in other
languages. You invoke a subroutine call in HyperTalk by executing a statement that
begins with the name of a handler. That name is sent as a message, first to the object
that contains the executing handler, then along the current object hierarchy.

You can include a subroutine in a script by writing a handler in the same script (or any
other script lower in the object hierarchy) with whatever name you'd like to call it by.
In the following example, the handler greetings is defined in the same script as
the one from which the message greetings issent:

on mouselp
greetings
end mouselp

on greetings
Put "You've just been draftedl™ into the Message box
end greatings

When HyperCard executes the statement consisting of the subroutine handler name,
and a match is found between the name and its handler, control passes to the
subroutine handler. After it has finished executing, control passes back to the calling
handler. But it's entirely possible for the subroutine handler to issue a similar
message, beginning execution of a third handler. The third handler must finish
executing before control passes back to the second handler, which must finish
executing before control passes back to the first. The execution of a handler that has
invoked another handler is suspended until the handler it has called finishes
executing,

& Stopping execution: A handler can avoid giving control back to pending handlers
by executing the exit to HyperCard keyword statement. You can interrupt an
executing handler at any time (and bypass pending handlers) by pressing
Command-period.

Handlers calling handiers

Any handler can act as a subroutine for any other handler. The called handler either
has to be in the same script or in a script lower in the object hierarchy. However, you
can also use the send keyword to send the message (the subroutine handler name)
directly to the object that contains the handler. (See Chapter 5 for details on using
send.) Generally, handlers that act as subroutines are placed in the same script as the
handlers that call them,

& Handlers can't be nested: Handlers can't be defined with one inside another—a
handler definition must not appear between the on statement and the end
statement of another handler.

Recursion

The term for a handler calling itself is recursion. In the following example, the
handler decrement subtracts 1 from a number in the Message box until the number
is reduced to 1 (a number must be in the Message box before you call the handler), To

do the subtraction, the handler summons itself;

on decrement

subtract 1 from the message box

if the value of tha message box > 1 then decrement
end decrement

Generally, subroutine calls and recursion don’t cause any problems. In fact, they are
natural consequences of the good programming technique of separating scripts into
functional units. However, HyperCard has a limit on the number of pending handlers.
The actual number depends on the complexity of the handlers and other factors. It
doesn't matter whether a handler is invoking itself or another handler—either type of
invocation causes another level of pending execution,

In particular, watch out for endless recursion as in the following handler (if it were in a
stack script or the script of every card):

on openCard
go to next card
and opanCard

The go next card command results in an openCard message, so the handler
recurses again and again, and you get an error dialog box. Keep control in a single
handler instead, as with the following script (if it were in the first card's script):

on openCard
repeat for the number of cards -1
go to next card
end repeat
end openCard

26 Chapter 2: Handling Messages

Using the hierarchy

Where you place a handler in the hierarchy determines when it will be called. All
objects that are higher in the hierarchy can call handlers in objects lower in the
hierarchy. Lower objects can't call handlers in higher objects unless they use the
send keyword. Messages that are sent when a statement in a handler executes always
go first to the object containing the executing handler. Then they traverse the
hierarchy stemming from that object until they find a matching handler or reach
HyperCard itself. Therefore, the farther down the hierarchy a handler is placed, the
greater the number of objects that can pass messages to it.

Sharing handlers

In effect, every object has access to the handlers of all the objects lower than it in the
hierarchy. If you want every card in a stack to have a centain capability (that is, to
respond to a certain message), you put the appropriate handler in the stack script.
Every card can use the handler by passing the message down to the stack.

Figures 2-10 and 2-11 show the effect of placing a handler at different positions in the
hierarchy. The example handler responds to the message moveOn (the message
name is for example only). The handler takes you to the next card:

on moveln
go to next card
and moveln

You can place the handler in the script of the current card, as in Figure 2-10. Then, if
you send moveOn from the Message box, you invoke the handler and go to the next
card. From any other card, however, the moveOn message has no effect.

In Figure 2-11, the handler is invoked by sending moveCn to any card in the stack
{because the handler is in the script of the stack).

Using the hierarchy

|

J on movedn
. - / go ta next card
(LI i _”’ &nd moveOn
—moveln b
Cards || =
| B
Bockgrounds | =
Stacks
| |
Home stock (
I R —
HyperCard J |
Figure 2-10
Handler In card script
L LTI]
— moveQn |
S - AR W

L-ords . . i | |

Bockgrounds

on moveOn
go to naxt card

and moveOn

Stacks -'a 1l

Horme stack

HyparCard

Figure 2-11
Handler in stack script

28 Chapter 2: Handling Messages

3 T —

Intercepting messages

You can also make any card you want an exception in the way it responds to a given
message, without affecting the other cards in the stack, by putting a special handler for
the message in that card’s script: you write two different handlers with the same
message name—one in the stack script and one in the card script. Then, for that same
message, if the message comes through that particular card, the card's handler runs;
from any other card, the stack's handler runs,

For instance, in the previous example, putting the handler in the stack script caused
the message moveOn to take you to the next card from any card in the stack:

on moveln

go to next card
end moveOn

But if you want the last card in the stack to be an exception, from which the message

moveOn takes you back to the Home card, put the following handler in the last card's
Ecript:

on moveon
go to stack "home"
end moveln

Figure 2-12 illustrates this example of one object intercepting a message.

. /| an movaOn
(=) |l go 1o stack "Home"
—movadn ! end moveOn

r|

TR |_1 W11}
|

P

bt
5. L

atacks E__ 0o to next card
== end moveOn

g

Home stack

HyperCard |

Figure 2-12
Intercepting a message

Using the hierarchy

& A handler can intercept a HyperTalk command: In the same way that you can give
one card a unique way of handling a message that would ordinarily be handled in
the background or stack script, you can write a handler with the same name as a
HyperTalk command and place it anywhere in the hierarchy. But remember that [
your handler is the one that will ordinarily run in response to the command
message, not HyperCard's built-in one. HyperTalk functions can be redefined in a
similar manner, and the same waming applies.

Parameter passing

When a HyperTalk message is sent, the first word is the message name. For example,
in the message

searchScript "WildCard", "Help"

the message name is searchScript. Any other words (or characters) are the
parameters. In the example, the parameters are "WildCard" and "Help™. Each
receiving object in the hierarchy looks for a message handler with a matching name. If
the object finds a matching handler, the parameters are passed into the handler.

Parameters are passed into handlers as a list of comma-separated expressions.
(Chapter 4 describes expressions.) These expressions are evaluated before the
message is sent and, when the message is received, placed into a list of comma-
separated parameter variables appearing on the first line of the matching handler
definition. (See Figure 2-13.) That is, parameters are passed by value into handlers.

Parameter variables are local variables of the handler in which they appear.
Parameter variables are also called formal parameters, to contrast them to the
actual parameters which are the parameter values passed to them.

& Function bandler parameters: HyperCard passes parameters into function
handlers and message handlers in the same way, except that the syntax of the
function call requires the parameters to be placed between parentheses. Placement
of the parameter variables on the first line of function handlers is identical to that of
message handlers.

30 Chapter 2: Handling Messages

; W
searchScript TWildCard"
*

Script of stack I"Erﬂjnﬂ:l'lgqﬂrﬂﬂrd Stacks: Home

L I .
onsearchScript pattern, stackia
st lock Messages to truse
if stackName i3 not empty then go to stack stackName

if the script of this stack contains pattern
then edit script of this stack
L]
i S
L]

Figure 2-13
Parameter passing

The value of the first expression in the message is placed into the first parameter
variable in the handler, the value of the second expression into the second parameter
variable, and so on. If there are more expressions in the message'’s parameter list than
there are parameter variables in the first line of the handler, the extra parameters are
ignored. If there are more parameter variables than parameters, the extra parameter
variables are given an empty value (equal to a string of zero length).

@ Passing parameters lo redefined commands: HyperTalk command parameters are
often more complex than a comma-separated list of expressions. Some built-in
commands take parameters to which user-written handlers have no access. 50, if
you redefine a command, you may not be able to pass all of the parameters to your
handler,

Parameter passing 31

Chapter summary
Here is a summary of the material covered in this chapter:

0 The HyperCard environment consists of objects related to each other in a
hierarchy using HyperTalk as the means of communicating.

O Messages sent (o objects initiate all HyperCard actions,

O Messages are generated by system events, executing handlers, statements typed
into the Message box, and the execution of some commands,

0 When an object receives a message, HyperCard tries to match the message name
with a handler in the object’s script; if it finds a match, it executes the handler;
otherwise it passes the message to the next object.

O The object hierarchy determines how messages are passed from one object to
another,

O You can send a message directly to any cbject in the current stack, to another stack,
or to HyperCard using the send keyword,

0 A handler can initiate execution of another handler as a subroutine call,

O Every object can use the handlers of objects lower than it in the hierarchy by 1
passing messages; conversely, an object can intercept a message to perform a }
different action.

0 The values of a series of expressions following the first word of a message statement
are passed to variables in the first line of the receiving handler.

32 Chapter 2: Handling Messages

Naming Objects

This chapter explains how to refer to HyperCard's objects.
A HyperCard object has three characteristics:
O It can send and receive messages.

0 It has properties, which are its defining characterstics, and one of those
properties is its script.

o It has a visible representation on the Macintosh screen (although the object need
not always be visible).

You refer to an object when you use the go keyword (1o go to a particular card,
background, or stack) or the send command (to send a message to a particular
object), and when you want to manipulate an object’s properties. Fields are unique
because they are HyperCard objects and are also sources of values (described in
Chapter 4).

You can think of HyperCard itself as an object, because it can send and receive
messages and it has global properties, including a “script” of built-in handlers or
commands. When this guide talks about objects, however, it usually refers to buttons,
fields, cards, backgrounds, and stacks.

Object descriptors

You refer to objects using object descriptors. An object descriptor is formed by
combining a generic name with its specific designation. Generic names are stack,
card, background (abbreviated bkgnd), button (abbreviated btn), or
field.

To refer to background buttons, you must include that designation with the generic
name (background button "buttonName"), and you must do the same for card
fields (card field "fieldName™). You can also include the default designation,
but it's not required (card button "buttonName" refers to the same button as
button "buttonName" and background field "fieldName™ refers to the
same fieldas field "fieldName").

The only specific designation of a stack is its name. (See “Stack Descriptors,” later in
this chapter.) The specific designation of all other objects (buttons, fields,
backgrounds, and cards) can be the objects’s name, number, or ID number. The
unambiguous form of a designation begins with an object’s generic name,
immediately followed by its particular name, number, or ID number. (See Figure 3-1.)

34 Chapter 3: Naming Objects

i
1
f
\
f
-
:

Card Name; [Inh]p _|

Card sumber: 9 out of 40

Card 1D: 5734 .
[‘"I 'n .-ur | Ninth card
[nnlmm . cal mtl‘d\-. Cord nine
onlains U card butlons. Card “table”
Card 1D 5734
Mean't delete card.
(irrlpt._..-'j E DK ﬂ [Cantel |
Figure 3-1 '

Card Info dialog box and descriptors for the same card

Object names

Names are optional for cards, backgrounds, buttons, and fields. You assign a name
for any of these objects by typing into the Name box in the object Info dialog box,
which appears when you choose the object’s Info item from the Objects menu, Object
names can include any characters, even spaces. It's safest to put quotation mirks
around an object name when you use it in a statement (b3ckground button
"belly™) to ensure that HyperCard recognizes it literally and doesn't look fora
variable or stack by that name.

& Be careful with names: 1's difficult to manipulate a name that extends out of the
naming window although you can scroll it left and right (and up and down if it has
more than one line) by dragging. It's also difficult to refer by name to an object if
you put a double quotation mark in its name. Also, if you use numbers for an
object's name, HyperCard gets confused: it takes card "1812" tomeana card
whose number, rather than name, is 1812,

Object ID numbers

HyperCard generates an object ID number for each object within a stack. This number
is unique for that type of object within its enclosing object, For example, each button
(the type of object) on a card (the enclosing object) has a different ID number. Object
ID numbers never change and, if an object is deleted, are not reassigned to newly
created objects (until the HyperCard object limit, listed in Appendix E, has been
reached). An object’s 1D number is its generic name, followed by the word 1D (in
uppercase or lowercase), followed by an integer (for example, card id 5734).

Object descriptors 35

L The ID number of a copied object is different: If you copy an object and paste it
into a different enclosing object, the copy is then a different object from the
original, and it has a different ID number. For example, if you copy a card and
paste it into a different stack, the ID number of the pasted card is different from the
[D number of the card you copied. Therefore, you can't assume that you have
"moved” the card when you copy it, paste it, and delete the original—a button that
took you to the original will probably not take you to the copy.

o B B S R

Because 1D numbers are unique and unchanging for all objects within a stack,
HyperCard uses them internally to identify objects (for example, to identify the target
ofa go command generated with the LinkTo feature in the Button Info dialog box). (
HyperCard can generally find objects faster if they are identified by ID number. Also,
if you ask for the name of an object that has no name (put the name of last
card), HyperCard retums its ID number, (See Chapter 9 for information about the

name object property.)

I [y w—

Object numbers

Buttons, fields, cards, and backgrounds always have numbers by which you can refer .
to them. An object’s number represents its position within its containing object:

buttons and fields are ordered within a card or background; cards and backgrounds

are ordered within their stack. There are three ways to express an object’s number: use

an integer following its generic name (card 2), use one of the numeric constants

one through ten following its generic name (card two), or use one of the ordinal '
constants first through tenth preceding its generic name (second card). 3

@ Descriptor phrasing: Be careful to phrase descriptors so that they mean what you i

intend. For example, using a field descriptor such as card field id 7, you ;
could mean that the name of the card is in the background field with ID number 7, E
or you could be referring to the card field with ID number 7. HyperCard assumes .

that you're referring to the card field. If you want HyperCard to get the card name
from the background field, enclose its descriptor in parentheses: 3
card (field id 7). :
Object numbers are contiguous from 1 through the number of currently existing ;
objects within the enclosing object: card buttons and card fields within their card; ;
background buttons and background fields within their background; cards within their ;
stack (not their background); and backgrounds within their stack. If you delete an 3
object, its number is reassigned to the object following it in order, and so on for the 3
succeeding objects as well, l
E

35 Chapter 3: Naming Objects

e oy

Special erdinals

In addition to the ordinal constants first through tenth, HyperTalk has three
special ordinals: middle, last,and any. The values of the special ordinals are
resolved according to the number of objects in the set. Middle resolves to half the
number of objects plus 1. Last resolves to the number of objects. Any resolves o
4 random number between 1 and the number of objects. (The special ordinals also
work with chunk expressions, which are described in Chapter 4.)

Object numbers and tab order

The sequence of object numbers determines tab order for fields: you can move from
field to field within a background and card using the Tab key—it moves from the lowest
number field to the highest through the background fields first, then the card fields.
The sequence also determines which button or field gets a message when several are
layered on top of each other (the highest numbered one is closest and gets the
message), and it determines which card or background is next or previous
within a stack.

% Reassigning object numbers: You can reassign object numbers of buttons and
fields with the Bring Closer and Send Farther menu commands. See the HyperCard
User'’s Guide for details,

Special object descriptors

You can use the special descriptor this to refer to the current card, background, ar
stack. For example:

put the id of this card into whereFound
You can'tuse this with bumtons or fields.

You can refer to the card or background preceding the current one, within the stack, as
previous, which can be abbreviated prev. Similarly, you can refer to the card or
background following the current one as next. For example:

go to next background

You can refer to the card that was current immediately prior to the current one as
recent.

You use me within a script to specify the object containing the currently executing
handler. For example:

put the textHeight of me into height -- in a field's script

Object descriptors

37

|
% Using special descriptors with fields as containers: In all versions of HyperCard, T
you can use a special object descriptor (other than thi s) to identify a field as an |
object: to get or set its properties, or as the target of send. For example, the E
following statements always work:
S
put the name of me into myMNams d
send mouselp to me It
A field, however, is both an object and a container. In versions of HyperCard prior :
to version 1.2, you can't use a special object descriptor to refer to a field as a
container into which to put a value. For example, the following statement in a field -
seript would work only in HyperCard versions 1.2 and later;
put "*" pbaefore line 1 of me
See Chapter 4, “Values,” for information about containers,
Stack descriptors Y
. o . : 1
A stack is a HyperCard document. In some cases when you're wriling a seript or using it

the Message box, you can refer to a stack by its name alone. To do that, the stack must
be in the current folder, in the folder containing the Help stacks, or in the current disk
or server (and not in a folder), When the stack is located anywhere else, you must let I

HyperCard know the full pathname by which it can find the stack.

A full pathname is a concatenation of the volume name, directory name(s), and
filename, separated by colons. The volume name is the name of the disk or server
containing the stack. The directory names are the names of all the folders, if any, that
HyperCard has to open to get to the stack. (HyperCard sometimes might have to open
several folders because folders may contain other folders to any depth.} The filename
is the stack name,

[—

mnemosyne:Big Al:hypestuff:diagnostics
- 1

F
yolurme directory directory file I
Disk oF server Foider at Inner folder; Stack name
name; desktop disk lavel thers can be
lenvil any nuember
of levels of

folders inside
Figure 3-2
A pathname

38 Chapter 3: Naming Objects

The only unambiguous way to refer to a stack in a script or in the Message box is the
word stack followed by its name in quotation marks. When you refer to a stack you
cin use the full pathname to specify the stack’s exact location: go to stack
"myDisk:myFolder:mystack”. You can also type the full pathname on the stack
search path card in the Home stack. If HyperCard can't find a stack you request, it
displays a dialog box that allows you to click your way through the directories until you
reach the stack. HyperCard notes your path and, once you've found the stack,
automatically records its full pathname on the stack search path card in the Home
stack.

¢ Ambiguous stack descriptors: HyperCard will try to derive a proper stack name
from an ambiguous expression in a place where it expects a stack descriptor, but it
cannot always succeed. In that case, HyperCard displays the directory dialog box to
allow the user to find the stack file.

Naming a stack

You must name a stack when you create it. (For all other objects, names are optional)
You create a stack with the New Stack command in the File menu. A dialog box appears
in which you type the name for the new stack. (See Figure 3-3.)

= Nlan's Stacks |

|] ‘Prajna

! 3 | []
[Drive

|_ 1

MBW Ltack name: T New |

Short (_cancer]

[topy current background

Figure 3-3
New Stack dialog box

Stack descriptors 39

Cnmbining nbieu-:t' dascripioré

To refer to objects within a stack, you combine object descriptors using either of the
prepositions of or in between an object descriptor and that of its enclosing
object. Combined object descriptors proceed left-to-right from the smaller to the
larger:

first field of last card of this background

This syntax lets you refer directly to any object within the current stack—you don't
have: to go to the card containing a particular field to get its contents or put something
into it. For example, if the current card were the first in the stack, you could still
execute the following command:

put the selection inte fleld "undoHolder" of last card

You cannot refer to an object within another stack. You have to go to the stack before
you can address its objects directly.

You can further combine field descriptors with chunk expressions, which are
described in Chapter 4, “Values.”

Chapter summary

Here is a summary of the material covered in this chapter:
O You refer to a HyperCard object using an object descriptor—its generic name and
its specific designation.

0O Cards, backgrounds, buttons, and fields always have unique ID numbers that never
change, they always have object numbers that may change, and they may
optionally be given names.

O You can use special ordinals—middle, last, and any—io refer to objects by
their position within their enclosing object.

O You can refer to the current card, background, or stack with this. You can refer to
the card or background preceding the current one with previous, and to the one
following the current one with next. You can refer to the card that was current
prior to the current one with recent.

O The term me, in a script, refers to the object containing the script.

O The only unambiguous object descriptor for a stack is the word stack followed by
the stack’s filename within quotation marks,

0 You can combine object descriptors to refer directly to any object in the current
stack.

40 Chapter 3: Naming Objects

41

This chapter describes the expressions you use to refer to values: the information on
which HyperCard operates. It also describes HyperTalk's operators, the elements of
the language that you use in expressions 0 manipulate and calculate values.

HyperCard does not have data types: values are stored simply as strings of characters.
{Numbers are sometimes represented internally in a more efficient format, as
described later in this chapter.)

An expression is a description of how to get a value, It may be as simple as a single
source of a value, or it can be a complex expression built with operators.

Sources of values
I'he sources of values in HyperTalk are

constants
literals
functions
properties
numbers
containers

o ooooad

These sources of values are the most basic expressions.

Constants

A constant is a named value that never changes. I's different from a variable in that
you can't change it, and it's different from a literal in that its value is not always the
string of characters making up the name. For example, the constant empty is the
same as the null string (the literal ™ ™), and the constant space is the same as the
literal * ™. All HyperTalk conslants are described in Chapter 10.

Literals

A Hieral is a text suing whose value is the string, exactly as it appears. Literals are
denoted by double quotation marks at both ends of the string. (You must use the
straight double quotation mark, not the printer's double quotation marks typed with
the Option-left bracket and Option-Shift-left bracket keys.) Any character except
double quotation mark, return, of =soft” return (generated by pressing Option-
Return) can be part of a literal string. A literal can be of any length, For example,
wThis is a literal string" is a literal.

42 Chapter 4: Values

% Unquoted literals are not recommended: In some places you can use an unquoted
single word as an unquoted literal (as long as the word doesn't begin with a digit).
The value of an unquoted literal is the literal of itself—as though you had entered
put "fred" into fred. But unquoted literals are not allowed in complex
expressions (those built with operators). It's always safer to put double quotation
marks around a word you want HyperCard to take as a literal.

Functions

A function is a named value that HyperCard calculates when the statement in which
the function is used executes. The value of a function varies according to conditions of
the system or according to the value of parameters you pass to the function when you
use it

For example, the built-in function named the time returns the current time in
place of itself in a HyperTalk statement:

put the time into msg

If the current time were 5:12 P.M., the above example would put 5:12 PM into the
Message box.

You can also define your own functions in scripts using the function handler structure
described in Chapter 5.

All built-in HyperTalk functions are described in Chapter 8.

Properties
A property is a named value representing one of the defining characteristics of a
HyperCard object or the HyperCard environment. Different types of objects have

different properties, according to their purpose. For example, fields share a set of
properties, many of which are different from the set shared by buttons,

You get the value of most properties by using the property name as a function in a
script or in the Message box. For example, the following statement retrieves the
location propemy (two integers separated by a comma) of button 1, and it puts the
value into the Message box:

put the location of button 1 inte msg

You can also change most properties with the set command. All HyperCard
properties are described in Chapter 9.

Sources of values 43

mmhers

A number in HyperCard is a character string consisting of any combination of the
numerals 0 through 9, representing a decimal value. A number can include one period
(.) representing the decimal point, but it can have no other punctuation nor a space
character, A number can be preceded by a hyphen or minus sign to represent a
negative value (HyperCard doesn’t recognize a plus sign as part of a number).
Numbers that consist only of numerals are integers. Numbers that include a period are
real, and, when used with mathematical operators, are manipulated with floating-

point operations.

standard Apple Numerics Environment

HyperCard performs mathematical operations with Standard Apple Numerics
Environment (SANE®) routines, but you don't have to worry about how 1o represent
the values. You always enter numbers into HyperCard containers as numeric strings.

When performing a mathematical operation, HyperCard automatically converts the
strings representing the numbers to SANE numeric values. If you put the result of the
operation into a variable, it's stored as a SANE numeric value; if you putit into a field
or the Message box, HyperCard automatically converts it back to a string with a
precision of up 1o 19 decimal places. The same conversion takes place if you put the
variable into a field or the Message box at a later ime, or if you use it in a way that
implies a string (character 2 of varName). So although SANE values are used
internally for handling numbers with speed and precision, you can always think of
HyperTalk numbers as strings.

Precision

The precision of the decimal string, resulting from putting a SANE numeric value into
a field or the Message box, is controlled by the numbe rFormat global property (see
Chapter 9 for a detailed description). For example, the command

gset numberFormat to 0.00

would result in a string with at least one digit to the left of the decimal point and exactly
two digits to the right of the decimal point.

The numberFormat property does not affect the precision with which mathematical
operations are executed, only the precision with which the results are displayed. When
you put a number into a ficld or the Message box to display it, however, HyperCard
converts it to a decimal string. So any extra precision it may have had (beyond the
numberFormat specification in effect at the time) is Jost.

