
I •

HyperTalkThl
Progra:m:ming

. /

Macintosh>a) Revealed

Volume One:
Unlocking the Toolbox
Second Edition
Stephen Chernicoff

Volume Two:
Programming with the
Toolbox
Second Edition
Stephen Chernicoff

Volume Three:
Mastering the Toolbox
(forthcoming)
Stephen Chernico{f

Volume Four:
Programming the
Macintosh® II (forthcoming)
S tephen Chernicoff and Geri
Younggren

How to Write Macintosh®
Software
Second Edition
Scott K naster

MacAccess: Information in
Motion
Dean Gengle and Stet·en Smith

MPW and Assembly
Language Programming
Scott Kronick

The Macintosh® Advisor
(Updated for Multifinder)
Cynthia Harriman and Bencion Calica

,
Object-Oriented
Programming for the
Macintosh®
Kurt J . Schmucker

Programming the 68000
Edwin Rosenzweig and Harland
Harrison

HyperTalk , .. Tips and
Techniques
Dan S hafer

The Waite Group's
HyperTalk , .. Bible
The Waite Group

IBM® PC and Macintosh®
Networking: Featuring TOPS
and AppleShare , ..
Steve Michel

Macintosh~ Hard Disk
Management
Bencion J . Calica and Charles R ubin

Nonlibrary Titles

Artificial Intelligence
Programming on the
Macintosh®
Dan Shafer

Understanding HyperTalk , ..
Dan S hafer

For the retailer nearest you. or to order directly from the publisher.
ca/1800-428-SAMS. In Indiana. Alaska. and Hawaii call 3/7-298-5699.

HyperTalk™
Programming
Revised Edition

Dan Shafer

#f
HAYDEN BOOKS
I Division of 1./oward IV. Sams & Company

4300 Wrst 62nd Street

Indianapolis. 1/ldlan:' 46268 USA

e 1988 by Daniel G. Shafer

REVISED EDmON
PIRST PRllfTING-1988

All rights reserved. No pan of this book shaU be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein.

fn temational Standard Book Number. 0-672-48439·0
Library of Congress Catalog Card Number: 88-61960

Acquisitions Editor: Greg Michael
Manuscript Editor: Susan Pink, Tech right and Katherine Stuan Ewing
illustrator: Don Clemons
Cover Anist: Celeste Design
Indexer. W. Bjerstedt
Technical Reviewer. James Redfern and David Gewirtz
Compositor: Carolyn Shafer, Apricot Press

Printed in the United Stales of America

Trademark Acknowledgements

All terms mentioned in this book that are known to be trademarks or service
marks are listed below. In addition, terms suspected of being trademarks or
service marks have been appropriately capitalized. Iloward W. Sams & Co.
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

HyperCard, HyperTalk, Macintosh, MacPaint, and SANE arc trademarks of
Apple Computer, Inc.

IlyperNews is a trademark of Training Resources Unlimited.

HypetQuiz is a trademark of Dan Shafer.

Mac is a registered trademark of Apple Computer, Inc.
Menu's for HyperCard! is a trademark of N"me to Five Software, Inc.

Reports for HyperCard is a trademark of Mediagenic
scripi.Expert is a trademark of Hyperpress Publishing and Dan Shafer.

script View is a trademaric of Eldon Benz.
Sound Advice is a trademark of Paul T. Pashibin.

Word is a registered trademark of Microsoft Corporation.

For patience beyond endurance,

support beyond expectation,

love beyond measure,

joy unsurpassed ...

For Carolyn

"Shafer knows his HyperTalk and shows how simple and power­
ful it can be."

- David Dunham, MacWeek

" ... really hunkers down and teaches you to use the program."
- Chuq Von.Rospach

"Because Dan is an approachable writer, even a gentle writer, you
learn a great deal from his book with no effort Do not
miss!"

- Birrell Walsh , MicroTimes

Chapter 1

Contents

Preface

What's in Here?
Laboratory Exercises
Programs Mentioned
Contacting Me
Enough of the Commercial Already

Acknowledgements

Building Your Own Stacks

Why Build Stacks?
Step-By-Step Design
Summary

vii

xvii

xviii
xix
XX

XXI

XXI

xxiii

1

1
5

10

Viii Hypetral.k Programming

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Object-Oriented Programming

HyperCard: Object-Like Programming
OOP Fundamentals
Why Object-Oriented Programming?
OOP and HyperCard
Summary

HyperCard Refresher

The User's Viewpoint
Browsing-Level Operation
Authoring-Level Operations
A voiding User Paranoia
HyperCard and CD-ROM
Summary

HyperTalk Building Blocks

Naming Things in HyperTalk
Active Elements of HyperTalk
Passive Traits
Objects
Pictures
Summary

HyperTalk Basics

Script Mechanics
Handlers
Messages

11

11
12
17
19
24

25

26
29
33
37
37
38

39

39
41
44
47
53
53

55

56
61
63

Chapter 6

Chapter 7

Chapter 8

ix Contents

Variables
Containers
Addressing a Field's Contents
Summary

System Messages

Messages Galore!
Who Gets the Message?
An Overview of System Messages
Handling Mouse Messages
Keyboard Messages
Action-Taking Messages
The doMenu Message
The help Message
The idle Message
Summary

Mouse, Keyboard, and File I/0

Monitoring the Mouse
Clicking the Mouse for the User
Is That Key Down?
Text File Operations
Summary

Control Structures and Logical Operators

Loops and Conditions: Background
If-Then Processing
Conditional Operators and Calculations
Looping Commands

66
71
76
80

83

83
84
85
87
93
97

101
103
103
104

105

105
111
113
116
120

121

122
123
127
134

Chapter 9

Chapter 10

Chapter It

X HyperTalk Programming

Control Within Repeat Loops
Summary

Card Management Methods

Navigation Commands
Using go in a Script
Finding Cards by Content
Using pop and push in Scripts
Showing and Printing Cards
Summary

Managing Text and Data

HyperCard as an Information Base
Reading Information in a Field
How Many Characters in the Field
Finding and Selecting Text
Modifying the Contents of Fields
Changing Fields by Concatenation
Treating Fields as Arrays and Tables
Sorting Stacks
Date and Time: Special Data Types
Trapping the Return and Enter Keys
Summary

Dialog Boxes

Dialogs and HyperCard
Using Dialogs in HyperTalk
The answer Dialog

144
147

149

149
150
154
159
165
166

167

168
168
175
176
183
188
191
196
198
203
205

207

207
211
212

Chapter 12

Chapter 13

Chapter 14

xi Contents

The ask Dialog
Summary

Managing Menus and Using Tools

Running Menus from Scripts
Using choose to Select HyperCard Tools
Summary

Graphic Commands and Visual Effects

A Graphic Computer
Programming Visual Effects
Choosing Visual Effects
Painting from a Script
Animation with Selecting and Dragging
Managing Pictures on Cards and Backgounds
Summary

Sound and Music Basics

Using the beep Command
Using the play Command
Sound Resources and HyperTalk
Testing the sound
Using Sound Effects Wisely
Summary

215
217

219

219
227
230

231

231
232
240
243
254
256
258

259

259
260
265
266
267
268

Chapter 15

Chapter 16

Chapter 17

Xii HypcrTalk Programming

Math Functions and Operators

An Aside to Mathephobiacs
How Numbers Are Represented
Bringing Order to Things Numeric
Functional HyperTalk
Simple Arithmetic Operations
Number Manipulation
Advanced Math Operations
Financial Math Operations
Summary

Action-Taking Commands

The do Command
The wait Command
Opening Applications and Documents
Printing Non-HyperCard Documents
Printing Cards from a Script
Summary

Properties and Their Management

Role of Properties in HyperCard
Global Properties
Shared Properties
Unique Stack Properties
Unique Field Properties
Unique Button Properties
Unique Picture Property
Summary

269

269
270
271
273
275
281
283
286
287

289

290
292
294
298
299
301

303

303
307
319
329
332
338
342
343

Chapter 18

Chapter 19

Chapter 20

Chapter 21

xiii Contents

HyperTalk Dialing and Communications

Of HyperCard, Phones, and Modems
The dial Command
HyperCard's Smart Dialing Helps
Using HyperCard for Telecommunications
Summary

Script-Related Commands
and User-Defined Functions

Using the edit script Command
The wait Command
Parameters in HyperTalk
Defining and Using Your Own Functions
Summary

HyperTalk Tips, Traps, and Techniques

Power Tips
Traps to A void
Techniques for Special Needs
Summary

Extending HyperTalk with Resources

Resources and HyperTalk
Where Do Resources Come From?
Moving Resources
Using Resources
Summary

345

345
346
349
352
352

353

353
354
355
358
360

363

364
369
370
388

389

389
392
398
399
401

xiv HypcrTalk Programming

Chapter 22

Chapter 23

Chapter 24

Extending HyperCard with XCMDs and XFCNs

What Are XCMDs and XFCNs?
Designing External Routines
Tools for Adding External Commands
A Template for XCMDs and XFCNs
Nature of External Commands
An Example XCMD
An Example XFCN
Compiling and Linking XCMDs and XFCNs
Insights, Tips, and Techniques
Summary

Designing Stacks

Two Caveats
Before You Begin Stack Construction
Add Stacks or Backgrounds?
Consistency in Layout and Design
User-Oriented Button Design
Other Design Considerations
Summary

Programming Tools

Script-Working Programs
Stack Enhancers
Importing Text Intelligently
Summary

403

404
406
407
409
410
411
416
420
421
425

427

428
428
432
433
436
438
439

441

442
446
453
456

Chapter 25

Chapter 26

Appendix A

Appendix B

Appendix C

XV Contents

An Educational Script

Two Users
The Cards
The Scripts
Changes and Additions
Summary

Semi-Automatic Programming

Using the Stack
The Cards
The Scripts
Changes and Additions
Summary

HyperTalk Vocabulary

Macintosh ASCIT Chart

Other Sources of HyperCard Information

Apple Computer
Magazines
Electronic Bulletin Board Systems
Newsletters and User Groups
Books

Index

457

457
459
464
477
479

481

482
482
486
506
506

507

535

541

541
542
543
544
545

547

'--

Preface

Programming the Macintosh just got easier. Thanks to Bill
Atkinson and HyperCard and to his colleague Dan Winkler and
HyperTalk, programming the Macintosh is no longer the arduous
and intricate task it once was.

This book helps you take advantage of this awesome new
power to control your Macintosh world the way you want it
controlled. If you are an experienced programmer, you will be
exposed to the inner workings and object-like concepts in
HyperTalk so that the underlying elegance of the language is
revealed. If HyperTalk is your first language - or if you are
one of the hundreds of thousands of people who learned BASIC
but gave up programming since the advent of more
difficult-looking Pascal and C- you will gain a ground-level
introduction to HyperTalk as a language and be taken all the way
through complex script development.

The focus of this book is on the HyperTalk language, not on
how to design and build stacks. Shortly after HyperTalk became
available, the lack of documentation was evident. Early books

xvii

xviil HyperTalk: Programming

had to be printed before some aspects of the language
were"frozen" in design. Even the early documents of the Apple
Programmers and Developers Association (APDA) had trouble
staying current.

This book was completed in a short time in an effort to
bring you current and useful information at the beginning of
what promises to be a major revolution in the way people view
and use the Macintosh. But nothing was sacrificed for the sake
of time. Every use!ul command, function, property, and operator
in HyperTalk is covered, along with conceptual material and
detailed instructions and examples on the use of external
commands and functions written in Pascal and C. You '11 find
tips, traps, and techniques gathered from the experiences of
dozens of "stackheads" who began developing scripts m
HyperTalk almost before HyperCard was a known quantity.

What's in Here?

This book has 26 chapters and 3 appendices. Chapters 1 and 2
cover background material about HyperTalk and the HyperCard
environment. Chapter 3 is a refresher course in the basics of
HyperCard design. Chapters 4 and 5 introduce essential, practical
information about HyperTalk programming, such as how to use
the script editor and HyperTalk naming conventions.

Then in Chapter 6 we begin our exploration of the operation
of the HyperTalk programming language itself. We cover
intensively the following topics:

• system messages (Chapter 6)

• keyboard, mouse, and file I/0 operations (Chapter 7)

• control structures and logical operators (Chapter 8)

• controlling stack flow, card flow, and interaction
(Chapter 9)

• text and data management routines (Chapter 10)

• dialog boxes and their use in HyperTalk (Chapter 11)

xix Preface

• menu management (Chapter 12)

• the use of visual and graphics effects (Chapter 13)

• sound and music (Chapter 14)

• math (Chapter 15)

• action-taking commands (Chapter 16)

• property-related commands (Chapter 17)

• communications commands (Chapter 18)

• script and other related commands (Chapter 19)

Chapters 20-24 cover more advanced topics, including
practical advice from experienced HyperTalk programmers, how
to extend the power of HyperCard and HyperTalk itself, how to
design stacks for maximum effect, and a survey of free and
shareware programming tools. Chapters 25 and 26 contain two
substantial scripts that you can examine, take apart, modify, and
learn from. To order a disk containing these scripts, see the disk
offer at the back of this book.

Appendix A is a complete alphabetical vocabulary listing of
HyperTalk's commands, operators, functions, messages, and
properties. Appendix B is an ASCII chart that comes in handy
when you use some of HyperTalk's commands. Appendix C tells
you where you can get more information about HyperTalk and
HyperCard.

In keeping with one of the key principles of hypertext called
chunking, several of the chapters are short. I've done this so that
material about one topic is all together without extraneous mate­
rial to distract you.

Laboratory Exercises

In hands-on exercises throughout Chapters 6-19, you build small
demonstration scripts that show how commands work and interact.

-~ ~: - . Q ...

XX HyperTallc Programming

These "In the Laboratory" segments are marked by a special icon
that looks like this:

When you see one of these icons, plan on being at your Mac
and ready to type in a script or message to see how something
works. I have emphasized hands-on experiments because
HyperTalk is not the kind of language you learn sitting passively
and reading this book or any other. HyperTalk, like the
HyperCard environment of which it is an integral part, requires
interaction on your part. Don't just read these lab exercises,
experience them.

Programs Mentioned

Throughout the book, but especially in Chapters 21, 22, and 24, I
mention free and shareware programs. You can usually obtain
these programs from several sources, some of which are outlined
in Appendix C.

Shareware programs are developed by people who en­
joy"hacking" at the Macintosh and like to see some reward for
their efforts but who don't want to put their programs into usual
marketing channels. Some incredibly good software is share­
ware. But shareware only lasts if people who use shareware
products pay the usually nominal fee to the developer. So if you
use and enjoy someone's shareware product, take the time to
send him or her a check. You'll contribute to the likelihood that
more good shareware will appear over time.

I should add that for the most part, mentioning these pro­
grams does not mean that I recommend them, or that they are the
best of their kind available. It means only that I've used them,
they work for me, and I think you might find them helpful. If
you find more useful stacks and programs, let me know.

Contacting Me

xxi Preface

I try to be accessible to my readers. After all. you are the most
important ingredient in the recipe of whatever success I may ulti­
mately enjoy. This is my twelfth computer book and I've en­
joyed each of them. But I've enjoyed more the interaction with
readers.

If you find a bug. have a question. want to argue. or have
things to share for future editions of this book and related books.
please contact me. I can be reached electronically on Compu­
Serve (71246,402). GEnie. and MCI Mail (DSHAFER both plac­
es). Or you can write me at 277 Hillview Avenue. Redwood
City. California 94062. But please don't call me at horne; I'm
buried under stacks anyway.

Enough of the Commercial Already

I know you're itching to get into scripting. so I won't take any
more of your time. Thanks for buying this book and realizing
the immense potential ofHyperTalk. I think you'll be pleasantly
surprised at the elegance of the language and how easy it is to
learn and use.

Enjoy!

Acknowledgentents

This is my twelfth computer book in about two years. More than
any other book I have written, this one has been a group effort. It
is only fitting that these persons stand up and take a bow. Unfor­
tunately, unless this book wins me a Pulitzer, they won't get that
chance, so they'll have to settle for these heart-felt thanks.

So a sincere vote of appreciation to

• Bill Atkinson and Dan Winkler for creating this fabulous
new tool. What a vision!

• Danny Goodman for writing the pioneering book in this
field from which we have all learned so much and for being
there on CompuServe when I had questions.

• Mike Holm, HyperCard product manager, and Moira Cullen,
HyperCard evangelist, both at Apple Computer, for uplifting
words, votes of confidence, and lots of information and help .

••• XXlll

xxiv HyperTalk Programming

• David Leffler, manager of the HyperCard test team, for
sharing dozens of stacks, lots of insights, and many hours of
time he didn't have to help make this book accurate.

• Steve Maller, a fellow laborer at the word processor and a
better-than-average hacker, who spent many hours helping
me understand XCMDs and XFCNs. Many of the insights
in Chapter 22 are his, and the fact that some of his stacks
are on my recommended list is a far greater testimonial to
his prowess than to my judgment.

• David Gewirtz, president of Hyperpress Publishing Inc., a
fellow stackhead and writer, who helped smooth out
wrinkles, kicked ideas around, and became a good friend.

• Several people at Apple Computer and elsewhere who
reviewed all or parts of my manuscript and provided helpful
suggestions. These people, in no particular order, include:
Chris Knepper of Apple Developer Technical Support;
Mark "The Red" Harlan; James Redfern of Apple's
HyperTalk testing team; and Jason Gervich and Alan
Spragens of Apple's Customer Publications group.
Although each contributed in his own way, I am the only
one responsible for any errors.

• Bill Gladstone, my agent, for recognizing the potential in
HyperCard as a book topic and hanging in there with me as
we designed the book and presented it to Sams.

• My editors, who were, as usual, patient and caring people. I
love writing for Howard W. Sams and their Macintosh
Library largely because of people like Greg Michael,
Jennifer Ackley, Kathy Ewing, Fred Amich, and Susan Pink
Bussiere. Despite a crunching schedule, they maintained
their sense of humor. They're among the best.

• Celeste Design, who did the incredible cover art (you didn't
notice? By all means stop right now and take a look). I
hope someone offers to give me the original drawing; I'd
like to frame it and hang it in my office. It would give this
place a touch of class!

• My wife, Carolyn, who always plays a major role in
everything I do. I honestly don't know where I'd be
without her. But on this book, her contribution was both

XXV Acknowledgements ----------------------

more tangible and more significant. She handled the page
production and brought it in on time despite having to work
with me in the next room. Guess it must be love, eh?

• Tomas Hernandez, who not only assisted Carolyn in
production but saved our necks when we had hardware
problems on the weekend when there was no service
available. Tomas has also made a number of valuable art
contributions and served as a kibitzer and companion during
long nights of writing and preparation.

• Finally, people I "met" on CompuServe and a dozen
bulletin boards around the country, including especially
Michael Long of Nine to Five Software, who have been of
immeasurable help.

I hope all these people feel part of this effort. To the extent
that they didn't feel that way during the hectic writing and
production schedule, I hope this makes up in some small way.

Thanks, all.

CHAPTER

I! r711§§§§§§§§~§§§§~~§~§§§~ :::: L..!.J : """" '""""""""'' """"""""'""""""" """"""'" "'"""""" ""'""'" "'
Building Your Own
Stacks

In this chapter, you will

• examine the step-by-step process of stack creation using
HyperCard

• see the role played by scripting in HyperCard•s built-in
HyperTalk: language

Why Build Stacks?

You have some interest in building and programming HyperCard
stacks or you woutdn•t have bought this book. But you may have
some lingering doubts about the wisdom or value of constructing
your own stacks as opposed to buying them. Or you may be
planning to build stacks for other people and you want some idea
of what stacks are likely to be most useful.

1

2 Chapter One

Build versus buy

The question of whether you should buy a ready-made stack or
plunge into this book and the joys of HyperTalk programming is
subjective enough that you shouldn't expect a hard-and-fast
answer. But we believe that designing and even scripting your
own stacks is neither so hard as to be intimidating nor so
time-consuming as to be prohibitive if programming isn't your
primary occupation.

Still, there are trade-offs. Constructing and scripting a stack
for your own use takes time, though it takes substantially less
time than programming a Mac application any other way.
Particularly when stacks are being sold inexpensively and even
given away so freely in the Bill Atkinson-generated spirit of
HyperCard, it may be tough to justify to yourself, your spouse,
or your boss spending any time developing your own stack. It's
the old "build versus buy" decision brought down to real
micro-economics. So here are some good reasons for doing your
own stackware.

1. If you want something done right, you have to do it
yourself. That old saw is another way of saying that some
of your needs for a particular stack are probably unique.
HyperCard gives you such enormous flexibility about the
way the stack looks and how you use it that it seems a
shame to let someone else make those decisions for you.

2. You understand better how to use something that you've
designed. We all know people who have been using very
powerful programs on the Mac but using them in limited
ways, not taking advantage of all their capability. Part of
the reason is a lack of understanding of what the programs
can accomplish. If you design the stack, you will certainly
be able to take advantage of all of its functionality.

3. The creative process itself is rewarding and enjoyable.

4. In designing a stack to solve a problem, you will gain some
insight into the nature of the problem itself. You may fmd
out that the problem you are trying to solve with the stack is

3 Building Your Own Stacks

a completely different one from what you frrst thought. This
added insight makes you a better problem-solver.

Building stacks for others

If you are a programmer or a designer and are asked to develop
stacks for other people you don't need to be convinced of the
value of stack design. You've been doing custom programming
long enough to understand its strengths and weaknesses. Your
concern probably lies more with the issue of whether HyperCard
is an appropriate vehicle for solving a specific problem.

The brief answer is that you can do anything with
HyperCard, particularly with its extensibility (discussed in
Chapters 21 and 22) and forthcoming interfaces to other
languages, that you can do with any other programming
language. Even without extension, HyperTalk is, as you will see
in this book, a very powerful programming environment that is
rich in functionality. The language also brings an ease to
programming Macintosh applications that no other language has
approached.

But you have to deal with some realities if you decide to use
HyperCard and scripts to solve problems for clients and
customers. The biggest single limitation of HyperCard is a
function of its pleasant predictability for users. Applications
written in HyperCard must permit only one window on the
screen at a time and confine the size of that window to the size of
the screen. If users have a big screen and run MultiFinder, they
can relocate the window. But it will always be one window
exactly as big as the standard screen. So if your application
demands multiple windows, you are probably not going to
choose HyperCard.

But don't be too hasty in deciding that you need multiple
windows. We have perhaps become a bit spoiled by the Mac's
power in permitting many windows lying around desktops that
quickly become as cluttered as their real-world counterparts. But
many applications don't require that added window capability.
Unless the user needs to see two or more pieces of information in
parallel on the screen or look at several different applications or
data at the same time, multiple windows can become confusing,

4 Chapter One

especially to the casual user. We've watched Mac newcomers
struggle to figure out how to bring a hidden window to the top of
the stack and noted the near-panic feeling of perhaps having lost
forever not only the window but also its contents!

Another sometimes significant limitation of HyperCard
from a programming standpoint is the way it shields you from
Macintosh ROM Toolbox routines. This can be a real advan­
tage: the ROM is mysterious and difficult to understand and
manage in many ways. And it is true that you can extend Hyper­
Talk with external commands and functions that do access the
Toolbox (we'll show you some of those extensions in Chapter
22). But if you confine yourself to HyperTalk as it is designed
and delivered by Apple Computer, you're apt to feel a loss of
control over the application.

A minor but sometimes irritating restriction in HyperCard
involves its confining all the text in a given field to a single type
font and style. Getting around this problem can be quite a chore
in fields that the user needs to be able to access and modify.

All these limitations are minor when you compare them to
the staggering power and ease of programming in HyperTalk.
But you are probably not going to design the next spreadsheet
program in HyperCard. And it's not well-suited to designing a
full-powered word-processing program. But tasks that involve
the things at which HyperCard excels can be a pure joy to design
and program in HyperTalk. Here's a list of some of the particular
strong points of HyperCard.

1. You will probably never need to worry about local
coordinates, global coordinates, and the location of button's
and fields on the screen. HyperCard uses its own set of
coordinates anchored to the upper-left corner of the card for
almost everything you do. But more importantly, a buttons
location has no effect on your scripts. If the user moves the
button, your script need not be aware of his action. The script
goes with the button, wherever the button goes.

2. Designing the most useful interface objects is as easy as
using a painting or drawing program. Even scrolling fields,
a difficult and demanding task even for a proficient Mac
programmer, snap into place with a few clicks of the
mouse.

5 Building Your Own Stacks ----------------------

3. HyperTalk, as we will see, includes powerful control
structures, high-quality visual effects, and full program
access to and control of menu interaction. It is a complete
programming language in its own right.

4. When you write scripts, you can be as verbose (and readable)
or terse (and efficient during coding) as you like, within
broad limits. Many commands have several forms of syntax
depending on how readable you want your scripts to be.

5. The modularity of having each script connected to an object
means the notorious "ripple effect" of conventional
programming practices all but disappears. If a handler for a
particular event connected to a button works in script A, it
will work identically in scripts B, C, and D, with little or no
modification.

6. HyperTalk is designed so that it tries - very hard, in fact­
to make sense out of your code. Only when it has exhausted
a fairly thorough search of its understanding of the
HyperCard environment are you going to get an error
message. And when you do get an error message, you can
move with a single mouse click to the script to find the cursor
blinking at precisely the point where the error occurred.
Debugging is streamlined.

You will discover dozens of other advantages to HyperTalk
scripting as you work through this book and begin to build your
own stacks. We believe that HyperCard as a paradigm and
HyperTalk as its programming environment are a leap in Mac
program design. Before you are done with this book, we're
confident you will agree.

Step-By-Step Design

Now that you are convinced that designing and scripting your
own stacks will be rewarding and pleasant, how do you begin?
How do you move from an idea for a new product or a problem
to the solution itself?

6 Chapter One

The steps in building a HyperCard stack are not so different
from programming in more conventional languages. They are
summarized in Figure 1-1. Those unique to HyperCard or that
require further amplification are discussed in the following
sections.

Figure 1-1. Steps in HyperCard stack design and construction

Design process

The first four steps in the process of designing a stack as shown in
Figure 1-1 are identical to those in any other application develop­
ment environment They are beyond the scope of this discussion.

7 Building Your Own Stacks -----------------------

Any book about basic programming techniques contains informa­
tion on these steps. There is some information in Chapter 23
about some of the decision-making involved in these steps from a
HyperCard standpoint.

Sketch the backgrounds

Every stack has at least one card. Every card has one background.
Sometimes the backgrounds in your stacks are graphically elabo­

rate. Other times, they are simple and relatively sparse. Because
the background can be detailed in later, it is a good idea simply to
rough out the ideas and put in the necessary buttons and fields at
this stage.

A word about "borrowing"

One of the principles of Macintosh software design that became
established very early in the computer's history was the principle
that "nobody does it from scratch." If you've done any serious
Mac programming, you know that programmers frequently reuse
the main event loops and common procedures of other program­
mers. There is, by and large, only one way to do many things on
the Mac.

HyperCard extends the idea of borrowing to a new level.
Unlike almost any phenomenon since the first days of BASIC on
microcomputers, HyperCard has fostered a spirit of giving and
sharing among its users and developers. We've seen program­
mers who wouldn't share three lines of their preciously thought­
out and painstakingly crafted Pascal code go to great lengths to
make sure that anyone who wanted a copy of their latest whiz­
bang script got it. As a result of this spirit, you can go to hun­
dreds of places to get ideas for backgrounds and card designs.
You may stumble onto one that is exactly what you need for your
stack. Or you may find one or more from which you can borrow
elements to build what you need. This sort of borrowing -
dubbed by one writer as "standing on other people's shoulders,
not their toes" - is encouraged and generally positive.

But be careful about what you borrow and for what purpose.
The stack, button, and card ideas distributed with HyperCard, for

8 Chapter One

example, are yours to use freely. A great deal of stackware that
has developed in the first furious months of HyperCard's popu­
larity is freeware or shareware that you can use at little or no cost.
But check your source. "Borrowing" cards, buttons, scripts,
backgrounds, and designs from copyrighted stacks may be illegal
and is certainly dishonest. If you really need something that a
copyrighted stack contains and you are not planning to market the
product that incorporates it, drop the copyright holder a note.
Quite often, he or she will be happy to give you a release for the
limited purpose of your stack; after all, imitation remains the sin­
cerest form of flattery.

Defining and implementing links

If you have worked with HyperCard in its authoring mode, you
know that much of the readily apparent power and flexibility of
the program stems from its elegant implementation of dynamic
links. Connecting one card or idea to another is child's play.

When you design a stack, it's a good idea to think very ear­
ly about these links. At least two major benefits derive from this
approach.

First, deciding on the links often helps you structure the
stack in the way that the casual browsing or typing user will find
comfortable and natural. Before all the functionality and relative
complexity of scripts and dozens or hundreds of cards are in the
way, you can think about this issue concisely and somewhat
abstractly. Also, this often enables you to gain insight into the
design of the stack itself, sometimes leading you to change or
enhance the design.

Second, implementing the links is easier when the stack is
new and there aren't a lot of visual or conceptual impediments to
seeing the path clearly. Efficiency will result.

Writing scripts

This book is entirely about writing HyperTalk scripts. These
collections of HyperTalk "code" are not nearly so much like
programs in the conventional sense as they are like Pascal

9 Building Your Own Stacks ----------------------

subroutines or Smalltalk methods. (We'll have more to say on
this subject in the next chapter.)

A script is exactly what its name implies. It consists of a
series of handlers, each of which is responsible for dealing with
or responding to certain messages from HyperCard objects such
as buttons and fields. And a script tells the object to which it is
connected how to behave, which is exactly what a TV or theater
script does.

You may develop your scripts modularly, dealing with one
event at a time. "What do I want to have happen when this but­
ton is pressed?" is one question that is answered by a script.

Testing and debugging

Like the first four steps of this process, testing and debugging a
script is very similar to programming in other languages and
won't be covered in this book. Suffice it to say that you should
make sure the script is working under all circumstances you
anticipate the end user expecting.

Finalizing the backgrounds

After you're sure the stack and all its scripts are working, you
can confidently fill in the graphic, visual, and other details of the
backgrounds. We are not talking about the functional or opera­
tional aspects of the background such as buttons and fields but
rather of cleaning up fixed-text labels, adding graphic interest,
detailing existing rough sketches, and the like.

Documenting HyperTalk

As mentioned, HyperTalk permits you to write scripts that are
easily read by other people, even those who are not proficient
scripters. Throughout this book, we encourage this verbose,
readable style for many reasons. If you are interested in some of
the most cogent arguments for ensuring the readability of code,
get a copy of Dr. Adele Goldberg's article, "Programmer as
Reader," which appeared in the September 1987 issue of IEEE

Summary

10 Chapter One

Software magazine. Among other things, she says, "Readability
is an issue because we read to learn to write, and we read to find
information, and we read in order to rewrite." We firmly agree.

But beyond writing your scripts in a verbose way (even
though it requires a few extra keystrokes when you're typing the
script), you should also be sure to include a Help function in
your stack. Users are accustomed to seeing a question mark (see
Figure 1-2) on which they can click to get help. The help screen
that appears when you click on such a button is just another card
or a pop-up field on the current card.

Figure 1-2. Typical HyperCard help button icons

A fmallevel of documentation involves the judicious use of
buttons that are intuitive and visual effects that convey
information to the user. These topics require an understanding
of how HyperTalk works and deals with the user and are left to
Chapter23.

In this chapter, you examined some of the reasons for doing your
own HyperCard stacks and scripts. We discussed the process of
designing stacks and examined the steps that are unique to
HyperTalk.

Before you begin learning the HyperTalk language
however, you will be well-served by taking a more conceptual
look at HyperTalk and its HyperCard environment. This process
begins in the next chapter, when we relate HyperTalk to the
concepts of object-oriented programming.

CHAPTER

Object-Oriented
Programming

I n this chapter, you will learn

• the important new role being played in software development
by concepts grouped under the rubric "Object-Oriented
Programming" (OOP)

• how HyperCard parallels some of those concepts and goes
its way in others

• how an understanding of OOP can help you be a better
HyperTalk programmer

HyperCard: Object-Like Programming

Let us be clear at the outset of this discussion. HyperTalk is not
object-oriented programming in the "traditional" sense. We know
it lacks some essential features of true OOP. But our interest in

11

12 Chapter Two

this chapter is how closely some key ideas in HyperCard resemble
those in OOP. The objective is to see what the world of OOP has
to offer to would-be HyperTalk gurus.

To describe HyperTalk and its somewhat loose ties to OOP,
we have coined the phrase Object-Like Programming while not
suggesting that we refer to it as OLP. HyperTalk is object-like in
that it uses some of the same terminology, adopts some of the
same methods and adapts others, and in many ways looks
and"feels" like OOP.

Before you can appreciate the validity and utility of all this,
though, you need a basic understanding of OOP. The next sec­
tion presents some of the fundamental ideas in OOP, but it is not
an exhaustive treatment of the subject. (For more depth and lots
of examples, see Kurt J. Schmucker's Object-Oriented Program­
ming on the Macintosh, another member of the Hayden Macintosh
Library.) If you are already familiar with OOP, you might want
to skim or skip the next section.

OOP Fundamentals

Object-oriented programming is a way of looking at programming
tasks that differs from the traditional approach. In procedural pro­
gramming with Pascal, C, and other similar languages, you de­
scribe functions and procedures that operate on certain types of
data. The data is separate from the functions that operate on it. In
OOP, data and procedures that operate on the data are together,
packaged in something called an object.

There are five central ideas in OOP: objects, messages, meth­
ods, classes, and inheritance. Although we explain each of these
ideas briefly, they are so intertwined that an understanding of each
depends on an understanding of the others.

What are objects?

Viewed abstractly, an object is a single programming entity that
combines data and procedures or functions that operate on that data
Viewed from a programming standpoint, objects are the elements of

13 Object-Oriented Programming ------------------------

an OOP system that send and receive messages. We discuss
messages in greater detail in the next section.

If you write a procedure to invert something in Pascal, you
have to know in advance what kind of data the procedure will op­
erate on. For example, inverting text might mean changing it
from black letters on a white background to white letters on a
black background. Inverting a matrix, however, is a complex
mathematical operation unrelated to text color display. Similarly,
inverting a graphic object like a pyramid is different from invert­
ing text or numeric matrices. If you want a program to be able to
invert any of these types of data, you would write a separately
named procedure for each type of data, check in your program for
the type of data to be manipulated, and then call the appropriate
procedure. This process is depicted in Figure 2-1.

PROCEDURE Invert text

PROCEDURE lnvert_matnx

1 9 8 4 3 87 2.04

11 2 4 0 1 0 0 9.0

- 9.0031.2 5168

PROCEDURE invert pyramod

PROGRAM do_somethlng

CASE data_ type o f

text
invert text

matrix
inven _matrix

pyramid
invert pyramid

Figure 2-1. Data, procedures, and programs are separate in
traditional programming

Object-oriented programming however, permits the designer
to say, in essence, "I want to invert whatever object I've been
working with, so I'll just use an invert command and let the
system take care of the problem." In OOP parlance, this
command is referred to as a message. An object called, for
example, matrix receives a message called invert and carries out
its own processing in response to the message. There are still
three separate invert routines, but the part of the program that

14 Chapter Two

inverts an object doesn't need to be aware of them. This situation
is represented in Figure 2-2.

Object: Matrix Object· Pyramid Object· Text

1 9 8 4 3 87 2.04 D 11 2 4 0.1 0 0 9.0 Some text to be inverted

-9 .003 1.2 5 16 8

Method: Invert Method: Invert Method: Invert
Method: Other(s) Method: Other(s) Method: Other(s)

invert Invert invert
message

Object: Processor·1
message message

Need to Invert an object

Figure 2-2. Data, messages, and methods in OOP

You can probably see an advantage to the OOP approach. If
you want to add a new type C?f object to a procedural language ap­
plication - for example, a list of items where invert means "re­
verse the order of" - you have to define a new procedure and
add a new case to the main program. In other words, everything
will change. Thanks to the well-known "ripple effect," the conse­
quences of this could take a long time to resolve. In an OOP
world, though, you simply create a new object and add to it the
ability to invert itself. Any other objects that send this new object
an invert message do not need to be modified. The change is iso­
lated and, therefore, manageable.

What are messages?

We have talked glibly about messages as if it were obvious what
they are and what they do. Although they may constitute a new
programming idea, the concept of messages is not novel. When
you call a friend across town and she answers the phone, you are
sending messages. When you mail a letter to someone and the
person on the other end opens it and reads it, you're sending mes­
sages. In fact, you probably do most of your work by sending

15 Object-Oriented Programming
--------------------~

messages of one kind or another to other people and to machinery
or electronic equipment.

A message in an OOP world corresponds to a procedure or
function call in a procedural language. Everything in OOP is ac­
complished only one way: one object sends a message to another
object and the receiving object reacts. There are no al temate ways
to get things done. The simple elegance of this model makes pro­
grams written for an OOP environment easy to understand.

What are methods?

The idea of a method is the easiest of the five basic OOP concepts
to explain. A method corresponds almost exactly with a function
or a procedure. A method is the code in an object that tells the ob­
ject how to react when it receives a message with the same name
as the method.

In the previous example, each type of object had an invert
method. When an object receives an invert message from another
object, it simply carries out the instructions in that method. Some­
times, it sends a message back to the sending object indicating it
has completed the instruction. Other times, it might trigger anoth­
er method in another object, perhaps even a different invert meth­
od in another object, to accomplish its goals. To do so, it sends a
message to that object

If a message is sent to an object that does not have a method
of that name defrned, the system generally handles the problem
with an error message such as "Object pyramid doesn't
understand how to invert." Objects in OOP can have zero to any
theoretically large number of methods they understand and that
mold their behavior in reaction to messages from other objects.

What are classes?

Groups of objects with sets of common characteristics are called
classes. The most important thing objects in a class have in com­
mon is the way they react to one or more messages. If we had to
write the same method for every single object, some of the advan­
tages of OOP discussed in the next section would be lost in a
mass of code. But if we define a class, each object we create as a

16 Chapter Two

member of that class will already know how to behave in
response to the messages the class contains. The class, like
everything else in an object-oriented world, is itself an object.

Individual objects are referred to as instances of a class. Be­
cause a class is also an object, an object can be both a class and an
instance of another class. The concept that makes classes signifi­
cant is the fifth OOP central idea: inheritance.

What is inheritance?

In a true object-oriented world, objects inherit behavior from their
ancestors in an ever-expanding and descending chain of heredity.
All objects in OOP have at least one ancestor. The closer an ob­
ject is to the root object class from which all other objects and
classes spring, the fewer ancestors it has. This structure resem­
bles an outline or a classification scheme.

Figure 2-3 depicts a classification structure for a class called
Furniture. As you can see, this class has subclasses called Seat­
ing, Table, and Lamp. The subclass Seating, in turn, has other
subclasses, and so on.

Class: Furniture

Class: Seatin&

Class: Chair

lnsunce· annchatr
Instance: easy chatr
Instance: secR:tllnal chair

Class: Stool

Instance: milking stool
Instance: bar stool
Instance: snack counter stool

Class: Sofa

Instance: sofa bed
Instance: sofa
Instance: love seat

Class: Table

Class: Lamp

Figure 2-3. Typical classification scheme

The key idea in inheritance is that if the class Furniture has a
method called, for example, movelt, every member of every

17 Object-Oriented Programming
------------------~--

subclass can use that method in the same way. If you send the
message moveit to a love seat, it need not have a method called
moveit. It simply passes the message up the hierarchy to its im­
mediate ancestor (in this case, Sofa), which reacts if it has a meth­
od named moveit or passes the message on if it doesn't have a
corresponding method.

Generally, you can override a method that a class has in com­
mon so that an individual instance can react differently to that mes­
sage. If you find yourself doing this too often, the method may be
one that isn't really a good one around which to build a class.

Object-oriented programming summary

Let's see if we can capsulize this sketchy look at object-oriented
programming. Everything in an OOP environment is an object.
Each object (except the one central object from which all others
are descended) has at least one ancestor. An object inherits meth­
ods from all its ancestors in the chain that tell it how to respond to
messages. Everything in an OOP environment is accomplished
by objects sending messages to other objects.

Why Object-Oriented Programming?

Why has OOP become such an important idea in the past few
years? It really seems to be just a new way of looking at pro­
grams and data. So what's all the excitement about?

The characteristics inherent in OOP create numerous advan­
tages in software design and development. Let's take a look at the
three main ones often singled out by proponents of the OOP ap­
proach to computer programming. These are

• the natural "feel" of the OOP model of the problem

• the high degree of code reusability

• the ease of maintenance and modification

18 Chapter Two

OOP is "natural"

The world in which we live is composed of objects. And as we
saw earlier, we accomplish much of what we do by sending mes­
sages to other objects in our world and reacting to their messages.
Furthermore, we generally do things by telling other objects what
we want done rather than by explaining in great detail how to do
them. The how describes the procedure and is part of the proced­
ural programming model. The what describes the task, the prob­
lem, and its solution in descriptive, or declarative, terms, and is
part of the declarative programming model of which OOP is a
prime example. When you give your Macintosh a print message,
you don't tell it, "Now I want you to take this document that I've
just finished creating and analyze its bit map structure. Got it?"
You just tell it to print and expect its behavior to follow.

Similarly, if you give an assignment to a subordinate, you
generally say, "I need the quarterly objectives report on my desk
by 3:00, Jim." You don't say, "Jim, I want you to sit down at
your desk. Take out a piece of paper and a pencil. Now, put at
the top of the paper ... "

But these descriptions - simplified for illustration- are
good summaries of the differences between procedural program­
ming and OOP. The world just doesn't work procedurally. Con­
sequently it is much easier to write programs designed to emulate
or simulate reality and intelligence in OOP environments than in
more procedure-oriented environments.

NOTE

We should not leave the impression that the dichoto­
my is between procedural languages and OOP. The
distinction is between procedural and declarative lan­
guages. OOP just happens to use a declarative style.
Prolog, for example, is virtually never used in OOP
environments but is a declarative language.

19 Object-Oriented Programming
------------------~--

Code reusability

If you can define one object that is usable in several different sys­
tems, you can move it from one system to another with great ease
in an OOP environment. There is nothing new to declare in the
second system, no data structures to worry about, no other ob­
jects or procedures to modify. Simply pick up the object from
program A and plop it down in program B and run it.

Consequently if a programmer is proficient in and
comfortable with OOP design concepts, he or she spends a great
deal of time building reusable tools and objects. After that, a large
percentage of programming time is spent simply assembling the
appropriate objects into new "worlds," or systems. Very little
time gets used up by re-inventing wheels.

Ease of maintenance

As we saw earlier, the "ripple effect" that causes so many soft­
ware maintenance headaches all but disappears in an OOP envi­
ronment. If the object behaves in a certain way in system A, it is
guaranteed to work the same way in system B. Debugging is ef­
fectively (though not totally) reduced to finding messages sent to
inappropriate objects, messages sent with the wrong number of
arguments, and missing or undefined objects and methods.

OOP and HyperCard

So what does all of this have to do with HyperCard and Hyper­
Talk? After all, we've already pointed out that HyperTalk is not
an object-oriented programming language.

There are some strong parallels between HyperTalk and true
OOP systems, though, and these parallels are neither accidental
nor incidental. Although the parallels are not exact and don't hold
up throughout the architecture of HyperTalk, they are interesting
and important enough to merit our attention. Our hope is that by
seeing the aspects of design and programming that HyperTalk and

20 Chapter Two

more traditional OOP languages have in common, you will see
how to take advantage of OOP concepts in designing stacks.

Objects in HyperTalk

There are five types of objects in HyperTalk: stacks, back­
grounds, cards, buttons, and fields. Like OOP objects, each of
these can send and receive messages. Each type of object can be
associated with a script that contains handlers, which correspond
to methods (as we'll see in a moment). So the object and the pro­
gram code that enables it to respond in a specific and predictable
way to a message are packaged together, exactly like objects in an
OOP environment.

Messages in HyperTalk

The parallel between OOP systems and HyperTalk continues
when we examine the subject of messages. HyperTalk uses the
same term to describe the communications that take place between
objects.

HyperTalk includes system messages that are sent as a result
of events triggered by stack users. Each type of message can be
addressed to one or more of the types of objects encompassed by
HyperCard.

Conceptually, a stack, like all Macintosh applications, is a
single loop (technically referred to as the Main Event Loop) that
essentially stays on the alert for events to which it must respond.
When an event takes place, a system message is generated and
sent to the object of which the event is the target. That object
reacts as called for in the handlers contained in its script. The par­
allel with OOP is quite strong.

21 Object-Oriented Programming

Methods in HyperTalk

As we have pointed out, each type of object in the HyperCard
hierarchy can have a script associated with it. In each script there
can be one or more handlers. These handlers correspond closely
to OOP methods. A handler is associated with each type of mes­
sage the object can receive.

There are two types of handlers in HyperTalk scripts: func­
tion handlers and on handlers. On handlers are also called event
handlers in this book because they are typically triggered by an
event, as described in the preceding section.

In addition, all HyperCard objects are associated with prop­
erties (discussed in Chapter 17). Some properties bear a close re­
semblance to methods as well. For example, a button can have a
property of being automatically highlighted when it is pressed.
This is a character trait, or behavior, of the object, and so it corre­
sponds at least roughly to a method.

Classes in HyperTalk

There is no strong analog in HyperTalk to OOP's concept of class­
es. The hierarchical form of inheritance (see the next section) used
in HyperTalk is not precisely parallel to that of object-oriented pro­
gramming, due in part to the lack of classes for objects. For ex­
ample, there is no class called a button class to which all buttons
belong and which has individual instances of buttons. Although
there is some commonality of behavior among buttons - they all,
for example, cause something to happen when they are pressed ­
there is really no classification scheme resembling OOP classes.

The concept of card backgrounds, however, comes close to
emulating an OOP class. All cards in a stack with the same back­
ground have many common characteristics. They usually look the
same, and buttons that appear on backgrounds look and act identi­
cally from card to card within the background group. When you
design a stack, you generally group cards with similar functions
into backgrounds in the stack. Complex stacks almost always
have more than one background.

But because you put specific card types into the same back­
ground group rather than have them formed by the program as a

22 Chapter Two

consequence of their functional similarity or as a direct result of a
command, the parallel with OOP classes is not quite complete.

Inheritance in HyperTalk

There is no true inheritance in HyperTalk. Messages pass
through a definite hierarchy (see Figure 2-4), and this hierarchy
has some of the characteristics of OOP inheritance structures, but
the analogy is less complete when it comes to inheritance than on
any other point.

HyperCard

Home Stack

Stack

Card

Background

Mouse
or

Button

Figure 2-4. HyperTalk hierarchy of inheritance

The hierarchy in Figure 2-4 is up from the button or field,
where the action takes place that triggers the event, to the back­
ground, card, and stack, then to the Home stack, and finally to
HyperCard itself.

A message that originates with the press of the mouse on a
button gets passed up the hierarchy until one of two things hap­
pens: a handler with the same name is encountered and executed
or the top of the hierarchy is reached with no handler having inter­
cepted and acted on the message. This behavior is quite similar to
the message processing approach of OOP systems.

But the opposite is not true. In other words, just because a
particular button on a card has the ability to respond to a specific
type of message does not mean all other buttons have the same
capability. The same can be said of backgrounds and cards. If
you create a new card using the Edit Menu's New Card option, the

23 Object-Oriented Programming
--------------------~

new card has the same background as the currently visible card un­
less you specifically choose not to copy that background (in which
case you end up with a blank new card). If the background has a
handler for a particular system message, the copy also has that
same handler. But this is not inheritance so much as it is copying,
because the new card of the same background is not a descendant
of the original; both are on the same level of the hierarchy.

How OOP thinking helps in stack design

You can see why we said at the outset of this discussion that Hy­
perTalk is not true OOP but shares enough with that approach to
software design to merit consideration of the parallels.

We mentioned that code reusability is a major advantage of
OOP systems. Because of the absence of true inheritance, that ad­
vantage does not accrue to HyperTalk. Thanks to the Macintosh's
marvelous editing power of cut-and-paste, you can easily copy
scripts and handlers from one object to another object of the same
type (or even a different type). But this manual process, no mat­
ter how facile, hardly qualifies as inheritance of behavior from ob­
ject to descendant object.

On the other hand, the isolated nature of a handler and its
ease of modification mean that maintaining scripts is much easier
than modifying and managing traditional procedural programs. If
the handler works in response to the message it handles in one
card or button, it will work correctly in another place. Similarly,
if a script has more than one handler, even if they interact, the
functionality is isolated to a sufficient degree that software mainte­
nance is quite straightforward.

Finally, and perhaps most significantly to HyperTalk pro­
grammers, the language does a remarkably good job of emulating
the world of which it is a model: that of the Macintosh applica­
tion. It makes working with the complex world of objects much
simpler, more readable, and more enjoyable than any other Macin­
tosh product since the first desktop appeared on the first 128K
Mac screen several years ago.

Partly because of its strong object influence and partly be­
cause of the nature of the Macintosh world that lends itself well to
such object emulation, HyperTalk removes many of the barriers
between programmers and elegant, usable, Mac-like applications.

Summary

24 Chapter Two

In this chapter, we looked at the basic concepts of the new soft­
ware idea called object-oriented programming (or OOP) and saw
how they relate to the HyperTalk programming language. We
also saw that the parallels between the two approaches are strong
but not complete. We learned some of the advantages of OOP and
saw how those advantages translate into the world of HyperTalk
design and programming.

Chapter 3 is a refresher course in how HyperCard works
from the viewpoint of a browser or author.

CHAPTER
r:;l '''!111111!11111111111;,; ,

I IIIII~

; !I I!';! 111111

HyperCard Refresher

h is chapter reviews some of the basic ideas in HyperCard as
seen by the users of your stacks. Topics include

• user preferences

• navigation techniques

• links

• using find

• authoring tools

• field creation and characteristics

• button creation and characteristics

• copying, moving, and sizing objects

• using HyperCard on read-only media, such as CD-ROM

25

26 Chapter Three

The User's Viewpoint

Before we launch into a discussion of programming in Hyper­
Talk, let's pause and take a telescoped look at HyperCard from
the perspective of the users who do not generally program their
own stacks. Until now, you were probably in this category. So
it may seem redundant to spend any time on the use of Hyper­
Card. After all, you bought this book to learn to program Hyper­
Card your way, not to learn to use it.

But our objective here is not to teach you to use HyperCard.
It is rather to refresh your recollection about aspects of its use
that may by now have become so familiar that you don't think
about them much. Additionally, we look at some of the author­
ing techniques you'll need to emulate in your scripts with com­
mands. You are used to performing techniques with explicit
mouse-and-tool manipulation. But running these tools by remote
control, through a HyperTalk script, has a slightly different feel.
By spending these few minutes, you will also understand the
user's relationship to HyperCard. That will make the rest of your
exploration in this book more fruitful.

What kind of user?

When we talk about the user's perspective, what kind of user do
we have in mind? Given that there are several levels of user be­
low that of scripting, what type are we talking about here?

Throughout this book we will focus on designing and
providing stacks for users who are browsers and typers. We are
convinced that the majority of HyperCard users are in those
categories and that most are probably typers. You will probably
want to design your stack so that the user who wants to do
authoring can't get into your scripts and change anything
fundamental. And you will probably not want your users to be
able to relocate buttons and fields, particularly if you rely on
their position for some of the tasks in your scripts.

So the primary emphasis is on the user who wants to get at a
stack of information, put new data into a stack, and use the

27 HyperCard Refresher -----------------------

knowledge stored there without moving things around or
changing the way they work.

But we also discuss authoring techniques and tools. By
now, you probably have some experience with these aspects of
HyperCard. Although we don't expect the user of your stacks to
understand these tools, you will often use the techniques
described in this chapter to build basic cards and backgrounds.
And you' ll be doing object manipulation that originates in the
authoring environment from within scripts.

User preferences

HyperCard has five levels of user involvement. These are out­
lined in settings on the User Preferences card in the Home stack,
as shown in Figure 3-1. Each higher level of control gives users
access to additional tools.

a File Edit Go Tools cts

User Preferences

User Name: Dan Shafer

User Leuel:

0 Browsing

O Typlng

0 Painting

0 Authoring

®Scripting

0 Power Keys

0 Blind Typing

Figure 3-1. User preferences settings

28 Chapter Three

At the browsing level, users can only look at information in
a stack. This corresponds to traditional read-only access. Mov­
ing to the typing level, users can enter and edit text in card fields,
giving them read-write access to data but still restricting them
from changing the stack's structure.

When users have painting level control, they can add graph­
ic objects to the stack or any card with the powerful paint tools
built into HyperCard. At this point, users can change the stack's
appearance but not its functionality.

Users with authoring access can modify fields and buttons,
create new backgrounds, and generally modify anything about a
stack except the scripts attached to objects. This is the highest
level of control over HyperCard one can use without learning to
program in the HyperTalk language.

Only by setting the level to scripting can users gain access
to scripts and HyperTalk commands for permanent modification
of the stack.

NOTE

To do the work in this book, make sure you have set
your user level to scripting on the User Preferences
card of the Home stack. It's probably a good idea to
do that now if you haven't previously done so.

Modifying the user's level

As you will see in Chapter 17, one of HyperCard's global prop­
erties that your script can monitor and modify is the user's ac­
cess level. You can be in control of this the entire time your
stack is running. If you want to disallow access above the
browsing or typing level because such access could be dangerous
to your stack, you can

• set the user level in your script

• intercept and prevent any effort by the user to modify the
level

29 HyperCard Refresher
------------------~~

CAUTION

If you do find it necessary to change the user's ac­
cess level during the use of your script, be sure to
change it back to its original setting when your
script is finished and the user is returning to the
Home stack or going on to other work. If you fail to
do so, you may find yourself with some highly irri­
tated users who find themselves unable to perform
tasks they should be able to perform on other stacks
after using yours.

Even a browsing-level user can perform a number of functions in
HyperCard. We will concentrate on two activities that constitute
most of those actions and, not coincidentally, the bulk of the
browsing-level commands in HyperTalk: navigation (moving
between cards and stacks) and finding information in fields.

Navigation functions

As you design and construct stacks, keep in mind the ways in
which the casual user is accustomed to moving around in
HyperCard.

Most stacks have buttons the user can click to move for­
ward or backward in the stack, to the beginning of the stack, or
to the last card in the stack. These buttons often look like those
shown in Figure 3-2, though of course they need not look like
them at all. The buttons in Figure 3-2 are included with Hyper­
Card in the Button Ideas stack.

30 Chapter Three

a File Edit Go Tools Objects

First. Pr evious. Next. Last. Return

First

~
K;l

1¢1

~

Previous Next Last Return Hands

¢l Q ~ ~ ~(Iff>

Q Q ~ <;J ~ w

¢ Q ~ ~ ~ w

Q ~ ¢0 ~ u 0"

¢c>

Figure 3-2. Typical navigation buttons

Because browsers are accustomed to buttons of this type for
navigation, you should consider including such buttons in your
stacks and retaining their usual meanings. Placing a right arrow
button in your stack and expecting the user to know that the but­
ton increases the value of a number in a field, for example, is not
a terrific design idea

On the other hand, feel free to invent new icons or shapes
for buttons that are, at least to some degree, self-evident. For ex­
ample, if you want to let a reader who has clicked on the turned­
up comer of a card move forward and backward in the stack, this
is relatively easy to do and may be sufficiently evident that the
user figures it out easily and becomes comfortable with it.

Clicking on buttons is not the only way users can navigate, of
course. They can choose items from the Go menu (see Figure 3-3)
or type their keyboard equivalents. All these navigation tech­
niques are available to the browsing user.

31 HyperCard Refresher
--------------------~

a file Edit

Home
Help
Recent XR

First Xl
Preu X2
NeKt X3
Last X4

Find ... XF
Mes

Figure 3-3. Go menu

It is unlikely that you will design a stack in which you don't
want the user to be able to navigate. But if you do design such a
stack, not only will you want to exclude the usual navigation but­
tons, you will also want to design handlers to trap key combina­
tions the user can type to navigate as well as menu selections.

Using find

Another common task the browsing user performs is locating in­
formation stored in fields by using the find command. This
command can be invoked by a menu selection from the Go menu
or by typing Command-F from the keyboard. When the user se­
lects a find operation, the Message box appears (if it was previ­
ously invisible), with the wordfind already typed and the cursor
flashing between two quotation marks (see Figure 3-4). The user
then types in the string to be searched for in the stack. When
HyperCard fmds the string, it stops on the card and draws a rec­
tangle around the located text (see Figure 3-5).

32 Chapter Three

Chapter It

.!.!.~-~t _ - --·-·---.. -·-.. - -- ·-- ·--....... -....... ___ _ _ .. _, - ... -

Figure 3-4. Tbefmd Message box

Quite often the user types in more than one word to find. In
that event, HyperCard finds a card on which all of the words ap­
pear, regardless of their order, relation to one another, or even if
they are all in the same field. For example, if the user searches
for New England, a card that describes the new Prime Minister
of England is found, with the word new marked.

With HyperCard versions beginning with 1.2, the user can
force HyperCard to find multiple-word groups only if they ap­
pear in one field and in exactly the order given. This find whole
function is invoked when the user presses Shift-Command-F
from the keyboard or uses the command inside the Message Box
or a script.

If you are designing a stack that involves data management
(see Chapter 10), you may want to include more sophisticated
find capabilities in your scripts. You can, for example, let the
user confine the search to a single field. But the basic find pro­
cess is the same.

33 HyperCard Refresher ------------------------

9&t put (in d•t~l)
conc~tenate op•r~tors (& &&)
lconvertl
find

q~¥~te

r•turn
sp~oe

t&b
d~t• seconds ticks time (
inol~• long, ~bbr•v, eto .)
l•nqth

Figure 3-5. HyperCard finds text

Authoring-Level Operations

At the authoring level, the user can perform an almost endless
variety of functions. The ones with which we are most
concerned, however, involve manipulating HyperCard objects,
particularly buttons and fields. Some of these functions in turn
involve the use of tools other than the browsing tool. We discuss
the following operations in the context of scripting:

• adding and deleting cards

• tool selection and use

• creating fields

• creating buttons

• copying, moving, and resizing buttons and fields

............ -----------------------

34 Chapter Three

Adding and deleting cards

Because the New Card, Delete Card, and Cut Card options ap­
pear on the Edit menu, you might think the browsing-level user
has access to them. After all, the Edit menu is displayed when
the user is a browser. But there are two different Edit menus in
HyperCard, one for browsing users and one for all other levels.
The menu on the left of Figure 3-6 shows what facilities the
browsing-level user has available. The one on the right is the full
Edit menu.

Undo xz

Cut XH
Copy XC
Paste TeHt XU
Clear

N<~ll' C<ll'd :J(tN

Ot;•ll' tl' (tut1

xz

Cut XH
Copy XC
Paste TeHt xu
Clear

New Card XN
Delete Ctud
Cut Card
Copy Card

Figure 3-6. HyperCard's Edit menus

As you will see when we begin exploring HyperTalk's
commands, you can design handlers to intercept the user's
attempts to delete cards, cut cards, or create new ones. Sometimes
you want special control over these functions if your stack allows
their use. For example, you might not want to let users delete a
card that has an outstanding value in a field. Or you might not
want to let users delete anything unless they have a special
password that the manager of the script-using team only gives to
certain members of the group.

35 HyperCard Refresher ----------------------

Tool selection and use

Authoring-level users of HyperCard can also access the button,
field, and painting tools from the Tools menu (see Figure 3-7).
Using these tools, users can modify basic information about but­
tons and fields or alter the appearance of a card or a background

Figure 3-7. Tools menu

The three tools across the top portion of the Tools menu are
the browsing tool, button tool, and field tool, respectively. All
tools below the dotted line in the menu are painting tools. De­
pending on the tool selected, the user can perform various tasks
using the tools directly or accessing menu options that only ap­
pear when a specific tool is chosen.

From within a script, you can choose a tool and then use
various commands to manipulate it as if by remote control. You
can also intercept an attempt to access a specific tool and either
prevent it or post a warning notice that lets users proceed only
after acknowledging that what they're about to do could damage
the stack or card content.

36 Chapter Three

Creating fields and buttons

Users with authoring-level access to HyperCard can create new
objects besides cards. They can add buttons and fields to a card
or background. (They can also modify them, as we will see in
the next section.) Because these operations can alter the nature
of your stack and the operation of your scripts, you may want to
provide intercepting handlers.

Users can create a new field in two ways. They can choose
the New Field option from the Objects menu, or they can use the
field tool to select and copy an existing field, then move it to a
different place on the card or background. New button creation
is a similar process. Copying can be done either with a menu op­
tion or by dragging the selected object with the Option key held
down. If you are faced with users who have authoring-level ac­
cess to HyperCard, you will want to be sure to either permit such
modifications and plan for them or provide handlers to intercept
the user's attempt to manipulate the stack via menus or tools and
provide appropriate barriers or warnings.

Altering fields and buttons

Besides adding new buttons and fields, users can delete, copy,
move, and resize existing objects if they have authoring-level ac­
cess to your script. As is the case with creating new objects,
they can modify existing objects either by using the right tool
and selecting the object manually or by using menu choices.

For example, the user can delete a button after it is selected by

• pressing the Backspace key

• choosing Cut Button from the Edit menu

• choosing Delete Button from the Edit menu

• pressing Command-X at the keyboard

37 HyperCard Refresher
--------------------~

Deleting other objects is also easy to do and there are many ways
to accomplish the deed. Your script will have to deal with each
of these possible situations to avoid serious damage to your
stack.

Users can also use the appropriate tool to select an object,
then drag it to a new location or resize it or both. Most of the
time, this will not affect your scripts, because the object's loca­
tion on the screen is not vital to your script's execution.
Wherever the user drags a button, it will still carry out its task
when it is pressed. But if you have script commands that depend
on the exact screen locations of objects, you will want to monitor
the changing of those locations by the user.

A voiding User Paranoia

With all this talk about the damage users can do to your stacks
and even their scripts if they have proper levels of access and the
desire to do so or a lack of understanding of the effects of their
actions, you may want to become very defensive in your Hyper­
Talk programming. One word of advice is in order: don't.

Macintosh users are accustomed to a great deal of freedom
and flexibility when they run applications. The Macintosh's de­
sign philosophy is that the user, not the programmer, is the boss.
If you design a script so that users can do exactly what you want
them to do and nothing else, you may find the script is not well­
received, at least by experienced Macintosh users.

We have more to say about this and other design issues in
Chapter 23, where we provide a number of design guidelines.
But for the moment, simply be aware that you must balance the
need for your stack to stay relatively unmolested and predictable
against the user's right to and expectation of a great deal of
flexibility, freedom, control, and power.

HyperCard and CD-ROM

From the time of its introduction, HyperCard was clearly per­
ceived by many people to be the key for unlocking the potential

Summary

38 Chapter Three

of such huge mass-storage media as CD-ROM (Compact Disk
Read Only Memory) and laser disks. In its first releases,
however, HyperCard could not work directly on locked media,
which limited its usefulness for such activities.

Beginning with Version 1.2, however, HyperCard can work
with locked media.

This concludes our discussion of how HyperCard works from the
user's perspective and how those operations should affect your
thinking as you script stacks. You have seen that users can per­
form many tasks, some of which may be undesirable. And you
know there are ways to intercept users'actions and either prevent
them or at least warn of the consequences before allowing them
to proceed.

Chapter 4 describes the basic building blocks of which all
HyperCard applications are composed and begins our study of
the HyperTalk programming language.

CHAPTER

HyperTalk Building
Blocks

I n this chapter, you will learn about the items that make up
HyperTalk, including

• action elements

• passive character traits

• objects

This chapter presents an overview of these HyperTalk building
blocks; each is discussed in detail in one or more places later in
the book.

Naming Things in HyperTalk

Before we begin our examination of the components of the
HyperTalk programming language, though, we should pause to
discuss the rules regarding the names of things in HyperTalk.

39

....

40 Chapter Four

Action elements and variables in the HyperTalk language
are generally made up of one word. Action elements include
functions, commands, and messages. If you defme a new func­
tion designed to reverse the characters in a string, for example,
you can call it reverse, reverseString, reverselt, or something
similar. But you cannot name it reverse the string because that
name has more than one word. Similarly, variables, a type of
special item called a container in HyperTalk, must also have one­
word names.

Passive elements other than variables are not generally
named; they are more correctly viewed as part of the structure of
the language, as we will see in a few moments.

Objects can be named almost anything you wish, using as
many words as you like. Thus, you can have a stack named My
Important Stuff and a card named Books and Magazine Articles.
Buttons frequently have two-word or three-word names (though
you have to watch the length and make sure it can be seen
through the button if you have HyperCard show the name on the
button). This makes HyperCard friendlier for users. A button
named Do It! is more communicative than one called dolt, which
might in fact also be misread.

Several words in one

One naming technique HyperTalk scripters often use is to run
two or more words together into one and then capitalize the first
letter of each embedded word. You'll see labels like current­
StackName, mouseUp, and passMeTheSalt sprinkled through the
HyperTalk script examples in this book and other scripts.

This approach to naming things is not unique to HyperTalk.
Programmers have been using the technique for many years. But
some programming languages have limits on the lengths of
names that make the use of such an approach marginally useful
at best. In HyperTalk, you won't encounter any limit that will
become problematic. A button or field, for example, can have a
name up to 253 characters long.

41 HyperTalk Building Blocks -----------------------

The first character is important

It is a good idea to avoid beginning the name of any HyperTalk
item with a number although it is not, strictly speaking, illegal.
HyperCard stores everything as strings of characters and tries to
interpret the numeric nature of this information from its context.
The matter is further complicated because HyperCard automati­
cally assigns numeric identification numbers to objects other
than stacks when they are created. Suppose you name a card
1234Alpha and then try to tell HyperCard to go to that card. Hy­
perCard is likely to assume from the first digit that this label is a
card ID. As a result, it won't find the card. Begin names with a
letter, and you'll avoid a lot of confusion!

Active Elements of HyperTalk

An active element, for the purpose of our discussion, is any com­
ponent of HyperTalk: that results in something happening in the
environment. Messages are the basic active element, but there
are several others, including

• commands

• handlers

• functions

• scripts

These elements and their use occupy much of our attention
in this book. The following brief discussion simply puts those
future discussions into perspective rather than provides an
exhaustive treatment of each subject.

42 Chapter Four

Messages

We have spent some time in Chapter 2 describing messages and
their role in HyperTalk. Now let's examine a message structurally.

All HyperTalk. messages consist of only one word. That
important idea is sometimes hard to remember. Because Hyper­
Talk includes the ability to add throw-away words (or, in more
traditional programming parlance, optional parameters), some
messages look like they're longer than one word. For example,
in Chapter 13 we '11 see the use of visual effects in HyperTalk.
These effects can be called with the message visual. But they
can also use the optional second word effect so that the command
looks like visual effect zoom open.

But only the first word of a message is the message itself.
Everything that comes after is either a parameter or additional
descriptive information (to tell HyperTalk what object to affect
with the message, for example).

The rule that only the frrst word of a message is its name
becomes important when you write handlers to respond tomes­
sages. The handler must be associated with a message name.
Requiring that all message names be one word makes life much
easier for us scripters!

Handlers

There are two types of handlers in HyperTalk: event handlers
and function handlers. An event handler always begins with the
key word on followed by the name of the message it is designed
to handle. It also ends with the key word end followed again by
the name of the message it handles. Most handlers you write
will be event handlers.

A function handler begins with the key word function fol­
lowed by the name of the function it defines. The purpose of this
handler is to allow you to define new functions that can be used
by other event handlers. This type of handler also ends with the
key word end followed by the name of the function involved.

After you define a function in a function handler, it is avail­
able to all other event and function handlers in the same script or
lower in the HyperTalk hierarchy. A function handler cannot be
defmed within another function handler or an event handler.

43 HyperTalk Building Blocks
--------------------~

There are some operational differences between these two
types of handlers. This subject occupies much of our attention in
Chapter 5.

Functions

Functions are of two types: built-in HyperTalk functions and
user-defined functions. HyperTalk has approximately 50 func­
tions that can be used in any handler. These functions involve
such tasks as

• mathematical calculations

• locating and managing the mouse and its button

• dealing with date and time

In addition, you can define any function you need. You do this
in function handlers, discussed previously and covered in detail
in Chapter 19. (It is also legal to define a function with the same
name as a predefined one, but then you bear the responsibility
for its proper use everywhere in your stack.)

Scripts

A script in HyperTalk is a collection of one or more handlers -­
some or all of which may be empty-- associated with a particu­
lar object. Although every object has a script, the script may
have nothing in it.

You can think of a script as a program, but as you know
from Chapter 2, that is a simplification. There are no programs
in a HyperCard stack. Instead, you have one or more scripts,
each composed of one or more handlers, which, taken together,
constitute the methods describing the stack's behavior in
response to messages.

44 Chapter Four

Passive Traits
T- a "J" ~ · 1 Ill il!l'il

Not everything in HyperTalk is active. Some elements of the
language are for the convenience and use of active elements.
These include

• variables

• properties

• control structures

• "chunks"

Variables as containers of information

Throughout this book and other HyperCard and HyperTalk docu­
mentation, you will flnd the term container used quite frequently.
It is easy, after a brief acquaintance with the term and its use, to
conclude that a container is nothing more than a variable in a
conventional programming language. That view, however, is too
simplistic to be useful or accurate.

A variable is a type of container. But in the broader sense a
container is anything that can be a repository of a value. Fields,
the Message box, and two special HyperTalk variables called It
and selection can also hold information and so are containers.

All programming languages embody the concept of a varia­
ble. A variable is any word or symbol whose value can change
as the program executes or from one execution of the program to
another. This variability of value is where variables get their
name.

In many programming languages, you have to define or de­
clare variables explicitly before you can use them. This is not
the case in HyperTalk. The rule is simple.

45 HyperTalk Building Blocks
--------------------~

HyperTalk Variable Rule

When HyperTalk encounters a word in a script that
cannot be interpreted as the name of an object or as
a chunk of an object's contents, it assumes the word
is a variable. J

It really is that simple. In practical terms, this means that to
use a variable in HyperTalk, you simply use it. No need to
declare it, define its type, or otherwise alert HyperTalk to its
existence or nature. Just use it and HyperTalk takes care of the
details. Attempting to read from or evaluate a container before
putting anything into it, however, generates an error in
HyperTalkjust as it would in any other programming language.

There are actually three types of variables in HyperTalk.
Global variables are accessible to any handler in a script and to
other scripts in the HyperCard environment. They must be ex­
plicitly declared global using the key word global in any script
or handler where they are used. Local variables are known only
inside the handler in which they appear and require no special
handling. Special variables are furnished by the system and in­
clude It, selection , and message box. We will have more to say
about these variables as they are used in subsequent chapters.

Properties

All objects have certain properties associated with them. For ex­
ample, they all have system assigned ID numbers (with the excep­
tion of scripts) and optional names. They also have properties
such as location, font characteristics, border, shape, and style.

These properties are all accessible to your scripts, and many
can be changed from a script (as well as, more conventionally,
through dialog boxes or other user-oriented means). Properties
are often examined and decisions made based on the outcome of
the examination. For example, you might want to check if a par­
ticular object is visible and, if not, to make it visible. Its visibili­
ty is a property that your script can both examine and change.

46 Chapter Four

Properties are a very important idea in HyperTalk. We devote
all of Chapter 17 to their use.

Control structures

Most programming languages embody elements called control
structures that permit the programmer to alter the normal
sequential flow of processing. HyperTalk is not an exception to
that general rule. Both repeat loops and if-then-else conditional
processing constructs are built into HyperTalk. These form the
subject of Chapter 8.

Chunks

Chunks: No, we're not talking about the chubby kid in your
high school graduating class. The idea of chunking is unique to
hypertext; HyperTalk, true to its roots, incorporates the use of
chunks in its programming.

Simply stated, a chunk is any arbitrary portion of any con­
tainer. A chunk expression uniquely identifies any given charac­
ter(s), word(s), item(s), or line(s) in a container. You will come
to appreciate chunks as you learn to program in HyperTalk.

Using chunking expressions, you can access individual ele­
ments of a container as easily as stringing together a kind of map
to their locations. The map is built "inside-out," though, begin­
ning with the smallest unit and moving out to the larger. Here
are some examples. (Don't worry if some of the terminology
isn't clear; it will be soon.)

second character of word 3 of fifth line of field 1 of card "Help"
char 5 to 8 of third word of testVariable
third item of It

You can see how powerful an idea chunking is. It permits
you to gain precise control over many situations and data ele­
ments in a HyperTalk script. Soon after you begin scripting,
chunking becomes second nature.

4 7 HyperTalk Building Blocks
------------------~-

Objects

We have spent a lot of time looking at objects in HyperTalk (see
Chapter 2). Most of these concepts are familiar even to a
browser of stacks, so they don't bear much further examination.
However, we will take a brief look at each object type from a
programmer's perspective and spend a fair amount of time on
backgrounds, which are largely transparent to users and play
potentially important roles in scripting.

Stacks

Every stack has a name. When you choose New Stack. .. from
the File menu, a standard file-creation dialog box appears as
shown in Figure 4-1. You must give the stack a name by which
it will be known to the Finder.

Ia Hyper Folder I
D Dan's Folder
D HC Utilities Folder
D Help stocks
D HyperCard Stocks
D I de a Stocks
D l.oh2

New stock nome:

~

I
0

[gJ Copy current background

c::::>A Hord Pia ...

(I:jt~e1]

(Urit•e)

(Nt~UJ)

(Cancel)

Figure 4-1 Stack creation djalog box

All stacks have a Stack Info ... dialog associated with them,
which you can view by selecting the menu option with that name

48 Chapter Four

from the Objects menu. Figure 4-2 shows a typical stack infor­
mation dialog. You '11 learn more about individual characteris­
tics of stacks in Chapter 17.

Stack Nome: ~~ ~~~~~!!!J
Wher e: n Herd Ploce:Hy per Folder:

Stock contains 16 cords.

Stack contains 1 backgrounds.

Size o f Stack : 32 K

Free in Stack : 9 K

(Script...) « OK D (Cancel)

Figure 4-2. Stack Info .•. dialog box

Backgrounds

If you've built some stacks in authoring mode, you are undoubt­
edly familiar with the concept of layers in HyperCard. We have
also discussed backgrounds briefly in Chapter 2 as a means of
subclassifying card types within a stack. Now let's take a deeper
look at backgrounds from the viewpoint of the stack designer.

Every stack has at least one background and one card when
it is created. If you create a new stack with the copy current
background check box in the stack-creation dialog box of Figure
4-1 checked, you get a new stack with the same background as
the one that is active when you create it. If you do not check that
box, you get a blank white slate as your background.

The background is the most basic building block of a stack.
It dictates the shape of all cards in the stack (assuming you have
just one background) as well as their default graphic content and
other characteristics. Following the idea of inheritance discussed
in Chapter 2, anything that appears on the background appears

49 HypcrTalk Building Blocks
--------------------~

automatically on all cards that share that background. The back­
ground is part of the card's appearance unless you specifically
remove it.

But layered on top of this background are background ob­
ject layers. Each button and field you define as a background
button or field has its own layer. These layers are transparent
overlays on top of the basic background. Like everything else
that appears on the background, any background object appears
on all cards sharing the background.

Any function or script that you want all cards of a specific
background to have should be placed on a background object
layer or attached to an object there. For example, if you want all
cards of a particular background to have a title field at the top
where a large, bold type is used to display a brief title, define
that field as a background field.

The contents of background fields do not carry through to
the card level. Typically, background fields do not contain any
information. They merely designate the existence of a field on
all cards of that background. Data is placed into the field at the
card level. If you want text to appear on every card with a com­
mon background, place the text on the background directly using
paint techniques.

Sometimes you will want all but a few cards of a given
background to have a certain graphic or contain a certain field or
button. In those cases, defme the item as a background item and
then use a technique such as designing an opaque button or using
a paint tool to obscure it from view on those few cards where
you don't want it to appear. This is more efficient than making
the item a card-level item and placing it on all the cards you do
want it on.

Most of the stacks you have designed in authoring mode
probably had one background. In fact, most stacks have one
background. But sometimes you will find it advantageous to use
two or more backgrounds in a single stack. For example, in the
educational stack in Chapter 25 we use different backgrounds for
the types of questions and still another for record keeping. You
always have to make a trade-off in such situations. You can give
a distinct appearance to cards that have different functions or
contents by using contrasting backgrounds or by creating new
stacks with single backgrounds. We offer some advice on this
subject in Chapter 23.

50 Chapter Four

Cards

Every card can have its own fields, buttons, and graphics that
don't automatically appear on any other card in the stack. These
buttons and fields are accessible only from the card on which
they appear, though it is perfectly permissible for them to send
messages to objects on other cards, on the background, or higher
in the HyperTalk hierarchy.

Like stacks, cards have an information dialog box (see
Figure 4-3) that gives you some information about them. This
identifying information is often used in scripts.

Fields

card Name:

Card Number: 1 out of 16

Card 10: 2917

Contains 3 card fields.

Contains 2 card buttons.

D Can't delete card.

(Script ...) n OK)J (Cancel)

Figure 4-3. Card Info ... dialog box

Fields in HyperCard hold information. Everything in a field is
stored as a text string. HyperTalk attempts to discern from the
context whether it is text information, numeric information, date
and time information, or some other form of data.

A field's content is frequently the target of chunking
expressions (discussed previously in this chapter). Fields can be
any of several types. They also have identifying information

51 HyperTalk Building Blocks
--------------------~

associated with them, as you can see in the Field Info ... dialog
box in Figure 4-4.

Field Nome: I s_c_ro_l_le_;~:_. ____ __.

Blcgnd field number: 1

Blcgnd field 10: 27

0 Lock Tewt
0 Show Lines
0 Wide Margins
0 nuto Tab

Style:

0 transparent
0 opaque
0 rectangle
0 shadow
®scrolling

(Font...)

(Script ...) n OK J) (Cancel)

Figure 4-4. Field Info ... dialog box

Buttons

HyperTalk buttons are the objects most frequently used by brow­
sers and other script users. Most of the scripts you write will be
button scripts that activate when the user releases the mouse but­
ton. Buttons can be of several types and almost any arbitrary
shape. They are the only object that a non-scripter can "pro­
gram" in the sense of giving them some instructions to perform
when they are activated.

Figure 4-5 shows a Button Info ... dialog box for a new but­
ton. The values shown are the defaults for a button.

A button is the only object whose script starts out with
some information in it. Figure 4-6 shows what a button script
looks like before you put anything into it. HyperTalk furnishes
the skeleton of a mouseUp handler because most buttons have at
least this handler if they are going to be useful.

52 Chapter Four

Button Nome: ~~~~~~~!!1!!!!1!!!!1!!!!!!!!!!!!.1
Cord button number: 1

Cord button 10: 1

181 Show nome

0 Auto hllite

(Icon ...)

(LinkTo ...

(Script ... n

Style:

0 transparent
0 opaque
0 rectangle
0 shadow
®round rect
0 check boH
0 rodio button

OK J) (Cancel)

Figure 4-5. Button Info •.. dialog box

• File Edit Go Tools Objects

Script of card button ld 1 .. "New Button•

on mouseUp

end 1a0useUp

Find (Print) OK (Concel)

Figure 4-6. Starting button script template

53 HyperTallc Building Blocks
--------------------~

Pictures

Summary

NOTE

Actually, there is no script stored with the button
unless you put some commands between the lines
HyperTalk provides when you open the script
editing window. If you open the script editing
window and close it without creating any
commands, the script will be empty. HyperTalk
simply gives you a helping hand when you open a
button's script and no handlers have yet been
deflned. This becomes important when we consider
that messages are "trapped" by handlers and not
passed up the hierarchy. The mouseUp message is
not trapped by an empty button script.

Any artwork drawn using HyperCard's built-in painting tools on
a card or a background becomes a card or background picture.
Only one such picture can be associated with each card and each
background.

Card and background pictures can be shown or hidden us­
ing scripting commands (see Chapter 13) or by setting a property
that determines their visibility (see Chapter 17).

You now have a good idea of all the pieces that make up a
HyperTalk script. You know there are active elements that
process information, determine the outcome of requests, and
manage the environment. You also know that these active
elements sometimes use passive elements. Finally, you know

54 Chapter Four

more about the functionality associated with each object type in
HyperCard.

Chapter 5 introduces the concept of scripting and the basic
techniques of HyperTalk stack design and construction.

CHAPTER

HyperTalk Basics

I n this chapter, you'lllearn about

• the mechanics of entering, editing, printing, and managing
scripts

• handlers and their crucial role in HyperTalk: scripting

• messages and how they are passed inside HyperCard

• variables and how they are referred to and manipulated

• the special concept of a container and how it is used

• addressing the components of a field in an English-like way

This is a lot of ground to cover, but as you will soon see,
learning HyperTalk is enjoyable and far less difficult than
learning any other language you've tried. So get comfortable in
front of your favorite Macintosh, and prepare to master the
basics of HyperTalk:.

55

56 Chapter Five

Script Mechanics
I Iii! Ill I I t IJIIi!!il Ill IJJJiii 'I! JJ Iii' IIWiSif

As you already know from our discussions in Chapters 3 and 4,
HyperTalk scripts are attached to HyperCard objects. Any stack,
card, field, or button can have a script associated with it. Any
time you edit one of these objects - and assuming you have
scripting access- one of the buttons that appears in its informa­
tion dialog window is a Script button. Figure 5-1 shows such a
button for a HyperCard field. You can gain access to the script
for any HyperCard object by clicking the Script button in its
Info ... dialog.

C File Edit Go Tools Objects

Button Name:
~------------------~

Bkgnd button number: 2

Bkgnd button ID: 7

D Show name

D Ruto hllite

(Icon .•.)

(linlcTo ...)

(Script ..•) n OK

Style:

® transparent
0 opaque
0 rectangle
0 shadow
0 round rect
0 check boH
0 radio button

Figure 5-1. Script button gives access to object's script

You can look at the script of an object two other ways.
First, you can select the appropriate tool, then double-click on
the object while holding down the Shift key. Second, you can
use the "peeking" method available in HyperCard Version 1.2
and later. This method uses the Option and Command keys,

57 HyperTalk Basics

sometimes in combination with other keys, to open the script
editing windows of various HyperCard objects.

The Option-Command key combination with a mouse click
opens any button script. Hold down the Shift key with the same
combination and open a button or a field script: Option­
Command-c opens the card's script; Option-Command-b, the
background's script; and Option-Command-s, the stack's script.

Having opened a script-editing window by any method, you
can close it one of two ways: by clicking on the Cancel or OK
button or by holding down the Option and Command keys and
clicking the mouse or pressing any key. If you have changed the
script, HyperCard asks whether it should save the changes before
it closes the editing window.

After you have opened the script editing window for an ob­
ject, you will see a screen similar to Figure 5-2. In most cases,
the window will be empty. There are two exceptions to this rule.
If you open a button script, HyperTalk supplies a framework for
the most likely script you '11 want to write by presenting a screen
like that shown in Figure 5-3. The other exception to the empty­
script rule is, when you open the script window for an object that
already has a script.

Scr ipt of card button id 1 - "New Button"

on mousellp ~ I
end ,.ouseUp

ro
(Find) (Pr i n t) (OK) (Cancel)

Figure S-2. Typical empty script window

58 Chapter Five

Script of bkgnd button ld 7 • •NeHt"

(

on •ouseUp Q
go to next card
opt~nfi eld field 2

end IIOUS.Up

tQ
Find) (Print) (OK) (Cancel)

Figure 5-3. Button script window on opening

After you are in a script window, you have the full range of
editing capability you'd expect in a Macintosh editor except that
the Edit menu's functions are available only with their keystroke
equivalents. The menu bar is not active during script editing.
But you can still cut, copy, and paste using the usual command­
key equivalents ofCommand-X, Command-C. and Command-V
respectively. This slight inconvenience is more than offset by a
particularly intelligent feature of the HyperTalk script editor.
It"knows" enough about the programming constructs in the lan­
guage to handle indentation automatically. It places the cursor at
the correct position for entering the next line each time you press
the Return key. In addition, you can press the Tab key any time
and the editor correctly reformats everything in the window.

A side benefit of this capability is that when you press the
Tab key, the last line in the portion of the script you are working
on - the handler, a term that will become more familiar shortly­
is moved flush with the left border of the editing window. If you
press the Tab key and the last line of the handler is anywhere but
flush with the left border, you know there's something syntacti­
cally wrong with your script.

59 HyperTalk Basics

Long lines

Because a single command line in HyperTalk can be any arbitrary
length, lines can and often do extend past the right edge of the
editing window. Although this does no harm (the scripts still
execute), debugging and reading these lines can become difficult.
Fortunately, HyperTalk has a way to deal with this problem.

If you are entering a line of HyperTalk code into a script
editing window and want to break the line in the middle for read­
ability, simply press Option-Return or Option-L-Return. This
places a special symbol (---.) at that point in the text. This symbol
is simply a way of notifying HyperTalk that you haven't finished
the line. You can use this technique as many times in a single
HyperTalk command line as you like. Don't use it in the middle
of a text string enclosed in quotation marks, however, or errors
will result.

Find and print capabilities

As you can see in Figures 5-2 and 5-3, there are two buttons in
the lower-left corner of the dialog that holds the script editing
window. One is marked Find and the other Print.

The Find button produces a special dialog with a text-edit
window, as shown in Figure 5-4. In this window, you can type
any string of characters you want HyperTalk to find in the script.
The text-edit window works much like the find command in
HyperCard except that it highlights the text when it finds it. So
you can't just press Return to find the next occurrence of the
word or phrase; doing so inserts a carriage return in place of the
located text. Instead, press Command-O to instruct HyperCard
to find the next occurrence of the search text. By the way, you
can invoke the find feature in the script editing window with
Command-F, just as in HyperCard.

An alternate method of using the find capability of a Hyper­
Talk script window is to select one occurrence of the text you
want to find and then press Command-H. This copies the current
text to the find dialog window's text-edit field and searches for
the next occurrence of the text automatically.

60 Chapter Five

Script of blcgnd button ld 6 • •preu•

on mouseUp

go to~·~~============================~ end iiiiiii!DJp
Find:

Find (Print) OK (Concel)

Figure S-4. Find dialog in script editing window

The Print button works as you'd expect from other Macin­
tosh applications. It sends the contents of the script window to
the currently chosen printer. Unlike the print card function in
HyperCard itself, it does not print the background and surround­
ing information. It just prints the script and a header that de­
scribes the script along with the time and date it was printed.
HyperTalk does not display the usual print dialog box requesting
format information. Instead, it treats the printout as straight text
and just dumps it to the printer, with pagination and a heading.

Syntax checking

The HyperTalk editor does not check syntax when you click the
OK button. Syntax and logic errors only show up when you run
the script. Other than using the Tab key to confirm that you have
matched up beginnings and endings of portions of the handlers

61 HypcrTalk Basics

correctly, the only way to confmn that a script is correct is to
execute it.

Comments

Even though HyperTalk is one of the most inherently readable
programming languages yet devised for computers, comments
are still in order. You can put a comment anywhere in a script.
Comments start with two hyphens (--) and HyperTalk ignores
everything that appears to the right of the hyphens. Comments
can appear alone on one or more lines or at the end of the line
they describe:

--This comment is the only thing on this line
put It -- This comment is on the same line as the command.