44 Chapter 4: Values

N
T
L
a
B
3
F:
1
€
i
I

T Lo A TR SRy

Number handling

The following example shows how number handling works. These three HyperTalk
statements put the constant pi into a variable, set the numberFormat propery,
and put the value of the variable into the Message box, respectively:

put pli inta joea
set numberFormat to 0.00
put joe into msg

The result shown in the Message box is 3.14159265358979323846. In this case, pi is
entered into the variable joe as a string, and it remains a string, 50 numberFormat
has no effect. If, however, you perform a mathematical operation on the variable,
HyperCard converts it to a SANE numeric value:

put pi into joe

pdd 0 to joe

get numberFormat to 0.00
put joe into mag

The result shown in the Message box is 3.14. In this case, numberFormat takes effect
when joe is converted from a SANE numeric value to a string as it's put into the
Message box.

Containers

A container in HyperCard is a place where you can store a value. Containers include
fields, variables, the current selection, and the Message box. Containers other than
fields can store values of any length, including zero length. Containers other than the
Message box can have more than one line in them; each line ends with a retum
character (which can be the only character in the line).

Fields

A field is a HyperCard object for holding and displaying editable text. Fields are
unique objects because they are also containers—a field’s value is the text string it
conlains.

You can refer to fields directly by name, number, or ID number, (See Chapter 3,
*Naming Objects,” for more description of how to refer to fields.)

Fields belong to cards or to backgrounds; the text held by a field, however, always
remains with the card, even if the field belongs to the background. A field can contain
up to 30,000 characters, including spaces, return characters, and other invisible
characters, If you put more than that many characters into a field, the extras are
ignored,

sources of values

Text in fields always remains editable—you can search through it with the £ind
command, and you can change it with the I-beam pointer of the Browse tool
(assuming the field isn't locked).

& About Paint text: You can also put text onto cards and backgrounds as Paint
text—pictures that look like characters. Paint text can't be edited once it has been
fixed onto the card or background (although you can paint over il or erase it as you
can any part of a picture). See the HyperCard User's Guide for more information on
Paint text.

Variables

A variable is 2 named container that has no visible representation other than its
name. Its value is a character string of any length. The variable name is a HyperTalk
identifier. An identifier can be of any length, it always begins with an alphabetic
character, and it can contain any alphanumeric character plus the underscore
character { _ .

You assignavaluetoa variable with the put command. It is illegal to read from a
nonexistent variable—you must create it by putting something into it before you use it,
The constant empty, the null string, counts as something to put into a variable.

HyperCard assumes that an unquoted word used in an expression is a variable when it
can’t interpret the word as some other source of value (the string is not a function,
constant, property, or other container name). If you haven't put a value into a
variable by that name, HyperCard treats it as an unquoted literal.

Scope of varlables: HyperCard has both local and global variables. A local variable
is valid only during the current invocation of the currently executing handler. You
don't need to declare a local variable before you use it—just put something into it. A
global variable is valid for all handlers. You must declare a variable as global by using
the global keywordin each handler before you use the variable:

global useMeEverywhere, useMeToo

HyperTalk assumes a variable to be local unless you specifically use the global
keyword.

For more details on the global keyword, see Chapter 5.

Parameter variables: You create parameter variables when you put their names after
the message name in a handler:

on messagelame firstParam, secondParam

When the handler is called, these variables are assigned the values, if any, of the items
in a comma-separated list of expressions following the message name in the calling
statement. Parameter variables are local to their handler. Chapter 2, “Handling
Messages,” gives more explanation of parameter passing.

46 Chapter 4: Values

The variable It: The local variable named It is the destination of the commands
get, ask, answer,and read. For example, get the name of field 1 puts
the value of that background field’s name into It. Convert putsits resullsinto It

if another destination isn't specified.

For information on commands, see Chapter 7.

The selection

The selection is a container that holds the currently selected area of text. You can put
values into, before, or after the selection or put the selection (or any chunk of the
selection) into another container.

Storling with this selection...

in inverse video on Lhe ﬂl;H'l!:ﬁh IIIIIIIIIII

«Inis HyperTalk command... put "easy to change using a" into the selection

.. produces this result,

Figure 4-1
Manipulating the selection

For example, if the phrase I'm the selected text isselected, and you issue the
command

put the selection into the Message box

then I'm the selected text appearsin the Message box. (Both instances of
the word the inthe example are optional.)

Sources of values

& Found text isn't selected: Text found by the f£ind command is indicated by a box
around it—it is not placed into selection, HyperTalk versions prior to 1.2 don't
have a construct to indicate directly where the text was found, but you can use
contains and other operators to locate the text. HyperCard versions 1.2 and
later have functions that retum information about found text; they are described in
Appendix F, “HyperTalk Changes in HyperCard Version 1.2.” The find
command is described in Chapter 7; operators are described later in this chapter.

You must select some text with the mouse orthe click or drag command before
you can manipulate the selection container.

The Message box

The Message box is a special container. Typically, you use the Message box to send a
HyperTalk message directly to an object or to HyperCard. The Message boxisa
single-line container. If you put more than one line from a multiple-line container
into the Message box (put card field 2 into msg), only the first line is copied
into the Message box,

|

Qo to stack "Lissy's songs”

Figure 4-2
The Message box

The Message box is the default destination for the put command.

If you put something into the Message box when it's hidden, HyperCard shows it
automatically. You can toggle the Message box between being hidden or shown by
pressing Command-M.

The Message box can be specified by just the word message or its abbreviation
msg. Optionally, you can follow either of those with either box or window, and you
can precede either with the word the.

Complex expressions

You can build complex expressions using values and operators. As a complex
expression is evaluated, the values of its basic components are manipulated to derive a
final value in place of the entire expression. (The original values are not changed in
the process.) Complex expressions are evaluated according to rules of precedence,
and restrictions apply to the values that can be used, depending on their operators.

48 Chapter 4: Values

& Chunk expressions are different: Chunk expressions are a different type of
expression: they designate pieces of the strings representing values. Chunk
expressions are described in the last section of this chapter.

Factors

A factor is a single element of value in an expression. The following constructs are
factors:

O asimple source of value

O an expression enclosed in parentheses

o a factor (which must evaluate to a number) with a hyphen or a minus sign in front of it
o a factor (which must evaluate to true or false)with the word not in front of it

An expression can be just a factor, or it can be any two expressions with an operator
between them.

The difference between a factor and an expression is important to the syntax of
HyperTalk commands and functions. Where a built-in HyperTalk command
parameler permits an expression, you can specify as complex an expression as you
wish. HyperCard derives the final value before passing the parameter to the

command. For example, the add command accepts a complex expression as its first
parameter:

add 46+12*monthlyRate to total

In contrast, where a built-in HyperTalk function requires a factor, HyperCard will take
the value of the first factor as the parameter to pass to the function. For example, the
sqrt function takes the first factor following its name as its parameter. This is
illustrated by the following expression, which you can type into the Message box or use
in a command:

the sqrt of 4 + 12

In the example, the sgrt function takes the factor 4 as its parameter, rather than
the value of the expression 4 + 12. So the entire expression evaluates to 14, rather
than 4, which would be the value if sgrt accepted an entire expression. (To specify
the entire expression 4 + 12 as the parameter, you can enclose itin parentheses,
which s it into a factor.)

& Two byphens always indicate a comment: You can put a hyphen in front of a
factor to create another factor, and you can put another hyphen in front of that and
still have a factor. However, two hyphens in sequence indicate a comment, so you
must separate the hyphens with a space or enclose the inner factor in parentheses
for HyperCard to recognize the construct as a factor.

HyperTalk’s built-in commands and functions are described in Chapters 7 and 8,
respectively.

Complex expressions

HyperTalk operators

Operators are used in complex expressions Lo derive values from other values.
Operators fall into several categories:

O Arithmetic operators work on numbers and result in numbers,

0 Comparison operators work on numbers, text, and Boolean values (true or
£alse) and result in Boolean values.

O Logical operators work on Boolean values and result in Boolean values.
O Text operators manipulate text strings ane result in text strings.

parentheses alter the order of expression evaluation.

Operator precedence

Different operators have different orders of precedence that determine how things get
evaluated. The order in which HyperCard performs operations is shown in Table 4-1.

Table 4-1
Operator precedence
Order Operators Type of operator
1 {3 Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
3 o Exponentiation for numbers
4 * f div mod Multiplication and division for numbers
5 &= Addition and subtraction for numbers
6 5 &k Concatenation of text
7 > € gm >= %2 Comparison for numbers or text
is in contains Comparison for text
is not in Comparison for text
= is5 is not <> # Comparison for numbers or text
and Logical for Boolean values
10 or Logical for Boolean values

Operators of equal precedence are evaluated left to right, except for exponentiation,
which goes right to left. For example, 27374 means “3 raised to the fourth power,
then 2 raised to that power,” whereas 1-2-3 means "2 subtracted from 1, then 3
subtracted from that.” If you use parentheses, HyperCard evaluates the parenthetical
expression first.

&0 Chapter 4: Values

Operators and expression type

The operator you use must match the values you're using it with: "tom" + "cat"
would cause an error, because numeric values are required for addition. On the other
hand, tom + cat would be acceptable if tom and cat were names of containers
with numbers in them, and "tom" & "cat" would be acceptable because the &
operator works on text strings (the result of this operation would be the text string
tomcat). Text operators work on any value, because any value in HyperTalk can be
treated as a text string; they always yield text strings.

Because numeric values are automatically converted to strings when necessary (see
“Numbers” earlier in this chapter), they can be manipulated by both text operators
and arithmetic operators. For example, 5 & 78 yields 578,and 5 + 78
yields 83,

Comparison operators try to treat both of their operands as numbers; if they can't be
regarded as numbers, HyperCard treats them as text and does a lexical comparison.
For example, 9 < 10 results in true, because 9 islessthan 10 arithmetically.
But, "9x" < "10x" resultsin false, because the operands can't be regarded as
numbers and 9 is greater than 10 lexically.

Table 4-2 is a list of all the operators in HyperTalk.

Table 4-2
HyperTalk operators

Opearator Description

®) Grouping: Expressions within the innermost pair of parentheses are
evaluated first. Parentheses don't force a new level of evaluation; they
change the sequence in which the current level of evaluation
proceeds,

Minus: Arithmetic operator that makes negative the number to its
right, or, if it is between two numbers, subtracts the one on the right
from the one on the left.

Plus: Arithmetic operator that adds two numbers it appears between.

Multiply: Arithmetic operator that multiplies two numbers it appears
between.

Divide: Arithmetic operator that divides the number to its left by the
number to its right.

Divide and truncate: Arithmetic operator that divides a number to its
left by a number to its right, ignoring any remainder, resulting in just
the whole part.

Complex expressions

Table 4-2 (continued)
HyperTalk operators

Operator Description

mod Modulo: Arithmetic operator that divides the number to its left by the
number to its right, ignoring the whole par, resulting in just the
remainder.

Exponent: Arithmetic operator that raises the number to its left to the

power of the number to its right.

not NOT: Logical operator that results in true if the expression on its
rightis false,and false if the expression onits right is true.

and AND: Logical operator that results in true if both the expression to
its left and the expression to its right are true,

or OR: Logical operator that results in true if either the expression to
its left or the expression to its right is true.

= Equal: Comparison operator that results in true if the expression
to its left and the expression to its right have the same value. The
expressions can be arithmetic, text string, or logical.

is Is: Same as =,

< Not equal: Comparison operator that results in true if the
expression to its left and the expression to its right have different
values. The expressions can be arithmetic, text, or logical.

Not equal: Same as <>. The # character is obtained on the
Macintosh keyhoard by pressing Option-equal (=).

is not Is not: Same as <>,

< Less than: Comparison operator that results in true if the

expression to its left has less value than the ene to its right. The
expressions can be both arithmetic or both text.

> Greater than: Comparison operator that results in true if the
expression to its left has greater value than the one to its right. The
expressions can be both arithmetic or both text.

S Less than or equal to: Comparison operator that results in true if
the expression to its left has less value than the one to its right or the
same value. The expressions can be both arithmetic or both text.

= Less than or equal to: Same as <=, The £ character is obtained on
the Macintosh keyboard by pressing Option-comma (|).

62 Chapter 4: Values

Toble 4-2 (continued)
Hyperlalk operators

Operalor Description

5= Greater than or equal to: Comparison operator that results in true
if the expression to its left has greater value than the one to its right or
the same value. The expressions can be both arithmetic or both text.

Greater than or equal to: Same as >»=. The 2 character is obtained
on the Macintosh keyboard by pressing Option-period (.).

contains Contains: Comparison operator that results in true if the text

string vielded by the expression on its right is found in the text string
yielded by the expression on its lefi.

Is in: Converse of contains; comparison operator that results in
true if the text string yielded by the expression on its left is found in
the text string yielded by the expression on its nght.

Is not in: Cpposite of is in; comparison operator that results in
true if the text string yielded by the expression on its left is not
found in the text string vielded by the expression on its right.

Concatenate: Text string operator that joins the text string yielded by
the expression on its left to the text string vielded by the expression
on its right.

Concatenate with space: Text string operator that joins the text string
vielded by the expression on its left to the text string vielded by the
expression on its right, with a space between them,

|- -
Chunk expressions

You use a chunk expression to specify a particular picce—a chunk—of the value of any
- source of value: constant, literal, function, property, number, or container, Chunk
expressions can specify any character, word, item, or line in the source,

Syntax

The form of a chunk expression designates the smallest part of the chunk first, then
specifies each larger, enclosing part. You separate each part of the expression with the
pmpmunn of orits synonym in. For example,

:ﬂ:at character of second word of third line of field 1

Specifies a single character in the field,

Chunk expressions

You madify the specification of the kind of chunk—character, word, item, or line—
with the number of the particular one you want, The number can be an ordinal constant
preceding the kind (tenth word)oran integer following the kind (1ine 2). You

can also use a numeric constant in place of the integer (1ine two), orany numeric
expression that resolves o an integer.

You can use the special ordinals middle, last,and any 1o specify a chunk within
its enclosing part. HyperCard resolves a special ordinal to a number using the total
number of chunks of the specified type within its enclosing part: middle resolves to
one more than half the total, last resolves to the wotal, and any resolvestoa
random number between 1 and the total. For example,

put "Joe" into any word of line 2 of field 1
replaces a random word in the line with Joe.

It isn't necessary 10 specify the enclosing parts of the source in strict, hierarchical
order. You can designate any smaller part within any larger part:

character 35 of field 1

And, although you must go left-to-right from smaller to larger, you don't have to
specify any smaller part than you want:

third item of It

Characters

Characters are designated by the chunk name character (or cha r). Spaces count
as characters in any part of a source except words. (Words are delimited by spaces.)
Commas count as characters except in items. (Items are delimited by commas.)
Return characters count as characters in whole sources and items. (A return character
delimits the last word on the line as well as the line itself.)

For example, if field 6 contains the phrase

It was the turtle, not I, who spilled the beans.
the chunk expression

character 25 of field &

yields a comma (the one after not 1).

54 Chapter 4: Values

Words
Words are composed of any characters, including punctuation, delimited by spaces,
and are designated by the chunk name word:

word 2 of "Where's my cubicle?"

yields my.

ltems
Items are composed of any characters, including punctuation, delimited by commas,
and are designated by the chunk name item:

item three of "cat's, rat's, bat's, gnat's"

yields “ bat ' s" (including the space character in front).

Lines

Lines are composed of any characters, including punctuation, delimited by return
characters, and are designated by the chunk name line.

The chunk name line strictly denotes text between the beginning of a container and
the first return character, between two return characters, or between the last return
character and the end of the container.

It doesn’t matter how many display lines it takes to display one container line. For
example, a single line in a field might occupy several lines on the display if the text
wraps around (which it does if the field isn't wide enough to accommodate the whole
line).

This 152 1108 one This 15 lime one in Uhe Tleld
i Lhe Neld This 15 1ine 1wa

Thiz 15 line two, | |And here s Ting three

{iand here's line

1hres

|

Figure 4-3
Lines in a field

Chunk exprassions

Ranges

The preposition to in a chunk expression specifies a range of a chunk within the
larger chunk:

word 1 to 5 of line 2 of field "fred"
The numbers given in a range are inclusive. For example:
char 2 to 5 of "HyperTalk"

yields yper.

You specify the range with integers (or with constants or numeric expressions that
resolve to integers) following the chunk name, rather than with ordinal numbers
preceding the chunk name. That is, you must say char 1 to 3 of "george";you
can'tsay first to third char of "george".

When the first number in a range is greater than the second, you get the first chunk
only. For example, char 5 to 3 of "Hype rTalk" yields the character r.

Figure 4-4 shows some chunk expressions, labeled in various valid forms of chunk
expression syntax, in a hypothetical card field 1.

Third word
aof lme 1 of
card field 1 — —e—_
I
| _Thisiseneline. _________.
Char 4t i i
Charatos | And here is anaiherline. g cnaracter 2
card field 1 | This entire sentence is _____ of word 4 of
| actually one line (line 3) _____ et
tenth word of —|which has wrapped around __| ©° ™
third line of _inthefield. _______.__.__.
cardfield 1 T Here's a line with items______
| __which are, you know, - — Item 2 of
fourth line of
------------ g card fiald 1
Figure 4-4

Chunk expressions

Bb Chapter 4: Values

Chunks and containers

Combining a chunk expression with the object deseriptor of a field lets you refer
directly to any piece of text down to a single character within the current stack:

put char 2 of line 2 of field 1 of last card

& You can't specify chunks in anotber stack: You can't combine a stack name with a
chunk expression; you must go to the stack first,

Chunks as destinations as well as sources

Chunk expressions can be used to specify a pant of the value in a container wherever a
container name is used. So, the chunk can specify the destination of a value—where
you're putting it—as well as the source of a value—where you're getting it. For example,

put "George" inte word 3 of field 1

replaces only the third word in the field with the value George, leaving the rest of the
field’s former contents intact.

Nonexistent chunks

If you specify chunks that don't exist as sources of values, you get nothing. That is,
put char 5 of "hey"™ into msg

puts empty into the Message box.

If you specify a nonexistent chunk as the destination of a put command, the outcome
depends on the kind of chunk. If you put a value into a character or a word that doesn't
exist in a container, you put just the value, That is, if field 1 is empty, the statement:

put "hey" into word 5 of field 1
puts hey (with no characters before it) into background field 1.

If you put a value into a nonexistent line, however, HyperCard puts in a return
character, and if you put a value into a nonexistent item, HyperCard puts in a comma.
{In both cases, you put a null chunk delimited by its particular delimiting character.)
For example, if field 1 is empty, the statement:

put "hey" into line 5 of field 1

pus four return characters (four null lines) followed by hey into background field 1.
Similarly,

put "hey" into item 5 of field 1

puts four commas (four null items) followed by hey into the first line of background
field 1.

Chunk exprassions

—

1 Third character of second ward of third line...

Characler

£

Weord [MThat's what | thought.
g

Lire

Thin & bre oo

f”’n‘“"'--..
T] -
| Thars mbun § Fucesght [-
L 8 v

Card Stack

Figure 4-5
Combining chunks and objects

Chapter summary
Here is a summary of the material covered in this chapter:
0 HyperTalk's values can always be treated as strings of characters.

o The most basic expressions in HyperTalk are constants, literals, functions,
properties, numbers, and containers.

A Containers—fields, variables, the selection, and the Message box—are places to
store values,

0 Complex expressions are built with values and operators.
O Operators are used to manipulate and calculate values.

o Chunk expressions can specify any chunk—character, word, item, or line—either
in a source of value or as the destination of a put command,

58 Chapter 4; Values

Chapter 5

Keywords

This chapter describes all of HyperTalk's keywords.

A keyword is 2 word whose meaning is predefined in HyperTalk. You cannot redefine
keywords as variable names. Keywords are not sent 45 messages when they execute in
scripts, nor can they be used in the Message box (except for send). Some keywords
provide the structure for handlers; others control the flow of execution within
handlers.

HyperTalk has rwo kinds of handlers: message and function handlers, denoted by the
initial keywords on and function, respectively. Message and function handlers
are defined in the same way (except for the initial keyword), but they differ in how they
are invoked and in how they return values.

In this chapter, the heading for each keyword is followed by a syntax statement. Words
in italic are general elements. Square brackets (| 1) denote optional elements (don't
type the square brackets).

Keywords in message handlers

The on keyword identifies a HyperCard message handler. Message handlers are
written to define your own messages, or to modify or redefine what happens in
response to any message (including a HyperTalk command). The general syntax of a
message handler looks like this:

on messageName [parameterList]
[statementlist]
end messageName

MessageName is an identifier: a string starting with a letter and containing no spaces
or punctuation marks except underscore; parameterList is a senes of zero or more
parameter variables (separated by commas if more than one); and statementList is
zero or more HyperTalk statements,

The handler dictates the method by which its object responds to messageNarme. When
somebody sends a message called messageName (o an object, HyperCard checks all
of that object's message handlers to see if it has one named messageName. If so, the
ohiject responds according to that handler, and the message is senl no Further
(assuming the script has no pass statement, described later in this chapter). If the
object has no handler to match messageNarme, HyperCard passes the message to the
next object in the hierarchy.

& You can override HyperTalk: If you name a message handler the same as a built-in
command, your name overrides the built-in one if yours is anywhere along the
object hierarchy between the object sending the message and HyperCard.

Program flow runs through the handler until it encounters an end, exit, pass,or
return statement (discussed later in this section). A message handler can return a
value through the built-in function the result (discussed in Chapter 8).

&0 Chapter 5: Keywords

On

on messageName [parameterlist]

The on keyword marks the beginning of a message handler and connects the handler
with a particular message. MessageName is the first word of the message to which the
handler responds, and it is the name of the handler,

The optional paramelerlist allows the message handler to receive some values sent
along with the message. This list is a series of local variable names, called parameter
variables or formal parameters, separated by commas. When the message is sent,
each source following the message name is evaluated; when the handler receives the
message, each value is plugged into the parameter variable that appears in the
corresponding position following on messageName, the first value in the list going
into the first parameter variable, and so on.

Chapter 2, “Handling Messages,” explains more about parameter passing. See also
the param, params, and paramCount functions in Chapter 8, “Functions.”

End

end messageName

The end keyword begins the last line of a handler— it is reached when all of the
handler's statements have been executed (except for any bypassed conditional
blocks). When the end statement is reached, the message that initiated execution of
the handler is sent no further. If the message that initiated this handler's execution was
part of some other handler, control passes back to the other handler.

Exit

exit messageName
exit to HyperCard

The exit messageName statement ends execution of the handler.

The exit to HyperCard form makes program flow return directly to HyperCard,
bypassing any pending handlers that have not finished executing,

Keywords in message handlers

Pass

pass messageName

The pass statement ends execution of the handler and sends the entire message that
initiated execution of the handler to the next object in the hierarchy. (Ordinarily, a i
message is sent no further than the object containing the executing handler.)

Return
return expression
The return statement ends execution of the handler and, when it appears within a

message handler structure, places the value of expression into the HyperTalk function
the result,

The value of the result setbythe return statement is valid only immediately
after it executes; cach new statement resets the result. (See “Result” in Chapter 8,
“Functions,” for examples.)

Message handler example

The following example shows a handler that originates a message which in tum
initiates execution of a second handler. (The second handler could be in the same
script as the first or anywhere farther along the object hierarchy.)

on mouselp
heyWow 5,10 —-- heyNow is the message name that's sent
and mouselp

on heyHow timeVar,timeVar2 --Handler name 1z heyNow, matching message name

play "boing" tempo 200 "cde ¢ dg ¢ f eh" -- Happy Birthday
wait timeVar seconds
play stop

play "harpsichord” "ch d e £ g a b cow"
wait timaVarZ seconds
play stop

end heyNow

Execution of the first handler is initiated when its object receives a mouselUp
message. The mouseUp could be generated by the user clicking the mouse or typing
mouseUp in the Message box and pressing Return. It could also originate from
another handler executing the statement mouseUp or could be sent explicitly to the
handler's object witha send command.

&2 Chapter 5 Keywords

When the mouseUp handler executes, it sends its one command statement (heyNow
5, 10) as a message, first to its own object. The message name (the first word of the
message) matches the handler name (the word following on in the first line of the
handler), so the statements in the second handler begin executing. (If the current
object had no heyNow message handler, thar object would pass the entire message
on to the next object in the hierarchy.)