If a comment requires more than one line, each line of
-- the comment must begin with two hyphens.

Handlers

Each HyperTalk script consists of one or more handlers. A handler
is a programming construct that begins with the key word on or
function and ends with the key word end. Both key words are
followed by the name of the message to which these handlers are
designed to respond. The button script template supplied by
HyperTalk when you open a button's script window for the first
time shows this pattern. It begins with the line on mouseUp and
ends with end mouseUp. The mouseUp message is a system
message (discussed in Chapter 6) sent whenever the user releases
the mouse button.

Commands between the on and end key words are carried
out whenever the object receives the message whose name
follows them. This portion of the script handles the particular
message for which the script is designed, which is why they are
called handlers.

Any HyperTalk script can contain one or more handlers de­
pending on the messages, or events, to which each object re­
sponds. These messages can be HyperCard system messages or
messages you create just for your scripts.

62 Chapter Five

The key idea to grasp is simply that HyperTalk scripts do
one fundamental thing: they respond to messages. Messages are
the actions to which a script must respond. Handlers are the in­
telligent vehicles for responding to the messages. Without han­
dlers, you don't have a HyperCard application.

Where messages originate

We have been talking about messages as if they were all user­
generated. Most of the messages for which you will write han­
dlers are a result of the user taking some action. As a result, they
handle system messages (see Chapter 6) and have names that
identify them as system message handlers. But you can also de­
fine your own messages, which then function much as subrou­
tines in BASIC or Pascal. In this case, one handler generates a
message that is dealt with by another handler.

This design feature means you can put frequently needed
activities in a single handler and then call that handler from other
handlers. For example, you might have a number of handlers
that need to ask users if they really want to quit doing some op­
eration. If you define a handler to do this and call it quitOK, you
can then call it from inside another handler like this:

o n mouseUp
-- some processing
quit OK

end mouseUp

A second type of handler

Sometimes, you need to define a type of message that can return
an answer your script can use. This need is met by the ability to
define a function handler. A function handler is identical to a
message handler in form except that it always includes a special
return statement that sends a result back to your handler. For
example, you might need to find out the cube of a number in sev­
eral different handlers. But you need the answer to be returned
to you, not just left in the handler that carries out the calculation.
The handler to calculate the cube might look like this:

Messages

63 HyperTalk Basics

function cube num
put num * num * num into solution
return solution

end cube num

To use this handler from inside another handler, you would
simply write a line like this:

put cube 5 into answer

You can then take the answer in the container solution and
operate on it any way you want.

Without messages, most handlers are irrelevant. Messages are
like notices passed from one part of the Macintosh system to an­
other. When the user presses the mouse, a message called mouse­
Down is generated by HyperCard. When the user releases the
mouse button, a mouse Up message is generated. These messages
are sent along a pipeline, to be intercepted and handled by the
first object that has a handler with the same name as the message.

Message hierarchy

At first blush, it might appear that a message such as mouseUp
would be sent to the object in which the pointer was located when
the event took place. Most of the time, that's how HyperTalk
scripts work. But it is not necessary that they work that way. For
example, if a mouseUp message occurs in a field, the field may
not be designed to respond to such a message at all. But the card
itself might want to do something in response to the user's re­
lease of the mouse button anywhere on the card. In that case, the
field would not have a mouseUp handler but the card would.

So that HyperTalk will know where to route messages as they
arise, the language includes a predefined hierarchy through which
messages are passed. That hierarchy is depicted in Figure 5-5, an
expanded version of the hierachy described in Chapter 2.

64 Chapter Five

Each level in the hierarchy
passes messages higher or
deeper, in the direction
of the arrow

Mouse

HyperCard

System Resource File

Stack Externals

Stack Script

Background Script

Card Script

Menus Message Box

Primary Sources of Messages

Figure S-S. The message hierarchy

The three M's- mouse, menu, and message box - are the
primary sources of user-supplied messages. (The keyboard can
also be a source of such messages but it generally acts only as a
special case of one of the other sources.) Messages originating
from the user's interaction with the menu bar or the Message box
go directly to the script associated with the active card. This is
because almost all such messages have an effect broader than a
single field or button.

Mouse messages are the most complex of the three basic
types of message. A mouse message - mouse Up, mouseDown,
or mouseStiiiDown - can be sent to a button (the usual case), a
field (provided the field contains locked text), or directly to the
card. If the mouse message is generated by mouse activity with­
in the confines of a field containing only locked text, the mes­
sage is sent to that field first. If it occurs within the borders of a
button, that button's script gets first crack at the message. If it
occurs anywhere outside a field or a button, the card 's mouse­
message handler (if it has one) is given control.

65 HypcrTalk Basics

NOTE

There is a way to override explicitly the normal
hierarchy for sending messages between HyperCard
objects. The pass command serves this purpose.
For the moment, though, ignore this possibility and
assume that only the natural order of message pass­
ing is possible in HyperTalk.

If the first object to receive a message has a handler with
that message's name, it handles the message by following the in­
structions you put into that part of the script. Once this process­
ing is complete, the message that started it all is "swallowed up"
by HyperCard and goes no farther unless you force it to do so.
But if the object does not have a handler for it, HyperCard sim­
ply passes the message up the hierarchy to the next level. This
process continues until HyperCard either runs out of levels or
finds a handler.

EXAMPLE

If a mouse Up message is generated in a locked-text
field and that field's script does not have a handler
beginning with the key phrase on mouseUp, Hyper­
Card passes the mouseUp message to the currently
active card. If the card doesn't have an on mouse­
Up handler, it passes the message to the background
of the current card. This process continues until
some object along the way does have a handler for
this message or HyperCard itself is reached. (Hy­
perCard is also an object in this sense; it is the de­
fault destination for all messages.)

The reason a field can only receive a mouse message if it
has locked text may be apparent but is worth stating. If the text
in a field is not locked, then a mouse click anywhere in the field

Variables

66 Chapter Five

is the way users show HyperCard where to put the next text they
type or paste. This mouse-click is not designed to be intercept­
ed, so no handler can be devised to do so.

In Figure 5-5, you'll notice references to stack externals,
Home Stack externals, and HyperCard externals. These refer to
HyperTalk's ability to have its language extended by the addition
of commands and functions. Externals are new commands and
functions written in Pascal, C, and other programming languages
and added to HyperTalk. External command creation and use
are the subjects of Chapter 22. Do not be concerned about them
at the moment except to note where they are in the hierarchy of
Figure 5-5.

As with any programming language, HyperTalk has two types of
variables: local and global. Unless you specifically declare a
variable to be global, HyperTalk assumes it is local. In this case,
local means local to the handler in which the variable is used, not
local to the script in which the handler appears. We'll see in a
moment how to declare and use global variables.

Naming variables

There are really only three rules about naming HyperTalk
variables.

• Variable names must not exactly duplicate HyperTalk
reserved words (see Appendix A for a list of the vocabulary
of the language).

• Variable names must not begin with a number or special
symbol.

• Variable names may not include spaces.

67 HyperTalk Basics

Here are some valid HyperTalk: variable names:

variablel
templ
thisisALongerVariableName
yetAnotherVariable
X

y

VARIABLE3

The HyperCard convention of using uppercase letters in the
middle of long strings to show where English words would begin
is often a good approach to naming variables. Also, case does
not matter in variable names. Three variables named This, this,
and This are all the same variable as far as HyperTalk is con­
cerned

Because variable names cannot include spaces, quotation
marks are never needed around the names of variables. You
refer to a variable simply by using its name.

Using variables

In keeping with its flexible, forgiving approach to programming
language defmition, HyperTalk is "relaxed" about the way you
declare and use variables. A variable becomes known to the sys­
tem the first time you use it. No prior preparation is required. If
in the middle of a handler you suddenly need to put some value
into a variable, just do it:

put "Beethoven" into composerName

The variable called composerName is now known to HyperTalk
and can be used later in the same handler by just typing its name.

The special variable, It

HyperTalk, in an effort to make scripting more English-like,
includes a highly versatile variable called It that is shared by your
scripts and HyperCard. This variable lets you write natural­
sounding script commands such as the following two-line

68 Chapter Five

combination that retrieves the user level and puts the resulting
value into the field called Authorization Code.

get userLevel
put It into field "Authorization Code"

Several HyperTalk commands put their results into the It
variable, so you have to remember to be careful when using It in
your scripts. Typically, you will use this special variable when
few, if any, commands appear between the time you put a value
into the variable and the time you need that variable. The fol­
lowing HyperTalk commands place their results into It by de­
fault. (You can almost always supply an alternate destination to
avoid overwriting the contents of It if you need to do so.)

answer
ask
ask password
convert
get
read from file

Don't put a value into It and then use one of these commands
before you have used the original value of It.

Displaying variables

To display the contents of a variable so the user can see them,
use the put command. This is one of the most frequently used
commands in HyperTalk. In its simplest useful form, the
command's syntax is:

put expression

where the argument is either a simple source or an expression of
arbitrary complexity. In either case, the source or the result of
evaluating the expression must produce a string or a number. In
this simple form, HyperCard places the expression into the Mes­
sage box. If the Message box is not visible, HyperCard automat­
ically makes it visible. The HyperTalk command Hne

put "This is a test"

69 HyperTalk Basics

will result in the Message box appearing (if it is invisible) and
displaying the words This is a test.

You may have noticed that we said this was the simplest
useful form of the put command. You can write the put
command by itself. In that case, it means "Put whatever is now
in the variable It into the Message box." This is seldom a very
useful operation.

Assigning values to variables

Another use for the put command is the assignment of a value to
a variable. In conventional programming languages such as
BASIC and Pascal, we use special operators (the equal sign in
most versions of BASIC and the := symbol in Pascal) to give a
variable a value. In HyperTalk:, we use the put command in a
more complex form than the one we use simply to display a
variable's contents. The form of the put command for variable
assignment looks like this:

put expression into variable

The into preposition causes HyperCard to replace the current
contents of the target variable, if it has any, with the value of the
expression. The following assignment statements are valid in
HyperTalk:

put 23 into age
put "This is a test" into testMessage
put 27 * 2 into x

The expression assigned to a variable may itself be a
variable. After assigning 23 to the variable age in the previous
example, we could carry out a command like this:

put age + 10 into olderAge

The put statement can use the target variable as part of its
expression and as the assignment destination:

put age + 10 into age

70 Chapter Five

The put statement can be used with two other prepositions:
before and after. These are generally, though not always, used
with fields of information on HyperCard cards. This use of put
is described later when we discuss HyperCard containers.

Placing a variable's value into It

Because the special local variable It is so useful, there are times
when you'd like to place the current value of some variable into It
rather than into the Message box, where a simple put statement
routes it. To accomplish this, HyperTalk includes a get command

NOTE

The get command, like many other HyperTalk
instructions, has multiple uses. One primary use is
with the properties of HyperCard objects. That
subject, along with the role of get in that
environment, is discussed in Chapter 17.

To use the get command, just supply an expression as an
argument. HyperTalk will evaluate the expression and put the
result into It. Here's an example:

get age

If you carried out this command just after the last use of the age
variable above, It would contain the value 33.

Global variables

Most of the time, variables are by nature useful locally. But
when you need to carry information from one handler to another,
HyperTalk includes the ability to defme variables as global in

Containers

71 HyperTalk: Basics

scope. The global declaration must take place before the varia­
ble is used the ftrst time, and it must be made in each handler
that uses the global variable.

For example, if you want to store the user's age in a varia­
ble and then check the age in another button's mouseUp handler
to determine if a certain action should be taken, the declarations
in the two handlers would look something like this:

on mouseup --Button No. l's handler
global age
get userAge
put userAge into age

end mouseUp

on mouseUp --Button No. 2's handler
global age
if age > 18 then

end mouseUp

Both handlers declare the age variable to be global in scope.
Both handlers therefore "know about" this variable and share its
value. Note that if you declared age to be global in Button No.
1 's handler but failed to do so in Button No. 2, the second han­
dler would be working with a different age variable than the first
handler.

A HyperTalk variable is a special case of a larger class of objects
called containers. The inventors of HyperCard had to create a
new word for this kind of object because nobody had previously
come up with a design that encompassed so many places to put
things. Here's a working definition of a container in HyperTalk.

72 Chapter Five

DEFINITION

A container is any place a value can be stored.

Other containers in HyperCard, in addition to defined varia­
bles, include several special containers defined by the system.
These include It (previously djscussed), me, target, and special
containers related to selected text, the current selection, the Mes­
sage box, and fields.

Using me and target as containers

Prior to the release of HyperCard Version 1.2, two special names
that found frequent use in scripts were me and the target. Both
always referred to the objects themselves and not to the contents
of those objects, even when the object was a field. With Version
1.2, Apple modified the use of these two special values so that
now they can be used as containers.

Generally, me refers to the object whose script is now exe­
cuting, and the target refers to the object that received the mes­
sage now being processed. Most often, these are the same ob­
ject, but sometimes that is not the case. For example, when a
message is passed by one object to another, the target continues
to refer to the original object that received the message, whereas
me becomes the designator of the object that is now processing
the message.

If me or the target refers to a field, now you can use put to
alter the contents of the field in conjunction with one of these
containers:

put "testing 1-2-3" into me
put "where are you?" into target

73 HyperTalk Basics

NOTE

In dealing with this issue in Version 1.2, Apple
created a certain amount of confusion. The phrase
the target continues to refer only to the object itself,
not its contents. Without the word the, the word tar­
get refers to the contents of the target when it is a
field. That means, among other things, that you may
not put values into the target but only into target.

Selection as container

Text appearing in a field can be the source or destination for put and
get commands. If the user has highlighted some text in the field, the
highlighted text can be referenced as the selection. If no text is se­
lected, the selection is still recognized by HyperTalk but is empty.

In either case, you can put text before or after the selection or
replace the selection with other text. All you have to do is change
the preposition. Figure 5-6 depicts the effects of the put com­
mand with its three associated prepositions on the same selected
text. In all three cases the text being put is chosen and. You can
see the results of each use of put with a different preposition.

I The current 3election i3 II&! !or 11!3ting.

Selec tion before any action

Selection after put Into

I The current 3election i3 cho3en e.nd3elec11!d !or 11!3ting.

Selection after put before

I The current 3election i3 3elec11!dcho3en ai\dj !or 11!3ting.

Select ion after put alter

Figure 5-6. The put command and the selection

7 4 Chapter Five

You can also get the selection, in which case its contents are
placed into the special local variable It.

NOTE

Do not confuse the selection explicitly made by the
user or your script with text located using a find
command. Text found with a find command can be
accessed (in HyperCard versions beginning with
1.2) via several functions that act like containers.
These are discussed in Chapter 10.

Message box as container

The Message box is also a container. You already know that it is
the default destination for the put command. But the Message
box can serve as a place to display information to the user or to
send messages directly to objects or to HyperCard itself.

Like many other HyperCard objects, the Message box has a
number of aliases. It can be referred to by any of the following
names:

• the Message box

• Message box

• msg box

• the msg box

• the Message window

• Message window

• the msg window

• message

• the message

75 Chapter Five

• msg

• the msg

If you use a put command with any of these aliases for the
Message box as the destination, HyperCard opens the Message
box if it isn't already on the screen and visible. Your program
only needs to manage the Message box's visibility in very
unusual circumstances.

Field as container

We have already seen how the currently selected text in a field can
become the target for a put command. Fields can hold two different
types of text data: editable text and locked text. If the field holds
editable text, the cursor changes to an 1-beam when it enters the
field, even if the field's boundaries are hidden because it is trans­
parent. Text in an editable field can be the target of a put command.

Fields can have names assigned to them when they are
created or any time after they are first generated. (We'll have
more to say about addressing fields in a few moments.) Suppose
we have a field called Author. Our script has just pulled from
another stack the information that Asimov is the author of this
particular book. Because we've discovered the information
somewhat automatically, we don't want to require the user to
type it into the Author field. We need a slick way of handling
this situation. The following command will do nicely:

put "Asirnov" into field "Author"

The into preposition results in the previous contents of the field,
if any, being completely replaced with the new data.

Later we find that Asimov's first name is Isaac, and we
want to add that information to our growing bits of wisdom.
Simple:

put " Isaac " before field "Author"

As you would expect, the before preposition places the expres­
sion or source data at the beginning of the field named in the

76 HyperTalk Basics

command. Similarly, after places its expression or source data at
the end of the field named in the command.

Addressing a Field's Contents

Any container, but particularly a field, can hold many words or
lines of information. We often want to access specific portions
of the contents of such containers. In this area, HyperTalk really
shines. It permits us to view a container as consisting of data
broken down into items, characters, words, and lines. Further­
more, it permits us to nest addresses so that we can refine the
focus of our action as much as we want.

The concept of "chunking," mentioned in Chapter 3, is at
work here. Each subfield we deal with in this discussion is a
chunk.

Although this discussion could also pertain to variables, we
will use the termfield to identify the container type in these ex­
amples. This is because fields are the most common places to
use these addressing techniques and because doing so simplifies
the presentation.

Items in a field

An item in a field is defined as any string of text found between
commas. If only one comma appears in a field, everything to its
left is called item 1 and everything to its right is item 2. In a field
without commas, only one item exists. Table 5-1 depicts how
items are defined and located in a HyperCard field.

Lines in a field

In many HyperCard fields, text occupies more than one line.
Sometimes text "runs over" from one line to the next in a field
that's really intended to hold just one piece of information (albeit
a large one). For example, a field designed to hold your notes
about a book in a bibliographic file might occupy several hun­
dred lines of text, but from your perspective, it's one long field.

77 Chapter Five

Table 5-1. Fields and their item components

Field 1 Item address Returned value

This is a test item 1 of field 1 This is a test

A, list, with, commas item 2 of field 1 list

A, list, with, commas item 4 of field 1 commas

Everyone is, a comedian item 1 of field 1 Everyone is

Everyone is, a comedian item 2 of field 1 a comedian

Everyone is, a comedian item 3 of field 1 [empty string)

On the other hand, we often break fields into subfields. For ex­
ample, a field called Address might hold the street address, city,
state, and zip code of people in your address book. If you set the
cards up so that the person's street address is on the first line of
the single field Address, city on the second, state on the third,
and zip code on the fourth line, you have created something sim­
ilar to an array in other programming languages.

But how would you access the city in such a field? Because
no commas are used to separate things, using the item method
discussed in the previous section won' t have the desired effect.
In this case, you need to focus on a line of information; Hyper­
Card permits you to do just that

To get at the city in the Address field, you would simply
write a line like this:

get l ine 2 of field "Addre ss"

Similarly, you can place information into a field with the put
command using the same kind of addressing scheme:

put "Kalamazoo " into l i n e 2 of fie ld "Addres s "

78 HyperTalk Basics

Characters and words in addresses

If HyperTalk didn't let you do any more than access data in a
single field by its item and line, it would have more powerful
data retrieval capabilities than many full -blown data processing
programs. But it goes two steps farther.

You can access a word or individual characters within a line
or field. And you can use the key word to to retrieve ranges of
words or characters. To access words, you use the key word
word (oddly enough). To access characters, you can spell out
the word character or use the shorthand char. Let's look at an
example, and you will see what we mean about the power in this
flexibility of data access.

Suppose you have a field called Grades. Stored in each line
of that field are the last name, first name, and test scores for stu­
dents in a class on (what else?) Macintosh programming using
HyperTalk. Figure 5-7 shows a portion of the field, starting with
the first line.

Bill Adams 93 100 89 77
Cindy North 99 1 00 99 97
Cal Morrison 72 0 81 62
Heather Hunton 1 00 90 90 88

Figure 5-7. Field containing student information

A word can contain letters, numbers, or some combination of
characters. If you are used to other programming languages, you
must keep this fact in mind. There is no need to define a particular
chunk of a field or variable as consisting of a particular type of data.

Extracting a student's last name is as easy as:

get word 2 of line 2 of f ield " Grades"

Similarly, getting the grade made by Heather Hunton on the third
test requires only that you code a line like this one:

get word 5 o f l ine 4 of field " Grades "

79 Chapter Five

What if you want to look at the score made by Bill Adams
on the third exam to see if it falls in the A grade range? You can
extract just the first digit of the grade with a command like this:

get char 1 of word 5 of line 1 of field "Grades"

Then you could run a check to see if this first digit is a 9 or a 1,
in which case an A is probably indicated (assuming nobody
scored under 20 on the exam).

Let's change examples. Now we're working with an
inventory stack. (A consultant has to be flexible, after all!)
You've designed the stack so that the part number is stored as a
single string of characters in a field called Part No. on each card.
The company's part number design defines the supplier in the
first three characters, the part number in the next seven
characters, and the next major subassembly of which this part is
a member in the last four characters. You can break this part
number into its component parts with some lines of HyperTalk
code that look something like this:

put char 1 to 3 of word 1 of field "Part No." into supplier
put char 4 to 10 of word 1 of field "Part No." into part
put char 11 to 14 of word 1 of field "Part No." into subAssembly

(As we'll see in a moment, there are some shorthand ways of do­
ing even this powerful addressing. But for now, focus on the use
of the to key word to select a range of characters.)

You may combine and nest these addressing schemes to as
great an extent as makes sense for the data you are managing
with your HyperCard stacks. In general, it makes the best sense
to move from the smallest unit (char) up to the largest (field).
Very complex data retrieval is eased greatly with this ability to
combine such commands. Take a look at this one:

put It into char 3 to 5 of word 2 of item 3 of line 4 ~
of field "LargeField"

We discuss the use of put and get with these complex data re­
trieval schemes in greater depth in Chapter 10.

Summary

80 HyperTalk Basics

Ordinal numbers in addressing schemes

The last topic we want to cover in this chapter is the availability
of ordinal numbers as further shorthand addressing techniques.
HyperCard makes available built-in labels so that we can access
items, lines, words, and characters more naturally than using
constructs like "word 1 of line 3." Instead, we can write:

first word of third line

HyperCard defines ordinals for the numbers one through ten
(first through tenth), as well as the following special ordinals:

• last

• mid or middle

• any (one picked at random)

We find last particularly useful. In an address field, for
example, we might not know how many names precede the
person's last name (depending on things such as whether a title
is used and how many middle names or initials the person has).
That would drive some database programs insane. But with
HyperTalk, we simply code something like this:

get last word of line 1 of field "Address"

We know that the last name is the last word on the line, regard­
less of how many words precede it.

Remember, too, that all we have said about addressing
fields of data applies equally to variables, It, the Message box,
and the selection.

81!3'i\lil IL ~ l!lllii'i\111 '11$' ISill88ll I; 188181 I I

This chapter has provided a practical framework and beginning
point for your study of HyperTalk, the built-in HyperCard pro­
gramming language. You have learned that scripts are associat­
ed with HyperCard objects and that editing them is relatively

81 Chapter Five

straightforward. You have become acquainted with the concept
of handlers as the building blocks of HyperTalk scripts.

You saw the hierarchy of message passing built into Hyper­
Talk. You spent considerable time looking at variables and at a
larger class, containers. Finally, you learned to address individu­
al components of a field or container with ease.

Chapter 6 describes all the system messages for which your
scripts may want to provide handlers.

CHAPTER

System Messages

I n this chapter, you 'lllearn

• what a system message is

• how to choose the destinations for system messages

• how to use all the system messages generated by HyperTalk

• how to transfer messages from their default destinations to
other target objects in the HyperCard environment

Messages ·Galore!

83

There is always something going on in HyperCard. Even when it
doesn't look like there's anything happening, HyperCard is send­
ing a constant stream of messages to objects in its environment. If
a script isn't active and sending messages of its own and if the

84 Chapter Six

user isn't doing something to generate a specific message, Hy­
perCard sends out a continuous stream of messages to let the ob­
jects in its hierarchy know that nothing special is happening.

As we saw in Chapter 3, the Macintosh, quite apart from
HyperCard, is an event-driven environment. The HyperTalk
equivalent of an event is a message. There are only two sources
of messages in HyperCard: a script running as part of a stack
and HyperCard itself. Messages originating with HyperCard are
called system messages. In this chapter, we look at all the system
messages HyperCard generates. A large percentage of your Hy­
perTalk programming is devoted to responding to or monitoring
these messages. Before you read this chapter, make sure you
thoroughly understand the concepts of messages and handlers, as
discussed in Chapter 5.

Who Gets the Message?

One of the most important ideas to grasp early in our discussion
of system messages is that every system message has a default
destination to which it is automatically sent. As we cover each
system message in this chapter, you will see the logic of choos­
ing the default destination for each such message. HyperCard
routes some messages to the object in which the event with
which they are associated takes place. Others are sent to differ­
ent HyperCard objects depending on the state of the system. Still
others have default destinations that are not dependent on any
outside factor.

Every default destination can be overridden in your scripts.
If HyperCard sends a message by default to the stack, for exam­
ple, and you want to override the stack's handling of that mes­
sage in some circumstances, simply design a handler with the
same name in your script and intercept the system message.

85 System Messages

NOTE

You should be cautious about writing handlers to in­
tercept and manage system messages. If you do so,
you assume all the responsibility for making sure the
system reacts appropriately to the message. In some
cases, this involves understanding HyperCard at a
very deep level. Potential problems will be pointed
out in the text.

I
'

An Overview of System Messages
~:m: 1MJ!J?JZtcSSBOAOS&ma 'ill II II

System messages usually contain information about the status of
some portion of the Macintosh system at the time they are
generated. System messages can be divided into the following
broad categories:

• mouse messages

• keyboard messages

• action-taking messages

• a menu message

• housekeeping messages

• the "non-event" message called idle

Mouse messages

HyperCard generates six mouse messages. Three are actually
button messages because they report the status of the mouse but­
ton. The other three are location messages that tell your script
where the mouse is with regard to specific objects. (There are
several built-in functions in HyperTalk to help you pinpoint the

86 Chapter Six

exact coordinates of the mouse without regard to objects. These
are discussed in Chapter 7.)

Mouse-button messages are among the most frequently
used in HyperTalk scripts, because it is often important to know
when and where the user has activated the button. The mouse
button is the user's primary means of interacting with a Hyper­
Card script.

Keyboard messages

Another group of messages reports the pressing of special keys.
Three messages let your script know when the Return key, Enter
key, or Tab key has been pressed. A fourth informs your script
if an arrow key has been pressed (on those Macintosh keyboards
that include arrow keys) and, if so, which of the four arrow keys
has been used. If your script is run on a Macintosh with the
Apple Extended Keyboard, another system message tells you
which function key has been pressed.

Action-taking messages

There are two subcategories of action-taking messages: those
dealing with objects within a stack and those dealing with the
state of HyperCard itself. If the user creates or deletes an object,
or opens or closes an object, HyperCard sends a system message
to inform your script (and the rest of the system) of the event.

A system message is also generated when HyperCard first
starts, when the user or a script chooses to leave the environ­
ment, and when the user or a script suspends HyperCard tempo­
rarily while another application is run.

Menu message

One system message relates to menu activity. It is a very powerful
message- if your script intercepts it, your script becomes re­
sponsible for all menu activity from that time until it relinquishes
control. By intercepting and handling this message, however, your

87 System Messages

script gains total control over what happens when the user selects
items from the pull-down menus in HyperCard or your stack.

Housekeeping messages

Two messages defy categorization but can be discussed under
the rubric of housekeeping. One results from the generation of a
message for which there is no handler in the current HyperCard
environment. The other permits you to intercept the user's
menu-driven request for help.

The idle message

When there is apparently nothing going on in a stack, HyperCard
sends the idle message. Act~ ally, it interleaves this message with
a mouse message, as you will see when we explain the idle mes­
sage in greater detail later in this chapter.

Handling Mouse Messages
~~ssm : ;; 1!1

We will first look at mouse-button messages, which form such a
major part of any HyperTalk script. Then we' ll examine mouse­
location messages, which are used less frequently but with which
you should be familiar.

Mouse-button messages

When you click the mouse on a button in any Macintosh applica­
tion, whether it is written in HyperTalk or a more conventional
programming language, you probably think of the task as con­
sisting of one or two steps. Most users think of it as one action
called clicking the mouse button. An asnlte observer might point
out that there are actually two events taking place: pressing the
mouse button and its release.

HyperTalk views this mouse action as consisting of three
separate events, and it generates a system message for each.
These events and their associated system messages are

88 Chapter Six

• the pressing of the mouse button, which generates a
mouseDown message

• the continued holding down of the mouse button, however
briefly, which generates a mouseS till Down message

• the release of the mouse button, which generates a
mouseUp message

Usually, the user's mouse-button activities are of interest
only when they take place inside buttons. That is why most
mouseUp handlers occur in button scripts and why all button
scripts open with an empty handler for this message. But you
can supply handlers for any of these messages in a field or even
a card as well. It generally does not make sense to include a
handler for any of these events in a background or stack script,
but there is nothing in HyperTalk to prevent you from doing so.

There are some important rules to remember about how Hy­
perCard processes mouse clicks. First, the mouseDown message
is sent to the object in which the pointer is located when the but­
ton is pressed. Second, all subsequent mouseStiiiDown messag­
es are sent to the same object that received the mouseDown mes­
sage even if the mouse moves outside that object while the
button is depressed. Finally, a mouseUp message is sent by Hy­
perCard only if the mouse button is released within the confrnes
of the last object to receive a mouseDown message. If the user
presses the mouse button in, for example, a button labeled OK,
then drags the mouse outside that area and releases the mouse
button, no mouseUp message is generated. This design is in
keeping with traditional Macintosh button use, which permits us­
ers to change their mind any time before releasing the mouse
button.

You will seldom, if ever, write handlers for mouseDown or
mouseStiiiDown. But mouseUp handlers are among the most
common in HyperTalk scripts. Virtually every button has such a
handler.

To demonstrate how these three commands relate to one an­
other, let's put a handler for each type of message into a single
button script in the Laboratory stack we constructed previously.
If the stack already has a button (as it should), you can use it for
this experiment, or you can add a new button just for this pur­
pose. If it doesn't have a button, add one before proceeding.

-·~··· ..
.

0

89 System Messages

Three mouse-button handlers

Here are step-by-step instructions for this experiment in button
scripting:

1. Open the button's script window.

2. Type in the following script, which consists of three
handlers. When you've entered and proofread it, click the
OK button in the scripting dialog.

on mouseDown
put "Down" into Message
wait 40
put 0 into Message

end mouseDown

on mouseStillDown
add 10 to Message

end mouseStillDown

on mouseUp
beep 3
wait 20
put "Done!" into Message

end mouseUp

3. Put the pointer over the button and press the mouse button.
The Message box appears (if it was previously invisible)
with the message "Down." Hold the button down for a few
moments and the word "Down" is replaced by a series of
rapidly increasing numbers.

4. Release the button. In a moment, the word "Done!"
appears in the Message box.

5. Repeat step 3 but after you press the mouse button inside the
HyperCard button, drag the pointer outside the button area.
Notice that the numbers keep increasing, indicating that the
mouseStillDown handler in the button's script is still
receiving messages. Now release the button outside the
button's area. The counting stops but no "Done!" message
appears and no beeps are heard. The system message

-

90 Chapter Six

mouseUp was not sent because you released the button in
an area outside the confines of the object in which the
mouse button was pressed.

Mouse-location messages

Three messages define where the mouse is when the mouse but­
ton is not being pressed. They relate the position of the mouse to
objects such as buttons and fields. The three messages and their
meanings are as follows

• mouseEnter, indicating that the mouse pointer has entered
the boundaries of a button or field

• mouseLeave, indicating that the mouse pointer was in the
boundaries of a button or field but has now moved outside
those boundaries

• mouse Within, indicating that the mouse pointer has entered
the area and remains there

HyperCard interleaves the mouse Within message with the
idle message any time the pointer is located inside a button or
field. Mouse-location messages are handled exactly like the
mouse-button messages described in the preceding section.

Mouse-location handlers

One interesting use for mouse-location messages is the creation
of "pop-up" fields that appear when the user simply moves the
mouse pointer to a certain area of the screen. Such a handler
might be quite useful, for example, in an educational script. You
could provide a picture of a part of the human body with no visi­
ble labels. When the user points the mouse at a specific location,
a previously hidden field appears, showing the user the label for
that location. When the user moves away from that area, the field
goes away. The user can scan the entire set of labels with the
mouse easily, without ever pushing the mouse button.

91 System Messages

Although developing such an application is beyond the
scope of simply learning about these handlers, we can give you
something of the "flavor" of such a script with the following
laboratory experiment. Open the Laboratory stack again if it
isn't already open.

1. If the card does not have a field you want to use for this
experiment, create one. Its location is not important. Give
it the name Test Field and define it as Transparent. Then
put some arbitrary text into it in Browse mode.

2. Create a new button or use an existing one. Enter the
following script into its script editing window:

on mouseEnter
show card field "Test Field"

end mouseEnter

on mouseLeave
hide card field "Test Field"

end mouseLeave

3. Be sure the field Test Field is not showing - open the
Message box and type the following command if the field
is visible before this experiment begins:

hide card field "Test Field"

4. Before the experiment starts, the laboratory card should look
similar to Figure 6-1. Move the mouse pointer over the button
to which you've added the script. (yle've called our button,
unimaginatively enough, Test Button.) The field should
suddenly appear, as shown in Figure 6-2. As you move the
pointer outside the button, the field disappears again.

92 Chapter Six

4i File Edit Go Tools Objects

(New Button)

(Test Button)

Figure 6-1. Mouse-location test before pointer moves

4i File Edit Go Tools ects

Th1s 1s some
erbt trery text t n
the "Test F1eld"

(TestB~

(New Button)

Figure 6-2. Mouse-location test with pointer over test button

93 System Messages

Keyboard Messages

The Tab, Return, and Enter keys on the Macintosh Plus keyboard
and the fifteen function keys on the Apple Extended Keyboard
generate their own messages when they are pressed anywhere ex­
cept in a text field. The function keys produce their messages
even inside a text field, but you recall that the first four keys have
specific reserved meanings in editable fields. To avoid conflict,
HyperTalk simply does not generate the first four messages when
they take place inside an editable text field. The arrow keys on
the Macintosh Plus and subsequent Apple-manufactured key­
boards also generate messages.

The possible uses for handlers for these messages are not as
clear as the uses for mouse messages discussed in the previous
section. But some potential uses are hinted at in this discussion.

The keyboard-related messages are as follows:

• tabKey

• returnKey

• enterKey

• functionKey number

• arrow Key direction label

• controiKey number

These are the first messages we've encountered that have param­
eters. The number that follows the functionKey message is a
digit between 1 and 15 that indicates which function key was
pressed. By convention, function keys 1 through 4 are reserved
for editing operations (l=Undo, 2=Cut, 3=Copy, 4=Paste). The
direction label associated with the arrow Key message is one of
the four direction words up, down, right, or left. The controiKey
message always carries with it the ASCII code (see Appendix B)
of the key held down with the Control Key. If the Control Key is
held down with no accompanying key, no message is generated.

94 Chapter Six

All these messages are sent by default to the current card.
Among other things, this handler can pass the keyboard­
generated message to another object lower in the hierarchy.

Key-button equivalents

One interesting use for message handlers for the Return and En­
ter keys is to provide a keyboard equivalent for some button se­
lections. Let us assume we have a card with two buttons, one
marked OK and one marked Stop. Let's further assume that in
documentation or in an onscreen help window (or, better yet, in
both places) we have told users that they can press the Return
key instead of clicking the OK button and that the Enter key is
the same as clicking the Stop button. All we need is a card
script that passes these messages to the appropriate button tar­
gets when they are received.

NOTE

We will use the send command in these examples,
even though this command is not discussed until lat­
er in the chapter. Its use in this experiment is rela­
tively self-evident, but if you simply can't wait to
find out what it does, feel free to read ahead and
then come back to this experiment.

Here are the step-by-step instructions for this laboratory
experiment in using the returnKey and enterKey system
messages to create keyboard equivalents to button-clicks.

1. It is more efficient to create a new card in the laboratory,
though you can go through the process of cleaning all the
leftover buttons and fields from the present card if you like.
We will not be returning to the previous examples, so
choose the alternative you prefer. In any event, it is a good
idea to begin this experiment with a clean slate with no
handlers or objects.

95 System Messages

2. Create two buttons. Size, type, and location are immaterial.
Select the Show Name option in the Button Information
dialog. Name one button OK and the other Stop.

3. Enter the following script into the script editing window for
the OK button:

on rnouseUp
put "OK box selected"

end rnouseup

4. Enter the following script into the script editing window for
the Stop button:

on rnouseUp
put "Stop box selected"

end rnouseUp

5. From the Objects menu, select Card Info ... while holding
down the Shift key. (Alternatively, select Card Info ... and
then click the Script button. The result is the same.) Enter
the following two handlers into the card's script:

on returnKey
send rnouseUp to button "OK"

end returnKey

on enterKey
send rnouseUp to button "Stop"

end enterKey

6. Return to Browse mode. Click on the OK button and
confirm that the appropriate message appears in the
Message box. Then try the Stop button.

7. Press the Return key. The message "OK button selected"
appears in the Message box. Now press the Enter key. The
message "Stop button selected" appears in the Message
box.

96 Chapter Six

Notice that we did not send the returnKey and enterKey
messages to the buttons. Rather, we sent messages that the but­
tons already had in their scripts. This is not only permissible, it
is the most efficient way of handling the task as long as the ac­
tions are the same when the user pushes the button with the
mouse pointer or uses the keyboard equivalent. You can, how­
ever, send the keyboard message on to another object directly. If,
for example, you want to highlight the OK button when users
press the Return key but not if they use the mouse, you need a
handler in the OK button script for the returnKey message. You
could then simply pass the returnKey message to the button
from the card script. The other keys operate in an analogous
manner.

Uses for keyboard messages

We have already discussed how keyboard messages can be made
to work as keyboard equivalents of button presses. The same
technique can be used for other actions that have keyboard equiv­
alents.

The arrow keys lend themselves particularly well to a dif­
ferent usage. Because they are usually seen by the Macintosh
user as navigation keys, you can intercept these keys to control
navigation in ways that make the user's interaction with the stack
more understandable. For example, the right arrow key (mes­
sage arrowKey right) can be intercepted at the background or
stack level and interpreted to mean "go to the next card with the
same background as this card." In multiple-background stacks,
this can be quite helpful.

You should never assume that your script will be used on a
Macintosh with the extended keyboard. But you can provide
handlers for function key messages so that those who do have
such keyboards can use the function keys. Users without func­
tion key setups will not notice any difference. As with other
keyboard messages, functionKey messages should be handled at
the card level or higher, then transmitted with the send command
as needed elsewhere in the HyperCard environment.

97 System Messages

Action-Taking Messages

Action to Take

Create object

Delete object

Open object

Close object

As mentioned, action-taking messages fall into two categories.
The first group, deals with the management of specific objects in
the HyperCard environment. The second is related specifically
to HyperCard's own operation.

Object-related action messages

There are typically four things users can do to objects in Hyper­
Card. They can open, close, create, or delete objects. Each of
these actions can also be performed by a script. Whether the
actions occur as a result of the user's instructions or a script's
execution, your script may want to intercept the actions by
providing handlers for the appropriate messages.

Fields, stacks, cards, and backgrounds can be the recipients
of all these messages. Buttons can be created and deleted but not
opened or closed. By combining the first part of the message
name- the action to be taken - and the second part- the type
of object to be affected-we come up with a matrix like Table 6-
1, which lists all these system messages by function.

Table 6-1. Action-taking system messages

Button Field Card Background Stack

new Button newField newCard new Background new Stack

delcteBunon delcteFicld delete Card deleteB ackground deleteS tack

N/A opcnField open Card opcnBackground openS tack

N/A closcField close Card closeBackground closeS tack

As a general rule, your scripts will not contain message
handlers to create or delete buttons or fields because this is part of
the design process and not usually something you want to do

98 Chapter Six

dynamically. (There is, however, nothing in HyperTalk to
prevent you from doing so. You may have a specialized
application where you need to do just that. In that case, by all
means do so.)

NOTE

It is important to note that HyperCard only sends
these messages after it has taken the action they indi­
cate. In other words, the newCard message is only
sent after HyperCard has created a new card. So
you can't use these messages to prevent the creation
of new cards, though you can achieve a similar ef­
fect by sending a deleteCard message to the newly
created card after it has been generated. This also
means that you generally have to place the handler
for such messages one level higher in the hierarchy
than might seem evident. A newCard message han­
dler, for example, will not function as expected if it
is in a card script. When the new card is created, it
doesn't have any scripts. So you have to put han­
dlers for the newCard message in the stack's script,
not in a card's script

It is easy to become confused about the role of messages
versus the role of commands in the case of these action-taking
messages. A closeField message is generated when the user
presses the Tab key in an editable text field after making some
changes and moves to the next such field (if any) on the card.
This message is also generated if the user modifies the text in a
non-scrolling field whose Auto Tab feature is true, then presses
the Return key from the last line of that field. Your script can in­
tercept and handle this message as discussed in the next section.
But if you want to order a field closed, you would use the send
command discussed earlier something like this:

on someMessage -- defined by your script
send closeField to card field 1

end someMessage

99 System Messages

Typically, your scripts will intercept messages that result
from the user taking actions that generate object-oriented action
messages and will change the usual manner in which HyperCard
processes them. Also typically, your scripts will work with the
opening and closing of objects.

Handling a newCard

In this experiment, we set up a script that automatically inserts
information into any new card created by the user. It's a good
idea to start with a new card in the laboratory.

1. Create a background field in the upper-left corner of the
card. Define it to be a rectangle and give it the name
Today. Give it any other nonconflicting characteristics you
wish.

2. Open the stack's script by holding down the Shift key and
selecting Stack Info ... from the Objects menu or by opening
the Stack Info ... option from the Objects menu and then
clicking on the Script button.

3. Enter the following script for the stack:

on newCard
put the date into field "Today"
beep 3

end newCard

The function called the date simply returns today's date in
short format. You'lllearn about HyperTalk's built-in func­
tions in Chapter 14.

4. Return to Browse mode. Select New Card from the Edit
menu or hold down the Command-N keys. Add a few
more cards if you like (keeping track of how many there
are so you can undo the work later) and confirm that each
displays today's date when it is created.

5. Delete the cards you created and the new background you
generated to avoid confusion with future laboratory

100 Chapter Six

experiments. If you want to keep them make a copy of the
stack using the Save a Copy ... option from the File menu
and then delete the new background and cards.

Another idea

When HyperCard opens an existing card, it generally does not
place the pointer anywhere. The same is true when it creates a
new card. Quite often, though, stacks are used in applications
when the user wants to simply begin entering data when the card
appears. To avoid requiring the user to click the mouse explicit­
ly in a field to begin entering data, you can provide a handler for
the openCard message that would open a specific field. The
simplest way to do this (with what we already know about mes­
sages and handlers) is to have the openCard handler send a tab­
Key message to the card. This opens the first field on the card and
automatically selects all of its text. If you want to tab to the
second field, send two tabKey messages.

A handler to accomplish this task is associated with the
stack and looks something like this:

on openCard
send tabKey

end openCard

As you gain more experience with HyperTalk scripting, you'll
find many occasions for the use of these object-related messages.

HyperCard n1essages

Four system messages HyperCard generates are related to the
status of the HyperCard application itself. These four messages
and their meaning are

• startUp, which is sent when HyperCard is first started

• q u it , which is sent when the user or a script quits
HyperCard

101 System Messages ----------------------

• suspend, which is sent when the user or a script runs an
external program from within HyperCard and plans to
return to HyperCard when the other application has finished
executing

• resume, which is sent when the external program for which
HyperCard has been suspended finishes executing and
control is returned to HyperCard

An example of a startUp message handler is in the Home
stack supplied with HyperCard. That handler simply looks to
see if there is an external command called startUp to which it is
to respond. (We have more to say about external commands
near the end of this book.) The startUp message goes to the
Home stack if you start HyperCard by double-clicking the appli­
cation's icon on the desktop. But if you double-click a stack's
icon, the startUp message goes to the fust card of that stack

These messages are seldom used in HyperTalk scripts, so
we won't spend much time on them. One note is worth making,
however. If you want your script to perform a set of actions
when the user first opens it, you may want these same (or a
substantially similar set of) instructions followed when the user
returns to your script after running an external application. If so,
be sure to put a command in the resume handler that carries out
those actions because the startUp handler is not called when
operation of HyperCard resumes after a suspend message.