The values of the parameters following heyNow in the first handler are passed into
the parameter variables following heyNow in the second handler. So when the
second handler is executing, timeVar has the value 5, and timeVar2 hasthe
value 10,

Keywords in function handlers

The function keyword identifies a HyperCard function handler. You can use this
structure to define your own functions, which then can be called from any place ina
statement where their values are needed. (User-defined functions are called like built-
in HyperCard functions except that you must always use parentheses—see “Remurn,”
later in this section.)

Like message handlers, function handlers cannot be nested inside each other (or
inside message handlers). The general syntax of a function handler looks like this:

function functionName [parameterlist)
statementList
end functionName

FunctionName is an identifier: a string starting with a letter and containing no spaces
or punctuation marks except underscore; parameterlist is a series of zero or more
parameter variables separated by commas; and statementlList is zero or more
HyperTalk statements.

User-defined function handlers use the object hierarchy in the same way as do
message handlers, That is, when the function name appears in a statement or in the
Message box, HyperCard searches through all of the scripts along the current object
hierarchy for a matching function handler. If a match is found, the function handler
executes. If none is found, the function call is passed to HyperCard; if there is no built-
in function of that name, HyperCard displays an error dialog box.

@ You can override HyperTalk: If you name a function handler the same as a built-in
function, yours overrides the buili-in one if it's called with the function call syntax
that uses parentheses. Of course, your function handler must also be in the script of
an object lower in the hierarchy than the originator of the function call. You can
make calls to built-in functions using the function call syntax with the preceding
the function name, which bypasses any function handlers and always invokes the
built-in function.

Keywords In function handlers

Program flow runs through the function handler until it encounters an end, exit,
pass, Of return statement {discussed later in this section). A function handler
returns a value directly into the statement in which its name was used,

Function
function functionName [parameterlist]

The function keyword marks the beginning of a function handler and connects the
handler with a particular function call. FunctionName is the function call to which the
handler responds, and it is the name of the handler.

The optional parameterList allows the function handler to receive some values sent
along with the function call. This list is a series of local variable names, called
parameter variables, separated by commas. When the function call is made, each
source appearing between parentheses following the function name is evaluated; when
the handler begins to execute, each value is plugged into the parameler variable that
appears in the corresponding position following function functionName, the first
value in the list going into the first parameter variable, and so on.

For more details on passing parameters to function handlers, see “Return” later in this
section.

End

end functionName

The end statement is the last line of the handler, reached when all of the handler's
statements have been executed (except for any bypassed conditional blocks).

When the end statement is reached, control passes back to the handler containing
the function call that originated the function handler's execution.

Exit

exit functionName
exit to HyperCard

The exit functionName statement ends execution of the handler,

The exit to HyperCard form makes program flow return directly to HyperCard,
bypassing any pending handlers that have not finished executing, including the
handler containing the function call.

&4 Chapter 5: Keywords

Pass

pass functionName

The pass statement ends execution of the handler and sends the entire function call
that initiated execution of the handler to the next object in the hierarchy. (Ordinarily,
a function call is sent no further than the object containing the executing handler.)

Return

return expression

The return statement ends execution of the handler and, when it appears within a
function handler structure, dictates the returned value of the function.

The value of expression replaces the function in the calling statement.

The function appears in the calling statement in the form
functionName (expressionList) :

put square(l?) into card field 1

Expressionkist is a series of zero or more expressions separated by commas whose
values are assigned to the parameter variables in the parameterList of the function
handler. In the above example, the expressionlist comprises only the number 17,

A user-defined function handler that would respond to the function call example
square (17), shown above, is

function square x=
return x * x
end scquare

In the example, the function handler has one parameter variable to receive one value
passed to it by the calling statement. The value 17 is passed to the function handler
where it is assigned to the parameter variable x; the valueof x * x is returned by
the return statement, replacing square (17) in the calling statement. So, the
effect of the calling statement is to put the value 289 into card field 1.

% Parentheses required: User-defined functions are always followed by parentheses
(which are empty if there are no parameters to pass). Unlike built-in functions
(explained in detail in Chapter 8), user-defined functions can't be called with the
or of.

Keywords in function handlers

Function handler example

The following function handler determines whether a number passed to itas a
parameter is even or odd, returning the constant true ifi'sevenor false ifits
odd:

funetion evenNumbar numberPassed
return numberPassed mod 2 is 0
end evenfumber

A calling statement that would invoke the evenNumber function handler could be
one like the following:

if evenNumber (numberVariable) then add 1 to evenNumberCount

In the calling statement, numberVariable can be the name af any variable or

other source of value (including an actual number). HyperCard evaluates
numberVariable before it passes the function call along the hierarchy, and its value
is given to the parameter variable numberPassed whenthe evenNumber function
handler is found. The part of the calling statement following then is arbitrary—the
point of the example is to show how the function handler receives a value, examines it,
and returns another value into the calling statement, based on the result of its
execution,

E_apaal

The repeat structure causes all of the HyperTalk statements between its first and last
lines to execute in a loop until some condition is met or until an exit statement is
encountered. The general syntax of a repeat structure looks like this:

repeat condrolForm
statementList
end repeat

ControlForm is one of the forms of the repeat statement described below, and

statementList is any number of HyperTalk statements. Repeat structures can be used
only within message handlers or function handlers.

& Note: If you want to try the examples in this chapter, be sure to put them within handlers.

Repeat

The repeat statement is the first line of a repeat structure. It has five forms
differentiated by the second word of the statement. Additionally, the repeat with
form has two vanations,

&6 Chapter 5 Keywords

Repeat forever

repeat [forever]

The loop repeats forever, or until an exit statement is encountered (whichever
comes first):

put 1 into Message box
repeat

add 1 to Message box

if Message hox contains & then exit repeat
end repeat

The example ends with 6 in the Message box.

For information on exit repeat, see “Exit Repeat” later in this chapter.

For information on 1 f, see “If Structure” later in this chapter,

Repeat for
repeat [for] number [times]

Number is a source that yields a number specifying how many times the loop is
executed:

PUut 1 into Message box
repeat for 5 times

add 1 to Messaga box
end repeat

The example ends with & in the Message box.

Repeat until

repeat until condition

Condition is an expression that evaluates to true or false. The loop is repeated as
long as the condition is false, The condition is checked prior to the first and any
subsequent executions of the loop:

put 1 into Message box

repeat until Message Box contains 6
add 1 to Message box

and repeat

The example ends with 6 in the Message box.

Repeat while
repeat while condition

Condition is an expression that evaluates to true or false. The loop is repeated as
long as the condition is true. The condition is checked prior to the first and any
subsequent executions of the loop:

put 1 into HMessags box

repeat while Message Box < &
add 1 te Message box

end repeat

The example ends with 6 in the Message box.

Repeat with

There are two variations of the repeat with form: one that increments a variable
and one that decrements.

repeat with variable = start to Sfinish

Variable is a local or global variable name, and start and finish are sources of
integers. The value of starf is assigned to variable at the beginning of the loop, and is
incremented by 1 with each pass through the loop. Execution ends when the value of
variable equals the value of finish.

repeat with increment = l to#
put increment into the Message box
end repeat

The example ends with 6 in the Message box. (This structure works much like a
FOR. . .NEXT loop in BASIC.)

repeat with warigble = start down to Sfinish

The down to form is the same as the to form above, except that the value of
variable is decremented by 1 with each pass through the loop. Execution ends when
the value of variable equals the value of finish.

rapeat with decrement = 6 down to 1
put decrement into the Message box
end repeat

The example ends with 1 in the Message box.

&8 Chapter 5 Keywords

exit repeat

The exit statement sends control to the end of the repeat structure, ending
execution of the loop regardless of the state of the controlling conditons specified in
the repeat statement.

put 1 into the Message box
repeat with increment = 1 to 100

add increment to the Message box
if Message box > 20 then

beep 5
exit repeat
end if
end repeat

The example ends with 22 in the Message box.

An exit statement can appear anywhere within the structure.

For information on 1 £, see “If Structure” later in this chapter.

next repeat

When a next statement is encountered, control returns immediately 1o the top of
structure, (Usually, flow doesn't return to the top of the structure until an end
statement is encountered,)

repeat 20
put random{%) inteo tempVar
if tempVar mod 2 = 0 then next repeat
put tempVar after field "oddNumbers"
end repeat

The example appends only the odd random numbers to the field, skipping any even

ONeEs.,

A next statement can appear anywhere within the structure,

For information on if, see *If Structure” later in this chapter,

End

end repeat

The end statement marks the end of the loop; it’s the last line ofa repeat control
structure, When the controlling conditions specified in the repeat statement have
been satisfied or an exit statement encountered, control goes beyond the end
statement:

repeat for 5 times
beep
end repeat

The if structure tests for the specified condition and executes the following
statement or series of statements if the condition is true. If structures can be used
only within message handlers or function handlers, The if structure has several
forms, described below,

Note: If you want to try the examples in this chapter, be sure to put them within handlers.

Single-statement If structure

A single-statement 1f structure can oCcCupy only one line as shown below:

if condition then statement [else siatement]

A single-statement if structure can also occupy more than one line, but only one
statement can follow then or else:

if condition
then statement
[else statement]

Condition is an expression that evaluatesto true or £ alse, and statement is a single
HyperTalk command statement.

In the single-statement 1f structure, only one command statement can follow either then or
else (if present), and the command statement must be on the same line with then or else.

If the condition between if and then is true, HyperCard exccutes the statement berween
then and else if else ispresent, or between then and the end of the line if else isnot
present following the statement, either on the same line or on the next line.

70 Chapter 5: Keywords

If the condition between if and then is false, HyperCard executes the statement between
else andthe end of the line if else is present, or it ignores the rest of the line if else is not
present:

if Message box > 10 then beep 5 else beep 15

In this example, if the Message box holds a value greater than 10, the Macintosh beeps 5 times; if
the value in the Message box is 10 or less, the Macintosh beeps 15 times.

Multiple-statement If structure

A multiple-statement if structure accommodates more than one executable statement
following then and, optionally, more than one statement following else:

if condition then
statemenitlist
[glse
statemenitList]
end if

You can also end a muldple-statement then clause with a single-line else, in which case no
end if statement is needed:

if comdition then
StatementList
else statement

Condition is an expression that evaluates to true or false, and statementList is any number of
HyperTalk statements,

In the multiple-statement if structure, more than one command statement can follow either
then or else (if present), and the first command statement must be on the line following
then or else. Thatis, if you want to have more than one statement in a block following then
or else, put a return character after the respective then or else. Such a multiple-statement
block must be ended explicitly: a then block can be ended with either end if or else;an
else block mustbe ended with end if.

If the condition between if and then is true, HyperCard executes the statement(s) between
then and else If else is present, or between then and end if if else isnot
present.

If the condition between if and then is false, HyperCard executes the statement(s) between
else and end if if else is present, or it ignores what's between then and end

else isnot present:

if pumber of this card is 10 then

put "We're done!" into msg
go Home
alse

put "And the next question is:" into meg
go next card
end if

Nested If structures

If structures can be nested; that is, statements following a then oran else can include
more if structures. Each nested multiple-line if structure must have its own end if, and

an else always goes with the closest preceding if clause.

repeat
ask "Guess a random number between 1 and 10:" with empty
if it is empty then
exit repeat
alse
if it is random{1l0) then
put "You guessed itl"
alse
put “"Sorry, try again.”
end if
end if
end repeat

Do

do expression

The do keyword causes HyperCard to get the value of expression, then send itas a
message. If more than one line is in the source, only the first one is sent.

on getFromlist -- create 3 card fields putting data into the first 2
put "card fiald 1" & return & "card field 2" into list
do "put®™ && line 1 of list &6 "into card field 3%
-- try this with: put line 1 of list into card field 3
-- pommenting ocut the do "put”... line bafore running it
end getFromlist

72 Chapter 5: Keywords

Global
global wvariableList
VariableList is one or more HyperCard variable names separated by commas,

The global keyword makes a variable name known and its contents available to any
script of any object in HyperCard. The following two lines are individual examples of
global statements:

global myVar
global pages,sections,chapters

The following example handlers show a global variable being used for two handlers to
access the same value:

on mouselp
global myVariable -- load the global here
put 3 into myVariable
writeResult

end mouseup

on writeResult
glcbal myVariable -- can use the global as leng as we define it here
put myVariable -- the wvalue remains 3

and writeRasult

Changing the value of a global variable in any script changes its value everywhere. The
global keyword must be used in each handler in which the global variable is used.

Global variables are not saved in between sessions of HyperCard or when HyperCard
is suspended by launching another application with the cpen command.

lobal

73

send

send "messageName [parameterlist]" [to obfect]

MessageName is a string beginning with a letter and containing no spaces or
punctuation marks other than underscore; parameterList is One OF MOre EXPressions
(separated by commas if more than one); and object is a HyperCard object descriptor
or HyperCard itself. If no object is specified, HyperCard is the object.

The send keyword sends a message directly to a particular object, bypassing any
handlers in the intervening object hierarchy that might otherwise intercept the
Mmessage.

gend "hideIt" to field 3

send "addSums travel, food, hotel™ to stack "expenseAccount” .
send mouselUp to button "pushMe”

send "doMenu print card" to HyperCazd

You can send a message directly to any object in the current stack or to another stack,
but not to a specific object in another stack.

If the object has no message handler for messageName, the message is passed along
the object hierarchy stemming from the object to which the message was sent. If the
object does have a matching handler, the handler executes, but the card to which it
belongs does not necessarily open. Messages sent by executing the statements of the
object’s handler are sent along the receiving object's hierarchy.

Chapter 2, “Handling Messages,” has more information about how the send
command interacts with the object hierarchy.

Quotation marks around the message are not required if the message is a single word.
Parameter expressions are evaluated before they are sent, even though the entire
message has quotation marks around it.

& You can use it in the Message box: The send keyword, unlike all other keywaords,
works in the Message box.

74 Chapter 5 Keywords

This chapter describes the messages HyperCard sends in response to events, such as
mouse clicks, that you initiate in its environment.

Most system messages are sent by HyperCard to the current card, but those having 1o
do with a specific button or field are sent to that object. The receiving object has the
first chance to respond to the message before it goes on to the next encompassing
obiject, as described in Chapter 2, *Handling Messages.” The receiving object can
respond to the system message with a handler that begins

on messageName
where messageName is one of the system messages in the following lists.

The tables in this chapter correspond to the type of object to which the listed system
messages are sent initially. If that object has no handler with a name matching the
system message, il passes the message on to succeeding objects in the hierarchy. 50,
for example, a card can have a handler for a message sent initially to a button.

ﬁassugas and commands

Most system messages are informational—they cause no action if passed all the way 1o
HyperCard, although they may be a result of a HyperTalk command executing, For
example, HyperCard sends deleteButton toa button while it is executing eithera
Cut Button or Clear Button menu command. The deletaButton message isa result
of a command, not the command itself. (Consequently, you can't prevent the

deletion of buttons by intercepting the deleteButton message with a handler
named deleteButton).

Other system messages, however, are commands if passed to HyperCard. For
example, all menu commands are passed to HyperCard as paramelers of the doMenu
message. (5o you can prevent deletion of buttons by intercepting doMenu. But see
the section “Redefining Commands” at the beginning of Chapter 7 before trying it.)
All system messages that are HyperTalk commands are noted as such in this chapter
and are also listed in Chapter 7. If a message that reaches HyperCard is neither a
system message nor a command, HyperCard displays a "Can't understand” error
dialog box,

Although system messages are usually sent by HyperCard, they can he sent by other
objects as well. For example, a handler could invoke a mouseUp handler in another
object by executing a statement su ch as

sand "mouseUp" to button 1 of card 1

76 Chapter &: Systern Messages

Messages sent to :bliﬂon

The only messages that are sent initially to buttons are those having to do with a
specific button. They are of two types: those announcing the button's creaton or
deletion, and mouse messages.

When buttons and fields are layered on top of each other, mouse messages are sent
only to the closest one. (But background buttons and fields can never overlay those
belonging to the card.) Whether a button or field belongs to the card or the
background, however, makes no difference regarding where a message is sent initially:
all buttons and fields precede the card,

Table 6-1 shows the system messages HyperCard sends initially to buttons.

Table &-1
Messages sent to a button

Massage Meaning

newButton Sent to a button as soon as it has been created. Although the
new button can have no script with which to respond to this
message (unless it was created by pasting), the message will
pass to objects lower in the hierarchy which can respond with
handlers such as

on newButton
set autoHilite of the target to true
end newButton

deleteButton Sent to a button that is being deleted, just before it
disappears.

mouseDown Sent to a button when the mouse button is pressed down while
the pointer is inside its rectangle. (This message may also be
sent to a field or card; see Tables 6-2 and 6-3.)

mouseStillDown Sent to a button repeatedly while the mouse button is held
down and the pointer is inside its rectangle. (This message
may also be sent to a field or card; see Tables 6-2 and 6-3.)

mouselp Sent to a button when the mouse button is released while the
pointer is inside its rectangle. The pointer must be in the
same button rectangle it was in when the mouse bumon was
pressed down for the message to be sent. (This message may
also be sent to a field or card; see Tables 6-2 and 6-3.)

Messages sent to a button

Table &-1 (confinued)
Messages sent to a button

Message Meaning

mouseRnter Sent to a button as seon as the pointer is moved within its
rectangle. (This message may also be sent to a field; see
Table 6-2.)

mouseWithin Sent to a button repeatedly while the pointer is insicle its
rectangle. (This message may also be sent to a field; see
Table 6-2.)

mouseleave Sent to a button as soon as the pointer is moved outside its
rectangle. (This message may also be sent to a field, see
Table 6-2.)

Messages sent to a field

The only messages that are sent initially to fields are those having to do with a specific
field. They are of three types: those announcing the field's creation or deletion, those
announcing its opening for text entry or closing afterwards, and mouse messages.

When buttons and fields are layered on top of each other, mouse messages are sent
only to the closest one, (But background buttons and fields can never overlay those
belonging to the card.) Whether a button or field belongs to the card or the
background, however, makes no difference regarding where a message is sent initially:
all burtons and fields precede the card.

Table 6-2 shows the system messages HyperCard sends initially to fields.

78 Chapter &: Systern Messages

Table &-2
Messages sent to a fleld

Message Meaning

newbField Sent to a field as soon as it has been created,
deleteField Sent to a field that is being deleted, just before it disappears.

openField Sent to an unlocked field when it is opened for text editing, by
clicking in the field or moving the text insertion point from
the previous field with the Tab key.

closeField Sent to an unlocked field when it is closed after text editing by
clicking outside the field, moving the text insertion point to
the next field with the Tab key, pressing the Enter key, going
to another card, or quitting HyperCard. The message is not
sent unless some text was actually changed.

mouseDown Sent to a locked field when the mouse button is pressed down
while the pointer is inside it. MouseDown isnotsenttoa
scrolling field when the mouse is clicked in the scroll bar. You
can send mouseDown to an unlocked field by holding down
the Command key while clicking the mouse in the field. (This
message may also be sent to a button or card; see Tables 6-1
and 6-3.)

mouseStillDown Sent to a locked field repeatedly while the mouse button is
held down and the mouse pointer is inside it. (This message
may also be sent to a button or card; see Tables 6-1 and 6-3.)

mouselp Sent to a locked field when the mouse button is released while
the pointer is inside it. The pointer must be in the same field
it was in when the mouse button was pressed down for the
message to be sent. (This message may also be sent to a
button or card; see Tables 6-1 and 6-3.)

mouseEnter Sent to a field as soon as the pointer is moved into it. (This
message may also be sent o a button; see Table B-1.)

mouseWithin Sent to a field repeatedly while the pointer is inside it. (This
message may also be sent to a button; see Table 6-1.)

mouseLeave Sent to a field as soon as the pointer is moved outside it. (This
message may also be sent to a button; see Table 6-1.)

tabKey Sent to a field when the Tab key is pressed while the text
insertion point is in the field, (This message may also be sent
to the current card; see Table 6-3.)

Messages sent to o field

Messages sent to the cuﬁent card

System messages not sent to buttons or fields are sent initially to the current card, even
when they concern the background or the stack,

Mouse messages are sent to the card only when there is no button or field, belonging
to either the card or the background, under the pointer.

Table 6-3 shows the system messages HyperCard sends initially to the current card.

Table 6-3

Messages sent to the curent card

Massaga Meaning

newCard Sent lo a card as soon as it has been created.

deleteCard Sent to a card that is being deleted, just before it disappears.

openCard Sent to a card when you go o it

closeCard Sent to a card when you leave it

mousebown Sent to the current card when the mouse bution is pressed
down and the pointer is not in the current button rectangle or
field. (This message may also be sent to a button or field; see
Tables 6-1 and 6-2.)

mouseStillDown Sent to the current card repeatedly while the mouse button is
held down. (This message may also be sent to a button or
field: see Tables 6-1 and 6-2.)

mouselp Sent to the current card when the mouse button is released.
(This message may also be sent to a button or field; see Tables
6-1and 6-2.)

startUp Sent to the first card displayed when HyperCard is first

80 Chapter &: Systern Messages

started.

Table &-3 (confinued)
Meassages sent to the curent card

Message Meaning

Sent to the current card repeatedly when nothing else is
happening and the Browse (ool is current.

An idle handler can interfere with typing. For example, if
you have an idle handler that puts text into a field, it can
remove the insertion point from anaother field while the user
is typing. An example of such a handler is

on idle
put the time into card field "Time"
pass idle

end idle

If this handler were to execute during typing into another field
{idle is sent during a typing pause), and if the time had
changed, HyperCard would remove the insertion point from
the user’s field. The user would have to click in the field or
press Tab to replace the insertion point after every pause,
which would be annoying and tedious.

returnkey Sent to the current card when the Return key is pressed, unless
the text insertion point is in a field. (This message is also a
HyperTalk command. See Chapter 7.)

enterkey Sent to the current card when the Enter key is pressed, unless
the text insertion point is in a field. (This message is also a
HyperTalk command. See Chapter 7.)

tabKey Sent to the current card when the Tab key is pressed, unless
the text insertion point is in a field. (In that case, tabKey is
sent initially to the field; see Table 6-2.)

This message is also a HyperTalk command. See Chapter 7.

Messages sent to the current card

Table -3 (continued}
Messages sent to the current card

Message Meaning

arrowKey wvar Sent to the current card when an arrow key is pressed (and the
textArrows properyis false;see Chapter 9). The value
passed into the parameter variable parcan be left,
right, up, or down, depending on which arrow key is
pressed. The beginning of a handler for this message could
read:

on arrowKey whichKey
if whichKey = "left" then go previous card

(This message is also a HyperTalk command. See Chapter 7.)

functionKey var Sent to the current card when a function key on the Apple
Extended Keyboard is pressed. The parameter variable var
can range from 1 to 15. Function keys 1 through 4 are
preprogrammed for the Undo, Cut, Copy, and Paste
commands, respectively. The beginning of a handler for this
message could read:

on functionKey whichFey
if whichKey < 5 then pass functionKey
glsa if whichKey is 5 then doMenu "Wew Card"®
else if whichKey is 6 then choosa browse tool
glse if whichKey is 7 then choose button tool

CRC

You can override the preprogrammed functions of keys 1
through 4 ina functionKey message handler. (This
message is also a HyperTalk command. See Chapter 7.)

controlKey var Sent to the current card when a combination of the Control
key and another key is pressed. The parameter variable var
can range from 0 to 255. The parameter variable values
generated by different keystrokes on the Apple Extended
Keyboard are shown in Appendix B, The beginning of a
handler for this message could read:

on controlKey whichKey
if whichKey = 16 then doMenu "Print Card"

g2 Chapter &: Systern Messages

Table -3 (continued)

Messages sent to the cumrent card

Message

Meaning

doMenu wvar

newBackground

deleteBackground

openBackground

closeBackground

newsStack

deleteStack

opensStack

closeStack

help

suspend

Sent to the current card when a menu item is selected. The
parameter variable var has the exact name of the menu item
selected, including the three periods following menu items
that invoke dialog boxes. Uppercase and lowercase don’t
matter, but you must type the three pericds—don't use the
Option-semicolon ellipsis character, (This message is also a
HyperTalk command, which is listed in Chapter 7. An
example handler to intercept the doMenu message is shown
in the section “Redefining Commands” at the beginning of
Chapter 7.)

Sent to the current card as soon as a background has been
created,

Sent to the current card when a background is deleted, just
before it disappears.

Sent to the current card when a background is first opened by
going 1o a card whose background is different than that of the
previous card,

Sent to the current card when a background is closed by going
to another card that has a different background.