The doM enu Message

When the user chooses a menu item or invokes it with its key­
board equivalent, HyperCard sends a message called doMenu
followed by the name of the menu item, exactly as it appears in
the menu bar (complete with the three dots, or ellipsis, that
follow many menu choices). Your script can check for the
occurrence of any menu item(s) and react accordingly.

This technique can be used to disable menu items to protect
your stack scripts or the stack information base itself. You sim­
ply intercept the message, check to see if it's an item you want to
disable, and do something like beep if it is or pass the message to
the next level if it isn't a menu option you care about.

102 Chapter Six

WARNING

The doMenu message handler must be carefully de­
signed so that it uses the pass command (described
in the next paragraph) to pass menu control up the
hierarchy if the user's choice isn't one your handler
is concerned with. If you omit the pass command,
you will be unable to open the script editor for that
stack. This Catch-22 "endless loop" is broken only if
you delete the script by typing into the Message box
"set script of this stack to empty." If the script is not
associated with the stack, change the reference
appropriately. Unfortunately this deletes all the
handlers in the script, which can be problematic. So
be careful when you use the doMenu message.

An example of the use of the doMenu command involves
displaying a special card with a message such as "See you later"
when the user decides to leave your stack by going Home or
quitting HyperCard completely. (There are other ways to leave
your stack; the technique would be the same regardless of the
method.) To handle such a situation, you attach the following
kind of message handler to your stack's script:

on doMenu choice
if choice is "Home"
then

go last card
wait 20

end if
if choice is "Quit Hypercard"
then

go last card
wait 20

end if
pass doMenu

end doMenu

103 System Messages
--------------------~

We discuss the if-then construction in Chapter 8. For the mo­
ment, just accept our word that this handler performs as adver­
tised.

The help Message

The help message is created and sent to the currently open card
when the user chooses Help from the Go menu or types Com­
mand-? to invoke help.

The help message can be intercepted by your script to route
the user's request for assistance to a special stack (or part of a
stack) where the user can get customized help or specific referen­
ces to other sources of assistance. For example, if you have a card
called Special Help that contains hints for using your stack, you
can send the user there when he or she asks for help. The handler
would look something like this:

on help
go to card "Special Help"

end help

(In reality, the handler would be a bit more complex because it
would involve making sure HyperCard returns to this point when
it finishes furnishing the specialized help. The techniques for
doing that are covered in Chapter 9.)

The idle Message

We have perhaps said enough about the idle message. It is inter­
leaved with a mouseW ithin message if the pointer is located
over an object. The two alternate during times that HyperCard is
simply waiting for the user to do something to generate an event
and a related message.

A handler for the idle message lends itself well to such ac­
tivities as putting the current time into a field. The Home Card
furnished by Apple Computer has such a handler. It looks like
this:

Summary

104 Chapter Six

on idl e
put the time into c a r d field " Time"
pass idle

e nd idle

Be careful of putting too many commands in an idle handler.
Each executes often and you can greatly slow down your stacks
by injudicious use of idle handlers.

In this chapter, you saw how to deal with messages. You then
became acquainted with all the messages the HyperCard system
itself generates. You saw how to handle mouse-related messag­
es, keyboard messages, and action-taking messages. You saw
the power and the pitfalls in trapping menu choices to make ap­
plications written in HyperTalk more individualized.

You learned there are always messages being passed around
the HyperCard environment. And you learned that although
there is a definite hierarchy to message passing based on the in­
dividual message, you can use the send and pass commands to
bypass or accommodate the hierarchy.

Chapter 7 discusses input and output in HyperTalk using
the mouse, keyboard, disk drive, and printer.

CHAPTER

=""""'0
Mouse, Keyboard,
and File 1/0

I n this chapter, you'lllearn how to

• handle several messages that involve knowing where the
mouse is and what it is doing

• simulate ~lectronically the user clicking the mouse

• determine the status of the Command, Option, and Shift
keys

• perform routine file operations on external (non-HyperCard)
files containing only text

Monitoring the Mouse

In the last chapter, we learned about several system messages
that report on the status of the mouse and its location in relation
to objects. Because of the overriding importance of the mouse in

105

106 Chapter Seven

any Macintosh application, HyperCard includes a number of oth­
er mouse-monitoring routines. Three of these functions - the
mouseLoc, the mouseH, and the mouseV - report on the
screen coordinate location of the mouse at the time the function
is called. Two - the mouse and the mouseClick - determine
the status of the mouse button at the time they are used in your
script. (The word the in each of these names is essential. With­
out it, HyperTalk does not recognize the function.)

The uses for four of these functions - all but the mouse­
Click - are pretty esoteric. We have seldom seen a need in a
HyperTalk script to detect where the mouse is when it is not be­
ing clicked except in relation to some object. (Recall our labora­
tory experiment in Chapter 6 with the field that appears when the
user positions the mouse over a button but does not click on it.)
This is not to say you will never use them; you may find many
uses for these functions. But they are not among the most often­
used functions in HyperTalk.

One reason this is true is the object-oriented way HyperTalk
works. We are usually interested in monitoring the location of
the mouse and its actions with respect to objects in the Hyper­
Card environment rather than with respect to the abstract screen
position it occupies. Another reason for the infrequent use of
these functions in most HyperTalk scripts is that the location
they report can change before it is reported. These functions re­
port the location of the mouse at the time they are called. But a
fast mouser - and there are many such users out there in the
world of Macintosh aficionados - may well have moved the
mouse out of the relevant screen location before your script can
react to its presence.

The lone exception to this rule in this batch of HyperTalk
functions is the mouseCiick. This function tests to see if the
mouse button has been clicked since the last time it was checked.
If so, it returns a value of true; otherwise, it returns a value of
false. The returned value can then be used in a logical operation,
usually within a loop, to control the actions of your handler. The
implementation of logical operations and loops is discussed in
ChapterS.

107 Mouse, Keyboard, and File 1/0 ----------------------

Screen coordinates

Before you can use the three mouse-location functions we are
discussing, you must understand how HyperCard views and
addresses locations on the screen. We could present this
information with a few paragraphs and diagrams. But because
HyperTalk lends itself so well to exploration, we're going to set
up a script in our laboratory to explore the screen, then
summarize what we learn.

You can use an existing Laboratory stack card for this ex­
periment or create a new one with nothing on it. Once you have
opened the card you want to use, follow these steps.

1. Open the card's script in one of the usual ways.

2. Type the following script into the script editing window and
click on the OK button when you're done:

on openCard
repeat until the mouseClick

put the mouseLoc
end repeat

end openCard

Don't worry if you have no idea what the strange
group of lines that begin and end with the word repeat are
all about. We'll explain this programming technique in
Chapter 8.

3. Return to browse mode.

4. Go to a previous card in the stack and then return to this one
so that the card is opened and the handler can take effect.
As soon as you do, the Message box appears with two
numbers separated by a comma (see Figure 7-1). Move the
mouse around without clicking the button and watch the
numbers in the Message box change. As you roll the mouse
to the right, the first number gets larger until the pointer
reaches the right edge of the screen and the number reaches
512. Similarly, as you roll the mouse down the screen, the
second number increases until it reaches 342.

108 Chapter Seven

a File Edit Go Tools Objects

484,8
~ -····--.. -········---·······----··-········-··········-······--·--···-·-··· .. -·········-··········-······-···-····---·-

Figure 7·1. Tracking mouse in Message box

5. Put the pointer in the upper-left comer of the screen. You
should be able to get the two numbers to reach 0,0. The
bottom of the menu bar is at the point where the second
number is 20.

6. Click the mouse. Notice that as you roll the mouse around
now, the numbers don't change. That's because you've
exited the openCard handler with the mouseClick, so the
mouse position is no longer being tracked and reported.

From this experiment, you can probably conclude that the
screen is laid out as a gridwork of addresses, with horizontal
positions reported in the first part of the mouseLoc value and
vertical positions in the second part of that value. You can
probably also conclude that the screen addresses go from 0,0 in
the upper-left comer of the screen to 512,342 in the lower-right
comer of the screen. Figure 7-2 depicts this addressing scheme.

109 Mouse, Keyboard, and File l/0

p,20

512,342

Figure 7-2. The Macintosh screen addressing scheme

Each screen location, called a pixel (shorthand for picture
element), has a unique address. You can see how finely a Hy­
perTalk script can examine and manage screen locations when
there are more than 175,000 discrete locations.

One coordinate at a time

Using the same technique we just explored in the Laboratory
stack, you can frnd out that the function the mouseH returns only
the horizontal location of the mouse and the mouse V returns
only its vertical position. Just change the mouseLoc in the script
to one of these functions and observe the results.

Ending repeated commands

You probably noticed in the openCard handler in the last
laboratory experiment that we used a repeat until the
mouseCiick statement. We'll be discussing such groups of
statements in Chapter 8. For the moment, you should note that
the mouseCiick is one of the most useful HyperCard functions

-

110 Chapter Seven

for terminating repeating activities because it monitors users and
reacts when they click the mouse anywhere within HyperCard's
boundaries.

What's with the mouse?

The last of this group of functions is simply called the mouse. It
returns the value down if the mouse button is being pressed when
the function is called, up if it is not. In some ways, its functions
duplicate those of the stiiiDown system message we discussed in
Chapter6.

A key difference is that stiliDown is a message that can
form the argument to the on portion of a handler, but the mouse
is a function that returns a value and is used inside a handler. In
other words, the mouse gives us a way to perform some steps in­
side a handler while the mouse is down.

Is user holding down button?

Let's do a little experimenting, without being concerned about
what all the commands mean or do. You can use any existing
card with a button whose script you don't need or you can create
a new card for this experiment. Then follow these steps.

1. Open the button's script in one of the usual ways.

2. Type in the following script and press the OK button when
you're done.

on mouseDown
repeat while the mouse is Down

put empty
wait 20
put " Working ... "
wait 20

end repeat
beep 3

end mouseDown

3. Return to browse mode.

111 Mouse, Keyboard, and File 1/0 -----------------------

4. Click on the button and hold the mouse button down. Notice
that the Message box slowly flashes the message
"Working ... " as long as you hold down the mouse button.

5. Release the mouse button and note that the system beeps
three times.

6. You can also use a mouseUp handler in this script to put a
message into the Message box when you release the button.
For example:

on mouseUp
put "Whew! I'm glad that ' s over!"

end mouseUp

Obviously, you wouldn't write such a handler this way just
to beep the speaker three times. But if you had more complex
processing to take care of that you didn't want to carry out while
the user was pressing the mouse button, this approach would
workfme.

Clicking the Mouse for the User

Sometimes in HyperTalk scripts, you want to put the user in a
particular location for some field entry work. Or you may need
to simulate mouse clicking that you would normally expect from
the user in a demonstration script where you want the user sim­
ply to watch what's going on. For these and similar situations,
HyperTalk includes the click command. Its syntax looks like
this:

click at location [with modifier key]

The location must be an explicit screen address, given as a
pair of coordinates like those we have just finished learning
about or an expression or variable that evaluates to such an
address. If you want to simulate a mouse click as if the Shift,

112 Chapter Seven

Command, or Option key were being held down, you can add the
key name and the with connector. Here is an example of an
Option-click command:

click at 100,235 with optionKey

Modifier key additions are particularly useful when you are us­
ing the click command while working with one of HyperCard's
paint tools.

As with other HyperTalk commands we've looked at, click
is most useful when viewed with a HyperCard object. Every
object has a screen location associated with it. You can find this
address with the location function, which may be abbreviated
Joe. We have more to say about the loc function in Chapter 17
when we discuss the properties associated with HyperCard
objects. But for the moment, you need only know that this
function returns the screen coordinates of the center point of the
object referred to.

If you have a screen button called Button One, you can
activate it exactly as if the user had clicked on it by writing a line
of HyperTalk code like this:

click at loc of card button "Button One"

Of course, you can also produce this effect with the send
command:

send mouseUp to card button "Button One"

There are a number of ways to accomplish many HyperTalk
tasks. This is not the last time we will see such alternatives.

HyperCard includes three functions to help you determine
where the mouse was clicked by the user (or, for that matter, by
your script). The clickLoc returns the location of the click as a
point (two numbers separated by a comma). If you want just the
vertical position of the mouse click, you can use the mouse V
and, if you want only the horizontal position of the click, use the
mouseH.

113 Mouse, Keyboard, and File 1/0 ----------------------

Is That Key Down?

Having seen that we can use the Command, Option, and Shift
keys with the click command, it will come as no surprise that we
can also check the status of these keys to find out if they are up
or down at the time the script checks them. Like mouse, the
functions that monitor the keys return up if the key is not being
pressed, down if it is. You can use these values in testing and
branching operations in HyperTalk.

In fact, you can actually check not only on these keys but
also on the enterKey, the returnKey, the controiKey, and the
functionKeys. These last two are not implemented on all Mac­
intosh systems, but they are part of the extended keyboard design
that most Macintosh II owners use. The same up and down logic
that applies to the other keys we've been discussing also applies
to these keys with the exception of the functionKey message.
When a function key is pressed, the message sent in HyperCard
includes the number of the key. The resulting handler portion
looks like this:

on functionKey keyNo
if keyNo = 5 then
-- do some processing
-- etc.

e nd f unctionKey

Don't use function keys 1-4 for HyperCard activities be­
cause most Mac word processors and text editors use these keys
for editing operations pre-defined by Apple Computer.

-

114 Chapter Seven

Keypresses modify results

For this experiment, you can use an existing button whose script
you no longer need, or you can create a new button on either a
new or existing Laboratory stack card. After you have prepared
the button, follow these steps:

1. Open the button's script editing window using one of the
usual methods.

2. Type the following script into the window.

on mouseDown
put "Mouse is down "
repeat while the mouse is down

if the optionKey is down then
put "with the Option Key" after Message
exit repeat

end if
if the commandKey is down then

put " with the Command Key" after Message
exit repeat

end if
if the shiftKey is down then

put "with the Shift Key" after Message
exit repeat

end if
end repeat

end mouseDown

3. Press the mouse button in the button you are using. The
message "Mouse is down " immediately appears in the
Message box. Now press the Shift, Command or Option
key. Notice that the Message box adds information after its
previous contents about which key you pressed. Confmn
that the handler has been executed by continuing to hold
down the mouse button and trying the other keys.

4. Release the mouse button. Now repeat the instructions in
step 3 for all the special keys. Try holding down two of the
special keys simultaneously. Notice that only one of them
is acknowledged.

115 Mouse, Keyboard, and File 1/0 ----------------------

Even though this handler is longer than ones we've dealt
with before, it is not very mysterious. The main body of instruc­
tions execute as long as the mouse is held down or until one of
the special keys is pressed. When one of the keys we are moni­
toring is pressed, the handler adds some words to the end of the
current contents of the Message box indicating which key was
pressed. Then it leaves the loop and the handler ends.

Checking for two-key combinations

You can link two key conditions together with the a nd logical
operator and check for key combinations. We discuss the and
operator in detail in Chapter 8. To look for the Shift-Command key
combination, for example, you could perform a check like this:

if the shiftKey is down and the commandKey is down

Saving the key's condition

Given the rapidity with which HyperCard applications execute
and the speed with which many people use the Macintosh, it is
sometimes useful to store the state of a key and then check later
to see if it was pressed when the user made the last selection or
took the last action. This is particularly helpful when you write
handlers that permit a single button to have more than one effect
depending on whether a special key was held down while the
button was activated.

Because these operations are functions that return a result,
we can put that result into a container. Here is the skeleton for a
mouseUp message handler that reacts differently to the message
depending on whether the Shift, Option, or Command key is held
down while the button is activated:

on mouseup
put the optionKey into optionStatus
put the commandKey into commandStatus
put the shiftKey into shiftStatus

some other actions that don't depend on
the keys' status take place here; these
might be commands that are common to all

116 Chapter Seven

-- variations of the button ' s theme
if optionStatus is down then
-- carry out the optionKey version

end if
if commandStatus is down then

-- carry out the commandKey version
end if
if shiftStatus is down then

-- carry out the shiftKey version
end if

end mouseUp

Text File Operations

HyperTalk's vocabulary includes four commands that permit
HyperCard to work with text-only files outside its environment.
Data can be read from text-only files and used in stacks. Infor­
mation from stacks can be exported to text-only files for use by
word processors, report generators, spelling checkers, and other
similar programs.

Whether you are importing or exporting data, the process is
fundamentally quite similar. You use the open file command to
open the file so you can put information into it or take informa­
tion out of it. Then you use the read or write command to per­
form the actual data transfer. Finally, when you're done, you use
close file to end the processing. Let's look at these commands in
the order in which we just listed them.

Open file

There is nothing mysterious or difficult about the open file
command. Supply the name of the file - either explicitly as a
string or implicitly in a container - and HyperTalk establishes a
communications channel between your script and the disk file,
creating it if it doesn't already exist.

For example, to open a file called Test File, you could sim­
ply write this command:

open file "Test File"

117 Mouse, Keyboard, and File 1/0

HyperCard looks in the root level directory of the currently ac­
tive disk drive. If it finds a file called Test File, it opens it. If
not, it creates a new file called Test File at the topmost level of
the current disk volume.

A word about path names

If you have set any of the Preferences card options in
HyperCard's Home stack, you have already gained at least a
nodding acquaintance with path names. The path name of a file
is a map that helps the Macintosh File Manager (part of the
operating system) locate a file on the disk. To make HyperCard
look anywhere but the root level of the currently active disk for
files you want to open or create, you must supply a path name.

DEFINITION

A path name starts with the name of the disk (also
called the volume) on which the file is located and
then lists each folder in tum to which a file belongs.
If you omit the volume name, you can begin the
path name with a colon, and HyperCard assumes
you mean the currently active volume. This
technique works fine if you are using a hard disk
most of the time.

Look at Figure 7-3. It depicts a document called Vendors
stored inside a folder called Lists. That folder in turn is found
inside another folder called Documents, which is at the top level
of the hard disk volume called A Hard Place. HyperTalk can ac­
cess the Vendors document in an open file command by either of
the following two lines:

ope n file "A Hard Place:Documents:Lists:Vendors "
open file ":Documents:Lists:Vendors"

118 Chapter Seven

Hard Disk Name: A Hard Place C=:J

Folder Name; Documents L=J
Folder Name: Lists L=J

Document Name: Vendors 1-:= ~

Figure 7-3. A document in a hierarchy of storage

Reading from a text file

The full name of the command that reads data from text files is
read from file. It has two alternative forms. The flrst, which
follows, reads all the data from a file until it reaches a defined
delimiter character. Generally, two delimiter characters are used
in text-only flles. Tabs separate individual fields, and carriage
returns mark the ends of records.

read from fi l e file n a me u ntil delimiter cha r a c t er

The flle name must be placed in quotation marks. The de­
limiter character must be one of HyperTalk's standard constant
characters (tab, return, lineFeed, or formFeed) or another charac­
ter you define using ASCII values or a single-character string.
(In case the term ASCII is unfamiliar, it is a standard way of rep­
resenting characters in computers. Appendix B contains a chart
of all Macintosh characters and their ASCII equivalents.) If you
supply more than one character as the delimiter, HyperTalk uses
only the first character of this string and will stop reading when
it encounters the first instance of that character.

Using the above form of the read command, a script would
have to perform two checks. It would read individual flles with
a command like this:

read from file "Test " until Tab

Then it would check as each field was read in to see if it was a
return:

119 Mouse, Keyboard, and File 1/0 ------------------------

if it is Return then
-- follow with appropriate processing

Depending on the file's structure, you might also need a check
for an empty field to recognize that the end of the file had been
reached:

if it is empty then
-- follow with appropriate processing

The second method of reading a text-only file in HyperCard
is to know in advance how many bytes of information you want
to read. This approach usually works only for small files be­
cause larger ones are hard to manipulate into field formats after
you bring them into HyperCard through your script. The format
of this version of the read command is

read from file name for number of bytes

HyperCard has a 32K-byte buffer limit when performing ei­
ther type of read operation. When the read process stops, you
may want to check to ensure that you have read to the point you
wanted to reach. If the last character of the text stream is the one
on which you wanted to stop, you can be confident that the read
did not overflow the buffer. If it is not the desired character,
then you have probably read 32,767 bytes of data without en­
countering the character you specified.

Writing to a text file

If you need to export text from a stack to a text-only field so that
a word processor, a database manager, or some other program
can use it, you will frnd the wr ite command quite powerful and
flexible. Its form is

write content to file filename

The content that is written to the file can be either the name of a
variable, a text string inside quotation marks, or, more common­
ly, some me name identifier.

Sutnmary

120 Chapter Seven

If a field is being written out to the file, you can supply ei­
ther its assigned name or its field or unique ID number.

The field name can be either the field's assigned name or its
field or unique ID number. Locally assigned field numbers are
often more useful than names or IDs in write scripts because us­
ing numbers permits you to loop through all the fields on a card
in a small amount of code. The file name must, as usual, be in
quotation marks. The comments about locating the file and its
path name made in discussing the read command apply equally
to the write command.

You must insert delimiter characters into your outgoing
text. If the program on the receiving end of your output expects
a tab-delimited file, add a tab after each field is written to the
flle. One form of the portion of your script that handles this as­
signment is

repeat for the number of cards
repeat with x=l to the number o f fie l ds

write field i to file "Test"
write tab to file "Test"

end repeat
go next card

end repeat

In this chapter, you saw how to use several messages about the
mouse's location. You also examined the click command, which
permits you to simulate the user's mouse-clicking actions.

You looked at several messages that let you determine
whether the Command, Option, or Shift keys were held down the
last time the user clicked the mouse. You learned how they
worked, and saw a possible application of this approach in a
script. Finally, you learned how to open and close text-only files
and how to get information out of such files into HyperCard and
vice versa.

In Chapter 8, we take our long-promised look at control
structures and their related logical operations.

CHAPTER

Control Structures
and Logical Operators

I n this chapter, you will learn

• how control structures are used in HyperTalk scripts to exe­
cute groups of instructions repeatedly or conditionally

• what logical operators and related functions are available in
HyperTalk

• how to use special HyperTalk commands to gain better
control over loops

• how HyperTalk compares with Pascal and other traditional
procedural languages in the way it handles control
structures

121

122 Chapter Eight

Loops and Conditions: Background

If you have programming experience in Pascal, C, BASIC, or an­
other traditional programming language, feel free to skip this dis­
cussion and move to the next section, "If-Then Processing." But
if HyperTalk is your fust programming language or you're a bit
rusty in the fundamentals, reading this section will make the rest
of this chapter more understandable.

Most computer programs - and HyperTalk handlers are no
exception- execute linearly, starting with the first instruction,
then executing the second, then the third, and so on until they
come to some kind of logical end. Along the way, procedural
programming languages often include branching instructions that
send the program to some other part of the code semipennanently
(as with the BASIC GOTO statement) or temporarily (e.g.,
GOSUB in BASIC). These languages also generally include
instructions to execute one or more commands conditionally (i.e.,
only if a certain condition is met) or repeatedly (i.e., until some
condition arises, as long as some condition is true, or a specific
number of times).

In all cases, these constructs give programmers great
flexibility in the way their programs manage data and interact
with the user. It can be argued - and often is - that no
interesting or useful programs can be written without such
conditional processing and looping constructs. Avoiding that
philosophical issue, it is clear that meaningful programs are often
more difficult and time-consuming to design and write without
such constructs.

HyperTalk includes no commands equivalent to BASIC's
GOTO and GOSUB commands. It does, however, offer condi­
tional execution and looping constructs, which are the focus of
this chapter.

(We should perhaps be a little clearer at the outset. In Hy­
perTalk, it is possible to call procedures from within procedures.
In some ways, this resembles calling the BASIC GOTO and GO­
SUB statements just described. But there is no inherent, built-in
command for such branching.)

123 Control Structures and Logical Operators ------------------------

If-Then Processing

The frrst control structure we will discuss is the if-then-else
construct, which in one form or another is part of most major
programming languages.

Many of the decisions we make in our lives can be ex­
pressed as if-then decisions. /fit is Sunday, then I won't get up
early and go to work. If it is 95 degrees outside and the sky is
azure blue, then I won't take a raincoat with me when I leave
this morning. In each case, notice that we have the condition­
al"flag" in the word If, a word a wag once declared to be the big­
gest little word in the English language. This word is followed
by a description of a state of affairs or sequence of events that is
either true or false. If it is true (e.g., if it really is Sunday), the
second part of the statement is carried out (e.g., I don't get up
early to go to work).

If-then-else decisions in HyperTalk are similar to such
decisions in our daily lives.

General format and use

To undertake some conditional processing in HyperTalk, you
have a choice of two related approaches. The first has one set of
conditionally executed commands that are carried out only if
some condition is true. Its general form looks like this:

if <condition> then
<series of commands>

end if

This format can be abbreviated if there is only one com­
mand to be executed. In that event, the end if statement is notre­
quired. The conditionally executed command can be on the
same line as the if-then:

if <condition> then <command>

or on the next line:

124 Chapter Eight

if <condition>
then <conunand>

The second approach to conditional program processing
provides two sets of alternative commands, one is carried out if
the condition is true and the other is carried out if it is false. This
approach is known as the if-then-else approach, which is
familiar if you have any experience programming in
conventional languages such as Pascal or BASIC. The
formatting of this approach is identical to the first one
mentioned. The general format looks like this:

if <condition> then
<series of conunands>

else
<alternate series of conunands>

end if

The simplest form of the if-then-else construct is:

if <condition> then ~command_l> else command 2>

Formatting, which is generally not an issue in HyperTalk
programming, becomes important in dealing with the if com­
mand and its variations. The issue centers around when you
must supply the end if statement. Many HyperTalk programmers
have had difficulty sorting out this question. If you run into situ­
ations where HyperTalk's script editor refuses to indent your if­
then-else loops correctly and you can't figure out why, ask your­
self these questions:

1. How many else clauses are there? (Note that if you put the
key word else on a separate line from the command to be
executed with it, HyperTalk sees this as two clauses, not
one.) If you have only one line in the else clause, you
should not include the end if statement. In fact, it is wrong
to do so. If you have two or more lines in the else clause,
the end if is required. If you have no else clause, then go to
the next question.

2. How many then clauses are there? (Again, HyperTalk sees
the word then on a line by itself as a then clause line.) If

125 Control Slructures and Logical Operators ------------------------

you have only one line in the then clause, you should not
include the end if statement. Otherwise, it is required.

You must, of course, separate clauses into lines; you cannot
combine commands in one HyperTalk line inside an if statement
any more than you can anywhere else in HyperTalk.

It is , of course, possible to set up multiple conditions in the
if clause of an if-then or if-then-else construct. In the event you
need such multiple conditions, you will flnd it necessary to con­
nect them with the key words and or or. We'll see some exam­
ples of this usage later in the chapter.

NOTE

There are some anomalies in the way HyperTalk
formats and treats if clauses. If you use such clauses
in a script that seem not to execute properly, try re­
formatting the if-then-else clauses. This will quite
often erase apparent errors.

Nesting if statements

i

You can nest if-then and if-then-else statements. In other
words, commands executed conditionally can themselves be a
set of conditionally processed commands. This ability lends it­
self to powerful -- but potentially complex -- programming
structures.

Here is an example of a nested set of if-then-else statements:

on mouseUp
if the optionKey is down then

if the shiftKey is down then beep 5
else beep 3

else beep 1
end mouseUp

The button this script is attached to beeps once when it is
clicked, unless the Option key is held down at the same time, in
which case it beeps three times. If the Shift and Option keys are

- ~~
8

126 Chapter Eight

held down together when the button is pressed, HyperCard beeps
five times. Notice that each if-then-else includes only one com­
mand in the else portion, so no end if statements are required.

Nested if statements

Let's go back to the Laboratory stack. Pick any card with a but­
ton whose script is no longer needed, or create your own. Then
follow these instructions:

1. Open the script editing window for the button.

2. Type the following script into the window and click OK
when you are done and the handler is syntactically correct:

on mouseUp
if the optionKey is down then
if the shiftKey is down then

beep 5
put .. Shift-Option Combination" into Message

else
beep 3
put "Option Key Alone" into Message

end if
end if

end mouseUp

3. Return to browse mode.

4. Click on the button, first with the Option key held down,
then with the Shift-Option keys held down, and finally with
no .keyboard keys held down. Notice not only the different
beep combinations, but also the changing notices in the
Message box.

This is the same basic handler script as the one we just looked at
in much simpler form. It works the same, but this time we've
added multiple statements after each else, requiring that each if
clause be ended with an end if. Although this script is simplistic
and doesn't do anything to write home about, it does demonstrate

127 Control Structures and Logical Operators -----------------------

the flexibility of multiple nested if-then-else statements. A single
handler responds to an event that can be sent in three ways: alone,
with the Option key, or with the Shift-Option keys.

Conditional Operators and Calculations

Now that we've seen how if-then and if-then-else combinations
work, let's see how we create their conditions.

True or false tests

All conditions in conditional processing must ultimately lead to a
true or false situation. Any question that can be answered "yes"
or "no" can be used to formulate a condition for an if clause in
HyperTalk.

You can set up tests for equality (if x = 3 then ...) or
inequality (if not x = 3 then ...) but generally not for mathematical
formulas (if x*4 then ...) or other expressions that don't produce a
true or false, yes or no, 1 or 0 result. Functions and expressions
that do return such results are referred to as logical operations or
Boolean functions.

Sometimes, you will test the value of a container or variable
without using explicit equality or inequality comparisons. A
statement such as if x then . .. is an acceptable and logical Hyper­
Talk statement if x contains the value true or false or the number
1 (which means true) or 0 (which means false).

In HyperTalk, you will frequently test many things in the
condition portions of if statements. Broadly speaking, all are tests
for values stored in containers. But we can divide them more
conveniently into tests of

• equality

• inclusion

• status

Let's look at each kind of test.

128 Chapter Eight

Equality conditions

The test condition you will undoubtedly use most often in
HyperTalk scripts is the is command. Actually, is is a synonym
for equals. But most HyperTalk. scripters use is to keep their
scripts readable.

The following examples of equality conditions using is are
similar to those you will frequently encounter in programming
HyperTalk scripts:

if field "Name" is empty
if the optionKey is down
if x is 5
if it is "excited"

These are identical in effect to

if field "Name" = empty
if the optionKey = down
if X = 5
if it = "excited"

You can use is and= interchangeably, but your scripts are
easier to read if you confine your use of= to numeric compari­
sons and use is for all other comparisons.

As you might expect from a language as English-like and
flexible as HyperTalk, is has an opposite just as = does. The oppo­
site of the equal sign is written as either < > or '# and the opposite
of is, logically enough, is is not. In many cases, HyperTalk has
values that make the use of is not and other inequality operators
unnecessary. For example, you hardly need to write

if the optionKey is not down

when the shorter and clearer

if the optionKey is up

is available. But in other cases, the inequality operator is exactly
what's needed:

129 Control Structures and Logical Operators ----------------------

if field "Name" is not empty
if X :1= 5
if it is not "excited"

Comparison operators

Sometimes, it is not enough to know that an item is not equal to
another. You need to know if it is greater than or less than the
other object. For these situations, HyperTalk includes the usual
programming language complement of comparison operators.
These operators are summarized in Table 8-1.

Table 8-1. Comparison operators

Operator Interpretation Example

< Less than 15 <53 returns true

<=or~ Less than or equal to 15 <=53 returns true

33 ~ 33 returns true

> Greater than 15 >53 returns false

>=or~ Greater than or equal to 15>= 53 returns false

33 ~ 33 returns true

Inclusion

Besides equality and inequality, your HyperTalk scripts can test
for the presence of a sequence of characters in a field or text
container. You can use either is in or contains. Both operators
perform text matches that are not case sensitive. They look at
one text string -- the container -- and see if another text string
is located anywhere within it.

The syntax for these two commands is as follows:

if <source string> is in <container>
if <container> contains <source string>

-

130 Chapter Eight

As you can see, the only syntactical difference between the two
commands is that is in places the string to be searched for first,
but contains puts it last.

Testing for inclusion

Use either an existing Laboratory Stack card with a reusable field
or create a new field on either an existing card or a new card. Size
doesn't matter; leave the field set at the default size HyperCard
creates when it brings up the new field. But define it as a rectan­
gle or shadow so its outlines are visible (this makes things easier
when you're testing and come back to the field later).

1. Click into the field. Type in the following text with capitals
exactly as shown.

This is a dumb TEsT

2. Now open the Message box if it isn't already open, or click
in the Message box if it is open. Make sure the box is
empty.

3. Type:

card field 1 contains "test"

and press Return. The Message box displays "True."
Clearly, HyperTalk has found the string and ignored the
case differences. Try the same thing with other
combinations of uppercase and lowercase if you like.

4. Type

"dumb " is in card field 1

Be sure to include the space after the word dumb. Again,
the Message box displays "True." You can use this
approach to find any combination of characters or spaces in
the text of a field.

131 Control Structures and Logical Operators --------------------

Status

We have already seen in Chapter 7 how to test the state of the
Shift, Option, or Command keys and react accordingly. As we
will see in Chapter 17, all HyperCard objects have properties
associated with them. These properties enable us to find out
basic information about the objects other than their contents. For
example, using property management commands we can find out
if a field is presently visible, the user level for the person
accessing the stack, an object's name, how many cards, buttons,
fields, or backgrounds are in a stack, and dozens of other useful
pieces of information.

Although we defer the discussion of specific properties until
Chapter 17, you should be aware that testing the condition of
these properties is one of the most frequent kinds of conditional
processing you'll do in HyperTalk. The general form for using
these properties as conditions is straightforward:

if <property name> is <value>

To give you an idea of what kinds of things you might test
for, here are some sample lines:

if card field 1 is visible
if field "Test Field" is empty
if the number of cards > 53
if lockScreen is true

Not all properties that can be attributed to HyperCard objects are
subject to if-then testing or could logically be used in conditional
processing statements. In Chapter 17, we make clearer which of
the many properties do lend themselves to this treatment.

Using the constants true and false

When you do conditional processing programming in Hyper­
Talk, you can use the built-in constants true and false. These
constants are not often used with most of the conditional pro­
cessing situations we've discussed in this chapter because the
true or false nature of the condition is apparent. A button is ei­
ther up or down. Writing a line such as

on mouseup

132 Chapter Eight

if the optionKey is down is true

is superfluous.
But sometimes the built-in logical constants are handy. Per­

haps the most obvious case is the process of setting flags. In
complex programs, we often want to keep track of a condition in
the system. For example, we may want to know if the user has
clicked on Button 1 because if so, certain processing won't be
necessary. So we set up a "flag" variable- call it pressed in
this example - to keep track of that value. Then we can test it
at the appropriate time. The framework for the example we just
described is

on someEvent
set pressed to false

if pressed is false then

end someEvent

Logical connectors

One final topic should be covered to complete our discussion of
conditional processing. Oftentimes, a combination of conditions
must be tested before a script can proceed with processing. Stay­
ing with our by-now-familiar special key checking, for example,
we might want to know only if any of the special keys has been
pressed. We could get that information by programming a con­
struct such as

if the optionKey is down then put "Special key down"
if the shiftKey is down then put " Special key down"
if the conunandKey is down then put "Special key down"

end mouseUp

Pressing any combination of these special keys when the
mouse button is clicked puts the message "Special key down"
into the Message box. (We should note that if more than one
special key is used, the message is actually placed in the Mes­
sage box as many times as there are special keys pressed. But

133 Control Structures and Logical Operators ------------------------

on mouseUp

the effect is all but unnoticeable to the user, so it is not signifi­
cant in this context)

But this is more code than we need. If we want to display
the message if any special key is being pressed, we can use the
or connector. This connector links logical conditions so that if
any one of the conditions connected by or is true, the condition
succeeds. Thus, the previous handler can be reduced to this:

if the optionKey is down or the shiftKey is down or ~
the commandKey is down then put "Special key down"

end mouseUp

-

on mouseUp

Similarly, if we want to display a special message only if all
the keys are down, we use the and logical connector. Conditions
hooked together with and only succeed if all the conditions are .
true.

The third logical connector in HyperTalk is not. It is used
to negate or reverse logic. It can be applied to any equality con­
dition check to make it a check for inequality. It can also be
combined with and and or to create complex criteria in control
constructs.

Using and

Go to your Laboratory stack again. Use the same button you've
been using for these special key combination tests or create a
new one. Then follow these steps:

1. Open the button's scripting window by one of the usual
methods.

2. Enter the following script into the window:

if the shiftKey is down and the commandKey is down then
beep 3
put "Two keys down"

end if
end mouseUp

3. Return to browse mode.

134 Chapter Eight

4. Try pressing the mouse button with the cursor over the
button whose script you just created or modified. Notice
that something happens only when you hold down the Shift
and Command keys together.

Looping Commands

NOTE

We cannot test for all three keys being pressed at
once, not because of limitations of the and connec­
tor but because pressing the Command-Option key
combination results in HyperCard suspending opera­
tion and highlighting all the buttons on the card.
This interrupts script processing.

Besides conditionally executing instructions in a handler, we
might want to execute some particular step or steps more than
once. The repeated execution of commands in HyperTalk is ac­
complished with an instruction that is named, appropriately
enough, repeat.

This instruction should properly be looked at as four separ­
ate instructions. These variations on the repeat theme are

• repeat for

• repeat with

• repeat while

• repeat until

As we will see, these commands correspond to similar constructs in
Pascal, C, and BASIC. HyperTalk, however, includes something

135 Control Structures and Logical Operators ----------------------

most other programming languages lack: two ways to "escape"
from an executing loop without finishing some or all of its
instructions.

Basic looping concepts

All repeat structures in HyperTalk work similarly. They all start
with the word repeat and end with the phrase end repeat. They
all execute the commands contained between those key words
zero or more times. And they all end when the circumstances un­
der which they are expected to execute are no longer valid, un­
less they are interrupted sooner by an exit repeat command.

Inside a loop, all the rules of program execution apply ex­
actly as they do in a complete handler. Any conditional state­
ment groups involving if-then combinations are evaluated and
executed as if they were the only statements in the group. Local
and global variables known to the handler can be used anywhere
inside the repeat loop.

Quite often, a handler consists entirely or nearly entirely of
a single repeat loop. We saw one such loop in Chapter 7 when
we performed a Laboratory exercise to track the coordinate posi­
tion of the mouse pointer in a card. You may recall that the loop
executed until you clicked the mouse.

The most crucial idea in writing loops in any programming
language, including HyperTalk, is to make sure there is an
escape route. There are two ways to create such routes in
HyperTalk:

• by including an exit repeat condition that explicitly leaves
the loop when some event occurs

• by ensuring that the condition under which the repeat
command is executed eventually changes to a condition
under which it will stop

Failure to do one of these results in a dreaded construct called an
infinite loop, one of the most common mistakes in programming.

136 Chapter Eight

Basic repeat conditions

Whether we are talking about HyperTalk or a conventional
programming language, there are two general categories of
conditions under which loops can be programmed to execute:

• for a specific number of times

• as long as some condition remains true

In the flrst category of repeat loops, it is the reaching of some
specific value in a variable or an upper limit on the number of
iterations set as a condition. In the second category, the
circumstance that causes the loop to stop is the changing of a
condition.

Using object-counting in repeat conditions

One of the most useful things you can flnd out in HyperCard for
use in repeat loops is the number of some kind of object with
which you wish the loop to deal. For example, if you want to
zip through a stack and look at each card individually, you want
to know when you're done looking at all the cards. If you want
to perform some operation or test on all the card buttons on a
given card, you want to know how many buttons you have to
deal with. Although you can "hard-code" such information, this
is practically never a good idea; any future changes to the stack
design might not get picked up in the scripts affected by those
designs. All manner of confusion can result.

You can have HyperCard supply you with the number of
buttons or fields on the current background or card, the number
of backgrounds in the stack, the number of cards in the stack, or
even, beginning with HyperCard 1.2, the number of cards shar­
ing the current background.

It then becomes easy to write loops such as this one.

repeat for the number of cards
if field "Accepted" contains "Yes" then 1 to total
go to next card

end repeat

137 Control Structures and Logical Operators ------------------------

You will find frequent need for such repeat-loop counter
controls that involve knowing the number of some particular
kind of object with which the handler must be concerned.

The repeat for command

The repeat for command is the most straightforward of the loop­
ing constructs in HyperTalk. It simply tells HyperCard how
many times to execute a loop. In the absence of an exit repeat
command inside the loop, the instructions execute exactly the
specified number of times, then the handler proceeds with the
rest of its processing.

In Pascal, BASIC, or another conventional language, you
implement this same kind of loop with a FOR-NEXT construc­
tion, starting with the counter value set to 1 and the upper limit
set to the number of times you want to execute the loop.

Here is the syntax for the repeat for construct:

repeat [for] <number> [times)
<statements>

end repeat

Notice that there are two optional words in the command: for
and times. This permits you to make your repeat loops as
abbreviated as you want or to opt for maximum readability. The
following opening lines of repeat loops are equivalent:

repeat for 11 times
repeat for 11
repeat 11 times
repeat 11

The number argument need not be an explicitly supplied
numeric value. It can be a container that holds a number. For
example, you might ask users how many times they want some
action to occur, store the answer in the variable numberOfl'imes,
and then set up a repeat loop like this:

repeat numberOfTimes times

end repeat

138 Chapter Eight

One place you will find this approach to the repeat loop
most useful is when you are performing some process repeatedly
but want to insert a wait command to slow things down a bit.
(The wait command is discussed in detail in Chapter 20. For
now, just remember that it delays the number of ticks, or 60ths
of a second, supplied as an argument.) You have undoubtedly
noticed, for example, that when we use commands such as

beep 3

in our scripts, the three beeps take place in such close proximity
that the effect isn't always what we intended. By putting the
beep command inside a repeat loop, we can separate the sounds
by some silence, achieving the desired effect:

repeat 3 times
beep
wait 4

end repeat

Experiment with the value supplied as the time to wait to convey
the audio message you want.

Another place where you will frequently use the repeat for
approach to looping involves scanning through all the fields or
cards to look for something or to change the data. For example,
you might have a client billing stack that includes on each card a
field with the billing rate for that attorney. If the partners decide
to increase billing rates by 10%, you could write a small repeat
for loop like this:

repeat number of cards times
put field " Rate " * 1.1 into field "Rate"
go next card

end repeat

The repeat with command

The repeat with command adds another level of complexity to
the condition. In the repeat with approach, you use a special
variable called a counter that you increase or decrease by I

139 Control Structures and Logical Operators ------------------------

during each cycle through the loop until it reaches a
predetermined value. Then the loop stops executing.

This command is HyperTalk's equivalent of the FOR­
NEXT loop in Pascal and BASIC. The only difference is you
cannot specify an increment or decrement value in HyperTalk.
The variable is always increased or decreased by 1.

The syntax for the repeat with command looks like this:

repeat with <counter> = <start> [down]to <end>
<commands>

end repeat

If the value for start is 1, repeat with is the same as repeat
for. In other words, this repeat loop:

repeat with x = 1 to 10
<commands>

end repeat

does the same thing as this one:

repeat 10 times
<commands>

end repeat

There is an important exception to this equality. If you need to
use the number of times through the loop as a value, only the
repeat with approach will work.

Returning to our time billing example, suppose each attor­
ney's card contained several billing rates and the fields were
called (for purposes of simplicity) Field 1, Field 2, and so on.
You could update all the fields on a single card with a single
repeat loop like this:

repeat with x = 1 to number of card fields
put card Field x * 1.1 into card Field x

end repeat

But if billing rates start with Field 7 and are the last fields
on the card, a simple modification handles that case as well:

-

140 Chapter Eight

repeat with x = 7 to number of card fields
put card Field x * 1.1 into card Field x

end repeat

In this last example, it would be difficult, if not impossible, to
use the repeat for loop to solve the problem.

The repeat while command

You use the repeat while command to carry out a set of instruc­
tions as long as a condition is true. As soon as the condition is
false, the loop stops executing.

The syntax for the repeat while command looks like this:

repeat while <condition>
<commands>

end repeat

The condition here is identical in use and form to those we dis­
cussed with if processing previously in this chapter. It must eval­
uate to a true or false value, and it can use any of HyperCard's
built-in functions to do so. If the condition is false the first time
HyperCard encounters the loop, the loop never executes.

Using the repeat while command

Open the Laboratory stack again. We need a card with a button
and a field whose contents you can re-use. Find an old card with
this combination of objects or create a new one. The field must be
Field 1, or you must make appropriate changes to the following
script.

1. Open the button's script editing window in one of the usual
ways.

2. Type the following script into the window and click OK
when you're done:

141 Control Structures and Logical Operators ----------------------

on mouseUp
repeat while card Field 1 < 64

put card Field 1 * 2 into card Field 1
end repeat
beep

end mouseUp

3. Return to browse mode.

4. Enter the number 2 in the field.

5. Press the button. A series of numbers appear in the window,
until the value 64 appears. Then the loop stops, your Mac
beeps, and the handler ends. Your screen looks similar to
Figure 8-1.

c File Edit Go Tools ects

64

(Tester)

Figure 8-1. The repeat while loop experiment ends

6. Put the number 75 (or any number higher than 64) into the
window and notice what happens. TI1e repeat loop is never
executed. Instead, you get the expected beep sound and the

142 ChapterEight

handler ends. The first time the repeat loop was entered,
the value of the field was greater than 64, so the loop was
never carried out.

The repeat until command

The last of the four regular repeat forms we will examine is the
repeat until command. It is easy to understand because it is the
flip side of the repeat while command we have just examined.
The commands within its boundaries execute as long as the con­
dition remains false. As soon as the condition turns true, the
loop stops. This generally requires a reversal of the logic of the
repeat while loop's condition.

Here's the syntax for repeat until:

repeat until <condition>
<commands>

end repeat

To execute the example in our previous Laboratory exercise
the same way using a repeat until loop, we have to reverse the
logic of the condition. Instead of checking for the field's value to
be greater than 64, we check for it being less than or equal to 64:

on mouseUp
repeat until card Field 1 >~ 64

put card Field 1 * 2 into card Field 1
end repeat
beep

end mouseUp

If you want to experiment with this script, simply edit the repeat
line of the script from our last Laboratory experiment and run
the handler.

143 Control Structures and Logical Operators ----------------------

NOTE

We use the condition "greater than or equal to 64"
rather than "equal to 64" in the previous example for
an important reason. If you use only an equal
condition (i.e., Field 1=64) and if Field 1 's value
never gets to exactly 64, the loop could become an
infinite one. For example, if the user puts a 3
instead of a 2 into Field 1 at the start, doubling the
value each time results in answers of 6, 12, 24, 48,
96, 192, and so on. Because 64 never appears, the
loop just keeps executing. In the Laboratory
example, we were sure that the value 64 would
eventually appear. But unless you can guarantee the
ceiling value will be reached, use conditions that are
met without an infinite loop.

The naked repeat command

You will occasionally encounter one last form of the repeat
command in scripts: the naked repeat. With no for, with, while,
or until, the repeat command means repeat forever. (You can
even add the word forever if you want to make it clearer.)

In 99% of all cases where you use the repeat command
alone, you will supply a means of exiting the loop using the tech­
nique described later in this chapter. And you probably could
design the loop as a more conventional repeat loop using one of
the other ending conditions we've been studying.

But in some limited circumstances, you want to keep all or
a major portion of your script's processing in an intentionally in­
finite loop. Such loops can give the programmer more control
over the user's interaction with the program, a decidedly unMac­
like thing to do. Because the user can always leave your script
by using one of the menu navigation commands to go to a differ­
ent stack or card, though, you are not really trapping the user in
an infinite loop. Still, use the concept sparingly. Always ask
yourself if there isn't a more straightforward way to deal with
the loop requirement.

144 Chapter Eight

Control Within Repeat Loops

HyperTalk includes two powerful commands to change the
course of action within repeat loops. One, next repeat, cuts
short the execution of part of a collection of repeated statements
while continuing the loop at the next iteration. The other, exit
repeat, causes the loop to stop executing and the script to begin
processing at the first statement after the end repeat line.

The next repeat command

Although most programming languages do not have a command
equivalent to the next repeat command, it has some handy uses.
Within any repeat loop, you can use a command such as

if <condition> then [<commands>] [end if) else next repeat [<commands>)

to make the program go back to the top of the repeat loop, with­
out executing any statements between the next repeat command
and either another next repeat command or the end repeat com­
mand. If any commands appear between then and next repeat,
the end if statement is also required, as you will recall from our
discussion of if-then combinations previously.

Here is a generic example of the use of the next repeat
command:

repeat with x = 10 to 50
<statement!>
<statement2>
if <condition2> then

beep 3
next repeat

end if
<statement3>

end repeat

This loop executes 41 times, once for each value of x from 10 to
50, inclusive, unless the condition specified in condition2 be­
comes true before that time. In that event, the system beeps

145 Control Structures and Logical Operators ------------------------

three times and statement3 is not executed. But statement] and
statement2 continue to execute until the loop ends normally. If
condition2 is never changed, statement3 is not executed again be­
cause each time through the loop, the if command catches the ex­
ecution, finds the condition to be true, and returns to the top of
the loop.

Again using our time billing example, assume the partners
want to not only increase all billing rates by 10%, but also make
sure no billing rate is lower than $125. The following loop
handles that task:

repeat with x = 1 to number of card fields
put card Field 1 * 1.1 into card Field 1
if card Field 1 >= 125 then next repeat
put 125 into card Field 1

end repeat

There are more ways to handle this problem, but this solution
works, is efficient, and demonstrates the use of the next repeat
command nicely.

Counting backwards with downTo

When you need to count down from a higher number to a lower
one rather than in the more common ascending order, you can
substitute down to for to in the repeat with loop structure.

repeat with x = 10 down to 1
put x
beep x

end repeat

Defining a different increment

As mentioned, repeat loops in HyperTalk that use values with
the with and for approaches do not allow you to increment or
decrement the value of the counter by any value other than 1.
Sometimes you want to increment a value by another value. In
those cases, you can use the next repeat function with the mod
operator to change the increment. (The mod operator finds the

146 Chapter Eight

remainder in a division problem. For example, the result of 6
mod 3 is 0 because 6/3=2 with no remainder. But 39 mod 2 is 1
because 39/2=19 with a remainder of 1. The mod operator is
fully discussed in Chapter 14.)

Here, for example, is a loop that effectively increments the
counter by 2 each time through the loop:

repeat with x = 1 to 100
if x mod 2 ~ 0 then next repeat
put x

end repeat

You can confirm that this loop works by attaching it to a button
in a Laboratory card. The numbers 2, 4, 6, and so on up to 100
are displayed in the Message box, though you may have to build
in a wait instruction to see each value displayed. Note that all
the usual rules about using if-then constructs, described previ­
ously in this chapter, apply to next repeat commands.

The exit repeat command

The exit repeat command is straightforward. It is almost always
used with an if-then construct. The exit repeat command caus­
es the loop to terminate immediately.

The syntax for this command is:

if <condition> then exit repeat

As with other if-then constructions, this command can incorpo­
rate other commands between then and exit repeat. If other
commands are included, an end if is needed.

Continuing with our time billing example, the fickle part­
ners have now decided to increase everyone's fees by 10% in the
first three categories (fields) but to bump only the partners' fees
by 25% in all remaining categories. The following loop handles
the assignment neatly:

14 7 Control Structures and Logical Operators ------------------------

repeat with x = 1 to number of card fields
put card Field x * 1.1 into card Field x
if card Field " Status" is not "Partner" then exit repeat
if x > 3 then put card Field x * 1.25 into card Field x

end repeat

Summary
MSWW'&3 2*Jf'§P8'? 7'"m

This loop would be part of a larger loop so that when the exit
repeat command is encountered, the next card is examined and
this repeat loop executes again.

In this chapter, you learned about two of the most important
programming techniques in HyperTalk (or any other
programming language): conditional commands and loops.

You saw that the if-then and if-then-else command groups
permit you to execute instructions in a handler selectively. You
learned there are a wide range of conditions you can check to
determine if a command or sequence of commands should be
carried out or not.

When instructions need to be carried out multiple times,
you learned to use the various forms of the repeat command.
You saw that each command in a repeat loop can be executed a
specific number of times or until some condition is true or false.

Finally, you noted that HyperTalk, unlike most
programming languages, offers powerful ways to alter the course
of a loop's execution, adding another dimension of control.

In the next chapter, we will examine some commands,
functions, and operators for controlling the stack and card
environments.

CH APT ER

Card Management
Methods

I n this chapter, you'llleam how to use HyperTalk commands to

• navigate among cards and stacks

• enable the user to return quickly to some pre-determined
point in the stack

• show or print one or more cards in a stack

Navigation Commands

In a typical stackware application, the user spends a lot of time
moving among cards. The user generally controls this move­
ment with buttons you've designed and connected to arrows and
icons. But there are times when you want to control what cards
the user accesses and in what order. Sometimes this need is tem­
porary, and other times it is an integral part of the stack's design.

149

150 Chapter Nine

When you do want to control the navigation process, you can
use one of HyperTalk's built-in commands, possibly with one of
the language's constants.

Basically two HyperTalk commands are used for naviga­
tion: go and find. You use go to send the user to a specific card
that can be named or referred to relative to the user's present po­
sition in the stack. The find command is used to send the user to
a card based on its content.

Using go in a Script

You have probably had the experience of typing go commands
into the Message box. This command can be used to move from
your present position in the HyperCard world to any card in the
current stack or to any addressable card in any other stack. Us­
ing the go command in a script is not substantially different from
using it in the Message box.

The basic syntax of the command is simplicity itself:

go [to] <destination>

Notice that you can use the optional word to for more English-like
syntax. The destination can be a card or a stack. You cannot go to
a field or any other object.

Addressing a destination

As you may know, any card can be addressed by name, sequence
number, or unique ID number. If the seventh card in the current
stack is named Directions and HyperCard has assigned it the
unique ID 14238, all of the following commands will take you to
the card:

go to card "Directions"
go to card 7
go to card ID 14238

151 Card Management Methods ------------------------

The argument to the go command can be stored in a container
so that the addressing is indirect. If the container helpPlace
contains the value Directions, this command takes you to the same
card as the previous three commands:

go to card helpplace

If you want to go to a different stack from the current one,
simply supply the name of the stack in quotation marks as an
argument to the go command. In the absence of instructions to
the contrary, HyperCard goes to the first card in that stack:

go to "My Appointments "

The quotation marks are required even if the stack has only one
word so that HyperTalk doesn't think you are supplying the
name of a container. Also note that to go to a stack, you need
not use the word stack (though you may do so for readability).
HyperCard assumes you want it to change stacks when you issue
the go command and only needs clarification if you want to go to
a card in the current stack.

You can combine these methods of navigation to take the
user to a specific card in a stack:

go to card 78 of stack "Employees"
go to card ID 41233 of ••Help"

Cards with special addresses

Several groups or classes of cards in any stack with special ad­
dresses can be used to make navigation easier and more readable.
These special addresses include

• positional addresses like first, third, or last

• relative addresses like back, recent, or next

HyperCard includes special constants to address these specific
cards.

152 Chapter Nine

The positional constants include the ordinal numbers 1-10
(first, second, third, and so on) as well as the random card ad­
dress any and the address of the last card in any stack, last. The
middle card in the current stack can also be addressed specially,
as mid or middle, should you come up with a need to do so. All
these special addresses are also used to address components of
containers. Their use in that context is more fully discussed in
Chapter 10. All of the following, then, are valid go commands:

go to sevent h card - - same as " g o card 7 "
go to last card -- go to the l ast card in this stack
g o to third card in " Idea s "
go to last c ard in " Ideas"
go t o any card -- pick a card at random and go there
go to mi d - - go to the middle card in the current stac k

The relative constants include: next, previous (also abbre­
viated prev), forth, back, and recent. For all practical purposes,
the last two are identical. The flrst two - next and previous -
affect the user's position within the current stack relative to the
present position. Thus, if the user is at the 14th card in the stack
and a script executes the go previous command, the user is
shown the 13th card in the stack even if the 14th card was
reached without going through the 13th card. In other words,
next and previous are not related to the route by which the user
arrives at any given point.

On the other hand, back and recent are both path-related. If
the user has been taken or has "driven" through a path like that
shown in Figure 9-1, each use of one of these commands backs
up the path one step. The forth indicator is also path-related. It
points at the next card in the Recent stack. If the current card is
the last card in the Recent stack, the command

go forth

takes the user to the Home stack.

153 Card Management Methods ----------------------

Card 41
Stack "Test"

Back

Back

Card 42
Stack "Test"

Card 1
Stack · r est•

Card 43
Stack •rest •

Card 1
Stack " Home•

Card 52
Stack "Test ·

User Path

Card 44 Card 45
Stack "Test" Stack "Test"

Previous Current Location Next

Figur e 9-1. The back, next ,and previous commands

As you can see in Figure 9-1, the user started at Card 1 of
the stack called Test and followed the indicated path to reach
Card 43 of the same stack. Now, a go prev command takes the
user to Card 42 of that stack. A go next command takes the user
to Card 44 of the stack. But a go back command (or a go recent
card) takes the user to Card 52 of the stack, and another execu­
tion of that command moves the user to Card 1 of the Horne
stack.

Non-existent cards

If a go command attempts to access a non-existent card, the
message "not found" will be returned in a function called the
result. Good error-trapping strategy dictates that you check for
this condition.

go to card id 1437
if the result is empty then
-- some processing

else
-- error-handling

154 Chapter Nine

Finding Cards by Content

Sometimes, you don't know the specific card you want to steer
the user to, but you do know that it contains some key word or
words. In those cases, use the find command to locate the de­
sired card.

This command is not mysterious. Almost from the time
you began using HyperCard, probably before you were aware
that HyperTalk existed, you were using find commands to move
to cards when you wanted to locate an individual in your Ad­
dress stack or an appointment in your Datebook stack.

Used within a HyperTalk script, the find command is identi­
cal, though you may use it with slightly more arguments and so­
phistication than you were aware was available to you in the
Message box. The simplest form of the command is

find "<text>"

When it is used this way, the find command searches through all
fields of each card in the stack, beginning with the currently visi­
ble one, and locates the first occurrence of the word or words
supplied as an argument

You can add two types of qualifiers to the fmd command.
The first type defines the nature of the search; the second con­
fmes the search to a specific field. You use both kinds of qualifi­
ers extensively in scripting. Without these qualifiers, HyperCard
locates the text anywhere it occurs, even if it's split over two
fields on the same card, as long as the target string is the begin­
ning of a word. Thus, it would fmd an in answer and antidote,
but not in banana or Alexander.

What kind of match to rmd?

You can add four qualifiers to the find command to tell Hyper­
Card what constitutes a "hit":

• whole

• string

155 Card Management Methods

• word

• chars

Each of these qualifiers results in a slightly different ap­
proach to the find command. They may not be used in combina­
tion with one another.

We take a look at each of these qualifiers in turn, then we
examine an example that clarifies how the qualifiers differ from
one another.

The command find whole is the most targeted of these com­
mands. Its rules for declaring a combination of characters as a
"hit" are as follows:

1. The word or phrase found must match exactly the argument
supplied with the command.

2. Spaces are significant.

3. Order is significant

4. All of the word or phrase must appear in the same field on a carcl.

This option was added to HyperCard 1.2 to overcome what
many users and designers saw as a limitation in earlier releases
of the program. Those limitations become clearer when we
study an example of the various find commands later in this sec­
tion.

Also added in HyperCard 1.2 was the find string command.
This command is essentially the same as the find chars com­

mand (which we discuss next), except that when its argument
has one or more spaces in it, HyperCard uses its fastest search al­
gorithm. This addition significantly improves the peformance of
complex searches but does not add functionality to HyperCard.

If you want to limit the search to the whole word or words
supplied as the search text, use the find word form:

find word "end"

This command only finds the word end as a whole word.
The words blender, ending, and weekend are not located.

-

156 Chapter Nine

Finally, if you want HyperCard to find the target string even
if it occurs mid-word, use the find chars form of the command:

find chars "end"

This command finds blender, ending, and weekend.

Specifying the Search

1. Create a new Laboratory stack using the "New Stack"
option from the File Menu; leave "Copy Current
Background" selected in the resulting dialog.

2. Create two background fields for this new stack.

3. On Card 1, type in field 1 the word "Irving" and in field 2
the word "Glotzbach".

4. On Card 2, type in field 1 the words "Irving Glotzbach" and
in field 2 the words "lives here".

5. On Card 3, type in field 1 the words "Ingemar Johansen"
and in field 2 the words "lived here".

6. Go to Card 1.

7. In the Message Box, type:

find "Irving Glotzbach"

8. After it finds the string on Card 1 (notice that it appears split
across two fields), press the return key. Notice that it finds
the string on Card 2 as well. Press return again and
HyperCard returns to Card 1.

9. Now try typing:

find word "Irving Glotzbach"

157 Card Management Methods ----------------------

10. Notice that the results match those we encountered in Steps
7 and 8.

11. Change the Message Box so that it reads:

find whole "Irving Glotzbach"

12. Notice that now HyperCard only finds Card 2. This is the
only card where the target string, "Irving Glotzbach", exists
exactly as provided in the argument to the find command
and entirely in one field.

13. Now type the following line into the Message box:

find whole "live"

14. Notice that HyperCard simply beeps at you; it cannot find
the word "live" as a complete, stand-alone word. (You can
achieve the same result with the find word variation in this
case.)

15. Return to the Message Box and type:

find chars "ing"

16. Now HyperCard finds all three cards, because all of them
have the string ing somewhere in one of their fields, though
not necessarily at the beginning of a word.

17. Let's change the Message Box to read:

find "ing"

18. Now HyperCard only finds Card 3, because that's the only
place that the string "ing" begins a word (in this case,
Ingemar).

158 Chapter Nine

Narrowing the search

When you design stacks, each field will probably have a specific
purpose. Each card on which the field appears will store the
same kind of information in that field. On an inventory stack's
cards, for example, you might store the part number in Field 1,
the quantity on hand in Field 2, the price per unit in Field 3 and
the date last ordered in Field 4. If you want to find all parts with
a 5 in the number, you can write:

f ind " 5 "

But HyperCard would find every card where the quantity on
hand was 5 or 15 or 500, any part that cost $49.95, any date that
included a 5 - in short, it would find every 5 in every card of
the stack. That's not what you wanted. So you might narrow the
search to Field 1 like this:

f ind "5" in field 1

HyperCard would ignore the contents of all other fields and con­
centrate its search for 5's only in Field 1. If the 5 were a standa­
lone part of the part number so that it qualifies as a word in
HyperCard, then you could even use

find word "5" in field 1

This is a little more specific, but it will still fmd any 5 surrounded
by spaces anywhere in Field 1.

Limitations on find

Unfortunately, the find command cannot be forced to confine it­
self only to a specific component of the field. You may know
that the 5 you are interested in is always the third digit, but that's
not going to help you with the find command. In that case, de­
sign a customized search routine that looks at the third character
of the field and does something if it's a 5.

When you execute the find command within a script, the
user cannot continue the search with a simple Return key, though
you can design the script to make this possible.

159 Card Management Methods ------------------------

The found card

When the find command is successful, it makes the card on
which it locates the match the current card. You can then use
property-retrieval techniques (see Chapter 17) to find out that
card's ID, or examine other fields or parts of the same field to
qualify the card before continuing processing. If the find com­
mand fails, it leaves the current card unchanged.

If the find command fails, a message indicating the approxi­
mate reason for the failure will be returned in the built-in function
the result. The specific error is not usually important, so merely
checking to see if the result has anything in it is sufficient to
deal with error conditions.

if the result is empty then stepl else step2

Using pop and push in Scripts
IIIIISiiPliiiW . :llll181' r 'II lSIII< ii ii 1111 1111 llillifl .'illill" I!T

In complex scripts with lots of card movement, you often want to
mark a card as one to return to after some exploration is com­
plete. Rather than requiring you to keep track of how many go
back commands it will take to get there, HyperTalk includes the
pop and push commands. In essence, push marks a card for lat­
er instant retrieval with the pop command.

The push command does not require any parameters. (You
may, for the usual reason of readability, write the command to
push the current card as push card, but that is not necessary.) If
you want to mark the current card, simply use the command by
itself. If you want to push the most recent card (i.e., the card
from which the user got to the current card), you need to add a
parameter:

push recent card

The pop card command indicates that you want to return the
user to the card to which you most recently applied a push com­
mand. The card parameter is required. The only other use of pop
is explained later when we describe multiple push statements.

160 Chapter Nine

The stack created by push

You can think of the push command as moving the card to which
it applies to a special location that in traditional programming
terms would be called a stack. Only this is not a HyperCard
stack. Rather, it is a kind of single-file line in which cards that
are pushed stand until they are called again. Figure 9-2 depicts
this special location. In such a situation, only the top card - the
one nearest the door in the illustration - can be affected by a
pop command. It must get "out of the way" before you can
release any of the cards placed there earlier.

- ----------
!

lli£W1NG
A 'REA
<::::::?

Figure 9-2. Pushed cards go into a special location

The kind of special location shown in Figure 9-2 is called,
in computer terms, a LIFO stack. LIFO is an acronym for "last
in, first out." The last card pushed into this line is the first one
popped out of it. Most of the time, your scripts will not push
more than one card at a time. Only very complex applications
ever need to handle multiple-card special stacks like that shown
in Figure 9-2.

161 Card Management Methods ----------------------

-~

Using pop without showing the card

But if you do have an application that uses multiple-card pushes
and you want to pop a card other than the top one into view, you
will need to use the technique of popping the card into a container.

The syntax for this technique is:

pop card into <container>

When you pop a card into a container, the card's ID and stack lo­
cation are placed in the container and the card is removed from
the special stack location without being shown to the user. Later,
you can use the information in the container, along with a go
command, to show the card that was popped into the container.

For example, assume you have executed two pop com­
mands. The first one operated on Card 6 of the current stack and
the second operated on Card 157. Now you want to take the user
to the card that was popped first. The basic handler segment
looks like this:

pop card into card field 1 of holder
pop card

Now the card identifying information for Card 157 is stored in
the container called holder, in Card Field 1. Now if you want to
show that card, use a command like this:

go to card field 1 of holder

Notice that this does not take the user to the field but rather to
the card whose identifier is stored in the field.

Using push and pop

For this experiment, let's create a new stack that uses the back­
ground of the Laboratory stack. After you've done that, follow
these directions:

1. Get into Edit Background mode.

162 Chapter Nine

2. Add a rectangular field to the background. You don't need
to name it because we'll refer to it by its field number. The
card should look similar to Figure 9-3.

s File Edit Go Tools Objects

••••••-•••••~••••••-••oo"'"-""''""-.'''''"'-''''''''"'""""'-''""''''-"''"

Figure 9-3. New Laboratory stack card

3. Return to browse mode.

4. Create six new cards for the stack so that the stack has
seven cards. Name the cards Test 1, Test 2, and so forth, in
the Card Info ... dialog.

5. Label each card Card 1, Card 2, and so forth, in the field
you've created. These are used as visual cues as we go
through the experiment.

6. Go to Card 1 and create a new scrolling field. Name it
Tracker. Put it anywhere on the card. Card 1 should now
look similar to Figure 9-4.

163 Card Management Methods ----------------------

c file [dlt Go Tools 0 ects

Cardt

Figure 9-4. Card 1 with Tracker field added

7. Open the Message box. Type the following commands, in
the order shown:

go to card "Test 1" -- Card 1 should appear
push card
go to card "Test 3"
go to card "Test 4"
pop card -- Card 1 should reappear

8. Now we'll try a multiple-push experiment. Type the
following commands, in the order shown:

go to card "Test 1" -- Card 1 should appear
push card
go to card "Test 3"
push card
go to card "Test 5 "
push card
go to card "Test 6"
pop card into card field "Tracker" of Card "Test 1 "

164 Chapter Nine

pop card after card field "Tracker" of Card "Test 1"
pop card Card 1 should reappear with text in Holder

9. Your screen should look similar to Figure 9-5. Notice that
identification information, complete with path, is now
stored in the Tracker field of Card 1. These are the IDs of
the two cards that were pushed onto the stack after Card 1
and then popped into this container. To confirm this, go to
those cards and choose Card Info ... from the Objects menu.
Note the card ID numbers shown there.

• File Edit Go Tools Objects

pop cerd

Card!

cerd id 3589
of stack A
Herd Plece:
Hyper Folder:
Leb2cerd id
5033 of stock
A Herd Plece:
Hyper Folder:
Lcb2

Figure 9-5. Card identification in Tracker field

Using push and pop between objects

It is not necessary that balanced push and pop commands work
with the same object or one of the same level. It is not only pos­
sible but often useful to push a card as a result of the user having
pressed a button and later to pop the card from a card script.

165 Card Management Methods ------------------------

You '11 find that judicious use of push and pop can save you
a great deal of unnecessary navigation.

Showing and Printing Cards
lillll I ~1111 r i III II l i A' i IIH ~:: Ji

You 've undoubtedly noticed the icon on many HyperCard stacks
that is used to zoom through the stack looking for a specific card.
Such an icon is included in the Address stack, for example, and
is shown in Figure 9-6 (the second icon from the bottom of the
panel of icons along the left side of the Address card). Open this
button's script in one of the usual ways. It should look like this
(assuming it has not been modified):

on mouseUp
show all c a rds

end mouseUp

This is the first card of the Address stack.

8/16/ 87

Figure 9-6. Address stack card with "show cards" icon

Summary

166 Chapter Nine

This show command lets the browser skim through a stack.
It shows cards until it has shown all the cards it has been asked
to display or the user clicks the mouse, whichever happens first.
The first card shown is the one after the one showing when the
command is issued. You can use it to let the user flip through all
the cards in a stack or just through a specific number of cards. In
the latter case, the command syntax is

show <number> cards

If you ask HyperCard to show more cards than are in the
stack, it simply recycles through the stack until it has shown the
requested number of cards.

The principles that apply to show also pertain to the print
card command. This command has three fonns:

print card
print card "Test 3"
print 5 cards

The first form prints the current card. The second prints any
identified card. The last prints a specific number of cards, begin­
ning with the currently visible one, and may use the word all in
place of a number.

In this chapter, you saw how to use script commands to move the
user through a stack with variations of the go command. You
also saw how to save one or more cards for quick return and re­
trieval using combinations of push and pop . Finally, you
learned to use show and print to display and produce printed
copies of cards in various ways. In Chapter 10, you explore a
wide range of commands that involve managing information in
HyperCard stacks.

CHAPTER

Managing Text
and Data

I n this chapter, you 'llleam how to

• read the contents of fields

• get information about data in fields

• find and select field contents

• modify the contents of fields

• use fields to simulate arrays and tables of data

• sort cards by the contents of fields

• deal with date and time data as a special class of
information

• trap the use of the Return and Enter keys in a field

167

168 Chapter Ten

HyperCard as an Information Base

When HyperCard was flrst announced, many people, in a sincere
attempt to describe what is clearly a new class of product, com­
pared it to conventional database management systems. This
turned out to be an oversimplification for at least two reasons:

• HyperCard does much more than manage data, which is
what database management systems do.

• Database management systems have other capabilities for
data manipulation that exceed those of HyperCard.

Nonetheless, HyperCard does manage data. Its management of
information through Hypertext features (the links between cards
and stacks that make authoring without HyperTalk more powerful
than many kinds of programming) and HyperTalk scripts is its
most important feature. In HyperCard, before the release of Ver­
sion 1.2, the ability to find data and to position the cursor correctly
in a data entry field were quite difficult to implement. In Version
1.2, HyperCard added a great deal of functionality to make the
find command more useful as well as providing a new select com­
mand. Used together, these two instruction groups significantly
improve the data-management capabilities of HyperCard.

In this chapter, we examine HyperTalk commands that
manage information. This data is stored in fields on cards be­
cause fields are the only places changeable data can be stored
and still be visible to the user.

Reading Information in a Field
888!1Bi!mi ;mmm ;m: ;s:ns 1 s 11111111111111

When information is stored in a card field or background field, it
can be obtained by the get command. This command is not new
to us. We've used it in several Laboratory experiments and in
other discussions. But now we will take a close look at how it
works and gain more insight into its use.

We can also use the put command to retrieve data, even
though the action of retrieval sounds contrary to what we usually

169 Managing Text and Data ------------------------

think of when we use the word put. We can use put to copy in­
formation from a field to another field or a container. The put
command also serves as the means for permanently modifying
information in a field. We'll talk about the put command several
times from several different perspectives in this chapter.

The get command

As you may recall, get retrieves data and puts the result into the
special It variable. From there, your script can access It and do
whatever it wants, including:

• test the contents of It and use the test result in an if construct

• use put to move data into another temporary container or
field

• modify data in It and then perform another function

Generally, if your plan for the data after it is retrieved
involves moving it from It to any other container or field, it is
better to use put (discussed next) to move it directly. This is true
for two reasons:

• This approach requires fewer keystrokes and is a more
efficient use of memory.

• The It variable is used extensively by HyperCard, so
minimizing its use in your scripts is a good idea.

Addressing reminder

As you may recall from our previous discussions, particularly in
Chapter 5, data in fields can be addressed in many ways to gain
access to very specific information chunks. In the remainder of
this discussion, we frequently use the item, line, word, and char
operators to focus on the information we want to retrieve.

- · ~~
~

170 Chapter Ten

Some get practice

For our next exercise, use the same new stack of cards you created
in Chapter 9 for the exercise on push and pop. (If you didn't do
that exercise or didn't save the resulting stack, create a new card
in the Laboratory stack and add a field called Field 1, using the de­
fault size and position HyperCard uses when it creates a new field.
If you do this, however, you have now created a card field called
Field 1 and must modify the directions in this Laboratory exercise
accordingly. Remember, HyperCard assumes you mean a
background field when you address a field unless you explicitly
indicate a card field. Also, name this card Test 2 to match the
name we use in the listings. Put the words Card 2 into the field.)

NOTE I You don't need to use the card name when you are ;
referring to the current card. But these are experi- '
ments, and in most cases you will use the complete
address of the source and destination, including the
card identifier. So we use the full address even
though we could shorten it. This helps pattern your
thinking so you don't make a mistake when writing
your own scripts.

After you open the stack from Chapter 9 or create a new
one, get to the card called Test 2 that says Card 2 in the field.
Then follow these directions.

1. Add two lines of text to the field, as shown in Figure 10-1.
The commas in the second text line are important, so be
sure to include them. Also, be sure to insert a carriage
return at the end of the first text line so that HyperCard
won't see the two text lines as one continuous line.

2. Open the Message box if it isn ' t already visible. We'll be
conducting these experiments from the Message box and
not from scripts.

171 Managing Text and Data -------------------------

get

get

get

3. Type the following commands in the Message box. After
each is completed successfully, type the word It and press
Return. Examine the result and check that it is the same as
that shown indented under each command.

• Fil e Edit Go Tools 0 ects

line 1 of field 1
it = "Card 2 "

line 2 of field 1

Card2
Some arbitrary text

Third, line, of, atuff

Figure 10-1. Modified field of Test 2 card

of card " Test 2"

of card "Test 2 "
it = " Some arbit rary text"

firs t word of line 2 of field 1 of card "Test 2"
-- it = " Some "

get second item of line 3 of field 1 of card "Test 2 "
it = " line" (note the space)

get char 3 to 6 of word 2 of line 2 of field 1 of card " Test 2"
it = "bitr"

172 Chapter Ten

4. Experiment with other combinations of addresses in Field 1
until you are comfortable with all the component
addressing approaches and you know what information
they retrieve.

A note on chunking expressions

If the argument that precedes a to expression is larger than the
value that follows the to, you will only extract a single element
of the object. For example, a statement like

get char 7 t o 0 o f wo rd 2 o f line 2 of field 1

will return only the seventh character of the second word on the
second line of the field called field 1.

Other uses for get

The other major use of the get command is obtaining values as­
sociated with certain characteristics of HyperCard objects. These
characteristics, called properties, are discussed in Chapter 17.

The get command is also used to retrieve the values of cer­
tain functions such as the time and date. This use of the com­
mand is explored later in this chapter.

We should point out, too, that the get command is some­
thing of an anomaly in HyperTalk. Because the put command
(discussed in the next section) combines the actions of the get
command with the assignment of the result, you will find that
good scripters seldom if ever use get.

Using put commands to read data

Because the get command always puts its results into the special
It variable, we need an alternate way of retrieving information
from a card field. The put command is used for this purpose.

You may recall from our discussion of this command in
Chapter 5 that it has three basic forms:

173 Managing Text and Data ------------------------

-~ .. ~ ,,
: .

•• t:.
Cl)

• Without any arguments, put takes the contents of It and
places them in the Message box.

• With only a source argument, put places the source into the
Message box.

• With both a source and a destination argument, put places
the contents of the source at a specified point in the
destination container.

Some put exercises

Our next experiment is an exercise with the put command. We
will use the same Laboratory card and stack for this experiment
as we used in the previous Laboratory exercise with get. As
with that exercise, we will also use the Message box rather than
scripts. After you open the new Laboratory stack and arrive at
the card called Test 2, follow these instructions:

1. Open the Message box if it is not already visible.

2. Type the following text into the Message box and press
Return. The result looks like Figure 10-2.

put " silly" i n to wo rd 2 of line 2 of f i eld 1 o f c a rd " Test 2"

3. Recalling that the into preposition replaces the destination
container with the source text or expression and that before
and after place the source text before and after the
destination container, try the following exercises in the
Message box and compare your results with those shown.
This time, you won't need to type It into the Message box to
see the results; they are immediately displayed in the field.

put " i n teresting" after word 2 of line 2 of field 1 o f card "Te st 2"

(The result of this one should look like Figure 10-3. Notice
that the second line of text has wrapped around to accom­
modate the longer text block and that the third line of text
has all but disappeared. We'll fix that problem with the
next command.)

17 4 Chapter Ten

Card2
Some ailly text

Third, line, of, atuff

put "s111y"1nto word 2 of 11ne 2 of f1eld 1 of cord 'Test 2"
Iii .. ·-··-···-···-····-····-·········-···-····-···-···-··-···-·········-···-···-··-········-····-···-···-····-·········--·-···-···-················-···-···-···-···-·····

Figure 10-2. Using put in Test 2 card

Card2
Some aillyintereating

text -" .. ~ ~

Figure 10-3. Partial result or put experiment

175 Managing Text and Data ------------------------

put "arbitrary" into word 2 of line 2 of field 1 of card "Test 2"
-- returns card to its contents before these two commands

put item 3 of line 3 of field 1 of card " Test 2" before line 1 of
field 1 of card "Test 2"

-- first line now reads "ofCard 2"
put " mess" after line 1 of field 1 of card " Test 2 "

-- first line now reads "ofCard 2 mess " (note the space)

4. Use the usual text editing approach to change the contents of
the field back to the original contents. Or, if you want the
practice, use put statements to accomplish the same thing.

More typical destinations

All the put examples and experiments we've seen have used the
contents of a field to change other contents of the same field.
We've done that because the immediate feedback is useful in de­
termining what the put statement does. Typically, the destination
for a put is not the same as the source. In normal use, put is used to
retrieve information from fields and put it into variables or other
fields.

You can experiment with this use of the put command by
using the same Laboratory approach we used in Lhe last exercise.
Where we used field addresses, just substitute a variable (for ex­
ample, temp) for the destination. Then after each put command,
type the variable name in the Message box to see the results.

How Many Characters in the Field?

The length function can tell you how many characters are in any
string, including any addressable component of a field. This is
often useful in reports, in using the offset function (described in
the next section), and in ensuring that user-entered data meets
any length limits your script must impose.

The length function has two forms. The first spells out the
command in full, readable English:

the length of line 1 of field 1 of card "Test 2"

176 Chapter Ten

The second form uses an abbreviated approach (similar to Pascal
or C commands):

length(l ine 1 of field 1 of card " Test 2 ")

The two forms are interchangeable. Your choice of which to use
will be governed by your experience and the need for script read­
ability.

In either case. you should know that if you apply the length
function to a full line in a field, the function does not count the
carriage return at the end. This becomes particularly important
when you use the offset function. because this function does
count the carriage return.

Finding and Selecting Text

Starting with HyperCard Version 1.2. the designer's ability to ex­
tract and manipulate data based on field contents was significant­
ly increased. Not only was the find command enhanced (see the
discusion in Chapter 9) with the addition of the new whole and
string parameters. but two new capabilites were included:

• the ability to determine precisely where the text was found
by the find command;

• the ability to select text based on the results of a find operation
or on the text's location in a field. or even to position the cursor
in a field before or after a particular location.

Where did the find take place?

Let's look first at the use of several functions to determine where
a particular piece of text for which we have searched has been
found. When a find operation is successful. HyperCard notes the
location of the found text in four special functions:

• the foundText (returns the characters enclosed in the box
after the find command has located the text);

177 Managing Text and Data

• the foundField (returns the identification of the field in
which the text was located);

• the foundLine (returns the number of the line in the field in
which the text was found);

• the foundChunk (returns the complete chunking
expression to indicate where the text was found).

For example, if we had a field such as that shown in Figure
10-4 and we performed a find operation such as this:

find "ran"

the foundText would contain the word range (because with the
unadorned find command HyperCard locates the first occurrence
of the string at the beginning of a word, then makes the entire
word the found text). On the other hand, the foundChunk
would contain the value char 5 to 9 of card field 1, whereas the
foundField would point to card Field 1 and the foundLine to
Line 1 of card Field 1.

The renge of the reder cen be
set by the operetor.

Figure 10.4. Sample field to demonstrate find options

If we were to change the search from find "ran" to find whole
"range of', we would see different results. Because of the use of
the whole qualifier, HyperCard would put "range of' into the
foundText and appropriate values into the other functions. (Strict­
ly speaking, HyperCard actually does not put these values into
these functions. Rather, the use of the function returns these val­
ues. For this discussion, that is a distinction without a difference.)

178 Chapter Ten

Using select to pick up found text

Once we've found some text and know where it is located, we
quite often want to manipulate it. But we can't manipulate the
foundText directly. Remember, it's not a container but a func­
tion result. So we use HyperCard Version 1.2's newly defined
select command to accomplish the task.

In essence, the select command puts whatever text it is
pointed to into the selection, a container we discussed briefly in
Chapter 5. Once that text is in this special container, we can ma­
nipulate it. For example, we can copy it, cut it, or put something
new into the container.

Returning to our small field example, once we've found the
text range of, we can easily turn it into text with which we can
work:

select the foundChunk
-- puts the located text into the selection
doMenu "Cut Text"
tabKey
doMenu "Paste Text"

This little program fragment assumes a find has just taken place.
It deletes the found text from one field, tabs to the next field in
sequence, and pastes the found text into the new field, replacing
the contents of the destination field (because the tabKey com­
mand highlights the entire contents of the destination field and
the Paste Text command then replaces that selection).

We used the foundChunk rather than the foundText here
because it makes no sense to tell HyperCard to select words; the
select command expects an address as its argument.

Using select without the find

Of course, you don't have to use select only with a find opera­
tion. You can select any arbitrary text that you can address.
Both of the following operations, for example, select the words
"range of' in Figure 10-4:

179 Managing Text and Data -------------------------

select word 2 to 3 of line 1 of card field 1
select char 4 to 12 of card fie l d 1

Using select to position the cursor

Besides selecting text, you can use the select command to place
the cursor precisely where you want it in a field. This means you
can put the user in the right location to enter the next piece of in­
formation. You accomplish this with the select before and select
after combinations. They can be followed by any chunking ex­
pression. Here are some examples:

select after last line of card field 1
-- puts cursor at end of field
select before first line of card field 1
-- puts cursor at start of field
select after word 3 of line 2 of card field 1
select before char 5 of word 3 of line 2 of card field 1

Selecting everything and nothing

You can also use the select command with the text of parameter
to put the entire contents of a field into the selection. For exam­
ple, this line:

select text of field "testing"

would select all of the contents of the background field called
"testing" and put them into the selection.

The final form of the select command removes any existing
selection. To do this, type:

select empty

180 Chapter Ten

Combining select and find for data management

You should realize by now that the intelligent use of combina­
tions of the enhanced find command and the select command in
HyperCard after Version 1.2 can lead to powerful data manage­
ment operations in HyperCard.

By using the proper qualifiers on the find command, you
can narrow the search. With the functions that return the precise
location of a successful search, you can locate the targeted text
with ease. Then you can select that text and copy it, move it
around, replace it, and otherwise manipulate it.

Some more advanced functions can be performed with com­
binations of these commands and the do command described in
detail in Chapter 16.

Locating a sub-string's position

As you may recall from our discussion of the find command in
Chapter 9, locating a card that contains a given string of text in a
specific field or anywhere on the card is straightforward. But
sometimes we need to know where a particular text string is lo­
cated in a field by its relation to other known characters or
strings. This is quite often useful in decoding formatted product
codes and numbers, for example.

To carry out this assignment, HyperTalk: includes the offset
function. This function takes two strings as arguments and re­
turns a number indicating the character position of the beginning
of the first string in the second string. The syntax is

offset (<stringl>,<string2>)

Either argument (or both) can be a string enclosed in quotation
marks or the address or name of a container that holds a string.

If Field 1 contains the string "Blue Rondo ala Turk" and
the variable lookF or contains the string "Rondo," then

offset("Rondo",field 1)

or

offset(lookFor,field 1)

181 Managing Text and Data

return the same answer: 6. This identifies the starting position
of the source string (string!) in the target string (string2). (Of
course, you must do something with the returned value of the off­
set function. Normally you will either put it somewhere or test it
with an if clause group.)

Using the offset function

A use for the offset function may not be immediately evident.
Let's look at an example using our inventory stack analogy. Af­
ter you work through this example, you will undoubtedly see
many places in your stackware that you can use the offset com­
mand to great advantage.

Assume that the part number field in your inventory stack
consists of two or more characters, followed by a hyphen, fol ­
lowed by three to ten additional characters. The first segment of
the code, up to the hyphen, is the Vendor Code, which tells you
who sells you the part. The second portion of the part number,
from the character to the right of the hyphen to the end of the
code, is your company's internal part number. There are many
places where you want to separate those two segments of the part
code and use them independently. Let's do a short Laboratory
exercise to see how to do this.

Using offset for field decomposition

Open the original Laboratory stack and create a new card for it.
Name the card Inventory 1. Now follow these directions.

1. Create a new field for this card. Make it a rectangular or
shadow field so you can see its outline. Call it Part
Number. We will use only one line of it, so you can narrow
its height to one line if you like.