Sent to the current card when a stack is created.

Sent to the current card when a stack is deleted, just before it
disappears.

Sent to the current card when a stack is opened by going toa
card in a different stack than that of the previous card. In this
case the following three messages are sent, in order:
openCard, cpenBackground, and openStack.

Sent to the current card when a stack is closed by opening
another stack.

Sent to the current card when Help is chosen from the Go
menu (or Command-? is pressed). You can intercept this
message if you want to provide your own Help system for your
stack. (This message is also a HyperTalk command. See
Chapter 7.)

Sent to the current card when HyperCard is suspended, when
you launch another application with the open command,
just before the other application is launched.

Messages sent to the current card

Table 6-3 (confinued)

Messages sent to the cumrent card

Message

Meaning

resume

quit

hide wmar

show wvar

Sent to the current card when HyperCard resumes running
after having been suspended.

Sent to the current card when you choose Quit HyperCard
from the File menu (or press Command-Q), just before

HyperCard quits.

Sent to the current card when the menu bar is visible and you
press Command-Space bar. The parameter variable var has
only one value for the hide system message: menubar.
(This message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menubar, See Chapter 7.)

Sent to the current card when the menu bar is hidden and you
press Command-5pace bar. The parameter variable var has
only one value for the show system messsage: menuBar,
(This message is also a HyperTalk command; the command
accepts other parameter variable values in addition to
menuBar, See Chapter 7.)

84 Chapter &: System Messages

Chapter 7

Commands

This chapter describes all the commands in HyperTalk, showing their syntax and
meaning.

HyperTalk commands are built-in message handlers that reside in HyperCard itself.
When you issue a HyperTalk command, it's passed along the object hierarchy as a
message to HyperCard, In most cases there's no handler in any script along the way to
intercept the message, so HyperCard receives the message and acts on iL.

Some commands (such as arrowKey) are system messages as well as commands,
This means two things: a system event generates the message (pressing an arrow key
generates the arrowKey message), and HyperCard has a built-in response to the
message (arrowKey takes you to another card),

Redefining commands

You can write a message handler that redefines a built-in command (for example, on
doMenu menuItem). This is especially useful for trapping menu commands you want
to moxdify or that you want to prevent a user from issuing,

Be wary, however: once a command—or any message—has been intercepted by a
handler, it's sent no further along the hierarchy; so your newly defined command
replaces HyperCard's built-in one. If, for example, you write a handler for the
doMenu command, be sure to pass the message if you don't want to prevent every
instance of it from reaching HyperCard:

on doMenu menultem
if menultem is *Delete Card”™ then
answer ""Are you sura?" with "Dalate” or "Cancal"
if It is not "Delete" then exit doMenu
aend if
pass doblenu
and doMenu

If you inadvertently fail to pass doMenu, you may find yourself apparently unable to
use any menu command, even to fix the doMenu handler. (In that case, execute the
command edit script, for the object containing the handler, from the Message
baox, If the Message box is hidden and blind typing is false, go to the last card of the
Home stack and turn blind typing on.)

B4 Chapter 7: Commands

Syntax description notation

The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hyperalk language elements or are those that you type to
the computer literally, exactly as shown, Words in italic type describe general
elements, not specific names—you must substitute the actual instances. Square
brackets ([]) enclose optional elements which may be included if you need them.
(Don't type the square brackets.) In some cases, optional elements change what the
message does; in other cases they are helper words that have no effect except 10 make
the message more readable,

It doesn't matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(1ikeThis) merely to make them more readable. The HyperTalk prepositions of
and in are interchangeable—the syntax descriptions use the one that sounds more
natural,

The terms factorand expression are defined in Chapter 4. Briefly, a factor can be a
constant, literal, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. The term yields indicates a specific kind of value,
such as a number or a text string, that must result from evaluation of a factor or
expression when a restriction applies (for example, the expression and the destination
inan add command must yield numbers). However, any HyperTalk value can be
treated as a text string.

Syntax description notation

Syntax

Examples

Description

Script

Notes

Add

add expression to destination

Expression yields an arithmetic value and destination is a container.

add 3 to It
add field Amount to field Total

The add command adds the value of expression 1o the value of destination, and
leaves the result in destination,

The following example handler sums numbers in a field, if each line of the field
contains one number, and puts the result into the Message box. The name of the field
is passed to the handler as a parameter.

on sumField whichField
put 0 into total
repeat with count = 1 to the numbar of lines in whichField
add line count of whichField to total
end repeat
put total into mag
and sumField

The value previously in the destination must be a number; it is replaced with the new
value.

Ba Chapter 7: Commands

Syntax

Examples

Description

Seript

Answer

answer guestion [with reply [or reply2 [or reply31]]
Question and reply are expressions that yield text strings.

answer "Which is the way the world ends?" with "Bang" or "Whimpexr®
anawer myQuestion with myAnswer or field 7

The answer command displays a dialog box with a question and up to three
buttons, each representing a different reply.

The dialog box stays on the screen until one of the buttons is clicked; pressing Retum
or Enter has the same effect as clicking the button farthest to the right, which
correlates to the last reply specified with the answer command.

The following example handler produces the dialog boxes in Figure 7-1 (the second
one depends on which button you click in the first one):

on chooseColor
answer "Which color do you prefer?" with "Red" or "Blue" or "Yellow"
if It is "Rad" than answar "You picked Red."
else if It is "Blue* then answer "You picked Blue."

aelse if It is "Yellow" then answer "You picked Yellow."
end chooseColor

Wch color do you prefer?

| Red .‘J [Bluge] | Yelloum l

-

You picked Red.

o

Figure 7-1
Answer command dlalog boxes

MNotes

Syntax

Examples

Description

There is no way for a seript to reply to a dialog box by itself, so it's important that a
script meant to run unattended not use answer,

The text of the button clicked goes into the local variable It.If no replyis specified,
HyperCard displays one button containing OK.

Neither the question nor any of the replies can have more than one line, If you use a
container that has more than one line of text in it for the question, only the first line
appears. If you use a container with more than one line for a reply, the last line is
displayed in the button. (Only the center portion shows if the line is too long to fitin
the button.) However, all lines go into the local vanable It when the button is
clicked.

Unless you're using container names, put the question and the replies inside
guotation marks if they contain any spaces,

Each reply can be up to 13 characters long (depending on the width of the
characters).

See also the ask command,

ArrowKey

arrowKey keyName

KeyName describes one of the arrow keys: left, right, up, or down.

arrowKey left
arrowkKey down

The arrowKey command takes you to another card. The effects of the arrowKey
command are shown in Table 7-1,

Table 7-1

Effects of the amowKey command

Parameter value Effect

left Go to previous card in current stack
right Go to next card in current stack

up Go forward through recent cards
down Go back through recent cards

90 Chapter 7: Commands

Script

Notes

The arrowKey message, which invokes the arrowKey command if it reaches
HyperCard, is normally generated by pressing any of the arrow keys on the keyboard.
(Which arrow key you press determines the message's parameter value.) You can also
send arrowEey from the Message box or execute it as a line in a script,

The following example handler makes function keys 9, 10, 11, and 12 send the
arrowKey message with parameters of left, right, up, and down,
respectively:

on functionKey whichKey -- map function keys to arrow keys
if which®ey is 9 then arrowKey left
else if whichKey is 10 then arrowEey right
else if whichBKey is 11 then arrowKey up
alse if whichKey is 12 then arrowKey down
end functionKey

The textArrows property, available only in HyperCard versions 1.1 and later,

alters the effect of pressing the arrow keys (see “TextArrows” in Chapter 9), but it does
not affect the arrowKey command.

See also the arrowKey message in Chapter 6.

Arrowkey

Ask

Syntax ask question [with defaultAnswer)
ask password gquestion [with defaultdnswer)

Queestion and defaultAnswer are expressions that yield text strings.

Examples ask "Who needs this kind of grief?" with "Not me."

ask field 1 with line 1 of fiald 2
ask password "FPlease enter your password:"

Description The ask command displays a dialog box conraining a question with a text window
into which the user can type an answer. The optional defaultAnswer string specifies
an answer which appears inititally in the window, highlighted so it can be easily
replaced. The dialog box appears with OK and Cancel buttons.

Script The following example handler produces the dialog box in Figure 7-2:

on phone
asgk "Dial what number:" with "555-1212"
if It is not empty then dial It

and phone

Dial uhal number:

e

r E DK H [igp:fl]

Figure 7-2
Ask command dialog box

G2 Chapter 7: Cormnmands

Notes

Syntax

Examples

Description

Script

The answer goes into the local variable Tt, either when the OK button is clicked or
when Return or Enter is pressed. If the Cancel button is clicked, the dialog box goes
away, but the answer is not placed into It.

The ask password form causes the answer to be encrypted as a number Cwhich is
placed into the local variable Tt), The encrypted answer can be stored in a field to
be compared to a later answerto ask password if, for example, you want the user
to be able to protect data he or she enters into the stack. Password protection built

into a stack in this manner is separate from that set up by the Protect Stack menu
command,

Neither the question nor the default answer can have more than one line; if you use a
container that has more than one line in it, only the first line appears.

Unless you're using container names, put the question and the default answer inside
quotation marks if they contain any spaces (or if, as in the example, they are
telephone numbers containing a hyphen—to prevent HyperCard from doing
subtraction).

See also the answer command, earlier in this chapter,

Beep
beep count

Count is an expression that yields an integer,

beep 5
beep line 3 of field 1

The beep command causes the Macintosh speaker to make a beep sound count
times. If no count is given, the speaker beeps once.

The following example handler uses the beep command to alert the user that an
answer dialog box, to which the user must reply, is being displayed:

on opanStack
beeap 2
answer "Do you need instructions?" with "Yes" or "Ho"
if It iz "Yesa™ then go to stack "Instructions®

end ocpenStack

Syntax choose toolName tool
ToolName is the name of any one of the tools from the HyperCard Tools palette
(shown in Figure 7-2).

Exﬂmplﬂ‘ chooge browse tool

choose eraser tool

Description The choose command changes the current tool to foolName as though you had
selected it from the Tools palette. Valid tool names are

browse
brush
bucket
button
curve
eraser
field
lasso
line

Figure 7-3
Tools palette

94 Chapter 7: Commands

oval

pencil

poly(gon]
rect[angle)
regular] poly(gon]
round rect [angle]
select

spray [can]
text

Notes

Syntax

Examples

The following example shows a typical use of the choose command in a handler:

on drawBox
reset paint
choose rectangle tool
set lineSize to 2
drag from 50,50 to 200,200
choose browsa tool
and drawBox

You must have HyperCard's user level set to Painting, Authoring, or Scripting to use
the choose command, but the Tools palette need not be visible. Setting user levels
is described in the HyperCard User's Guide and in the userlevel global property
description in Chapter 9.

Click
click at location [with key(, key2[, key3])

Location is an expression yielding a point: two integers separated by a comma,
representing horizontal and vertical pixel offsets (respectively) from the top-left

corner of the card window. Key, key2, and key3 are one or more of the following key

names, separated by commas: shiftKey, optionKey, or commandKey (or
cmdKey),

click at 100,100
click at the loc of button "Press me" with optionKey

Description The click command causes the same actions as though you had clicked with the
pointer at the specified location on the screen: the system messages mouseDown
and mouseUp are sent to the objects under the pointer (but the visible pointer is not
moved from its current location).

Using the with key form produces the same result as clicking the mouse button
while holding down the specified key (or keys).

If location is within an unlocked field, the insertion point is set: if there is text at or
past location, the insertion point is set at Jocation; if there is text on the same line as
location but location is beyond the end of text, the insertion point is set at the end of
text on that line; if there is no text at location, the insertion point is set at the start of
the line.

You can select a word by double-clicking it (that is, by executing the click
command twice in succession at the location of the word). You can select any string of
text by clicking at the beginning then clicking with shiftKey al the end of the
string,

Script The following example handler selects and displays a word from a locked field when
you click on the word (mouseUp is not sent to unlocked fields when you click them):

on mouselp
set lockText of me to false
click at the clickLoc
elick at the clickLoc
gat the selection
put It into the Message box
sat lockText of me to trua
end mousalp

Notes The pixel offset values of location are not restricted to the size of the screen, but are

misinterpreted if greater than 32767.

See also the drag command, later in this chapter.

956 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

Close file

close file fileName

FileName is the expression of a text string that is a valid filename.

close file myData

close file "myDisk:myFeldar:myFila"

The close command closes a disk file previously opened with the open file

command o import or export ASCII text. The expression fileName must yield a valid
Macintash filename, including pathname if required.

The following example handler reads any size text file into a global variable named
temp:

on importText
global temp
put "MyFilename" into filename
cpan file filename
repeat
read from file filename for 16384
if It is empty then exit repeat
put It after temp
end repeat
cloge file filename
end importText

If the specified file is not open, you get an error message. Use the close file
command to close files explicitly after you use them. HyperCard automatically closes
all open files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See also the open file, read, and write commands, later in this chapter.

Close flle

Close printing
Syntax close printing

Description The close printing command ends a print job previously begun with the open
printing commancd.

Script The following example handler executes a printing job, printing a specified number
of cards, beginning on a specified card:

on printRange low, high
push card
cpen printing
go to card low
print (high-low) + 1 carda
closa printing
pop card
and printRange

Notes Also see the open printing command, later in this chapter.
Convert
Syntax convert container to format [and format)

Container is a container name and format is a format specification.

Examples convert timeVariable to seccnds
convert line 1 of sacond card field to long date and short time

%8 Chapter 7: Commands

Script

Notes

The convert command converts a date or time in the specified container to the

format specified. The optional second format specification is used when a date and
time are both included. Valid format specifications and their meanings are

seconds

dateltems

long date
short date

abbreviated date

long time

short time

abbreviated time

Seconds since midnight, January 1, 1904.

A comma-separated list of numbers representing (in order):
year, month, day, hour, minute, second, and day of week.

The date in text form: Tuesday, June 30, 1987.
The date in slash-separated numeric form: 6/30/87,

The date in text form with abbreviated day of week: Tue,
June 30, 1587.

The time in colon-separated form including seconds:
11:15:15 aM,

The time in colon-separated form without seconds:
11:15 AaM.

same form as shor: 11:15 AM.

The following example handler counts the seconds elapsed while 2 command in the

Message box executes:

on mouselp

put the long time into startTime

convert startTime to seconds

if msg is not empty then do mag

put the long time into endTime

convert endTime to seconds

answer "That took" && endTime - startTime && "seconds."™

and mouselp

The modifier abbreviated canbe shorened to abbrev or akbr,

Convert

Syntax

Examples

Description

Script

Notes

Delete

delete chunk [of container]

Chunk is a chunk expression referring to some text in a specified field and container
specifies a container.

dalete line 1 of field 1
delete char 1 to 5 of line 4 of field “Charlie" of second card

The delete command removes specified text from the designated container in the
current stack.

The following example handler finds and deletes a name from a list with one name
per line:

on gapaName
put "Spragens" & return & "Eamins" & return & "Bond" ints list
ask "Delete which name from the list?" with empty -- enter a nama
repeat with count = the number of lines in list down to 1
if Tt is in line count of list then delete line count of list
end repeat
end zapalame

Using the delete command is not the same as using put empty into withthe
same chunk of text specified. For example, if you delete a line in a field with a
statement like

delete line 4 of field 7

you delete the return character as well as the text; what was previously the ffth line
becomes the fourth. The following statement leaves the retumn character in line 4:

put empty intec line 4 of field 7

Even if you delete all of the text in a field, the field remains defined on the card or
hackground, unlike selecting the field and choosing Cut Field or Clear Field from the
Edit menu.

When you delete text in a field on a card other than the current one, the current card
does not change.

Chapter 3 describes how to designate a card, Chunk expressions are described in
Chapter 4. See also the put command, later in this chapter.

100 Chapter 7: Commands

Syntax

Examples

Description

Dial

dial expression [with modem [modemCommands]]

Expression yields an arithmetic value and modemCommands are commands for your

meoxlem.

dial charlie -- if charlie is a variable containing a number
dial "415-555-1212"

dial "407-996-1010" with modem "ATS0-037=1DT"

dial "407-%73-6000" with modem

The dial command, without the with modem option, generates the touch-tone

sounds for the digits in expression through the Macintosh speaker. Holding the

telephone handset up to the speaker works on some phones; for others you need a
device that feeds the Macintosh audio output to the telephone.

If you use the with modem option, the dial command sets up telephone calls
using the Apple Modem 300/1200, the Apple Personal Modem, or any Hayes-
compatible modem attached to the Macintosh serial port. The modemCommands
parameters are those described in the manual for your modem. Their default value is
"ATSO=0DT".

If expression yields a number including a hyphen (as in 555-1212), enclose it within
quotation marks to prevent HyperCard from doing subtraction with the hyphen
before passing the number to the dial command (which ignores characters other

than numbers). Similarly, it's a good idea to enclose the modemCommands within
quotation marks.

101

Syntax

Examples

Description

Script

Notes

Divide

divide destination by expression
Destination is a container and expression yields an arithmetic value.

divide field "total" by 3
divide farenheit by celsius -- if farenheit and celsius are variables

The divide command divides the value of destination by the value of expression
and puts the result into destination.

The following example handler figures the percentage represented by a fraction of two
numbers specified as parameters:

on percent warl,varl

divide varl by var2

put trunc{wvarl * 100) & "&"
end percant

The value previously in the destination must be a number; it is replaced with the new
value.

Division by 0 puts the result INF into destination. Division is carried outto a
precision of up to 19 decimal places.

See also the numberFormat global property in Chapter 9, and the discussion of
numbers in Chapter 4,

102 Chaopter 7: Commands

Syntax

Examples

Description

Script

Notes

DoMenu

doMenu menultem

Menultem is an expression that yields a menu command,

doMenu "open stack..."

doMenu thisCommand -- thisCommand is a variable containing a command
doMenu calculator =-- desk accesscry from the Apple menu

The doMenu command performs the menu command specified by expression as
though you had chosen the item directly from the appropriate HyperCard menu,

If you choose the Finder menu item while running HyperCard under MultiFinder, you
could leave a stack that's on a file server open and inaccessible to other users. The
following example handler closes the current stack and goes to the Home stack:

on deManu menuChoice
if menuChoice iz "Finder™ then go to “Home®
pass doMenu

end doMeanu

Both the specified command and the menu in which it resides must be available at the
current user level (as described in the HyperCard User's Guide). If there are periods
following the menu command, you must include them in menultem (you can't use
the ellipsis character in their place).

You don't have 1o specify which menu the command comes from. But be aware that
some menu commands change with conditions (for example, Paste Card can change
to Paste Button, depending on the contents of the Clipboard).

@ Don't lock yourself out: If you write a handler to intercept deMenu, be sure to
pass the message after examining the new menu item. Otherwise, you may find
yourself apparently unable to use any menu command, even to fix the doMenu
handler or to quit HyperCard. (In that case, execute the command edit
script, for the object containing the handler, from the Message box. If the
Message box is hidden and blind typing is false, go to the last card of the Home
stack and turn blind typing on.)

Syntax

Examples

Description

Script

Notes

Drag

drag from start to finish [with keyl, key2(, key3]]]

Start and finish are expressions, each of which yields a point: two integers separated
by a comma, representing horizontal and vertical pixel offsets (respectively) from the
top left of the Macintosh screen. Key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionkey,or
commandKey (or cmdKey).

drag frem 100,100 to 200,200
drag from the loc of button 1 to the mouseloc with commandiey, shiftKey

The drag command performs the same action as though you had dragged
manually, except that in order to select text in a field using the drag command, you
must use with shiftKey.

The following example handler draws random-sized ovals filled with random patterns
on a new card:

on mousalp
deMenuy "New Card™ -- so we don't draw on the curzent card
choose oval tool
sat filled to true
repeat until the mouseclick
set pattern to random(40)
drag from randem(512),random{342) te random({512) , random (342)
end repeat
choose browse tool
doMenu "Delete Card" -- get rid of the card we just made
go previous card -- take us back to the card we started from
and mouseUp

Using the with key form produces the same result as dragging while holding down
the specified key.

You can use drag with any tool selected, but it has no effect with some Paint tools.

The location of the actual pointer doesn't change from where it was before the
command was issued.

See also the elick command earlier in this chapter, and the dragSpeed
property (used with the set command)in Chapter 9.

104 Chapter 7: Commmands

Syntax

Examples

Description

Script

Notes

Edit script

edit script of object

Object is a factor that yields a designator of an object: a stack, card, background,
field, or button.

edit seript of butteon 1
edit script of this stack

The edit script command opens the script of the specified object with the

HyperCard script editor as though you had clicked the Script button in the object’s
Info dialog box.

The following example handler enables you to edit the script of any button or field
merely by positioning the pointer over it and pressing the Option key:
an mouseWithin

if the opticnXey is down then edit script of the target
end mouseWithin

Ifthe edit script command is issued from a script, execution of the current
handler is suspended until the script editor dialog box is closed,

Refer to Chapter 1, “HyperTalk Basics,” for an explanation of how the script editor
wiorks,

Entarl(ay

enterkey

The enterKey command sends a statement typed into the Message box to the
current card or, if a field is open for text editing, enterKey closes the field.

The enterKey message, which invokes the enterKey command if it reaches

HyperCard, is normally sent by pressing the Enter key on the keyboard. But you can
also execute it as a line in a script.

Closing a field with enterKey doesn'tsend the closeField system message.

See also the enterKey message in Chapter 6.

EnterKey

Syntax

Examples

Description

Script

Find

find expression [in field fieldDesignator]
find chars expression [in field fieldDesignator]
find word expression [in field fieldDesignator]

Expression yields a series of one or more text strings separated by spaces, and
fieldDesignator is a background field name, number, or ID number.

find "money"” in field ScfPlenty
find chars "Wild" in field 1
find word msg in second field

The £ind command searches through all the card and background fields (visible or
not) in the stack for the text strings yielded by expression. The search begins on the
current card and continues through the last card, the first card, and on to the card
previous to the current card. Choosing Find from the Edit menu (or pressing
Command-F) puts the find command in the Message box with the text insertion
point after it between double quotation marks.

& Use at least three characters: The £ind command executes faster if you use as
many three-character combinations as possible in the search string. That is, three
characters are fast, six are faster than three, nine are faster than six, and 50 on.

The following example handler queries the user for search criteria, then executes the
find command:

on doMenu wvar
global findstring
if var iz "Find..." then
ask "Find what string:"™ with findString
if It is not empty then
put It into findString
answer "Match" && findString && "how:" with "Chars" or "Word" or "All"
if It is "Chars" then find chars findString
elga if It is "Word" then find word findString
else find findString
end if
alsa pass doMenu
end doMenu

106 Chapter 7. Commands

Ifyouinclude in field fieldDesignator, you restrict the search to the specified
background field. You can't restrict the search to a card field.

The find form finds the match only at the beginnings of words. The find chars

form finds the match anywhere within words. The find word form matches only
complete words.

If the match is on a different card, it becomes the current card; otherwise the current
card doesn't change and HyperCard sounds a beep. If it finds a match, HyperCard
puts a box around the word containing the found string, if the field containing the
string is visible. If a match is found in a hidden field, the field’s card becomes the
current card, but the field remains hidden.

Asthe find command evaluates the expression passed to it, it places the resulting
values internally between quotation marks as a single parameter string. The following
examples show text expressions on the left and the resulting parameter string on the

right:

find "my" £& "word" find "my word"

find "my" & "word" find "myword"

find a 6 b & & find "xyz" —- if a = "x", b om "y", g = wgw

find a &6 b && ¢ find "x y z¢

If more than one search string (separated from each other by spaces) is included in
the parameter string, all of them must be on a single card or its background for a

successful search. However, they can be in any order on the card and only the first is
shown with a box around it.

Press Command-F to display the parameter string from the most recently executed
find command in the Message box.

An unsuccessful search sets HyperTalk's the result functionto not found.
After a successful search the result isempty. (See “Result” in Chapter 8.)

107

Syntax

Examples

Description

Script

Notes

108 Chapter 7. Commands

Funcﬁﬁnkav

functionkey keyNumber

KeyNumber is an expression that yields an integer between 1 and 15.

functionkKey 1
functionKey 15

The functionKey command has built-in Undo, Cut, Copy, and Paste functions
for keyNumbervalues 1 through 4, respectively. Any other value of keyNumber has
no built-in effect.