2. Get into browse mode.

3. Type into the Part Number field the following text:

AB23-00984

on mouseUp

182 Chapter Ten

4. Create a new button for the card if it doesn't already have
one. If it already has a button, you can use it unless you
want to save its script

5. Open the button's script editing window by one of the usual
methods.

6. Type in the following handler:

global vendor, part
put length(line 1 of card field "Part Number") into len
put line 1 of card field " Part Number" into temp
put offset(" - ", temp) into divider
put char 1 to divider-1 of temp into vendor
put char divider+1 to l en of temp into part

end mouseUp

NOTE

You may be wondering why we put global declara­
tions in this handler when we have never done this
before. Because we will want to examine the con­
tents of these variables in the Message box and be­
cause the Message box is outside the scope of the
handler, the variables must be declared global. Oth­
erwise, HyperCard will complain that it "never
heard of' the variable when you type its name into
the Message box.

7. Get back into browse mode. Press the button to which the
new script is attached.

8. Open the Message box if it isn't already visible.

9. Type vendor and press Return. The Message box contains
AB23. (See Figure 10-5.)

10. Type part and press Return. The Message box now contains
00984.

183 Managing Text and Data -----------------------

11. Change the contents of the Part Number field so that a
different number of characters appear before and after the
hyphen. Then retry the button until you are comfortable
with how this process works.

This is is e test
Do,you,see,see,how,it,works?
trhot ani s o test

(Tester)

Figure 10-S. Vendor code portion of part number

Modifying the Contents of Fields

It will come as no surprise that the primary command for changing
the contents of a field is put. This versatile command- arguably
the most often used in HyperTalk- can replace the contents of all
or part of a field or place new information at any addressable place
in afield.

But put is not the only command that modifies the contents
of fields. Two others, less often used but occasionally helpful,
are type and delete. We've already described the put command
so this discussion will focus on the other two field-modifying
commands.

184 Chapter Ten

The type command

The type command works very much like the put command,
with two key exceptions:

• The type command does not include the ability to address a
container as part of its structure. There is no equivalent of
the put into command (or before or after, for that matter)
for the type command.

• The put command places data into the field as a single
block of text, but type places data into the field as if it were
being entered by a fast typist.

These limitations make the type command less than a critically
important tool in your HyperTalk vocabulary. But there are two
occasions when it can prove useful.

First, if you are creating a self-running demonstration of a
stack and want to simulate for the user the manual entry of text
into a field, the type command works exactly as desired. To put
text into a field, you must be sure the cursor is in the field before
you type anything into it. This can be accomplished with the
click command (see Chapter 16) or with the select before, select,
after, or select empty commands discussed elsewhere in this
chapter. This makes it impossible to experiment with type from
inside the Message box. If you type, for example:

type "Hello, there, world!"

into the Message box, the contents of the Message box are im­
mediately replaced by the typed message.

Second, the type command is a convenient way of sending
certain characters to a field from within a script. For example,
you can write a background or stack script that types a Tab char­
acter each time a card opens. As a result, each time the user
opens a card, the cursor is placed in the first field on the card and
the current contents of that field are selected. The next character
typed from the keyboard or the script then replaces everything
in the field.

185 Managing Text and Data ------------------------

-~··· ,.
.. ':.

0

The delete command

One of the most powerful commands in HyperTalk is the version
of the delete command that removes text from a field. The com­
mand can be used in a similar way to remove text from any other
container. You can erase any addressable component- charac­
ters, words, items, or lines - of text in a field on any card with
this command. The deleted text is not placed into the Clipboard.
To save the text for later, use a doMenu command and select the
Cut option, as explained in Chapter 12.

If you use delete to cut an entire line of text from a field,
HyperCard removes the line and its accompanying carriage re­
turn, moving any lines below the deleted line up in the field. If
you delete individual words, even the last one on a line, howev­
er, HyperTalk does not alter the carriage return. If you delete all
the words on a line one at a time, the carriage return remains in
place unless you explicitly delete it as well.

Using delete

For our first experiment with the delete command, let's use the
Message box and a variable. Open the Message box if it is not
already visible (it doesn't matter what card you are on) and then
follow these directions:

1. Type the following line of text into the Message box:

put none two three four five" i nto temp

Press Return.

2. Now type this text into the Message box:

delete second word of temp

and press the Return key. To confirm that the deletion
worked as expected, type temp into the Message box. The
display should contain: one three four five.

on mouseUp

186 Chapter Ten

Now let's set up a more elaborate experiment. This time
we'll use scripting rather than the Message box. Pick any Labor­
atory card with a field and at least one button. If you don' t have
a card with those objects with scripts you are ready to erase,
create a new card. In the example, we 'll refer to the card field as
TDl (for Test Delete 1) to reduce the amount of typing.

1. Open the button' s script editing window in one of the usual
ways.

2. Type in the following script and click the OK button when
you're done:

delete second word o f line 1 o f card field " TDl "
put " First dele tion complete."
wait 1 second s
delete t h ird item of line 2 of c a rd field " TD1"
put " Second deletion complet e ."
wait 1 seconds
delete char 3 to 7 o f line 3 of card fie l d " TDl"
put "Final deletion comp lete ."

end mouseUp

3. Get into browse mode.

4. Type the following three lines of text into the field:

Th i s is is a test
Do,you,see,see ,how, it ,works?
That onis i s a test

5. Select all the text in the field, and use the Copy Text option
from the Edit menu to save it in the Clipboard. Then
de-select the text. The screen now looks like Figure 10-6.

6. Press the button and watch the Message box closely. At
each deletion, the script displays a message pointing out
that the deletion was made and pauses so you can examine
the effect. When all deletions are complete, the screen
looks like Figure 10-7.

187 Managing Text and Data ------------------------

This is 6 test
Do ,you,see,how, it, works?
Th6t oni s e test

(Tester J

Figure 10-6. Second delete experiment ready to r un

This is 6 test
Do,you,see,how, It, works?
This is 6 test

(Tester)

Figure 10-7. Second delete experiment completed

7. If you want to repeat the experiment to watch it more
closely, select all the text in the field, use the Backspace
key to delete it (don't Cut it or the pre-experiment version
of the text will disappear from the Clipboard), choose Paste
Text from the Edit menu, and press the button again. Repeat
this process as many times as you like. You can also
modify the script between runs, perhaps increasing the
amount of time the script pauses or deleting different
components of the field.

188 Chapter Ten

Changing Fields by Concatenation

HyperCard has some of the most powerful text concatenation
capabilities of any microcomputer programming language. Using
these facilities, you can combine the contents of various contain­
ers, components of fields, and string or character constants to
modify the contents of fields or other containers.

There are two text concatenation operators: & and&&. The
only difference between them is that the latter adds a space be­
tween the concatenated objects and the former concatenates them
exactly as it finds them. Thus:

put " test" & " ing"

displays the word "testing" in the Message box, and

put " test" && "ing"

displays "testing", with a space between the two strings, in the
Message box.

The items to be joined by concatenation can be any
combination of addressable field components, actual strings, or
containers of text. The resulting concatenated text can be placed
into a field or into a variable using the put command. Or it can
be displayed, tested, or manipulated in the same ways as any text
field. There is no difference between a field created by user
entry and one synthesized by concatenation.

Uses for concatenation.

There are dozens of places in scripts where it is useful to join
two or more pieces of text. Three such possible uses are dis­
cussed here for illustration.

Recall our inventory example with the part number divided
into two components separated by a hyphen. If you think about it
for a moment, you might have the user enter the vendor code sep­
arately from the internal part code. In fact, it may be essential to
do it that way given the normal operation of business. The user
might know the internal part code but have no idea who the

189 Managing Text and Data

product is purchased from without checking another source of
information during data entry.

To accommodate this need, assign two global variables, for
example, Ven and lPN (for Internal Part Number). After the user
enters those values for a new part being added to inventory, your
script would have a command like this one:

put Ven & "-" & IPN into Field "Part Number"

The result is the concatenation of the vendor code (e.g., A YS29),
a hyphen, and the internal part number (e.g., 90087) so that the
Part Number field contains the full part number: AYS29-90087.

Another use for concatenation is personalizing a card in a
stack that is used by several people. Suppose three different peo­
ple use your stack and all have personalized information stored
in it. The cards are named in such a way that the person's last
name forms the first part of the card name and the card type
forms the second part. Thus, Yeats's expense card might be
named YeatsExp. At the beginning of a session or when the user
changes, your script asks the user for his or her name and saves
the last name in a variable called User.

Now when a button is clicked to take the user to his or her
expense account card, the script does a simple concatenation to
get the name of the card:

go card User & "Exp"

Each user may be unaware that other people using the stack have
similar cards to theirs. Yet this is far more efficient than creating
separate stacks for everyone.

The last example involves the extraction and display of in­
formation from several different fields or even several different
cards in such a way that the user only sees the result, not the
work that goes into it. For example, a button called Summary on
a card might indicate that a manager wants to see the employee's
name, hire date, salary, and last review date. The stack's only
job is to get those fields and put them into the Message box. Us­
ing concatenation, it can do so with one simple put command:

put field "Name" && field "Hire Date" && field "Salary" && field-,
"Last Review" of card "Evaluations"

190 Chapter Ten

Special constants for concatenation.

In addition to text containers, fields, and strings, concatenation
can also include built-in HyperTalk constants that represent spe­
cial characters frequently needed in text streams. These special
constants are

• quote

• return

• space

• tab

• formFeed

• lineFeed

You can insert these special constants anywhere in a stream
of text being concatenated. You probably won't have a lot of
use for the space constant in view of the double-ampersand con­
catenation and the ability to place spaces inside literal strings.
But the others will come in handy at one time or another.

The quote constant is particularly useful when you want to
place a quotation mark into a field but are frustrated in your at­
tempt to do so because HyperTalk sees the quotation mark as
marking the end of a string. Simply embed the quote constant in
the stream of text:

put "The" && quote & "boss" & quote && " is here."
-- Message box shows: The " boss " is here.

Inserting carriage returns to mark the end of one line and
the beginning of another in a field is another good use for con­
catenating with special constants. The formFeed and lineFeed
characters, as well as tab, are useful in telecommunications and
the design and printing of script-managed reports. These tech­
niques are used in the scripts in Chapters 25 and 26.

191 Managing Text and Data ------------------------

Treating Fields as Arrays and Tables
."iWilt'iifl'aii:i ill I I iii II B 111181111"1$$ 1181 iif T I

Card and background fields, beyond their usefulness as flexible,
addressable containers for text, can be used in your stacks
exactly as if they were two-dimensional arrays or tables in other
programming languages. HyperTalk does not specifically define
a variable type that can contain a two-dimensional array of data.
Many experienced programmers, before they examine the
language closely, decide this omission is a fatal flaw. But it
turns out that using the text field in HyperTalk as such an array
is relatively trivial.

By setting up the contents of a field carefully, you can
create the same effect as a two-dimensional array. Here is part
of such an array. We will use it in a Laboratory exercise in a few
moments, but for now just examine it as we discuss it.

Record,LastNaroe,FirstName,Employeef,HireDat e, Sa l ary
l,William,Genevieve,3904,2/10/79,49575
2,St. Germaine,Elmer,4001,7/11/79,36099
3,Butler,Karl,8977,3/14/82,46230
4,Yeats,Stephanie,9998,5/1/82,28900

There are two noteworthy aspects of this collection of data.
First, the first line is different from the others. It contains

some labels that describe the contents of each field in the table.
This line is not required in HyperTalk, but we have found it quite
useful in helping to keep track of exactly what is where in a table
several months after we've written a script.

Second, notice that all items in each line are separated by
commas. This permits us to address them as individual objects
(items in HyperTalk parlance), which means we can retrieve any
single piece of information in the field discretely from the others.

Having set up the field this way, we can make flexible use
of its contents. In fact, proper use of fields as arrays can lead to
some database-like applications of HyperCard.

192 Chapter Ten

Setting up an array

Open your Laboratory stack and add a new card with only the
direction-arrow buttons and no other objects. Because we will
stay with this card during our experiments, you need not give it a
name, though in practice you would probably append a card
name or identifier to many of our sample commands.

Now follow these instructions:

1. Create a new scrolling field nearly as wide as the card and
occupying about 3/4 of the card's height, as shown in Figure
10-8. Choose a suitably small font to allow lots of
information to be placed in the field. Name the field Table 1.

Recol:d,Lu1Nama,PtrJ1Nama,Rmployut){ixe0&1e,S&Iary
l,William,GuevieYe ,3904,2.110179,49575
2, St. Geunalne ,EIInlr, «101 , 711ln9 ,36099
J,Bu11er)Cu1,8977 ,JII.WZ,46230
4,YealS ,S111phanle ,9998,511182,28900

Figure 10-8. New field for array exercise

2. Get into browse mode.

NOTE

The number of function we are using is quite signif­
icant when dealing with fields as arrays. We'll have
more to say about it soon. !

193 Managing Text and Data ------------------------

3. Enter the text in the small employee table, as shown in the
previous listing. Proofread after you're done.

4. Open the Message box and type the following line into it:

put number of items in line 1 of card ~
field "Table 1 "

5. Make sure the answer is 6. If it isn't, you've made a typing
error. Find and correct it.

6. Repeat step 4 for the other lines in the field, ensuring in
each case that the answer is 6.

7. Type the following command lines into the Message box
and observe the results. After each line, the contents of the
Message box should be as indicated beneath each line:

put item 2 of line 3 of card field "Table 1 "
--Message box should read " St. Germaine"

put item 4 of line 3 of card field "Table 1 " ~
&& item 4 of line 4 of card field "Table 1"

-- Message box should read 4001 8977

Loops and the number of function

When your script deals with arrays of data, it will probably exe­
cute one or more loops (see the discussion of control structures
in Chapter 8) as it scans through data looking for some informa­
tion or accumulating answers in a container. Before it can begin
such loops, however, it has to know how many lines or items it
must examine. Obtaining this information is the job of the num­
ber of, a HyperTalk function with many uses.

In fact, the number of can be used to find out how many
characters (chars), words, lines, or items are in a field or in an
addressable component of a field.

Generally, you ' ll put the results of the number of function
into a local variable and then use that variable to control the
looping process. Let's go back to the Laboratory stack and run
an example to demonstrate what we mean.

-

194 Chapter Ten

Looping for data retrieval from arrays

Return to the same card we used in the last exercise. Close the
Message box if it is still visible. Now follow these instructions:

1. Create a new button and name it Total Salary. Make it
whatever shape you want, but be sure the Show Name check
box in the button definition dialog is checked. Position the
button outside the field Table 1. Figure 10-9 gives you an
idea how it should look.

Record ,Le.s1Na:me ,Pi.rs1Name ,Employeeii,HireDa1e ,Se.laiy
l,W11ll.am,Oenevieve ,3904,2110179,49575
2,St OennaiDe,Elmer,4001,7111179,36099
3 ,Butler ,Karl,8977 ,3114182 ,46230
4 ,Yeat7 ,S1ephan1e ,9998,511182,28900

(Totol Solory)

Figure 10-9. Adding a Total Salary button

2. Open the script editing window for the Total Salary button
in one of the usual ways.

3. Type in the following script, proofread it, and confirm it is
syntactically correct by pressing the Tab key. Then click
the OK button to return to the card.

195 Managing Text and Data --------------------------

on mouseUp
put number of lines of card field "Table 1 " into maxLines
put empty into totSal
repeat with count = 2 to maxLines

put totSal + item 6 o f l ine count of c a rd fie l d "Table 1 "~

i nt o totSal
end repeat
put "Total salaries = " && totSal

end mouseUp

4. Return to browse mode.

5. Press the Total Salary button. After a moment, the screen
looks similar to Figure 10-10. Notice the use of the local
variable maxLines to control the loop and the use of another
local variable, count, to determine which line to read. This
is a common looping technique when dealing with arrays of
data in any programming language.

Record ,LutN arne ,PiDtN arne _.Employeel ,HireDe.le, Salary

1 ,William,Oe:nevleve,3904,2110n9 ,49575

2 ,St. Gennai:ne,!lmer,4001,711ln9,36099

3 ,Butler ,Ke.rl,8977 ,3114182 ,46230

4,Yee.ts ,Slepbanle ,9998,511182,28900

(Totrsl Salary)

Tote! selar1es = 160804

Figure 10-10. Array experiment concluded

Sorting Stacks

196 Chapter Ten

Given the flexibility of the HyperText approach to data manage­
ment, which is the very essence of HyperCard, it may seem a little
out of character to include a sort capability in HyperTalk. But in
two situations, sorting may be important to your stack's users:
flipping through the stack one card at a time and expecting to find
the cards in some particular order, and producing reports where
the cards appear in some particular order.

To accommodate either need, use the HyperTalk sort
command. Although this is one of the easiest commands to use in
HyperTalk, it offers a large array of possible arguments, or
parameters. In its simplest form, the sort command looks like this:

sort by <expression>

The expression argument must be a text expression. In other
words, it must either be text or evaluate to text. This expression
can be as complex a field component address as is needed. If
each record in our employee database example is stored on a
separate card, with the information still in one field called Em­
ployee Data, you could sort the stack by employee last name
with a command like this:

sort by item 2 of card field "Employee Data"

Beyond this simple use of sort, there are two other sets of
parameters that can be added to the command. The first set con­
cerns the sort direction, and the second concerns the data type of
the sort expression.

Selecting the sort direction

By default, any sor t ordered in HyperCard is assumed to be in
ascending order. But you can override this assumption with the
word descending. Thus, to sort the employees (assuming, again,
that they are on separate cards) according to salary, with the

197 Managing Text and Data ----------------------

highest-paid employee at the top of the list, you would write a
command statement like this:

sort descending by item 6 of card field " Employee Data"

Defining the data type

From HyperTalk's perspective four different types of data can be
sorted:

• text (the default and most often used)

• numeric

• dateTime

• international

If you don't supply a second parameter, HyperTalk treats
the sort expression as text. This results in a straight ASCII sort
sequence. (See Appendix B for a chart that defines what this
sort sequence is.)

Numbers don't fall in numeric order in the ASCII sort se­
quence. If you want HyperCard to treat the sort expression as
numeric, you must tell it so by supplying the numeric parameter
to the sort command.

As you will see in the concluding section of this chapter,
HyperTalk treats date and time data differently from other types
of information. This leads to some very powerful applications.
But if you want HyperTalk to treat a particular sort expression as a
date or time data type, you must use the dateTime sort parameter.

You will probably never have occasion to use the interna­
tional parameter. It is only necessary if you are sorting data that
contains special characters called ligatures or umlauts. English
has neither of these special types of characters, so text is adequate
for most applications involving alphanumeric data.

198 Chapter Ten

Naming the sort field

In most cases, you will either supply the name of a background
field explicitly or program a container name with the name of the
field in it. It is possible to sort by the contents of a card field but
that is not often done since fields that appear on multiple cards
are almost always designed as background fields.

You must be careful about one thing in naming the field by
which to sort. If you supply a variable that has not been initial­
ized or if you use a string with no field identifier preceding it,
HyperTalk appears to complete the sort but the order of the cards
isn't changed. For example, the line

sort by "Date "

appears to work but does not. You must explicitly tell Hyper­
Talk that the word Date refers to a field.

Some complex sorts

The following examples are self-explanatory and straightfor­
ward, but they show how the sort command can become quite
complex and specific.

sort d a teTime by c ard f i eld "Hire Date"
sort descending numeric by item 3 of c a rd f ield " Table 3 "
sort descending dateTime b y c h ars 1 to 5 of line 4 of field 1

Date and Time: Special Data Types
!iii ! Jiiiil!!iili Ill II Ill

ill I II 1!111!!1

We will conclude our discussion of HyperTalk data management
techniques and commands by turning our attention to the use of
dates and times as special data types. As we just saw, data
which is intended to be sorted as if it were a date or time must be
pointed out to HyperTalk as part of the sort command. Other
considerations must be watched also when you deal with such
data.

------- 199 Managing Text and Data

Five functions are involved in managing date and time data,
and most of them have several versions. The five basic functions
are

• date

• time

• seconds

• ticks

• convert

We will discuss each of these in the order shown.

The date function

In its simplest form, the date simply returns the current date in
what is called short format. This format is the one you are
probably most accustomed to writing: mm/dd/yy. Thus, January
15, 1988, appears as 1/15/88.

The next simplest form of the command is the abbreviated
date. This command can be written out completely or shortened
to the abbrev date or even the abbr date. A date retrieved in
this form includes the day of the week and the month (both ab­
breviated) and the year. Neither abbreviation includes a period.
January 15, 1988, written in an abbreviated HyperCard form is:
Fri, Jan 15, 1988.

Finally, there is the long date function. This command
spells out all of the date's components: Friday, January 15,
1988.

Usually, you will put the date, or some portion of it, into a
field on a card in an open Card or openS tack script. There are,
of course, many other uses for this function.

You can extract the individual items in either the abbrevi­
ated or the long date. For example, to pull out the day of the
week and put it into a card, you would write something like this:

put item 1 of the long date into card field "Day of Week"

200 Chapter Ten

If you use the abbreviated date rather than the long date, the ab­
breviation for the day of the week is retrieved and put where you
direct it to be placed. Individual items cannot be extracted from
the short form of the date, which exists entirely as one item.
When you extract such information from a date field, it must
then be treated as text and not as a date on which special mathe­
matical operations can be performed.

The time function

There are two forms of time functions. The first function, the
time, has no qualifiers and returns the current time in hours and
minutes. The second is written the long time and adds the
seconds to the end of the time. In all other respects, they are
identical.

How the time is displayed - for example, as 5:15 P.M. or
as 1715 - is determined by the settings in your Control Panel
and may not be altered in HyperTalk. Individual components of
the time functions' return values may not be retrieved.

The seconds function

The seconds function can be written as either the seconds or the
sees. In either form, it returns the number of seconds that have
elapsed since January 1, 1904. This is the date Apple Computer
used as the basis for its internal clock. Because of that, the sec­
onds returns incredibly large numbers; billions of seconds have
passed since January 1, 1904.

One useful application for this function is in stacks where
you want to time the user's response or usage time. Simply store
the value of this function when a process begins, then store its
value when the function ends. A simple calculation reveals how
much time has elapsed between steps.

The ticks function

Every time you turn on your Macintosh, it begins keeping track of
how long the system is turned on using a special unit of measure

201 Managing Text and Data ----------------------

called a tick. A tick is 1/60 of a second. You can use the special
function the ticks to obtain the current value of this counter. The
function has no arguments and returns a number - generally a
very large number- that you can use like any other number.

Like the seconds functions, the ticks can be used to time the
distance between two events. It is 60 times as fine a measure­
ment as the seconds, so it can be used when you need very accu­
rate timing. One such situation is programming the Macintosh
double-click mechanism. Much of what takes place in Hyper­
Card uses only single clicks, but many Macintosh users are ac­
customed to double-clicking on items. Because HyperCard
doesn't penalize the user for double-clicking (it simply ignores
the second click), the usefulness of a double-click mechanism is
marginal.

Using convert to reformat dates

We have seen date and time information in HyperCard in six
formats:

• seconds

• long date

• short date

• abbreviated date

• long time

• short time

All of these represent the time elapsed since the Macintosh base
date and time of January 1, 1904, at 00:00:00. Sometimes you
will want to convert a date stored in one format into a more read­
able or usable format. To perform such a task, HyperTalk in­
cludes the convert command. Its syntax looks like this:

convert <container> to <format>

202 Chapter Ten

The container must contain data in a date or time format The con­
vert command converts this information into the form specified
by the format argument. The converted result replaces the con­
tents of the container, so you will usually want to do conversions
of dates and times in variables rather than in fields on the screen.
Imagine the consternation of the uninitiated user who sees a nice,
readable date such as Jan 15, 1988, suddenly turn into the stagger­
ing number 2652048000!

We haven't looked at one of the most useful conversions in
HyperTalk. The dateltems format is a special form of the date
that can be used easily in arithmetic. When you convert a date to
this format, HyperTalk returns a comma-separated list of seven
items, beginning with the year, continuing down to seconds, and
ending with a number indicating the day of the week. The day of
the week assigns Sunday as 1, so Monday is 2, Tuesday is 3, and
so forth.

To see the dateltems conversion work, go to any card and
stack in HyperCard and open the Message window. Type in
these three lines:
put "1/15/88" into date1
convert date1 to dateitems
date 1

--Message box shows 1988,1,15,0,0,0,6

Notice that because we didn't store a time in the field, Hyper­
Talk simply substitutes zeros for the three time fields. You may
be surprised to see that happen if you've worked with more strin­
gent programming languages that return an error if you try to
convert something without enough data in the original value. The
number 6 at the end of the dateltems list tells us that January 15,
1988, is a Friday.

The real value of the dateltems format is that you can per­
form math on any item in the list. Want to know the date 45 days
from now? Type the following lines into the Message box and
see the answer. (We used January 15, 1988, for our current date.)

put the date into date1
convert date1 to dateitems
put item 3 of date1 + 45 into item 3 of date1
convert date1 to date
date1

-- Message box contains February 29, 1988

203 Managing Text and Data -----------------------

If you are curious about how this works, go through the same
process, but after you perform the addition (the third line of
code) and before you restore it to a readable format, type date]
into the Message box. Look at the third item. Don't be sur­
prised if it is larger than the number of days in any month! Yet,
when you perform the conversion back to a readable date format,
HyperTalk takes care of this discrepancy and produces a logical
answer.

Trapping the Return and Enter Keys

During data entry into a card with more than one field, the exper­
ienced Macintosh user expects to be able to press the Return key
or the Enter key to move from one field to another. In versions
of HyperCard prior to 1.2, this was not possible; HyperCard re­
acted to either key being pressed in an editable field by simply
placing a carriage return in the field. But beginning with Ver­
sion 1.2, HyperTalk has two field-specific system messages to
enable you to create real-world data entry environments. (Sys­
tem messages are discussed more broadly in Chapter 17.)

The two messages are returnlnField and enter InField. The
first message is sent whenever the user presses the Return key
while typing in an editable field. The other is sent in response to
the user pressing the Enter key in an editable field. You can
write handlers to respond to these messages so that you can cus­
tomize how your stack responds to these commonly used keys.
For example, if you want to simulate a word processor's reaction
to the Return key so that HyperTalk adds a second carriage re­
turn and "tab" five spaces, you could write a handler like this:

on returninField
send returninField to HyperCard
send returninField to HyperC~rd
type "
-- number of spaces desired to simulate tab

end returninField

204 Chapter Ten

Notice that we have used the command

send ret urn inFi e l d to HyperCard

twice in this handler. The effect of this command is to pass the
returnlnField message up the hierarchy directly to HyperCard,
where it simply creates a carriage return (because there are no
contrary instructions). If we tried something like this instead:

o n returninFi e l d
type return
type return
t ype " "

end returninField

we would encounter an error condition. Each time one of the
command lines that send another Return key to the field was
executed, the handler itself would be issued. Eventually, you
encounter an error message informing you that you have created
"too much recursion." To get around this problem, send the
message outside the handler.

If you wanted the Return key to be used to move from one
field to another, write a handler like this at the card level or higher:

o n return i n Field
sen d tabKey

end return i nField

This moves the cursor to the next field and selects all of the text
of that field. But if you wanted instead to position the cursor at
the end of that field, you could improve on this handler substan­
tially. Assuming you want to move the user around the card in
field-sequence order (i.e., field 1 to field 2 to field 3, etc.), a han­
dler like this at the card level or higher does the trick:

o n returninFi eld
put the number of t h e t a rget into holderl

the t a rge t is the field receiving t he message

i f h o lder l = 6
-- or what e ver the highest-numbered fie l d is
then

Summary
i!S1.1! I W!!l

205 Managing Text and Data

go to next card
exit returninField

end if
select after text of field (holder1 + 1)

end returninField

You could as easily change the last line before the end of the
handler to:

select before text of field (holder1 + 1)

and place the cursor at the beginning of the next field. It should
not be too difficult to see how you could use combinations of the
returnlnField message and the select command to do very so­
phisticated data-entry management in HyperTalk.

Everything we have said about returnlnField is equally
true of enter InField.

JUJU JUIA!i !!!J!I!!Im!!! !!1!1

This has been a full chapter. You learned many tasks that make
it possible to use HyperCard as a competent database manage­
ment system. You learned more than a dozen new commands
and functions and gained more insight into the use of commands
and functions we discussed earlier.

You now know how to use get and put to read and alter the
contents of fields in stacks. You know how to use the length and
offset functions together to track down strings inside fields and
set them up for recovery or modification.

You have seen how to combine the powerful find and select
commands to perform data management tasks, such as locating
and manipulating textual informantion in fields

You saw that even though HyperTalk does not include an
explicit data type that handles two-dimensional arrays (tables),
you can easily use fields to mimic such a data type. You not only
learned how to set up fields for such use but also saw a complex,
real-life example of how to get data from a table in HyperTalk.

You learned to use the sort command to rearrange the order
in which cards are stored in HyperCard stacks for the times when

206 Chapter Ten

the user wants to go through a stack in some predetermined order
rather than use the HyperText techniques that are the heart and
soul of HyperCard.

Finally, you learned to deal with dates and times: how to
obtain them, how to convert them to usable forms, and how to
use the special dateltems format to perform useful arithmetic on
date and time fields.

Chapter 11 continues the process of examining techniques
that make HyperCard stacks usable as applications. We also
look at how to implement the classic Macintosh-style dialog box
in HyperTalk.

CHAPTER

Dialog Boxes

I n this brief chapter, you will learn to use three new HyperTalk
commands

• answer, for dialog boxes requiring only that the user press a
button to give your script some information

• ask, for dialog boxes requiring that the user type something
to give your script some information

• ask password, for a special type of ask dialog box

Dialogs and HyperCard

As anyone who has spent more than five minutes with a Macintosh
knows, dialog boxes are a crucial component of designing good
applications. Dozens, perhaps hundreds, of kinds of dialog boxes
have appeared in Macintosh applications over the few years the
system has been available. Some are standard, built-in dialogs (as

207

208 Chapter Eleven

dialog boxes are often called) such as those you see when you want
to open a file (Figure 11 -1) or print a document (Figure 11-2).
Others are specific to the application, such as Microsoft Word's
character formatting dialog (Figure 11-3).

Select o Document:

Ia Hyperboolc Folder I

Cl Ch. 5 Folder
Cl Ch. 6 Folder
Cl Ch. 7 Folder
Cl Ch. 8 Folder
Cl Ch. 9 Folder
D Ch ter 11

c:> R Hord Place
3530K auailable

[Open J) l [l:je< t)
I ,...-----..

(Cancel) I (Ilrille)

D Reod Only

Figure 11-1. Standard open file dialog

Print

=P=ri=n=te=r:=. =S=o=o=n=er=or=La=s=e=r ---::===::--==;==::::::::==, fi OK D
Poges: @ All 0 Soi<H tioo 0 From: I I To: ._I __ _.I (concel)

Copies: ~~~ Poper Feed: @ Rutom8tic 0 Monuol

0 Print Hidden TeHt 0 Print Bock To Front 0 Cover Page
0 Froctionol Widths 181 Smoothing 181 Font Substitution

Reduce / Enlarge %: 1100 I

Figure 11-2. Standard print dialog

209 Dialog Boxes

Choroct er

Chorocter Formats-----,
0 Bold 0 St rikethru
0 ltolic 0 Outline
0 Underline 0 Shadow
0 Word u.l. 0 Smoll Cops
0 Double u.l. 0 Rll Cops
0 Dotted u.l . 0 Hidden

Font Nome:
M onoco
New York
Polotlno

Font
Size:

[g

n OK l]
(Concel)

(Apply)

Position------,
® Normol By:
0 Superscript f l
0 Subscript !..!

Spoclng
® Normol
0 Condensed
0 EKponded

By:
r···················1
I !
l l : -............. :

Figure 11-3. Microsoft Word's character formatting dialog

Few Macintosh applications, if any, operate without
dialogs. But in our exploration of HyperCard so far, we have not
seen any way to obtain information directly from a user in an
interactive way. We learned in Chapter 10 how to read
information the user had placed in fields. And we know the
Message box can be used as a type of mini-dialog where we
display a request for information and read the user's response.
But the Message box only works for HyperTalk commands, so
its use is limited.

Fortunately, HyperTalk includes the ability to produce two
basic kinds of dialogs. Both have limitations that don't exist in
more conventional approaches to Macintosh dialogs. Neverthe­
less, they give us a way to ask users for information and all but
force them to give us a reply we can use in our scripts.

Three kinds of Mac dialogs

In the world of the Macintosh, there are three types of dialogs.
There are alert dialog boxes, which are generally used for error
messages. These frequent Mac screen visitors (see Figure 11-4)
usually have an icon that lets us determine the seriousness of the

210 Chapter Eleven

error or message and a single OK button we can click in to re­
move them from the screen.

K OK)J

There isn't enough room on the disk to
duplico te or copy the selected items
(additional 1 ,611 ,820 bytes needed).

Figure 11-4. Typical aler t box

Second, the Macintosh displays modal dialog boxes, so
named because they put the Macintosh into a mode in which
only the dialog box responds to user input. Modal dialogs do not
have a close box, so users can't simply dismiss them. They must
respond to their presence. Alerts are a special category of modal
dialogs.

Finally, there are modeless dialogs designed to assist the user
in some types of processing. These boxes are more like document
windows on the Macintosh. A modeless dialog generally has a
close box, and the user can make it inactive by clicking in another
window to make a different window the active one. A common
example of a modeless dialog is the Find box in most Macintosh
word processors. If you bring up a modeless dialog and then click
in another window, the modeless dialog doesn't get put away; it
simply goes behind the newly active window. You can prove this
by opening a document window in your favorite word processor
and collapsing it so it occupies only part of the screen. Then call
up the Find dialog and click in the document window. You will
see that the Find dialog is still on the screen, but it's not the
topmost (active) window.

All HyperCard dialogs are modal. The user must respond
to them before continuing any processing. They have no close
boxes. Clicking anywhere outside the dialog results only in a
Macintosh system beep (or perhaps some other sound if you're
using a Macintosh II).

211 Dialog Boxes

Two modal dialogs in HyperCard

There are two styles of modal dialogs in HyperTalk. One, like
that shown in Figure 11-5, poses a question to the user and dis­
plays one, two, or three labeled buttons to use as a reply. This is
the dialog created using the answer command. The other, like
that shown in Figure 11-6, is generated with the ask command
and allows the user to enter text in a small text editing rectangle
before accepting the entry.

Do you really want to do that?

(..__ __ ve_s _ __,) (..__ __ N_o _ __,) n Cancel D

Figure 11-S. An answer dialog

What is your fauorite sushi?

K OK J) (Cancel)

Figure 11-6. An ask dialog

Using Dialogs in HyperTalk

When your script executes an ask or answer command, the
user's response is placed into the special It variable. You can
then store the response, test it for conditional processing, or do
anything else with it that you like. (Remember our frequent cau­
tions about the use of the It variable. Don't keep things in It any
longer than necessary.)

212 Chapter Eleven

The answer dialog can also act much like a standard
Macintosh alert, though without the usual icons that give users a
visual clue as to the type of warning they are being given.

The answer Dialog
~~~ IIUIW!IIillll:: llltllllli!llllill!ll! lllll!l!;lli!llllllli II II Ill 1111111111 I I II IIIII :11111111 

The syntax for the answer dialog looks like this: 

answer " <question>" [wi th " <reply>" [or "<reply>" [or " <reply>" ]]] 

As you can see, answer requires only one parameter: the ques­
tion to be posed to the user. If you supply only the question and 
no possible responses in the form of with parameters, HyperTalk 
displays a dialog with only one default response: OK. 

You can display dialogs from within the Message box. Let's 
see what a one-answer dialog looks like. Open the Message box 
in any card or stack and type the following line: 

answer " This makes n o sense !" 

When you press Return, the dialog shown in Figure 11-7 appears 
immediately. You can see why this is very much like a Macin­
tosh alert box. It has only one response the user can make, so its 
job is obviously to inform the user of something, make sure the 
user has noticed it, and then slip quietly away into the nether 
reaches of the program. 

This makes no sensei 

OK D 

Figure 11-7. One-answer answer dialog 



213 Dialog Boxes 

Just out of curiosity, you might want to click in the OK box 
and then type It in the Message box. The OK response is stored 
there. 

Some rules about answer dialogs 

Now let's create an answer dialog with two responses in it. In 
the Message box, type: 

answer "This makes more sense!" with "OK" or "Oh yeah?" 

The result looks like Figure 11-8. Notice that the OK button is 
listed first in the answer command line but shows up in the mid­
dle of the dialog, not at the right where we expect to find OK 
buttons. Also notice that the Oh yeah? button is highlighted. 
These two observations come about because of two basic rules in 
answer dialogs: 

1. The options fill in the dialog box as if they were being 
inserted into the dialog box from the right and pushing 
existing options to the left. If you put in all three options, 
as we will in a moment, the one listed first in the command 
line ends up in the first, or leftmost, spot. 

2. HyperCard always highlights the rightmost button, which is 
the last one listed. 

This mokes more sensei 

OK t Oh yeoh? » 

Figure 11-8. Two-answer answer dialog 

So if you want the dialog in Figure 11-8 to look like other 
Macintosh dialogs, you have to write: 

answer "This makes more sense !" with "Oh yeah?" or "OK" 



214 Chapter Eleven 

Text in answer dialogs 

In designing answer dialogs, it is important to consider the 
limitations on the size of text fields for the question and the 
responses. HyperCard uses the standard but space-hungry 
Chicago 12-point font for all text in its dialogs. As a result, you 
should keep the question to under 40 characters or even less if 
the question has a lot of capital letters. 

Similarly, the buttons are intended to hold very short re­
plies. Ideally, buttons should contain one word or two short 
words. Keeping the button text to 10 or 11 characters works 
best. Also, remember that the Mac centers text in these buttons. 

Tailoring text in a single answer dialog 

The question displayed in an answer dialog is a text field like 
any other in HyperCard. Thus, you can use concatenation to tail­
or the text in an answer dialog without having to create a separ­
ate dialog for each possible event. For example, suppose you 
need an alert to notify the user that a problem exists in a file. 
You can simply create a standard format for a dialog and have it 
add the file name when it is displayed: 

answer "Error in file " & filename 

Figure 11-9 shows such a dialog when the file name is 
Words. Again, remember the size limitations for the text string so 
you don't end up with an unreadable dialog or one missing vital 
information. You can also tailor the text in a button. Th~ same 
principles apply, but you must be vigilant against button text 
overflow! 

Erro r in file Words 

OK 

Figure 11-9. Tailored answer dialog 



The ask Dialog 

215 Dialog Boxes 

Macintosh design consideration 

There is a final point to make about these HyperCard dialogs. 
Most Mac users are accustomed to being able to cancel all but 
alert dialogs. So it is very important that your script include a 
Cancel button as one of the options in an answer dialog. (You 
need not concern yourself with this issue in ask dialogs because 
HyperCard automatically furnishes such a button in those.) 

Aside from the fact that users type an answer in response to an 
ask dialog rather than press a button to select a reply from 
among those you've offered, this type of dialog is similar to the 
answer dialog. In fact, everything we've said about answer dia­
logs can be applied to ask dialogs except for the issue of how 
buttons fill in the dialog. There are two predetermined buttons in 
an ask dialog, and you have no control over what they say or 
where they are placed 

Syntactically, the ask dialog command differs only in that it 
permits only one optional with argument: 

ask "<question>" [ with "<reply>" ] 

Generally, you will not use the with option when you write 
ask dialogs. But if you do supply a with argument, the text it 
contains becomes the default text in the dialog's text editing rec­
tangle when the dialog appears. The text you supply is selected, 
as is the case with standard Macintosh dialogs of this type, so if 
the user types any key except Return, the typing replaces the text 
you supply as the default. Users can also edit the text your script 
places in the rectangle. First they must click somewhere in the 



216 Chapter Eleven 

text field to remove the selection. Thereafter, they can use any 
standard Macintosh editing technique to modify the text. 

As usual, pressing the Return key or the OK button accepts 
the text, storing it in the It container. From there, you can process 
the text. 

Example of the ask command 

Open the Message box any place in HyperCard and type the fol­
lowing line. The resulting dialog looks like Figure 11-10. 

ask "Which computer has the best stuff?" with "Macintosh!" 

Which computer has the best stuff? 

Figure 11-10. Typical ask dialog 

The ask password variation 

The only difference between ask and ask password lies in what 
happens to the user's answer. Before HyperCard places there­
sponse into It, the program converts the reply to an integer value 
and then encrypts it. This encrypted integer can then be com­
pared with a previously stored encrypted integer to see if the per­
son has used the proper password to gain access to the script or 
some portion of it 

For example, suppose that the first time a new user runs a 
script, the user is asked for a password of his or her own crea­
tion. After the user enters the password, you store the encrypted 
integer HyperCard places in It in a card field called Protect. The 
next time the same person uses the stack and reaches the pass­
word point, he or she enters a password. Your script then simply 
examines the password value entered this time against the one 
stored previously. If they are equal, all is fine and the user can 



Summar y 

217 Dialog Boxes 

proceed. If not, you may want to give the user more chances to 
enter the correct password or take some other action. 

In this chapter, you learned to post dialog boxes during Hyper­
Talk script execution as a way of obtaining information from the 
user. You saw that the language has two different modal dia­
logs. The one created with the answer command presents users 
with one or more options in the form of buttons they can press to 
supply an answer. The one generated using ask or its variation 
ask password permits the user to type a response. 

Chapter 12 explains how to manage menus and access the 
other tools available in HyperCard. 



CHAPTER 
JJ II II II 111!!111 .... ~ !!1!1!1!!!!!! 111 meemm 

Managing Menus and 
Using Tools 

I n this brief chapter, you'lllearn how to use the 

;; H 

• doMenu command to carry out from within a script any 
action that can be taken with a menu selection in HyperCard 

• choose tool command to switch among the various tools 
used in authoring HyperTalk scripts 

Running Menus from Scripts 

Like most well-designed Macintosh applications, HyperCard in­
vests a lot of its power in menus from which the user can choose 
functions. But unlike most Mac programs, HyperCard gives you 
the ability to carry out menu-driven operations from scripts. Any 
function that can be performed from a menu can be performed 
from within a script. 

219 

liiii!!iii!IIIJ~ 



220 Chapter Twelve 

The command that allows you this flexibility and power is 
the doMenu command. It takes only one argument, the exact 
name of the menu choice as it appears on the pull-down menu. 
Among other things, the requirement for an exact match means 
that menu choices that end with an ellipsis (three periods), indi­
cating that a dialog box of choices is displayed when it is chosen, 
must have those three dots included in the doMenu command. 
The doMenu command is not, however, case-sensitive. 

Figure 12-1 is a menu map of HyperCard with all its menu 
choices (unless a particular stack adds menus of its own). Not 
all of these menus are on the menu bar at one time, of course. 
Sometimes, you have to be in a particular mode (e.g., painting 
mode) for a specific menu or menu item to be available. 

If the stack with which you are working is write-protected 
(see Chapter 3) against changes, the following menu choices are 
not available. An attempt to invoke them with a doMenu com­
mand produces an error: 

• on the File Menu, the "New Stack ... ", "Compact Stack", 
and "Delete Stack ... " options; 

• on the Edit Menu, tne "New Card", "Delete Card", Cut 
Card", "Copy Card", and "Paste Card" options; 

• on the Objects Menu, the "New Background" option. 

• on the Options Menu, "Edit Pattern ... " 

In addition, neither the script nor the user may rename a 
stack, change any scripts in the stack, or sort the stack if it is 
write-protected. Additionally, any editing changes the user or a 
script makes are lost when a card movement takes place. 

You can use doMenu in a script even if you've turned off 
menus in your stack. (This might give you a clue about how to 
access menus when they are hidden in a stack designed by some­
one else. Because doMenu can be executed from the Message 
box, you can invoke menu access even when direct use of menus 
is disabled.) 

To prove this, open the Message box anywhere in Hyper­
Card and type 

hide menubar 



221 Managing Menus and Using Tools --------------------------

.llr:JIII •lin• 
New Stacie ... Undo xz 
Open Stock ... xo ···················-········-·········-····· .. ········ ..... 
Soue 0 Copy ••• Cut XH 

......................... -.................... - .................... Copy XC 
Compact Stock Paste xu 
Protect Stock ... Cleor 
Delete Stack •.• .................. -........ _ , ,, ........................... 

·-········-········-·-·······-········-········-·-·-- New Card XN 
Page Setup ... Delete Card 
Print Cord XP Cut Cord 
Print Stack ... Copy Card 
Print Report ... . ...... -..... , .. _,,, ............................ _ .. , , 

............ ,_ ...................... -.......... -........ _ .... ._.. 'h~H t S1 yl<~ ... 
Quit HyperCard 

~-
Select XS 
Select All XA 

Fill 
I nuert 
Pickup 
Darken 
lighten 
Trace Edges 
Rotete Left 
Rotote Right 
Flip Uertical 
Flip Horizontal 

Opoque 
Transparent 

Keep XK 
Revert 

xo Bockground 

Grid 
FotBits 
Power Keys 

Line Size ... 
Brush Shape .. . 
Edit Pattern .. . 
Polygon Sides ... 

Draw Filled 
Dl"aw Centel"ed 
Draw Multiple 

l]ff 

XB 

Ill 
Back x-
Home XH 
Help 3€1 
Recent XR 

········-····-·····---···-·-· 
First 3€1 
Preu 3€2 
NeKt X3 
Lost 3€4 

······-·· ........... _ ,,,,_,,,,,,,,_,, .. 

Find ... XF 
Message XM 

•• .. [:[·~-
llu11 un Inf o ... 
J'h~lt1 Into ... 
Cord Info •.. 
Bkgnd Info ... 
Stock Info ... 

-········-··················································· 
lllin~J Clo~N ~}r~. 

S t~ tHJ f<lrHier ~]{: .. 
........ -................................................... 
New Button 
New Field 
New Background 

Figure 12-1. Complete menu map of HyperCard 



222 Chapter Twelve 

and press Return. The menu bar at the top of the display disappears. 
Now type the following in the Message box: 

doMenu "Open Stack ... " 

The usual file opening dialog appears. Press Cancel, because 
you really don't want to open a stack at this point. To redisplay 
the menu bar, type 

show rnenubar 

You can also open desk accessories with the do Menu com­
mand. From the Message box, type 

doMenu "Control Panel" 

and watch as the standard Macintosh control panel appears on 
the screen. 

NOTE ~ 
At this point, you are facing one of the most discon- j 
certing dilemmas in HyperTalk scripting. You can 
enable the user to open a desk accessory but you 
cannot cause HyperCard to do anything at this point. 
You can't click in the Control Panel somewhere to 
change a value (e.g., the blinking rate for the cur-
sor). You can't even get rid of the Control Panel. 
The user is in charge and HyperCard is essentially 
sitting back waiting for control to return to it. You 
must be very careful of this problem, particularly 
when designing stacks for people who are not 
Macintosh-proficient. 

Using doMenu in scripts 

You are not likely to encounter many places where the doMenu 
command is useful in your HyperTalk scripts. Virtually every­
thing that can be done from the menus is in one of two categories: 



223 Managing Menus and Using Tools ------------------------

• actions that are done only or primarily during script 
authoring rather than script execution; 

• actions that are available as HyperTalk commands and for 
which doMenu is therefore a redundant and less efficient 
way of accomplishing a task. 

But four tasks are occasionally useful, not accessible from 
HyperTalk commands, and therefore good candidates for the 
doMenu command. These tasks are: compacting the stack, 
protecting the stack, adding a new card, and deleting a card. 

Compacting the stack 

As the user works with a stack, adding and deleting cards can 
cause free space to develop. If this free space becomes excessive, 
it can slow down the execution of a script and the movement 
among cards in a stack. The Compact Stack option on the File 
menu eliminates this free space. As a result, stacks run more 
efficiently. 

You can check the amount of free space in a stack by using 
the freeSize property. (HyperCard properties are discussed fully 
in Chapter 17.) If the freeSize property has a value greater than 
zero, free space can be recovered from a stack. That doesn't 
mean you should compact the stack any time this value is more 
than zero. But you may want to keep an eye on the situation, 
particularly if the stack is prone to become quite large. 

Some successful stack designers report that if they check 
the amount of free space that has accumulated in a stack and fmd 
that it exceeds 20% of the stack's current size (which can be ob­
tained as the stack's size property), they either compact the stack 
or advise the user to do so. A partial script to handle this task-­
probably best included in a closeStack handler -- might look 
like this: 

put size of stack "Laboratory" into stacksize 
put freeSize of stack "Laboratory" into freespace 
if freespace > .2 * stacksize then doMenu "Compact Stack" 



224 Chapter Twelve 

Protecting the stack 

Most of the time, you will protect a stack before you make it 
available to end users, if you protect it at all. By protect, 
HyperCard means not to prevent copying, but just to control 
access. But sometimes users of your stack may create a new 
stack (perhaps a copy of the one you've furnished or one 
generated by the operation of your stack) that they want 
protected or that your design requires to be protected. In that 
case, you can use the doMenu command to force stack 
protection. In fact, doMenu is the only way to accomplish this 
objective other than relying on the user to handle it. 

When users encounter a script that carries out a doMenu 
command to set up script protection, they will see a dialog box 
like that shown in Figure 12-2. If the user then clicks on the Set 
Password button, a new dialog appears (see Figure 12-3). 

Protect Stock: 

D Con't modify stock 

D Con't delete stack 

D Priuote Access 

( Set Possword ) 

limit user leuel to: 

0 Browsing 
OTyping 
0 Pointing 
0 Authoring 
@Scripting 

K OK D ( Concel ) 

Figure 12-2. The Protect Stack ... menu dialog 

Besides setting a password, the user can also protect the 
stack from deletion, modification, or both by selecting the appro­
priate check boxes in the dialog shown in Figure 12-2. (The 
"Can't Modify" option is available only in HyperCard 1.2 or later.) 
If the user or the designer specifies a stack as not subject to dele­
tion, the stack cannot be deleted, even with a proper password. 
The same is true of modification. Password protection applies 
only to accessing the stack. 



225 Managing Menus and Using Tools ----------------------

Enter new password here: 

II 
Uerify new password here: 

( None ) n OK J ( Can cel ) 

Figure 12-3. Setting a password 

If the "Can't Modify Stack" check box is selected as part of 
stack protection, the "Can't Delete Stack" check box is also se­
lected automatically by HyperCard. 

Any attempt to modify a stack that has been protected against 
modification is met with an alert dialog. Menu items for deleting 
the stack and compacting it are dimmed on the File menu if the 
stack is protected. (You can use scripting techniques to allow 
temporary modification of protected stacks. See Chapter 17.) 

NOTE 

Any protection the user puts on a stack takes effect 
the next time HyperCard is started. The protection is 
not in effect during the same session. If, for example, 
it is critical that a password protection be effective 
immediately, you could insert a doMenu command 
to quit HyperCard after notifying the user and telling 
the user how to recover. This is a little drasticj· 
though, so you should consider using it only where 
security is critical. 



226 Chapter Twelve 

Adding and removing cards 

In the extensible, flexible world of HyperCard, it is not unusual 
for a stack user to be increasing and decreasing the size of a 
stack routinely. Most HyperCard users know how to add a new 
card or delete one. But what if you want the menu bar hidden or 
you want to do something out of the ordinary when new cards 
are created or old ones are deleted? 

As you know from our earlier discussions, particularly 
those in Chapter 6, you can intercept the user's interaction with 
menus to carry out peculiar processing needs. But sometimes 
you need to allow the user to use stack buttons that have an ef­
fect similar or identical to using menu commands. 

For example, you might have a project planning stack that 
works on the basis of weeks. If the user clicks on a button la­
beled New Card, Extend Stack, or some similar text, your script 
might need to create seven new cards, perhaps with different 
backgrounds. The only way to accomplish this is with a script, 
part of which looks something like this: 

repeat with count = 1 to 7 
doMenu "New Card" 

end repeat 

Another possible use for the New Card menu command aris­
es if your stack creates a card to store information temporarily 
while your stack's script is being executed. This can be a very 
efficient way to store information that might otherwise be in var­
iables, where confusion among names and uses might arise. 

But if you create new cards during execution of the script, 
particularly if you do so without the user's knowledge, you 
should get rid of them later so the stack is returned to its original 
state. To do this, you can use the doMenu command with the 
Delete Card option from the Edit menu. This doMenu option is 
also useful when your script deletes cards on its own or because 
of a user request. For example, a calendar stack might have a 
Purge Appts. button that goes through the stack, finds appoint­
ments older than some set number of days, and deletes them. 



227 Managing Menus and Using Tools ------------------------

User level and doMenu 

As mentioned, before a doMenu command can be issued for a 
particular menu option, that menu option must be available to the 
user. In part, this is a function of whether the user is using the 
right tool (the subject of the next section of this chapter). But it 
is also related to the user's level when the menu command is 
needed. If, for example, the user is limited to the browse level 
and you want to carry out in your script a menu command that 
requires a higher level of access than the user's, you must modi­
fy the user level. You can do this with a script fragment like 
this: 

put the userLevel into currentLevel 
-- save current level for later 
set the userLevel to 5 
-- execute doMenu and other commands here 
set the userLevel to currentLevel 
-- restore former level 

Using choose to Select HyperCard Tools 

Many tools are available to the HyperTalk programmer and the 
HyperCard user at the authoring level and above. You may be 
wondering what we could possibly mean by many, given that 
there are only three basic tools: the browse tool, button tool, and 
field tool. During the creation of stacks, you use these tools 
frequently. 

But from HyperCard's perspective, 15 other tools are avail­
able. These are all painting tools. Figure 12-4 shows all of 
them, as they are arranged in the Tools tear-off menu, along with 
the name(s) by which each tool is called in a HyperTalk script. 

The syntax for the choose command is: 

choose <tool name> tool 

The word tool is mandatory. The tool name must be spelled 
correctly according to the names shown in Figure 12-4. 



-

228 Chapter Twelve 

select lasso pencil 

brush eraser line 

::-~ D 0 
spray(can) rect(angle) 

bucket oval curve 

AO 
text poly(gon) 

Figure 12-4. HyperCard tools and their HyperTalk names 

Duplicating tool use and menu calls 

Sometimes you will want to do something that requires one of 
the general tools - the button tool or field tool - and you will 
assume the program should look something like this: 

choose button tool 
doMenu " New Button" 

But that is not necessary. The doMenu command automatically 
selects the appropriate tool for its execution. So in this example 
you essentially end up selecting the button tool twice, which is 

inefficient. 



f 
1 

.y 
le 
is 

229 Managing Menus and Using Tools -----------------------

Using select to choose a tool and an object 

In HyperCard versions above 1.2, a new command is included. 
Use the select command to pick a button or a field and simulta­
neously choose the appropriate tool. This command comes in 
handy if your script is designed to perform operations on specific 
objects. For example, to select a button named "Choose" for 
copying, you could either use the "old" approach: 

Choose button tool 

click at the loc of button "Choose" 
doMenu "Copy Button" 

or the new approach: 

select button " Choose" 
doMenu "Copy Button" 

Either approach works, but the latter is much faster to program 
and execute. 

Returning to the browse tool 

It is very important to return users to the browse tool after you 
have changed the current tool in your script. If you forget to do 
so, you may end up with frustrated users who suddenly find 
themselves unable to click buttons, activate fields, or type into 
the Message box. If your script, or someone else's script that 
you are using, should leave a tool other than the browse tool se­
lected, press Command-Tab to return to the browse tool so you 
can correct the mistake. 

Using a container to name the tool 

You can store the name of the tool you want to use in a Hyper­
Talk container and then use the contents of the container to 
choose the desired tool. For example, suppose your script has a 
variable called useTool. Based on any number of events taking 



Summary 

230 Chapter Twelve 

place in the stack, you might put any of several values into this 
container. Then one command can use the appropriate tool: 

choose useTool tool 

In this chapter, you learned to access menu items and tools from 
inside HyperTalk scripts. You saw how to use the doMenu 
command to carry out menu operations from within scripts, and 
you learned about the choose command and how it can be used 
to select a tool from HyperCard's range of tools. 

In Chapter 13, you put these techniques and others to work 
in creating graphic and visual effects from within your scripts. 



CHAPTER 

11.!!!!11!1!1~ 

,.. ... ,, .... L..!:!J 
Graphic Commands 
and Visual Effects 

In this chapter, you will learn 

• how to program visual effects in a script 

• when to use each visual effect 

• how to create artistic paint effects in a script, including 
setting various painting properties 

• how to animate objects on a card 

• how to manage card- and background-level pictures 

A Graphic Computer 

You've heard it a million times. The Macintosh is an all­
graphics computer. Everything that appears on its screen, re­
gardless of how much it looks like text, is graphics. 

231 



232 Chapter Thirteen 

With that formality out of the way, let us say that Hyper­
Card offers the casual user and application programmer more 
graphic capability and control than almost any other Macintosh 
program. If you've run through a few good stacks, you've seen 
these effects. They resemble television production techniques, 
which is no accident. If you don't know the names of these ef­
fects, get ready to learn about wipes and dissolves, barn doors 
and irises. 

Beyond the visual effects HyperCard uses every time it 
moves from one card to another, HyperTalk programmers also 
have complete access to the paint tools and techniques that are 
such an integral part of HyperCard. As we saw in Chapter 12, 
you can choose different tools from the menu bar, and you can 
use the doMenu command to carry out any menu function. 
These techniques become particularly important as we tum our 
attention to the graphics power of HyperCard. 

Programming Visual Effects 

Perhaps the most noticeable thing about a stack as compared to 
many other Macintosh applications and environments is the 
smooth transition from one card to another using sophisticated 
visual effects. Those visual effects can only be placed into a 
stack by writing HyperTalk handlers, so users, even at the 
authoring level, miss out on these capabilities. The command to 
cause these effects is visu al, usually written in its full-name 
variation, visual effect. Its syntax is 

visual [effect] <effect name> [<speed>] ~ 
[to black I white I gray !inverse Icard] 

We will explore each parameter to the visual effect command 
shortly. First, you need to understand some rules about its use 
and operation. 

Basic rules for the visual eff ect command 

When HyperTalk encounters a visual effect command in a 
handler, it stores that effect and uses it the next time a card 



233 Graphic Commands and Visual Effects -----------------------

switch takes place. You also can, with HyperCard Version 1.2 
and later, encapsulate visual effects within an un lock screen 
command, in which case the visual effect is executed 
immediately. 

Generally, a card switch is dictated by a go, fin d, or pop 
card command that results in a different card being displayed. 
However, you can create a visual effect using a go command that 
goes to the same card in which the command is executed. In oth­
er words, if you have two lines like this: 

visual effect dissolve 
go to this card 

HyperCard displays the visual effect without the card changing. 
You seldom need to do this, however, particularly with Hyper­
Card Version 1.2 and later, where you can create visual effects 
that seem to apply only to selected objects on a card. 

To alter the visual effect HyperCard uses in the transition 
from card to card, you must include the visual effect command 
in your script before the next go or find command appears. Many 
HyperTalk programmers keep the visual effect command imme­
diately before the card switching command whenever possible so 
that it is easier to find the effects later if they need modification. 

During idle time - when HyperCard is between handlers 
and messages- any visual effect is forgotten. As a result, it is a 
good idea to include an initial visual effect for your stacks in a 
stack open handler. 

If you are working with HyperCard Version 1.2 or later, 
you can also attach a visual effect to a specific object or group of 
objects by locking the screen, hiding or showing objects to 
which you want the visual effect to apply, then unlocking the 
screen with the visual effect as an argument. We see an example 
of this process later in this chapter. 

Effects you can program 

The fust parameter you must supply to the visual effect com­
mand is the name of the effect to be used. There are nine basic 
effects, five of which are associated with two or more directional 
descriptors. The nine basic effects are as follows: 



234 Chapter Thirteen 

• wipe 

• scroD 

• zoom 

• iris 

• barn door 

• dissolve 

• checkerboard 

• venetian blinds 

• plain 

The first five effects in this list require that you define the direc­
tion of their animation. Both wipe and scroll have four direction­
al descriptions: up, down, left, and right. The other three­
zoom, iris, and barn door - permit you to instruct them to open 
or close. In the zoom effect, you can substitute in for open and 
out for close. In and out are television production terms that are 
often used in audio-visual circles to describe the zoom effect, so 
HyperCard permits you to use either the internally consistent 
open and close or the TV standards in and out. 

The plain visual effect cancels any special effects and re­
turns to normal card-to-card transitions. We discuss the visual 
impact of the other effects shortly. 

Varying the speed 

Some effects can be made more dramatic or interesting by vary­
ing the speed with which they occur. HyperTalk recognizes four 
speed commands: 

• very slow (or very slowly) 

• slow (or slowly) 



235 Graphic Commands and Visual Effects -----------------------

• fast 

• very fast 

You probably won't notice much difference between fast and 
very fast except on a Macintosh II system. 

Changing the image 

If you include the last parameter associated with the visual effect 
command, it is preceded by the key word to and followed by one 
of these words: 

• white 

• gray 

• black 

• card 

• inverse 

Most of the special effects you can program in HyperTalk 
do not benefit much from this parameter, but the use of black 
and gray as the image to which to make the transition can have a 
nice impact with the dissolve approach. 

HyperCard moves through one of these intervening images as 
it moves to the next card. Thus, if you insert a command such as: 

visual effect dissolve to black 

in a handler, the next card transition results in a totally black 
screen appearing for a moment, followed by the image of the 
next card. 

Chaining effects 

For extra-special visual effects, you can chain these commands in a 
handler. HyperCard simply accumulates them and then executes 



-~.': i 
' -;. 

0 .. ~. 

236 Chapter Thirteen 

them one at a time at each card transition. A fairly soft transition 
can be achieved by this combination: 

visual effect dissolve to black 
visual effect dissolve to white 

This combination gives the impression of an image fading slow­
ly and then reappearing in a new form. 

Flashing a card 

One more effect occurs not on the next card transition but 
immediately when it is executed. The flash command inverts the 
Macintosh screen area occupied by HyperCard and then returns 
it to its original state. The command takes an optional numeric 
argument that tells it how many times to go through the flashing 
process. 

The visual effect command in card switches 

Open the Laboratory stack and create two new cards. Each 
should have a button approximately in the middle of the card. 
Then use the HyperCard paint tools to create some different 
shapes and patterns on each card. Fill a substantial part of the 
card with these patterns and be sure they are sufficiently differ­
ent from one another to make it obvious which card you are 
looking at. (You don't need to get artistic. The idea is simply to 
have contrasting cards so that when you perform visual effects 
you can see clear transitions between cards.) 

Next, follow these instructions: 

1. Open the script editing window of the card that has the 
lower number in the stack sequence. (If you're not sure 
which one this is, use the Card Info ... option from the 
Objects menu.) 

2. Type the following script into this editing window: 



237 Graphic Commands and Visual Effects ------------------------

on mouseup 
ask "What visual effect?" 
put it into request 
do "visual effect" && request 
go next 

end mouseUp 

3. Click on the OK button for that script, move to the next 
card, and open the script editing window for its button. 

4. Type the following script into this editing window (it is the 
same except for the go line, so you can use copy-and-paste 
methods to edit it): 

on mouseUp 
ask "What visual effect? " 
put it into request 
do "visual effect" && request 
go prev 

end mouseup 

5. Close the script editing window by clicking OK. Use the 
left arrow at the bottom of the card (or any other method) to 
return to the first cards. 

6. Press the button. An ask dialog like that shown in Figure 13-1 
appears. 

7. Type in the following line in response to the query: 

dissolve 

8. Watch as the card dissolves into the next. Press the button 
on this card. Another dialog box appears. Enter into that 
dialog box: 

zoom in slowly 

9. You can repeat this sequence as many times as you like. If 
you enter a visual effect command HyperTalk doesn't 
understand, it greets you with an error alert box like that 
shown in Figure 13-2. Just click the Cancel button and go 
on. 



238 Chapter Thirteen 

• rile Edit Go Tools Objects 

Figure 13-1. Visual effect testing ask dialog 

• file Edit Go Tools 

( Script ) ( Cencel )I 

Figure 13-2. Error message during visual effect testing 



239 Graphic Commands and Visual Effects ------------------------

Using visual effect on objects 

As I indicated earlier, you can cause HyperCard to use visual ef­
fects as it hides and shows various objects (buttons, fields, and 
pictures). The framework for the portion of a handler that would 
accomplish this task looks like this: 

lock screen 
-- hide or show one or more objects 
unlock screen with visual efect dissolve 

or other visual effect 

All of the objects you hide or show while the lock screen 
command is in effect--i.e., until the unlock screen with visual ef­
fect command is encountered--appear and disappear at the same 
time, using the single visual effect called for in the unlock screen 
command. You can include only one visual effect in this case. 
You cannot stack them as you can card-switch visual effects. 

The visual effect command with objects 

Open the Laboratory stack to any card with three or more card 
buttons on it. If you don't have such a card, create one. Resize 
two of the buttons so that they are large enough to be visible 
when the transitions take place. 

1. Be sure that the buttons are numbered card button 1, 2, and 
3 and that you use card buttons 2 and 3 as the buttons to 
hide and show. If necessary, use the send farther and 
bring closer menu items from the Objects Menu to set up 
this alignment or create a new card. 

2. Open the script window of card button 1. 

3. Type the folowing script into this editing window: 

on mouseUp 
lock screen 
hide card button 2 
wait 15 



240 Chapter Thirteen 

unlock screen with visual effect dissolve 
lock screen 
hide card button 3 
show card button 2 
wait 15 
unlock screen with venetian blinds 
lock screen 
show card button 3 
wait 15 
unlock screen with checkerboard 

end mouseUp 

3. Click the OK button of the script editing window. 

4. Return to the browse tool if necessary. 

5. Click card button 1. 

Choosing Visual Effects 

With such a variety of visual effects, how do you decide which 
to use? The answer is complex. Many psychologists and media 
experts have spent years studying the issue of special effects and 
how they affect people. At the same time, much of the answer is 
quite subjective: what works for you may leave others cold, be­
wildered, or unfocused. 

There are, however, some basic guidelines you can follow 
with some assurance that they will be successful, thanks in large 
part to research in this area. In the next few sections, we focus 
on the more traditional visual effects - scrolls, wipes, dissolves, 
irises, and zooms - and some tips about their usage. The others 
are more "gimmicky" effects. (We're not using the term gim­
micky effects to demean them or to suggest they shouldn't be 
used. It is just a way to categorize them.) You should use them 
sparingly and primarily for variety. 



241 Graphic Commands and Visual Effects -----------------------

Scrolls 

If you've experimented with scrolls - and if you haven't, you 
should go to the Laboratory and work through the previous ex­
periment with some scrolls, especially at slow speeds - you 
probably had the feeling that the new card was shoving the old 
one out of the way. Scrolls are particularly effective when you 
want to make the browser feel that a change in content or empha­
sis has taken place with the transition, that the old is being 
bumped aside for the new topic. Scrolls are also effective in 
slide show presentation stacks, because the scroll is similar to a 
slide projector as it moves from slide to slide. 

Wipes 

When you carry out a wipe, the browser's impression is of a card 
sliding into place over another card, rather than bumping another 
out of the way and replacing it (as with scrolls). As a result, 
wipes usually work best when you want transitions between 
cards that are less abrupt than those signalled by a scroll effect. 

When the subject matter remains the same and you're pro­
viding additional content at about the same level of depth as the 
previous card, the wipe is a good effect to choose. Browsers feel 
like they are on the same level as before and that a new card has 
simply shuffled into view. 

Dissolves 

The dissolve is one of the most artistic effects in HyperTalk and, 
as a result, is one of the most often used. It is also, unfortunate­
ly, one of the most abused. 

You should consider a dissolve as representing a gradual 
transition in material or content between cards. In that respect, it 
is midway between wipes and scrolls. It gives the browser the 
feeling of one thing metamorphosing into another without 
any"rough edges" or clear borders. 

Unlike most other effects, dissolves work best when there is 
either a great graphic contrast between cards or when only one 
small part of a design changes from one card to another. 



242 Chapter Thirteen 

Irises and zooms 

We'll discuss irises and zooms together because they are quite 
similar. The only difference is that a zoom out begins its "tele­
scoping" where the mouse is clicked to activate the effect, and 
iris open always focuses on the center of the card. 

NOTE 

Even though some documentation on the zoom in 
effect says that it returns to a point other than the 
center, that is not the case. A zoom out emanates 
from the point where the command is activated, but 
zoom in, like iris close, always goes to the center of 
the card. 

An iris open and a zoom out give browsers the sense of go­
ing deeper into something. They are quite useful when browsers 
click on a button that takes them to a card displaying more de­
tailed or focused information. The sensation is of a door opening 
as you walk through it. An iris close and a zoom in reverse that 
effect. If you use a series of zoom in or iris close effects to take 
browsers several levels into a stack, use a corresponding number 
of zoom out or iris open effects to bring them out. 

The zoom out and iris open effects are also useful if you 
want to give the illusion of magnifying a small part of a card by 
moving to a card with a more detailed, close-up look at that 
portion. 

A general observation 

None of these principles is hard and fast, of course. Occasional­
ly there are good reasons to disregard them and do something out 
of the ordinary. Sometimes, it is a good idea to have a graphic 
artist- particularly one with experience in film or TV - look 
at your stack and give you some advice. 

If you think about the effect you want to create and the feel­
ing you want the browser to have, and if you concentrate on 



243 Graphic Commands and Visual Effects ----------------------

keeping the effects simple and clean, you '11 have no trouble de­
signing interesting stacks that furnish your browser with visual 
cues as to what is going on. 

Painting from a Script 

HyperCard's designer, Bill Atkinson, built in some very power­
ful painting capabilities. This is no surprise because Atkinson 
also wrote Apple's popular and widely emulated MacPaint pro­
gram, the frrst software to show off the real power of bit-mapped 
graphics and the Macintosh interface. 

All painting techniques available to the user at and above 
the painting level can also be accessed through HyperTalk com­
mands in scripts. If your stack could benefit from animation on 
a single card, use the painting tools. 

Why paint in a script? 

Most painting and artistic design takes place within the realm of 
stack development rather than stack use. By the time a user gets 
to the stack, the painting and drawing are done. In fact, of the 
dozens of scripts we have built and examined during the prepara­
tion of this book, not one undertook any artwork while the stack 
was executing. But in at least three circumstances, script­
generated artwork may be a useful feature of HyperCard. 

First, if you are designing a stack and are a better mathema­
tician and programmer than an artist, you might want to write 
scripts that generate some of the graphics in your stack. This is 
particularly true if precision in the graphic is important. For ex­
ample, if you need to draw a series of equidistant rectangles, 
writing a small script to do so is easier than creating a single rec­
tangle, duplicating it, and moving it into the proper position. 

Second, if one of the purposes of the stack is to enable the 
user to design something that requires graphics, you want to ac­
cess the paint properties and tools we discuss in the rest of this 
chapter. 



244 Chapter Thirteen 

Finally, if the animation of objects on a single card has 
some value in your stack, you may want to be able to select and 
move an object within some constraints you establish. 

Choosing painting tools 

Recall that in Chapter 12 we discussed the choose tool com­
mand. In that discussion, we pointed out that each painting tool 
has a distinct name by which it can be invoked and used. To re­
fresh your memory, Figure 13-3 lists the tools as they appear in 
the tool palette, along with the HyperTalk names for each. 

To choose the paint brush, for example, just write a line like 
this in your script: 

choose brush tool 

Until you change the tool explicitly, the script will use the brush 
tool. You generally perform three basic functions with paint 
tools: 

• get and/or set properties 

• click at card locations with the tool 

• drag the tool to card locations 

Paint properties 

As you know from our discussion in Chapter 3, an important idea 
in HyperCard is properties. Many objects that make up the Hy­
perCard world have properties associated with them. We take an 
in-depth look at properties and their management in Chapter 17. 
But for the moment, we will quickly examine the use of proper­
ties to carry out painting tasks in HyperTalk scripts. 

Each property in HyperCard can assume a range of values. 
You can discover the current setting of a property with the get 
command: 

get brush 



245 Graphic Commands and Visual Effects -------------------------

r--, 
I I .. _ _, 
select 

brush 

p (l 
lasso pencil 

eraser l ine 

==·~ D 0 
spray[can) rect[angle] 

bucket oval curve 

AO 
text poly[gon) 

Figure 13.3 Paint tools and their HyperTalk names 

You can change the current setting of a property with the set 
command, which generally takes the form: 

set <property> value 

For example, if you want to change the brush shape, just insert a 
HyperTalk command like this: 

s e t the brush to 12 

Table 13-1 summarizes all properties associated with paint­
ing tasks in HyperTalk and the range of values each can assume. 



Table 13-1. Paint properties and tbeir ranges 

Property Name 

brush 

centered 

filled 

grid 

line Size 

multiple 

multi Space 

pattern 

poly Sides 

textAlign 

textFont 

textHeight 

textSize 

textStyle 

Values 

1- 32 

true or false 

true or false 

true or false 

1, 2, 3, 4, 6, or 8 

true or false 

1-9 

1-40 

number larger than 2 

left, right, center 

font name 

numeric value 

numeric value 

any combination of bold, italic, 
underline, outline, shadow, 
condense, extend, and plain 

Most of these properties are self-explanatory, particularly if 
you've used the Options menu in HyperCard. Some, however, 
require further explanation. 

The brush property can have any of 32 shapes. The shapes 
are numbered in the order in which the brush shapes are listed in the 
mini-palette that appears when you select Brush Shapes ... from 
the Options menu or double-click on the brush tool. The brush 
shapes and their corresponding numbers are shown in Figure 13-4. 

Line widths are set with the lineSize property, which can 
have a value of 1, 2, 3, 4, 6, or 8, corresponding to the line 
weights shown in Figure 13-5. 



24 7 Graphic Commands and Visual Effects ------------------------

• • / "' 5 9 13 17 21 25 29 

• • / ' 2 6 10 14 18 22 26 30 

• • / ' I 
3 7 11 15 19 23 27 31 

• UJ , .... I 
4 12 16 20 24 28 32 

Figure 13-4. Brush shapes and their values 

I I I I [i]l 
1 2 3 4 6 8 

Figure 13-5. Line widths and their values 

Similarly, pattern properties are numbered in a matrix that 
matches the pattern palette that appears under the Pattern menu 
and which may be torn off to be available during paint 
operations. Pattern numbering begins in the upper left-corner 
with the number 1 and continues down the first row to 10. It 
then resumes numbering at 11 with the top pattern in the second 
column, and so forth. Figure 13-6 depicts the standard paint 
patterns and their numbering scheme. 

The multiSpace property determines how many pixels to 
leave between each copy of a shape generated as the tool used to 
create it is dragged through a drawing area when multiple is set 
to true. 

The polySides property determines the shape of the regular 
polygon to be drawn when that tool is selected. The property 
may have any numeric value larger than 3. The higher the num­
ber, the more nearly the shape approaches that of a circle. 

Finally, the textStyle property sets combinations of charac­
teristics for text as follows: 

set textStyle to bold,italic,underline 



248 Chapter Thirteen -----------------------

!! 0 iiiii!i!iiiiiiiiiiiiiiiiiil 
1 11 21 31 
2 12 22 32 
3 13 23 33 
4 14 24 34 
5 15 25 35 
6 16 26 36 
7 17 27 37 
8 18 28 38 
9 19 29 39 

10 20 30 40 

Figure 13-6. Patterns and their values 

One more property is not strictly a paint property, but its 
use is primarily confined to painting activities. It is referred to 
as a global property and is a member of a group of properties 
discussed in Chapter 17. Its name is dragS peed and it can take 
any numeric value you like, though experience shows that values 
larger than 144 cannot be distinguished by most people. When 
used with the multiple and mult iSpace properties, dragSpeed 
can determine how regularly spaced your drawings look when 
you use multiple images. 

Properties, then, determine the characteristics of drawings 
produced with basic paint commands. After you set the proper­
ties and select the tool, drawing is a matter of clicking, dragging, 
or both, depending on what you want to accomplish. 

Clicking and coordinates 

The Macintosh screen consists of a collection of addresses 512 
pixels wide and 342 pixels deep. Each position on the screen is 
addressed by a two-part number. The first part is the horizontal 
location, or coordinate, and the second is the vertical. They are 
separated by a comma. The upper-left comer of the screen is ad­
dress 0,0, and the lower-right corner is 512,342. 

In Chapter 7, we saw how the click command could be used 
with a set of coordinates to simulate button-pressing. You can 
also use the click command to select a location on a card that 
does not contain a button or a field. You can then execute a 



249 Graphic Commands and Visual Effects ------------------------

painting command, using the clicked-at location as the starting 
point. 

Most of the time, you will only use click to draw with tools 
that do not work by dragging. The text tool and the bucket tool 
do not work by dragging. 

Dumping paint and drawing text 

We' ll use the Message box for our next experiment, though you 
can also create a button script for it. In the Laboratory stack, create 
a new, blank card containing only the background arrows. Open 
the Message box if it isn ' t already visible and type the following 
sequence of instructions, observing what happens after each. 

choose r e cta ng le tool 
drag from 150 , 150 to 300, 200 
c hoose bucket tool 
s~t pattern to 6 
click at 151 ,1 51 

The result should look like Figure 13-7. The bucket tool, as you 
probably know, simply spreads its associated pattern from the point 
where it is clicked to the borders of the area in which it is clicked. 

Stay in the same Laboratory stack, with the same card 
showing, and type the following commands in the Message box, 
observing what happens after each: 

1. choose t ext tool 

2. set textFont to " Times" -- use a font you have 
installed 

3. set t e x tSize to 18 

4. set t extStyle to bold, italic 

5. click at 50 , 50 

At this point, the cursor should be flashing near the upper-left 
comer of the card. Anything you type at this point is displayed on 
the card using the text characteristics you set with instructions 2-4. 



250 Chapter Thirteen -------------------------

~~~~~~~~---·--·-----·---·----·-·---·-·---·-----·---·--·-

Figure 13-7. Using the bucket tool and the click command

Figure 13-8 shows what happens when you type the words this is a
demonstration of painting text.

cltck at s~.so --------------·---------

Figure 13-8. Using commands to add painted text to a card

To return control to the Message box, you have to click in it
because anything you type at this point is displayed on the card.

sa

in it
rd.

251 Graphic Commands and Visual Effects

Dragging tools for effect

All painting tools, except the text and bucket tools, are used by
dragging them from one location to another. Depending on
whether the centered property is true or not, they draw a shape
that starts at the flrst set of coordinates and ends at the second, or
they draw a shape centered on the first set of coordinates and
extending in one direction to the second set.

We have already seen the rectangle tool used with the drag
command to create a place to dump paint from the bucket. But
just to be sure we understand what's going on with the drag
command, here is its syntax:

drag from <point> to <point> [with <key>[,<key>]]

The point parameters are two-number coordinate addresses,
with the numbers separated by a comma. You can specify one or
more keys that will be simulated as held down during the drag.
Here are some examples of the drag command:

drag from ptl to pt2 with shiftKey,optionKey
drag from 0,0 to 512,342
drag from 50,50 to 200,275 with commandKey

Although a discussion of all the painting techniques in
HyperCard is beyond the scope of this book, it might help to
refresh your memory about the use of the special keys with paint
operations.

If you drag with the shiftKey parameter, you constrain the
movement of the dragging to the 15-, 45-, or 90-degree axis in
which it begins movement. The angle of constraint depends on
the shape and the tool, but in general you can think of the Shift
key as being a constraint key.

Dragging with the optionKey parameter makes a copy of
the selected item(s) and drags the copy. If you are using the
lasso tool to drag with the optionKey parameter, lasso operates
differently from its normal use. Generally, using the lasso tool
on an object selects only the object and not the surrounding
white pixels. But if you use the lasso, press the Option key, and
then drag to select an area, the white pixels are also selected.

Using the usual selection marquee tool to drag with the
commandKey parameter, the marquee "hugs" the outline of the

252 Chapter Thirteen ----------------------

-- ~ .·; r

0

enclosed item rather than selecting everything inside the mar­
quee. This technique is particularly helpful if you know within a
small tolerance the location of a painted item on the card, but
need some margin of error.

If you are dragging with drawing tools such as any of the
shapes - filled or not - use the option Key parameter to cause
the drawing to take place in the currently selected pattern rather
than in black. To refresh your memory about the use of special
keys with paint tools, refer to the Macintosh HyperCard User's
Guide from Apple Computer.

Brush painting and drawing with a border

Get a clean Laboratory stack card, open the Message box if it
isn't already visible, and type the following commands into the
Message box, observing what happens after each:

1. choose brush tool

2. set brush to 5

3. set pattern to 12

4. drag from 60,60 to 350,60

5. drag from 80,60 to 280,60 with cornrnandKey

After step 4, the screen looks like Figure 13-9. After step 5, the
screen looks like Figure 13-10. When the Command key is held
down while the paint brush is in use, it reverses the pattern and
essentially erases what lies under it.

Stay in the Laboratory stack and either create a new blank
card or simply erase the contents of the one you just used.(Re­
member you can double-click on the eraser tool to erase all the
graphics in the current layer.) Now type the following instruc­
tions into the Message box and observe what happens after each.

set the filled to false
drag from 50,50 to 150,150
drag from 160,50 to 260,150 with optionKey

253 Graphic Commands and Visual Effects --------------------------·

a File Edit Go Tools Paint Options Potterns

:i i . ; · .. I I" ., , ! '1" 1
:5 ~~eg _!~~~_!)-~~~~ 350 .~~--·----.. --

Figure 13-9. Screen after r egular paint brush use

a rile Edit Go Tools Point Options Potterns

• •

Figure 13-10. Screen after Command-key paint brush use

254 Chapter Thirteen

Notice that using the Option key while dragging a drawing tool
causes the line to be drawn in the currently selected pattern.

Animation with Selecting and Dragging

The last topic we will cover in this chapter is the use of selection
and dragging to make objects in HyperCard appear animated.
Generally, the process of animating HyperCard paint objects in­
volves three steps:

1. Select the item(s) to be moved. This sometimes involves a
simple process using doMenu, but other times it is more
complicated.

2. Set the dragSpeed to a rate that is appropriate to the effect
you want to achieve. You can only really find this value by
trial-and-error. Start with something like 100 and work
from there.

3. Use drag to move the object.

You may also want to be sure the object reverts to its original
position when the animation sequence is finished.

Selecting items to animate

If the object you want to animate is the only paint object on the
card or you want to animate all the painted objects, the selection
process is greatly simplified. Choose a painting tool, then carry
out these two instructions:

doMenu "Select All"
doMenu " Select"

(The reason for the first menu command selection is that if you
haven't de-selected the last object drawn, the doMenu "Select"
command automates only that object.) A doMenu "Select All"

255 Graphic Commands and Visual Effects -----------------------

- ~~·~ ·=
~

·'
0

command de-selects any object that may be selected. A subse­
quent doMenu call then selects all the painted objects on the
screen and prepares them for animated movement.

If there are multiple objects on the screen and you only
want to animate one of them, you must use one of the other se­
lection methods. Use a choose tool command to switch to the
marquee (select tool) or the lasso. Then click and drag, using
the optionKey parameter, to select the object.

Setting dragSpeed

The dragSpeed property can take almost any value. If it is set to
0, it is at the fastest speed. At that speed, the movement of ob­
jects is not smooth and gradual. Instead, the object disappears
from one point and instantly reappears at the other. If that's the
effect you want, use a dragS peed of 0.

For the most part, though, you will want a speed between
72 (which is quite slow) and about 400 (which is smooth and
fast). You'll have to experiment with various speed settings to
decide what works best for a given effect.

After you select a speed, use the set command to assign it to
the dragS peed property:

set dragSpeed to 200

Using drag to move objects

We've already covered the drag command. When you use the
drag command in animation, you must make sure your starting
point for the dragging motion is within the boundaries of the ob­
ject you want to move. You will also want to ensure that you
don't drag some portion of the image beyond HyperCard's
boundaries so that it becomes partially invisible.

Animation experiment

Return to the card you used for the last experiment or create a
new one with one or two rectangles near the upper-left corner of
the card area. If you create a new object, be sure to choose the

256 Chapter Thirteen

Keep option from the Paint menu. This ensures that when you
revert to the image, the objects return to this position. Then fol­
low these instructions:

1. Create a new button called Animate it! and position it
wherever you like on the card.

2. Open this newly created button's script editing window by
one of the usual methods.

3. Type in the following script:

on mouseUp
choose select tool
doMenu " Select"
set dragSpeed to 200
drag from 100,100 to 300 , 200
drag from 300,200 to 350,100
doMenu "Select All"
doMenu "Revert"
choose browse tool

end mouseUp

4. Click OK and then activate the button. Watch as the objects
move from the upper-left corner to the right-center portion
of the card to the upper-right corner, pause for a moment,
and then return to their original location.

Managing Pictures on Cards and Backgrounds

Beginning with HyperCard Version 1.2, you have the ability to
hide and show all the artwork you have created on a given card
or background. All the art you create in Version 1.2 or later, or
that is contained on stacks designed using an earlier version, then
compacted using Version 1.2 or later, is defined as a single pic­
ture for each card or background. In other words, if you create
some paint text and graphic shapes on a card, the entirety of that
artwork is defined and managed as a card-level picture. The
same is true of artwork on a background.

t

257 Graphic Commands and Visual Effects -------------------

You have no choice in the matter; the artwork is treated as a
single unit for the purposes of the commands discussed in this
section. You cannot hide and show selective portions of the card
or background art with these commands.

If you wish to hide the picture on a card, you can use one
of two forms of the hide command. To hide the art on the cur­
rently visible card, write:

hide card picture

If the card whose picture you wish to hide is not the currently
visible card, you must use the alternate form of the command:

hide picture of <card description>

For example, to hide the picture on the fourth card in the current
stack before going to that card, you could write a command like
this:

hide picture of card 4

The same logic applies to showing a card-level picture. The
current card's picture can be shown by the command

show card picture

but to show the picture on another card you must designate that
card with a description:

show picture of <card description>

Background pictures have their own set of equivalent com­
mands. To hide the art on the current background, write:

hide background picture

To hide the background picture on a different background, desig­
nate that background by a description:

Summary

258 Chapter Thirteen

hide picture of <background description>

Showing background pictures works similarly.
Because a picture is treated in some respects as if it were an

object, it can be shown and hidden in concert with visual effects.
Earlier in the chapter, we talked about the lock screen and un­
lock screen with visual effects commands. You can use those
commands with the hide and show commands discussed in this
section to achieve some interesting visual effects without chang­
ing cards.

In this chapter, you were introduced to the use of visual effects
and graphic commands from within HyperTalk scripts. You saw
how to use visual effect commands and variations and learned
something about when and where they are best used. You also
examined the use of graphic tools and their associated com­
mands. In addition, you learned about properties and how they
are changed to create specific graphic images. Finally, you saw
how click and drag working together with selected objects can
be used to animate objects on cards.

Chapter 14 explores another area of creativity in Hyper­
Talk, the use of sound and music in scripts.

CHAPTER

Sound and Music
Basics

I n this chapter, you will learn how to use the:

• beep command

• play command

• sound function

You will also gain some insight into the appropriate use of sound
in HyperCard stacks.

Using the beep Command

We have used the beep command throughout this book without
providing a formal explanation of its use. One is probably not
mandatory at this point. But let's note its syntax for the record:

beep [<number>]

259

260 Chapter Fourteen ------------------------
The number you supply can be a numeric value, an expression
that evaluates to a numeric value, or a container that holds a nu­
meric value. If you don't supply a number, HyperCard assumes
you want a single beep.

The only "tricky" thing about the beep command is that if
you want to use multiple beeps to alert the user to different con­
ditions, you may find that HyperCard's timing puts them too
close to differentiate them. That's particularly true if you use
more than five beeps.