The following example handler uses the functionKey command to implement the
message undo asa command:

cn unde
functionKey 1 -- preprogrammed as undo in HyperCard
end undo

The functionKey message, which invokes the functionKey command if it
reaches HyperCard, is normally generated by pressing one of the function keys on the
Apple Extended Keyboard. But you can also send it from the Message box or execute
it as a line in a script,

You can program function keys 5 through 15, or reprogram keys 1 through 4, by
writing an on functionKey handler in the seript of any object in the hierarchy
berween the current card and HyperCard,

Sce also the functionKey system message in Chapter 6.

Syntax

Examples

Description

script

Get

get expression

Expression yields any value,

get the long name of field 1

get the location of button "newButton"
get 2+3 =-- puts 5 into It

get the date

The get command puts the value of any expression into the local variable It. That
is, get expression is the same as put expression into It.

The following example handler saves the current user level, sets the user level to 5,
then restores the saved level:

on doMything
get userLevel -— get the current userLevel
put It into savedLavel -- save usarlavel before changing it
set userlevel to 5 -- get userlevel for my button or soript
== (put my script here)
seat userlavel to savedLevel -- restorsa userlevel when leaving
end doMything

Geat 109

Go

Syntax go [to] [stack] stackName
go [to] bkgndDescriptor [of [stack] stackName)
go [to] cardDescriptor [of bkgndDescriptor] [of [stack] stackName]

CardDescriptor is the word card followed by the name, number, ID number, or
ordinal of a card (as described in Chapter 3), or it's the name of a container holding
one of those things. StackName is the name of a stack or a container holding a stack
name. BkgndDescriptor is the word background (or bkgnd) followed by its
descriptor, or it's a container holding a background descriptor.

Examples ge card 23
go to art ideas
go field 1 -- if bkgnd field 1 contains a stack name
go home
go mid card of clip art -- middle card of stack "clip art"
go next
go to first card of second background of "home"
ga "hd:bigFolder:innerFolder:myStack” -- full pathname

Description The go command takes you to the specified card or stack. If you name a stack without
specifying a card, you go to the first card in the stack. If you don’t name a stack, you go
to the specified card in the current stack. You can specify a visual effect 1o be used on
opening the card by issuing the visual effect command before you use the go
command,

Script The following example handler queries the user for a destination, then executesa go
command with a visual effect:

on mouselp
ask "Where to?" with "This card"
if It is ampty then put "this card"” into It
put It into goWhere
visual effect dissolve to black
go to goWhare
end mouselp

110 Chapter 7: Commands

Syntax

Description

Notes

Syntax

Examples

Help

help
The help command takes you to the first card of the stack named Help.

See also the help system message in Chapter 6,

Hide

hide menuBar
hide window
hide part

Window can be one of the following:

card window

tool window

pattern window

[the] message [window]
[the] message [box])

Partis the descriptor of a button or field, The part descriptor can be:

[card] button descriptor
background button descriptor
[background] field descriptor
card field descriptor

Descriptor is the name, number, or ID of the button or field, or a factor vielding one
of those,

hide message
hide bkgnd button "goHome"™
hide field id 1

Hide m

Description

Script

Notes

1z Chapter 7: Commands

The hide command removes the specified window or object from view. Its effect is
the same as setting the visible property of the specified window or object to
false, or clicking a window's close box,

The following example handler hides a field or button when the user puts the pointer
over the button or feld:

on mouseWithin
hide tha target
end mouseWithin

Message can be abbreviated msg. Background can be abbreviated bkgnd.
Button can be abbreviated btn.

The hide command does not affect the location property of an object or
window,

Hidden fields aren't in the tab order. (They are skipped when you move the text
insertion cursor from one visible field to the next by pressing the Tab key.) The find

command does search through them, however, and you can put values into them and
pur their values elsewhere.

The card window parameter works with the hide command only in HyperCard
versions 1.1 and later.

See also the show command, later in this chapter.

Syntax multiply destination by expression

Destination is a container and expression yields a number,

Examples multiply Subtotal by Tax
multiply field 1 by field 3
multiply It by 2 == puts result inte It, replacing old value

Description The multiply command multiplies the value in destination by the
value of expression and puts the result in destination.

Script The following example handler adds 6 percent to the value of items in a list:

on taxMe
puc "12.45,15.00,150.00,76.95,10.00,14.95" into taxables
repeat with count = 1 to the number of items in taxables
multiply item count of taxables by 1.06

and rapeat -- the new values are stored in taxables
end taxMe
Notes The value previously in the destination must be a number; it is replaced

with the new value,

The result is calculated to a precision of up to 19 decimal places and, if
put into a field or the Message box, is displayed according o the
numberFormat global property.

See also the numberFormat global property in Chapter 9.

Multiply 113

Syntax

Examples

Description

Script

Notes

114 Chapter 7: Commands

Open

open [document with] application

Application is the name of any application and document is the name of
any document on your Macintosh. Either one can be an expression that
yields such a name.

opan "MacWrita"

cpen "Letter™ with "MacWrite™
open Field 3

open Favoritehpp

The open command launches the named application. A specific document may be
opened with its own creator or a compatible application by using with application.

The following example handler queries the user for a document and application
before executing the open command:

on mouselp
ask "Open what document?" with empty
if It is not empty then
put It into doc
ask "Use what application?"™ with empty
if It is not empty then open doc with It
and if
end mouselp

If the document or application you specify isn't at the top level of the file hierarchy
(the *disk” level), then the path to it must be specified on the appropriate search path
card of the Home stack (use the card titled “Look for documents in” for documents
and the card titled “Look for applications in® for applications). Alternatively, you can
specify the full pathname with the open command:

open "My Hard Disk:Applications:Words:MacWrite"

If HyperCard can't find the requested document or application, it displays the
directory dialog box to the user,

When you quit the application, you go to the card you were on in HyperCard when
you executed the open command. However, any global variables you had
previously declared are now gone, and any portions of handlers that remained
unfinished when you executed the open command do not finish.

Syntax

Examples

Description

Script

Notes

O_pon file

open file fileName

FileName is the name of any file on your Macintosh, or an expression that yields such
a4 name.

opan file "textOnly"™
open file field 1

The open file command opens the data fork of the named file. Usually, the file is
an ASCII text file opened in preparation for importing or exporting text. If the
specified file doesn't exist, HyperCard creates it.

The following example handler determines if a given file exists by trying to read
from it:

on checkFile
put "MyFilepame"™ into filename
cpen file filename
road from file filenamea for 16384
if It is empty then answer "File deoes not exist" with "ORY
close file filename
end checkFile

If the specified file is already open, you get an error message. Use the close file
command to close files explicitly after you use them. HyperCard automatically closes
all open files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See also read, write, and close f£ile, inthis chapter.

Open printing
Syntax open printing [with dialog]

Description The open printing command starts a print job to be ended laterby a close
printing command.

The settings specified in the Print Stack dialog box are used unless with dialog is
specified, in which case the dialog box is displayed and new settings can be chosen.

Script The following example handler prints a selection of cards:

an printSelection
put "1,3,8,15,21" into myCards
opan printing with dialog
repeat with count = 1 to the number of items in myCards
go card iteam count of myCards
print this card
end repeat
close printing
end printSelection

Notes Printing cards with cpen printing is similar to printing with the Print Stack
command in the File menu, except that Print Stack prints all cards in the stack, while
open printing prints only the ones you specify with the print card
command, described later in this chapter.

You mustuse the clese printing command to end a print job begun with open
printing. Don't use the print [document with] application command
while a print job is active.

Seealso close printing and print card, in this chapter.

116 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

Play

play "wvoice" [tempo]l ["notes")
play stop

Voice is the name of a digitized sound (boing and harpsichord are included
with HyperCard), fempo is the speed at which the sound plays, and nofes is a list of
one or more notes representing the pitch at which the sound plays and the duration of
the notes. The quotation marks around voice and notfes are required.

play "boing™ tempo 200 "cde c dg ¢ £ eh™ -- Happy Birthday
play "harpsichord™ "ch d e £f g a b chw"

The play command makes the Macintosh play notes through its speaker (or
through the audio jack if it's plugged in). You can write a song by specifying a series of
notes after the play command. The play stop form stops the current sound
immediately; otherwise it plays until it's done and stops by itself. HyperCard
continues to execute handlers and perform other actions while a sound plays,

The following example handler goes to each card in a stack and synchronizes playing
the specified notes with each card change:

on tour
repeat the number of cards
play "harpsichord" tempo 200 "ced fe ae cSq aed cg5"
go next carcd
wait until the scund iz "dona™

end repeat
end tour

The lempro is a number specifying the speed at which the group of notes is played (100
is a medium tempo; higher numbers are faster). Voice and tempo are specified once
for each play command.

The notes are specified in the following form:

noteName accidental octave duration

Play 117

Syntax

Example

Description

NoteName is the name of the note played (A through G); accidental is § or b
specifying sharp or flat, respectively; octave is a number specifying the pitch of the
scale (4 is the "middle C" scale); and duration specifies the relative time value of the
note played:

whole note
half note
quarter note
eighth note
16th note
32nd note
Géith note

¥ rtw o0 =

You can use a period (.) or numeral 3 following duration to specify a dotted or triplet
note, respectively.

Octave and duration may be changed for each note played; if they are not changed,
subsequent notes are in the same octave and have the same duration as the previous
note.

HyperCard can also play digitized music or voice samples which are stored on disk as
format 2 'snd ' resources—the resource name is the volce—in the current stack file, the
Home stack, the HyperCard application, or the System file. Inside Macintosb,
Volume V, describes formart 2 'snd ' resources.

See also the sound function in Chapter 8.

Pop card

pop card [preposition destination]

Preposition is into, before, or after, and destination is a container or any
chunk of a container.

pop card into field 3 of card Wherelbeen

The pop card command retrieves the identification (full ID and stack pathname)
of a card previously saved with the push card command. If you don't provide a
destination for the identification, you go directly to the card whose address is

popped.

118 Chapter 7: Commands

Script

Notes

Syntax

Examples

Description

The following example handler pushes whatever card you're on, goes to another
stack, gets the value of a field property, then retums to the original card:

on getThaFont
global myStack,theFont
push card
go myStack
put textFont of field 1 into theFont

pop card -— goes to the card formerly pushed
end getTheFont

If you don't specify a destination, after the card has been popped, its identificadon is
removed from the memory stack—it can't be popped again. If a destination is given,
however, the card's identification is put into the destination container, but you don't
go anywhere.

See also the push card command, in this chapter.

Print card

print card
print expression cards
print cardDescriptor

Expression yields an integer or the word all, and cardDescripioris a card
descriptor of a card in the current stack.

print card

print last card

print card id 3011

print all cards

print howMany cards -— howMany contains a number or "all"™

The print card command makes HyperCard print the current card, the same as
the Print Card command in the File menu (Command-P). The print expression
cards form prints the number of cards specified by expression, or all the cards in
the stack, beginning with the current card. The print cardDescriptor form makes
HyperCard go to the specified card, print it, and return to the current card.

Print card 119

Script The following example handler queries the user for a number of cards to print
whenever Print Card is chosen from the File menu:

on doManu var
if var is "print card" then
ask "Print how many cards?"™ with one
opan printing
print It cards
close printing
else pass doMenu -- make sure other menu cholices continue to work
end doMenu

Notes You don't need to use the open printing command before using the print
card command. If nothing is printing, the print card command prints the
specified card or cards immediately; if an open printing command is in effect,
no cards are printed until a page is full (depending on how many cards per page are
specified in the printing dialog box) or the close printing command is given.

Chapter 3, “Naming Obijects,” defines card descriptors.

Print

Syntax print document with application

Document is an expression that yields the name of any document on your Macintosh,
and application is an expression that yields the name of the application to which it
belongs (or with which it is compatible).

Examples print "memo" with "MacWrite"
print field 1 with field "Program”
print "hd:Mac docs:letter" with "hd:utilities:MacWrite"

Description The print command suspends HyperCard, launches the named application,
opens the named document, prints the document, then resumes running HyperCard.
The specified application must support printing.

120 Chapter 7: Commands

Script

Notes

Syntax

Examples

Description

Script

The following example handler queries the user for the name of a document to print
and an application with which to print it:

on mouselp
ask "Print what document?" with empty
if It iz not empty then
put It into doc
ask "Usge what application?" with empty
if It is not empty then print deoc with It
and if
end mouselUp

If the document or application you specify isn't at the top level of the file hierarchy
(the “disk" level), then the path to it must be specified on the appropriate search path
card of the Home stack (use the card titled “Look for documents in" for documents
and the card titled “Look for applications in" for applications). Alternatively, you can
specity the full pathname with the print command,

Don't use the print command while the open printing command is active,

Push

push cardDescriptor
CardDescriptoris a factor that yields the descriptor of any card in the current stack,

push recent card

push first card
push card

The push command saves the identification of the specified card in a LIFO (last-in,
first-out) memory stack (an area of memory, not a HyperCard stack).

The following example handler saves the current card, goes to a random card, then
returns to the original card:

on nenSense

push card -- save current card
go any card
pop card -- restore current card

end nonSense

Push 121

Notes The card identification can be retrieved later with the pop card command (usually
so that you can go directly back to the pushed card). The card identification that's
saved is the full card ID and stack path name.

Card descriptors are described in Chapter 3.
See also the pop card command, earlier in this chapter.

Put

Syntax put expression [preposition destination)

Expression yields a text string or number, preposition is into, before, or after,
and destination is a container.

Examples put "Hello" into field 1
put "go " before field "WhereTo"
put empty into It
put It -- puta contents of It into Msq
put "Tem™ into first word of field "Name"™
put "." after first character of last word of field 3
put field 2 + field 3 into field 4 =-- adds numbers in fields
put the date into varName

Description The put command causes HyperCard to evaluate expression and copy the result
into destination.

Script The following example handler initalizes three global variables when the stack it's in
is opened:

on opensStack
global varl,var,varl
put 0 into wvarl
put empty inteo var?2
put empty into warl
end openStack

122 Chapter 7: Commands

Notes

sSyntax

Examples

Description

If you don't specify the destination, the value is copied into the Message box.
(HyperCard shows the Message box if it's hidden.) If you specify a destination that
HyperCard doesn’t recognize, it creates a new local variable of that name and puts the
value into the variable.

Using into with put replaces the contents of the destination, before places
the source value at the beginning of the previous contents, and after appends the
source value to the end of the previous contents.

If exprression is a container holding an arithmetic expression, the expression is not
evaluated but is copied literally into the destination. Use the value function with
the container name to have HyperCard evaluate its contents,

You can delete the contents of a container by putting the constant empty or ™"
into it (but this doesn't delete the container). You can specify a chunk expression
before the destination to insert, replace, or delete a portion of the contents.

See also the delete command, eaclier in this chapter,

Read

read from file fileName until character
read from file fileName for numberQfCharacters

FileName is an expression yielding the name of any file on your Macintosh,
character is an expression yielding a character, and numberQfCharactersis an
expression yielding an integer.

read from file "import" until tab
read from file "File Wames" until return -— reads one line
read from file "someText” for 186384 == maximum block size

The read command reads from the data fork of the specified file, previously
opened with the open file command, into the local variable Tt. Reading starts
at the beginning of a newly opened file and continues from the last point read with
each read command,

The until characterform causes reading to stop when the specified character has
been read; the for numberQfCharacters form causes reading to stop when the
specified number of characters (or bytes) have been read. Return characters at the
end of lines count, as do space and tab characters.

Read 123

Script The following example handler opens a file, reads to the end of the file while placing
its contents into a global variable, and closes the file:

on mouselp
global fileName, textHolder
open file fileName
repsat
read from £ile fileName for 16834
if It is empty then axit rapeat
put It after textHolder
end repeat
clogse file fileName
end mouselp

Notes You can read only up to 16,384 characters at a time. If you try to read more characters
than that, all but the last 16,384 that you read are ignored. The read command puts
the characters into the local varable Tt replacing its previous contents. So, you
must put each block of text that you read into another container (use after with the
put command to append each new block of text to the end of the previous contents).
Containers other than fields have no practical size limit (they're limited by available
memory}. If you try to put more than 30,000 characters into a field, the extra
characters are ignored,

& HyperCard removes tab characters from fields: HyperCard reads tab characters
from a file into It and the tab characters remain when you put the text into
another variable or a field (where they are displayed as spaces). If you alter any text
in the field, however, HyperCard removes the tab characters.

If you specify more than one character with the until character form, HyperCard
stops reading when it matches the first character specified.

Usethe close file command to close files explicitly after you use them.
HyperCard automatically closes all open files when an exit to HyperCard
statement is executed, when you press Command-period, or when you quit

HyperCard.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

See alsothe close file, open file,and write commands in this chapter,

124 Chapter 7: Commands

Syntax

Description

Notes

Syntax

Notes

Reset paint

reset paint

The reset paint command reinstates the default values of all the painting
properties. The painting properties and their default values are

grid false
lineSize 1
filled false
centered false
multiple false
multiSpace 1
pattern 12
brush 8
polySides 4
textilign left
textFont geneva
textS5ize 12
textStyle plain

textHeight 18

The painting properties are described in Chapter 9, “Properties.”

ReturnKey

returnkey

The returnkey command sends a statement typed into the Message box to the
current card. (If a field is open for text editing, pressing the Return key enters a return
character.)

The returnKey message, which invokes the returnKey command if it reaches
HyperCard, is normally generated by pressing the Return key on the keyboard. But
you can also send it from the Message box or execute it as a line in a script.

See also the returnKey system message in Chapter 6.

ReturnkKey 126

Syntax

Examples

Description

Script

Notes

Set

set [the] property [of object] to value

Proprerty is a charactedstic of a HyperCard object, object is an object deseriptor or
window name, and vaite is a valid setting for the particular property.

get name of field 1 to "Soccer"”

aet location of button "newButton" to the mouseLoco

get the visible of field 1 to "false™ -—- hide the field
set userlevel to 5 -- scripting

The set command changes the state of a specified global, painting, window, or
abject property. IF the object to which the property belongs is not specified, the
property must be a global or painting property.

The following example handler automatically draws a circle on the current card:

an mouselp
choose oval tool
set linesize to 2
et centered to true
set dragspeed to 75 == this changes the speed of expansion
drag from 255,170 to 385,300
choose browse tool
and mouselUp

The properties of objects depend on the type of object. Generally, they are the
characteristics shown in the Info dialog boxes under the Objects menu.

All of the HyperCard global, painting, window, and object properties are described
in detail in Chapter 9, “Properties.” See also the show command, later in this
chapter.

126 Chapter 7: Commands

Syntax

Examples

Description

Script

Notes

Show cards

show number cards

Number is an expression yielding an integer or the word all.

show all cards

show ten cards

show 26 cards

show howMany cards -- howMany is a variable containing a number

The show cards command displays the specified number of cards in the current
stack in turn, beginning with the next card,

The following example handler “pre-warms” the stack when you open it, 5o that going
to cards in the stack subsequently will be faster, by caching the cards in RAM:

on cpensStack
sat lockScreen to true
show all cards
get lockScreen to false
end openStack

The show all cards form shows all cards in the stack. HyperCard doesn't send
the openCard system message when a card is displayed by show cards, nor do
visual effects occur. After the cards are shown, the last one shown (where you began in
the case of show all cards) isthe current card.

Show cards 127

Syntax

Examples

Description

Show

show menuBar
show window [at b, v]
show part [at b, v]

Window can be one of the following:

card window

tool window

pattern window

[the] message [window]
[the] message [box]

Part is the descriptor of a button or field. The part descriptor can be

[card] button descriptor
background button descripior
[background] field descriptor
card field descriptor

Descriptor is an expression yielding the name, number, or ID of the button or field;
b and v are expressions yielding integers representing horizontal and vertical pixel
offsets, respectively, on the screen.

show mag at 100,200
show tool window
show field "Names™ at 1,1

The show command displays a specified window or object at a specified location on
the screen. If positioning offsets aren't given, the window or object is displayed at its
previous location.

128 Chapter 7: Commands

Script

Notes

The following example handler displays the palettes and the Message box at their
default locations when HyperCard first starts running:

on startUp
show tool window
show pattern window
show msg

end startUp

If they have not been previously torn off the menu bar, the Tools palette appears at
200,70 and the Patterns palette at 300,70, The Message box appears at 22,300. The
menu bar always appears at the top of the screen. In effect, the show command sets
the visible and, optionally, location properties of the window or object.
(See Chapter 9 for a description of the visible and location properties,)

On the original Macintosh screen, visible horizontal offsets range from 0 to 511, and
visible vertical offsets range from 0 1o 341.

Message can be abbreviated msg, Background can be abbreviated bkgnd.
Button can be abbreviated btn,

Card window refers to the position of the entire HyperCard display on the screen;
the b and v offsets specify the distance from the top-left corner of the screen to the
top-left corner of the card window, disregarding the title bar at the top of the window,
For the other windows, b and v specify the distance from the top-left corner of the
card window to the top-left corner of the other window, disregarding the drag bar at
the top of the window.,

For buttons and fields, b and v specify the distance from the top-left corner of the
card window to the center of the button or field. The menu bar always shows at the top
of the screen. The tool window is the Toals palette, pattern isthe Patterns
palette, and message or msg is the Message box.

See also the hide and set commands, earlier in this chapter.

Show 129

Syntax

Examples

Description

Seript

Notes

Sort

sort [direction] [siyle]l by expression

Directionis ascending or descending, styleis text, numeric, dateTime,
or international, and expression is any expression,

sort numeric by second word of field 1
sort descending text by last word of field "Hames™
gort by fiald 2

The sort command orders all the cards in a stack according to the value of
expression, which is evaluated individually for each card in the stack.

The default directionis ascending, and the default siyleis text.

The following example handler shuffles the cards in a stack randomly when the user
goes to it from another stack:

on openStack
sort numeric by random{the number of cards)
end openStack

The dateTime style sorts the stack using one of the forms of date or time (shown
with the convert command, in this chapter), with earliest placed first in the
ascending direction. The internatiocnal style assures correct sorting of non-
English text containing diacritical marks and special characters, depending on the
international resources in your System file, your version of HyperCard, the Home
stack, and the current stack. The dateTime style also works correctly with non-
English forms of date and time modified by international resources in the System file.

130 Chapter 7. Commands

Syntax

Examples

Description

Notes

Syntax

Description

Script

Notes

Subtract

subtract expression from destination
Expression yields a number, and destination is a container,

subtract 2 from It
subtract field 1 from field 2

The subtract command subtracts the value of expression from the value of
destination, leaving the result in the destination,

The value previously in the destination must be a number; it is replaced with the new
value,

TabKey
tabKey

The tabKey command opens the first unlocked field on the current background or
card (placing the text insertion point in the field) and selecting its entire contents. If a
field is already open, tabKey closes it and opens the next field, selecting its
contents.

The following example handler sets the insertion point in the first field, so that the
user can type something, when the card is opened:

on openCard
tabKey
end openCard

The tabKey message, which invokes the tabKey command if it reaches

HyperCard, is normally generated by pressing the Tab key on the keyboard. But you
can also send it from the Message box or execute it as a line in a script.

The tabKey command opens fields in the following order: from the lowest number
to the highest, through the background fields first, then through the card fields.

See also the tabKey message in Chapter 6.

Type

Syntax type expression [with key(, key2[, key31]]

Expresston yields a text string, and key, key2, and key3 are one or more of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdEey),

Examples type "Now is the time for all good persons.”
type "p" with commandKey -- print card

Description The type command enters the value of expression at the text insertion point, as
though you had typed it manually.

Script The following example handler chooses the Browse tool, clicks at the center of the
specified field, and types a literal string:

on auvtoType

choose browse tool

click at tha loc of field "whereToType"

type "Automatic writing apppears before your eyes..."
end autoType

Notes The text insertion point is placed by clicking in an unlocked field with the Browse tool
or by sending the tabKey message. Manipulating the text insertion point is
described in the HyperCard User’s Guide, Paint text can be typed at the text insertion
point on a card or background with the Paint Text tool selected.

132 Chapter 7: Commands

Syntax

Examples

=I_

visual [effect] effectName [speed] [to image]
EffectName is one of the following:

barn door close screll up
barn deoor open venetian blinds
checkarboard wipe down
dissolve wipe left
iris close wipe right
iris open wipe up
plain zoom close
scroll down zoom in
scroll left ZOOMm Open
scroll right zoom out
Speed is one of the following:

fast vaery fast
slow[ly] very slow([ly]
Image is one of the following:

black inverse

card white

gray

visual effect barn door open
visual dissolve slowly to white
visual checkerboard

Description

Script

Notes

The visual command specifies a visual transition for HyperCard to use the next
time it opens a card, as the current card is closed. The default plain visual effect
causes all of the current image to be replaced immediately by the image of the next
card, If you use the to image form, the visual effect occurs as a transition from the
current card to a completely white, gray, or black screen image, to the inverted image
of the current card, or to the image of the next card; to card isthe default.

The following example handler stacks two visual effects, which occur in succession, so
that the transition appears as a fade to black, then to the next card:

on fadeOut
visual affect dissolve to black
viasual effect dissolve to card
go next card

and fadeQut

Visual effects don't happen when you use the arrow keys or the show cards
command to change cards; they must be set up in a handler that also contains a go
command, and they occur when the go is executed. Ifa go command is not
executed, visual effects set up in the handler are canceled when the handler finishes
executing. You can stack up several visual effects that will occur one after the other
when you go to the next card.

On a Macintosh 11 you must use one-bit display mode (choose “2 colors” or “2 grays"
on the monitor setup of the Control Panel) to see visual effects.

134 Chapter 7: Commands

Syntax

Examples

Description

Script

Note

Wait

wait [for] Hme [seconds]
wait until condition
walt while condition

Time is an expression that yields an integer and condition is an expression that yields
true or false.

wait 60 seconds
wait until the mouse is down

The wait command causes HyperCard to pause before executing the rest of the

handler, either for a specific length of time, until a specified condition becomes true
or while a specified condition remains true,

The following example handler allows time to view each card:

on slideshow
repeat the number of cards
visval effect dissolve slowly
go next card
wait 2 seconds
end repeat
end slideshow

If seconds is not specified for time, HyperCard uses ticks (% second), which
can also be specified explicitly.

Syntax

Examples

Description

Script

Notes

136 Chapter 7: Commands

Write

write source to file fileName

Source is an expression that yields text, and filaName is an expression that yields a
file name.

write field "address" to file "myDisk:myFile"
write "first line" & return & "second line" teo file "two liner"

The write command causes HyperCard to copy the specified text into the
specified disk file.

The following example handler opens a file specified in a global variable, writes the
entire contents of the specified field to the file, then closes the file:

an writeFile
global filename
cpen file filaname
write background field 1 to file filename
closa file f£ilename
and writeFile

The file must have been opened previously with the open file command and
should be closed, when copying is completed, with the close file command.

The first write command that you execute after opening the file replaces any
previous contents. Subsequent write commands append to the file's contents.

You must provide the full pathname of the file if it's not at the same directory level as
HyperCard. (See “Stack Descriptors” in Chapter 3 for an explanation of pathnames.)

If the file is locked or its disk is full, HyperCard displays an error dialog box and closes
the file. HyperCard automatically closes all open files when an exit to
HyperCard statement is executed, when you press Command-periad, or when you
quit HyperCard.

See also the open file, close file,and read commands, in this chapter.

Chapter 8

Functions

This chapter describes HyperTalk's built-in functions.

A function is a named value that is calculated by HyperCard when a statement in
which it's used executes. The value of a function changes according to conditions of
the system or according to values of parameters that you pass to the function when you
use it. When HyperCard reads a function name in a line of HyperTalk, it places the
function's current value—its result—in that location before completing other actions.

iﬁuncﬂon calls

To make a function call, that is, to use it in a HyperTalk statement, you must either use
the word the before the function name or append parentheses after it. If a single
parameter is passed to a function, the parameter can be enclosed in the parentheses
or can follow the word of. (When of is used in this way to indicate the function call,
the word the preceding the function name is optional.) If more than one parameter
is passed to a function, all parameters must be enclosed in the parentheses and
separated from each other by commas. Some examples of function calls are

put the time into mag

put time() into backgreund field "Time"

put the length of myVariable into card field "howLong"
put average(total 1,total_2,tetal 3) into Projection

You can define your own functions in HyperTalk using the function handler structure
described in Chapter 5,

& Defined functions override buili-in ones with same name: If you define your own
function having the same name as a built-in one, yours will override the built-in one
if the function call is made with the parentheses syntax (unless the function call is
made farther along the hierarchy than the handler's script). Users can call
HyperCard’s built-in functions directly by using the words the or of, rather than
using the parentheses syntax; however, functions having more than one parameter
always require parentheses,

138 Chapter 8: Functions

Syntax das:crlpﬂon notation

The syntax descriptions use the following typographic conventions. Words or phrases
in typewriter type are Hyperalk language elements or are those that you type to
the computer literally, exactly as shown. Words in italic type describe general
elements, not specific names—you must substitute the actual instances. Square
brackets []) enclose optional elements which may be included if you need them.
(Don't type the square brackets.)

It doesn’t matter whether you use uppercase or lowercase letters; names that are
formed from two words are shown in small letters with a capital in the middle
(likeThis) merely to make them more readable. The HyperTalk prepositions of

and in are interchangeable—the syntax descriptions use the one that sounds more
natural,

The terms factor and expression are defined in Chapter 4. Briefly, a factor can be a
constant, literal, function, property, number, or container, and an expression can be
a factor or a complex expression built with factors and operators. Also, a factor can be
an expression within parentheses. The term yiglds indicates a specific kind of value,
such as a number or a text string, that must result from evaluation of a factor or
expression when a restriction applies (for example, the factor or expression used with
the abs function must yield a number). However, any HyperTalk value can be

treated as a text string,

Syntax deascription notation

Abs

Syntax the abs of factor
abs [expression)

Factor and expression yield numbers.

Example put abs({a-b) inte field "thedffget”

Description The abs function returns the absolute value (makes the sign positive) of the number
passed to it

Annuity

Syntax annuity (rate, periods)
Rate and perfods are expressions that yield numbers

Examples put myPayment*annuity(.015,12) inteo presentValua
put my?nyment*annuity{,015,12:*cumpuundt.D15,12} inte futureValue

Description The annuity function is used to compute the present or future value of an ordinary
annuity. Rate is the interest rate per period, and periods is the number of periods
over which the value is calculated. The formula for annuity is

annuity (rate, periods) = (1-(l+rate) ~Periods) /rate

The annuity function is more accurate than computing the expression above using
basic arithmetic operations and exponentiation, especially when rate is small.

Notes See also the compound function, later in this chapter.

140 Chapter 8: Functions

Syntax

Example

Description

Script

Atan

the atan of factor
atan {expression)

Factor and expression yield numbers,
put atan(l.0) inte fiald "areTan" -- yields 0.785398

The atan function returns the trigonometric arc tangent (inverse tangent) of the
number passed to it; that is, the angle whose tangent is equal to the given value, The
result is expressed in radians,

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

The following example handler converts a value in radians to degrees and puts the
result into the Message box:

on radiansToDegrees wvar
put round((atan(var)*180)/pl) into msg
end radiansToDegrees

Syntax

Example

Description

Script

Syntax

Example

Description

Notes

Averuga_

average [list)

List is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.

put average(l,2,3) into fiald “avg"
The average function rerumns the average of the numbers passed to it.

The following example handler displays the average of a list of numbers contained in
one line of a field:

on avgSupplyFrice
put "12.95,10.50,14.75,15.00,9.95" into line 3 of field "suppliers"
answer "Average widget cost:" && average (line 3 of field "suppliers")
end avgSupplyPrice

CharToNum

the charToNum of faclor
charToNum (expression)

Facior and expression yield a character.
put the charToum of "a" inte It -- yialds 97

The charToNum function returns an unsigned integer representing the ASCII
equivalent value of the character passed to it

If more than one character is passed, charToNum returns the ASCII value of the first
character. If source is a literal, it must appear within quotation marks.

142 Chapter 8: Functions

Syntax

Example

Description

Script

Syntax

Example

Description

ClickLoc

the clickLoc
clickLoa()

put the clickloc into card field "firatClick"™

The clickLoc function retumns the point on the screen where the user most
recently clicked before the handler started executing. The location is determined at
the time the message is first sent—the mouse could be elsewhere by the time the
message is received. The location point is returned as two integers separated by a
comma, representing horizontal and vertical pixel offsets measuring from the top-left
comer of the card window.

The following example handler, when it is in the script of a locked field, selects a word
in the field when the user clicks the word:

on mouselp

get locktext of me to false -- fisld must ba locked

click at the clickLoc

click at the clickLoc

put "You clicked on the word:"™ &5 the selection

set lockText of me to true -- must lock it again when we leave
end mouselp

CommandKey

the commandKey
commandKey ()

if the commandFey is up then put "Wow" into the Massage box

The commandKey function returns the constant up if the Command key is not
pressed or down if it is pressed.

The commandKey function name can be abbreviated cmdEay.

CommandKey 143

Syntax

Examples

Description

Script

Note

Compound |

compound { rate, feriods)
Rate and periods are expressions that yield numbers.

put futureValue/compound(.10,12) into presentValue
put presentValue*compound(.l0,12) inte futureValue

The compound function is used to compute the present or future value of a
compound interest-bearing account. Rafe represents the interest rate per period,
and periods is the number of periods over which the value is calculated. The formula
for compound is

compound (rate, periods) = (1+rate)periods

The compound function is more accurate than computing the expression above
using standard arithmetic operations and exponentiation, especially when rale is
small,

The following example handler calculates the value in one year of an account earning
7% percent interest compounded monthly:

on calcIntarest
ask "Enter the beginning balance:" with empty
set numberFormat to ".00'" -- dollars and cents format
put "Value in 1 year $" & it * compound(.073/1Z2,12)
end calcInterest

See also the annuity function, earlier in this chapter.

144 Chapter 8: Functions

Syntax

Example

Description

Note

Syntax

Example

Description

Script

Cos

the cos of factor
cos (expression)

Factor and expression yleld numbers,

put the cos of 2 -- puts -.416147 into the Message box

The cos function returns the cosine of the angle which is passed to it. The angle
must be expressed in radians,

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

Date

the [modifier] date
Modifieris long, short, or abbreviated (or abbrev or abbr).

put last word of the long date into background field "Year"

The date function returns a string representing the current date set in your
Macintosh, The various forms return strings exemplified by

the short date T/5/87
the long date Sunday, July 5, 1987
the abbrev date S5un, Jul 5, 1987

Without a modifier the date Runction returns the short date.

The following example handler puts the current date into a field when another field
{whose script contains the handler) is changed:

on clogseField
put the long date into fiald "lastUpdatae®
end closeField

Date 145

DiskSpace

Syntax the diskSpace
diskSpace()

Example if the diskSpace < 100000 then answer "Your disk is getting full."

Description The diskSpace function retums an integer representing the number of bytes of
free space on the disk that contains the current stack.

Script The following function handler is used by the second handler (for the writeFile
message) to ensure that there is enough space on a disk to write to a file on that disk:

function checkSpace var
if the diskSpace > var then return "ORK" else raturn "FULL"
end checkspace

on writeFile
global war
put "MyFilename" inte filename
if chackSpace{card field 1) is "OK" then
popen file filename
write var to fila filename
closa file filename
else answer "Can't write that file; the disk is full."
end writaFile

146 Chapter 8: Functions

Exp

Syntax the exp of factor
exp (expression)

Factor and expression yield numbers.

¥

Example put the exp of 2 —— puts 7,389056 into the Message box

Description The exp function returns the mathematical exponential of its argument (the
constant ¢ which equals 2.7182818, raised to the power specified by the argument).

Exp]

Syntax the expl of factor
expl (expression)

Factor and expression yield numbers.

E!ﬂmph put the expl of 2 -- puts 6.383056 into the Message box

Description The expl function returns 1 less than the mathematical exponential of its argument
(1 less than the result of the constant e raised to the power specified by the argument).

That is, it computes:
exp (number) - 1

Exp2
Syntax the exp2 of faclor

exps (expression)

Factor and expression yield numbers.
Example put the exp? of 16 =-- puts 65536 into the Message box

Description The exp2 function returns the value of 2 raised to the power specified by the
argument,

Length

Syntax the length of faclor
length (expression)

Factor and expression yield text strings.

Exnmplat put length("tail”) inte It == yields 4
if the length of word n of field 5 > 25 then add 1 to foglndex

Description The length function returns the number of characters (including spaces, tabs, and
return characters) in the text string passed to it

Notes If expression is a literal, it must appear within quotation marks. The length
function is identical in effect to the following form of the number function:

the number of characters in factor

148 Chapter 8: Functions

Syntax

Example

Description

Syntax

Example

Description

Ln

the 1n of factor
1n (expression)
Factor and expression yield numbers.

put the ln of 10 -- puts 2,.302585 into the Message box

The 1n function returns the base-e (natural) logarithm of the number passed 1o it.

Lnl

the 1lnl of factor
1nl | expression)
Factor and expression yield numbers.

put the lnl of 10 -- puts 2.397895 into the Message box

The 1nl function returns the base-e (natural) logarithm of the sum of 1 plus the
number passed to it. That is, it computes
In{l+number)

If nuumberis small, the result is more accurate than using standard arithmetic
operations.

Syntax

Example

Description

Syntax

Example

Description

Script

Log2

the log2 of facior

log2 (expression)

Factor and expression vield numbers.

put the logZ of 10 -- puts 3.321928 into the Message box

The log2 function retums the base-2 logarithm of the number passed to it.

Max

max { fist)

Listis a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence.

put max({5,10,7.3) -- puts 10 into the Message box

The max function returns the highest-value number from a list of numbers passed o
it, If the source of the list is a container with more than one line in it, only the first line
is used.

The following example handler displays the highest number in a list contained in a
variable;

on highStock

put "12.%0,10,7.95,14.76,13.70" into stockPrices

answer "The highast price for the month is:" && max({stockPrices)
end highStock

150 Chapter 8: Functions

Syntax

Example

Description

Script

Syntax

Example

Description

Min

min (st

List is a sequence of comma-separated expressions that yield numbers, or it is a single
container that contains such a sequence,

put min{5,10,7.3) -- puts 5 into the Massage box

The min function returns the lowest-value number from a list of numbers passed to
it. If the source of the list is a container with more than one line in i, only the first line
is used,

The following example handler displays the lowest number in a list contained in a
variable:

an lowStock

put "12,.50,10,7.95,14.76,13.70" into stockPrices

put "The lowest price for the month is:"™ && min(stockPricas)
end lowStock

Mouse
the mouse
mouse ()

if the mouse is up put "Press the mouse button® into mag

The mouse function returns the constant up if the mouse button is not pressed,
down if itis pressed.

Mouse 151

Script The following example handler determines whether the user has single-clicked or
double-clicked the button whose script contains the handler:

on mousellp
put the ticks inteo start
repeat until the ticks-start > 4 -- adjust for comfortable click
if the mouse is "down"™ thean
go last card -- put your double=click action here
axit mousalp
end if
end repeat

go next card -— put your single—-click action here
end mouselp

MouseClick

Syntax the mouseClick
mousellick ()
Example if the mouseClick then put the mouseLoc

Description The mouseClick function determines if the mouse button is down. If it is not down,
the mouseClick immediately retums the constant false. If the mouse button is
down, the mouseClick waits untl the mouse burton is up, then returns the
constant true,

Script The following example handler demonstrates operation of the mouseClick
function by informing the user whether or not it sensed a click during its execution:

on mouselp
put "Click or don't click..."
wait 5 seconds
if the mouseClick then
put "You clickad.”
alsa
put "You didn't click."
and if
end mouselp

152 Chapter 8: Functions

Syntax

Example

Description

Syntax

Examples

Description

Script

ﬁnusaH

the mouseH
mouseH ()

if mouseR > 512 put "Stop® into meg

The mouseH function retumns an integer representing the number of horizontal
pixels from the left side of the card window to the current location of the mouse
pointer. When this number is negative, the mouse has been clicked to the left of the
left edge of the card window (possible when you're using a display larger than the
original Macintosh display, or if you set the location of the card window different
from 0,0).

Mouseloc

the mouseloc
mouseLloc ()

show button "everReady" at the mouseloc

The mouseLoc function returns the point on the sereen where the pointer is
currently located. This point is returned as two integers separated by a comma,
representing horizontal and vertical pixel offsets from the top-left corner of the card
window,

The following example handler, in a button script, allows the user to drag the button
around the screen:

on mouseDown
reapasat until the mouse ia up
show the name of me at the mouseloc
end repeat
end mouseDown

Mouseloc

MouseV

Syntax the mouseV
mousaV ()
Example if mouseV > 342 put "Stop" into mag

Description The mouseV function returns an integer representing the number of vertical pixels
from the top of the card window, disregarding the title bar, to the current location of

the pointer.

ﬁumbor

Syntax [the] number of obfects
[the] number of chunks in factor

Objects is [background] buttens, [card] fields, backgrounds,or
cards. Chunksis characters (or chars), words, items, or lines, and
Jfactor vields a text string.

Exump!nc: put the number of buttons into It
put number of itemas of line 1 of field 2 into listSize
put the number of chars in msg into line 3 of field 2
if the numbar of chars in myVar > 10 then put "Big" into msg

Description The number functon returns the number of buttons or fields on the current card or
on its background, the number of backgrounds or cards in the current stack, or the

number of chunks of a specified kind in a designated text string.

154 Chapter 8; Functions

Script

Notes

The following example handler uses the number function to delete all the card fields
on a card, regardless of how many there are:

on deleteFields
put the teocl into oldTool
choose field tool
repeat with whichField = the number of card fields dewn to 1
== you must count down like this, not up
click at the loc of card field whichFiald
doMenu clear field
and repeat
choose oldTool
end deleteFields

If backgrounds is not specified with buttons, the number of card buttons is
retumed; if card is not specified with fields, the number of background fields is
returned. If the number function is used with a chunk name, it returns the number of
chunks of that kind within the designated container or other factor yielding a text
string.

The factor can be a chunk expression, so you can get the number of chunks of one kind
within another chunk:

the number of chars in first word of field 1
You can also use the format that uses parentheses with the number function:

number (cards)
Backgrounds can be specified with the abbreviation bkgnds.

See also the number propeny for backrounds, cards, fields, and buttons, in
Chapter 9,

Syntax

Example

Description

Script

Notes

186 Chapter 8 Functions

NumToChar

the numToChar of factor
numTaChar (expression)

Factor and expression yield positive integers.

put numToChar (67) inte word 4 of line 9 of field "ASCII Chart" -- yields C

The numToChar function returns the character whose ASCII equivalent value is that
of the integer passed to it

The following example handler tums all of the lowercase letters in a field into
uppercase letters:

on uppercase
put card field 4 into temp -- variables are faster than fields
repeat with count = 1 te the length of temp
get character count of temp
if charToNum of It > 96 and charToNum of It < 123 then
put numToChar (charToNum{It)=-32) into character count of temp
end if
end repeat
put temp inte card field 4
end upperCase

See also the charToNum function, eadier in this chapter.

Syntax

Examples

Description

Script

Note

Offset

offset (stringl, siring2)
Stringl and string2 are both expressions yielding text strings.

put offsget ("hay",field 1) inte the Message box
offset ("a", "abe") == typed in msg, returns 1

The offset function returns the number of characters from the beginning of the
string2 string at which string begins. If string? doesn't appear within string2, 0 is
returned.

The following function handler finds every occurrence of a string within a container,
and it replaces every occurrence with a second string;

function searchhndReplace container,original,replacement
repeat until original iz not in container
-- loop until all are replaced
put offset (original, container) intoc start
-=- gat start to location of original
put replacement into char start to start + =
[the length of original - 1) of containar
end repeat
return container
end searchhndReplace

The parameters passed to the offset function can both be arithmetical or logical
(as well as text) expressions; after evaluation, the results are treated as strings.

Syntax

Example

Description

Syntax

Example

Description

Script

MNotes

bpﬂnnl(ny

the optionKey
optionKey ()

if the optionKey is down then choose butteon tool

The optionKey function returns the constant up if the Option key is not pressed,
down if it is pressed.

P_urum

the param of facior
param { expression)

Factor and expression yield integers.
if param(l) is empty then answer "Message has no parameters.”

The param function retumns a parameter value from the parameter list passed to the
currently executing handler. The parameter returned is the nth parameter where nis
the integer derived from factor or expression. The value of param(0) isthe
Message NAme,

The following example handler sums the numeric arguments passed to it, regardless
of how many there are:

on addip -- adds a variable number of arguments
put 0 into total
repaat with i = 1 to the paramCount
add param({i) to total
end repeat

put total
end addUp

See also the paramCount and params functions, in this chapter, and the
discussion of parameter passing in Chapter 2, “Handling Messages.”

158 Chapter 8: Functions

Syntax

Example

Description

Script

Notes

ParamCount

the paramCount
paramCount ()

if the paramCount < 3 then put "I need at lesast three arguments."

The paramCount function returns the number of parameters passed to the
currently executing handler,

The following example handler draws an oval differently depending on the number of
parameters passed o it:

on drawOval
if tha paramCount is 1 then
== if 1 param use it as cval size and use default lina siza
choose oval tool
drag from 30,30 to 30 + param(l},30 + param{l)
elage if the paramCount is 2 then
== 1if 2 params use the second as line size
choose oval tool
set lineSize to param(2}
drag from 30,30 to 30 + param(l),30 + param(l)
end if
choose browse tool

reset paint
end drawOwval

See also the param and params functions, in this chapter, and the discussion of
parameter passing in Chapter 2, "Handling Messages.”

ParamCount

Pﬁrnms

Syntax the params
params ()
Example put the params into field "messageReceived"”

Description The params function returns the entire parameter list, including the message
name, passed to the currently executing handler,

Script The following example handler is useful primarily for debugging, to see if the
parameters passed to a handler are correct:

on myMessage

put the params

-- rast of myMessage handler goes here
end myMessage

Notes See also the param and paramCount functions, in this chapter, and the
discussion of parameter passing in Chapter 2, “Handling Messages.”

Random
Syntax the random of facior

random (expression)

Factor and expression yield positive integers.

Example set the loc of button "jumpy"™ to random{512),randem(342)

Description The random function returns a random integer between 1 and the integer derived
from the factor or expression, inclusive.

160 Chapter 8: Functions

Syntax

Example

Description

The following example handler draws 10 unique random numbers between 1 and 100:

an mousellp
global randomList
put empty into randomList
repeat until the number of items in randomList is 10
get random({1l00)
if it is not in randomList then put it & "," after randomlist
end repeat
delate last character of randomlList == get rid of the last comma

put randomList into mesg
end mouselp

the result
result {)

if the result is not empty then answer "Try again."™

The result function relurns an explanatory text string if an immediately preceding
find or go command was unsuccessful. The result is empty if the command
executed successfully. The result canalsobesetbya return statement ina
message handler or by an external command. The result is reset by execution of
another command and at the end of the handler,

Result

Script The following example handler searches for a string and displays either the string or
the error message if it doesn't find the string:

on doMenu var

if wvar is "Find..." then
global findMe
repeat

ask "Find what string:" with findMe
if It iz not empty then find It

else exit doMenu =-- cancel clicked
if the result is not empty then -- thera's an error message
put the result into findMe -- dieplay the errer

next repeat
else
put It into findMe -- otherwise display the string
exit repeat
end if
end repeat

else pass doMenu
end doMenu

Notes It is safer to depend on the empty result of a successful execution, rather than the
particular value of some error message, because those values could be different in

future versions of HyperCard,

Chapter 5 discusses the return statement. Appendix A contains general
information about external commands.

162 Chapter 8: Functions

Syntax

Example

Description

Script

Rnuﬁd

the round of factor
round { expression)

Factor and expression yield numbers.
put round{resultVariable) into field 1
The round function returns the source number rounded off to the nearest integer.

Any odd integer plus exactly 0.5 rounds up; any even integer (or 0) plus exactly 0.5
rounds down. If the source number is negative, HyperCard internally removes the

negative sign, rounds its absolute value, then puts the negative sign back on.

The following function handler rounds off an amount to the nearest dollar:

function roundToDollar amount
set numberFormat to *,00" =-- sets dollar format

return round{amount)
end roundToDollar

Seconds

the seconds
seconds ()

put (the seconds-startTime) inte runTime

The seconds function returns an integer showing the number of seconds between
midnight, January 1, 1904, and the current time set in your Macintosh, The seconds
function can be abbreviated secs.

Seconds

Script

Notes

Syntax

Example

Description

Syntax

Example

Description

Note

164 Chapter 8: Functions

The following example handler counts the number of seconds the user holds down the
mouse button:

on stopWatch
put the long time inte now —— what time is it now?
convert now to seconds
wait while the mouse is down -- wait until mouse is released
put the seconds-now inte msg -- how many seconds have elapsed?
end stopWatch

See also the convert command in Chapter 7, *Commands.”

ShiftKey

the shiftKey
shiftKey ()

if the shiftKey is down then put numToChar (charTotum(msg) =32} into msg

The shiftKey function returns the constant up if the Shift key is not pressed,
down if it is pressed.

Sin
the szin of factor

sin (expression)

Factor and expression yield numbers.

put the sin of 2 -- puts 0,209297 inta the Message box

The sin function returns the sine of the angle which is passed to it. The angle must
be expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

Souu;d

Syntax the sound
sound ()
Example wait until the sound is "done"

Description The sound function returns the name of the sound resource currently playing (such
as "being")orthe string "done™ if no sound is currently playing. The sound
function enables you to synchronize sounds with other actions, because scTipts
continue to run while sounds play.

Script The following example handler repeats a series of visual effects until a tune specified
by the play command finishes:

on boogie
play "harpsichord” tempo 200 =
"ce gg fe ee de ce gg fe ea ca gg fe ee ce"
repeat until the sound is “"done®
vigual effact dissolve to black
visual effect zoom open to white
visual effect barn door cleose to card
go this card
end rapeat
end boogie

Notes The "done" string is returned as a literal; it's not a HyperTalk constant like up or
true. See also the play command, in Chapter 7, “Commands.”

Syntax

Example

Description

Syntax

Example

Description

Note

sqrt
the sgqrt of factor

sqrt (expression)

Factor and expression yield numbers.
put the sgrt of msg -- converts the number in ms&g toe its sqguare root

The sqgrt function returns the square root of the positive number passed to it If you
pass a negative number, you get the result NAN (001) , which means “not a number.”

Tan

the tan of factor
tan { exprression)

Factor and expression yield numbers.

put the tan of 2 -- puts -2.18504 into the Message box

The tan function retumns the tangent of the angle which is passed to it. The angle
must be expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the result by
the value of the constant pi.

166 Chapter 8: Functions

Syntax

Example

Description

Target

the target
target ()

if the target is "card id 2875" then pass mouselp

The target function retumns a string indicating the original recipient of the
message. The string returned is ane of the following:

stack "stackName"

bkgnd of card id number
card id number

bkend field id number
card field id number
bkgnd button id number
card button id number

For example, the target function enables youto tell, ina mouseUp handler ina
background, whether

O the mouse was clicked over a field or button (which either would have had no
mouseUp handler or would have passed the message on explicitly): the target
would return the button or field 1D

O the mouse was clicked outside the area of all buttons and fields: the target
would return the card ID

O the message was sent directly to the background with the send command: the
target would return the background ID

Youcanuse the target in place of an object descriptor to determine any of the
target’s properties:
get the short name of the target

Script The following example handler can be placed lower in the hierarchy than any field to
display the number of the line clicked (regardless of which field was clicked):

on openField
if style of the target is "scrolling"
then put screll of the target into scrollAmount
else put 0 into scrollAmount
put {trunc(({{item 2 of the clickloc) - {item 2 of the rect of =

the target) + scrollhmount))/(textheight of the target)) + 1) into mag
end copenField

Note See also Chapter 9, "Properties.”

Ticks

Syntax the ticks
ticks ()
Example put the ticks into dog

Description The ticks function returns an integer representing the number of ticks (% second)
since the Macintosh was turned on or restarted.

Script The following example handler measures how long it takes to go to the Help stack and
find the word ticks:

on mouselp

put the ticks into startTicks

go help

find "ticks"

put (the ticks - startTicks) inte hewlLong

answer "It took" && howlong div 60 &5 "second(s) te find Haelp,"
end mouselp

148 Chapter 8 Functions

Syntax

Example

Description

Script

Note

Time

the [adfective] time
time ()

Adjectivecan be long, short,or abbreviated, (or abbrev, or abbr).
put the time into the Message box

The time function returns the time as a text string. All forms are the same, returning
the hour and minutes, such as 8:55 AM, exceptthe long time form which
returns seconds as well, suchas 8:55:23 A,

The following example records the time at which a field is updated:

on closeField
Put return & the time after card field "updatalList"
end closeField

An adjective can't be used to modify the form of the time function that uses
parentheses.

Tool

Syntax the tool
tool ()
Example if the tool is "field tool” then choose browse tool

Description The tool function returns the name of the currently chosen tool. Possible values
returned by the teol function are

browse tool oval tool
brush tocl pencil tool
bucket teool polygon tool
button tool rectangle tool
curve tool reqular polygon tool
eraser tool round rect tool
field tool select tool
lasso tool spray tool
line tool text tool
Script The following example handler chooses the proper tool to manipulate a button or

field when you move the pointer over either object:

on mouseWithin -- put this in the card, background, or stack script
if "button® is in the target and the cpticnKey is deown
then choose button tool
elge if "field" is in the target and the optionKey is down
then choose field tool
end mouseWithin

MNotes See also the choose command, in Chapter 7, “Commands.”

170 Chapter 8: Functions

Syntax

Example

Description

Script

Trunc

the trunc of factor
trunc {expression)

Factor and expression yield numbers.

put the trunc of someNumber into msg

The trunc function returns the integer part of the number passed to it. Any
fractional part is disregarded, regardless of sign.

The following example handler draws rectangles in increasing sizes, using the trunc
function to ensure that the computed values used with the drag command are

integers:

an mouselp
reset paint
choose rectangle tool
put 50 inte left
put 150 into right
put 50 into top
put 150 into bottom
repeat 5 -- the drag command only takes integers
drag from left,top to right,bottom
put trunc(left/l.2) inte laft
put trunec(right/1.2} inte right
put trunc{top/l.2) into top
put trunc(boettom/1.2) into bottom
and repeat
choose browse tool
and mouselp

Value

Syntax the value of factor
value (expression)

Factor and expression yield any values.
Example put the value of field "formula" inte field "regult"

Description The value function evaluates the string derived from factor or expression as an
expression,

Script The following example handler demonstrates the value functdon by forcing a
second level of evaluation of a variable:

on mouselp -- sea also the HyperCalc background soript
put "3 + 4" into expression
put expressien -— yields "3 + 47
wait 2 scoonds
put value of expression -- ylelds 7
and mouselp

Version

Syntax the version
version()
Example if the version>1.0 then set textArrows to Ltrue

Description The version function returns the version number of the HyperCard application
currently running.

172 Chapter 8: Functions

Chapter 9

Properties

This chapter describes HyperCard properties. Properties are the defining
characteristics of objects and the HyperCard environment.

Object properties determine how objects look and act. Global properties control
aspects of the overall HyperCard environment, Painting properties control aspects
of the HyperCard painting environment, which is invoked when you choose a Paint
tool. Window properties determine how the Message box and the Tools and Paiterns
palettes are displayed.

Retrieving and saﬂlﬁg properties

HyperTalk lets you get most properties by using the property name as a function in a
script or the Message box. You must precede the property name with the word the
or follow it with of if it's an object or window property. You can't use parentheses
after the property name, as you do with built-in functions. The following example
retrieves the location property of button 1 and puts it into the Message box:

put the loc of button 1 into msg
You set properties with the set command:
gset loc of button 1 to 100,100

Some properties can't be set, although other actions affect them. For example, the
size of a stack can be changed by compacting it and by adding objects.

Object properties

You can see the value of many object properties by looking at an object’s Info dialog
box, an example of which is shown in Figure 9-1. (You bring up an object’s Info dialog
box by choosing the appropriate item from the Objects menu.)

You can also set many properties for the current object from the Info dialog boxes. To
set the properties of any object in the current stack, including the current ones, you use
the set command, either in a script or in the Message box.

Different HyperCard objects have different properties. For example, fields have a
property determining their text style, but cards do not. This chapter has a section
describing the properties of each of the five types of HyperCard objects.

174 Chapter 9: Properties

Card Name: ([T

Card Number: 1 oul of &
Card 10: %500

Contains 2 card fields.
Cantains /2 card huttons,

[ECan't delete card.

((scopt. | (_ox_) (Cancer]

Figure -1
An Object Info dialog box

Name property

The name property of an object has three forms—long, abbreviated, and
short, The long name of an object includes the type of object, its name, and the full
pathname of its stack:

card button "Rolo"™ of card "Home" of stack "MyHardDisk:Home"
The abbreviated form includes the type of object and its name:

card button "Rolo"

The short form includes just the name:

*Eolo”

If you try to retrieve an object’s name when it has none, HyperCard returns its ID
number.

ID property

The ID property of an object has three forms which are similar to the three forms of
the name, and which are differentiated by the same adjectives—long,
abbreviated, and short. The long ID of an object includes the type of object, its
ID number, and the full pathname of its stack:

card id 2590 of stack "Sila:HyperCard Stacks:Home"

The abbreviated form includes the type of object and its ID number:

card id 2580

The short form includes just the ID number:

2590)
All objects except stacks always have 1D numbers; stacks never have ID numbers.

Retrieving and setting properties

175

Environmental properties

Some of the global properties, such as the userLevel property, can be set on the
User Preferences card of the Home stack; others, such as the lockMessages
property, can be retrieved and set only through HyperTalk. (However, the User
Preferences card uses HyperTalk to set properties, and it could be extended to set any
others.) The window properties, which pertain to the Message box and the tear-off
menus, can be set by clicking and dragging on the windows themselves, as well as
through HyperTalk. Painting properties, which pertain to the painting environment,
can be controlled with the menus and palettes that appear when a Paint tool is
selected, as well as through HyperTalk.

Global properties

You use global properties to choose how particular aspects of the HyperCard
environment will perform. You set global properties from any script or from the
Message box, and their settings pertain to all objects—if you set userlLevel to 3, for
example, it remains 3 until you reset it (although a protected stack might impose some
other user level while you are in thart stack).

The global properties, described in this section, are

blindTyping lockRecent
cursor lockScreen
dragSpeed numberFormat
editBkgnd powerKeys
language textArrows
lockMessages userlLaevel
BlindTyping

set blindTyping to true

You use the blindTyping property to type messages into the Message box and send
them (execute them) without having the Message box visible. Blind typing is available
only if the user level is set to Scripting, and is usually set with a check box on the User
Preferences card (Home stack).

The value of the blindTyping property canbe true or false; the default
setting is determined at start up and resume time by the setting chosen on the User
Preferences card of the Home stack.

If you try to type into the Message box when it's hidden and blindTyping isfalse,
HyperCard beeps.

176 Chapter 9. Properties

Cursor
st cursor to 4

The curscr property determines the image that appears at the pointer location on
the screen. The cursor setting is the ID number or name of a Macintosh 'CURS'
resource, which must be available in the HyperCard file itself or in the current stack
file. 'CURS' resources can be installed, removed, and created with a Macintosh
resource editor.

HyperCard resets the cursor to the one for the current tool at idle, when no other
action is happening. The cursors available by default are

I-beam

crossbar

thick crossbar

watch indicating “wait”

You can't get the cursor property or use it as a function; you can only set it,

DragSpeed

set dragSpeed to 144

The dragSpeed property determines how many pixels per second the pointer will
move when manipulated by all subsequent drag commands. There are 72 pixels per
inch on the Macintosh screen.

Atidle time, HyperCard resets the dragSpeed property to 0, representing the
maximum speed (virtually instantaneous).

EditBkgnd
set editBkgnd to true

The editBkgnd property determines where any painting or creating of buttons or
fields happens—on the current card or on its background. It's usually set with the Edit
menu and is available only when the user level is Painting (3) or higher.

The value of the editBkgnd propemnty canbe true or false; the default setting
is false.

Global properties

177

Language

if the language is not "English" then sort internaticnal by —
field 1

You use the language property to choose the language in which scripts are written
and displayed.

The languages available depend on the translator resources available in your
application, Home stack, and stack. The default setting is English, and it's always
available,

LockMessages

set lockMessages to true

You use the lockMessages property to prevent HyperCard from sending all
automatic messages such as openCard, closeCard, newCard, and
deleteCard.

The value of the lockMessages property canbe true or false; the default
setting is false, HyperCard resets lockMessages to false atidle time (in
effect, at the end of all pending handlers).

Setting the lockMessages property to true speedsup execution of scripls in
which you go to cards, and those in which you create and delete objects. It also
prevents execution of handlers invoked by automatic messages, which may be used to
set up an environment—hiding the Message box, and so on. It's particularly useful
when you want to go to a card momentarily to retrieve or deposit some information,
but you don't want to stay there.

LockRecent

set lockRecent to true

You use the lockRecent property to prevent HyperCard from adding miniature
representations to the Recent card. (The Recent card is invoked by Command-R or by
choosing Recent from the Go menu).

The value of the lockRecent property canbe true or false;the default setting
is false. HyperCard resets lockRecent to false atidle time (in effect, at the
end of all pending handlers).

Setting the lockRecent propertyto true speeds up execution of scripts in which
you go to cards,

178 Chapter 9: Properties

LockScreen

set lockScreen to true

You use the lockScreen propeny to prevent HyperCard from updating the screen
when you go to another card.

The value of the lockScreen property canbe true or false; the default setting
i5s false. HyperCard resets lockScreen to false atidle time (in effect, at the
end of all pending handlers).

Setting the lockScreen property to true enables you (o open different cards
without displaying them on the screen, and it speeds up execution of scripts in which
you go to cards. For example, you can lock the screen, then go to another card to read
information out of a field, then return to the first card without having the second card
appear to the user.

NumberFormat

set numberFormat te "00.00"™ —- displaying 02.20, for example
set numberFormat to "0" —-- displaying 2, for same value
set numberFormat to "0.###### " -- displaying 2.2; the default

The numberFormat property determines the precision with which the results of
mathematical operations are displayed in fields and the Message box. Use zeros to
show how many digits you want to appear, a period to show where you want the
decimal point (if at all), and number signs (#) to the right of the decimal point in
places where you want a trailing digit to appear, but only if it has value.

HyperCard resets the numberFormat propeny to its default value, "0.###4##",
atidle time (in effect, at the end of all pending handlers).

When you set the numberFormat property, you must enclose the value within
double quotation marks if it contains a number sign (#). The numberFormat
property has no effect on how a number is displayed unless you perform a
mathematical operation on it first (for details, see Chapter 4).

Global properties

179

PowerKeys

set powerKeys to true

You use the powerKeys property to provide a shortcut for painting. Power keys let
you accomplish certain painting actions with single keystrokes. The power key setting is
usually done on the User Preferences card of the Home stack. It's available only if the
user level is set to Painting (3) or above.

The value of the powerKeys property canbe true or false; the default setting
is determined at startup and resume time by the setting on the User Preferences card of
the Home stack.

TextAmrows

sat textArrows to true

The textArrows property alters the function of the Right Arrow, Left Arrow, Up
Arrow, and Down Arrow keys.

The value of the textArrows propertycanbe true or false; by defaultit’s
false.

When the textArrows propenyis false, the Right Arrow and Left Arrow keys
take you to the next and previous cards in the stack, respectively, and the Up Arrow
and Down Arrow keys take you forward and backward, respectively, throu gh the cards
you've already viewed.

When the textArrows propertyis true, the arrow keys move the text insertion
point around in a field that you've opened for text editing or in the Message box if
you've clicked in it. In the Message box, the Up Arow and Down Arrow keys move the
insertion point to the beginning and end of the line of text, respectively.

Whenthe textArrows propertyis true, holding down the Option key while you
press the arrow keys produces the same effect as pressing them alone when
textArrows is false.

& A feature of HyperCard version 1.1: The textArrows property is available only
in HyperCard versions 1.1 and later.

180 Chapter ¢ Proparties

UserLevel

set userlLevel ta 5

HyperCard's user levels give progressively more power to the user. The levels are
Browsing, Typing, Painting, Authoring, and Scripting, as explained in the HyperCard
Lser's Guide,

The userLevel property can have a value from 1 to 5, with 5 (scripting) providing
the most power; the values correlate respectively to the levels listed above. The default

setting is determined at start up and resume time by the setting on the User Preferences
card of the Home stack.

A script writer can invoke the Protect Stack dialog box from the File menu to impose a
limit on the user level available in a stack. In that case, setting the user level higher
than the Protect Stack limit has no effect, although it generates no error message. On

leaving the protected stack, the user level in effect when the stack was entered is
restored.

ﬁdo\v prupa;ias

Window properties let you find out about and change the way that the Message box, the
card window, the Tools palette, and the Patterns palette are displayed. The names you
can use are

card window msg

message [box] pattern window

message [window] tool window

(Message, message box, message window, and msg are synonyms for the
Message box.)

The window properties, described in this section, are

loc[ation]

rect [angle]

visible

Window properties

Location
set loc of tool window to 100,100

The location property is the location at which the window is displayed. The
location is a point, reported as two integers separated by a comma.

The point represents the horizontal and vertical offsets in pixels, respectively, from
the top-left comer of the card window to the top-left corner of the specified other
window, disregarding the drag bar at the top of the window. The location of the card
window is measured from the top-left corner of the screen to the top-left comer of the
card window, disregarding the title bar at the top of the card window. On the original
Macintosh screen, visible horizontal offsets range from 0 to 511, and visible vertical
offsets range from 0 to 341.

The location property can be abbreviated loc.

Rectangle

get the rect of message box —-- puts h,v,h,v into It

The rectangle property is two points, reported as four integers separated by
COIMUITIAS,

The points represent the rectangle’s top-left (horizontal and vertical) and bottom-
right (horizontal and vertical) comer offsets in pixels, respectively, from the top-left
corner of the card window. This property can't be set, because the windows are fixed
size, but it can be read to determine the exact area of the screen covered by the
window,

The rectangle property can be abbreviated rect.

182 Chapter 9: Properties

Visible

set the visible of tool windeow to false

The visible propeny determines whether a window is shown or hidden on the
screen.,

The value of the visible propemtycanbe true or false. The Tools and
Parterns palettes become visible when you tear them off the menu bar; the Message
box can be toggled berween being visible and hidden by pressing Command-M.

Setting a window's visible propertyto false isthe same as clicking its close box
or hiding it with the hide command,

Painting properties

Painting properties are aspects of the painting environment invoked when you choose
4 Faint tool from the Tools palette. Most of these properties are usually manipulated
from the Options and Patrerns menus that appear when a Paint tool is selected. The
text atiributes pertain to Paint text; they are usually manipulated from the dialog box
that appears when you double-click the Paint Text tool in the Tools paletie or when you
choose Text Style from the Edit menu. Changes (o the settings made from HyperTalk
are reflected on their respective palettes and menus. The painting properties are
described more fully in the HyperCard User's Guide.

All of the painting properties can be restored to their default values simultanecusly
with the reset paint command, described in Chapter 7, *“Commands.”

The painting properties, described in this section, are

brush pattern
centered polySides
filled textAlign
grid textFont
lineSize textHeight
multiple textSize
multiSpace textStyle

Painting properties

Brush

set brush to &

You use the brush propery to determine or to change the current brush shape used
by the Brush tool. It's normally manipulated from the Brush Shape dialog box invoked
by choosing Brush Shape from the Options menu or by double-clicking the Brush.

The value of the brush property can be any integer from 1 to 32, each representing a
brush shape from the Brush Shape dialog box. The default brush setting is &.

1 6§ 9 13 17 2 25 29
p & 10 14 18 22 26 30
e / N | = & e
a3 7 M 1B W ® 2 3
| L ' ~ | -
4 8 12 [[+] 20 24 28 3z
u * F ~ I = B '

Figure 9-2
Brush Shape dialog box and property values

Centered

set centered to true

You use the centered property to determine or to change the Draw Centered
setting. When centered is true, shapes are drawn from the center, rather than

the corner.

The value of the centered property canbe true or false; by defaultit’s
false,

You can also set the centered property by choosing Draw Centered on the Options
menu.

184 Chapter 9: Properties

Filled
set filled to true

Youusethe filled property to determine or to change the Draw Filled setting.
When filled is true, the current pattern on the Patterns palette is used to fill
shapes as they are drawn.

The value of the filled property canbe true or false;bydefaultits false.

You canalso setthe filled property by choosing Draw Filled on the Options
TMETIL,

Grid

set grid to true

Youuse the grid property to determine or to change the painting Grid setting.
When grid is true, movement of many Paint tools is constrained to eight-pixel
intervals (just under % inch).

The value of the grid property canbe true or false; by defaultit's false.
You can also setthe grid property by choosing Grid on the Options menu,

LineSize
saet lineSize to 8

Youuse the lineSize property to determine or to change the thickness of the lines
drawn by the line and shape tools.

The value of the 1ineSize property correlates to pixels on the screen and can be 1,
2 3,4, 6, or 8 by default it's 1.

You can also set the lineSize property by choosing Line Size on the Options
menu.

Palnting properties

185

Multiple

set multiple to tzue

You use the multiple property to determine or to change the Draw Multiple
setting. When multiple is true, multiple images are drawn as you draga shape
tool.

The value of the multiple property canbe true or false; by defaultit's
false.

You can also set the multiple propery by choosing Draw Multiple on the Options
ITHETLL.

MultiSpace
set multiSpace to 6

You use the multiSpace propery to determine or to change the amount of space
left between edges of the multiple images drawn by the shape tools when the
multiple propertyis true.

The value of the multiSpace property can be an integer ranging from 1to 9,
inclusive; by default it's 1.

Pattern

set pattern to 8

You use the pattern property to determine or to change the current pattern used to
fill shapes and to paint with the Brush tool.

The value of the pattern property can be any integer from 1 to 40, each
representing a pattern on the Patterns palette. The default pattern setting is 12,

The pattern numbers correspond to the 40 positions in the Patterns palette, not to a

specific pattern,

186 Chapter 9: Properties

e
11121131
2 |12]22]132
3|13]23]33
4114]24]34
5)15]26]|35
6116|2638
7117127137
Bl1a|2a|d8
@119 | 29|39
10|20 30{40

Figure
Fatterns palette and property values

You normally set the pattern property from the Patterns palette, You can edit a
pattern by double-clicking it on the Patterns palette. Each stack has its own Patterns
palette, so when you edit a pattern you change the palette only for the current stack.

PolySides

et polySides to 3

Youuse the polySides propeny to determine or to change the number of sides of
the polygon created by the Regular Palygon tool.

The value of the polySides property can be any integer between 3 and 50. This
number correlates to the number of sides in the polygon; its default value is 4. If you
set it to a number lower than 3 or higher than 50, it automatically reverts to 3 or 50,
respectively. If you choose the circle in the Polygon Sides dialog box, the setting
becomes 0 (although you can't set it to 0 using a seript).

You normally choose the Polygon Sides setting from a dialog box invoked by
choosing Polygon Sides from the Options menu or by double-clicking the Regular
Polygon tool.

Painting properties 187

TextAlign
set textAlign to center

You use the textAlign property to determine or to change the way characters are
aligned around the insertion point as you type them with the Paint Text tool.

The value of the textAlign property canbe left, right,or center;ils
default value is left.

You can also set the textAlign property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool.

TextFont

set textFont to geneva

You use the textFont propery to determine or to change the font in which Paint
(ext appears,

The value which the textFont property can have depends on the font resources
that you have available in your System file, the HyperCard application, the Home
stack, and the current stack. The default value of the textFont property is geneva.

You can also set the textFont propeny from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool. If you try to set it to a font that doesn't exist, HyperCard sets it to chicago.

TextHeight

set textHeight to 20

You use the textHeight property o determine or to change the space between
baselines of Paint text.

The value of the textHeight property can be any integer, corresponding to a like
number of pixels. By default, the textHeight property is set to the value of the
textSize propery plus one-third of that value.

The size of a pixel on the Macintosh screen is about ¥%: inch, the approximate size of a
printer’s point.

You can also set the textHeight property with the Line Height window of the Text
Style dialog box, which is invoked by choosing Text Style from the Edit menu or by
double-clicking the Paint Text tool.

168 Chapter 9: Properties

TexiSize

set textSize to 18

Youuse the textSize property to determine or to change the font size in which
Paint text appears,

The value of the textSize property can be any integer, corresponding to a like
number of pixels. The default value of the textSize propertyis12.

The size of a pixel on the Macintosh screen is about % inch, the approximate size of a
printer’s point. Although you can use any integer for text5ize, exact sizes of fonits
available look best. Fonts available can be in your System file, the HyperCard
application, the Home stack, or the current stack.

You can also set the textSize property from the Text Style dialog box, which is

invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool.

TexiStyle

Set textStyle to plain
get textStyle to bold,italic,underline

Youusethe textStyle propery to determine or to change the style in which Paint
lext appears.

The textStyle property can have a value of plain orany combination of the
following: bold, italie, underline, outline, shadow, condensed, and
extend (separated by commas). Its default value is plain. If youuse plain in
combination with any of the other values, the others override ir.

Youcanalso setthe textStyle property from the Text Style dialog box, which is
invoked by choosing Text Style from the Edit menu or by double-clicking the Paint
Text tool,

Painting properties

189

Stdck properties

Stack properties pertain to any stack on any disk or file server currently accessible to
your Macintosh. Settable properties of the current stack can be manipulated from a
script or through the Stack Info dialog box invoked from the Objects menu.

The stack properties, deseribed in this section, are

fresSize script
name size
FreeSize

put the freeSize of stack "addresses" into field "axtraSpace"”

You use the freeSize property to determine the amount of free space of the
specified stack in bytes, (Free space is created in a stack each time you delete an
object.)

The freeSize property can be changed only by selecting Compact Stack from the
File menu (or executing the HyperTalk command deMenu compact stack), which
changes its value to 0.

Name

gset name of this stack to "Robert”

You use the name property to determine or to change the name of the specified
stack, which is its Macintosh file name. The modifiers long, short, and
abbreviated canbeused withthe name property as described at the beginning of
this chapter.

The value of the name property can be any stack name (as described in Chapter 3).

190 Chapter 9: Properties

Script

put the script of stack "home" inte field "Home Scripe”

Youuse the script property to retrieve or to replace the script of the specified
stack.

The value of the script property is the text string composing the script of the
specified stack.

When you set the script property using the set command, you replace it
entirely,

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
“HyperCard Basics.”

Size

get the size of stack "home"
You use the size property to determine the size of the specified stack in bytes.
The minimum stack size is 4096 bytes; the theoretical maximum is 512 megabytes.

The size property can't be changed with the set command; it's changed only by
adding things to and deleting things from the stack (you must then compact the stack
for the deletions to affect its size).

Stack properties

191

Background properties

Background properties pertain to any background in the current stack. They can be
manipulated from a script or from the Message box. Properties of the current
background can also be manipulated through the Bkgnd Info dialog box invoked from
the Objects menu.

The background properties, described in this section, are

ID number
name script
ID

if the ID of background 1 is 2282 then answer "You're Home"

You use the ID property to determine the permanent ID number of any background
in the current stack.

You can't change the ID of any object.

The adjectives long, short,and abbreviated canbe used with the ID
property as described at the beginning of this chapter.

Name

if the name of this backgrocund is "plain” then go home

You use the name property to determine or to change the name of any background in
the current stack.

The value of the name property can be any object name (as described in Chapter 3).

The adjectives long, short,and abbreviated can be used withthe name
property as described at the beginning of this chapter.

Number

if the number of this background is 2 then go next card

You use the number property to determine the number of any background in the
current stack.

You can't set the number of the background; it changes when you add or delete
backgrounds from the stack.

See also the number function in Chapter B,

192 Chapter 9. Properties

Script

set the script of second background teo empty
put the script of this background into field 1

Youusethe script propeny to retrieve or to replace the script of any background
in the current stack.

The value of the script property is the text string composing the script of the
specified background.

When you setthe script property using the set command, you replace it
entirely.

scripts are normally edited using the HyperCard script editor described in Chapter 1,
“HyperCard Basics."

Card properties

Card properties pertain to any card in the current stack. The card is specified as
explained in Chapter 3, “Naming Objects.” You can manipulate card properties from
4 script, in the Message box, or through the Card Info dialog invoked from the

Objects menu.,

Card properties are explained in more detail in the HyperCard User’s Guide section
about the Card Info dialog. The card properties, described in this section, are

ID numbar
name script
D

‘get the ID of card 35

Youuse the ID property to determine the permanent ID number of any card in the
current stack,

You can't change the ID number of any object.

eadjectives long, short,and abbreviated can be used withthe ID
as described at the beginning of this chapter.

Name

gat name of this card to "Shark”
if tha name of card 1 of next background is "Begin" then go home

You use the name property to determine or to change the name of any card in the
current stack.

The value of the name property can be any object name (as described in Chapter 3).

The adjectives long, short, and abbreviated can be used with the name
property as described at the beginning of this chapter.

Number

put the number of last card intoc mag
get the number of this card

You use the number property to determine the number of any card in the current
stack.

You can't set the number of a card with the set command; it changes when you add,
delete, or sort cards in a stack.

See also the number function in Chapter 8.

Script
set the script of this card to field 3

You use the script property to retrieve or to replace the script of any card in the

current stack.

The value of the script property is the text string composing the script of the
specified card.

When you set the script property using the set command, you replace it
entirely,

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
“HyperCard Basics.”

194 Chapter 9: Properties

Field properties

Field properties pertain to any card field or background field in the current stack. The
field is specified as explained in Chapter 3, “Naming Objects.” You can manipulate
field properties from a script or from the Message box, or through the Field Info
dialog box invoked from the Objects menu. (You must have the Field tool chosen and
a specific card or background field selected to activate the Field Info dialog box.)

Field properties are explained in more detail in the HyperCard User's Guide section
about the Field Info dialog box. The field properties, described in this section, are

1D style
loc[ation] textAlign
lockText textFont
name textHeight
number textSize
rect [angle] textStyle
script visible

scroll wideMargins
showLines

ID

put the id of field 1 into msg

Youuse the ID property to find out the permanent ID number of any card or
background field in the current stack.

You can't change the ID number of any object.

The adjectives long, short,and abbreviated can be used withthe ID
property as described at the beginning of this chapter,

Field properties 195

Location

get loc of field 1 to 100,100

You use the location property to determine or to change the location of a card
field or background field in the card window,

The location is a point, reported as two integers separated by a comma. The point
represents the horizontal and vertical offsets in pixels, respectively, from the top-left
comer of the card window to the center of the specified field.

You can also change the field location property by dragging the center of the field
with the Field tool.

¢ Offscreen fields: You can set the location of the field beyond the boundaries of the
card window rectangle, putting the field out of reach until you reset its coordinates

through HyperTalk.
The location property can be abbreviated loc.

LockText
set lockText of field "safe" to true
You use the lockText property to prevent or allow editing of text within a field.

When the Browse tool is selected and the pointer is moved over an unlocked field, the
pointer changes to an I-beam; clicking then lets you edit the text in the field. If the field
is locked, the cursor doesn't change, and the text cannot be edited.

The value of the lockText property canbe true or false; by defaultit's
false.

You can also change this propeny by clicking the Lock Text check box in the Field Info
dialog box.

196 Chapter 9: Propertias

Name

set name of field 1 to "wheat"

You use the name property to determine or to change the name of any field in the
current stack,

The value of the name property can be any object name (as described in Chapter 3).

The modifiers long, short, and abbreviated canbe used with the name
property as described at the beginning of this chapter.

You can also edit the field name by typing in the Field Name box in the Field Info
dialog.

Number
Put the number of field "barley"

You use the number property to determine the number of a specified field.

You can’t change the number with the set command; it changes according to the
position of the field among the other fields on its card or background. To manipulate
the field's position, use the Send Farther and Bring Closer menu commands.

See also the number function in Chapter 8.

Rectangle
Put the rect of field 1 into msg

Youuse the rectangle property to determine or to change the location and size of
the rectangle occupied by the specified field on its card or background.

The value of the field rectangle is two points, reported as four integers separated by
commas. The points represent the rectangle's top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) corner offsets in pixels, respectively, from the
top-left comer of the card window.

% Offscreen fields: You can set either of the rectangle points of the field beyond the

boundaries of the card window rectangle, putting the field out of reach until you
- reset its coordinates through HyperTalk.

Field properties

197

You can set the bottom-right comer location to a value smaller than the top-left
corner location, effectively causing the field to disappear. If vou set the field to a size
smaller than the minimum (12 by 12 pixels) but large enough to see, HyperCard resets
it to the minimum size when you click it.

You can also change the field rectangle by dragging the top-left or bottom-right
corner of the field with the Field tool.

The rectangle property can be abbreviated rect.

Script

set script of field "Effect”™ of first card to empty

You use the script property to retrieve or to replace the script of any field in the
current stack.

The value of the seript property is the text string composing the script of the
specified field.

When you set the script property using the set command, you replace it
entirely.

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
“HyperCard Basics.”

Scroll
put the scroll of field 1 div the textHeight of field 1 into =
linesibove

You use the scroll property to determine or to change how much material is
hidden above the top of a scrolling field's rectangle. Figure 0-4 shows the scroll
property.

The value of the scroll property is an integer representing the number of pixels
that have scrolled above the top of the field rectangle; it's 0 if the top of the field is
visible. The number of text lines to which the scroll property correlates depends
onthe textHeight property of the field.

You normally contral how much material is above the top of the rectangle by clicking
or dragging in the scroll bar at the right side of the field.

If you try to get or set the scroll property of a nonscrolling field, you get an error.

198 Chapter 9; Properties

The scroll _I [This ts a scrolting field
Its value) with soma taxt In 1t Ag

is the ~ [ucustror, the tex
vertical disappears from view [T
distance off the top of the fisld [

in pheels, but it isn't really gone, |]

Here is some more Lext
down al the bottom of

O

Figure 9-4
The scroll property

Showlines
8et showLines of field three to true

You use the showLines property to determine or to change whether the text
baselines in the field appear or are invisible.

The value of the showLines property canbe true or false; by default it's
false,

You can also change showLines by clicking in the Show Lines check box in the Field
Info dialog box.

set style of field 1 of card 3 to transparent
Youusethe style property to determine or to change the style of any field in the
‘current stack.

The value of the field stylecanbe transparent, opaque, rectangle, shadow,
or scrolling.

Fleld properties

TextAlign

set textAlign of field 1 to left

You use the textAlign propery to determine or to change the way lines of text are
aligned in the specified field.

The value of the textAlign property canbe left, right, or center;by
default it's left.

You can also set this property by clicking one of the Align radio buttons in the Texl
Style dialog box. You click the Font button in the Field Info dialog box to invoke the
Text Style dialog box, which is described in the HyperCard User's Guide.

ﬁxiﬁ:ni

set textFont of field 1 to garamond

You use the textFont property to determine or to change the font in which text in
the specified field appears.

The value that the textFont property can have is the name of any of the fonts
available as font resources in your System file, the HyperCard application, the Home
stack, or the current stack. The default value of the textFont propertyis geneva.

You can also set this property by selecting one of the font names in the Text Style
dialog box. You click the Font button in the Field Info dialog box to invoke the Text
Style dialog box, which is described in the HyperCard User's Guide. If you try (o set the
textFont property to a font that doesn't exist, HyperCard sets it to chicago.

200 Chapter 9: Properties

TextHeight

set textHeight of field 1 to 20

You use the textHeight propery to determine or to change the space between
baselines of text in the specified field.

The value of the textHeight property can be any integer, corresponding to a like
number of pixels. By default, the textHeight property is set to the value of the
LextSize propery plus one-third of that value. (The textSize property is
described later in this section.)

The size of a pixel on the Macintosh screen is about % inch, the approximate size of a
printer’s point,

You can also set this property by typing in the Line Height box in the Text Style dialog
box. You click the Font button in the Field Info dialog box to invoke the Text Style
dialog box, which is described in the HyperCard User's Guide.

TexiSize

det textSize of field 1 to 18

Youuse the textSize propenty to determine or to change the type size in which text
in the specified field appears.

The value of the textSize property can be any integer, corresponding to a like
number of pixels. The default value of the textSize propertyis 12,

The size of a pixel on the Macintosh screen is about ¥ inch, the approximate size of a
 printer’s point. Although you can use any integer for textSize, exact sizes of fonts
 available look best. Fonts available can be in your System file, the HyperCard

- application, the Home stack, or the current stack.

You can also set this property by selecting one of the font sizes shown or typing

_ in the size window in the Text Style dialog box. You click the Font button in the
lﬁddlnﬁ}dlalogboxm{nmimttmeﬁwfedlalogbox.whichisdescﬂbedmme

rd User’s Guide,

Field properties

TexiStyle

set textStyle of field 1 to plain
set textStyle of first card field to bold,underline,italic

vou use the textStyle property to determine or to change the style in which text in
the specificd field appears.

The textStyle property can havea value of plain or any combination of the
following: bold, italic, underline, outline, shadow, condensed, and
extend (separated by commas). Its default value is plain. If you use plain in
combination with any of the other values, the others override it

You can also set this property by clicking one of the Style check boxes in the Text Style
dialog box. You click the Font button in the Field Info dialog box to invoke the Text
Style dialog box, which is described in the HyperCard User's Guide.

Visible

set wisible of field vwhereDidItGo" to false

You use the visible propery to determine or o change whether a field is shown or
hidden.

The value of the visible property canbe true or false; by defaultit's true.

You can also set this property with the show and hide commands.

WideMargins
set wideMargins of field "nicer® to true

You use the wideMargins property to specify whether some extra space is included
at the left and right side of each line in the field (to make the text easier to read).

The value of the wideMargins propery canbe true or false; by defaultit's
false.

You can also change this property by clicking the Wide Margins check box in the Field
Info dialog box.

202 Chapter 9; Properties

B_ulton properties

Button properties pertain to any card button or background button in the current
stack. The button is specified as explained in Chapter 3, “Naming Objects.”

You can manipulate the properties of any button in the current stack from a script or
from the Message box, Additionally, you can manipulate the properties of a button on
the current card or background through the Button Info dialog box invoked from the
Objects menu. (You must have the Button tool and a specific card or background
button selected 1o activate the Button Info dialog.)

The button properties, described in this section, are

autoHilite showName
hilite style

icon textAlign

ID textFont

loc[atien] textHeight

name textSize

number textStyle

rect [angle] visible

Script

Button properties are explained in more detail in the HyperCard User's Guide section
about the Button Info dialog.

AutoHilite

Set autoHilite of the target to true

Youusethe autoHilite propeny to determine or to change whether the specified
button’s hilite property is affected by the message mouseDown,

The value of the autcHilite property can be true or false; by default it's
false,

When autoHilite istrue, mouseDown changes the button's hilite property
10 true, and mouseUp setsits hilite property to false. The effect is that the

button is momentarily highlighted (displayed in inverse video) when the user clicks it,

Biving visual feedback for the click action.

The autoHilite property can also be changed by clicking the "Auto hilite” check
box in the Button Info dialog box.

See also the description of the hilite property, which follows,

Button properties 203

Hilite
set hilite of button 1 to true

You use the hilite property to determine or to change whether the specified
button is highlighted (displayed in inverse video). To see what highlighting for the
various button styles looks like, see the HyperCard Liser's Gilde.

The value of the hilite propertycanbe true of false; by defaultit's false.

The hilite property can be changed using the set command, either from a
script or from the Message box, or, if the autoHilite propertyis true, by
sending the message mouseDown 1O the button. In that case, for all styles of buttons
except check boxes and radio buttons, the hilite propernty becomes true when
the button receives mouseDown, and it becomes false when the button receives
mousalp.

For check boxes and radio buttons with their autcHilite propefty set true, the
hilite property toggles to its opposite state on mouseDown and stays that way
until it receives another mouseDown, That is, when a check box is highlighted, it
appears with an "X" check mark in its box: when it's not highlighted, the check mark
does not appear. If autoHilite is true,an unselected check box displays an “X*
when you click it; if you click it again, the “X" disappears. The appearance of the check
mark correlates to the state of the button’s hilite propery. The situation is similar
for radio buttons, except that the true highlighted state is indicated by a solid dot
inside the button's circle.

See also the description of the autoHilite propery, immediately preceding,

lcon

set icon of button "Bill"™ to 2002
set icon of butten "Bill" to "Bill"®

You use the icon property to determine or o change the icon, if any, that is
displayed with the specified button (described in the “Button Info" section of the
HyperCard User's Guide).

lcons are small images that exist as Macintosh resources and are editable with a

Macintosh resource editor. For an icon to be displayed on a button, its resource must
be available in the current stack, the Home stack, or the HyperCard application.

The value of the icon propery is an integer correlating with the ID number of an
available icon resource. If a button has no icon, the icon property is 0.

The icon property can be changed with the set command, and it can be set o
either the icon’s ID number or to its name (if it has one).

The icon can also be changed by clicking the Icon button in the Button Info dialog
box, which brings up another dialog box that displays the available icons graphically.

204 Chapter & Properties

put the ID of button 1 into msg
The ID property lets you determine the permanent ID number of a specified button,
You can't change the ID of any object.

The adjectives long, short,and abbreviated canbeused withthe ID
property as described at the beginning of this chapter.

Location
set loc of button 1 to 100,100

You use the location property to determine or to change the location of the
specified card button or background button in the card window,

The location is a point, reported as two integers separated by a comma, The point
represents the horizontal and vertical offsets in pixels, respectively, from the top-left
comer of the card window to the center of the specified button.

You can also change the button location property by dragging the center of the
button with the Button tool.

¢ Offscreen buttons: You can set the location of the button beyond the boundaries of

the card window rectangle, putting the button out of reach until you reset its
coordinates through HyperTalk.

The location propery can be abbreviated loc.

Name
get name of button id 1 of last card to "hole"

You use the name propery to determine or to change the name of the specified
burton.

The value of the name property can be any object name (as described in Chapter 3).

- The modifiers long, short,and abbreviated can be used with the name
property as described at the beginning of this chapter.

“The button name can also be edited in the Button Name box in the Button Info dialog
box,

Button properties 205

Humher_

put the number of button "hole®
You use the number propery to determine the number of the specified button.

The value of the number propery is an integer.

You can't change the number with the set command. The number changes
according to the position of the button among the other buttons on its card or
background, and that position is manipulated with the Send Farther and Bring Closer
menu commands,

See also the number function in Chapter 8.

Reclangle

put the rect of button 1 into msg

You use the rectangle property to determine or to change the location and size of
the bounding rectangle occupied by the specified button on its card or background.

The value of the button rectangle is two points, reported as four integers scparated by
commas. The points represent the rectangle’s top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) comer offsets in pixels, respectively, from the
top-left corner of the card window.

& Offscreen buttons: You can set either of the rectangle points of the button beyond
the boundaries of the card window rectangle, putting the button out of reach until
you reset its coordinates through HyperTalk.

You can set the bottom-right corer location to a value smaller than the top-left
corner location, effectively causing the button to disappear. If you set the button
rectangle to a size smaller than the minimum (12 by 12 pixels) but large enough [o see,
HyperCard resets it to the minimum size when you click it.

You can also change the button rectangle by dragging the top-left or bottom-right
comer of the button with the Button tool.

The rectangle property can be abbreviated rect.

206 Chapter 9. Properties

Script
set script of button "red" of first card to empty
You use the script property to retrieve or to replace the script of the specified

button.

The value of the script property is the text string composing the script of the
specified button.

When you set the script property usingthe set command, you replace it
entirely.

Scripts are normally edited using the HyperCard script editor described in Chapter 1,
“HyperCard Basics.”

ShowName
set showName of button "Hair™ to true

You use the showName property to determine or to change whether the name of the
specified button (if it has one) is displayed in its rectangle on the screen.

The value of the ShowName property canbe true or false; by defaultits false.

You can also change this property by clicking the “Show name" check box in the
Button Info dialog box.

Style

set style of button 1 to transparent

Youuse the style propeny to determine or to change the style of the specified
button.

The value of the style property canbe transparent, opaque, rectangle,
roundRect, checkBox, or radicButton.

Some useful peculiarities of radio buttons and check box buttons are described under
the hilite property, earier in this chapter. You can also study the button and card
scripts of the User Preferences card in the Home stack.

You can also set this property by clicking one of the Style buttons in the Button Info
dialog box.

Button properties 207

T

TextAlign
gset textAlign of button 1 to left

You use the textAlign property to determine or to change the alignment of the
button name in the button rectangle. To see its effect, the button must have a name
and its showName property mustbe true.

The value of the textAlign property canbe left, right,or center; by
defaultit's left.

Using the set command is the only way to change the alignment of the button name
in the button rectangle.

TexiFont
set textFont of button 1 to Monaco
You use the textFont propery o determine or to change the font in which the

name of the specified button appears. To see the effect of textFont, the button must
have a name and its showName propemy must be true.

The value of the textFont property can be the name of any of the fonts available as
font resources in your System file, the current stack, the Home stack, or the HyperCard
application; by default it's geneva.

Using the set command is the only way to change a button name’s typeface. If you
set the TextFont property to a font that doesn't exist, HyperCard sets itto chicago.

TextHeight

The textHeight property determines the amount of space between lines of text.
Although you can set this property for a button, it is meaningless because button name
text has only one line,

208 Chapter 9: Properties

TextSize
sat textSize of button 1 to 18

Youusethe textSize property to determine or to change the type size in which the
specified button’s name appears. To see the effect of textsize, the button must
have a name and its showName property mustbe true,

The value of the textSize property can be any integer, corresponding 1o a like
number of pixels. The default value of the textSize properyis 12,

The size of a pixel on the Macintosh screen is about ¥: inch, the approximate size of a
printer’s point. Although you can use any integer for textSize, exact sizes of fonts
available look best. Fonts available can be in your System file, the HyperCard
application, the Home stack, or the current stack,

Using the set command is the only way to set a button name's type size.

TexiStyle

set textStyle of button 1 to plain
set the textStyle of button "Fancy" to bold, italic,underline

You use the textStyle property to determine or to change the style in which the
specified button’s name appears. To see the effect of textStyle, the button must
have a name and its showName property mustbe true.

The textStyle propery can have a value of plain or any combination of the
following: bold, italie, underline, cutline, shadow, condense, and
extend (separated by commas). By defaultit's plain. If youuse plain in
combination with any of the other values, the others override it

Using the set command is the only way to set a button name's style.

e

set visible of button "it's geone" to false

You use the visible property to determine or to change whether the specified
button is shown or hidden.

The value of the visible property canbe true or false; by defaultit's true.
You can also change this property with the show and hide commands,

Button properties 209

Chapter 10

Constants

211

This chapter describes HyperTalk's built-in constants. A constant is a named value
that never changes. It's different from a variable because you can't change it, and it's
different from a literal because it does not require quotation marks.

The values of some constants are the string of characters making up the name, while
others are different. In some cases, it's more convenient (o use a constant (such as
pi) in place of a long string (such as 3.14159265358979323840). In other cases, it's
more convenient to use a constant (such as formFeed) because the only other way
to enter that character is with the numToChar function, requiring that you know the
ASCII number of the character (as in the numToChar of 12).

You can't name a variable the same as any built-in constant; if you try, HyperCard
displays an error dialog box.

Table 10-1 is a list of all the built-in constants in HyperTalk.

212 Chapter 10: Constants

Table 10-1
HyperTalk constants

Constan! name Dascription

down The value returned by the commandKey, mouse,
optionKey, or shiftKey function when the named key
(or button, in the case of mouse), is currently pressed. Its
value is the same as the literal "down".

empLy The null string, the same as the literal ",

false The opposite of true; one of the states tested by the if
control structure and one of the possible results of evaluation
of a logical expression. Its value is the same as the literal

"false".

formFeed The form feed character (ASCII 12), which starts a new page in
some file formats.

lineFeed The line feed character (ASCII 10), which starts a new line in
some file formars.

pi The mathematical value pi to 20 decimal places, denoting the

ratio of the circumference of a circle to its diameter,
represented by the number 3.141592653589793238465.

quote The double quotation mark character, It is needed to build a
string containing quotation marks because they are stripped
out of the string when literals are evaluated:

put "george" into It =-=- guotation marks are not in It
Put quote & "george" & gquote into It -- guotation marks in
return The retumn character (ASCII 13), which signifies the end of a
HyperTalk statement.
space The space character (ASCII 32), the same as the literal " .
tab The horizontal tab character CASCIT 90,
true The opposite of false; one of the states tested by the if

control structure and one of the possible results of evaluation
of a logical expression. Its value is the same as the literal
"true",

up The value returned by the commandKey, mouse,
optionKey,and shiftKey functions when the named key
(or button, in the case of mouse), is not currently pressed.
Its value is the same as the literal "up”,

zero..ten The numbers 0 through 10.

Chapter 10; Constants 213