If you need a large number of beep sounds in a script, you
should probably put them into a repeat loop (see Chapter 8). An
example of such a loop might look like this:

on mouseUp
repeat with counter=1 to 15

beep
wait 30 -- 30 "ticks", about 1/2 second

end repeat
end mouseUp

The half-second delay in this loop might be too long or short for
your purposes. You can supply almost any value for the wait
command.

The beep command has limited application. It can't vary in
duration or pitch, so it can't be used for music. But it can be
quite useful as an audible device to get the browser's attention
when he or she has done something untoward.

Using the play Command
mmmmwmv : ; 1n :mmmm ; 1 II II HII 111 ;;; mm:: ;;:~

If you've explored many HyperCard stacks, you've probably
come across a range of sound effects people have used to make
their applications more interesting or fun. HyperCard has one of
the most powerful and versatile sound-reproducing capabilities
of any programming language we know.

The play command is one of the most complex in Hyper·
Talk. It can have as many as five separate sets of arguments, and
one of them can contain a large number of individual notes, so
the commands tend to be long.

T

t

)ly
LkC
of

.. es

)Cf­

and
so

261 Sound and Music Basics

Here is the basic syntax of the play command:

play " sound" [tempo <speed>) [<notes>)

As you can see, the only mandatory parameter to the play
command is the first one, called sound. The sound parameters
must be enclosed in quotation marks and must match exactly the
name of the sound resource to be used (more on sound resources
later in this chapter and in Chapter 21). Let's look briefly at each
optional parameter.

Tempo

The tempo parameter applies only to a series of at least two
sounds. It dictates how quickly the notes are played after one
another. If you don't supply a value for the speed, preceded by
the key word tempo, HyperTalk uses a tempo of 200. This is
considered an average tempo, a little faster than a waltz is usual­
ly played. Above the value of 800 or so on a Macintosh Plus, the
notes simply blend into one another. Increasing the number after
that has little or no audible effect.

Unfortunately, there is no relationship between Hyper­
Card's tempo settings and any standard musical measurement. In
music, the term tempo means "beats per minute," but that is not
the case with the tempo parameter in the play command. You'll
just have to experiment with ranges of values to see what works
for each composition you use.

Notes

You will almost always want to give HyperTalk one or more
musical notes to play when you use the play command, though it
is not mandatory that you do so. If you do not supply a note (i.e.,
if you simply use the play command with a sound name), Hyper­
Card uses middle C as the note.

The string of notes you want played must be enclosed in
quotation marks. You can have (theoretically) as many notes as
you like. Each note has the following syntax:

<name>[* I b) [<octave no.>] [<duration>]

262 Chapter Fourteen ----------------------

For the name of the note, use the name of the note on the scale,
just as you'd expect. The seven letters a, b, c, d, e, f, and g are
used to name the notes of the scale.

Each note name can be optionally followed by an acciden­
tal. This is a special symbol for a sharp or a flat. A note that has
a sharp accidental is played one-half step higher in the scale than
the name of the key indicates. A flat note is played one-half step
lower than expected. In HyperTalk music notation, the pound
sign (#) signifies a sharp, and a lowercase letter b signifies a flat.

Using this notation and starting with middle Con the piano
keyboard, the next few notes up the scale could be written as
follows:

c c* d d* e f f* g ab a bb b

We have deliberately mixed the use of the sharp (#) and flat (b)
signs so you see how they look. All the intermediate notes have
two names, one refers to the note below and uses a sharp symbol,
and one refers to the note above and uses the flat symbol. This
means A-sharp and B-flat are the same note.

The octave number tells HyperCard where along the piano
keyboard to play the note. The piano is divided into collections
of octaves spanning from one C note to the next and encompass­
ing seven keys. The octave that starts with middle C is referred
to as octave 4 because it's the fourth up from the lowest C note
on the piano. The octave beginning with the C note that is one
octave up from middle Cis the first note of octave 5.

If you don't supply an octave number, HyperCard uses oc­
tave 4. After you change the octave, however, the change stays
in effect until you insert another octave number in the note
string.

The duration parameter uses something akin to standard
musical notation, allowing you to use the first letter of the
spelled-out name of the note duration. Thus, a quarter note is
signaled by a q and an eighth note by an e. You can add a period
after any duration to extend its value by 50% (the equivalent of
dotted notes).

263 Sound and Music Basics -----------------------

Table 14-1 shows you several musical notes expressed in
HyperTalk notation, their English names, and their musical
notation.

Table 14-1. Some musical notes in HyperTalk, English, and music

HyperTalk English Music

g#c G-sharp, octave 4, 8th note

= c5h. C, octave 5, dotted half note

aq A, octave 4, quarter note ~
bbt B-flat, octave 4, 32nd note lj ~~

Notes in HyperTalk can also be represented as numeric val­
ues, in which case the octave and accidental parameters are not
used. Middle C has a numeric value of 60, and each step up or
down represents a half-step. Thus, the E above middle C is 64,
B-flat is 70, and the C one octave above middle C (the one that
starts octave 5) is 72. You still need duration values unless you
are happy with HyperTalk's defaults.

One advantage of using numeric values for notes is that you
can calculate sounds, enabling you to play scales and other math­
ematically related musical groups in a loop. You can also set up
generic loops that work from a starting numeric value and play
major scales, minor scales, and transposed tunes.

264 Chapter Fourteen

-
Some familiar tunes

For our next exercise, we need a Laboratory stack card with a
single field and a single button. The field can be called Field 1
and the button should be named Play It! (just for variety). Either
create a new card or modify an existing one. Make Field 1 big
enough to accommodate several lines of typing. Now follow
these instructions:

1. Open the script editing window for the Play It! button in one
of the usual ways.

2. Type in the following short script and click OK when
you've proofread it

on mouseUp
do "play" && "Harpsichord" && card field 1

end mouseUp

(We use the harpsichord sound here because it is one of the
built-in sounds in HyperTalk and because it comes the clos­
est of any of those sounds to playing notes that sound like
music rather than sound effects.)

3. Return to browse mode.

4. The melody lines for several well-known musical tunes
written in HyperTalk notation follow. Pick one and type it
carefully into Field 1 of the experiment card.

5. Press the Play It! button.

If all goes well, you will hear the melody line you chose
played with HyperCard's harpsichord sound. You can change
the instrument or voice by a simple edit of the button's script.
(Some of these tunes could stand some tempo improvement.
You can easily modify the button script to take care of this if the
tempo jars your ears.)

Here are the melody lines:

265 Sound and Music Basics

1. "America, the Beautiful"
gq gq. ee eq g gq. de dq e f g a b gh . gq gq. ee
eq g gq. de dq dS c5f d5 e5 a4 d5h g4q e5q. eSe
dq cSq cq. b4e bq c5 d b4 a g cSh. cSq cq. a4e
aq cSq cq. g4e gq g a c5 g4 d5 ch.

2. "When the Saints Go Marching In"
cq e f gw gq cq e f gw gq cq e f gh e c e dw dh
eq d ch. cq eh gq g g fw fq eq f gh e c d cw cq
e f gw gq cq e f gw gq cq e f gh e c e dw dh eq
d ch. cq eh gq g g fw fq eq f gh e c d cw

3. "Skip to M' Lou"
bq b g g be b bq d5h a4q a ff f# ae a aq c5h b4q
b g g be b bq d5h a4q be cSe b4q a gh gq

4. "Frere Jacques" (3 rounds)
cq d e c c d e c e f gh eq f gh ge a g f eq c ge
a g f eq c c g3 c4h cq g3 c4h cq d e c c d e c e
f gh eq f gh ge a g f eq c ge a g f eq c c g3
c4h cq g3 c4h cq d e c c d e c e f gh eq f gh ge
a g f eq c ge a g f eq c c g3 c4h cq g3 c4h

The play stop variation

Because the play command continues executing while other
script commands are carried out, you can sometimes find sound
effects being played at inappropriate times. If you want to
control some precise time when the sound should simply stop
playing, use the stop parameter. The command play stop
immediately stops whatever sound is playing. If no sound is
playing, no action is taken but no error results.

Sound Resources and HyperTalk

When you receive HyperCard from your Apple dealer, it has
four built-in sounds: harpsichord, boing, silence, and dialing
tones. You can supply any of these as the sound name in a play
command and get a response (though in the case of the silence

266 Chapter Fourteen

choice it will be hard to tell unless you intersperse it with other
sounds). But there are dozens of other sound effects available
for inclusion in stacks. Where do these come from and how are
they used?

To answer that question, we need to explain that all sound
effects accessed by play commands must be stored as resources.
(If you don't know what resources are, don't panic. In Chapter
21 we take a close look at them. For now, just think of them as
stored instructions that have a name associated with them.) Each
resource that has a type called SND can be used by HyperTalk
as a sound effect. What is actually stored in the sound resource is
a waveform pattern that describes the sound to HyperCard.

If you have a sound resource called, for example, applause,
you can create a command like this:

play "applause"

HyperTalk finds the resource and plays the sound it finds repre­
sented there.

Sound resources can be copied from other stacks, other
Macintosh programs, and special files of sound effects you can
obtain from electronic bulletin board systems (BBSes), user
groups, and similar places. They are often created by digitizing
real sounds using one of several pieces of Mac software.

In Chapter 21, we examine resources and how HyperCard
accesses and uses them. We also discuss how you can move a
resource from another stack or application into your stack or
even the HyperCard Home stack, where more than one stack in
your HyperCard environment can access it.

Testing the sound

When HyperCard encounters a play command, it starts the sound
and then continues with processing even while the sound contin­
ues to play unless you issue the play stop command. You can
thus have "background music" behind your script as it executes.
This is a nice feature of sound effects in HyperCard.

Sometimes you want the sound to be more synchronized
with the screen's activity. Controlling the sound's pace to match

267 Sound and Music Basics

the screen action can be tricky. To assist in this process, Hyper­
Talk includes a function called t he sound. Like all HyperTalk
functions, it requires no parameters and returns a value. The
value it returns is the name of the currently playing sound or the
string "done" if no sound is playing.

You can use this function to control a loop as follows:

repeat until the sound is "done"
<statements>

end repeat

Alternatively, you can use the sound in a conditional processing
structure so that nothing happens until the sound is finished
playing:

repeat
if the sound is "done" then

<statements>
else wait 1 -- or any other reasonable number

end repeat

(In this example, the statements should include an exit repeat
and may consist of only that command depending on what you
are trying to accomplish.)

Using Sound Effects Wisely

Like any good thing, sound effects can be overdone. On the
Macintosh, with its wonderful sound capabilities, it is an easy
thing to do. But you should guard against using sound in a way
that confuses the browser.

Unless the stack's primary purpose is to perform music or
create or reproduce sound effects, you should only use the play
command where it will add value to the stack from the browser's
viewpoint.

For example, in a stack designed to quiz a child about the
letters of the alphabet, playing the well-known "Alphabet Song"
at the beginning and end will probably be well received by the
young browser. But if you play the song every time he or she
gets a question right, you're going to bore the tot.

-----~-----

268 Chapter Fourteen -----------------------

Summary

Associating single sounds with buttons can add dimension
to your stacks. Browsers become accustomed to hearing a certain
sound as they move "down" into a stack for more information
and a different sound signalling that they are moving "up"
toward the top and the beginning of their browsing experience.

In this brief chapter, you learned how to use beep and play com­
mands to create sound effects from the simple to the symphonic.
You also saw how to use the sound to determine when a sound
effect is finished playing so you can proceed with another aspect
of your script where the sound is unneeded or unwanted. In
Chapter 15, we shift our attention to mathematics.

C H APTER

Math Functions and
Operators

In this chapter, you will learn about a host of HyperTalk
functions and operators that enable your scripts to perform math­
ematic operations. These include tools to perform

• simple arithmetic calculations

• number manipulation

• advanced mathematics, including trigonometry

• financial math

An Aside to Mathephobiacs

Many people put off learning more about computers because
computers seem so inherently mathematical. But a majority of
computer programs involve no math more complicated than you
probably learned in the fourth or fifth grade. Still, mathephobia

269

270 Chapter Fifteen

is a sufficiently widespread phenomenon that many high schools
and community colleges offer courses in how to overcome it.
They report the courses are jammed and the students largely
successful.

Let us be clear at the outset about the role of mathematics in
programming most HyperTalk applications. First, you don't
need to learn any math to program in HyperTalk. If you have an
occasional need to perform a simple calculation, you can quickly
and easily look up the proper operator or function, use it with a
minimal understanding, and go on with your life as if math never
existed. If you want to skip this chapter, feel free to do so. We
promise you won't hurt our feelings.

Second, HyperTalk takes some of the "scary stuff' out of
math by making operations more English-like and by reducing
the number of special characters (operators) necessary. You
might find that learning a little about math using HyperTalk isn't
nearly as difficult as you may now think.

How Numbers Are Represented

In the discussions in this chapter, we will deal with numbers.
Functions and operators work on numbers, and they produce
numbers. A number in HyperTalk is stored as a string of
characters, all of which are numeric. A number can be up to 73
characters long, which means it can have 73 digits if it's positive
and 72 (to allow for the minus sign) if it's negative. It's not
likely you '11 need larger numbers than these! If you attempt to
calculate a value that exceeds this maximum, HyperTalk returns
a question mark as the answer.

Any number used in this chapter can be thought of as being
represented in the Macintosh in any of the following ways:

• a number stored as text (e.g., 17234511.2)

• a container holding a number stored as text (e.g., sumTotal)

• an expression containing numbers and operators that
evaluates to a number (e.g., 2 + 8, which evaluates to the
number 10)

f
T
!)

l

t

;.
e
,{
3
·e
)t

:o
lS

1)

tat
he

271 Math Functions and Operators ------------------------

This last case is a special situation. If a field on a card contains an
expression such as 2+8, and you really want to put the result of
evaluating that expression into your math calculations, you must
use the HyperTalk value function. The value function evaluates a
string containing numbers and (usually) operators and returns the
numeric value. (In a moment, we'll have more to say about the
concept of returning a value.)

If card field 3 contains an arithmetic expression such as
2+8, and you want to put its value into a container called tempi,
you could do so this way:

put value(card field 3) into ternpl

When HyperTalk encounters this command in your script, it
looks in card field 1, finds the arithmetic expression there (it
must be the only thing in the field if you've addressed the entire
field as in the example), carries out its calculations, and does
what it's told with the result.

Another aspect of representing numbers follows Hyper­
Talk's pattern of making programs more readable. Instead of us­
ing the digits 0, 1, 2, and so forth, you can write out their names:
zero, one, two, and so on, up to ten. You can enter expressions
like this:

put three + nine into answer

and expect the value of answer to be 12. You can even concate­
nate these numbers to make larger numbers (i.e., one and three
combine to make 13).

We should point out that the way a specific number is rep­
resented can be affected by the setting of a global property called
numberFormat. This value determines the number of decimal
points of precision to which the number will be displayed and
used in calculations. We discuss this property in more detail in
Chapter 17.

Bringing Order to Things Numeric

Mathematicians spend a lot of time dealing with - and
designing systems to avoid - ambiguity. An ambiguous

272 Chapter Fifteen

situation arises in mathematics when there are two or more ways
to evaluate an expression. For example, if we gave the problem
2+4+8*3 to two different students, one might answer 42 and the
other might answer 30. The first student added the first three
numbers and then multiplied their sum, 14, by 3. The second
student decided to multiply 8 and 3 first, then add this result to
the other two numbers. Both are reasonable results. But if you
put the problem to HyperTalk, it will reply, unequivocally, 30.

That outcome is detennined by something mathematicians
call precedence. The term applies to decisions about what math­
ematic operations will be carried out in what order. HyperTalk,
not unlike many other languages, applies some fairly simple
rules.

RULES OF PRECEDENCE

1. Operations contained within parentheses are
performed before those outside parentheses.

2. Exponentiation (raising a number to a power,
which is discussed under "Advanced Math
Operations") is the highest-priority math
operator.

3. Multiplication and division are the next most
important math operators.

4. Addition and subtraction are the least important
math operators.

5. When you have operators of equal precedence,
perform calculations from left to right.

There are many non-mathematic operators among Hyper­
Talk's total set of rules about precedence, but these are the ones
that concern us here. Now you can see why HyperTalk got 30
when it evaluated the expression 2+4+8*3. It scanned the line
and found a multiplication, which it determined was the highest­
priority operation in the expression. So it performed it first in

273 Math Functions and Operators ----------------------

accordance with rule 3. Then it found it had two addition opera­
tions, so it applied rule 5 and did them left to right (although the
order in which numbers are added doesn't matter), resulting in
the answer, 30.

When you want HyperTalk to alter its normal order of
precedence in mathematic calculations, use parentheses and take
advantage of rule 1. To force HyperTalk to come up with the
answer 42 in the simple example we've been following, you
would write it as (2+4+8)*3. Now, rule 1 means that HyperTalk
will perform the two additions first because they occur inside
parentheses. That reduces the expression to 14*3, which is 42.

You can nest parentheses inside parentheses practically to
your heart's content. HyperTalk begins with the innermost set of
parentheses and works its way outward until it is left only with
expressions outside parentheses. Then it applies rules 2 through
5 as appropriate.

Functional HyperTalk

One final point needs to be made before we begin our first exper­
iment. There are three kinds of actors in IlyperTalk, as we have
seen. There are commands (such as put) that usually require one
or more arguments, or parameters. There are operators (such as
+) that simply perform operations on objects. And there are
functions. Functions are like special kinds of commands. The
difference is that a function provides information about some­
thing, and a command changes the state of an object. A function
in itself never alters anything in the HyperCard environment. In
programming parlance, we say that a function "returns a value"
as part of its operation. It determines something we ask it about
and provides us with the information.

We've seen a few functions already. All the date-related
tasks we worked through in Chapter 10 used a function that
looked at the Macintosh clock and calendar and gave us the in­
formation stored there.

- @t~': ::-

a - -~ -

27 4 Chapter Fifteen

Building a math lab

If you want to try out any or all of the functions, commands, and
operators in this chapter, you can do so in two ways. Because of
the many topics covered in this chapter, we won't interrupt the
flow of the presentation to suggest that you try each one. But if
you're curious about how a function works, what its return value is
or how it affects a number or expression, feel free to experiment.

First, you can type the examples given in the text into the
Message box. Sometimes, this requires you to type put com­
mands so you can examine the result. Second, you can follow
the instructions in the next section and build a math laboratory
card in your Laboratory stack. Then just type numeric expres­
sions into the field on the card, press the button, and the answer
appears in the Message box.

A math function tester

Create a new, blank card in your Laboratory stack. Add a field
and a button to the card and give the field a rectangle outline.
Name the field card field 1. Name the button whatever you like.
Then follow these instructions:

1. Open the script editing window for the button by one of the
usual methods.

2. Type in the following short script and press OK when
you're satisfied it has been typed in correctly.

on mouseUp
put value(card field 1)

end mouseUp

3. Return to browse mode.

4. Test your script with a simple arithmetic expression. Type
something like 3+9 into the field. The Message box appears
(if it was invisible) and contains the answer, 12. Figure
15-1 shows how our card looked with this answer returned.

275 Math Functions and Operators ------------------------

a File Edit 6o Tools Objects

3+9

(Colculote)

12
~ -·····-··-·······--····-·······-·-····-·········-··---·-····-··········-·····--····--···--·······-·····- ·········-·····-··········-···········-···-

Figure 15-1. Card used to test math functions

Simple Arithmetic Operations

Enough background information. Let's get into some serious
calculations! In this section, we'll discuss the simplest arithmetic
operators, which carry out addition, subtraction, multiplication,
division, modulo, average, minimum, and maximum functions. If
some of these terms are mysterious, don't worry. We'll explain
the math as we go.

Addition

There are two ways to perform addition in HyperTalk: with the
add command or with the+ operator. They are slightly different
in terms of syntax, but both perform basic addition.

276 Chapter Fifteen

The add command syntax shows that it involves at least one
container:

add <number> to <container>

When the add operation is finished, the container is changed by the
value of the number. Notice that the original value stored in the
container before the math operation is carried out is lost in this
calculation. This is the key difference between add and the +
operator. With add, HyperTalk knows what to do with the answer.
With + it must be told explicitly what to do with the result

The + operator appears between two numbers, as you've be­
come accustomed to seeing. But an expression such as:

8 + 45

all by itself on a line in a HyperTalk script or in a field makes no
sense. It violates a basic rule of HyperCard: everything is done
with messages. There is no message here and no receiver. You
generally write addition expressions using the put command:

put 8 + 45 into answerl

or, if you wish to use the add command instead:

add 8 to variable! -- assuming variable! has value 45
put variable! into answerl

This will have the same effect as the previous put command us­
ing the + operator.

The same logic holds for the other math operators that don't
include a destination for the answer.

Subtraction

As with addition, so with subtraction. There are two subtraction
methods: one uses the subtract command and includes a desti­
nation, and one uses the minus sign (-) and does not include a
destination.

l

5

s-

on
~ti­
~ a

277 Math Functions and Operators ----------------

The syntax for subtract is logical enough:

subtract <number> from <container>

Note, again, HyperTalk's readability. This is exactly how we
would say a subtraction problem: "subtract 15 from 38."

If we perform a subtraction with the minus sign, we typical­
ly use a put command to instruct HyperTalk where to place the
result:

put templ-value3 into result4

NOTE

Another use of the minus sign is to perform
negation(i.e., to make a positive number negative).
In that case, there is no number to the left of the
minus sign, and the minus sign applies to the number
to its right. Thus, 13-(-3) is the same as 13+3
because subtracting a negative number is the same
as adding it.

Multiplication

The two ways to multiply in HyperTalk are to use the multiply
command and the * operator. (The asterisk is the most common­
ly used character for multiplication on computers. In writing out
such problems, we usually use a lowercase letter x. But because
that is difficult, if not impossible, to distinguish from an intent to
use a real letter, it was discarded as a possible multiplication op­
erator by early system designers.)

The syntax for the multiply command again stresses
readability:

multiply <container> by <number>

278 Chapter Fifteen

The asterisk multiplication symbol works with the put
command:

put factorl * factor2 into product

Division

It will come as no surprise to those who struggled with long
division through high school that division has some
peculiar"wrinkles" that don't apply to the other simple arithmetic
operations we've discussed so far. HyperTalk has a total of four
operators, commands, and functions for division. Let's dispose of
the expected two - divide and the slash sign (/). The use of the
slash sign for division on computers derives from the difficulty of
displaying the usual division sign(+) on conventional computer
keyboards. (The Mac has no problem with this special character.
But the slash mark was defined a long time before the Mac was a
reality.)

The divide command has the same two parameters we've
seen in other HyperTalk math commands:

divide <container> by <number>

The result is what you expect: the original value of the container
is replaced by the result of the division of the two numbers.

Using the slash operator usually requires the put command
so that HyperTalk will know what to do with the answer:

put numberl I number 2 into quotient

You can use two other operators to carry out division and
get different kinds of results. The two operators are div and
mod.

As you may remember from your early days of learning divi­
sion before decimals made any sense (if they do yet), a division
problem can be thought of as producing two answers rather than
one. The first answer is the whole number of times one value goes
into another. The second is the amount left over after the division
is complete. This latter value is called the remainder.

279 Math Functions and Operators

There are still times when you'd like to be able to get these
answers. In Chapter 8, we saw an example where we wanted to
execute a portion of a repeat loop every fifth time through. We
used the mod operator with the promise that we'd explain it later.

The div operator produces the whole-number result of the
division, with the remainder ignored. The mod operator produc­
es the remainder. The statements:

put 39 div 7 into templ
put 39 mod 7 into temp2

place the value 5 in the tempi container and the value 4 into the
temp2 ' container, because 39 divided by 7 is 5 with a remainder
of4.

Now you can see how and why we used the mod operator in
the repeat loop example in Chapter 8. If we want to simulate the
STEP operation in BASIC and Pascal so that we execute a loop
only when the controlling value changes by 5, we can set up a
construct as follows:

repeat with counter = 1 to 50
if counter mod 5 <> 0 then next repeat
<loop statements>

end repeat

The expression counter mod 5 < > is 0 only when counter is
evenly divisible by 5. Any other time, it has a value of 1 through
4 and the loop statements are not carried out.

This same technique is often used to determine values when
fractions and decimals are not very helpful. For example, if we
know how many hours are required to complete some task and
want to know how many days are required, we probably don't
want the answer to look like 4.125 days. Instead, we want the
answer to be 4 days, 3 hours. So we use the div and mod opera­
tors. With duration containing the value 99, the following lines
produce the answer 4 days, 3 hours:

put duration div 24 into numberOfDays
put duration mod 24 into numberOfHours
put "The task took" && numberOfDays && "days,"-.
&& numberOfHours && "hours to complete."

280 Chapter Fifteen

Average

If you have your right arm in a bucket of ice and your left arm in
a flaming pit, on the average, you're comfortable. That's an old
saw about statistics. It describes graphically the meaning of av­
erage. The average is calculated by adding all members of the
list and dividing by the number of members in the list. Thus, the
average of 2 and 4 is 3, because 2+4 is 6 and 6 divided by 2 is 3.

HyperTalk, not surprisingly, has an average function. It
takes an argument - a list of numbers separated by commas -
and returns their average value. Its syntax is

average(<number1>,<number2> ... <numberN>)

If we write a HyperTalk script line such as:

put average(30,70,20) into avel

the container avel has a value of 40 when the script has executed.
Like all functions, note that we must tell HyperTalk where to store
or display the result of its efforts.

Maximum and minimum

We will discuss together the last two simple arithmetic operators
- maximum and minimum - because they are nearly identical
in operation. In programming it is often important to know the
largest value in a list of numbers. Similarly, it is sometimes val­
uable to be able to find the smallest number in a list.

HyperTalk includes the max and min functions for these
purposes. Each function takes a list of numbers, separated by
commas, and returns the appropriate value. Their syntax, then, is
identical:

max(<number1>,<number2> ... <numberN>)
min(<number1>,<number2> ... <numberN>)

The min and max operators come in handy when you need to
find the range of a set of values. The range is frequently used in
statistics. Given a list of test scores stored in a container called
Scores, the following calculates and displays the range of scores:

281 Math Functions and Operators ------------------------

put max(Scores) into top
put min(Scores) into bottom
put "Range of scores is:" && top && "to" && bottom &

Number Manipulation

" "

HyperTalk includes three functions that change the value of a
number, abs, round, and trunc, and one that creates new numbers
on demand, random.

The abs function

When you need to find out the value of a number, regardless of
its sign (positive or negative), use the abs function. This func­
tion takes a number or numeric expression as an argument and
retums the result with a positive sign.

This function is often useful in finding the difference be­
tween two numbers when you don't know in advance which is
larger or if one or both are negative. For example, suppose you
have weather data stored in such a way that yesterday's high
temperature is in a container called dayHigh and its low tempera­
ture is in dayLow. If you live someplace where one or both of
those temperatures could be below zero, and you want to know
the total number of degrees by which they differ, you could
write:

put abs(dayLow-dayHigh) into dayRange

Rounding and truncating numbers

Two functions reduce a number with a decimal part to an integer.
The round function takes a number or numeric expression as an ar­
gument and returns its value rounded to the nearest whole number.
If the decimal portion is 0.5 or larger, it rounds the integer up to the
next whole number. If the decimal part is less than 0.5, it leaves the
integer unchanged. Here are three examples. The comment lines
show the value the variable has after the expression is executed.

282 Chapter Fifteen

put round(15.7) into t1
-- t1 = 16

put round(15.5) into t1
-- t1 = 16

put round(15.3) into t1
-- tl = 15

Sometimes, we don't want the nearest whole number for a
decimal value. Rather, we want the equivalent of its value rounded
down regardless of the size of the decimal fraction. For example, if
we are trying to determine how many shares of stock to issue to an
investment club where the rules require that each member receive
whole numbers of shares and the fractions stay in a common pool,
we would use HyperTalk's trunc function. Its name stands for
what it does: it truncates a value, or discards the decimal portion.
Here are two examples, with the resulting values shown in com­
ment lines:

put trunc(15.99999) into t1
-- t1 = 15

put trunc(15.00001) into t1
-- t1 = 15

Generating random numbers

Occasionally, you may need to create a number at random. This
need frequently arises in game programs, but sometimes
business and personal applications need a number with which to
begin some decision-making. (We know one person who uses a
random number approach to seat people at parties. She reports
as much success as her friends who spend hours agonizing over
seating charts!)

When you need a random number, use HyperTalk's the
random function. Its syntax looks like this:

[the] random of <number>

This function returns a number selected at random between 1 and
the value of the number parameter, which may not be larger than
32,767.

283 Math Functions and Operators

Advanced Math Operations
l!ii i I!!!J Ji 'diii!!J : J!l!li11.{ill3

Eleven HyperTalk functions and operators deal with what we
call "advanced math." They can be divided into four categories:
square root, exponentiation, logarithms, and trigonometric func­
tions. (We use the term "advanced math" somewhat arbitrarily,
but it serves to divide arithmetic operations most people know
how to do and that they perform with some frequency from those
that are more obscure.)

The square root function

To find the square root of a number (i.e., the value that, when
multiplied by itself, returns the number whose square root is
being calculated), use the sqrt function. It takes a number or
numeric expression as an argument, as do most of the other
functions in this chapter.

The numeric argument must be positive. An attempt to
find the square root of a negative number leads to an error
message that is uncharacteristically cryptic for HyperTalk (see
Figure 15-2). This is because in implementing many math
functions, HyperTalk relies on the Standard Apple Numerics
Envronment (SANE), which has built-in error messages.

The error message abbreviation NAN, also sometimes seen
as NaN, is SANE shorthand for "not a number" You '11 run into
it if you try to apply math functions to text arguments, for exam­
ple. In this case, the square root of a negative number is what
mathematicians term an imaginary number and SANE isn't
equipped to deal with it. You can guarantee that you won't en­
counter this error if you use the abs function described earlier.

Here are two examples of the use of the sq rt function, with
the comment lines again indicating the results:

put sqrt(900) into templ
-- templ = 30

put sqrt(abs((l82)) into temp l
-- templ = 13.490738

284 Chapter Fifteen

a File Edit Go Tools Objects

sqrl(- 1)

(Colculote)

"i

-NAN(OO 1)

Figure 15-2. Error message for square root of negative number

Exponentiation functions

Three functions and one operator handle exponentiatiOn in
HyperTalk. The operator performs the most common type of
exponentiation, where one number is raised to the power
indicated by another number. This operator is indicated by the "
symbol placed between the two numbers.

Raising 3 to the fourth power, for example, is written:

3 4

In advanced math, several other types of exponentiation are
needed for specialized types of calculations. Two involve
something called the natural exponential, also referred to as
base-e exponentiation. These calculations are based on the
natural number 2.718282. A discussion of the reason for the use
of this number as a base for logarithms is beyond the scope of
this book, but it is related to the fact that many natural

285 Math Functions and Operators

phenomena can be measured as a function of this number. But if
you need the natural exponential of a number, use HyperTalk's
exp function. If you need the natural exponential minus 1
(another frequently needed calculation in complex math), use the
expl function.

Finally, HyperTalk includes the ability to raise 2 to any
power with the exp2 function. It is faster and easier to write this
function using the usual exponentiation with the " symbol,
though, and you '11 rarely need the SANE equivalent. (The exp2
function is negligibly faster, but if you are writing a routine
where there is a great deal of this calculation, the cumulative
effect could become significant.)

Logarithms

HyperTalk includes three functions that return logarithms of
numbers. A logarithm is the mathematic inverse of an exponent.
There is no HyperTalk function for the logarithm of a value to
base 10, which is the most commonly used logarithm in math be­
low the very complex. This is undoubtedly because the primary
use of logarithms is to assist in speeding calculations, and one
doesn't need that help with a computer. In fact , using logarith­
mic calculations to speed math operations in a computer is coun­
terproductive.

But the SANE library, which is part of HyperTalk 's world,
includes logarithm functions that correspond exactly to the other
three exponentiation functions discussed in the preceding sec­
tion. The In function returns the natural logarithm of the number
supplied as an argument, and lnl first adds 1 to the argument and
then computes the natural logarithm. The log2 function returns
the power to which the number 2 would be raised to calculate the
number supplied as its argument.

Trigonometr ic functions

Included in HyperTalk are four basic trigonometric functions
from which all others can be derived: atan , tan , sin, and cos.

286 Chapter Fifteen

They all operate the same way, taking an argument that is the
size of the angle in radians (1 radian= 57.295 degrees) andre­
turning the appropriate trigonometric value for that angle.

The constant pi

The numeric constant pi is defined in HyperTalk. It has a value of
3.14159265358979323846. Its precision in a specific calculation
can be affected by the setting of the global property
numberFormat , discussed in Chapter 17.

Financial Math Operations

If the SANE library includes some obscure functions and
produces some strange error messages, why was it included in so
elegant a programming language as HyperTalk? Aside from the
fact that it is a very efficient way of making available some
functions that are occasionally needed in higher math, it also
includes two handy financial functions that find more everyday
use in business stacks. These functions are annu ity and
compound.

The annuity function

To calculate the present value of one payment unit into an annuity
fund, you would use the annuity function. Its syntax is

annuity(<interest rate>,<periods>)

The interest rate must be expressed so that it reflects the rate per
period that coincides with the periods. In other words, if you are
expressing periods in months, the interest rate must be the
monthly rate.

The value calculated by the annuity function must be multi­
plied by the size of a single periodic payment to calculate the net
present value of the annuity, which is the most common reason
for wanting to carry out this calculation. To figure out today's
value of your savings account in 10 years if you save $100 per

287 Math Functions and Operators ------------------------

Summary

month at an annual interest rate of 6%, for example, enter this
line in a HyperTalk: script:

put 100*annuity(.06/12,120)

The answer is 9007.345333, which, rounded off to the nearest
cent, means that the present value of this savings plan is
$9,007.35.

The compound function

The compound function returns the future value of a current per­
iodic payment unit. Future value is a frequently used financial
equation. Its syntax is as follows:

compound(<interest rate>,<periods>)

As with the annuity function, you can multiply the answer
from compound by the amount of each payment to determine
the future value of an ordinary investment.

* ·n

In this chapter, you have learned how to use about 30
mathematic operators, commands, and functions in HyperTalk.
Chapter 16 takes a look at a few action-taking HyperTalk
commands that don't fit neatly into any of the niches we've
examined to this point.

CHA P TER

Action-Taking
Commands

In this chapter you will learn about several HyperTalk com­
mands that have only two things in common. First, they take
some kind of action in a script (as opposed, for example, to
providing information or controlling program flow). Second,
they don't fit neatly into any of the categories into which we
have divided HyperTalk's other operations. These commands
include

• do

• wait

• open (with applications and documents)

• print (document)

• open printing, print, and close printing

289

290 Chapter Sixteen

The do Command

We have used the do command already in our discussion. But it
is time to examine it more closely and see when and where it can
be used.

The syntax of this command is as follows:

do <string>

The string is usually the name of a field, though it can also be
any other addressable component of a field or a variable contain­
ing text. If a field name is used, the do command applies only to
the first line of the field.

You need to keep in mind two basic rules about the do
command.

RULES FOR do COMMAND

The text referred to by the address argument must be
on one line. The text must contain or evaluate to a
valid HyperTalk command.

I
!
!

I
l

There are some restrictions on the kinds of commands you
can put into a field and execute with the do command. We
haven't tried every command combination in a do instruction,
but there are some things we have learned.

For example, you cannot expect HyperTalk to deal with
containers in commands stored in fields unless the containers are
global. The action in the field is outside the scope of the han­
dler, so any variable known to the field is not known to the han­
dler and vice versa.

Another limitation of the do command is that the visual ef­
fect command does not "take." The command is accepted by the
do command but the effect does not appear.

291 Action-Taking Commands ----------------------

-

Math operators cannot be used in standalone calculations
inside fields to be executed with the do command. If you put a
command such as:

33 * 84

into the field and use the do command to execute it, you '11 get an
error message indicating HyperTalk "can't understand 33."

Using the do command

Open the Laboratory stack. Create a new card with a single but­
ton and a single field or use a card you don't mind dismantling
from a previous experiment. In the example script, we call the
field Field 1. If you change the field's name, be sure to change
the name in the script as well. After you have such a card, fol­
low these instructions:

1. Open the button's script editing window in one of the usual
ways.

2. Type the following script into the editing window and click
OK after you've proofread it.

on mouseUp
global tl
do (card field 1)

end mouseUp

3. Return to browse mcxle.

4. Click in Field 1 and type in the following commands to test
your card. After each command is entered into Field 1,
press the button. The comment lines describe the
commands' actions.

292 Chapter Sixteen

doMenu "Open Stack ... "
brings up the standard file open dialog. Click Cancel

put 43*3 into tl
-- nothing visible happens

put tl
-- Message box appears if it was invisible; 129 is shown .

type "Hello from the Message box."
-- The text appears in the Message box as if typed .

go previous
-- Previous card appears . Use usual methods to Go Next.

5. Experiment with other commands.

6. This is a good card to have during script design because you
can use it to find out quickly which commands execute
from a field with the do command and which don't.

Why use do?

You might be wondering why you'd ever want to use the do
command when you can simply execute instructions directly in
your handler. The most likely use of the command is when you
ask the user a series of questions or gather input from the user or
another source without asking questions, and then execute a ser­
ies of instructions based on the responses. Because you can't an­
ticipate the answers or perhaps even the number of answers, cod­
ing this kind of process directly into your script is difficult, if not
impossible.

The wait Command

The wait command is another action-taking command we've
used without describing it. As you'll see, we've only used this
command in its simplest form. Here is its syntax in that fonn:

wait [for] <number> [ticks I seconds]

293 Action-Taking Commands

You can use two units of time with the wait command. If
you don't specify one or the other, HyperTalk assumes you want
to use ticks, units that are approximately 1/60 of a second. If
you want to use seconds, you must provide that key word in the
command.

NOTE

A tick is only approximately 1/60 of a second. The
exact time varies from model to model of the
Macintosh. In addition, disk accesses during the
handler's execution can alter the timing. Seconds
are more accurate and more often used.

In some ways, wait is like a loop with nothing going on in­
side it. The wait command has two other forms that resemble the
control structures we examined in Chapter 8. The syntax for
these two variations is as follows:

wait until <true/false>
wait while <true/false>

These should be reminiscent of repeat until and repeat while
loops. They cause HyperCard to go into a holding pattern until
the true/false expression is true (in the case of wait until) or to
stay there only as long as it is true (in the case of wait while).
These commands can be used to wait for the user to do some­
thing to trigger the script to continue processing. A common use
is to have the script wait for the user to click the mouse as a sig­
nal to go to the next card or step:

wait until the mouseClick
<next command>

294 Chapter Sixteen

Opening Applications and Documents

Many people first used HyperCard to replace the portion of the
Finder that most of us use all the time: program launching. This
was made possible by variations of HyperTalk's open command.

The basic syntax of this command is as follows:

open ["<document name>" with] "<program>"

As you can see, you can open a specific document and furnish
the name of the application that document is designed to run
with, or you can simply open the application program without an
attached document.

The program name must be identical to the name of the
application as it is stored on your Desktop. Special symbols,
punctuation, and spacing are all significant, although
capitalization is not. If you spell the name of the program
incorrectly, HyperCard is unable to locate it. One way to ensure
that the name is correct is to go to the Desktop, copy the
application's name to the Clipboard, then go to HyperCard and
paste the name into the open command line. Notice, however,
that the name of the application must be enclosed in quotation
marks.

A classic new launcher

We couldn't go on with our discussion of the open command
without a brief mention of one of the best-designed Finder re·
placement stacks we've seen. It's called Home Desk, and it is the
creation of Russell A. Lyon. When you first open the stack (Fig­
ure 16-1), you find yourself in a dark room with a light switch.

295 Action-Taking Commands ----------------------

Figure 16-1. Home Desk stack opens on a dark room

Press the switch, and your own rolltop desk is revealed (Fig­
ure 16-2). Press the lock on the desk, and it opens to reveal a typi­
cal desktop (Figure 16-3).

Buttons include the pencil holder (which activates your word
processor), a calculator (which opens a desk accessory calculator
if one is available), and more than two dozen other application­
suggesting buttons. Some are hidden in drawers. There's even a
private safe where you can hide documents, applications, and oth­
er items that only a person who knows the combination can
browse.

Each of these buttons uses the open command. Just study­
ing the script can give you a lot of good ideas for places to use
this versatile HyperTalk command. More than any other Hyper­
Talk command, open makes it possible for you to consider using
HyperCard as the focal point of your Macintosh world.

296 Chapter Sixteen

Figure 16-2. Home Desk ready for opening and use

What happens when you use open?

When HyperTalk encounters an open command in a script, it
sends a special message called suspend system to the current
card. It then notifies your Macintosh System File that when you
quit this new external application, control should be returned to
HyperCard Finally, HyperCard clears itself from memory.

After you finish using the application you launch from
HyperCard, control returns not just to HyperCard but to the very
card that was active when you executed the open command.

297 Action-Taking Commands

Figure 16-3. Home Desk desktop

NOTE

If you run HyperCard under MultiFinder or with a
mini-finder present, the system does not return con­
trol to HyperCard when the opened application
quits. Instead, control returns to the top level of
your system.

Specifying a document to open

If you want to open a specific document by using the application
that created it, add the middle parameter to the open command
along with the key linking word with. Here is a typical example
(don't type this command into your stack unless you have the
same document and application pair).

298 Chapter Sixteen

open "Chapter 16" with "Microsoft Word"

HyperCard's processing in this case is identical to that described
earlier, except when it has opened the application, it loads the
document me listed in the ftrst parameter.

Helping HyperCard find files

Before you settle into long-term use of a particular open
command, be sure you place the full path name where the
document and the application can be found into Look for
Documents In ... and Look for Applications In ... , two Home
Stack cards. If you don't do this, the ftrst time you try to use the
open button, HyperCard interrupts the processing to ask where
the flies are located.

Printing Non-HyperCard Documents

In addition to opening other documents and applications, you can
order HyperCard to print a document prepared in another appli­
cation (using that application) and then return to HyperCard
when the printing is complete. The print command makes this
possible. Its syntax is nearly identical to that of the open com­
mand:

print " <document name>" with "<program name>"

The print command has no optional parameters. HyperCard
must know both the document to print and the name of the appli­
cation whose print routines are to be used.

All of the caveats we discussed when we explained the
open command apply equally to print, including spelling and
setting up the paths correctly.

Printing with the print command from a HyperTalk script is
akin to printing from the Finder with the Print command from
the File menu. The application launches, opens the document,
prints it (often pausing for a print dialog in between), and then
returns to the Finder or, in this case, to the same card you were

i

i

s
n
t,
n
·e

299 Action-Taking Commands -----------------------

using when HyperCard encountered the print command. Gener­
ally, you cannot do other tasks while the external application is
running and before control is returned to HyperCard.

Printing Cards from a Script

Anyone who has used HyperCard for more than a few hours of
browsing knows that full-blown reports are not a particular
strength of the program. HyperCard was not designed to be a
database, so this is not surprising.

But printing is not completely unavailable from within Hy­
perCard. Your scripts can include the ability for users to request
that certain cards, or even entire stacks, be printed. The process
of printing two or more cards from a script requires that you use
a structure similar to the following:

open printing
print first card
print card ID 50128
go to card "Report File"
print 23 cards

.close printing

Notice that there are three separate HyperTalk commands. The
flrst, open printing, sets up the printing operation. Its syntax is
simple:

open printing [with dialog]

If you include the with dialog argument, the command displays
the standard HyperCard printing dialog (see Figure 16-4) before
it begins printing, waits for the user's responses, and then ini­
tiates printing with the parameters set by the user. If the with di­
alog parameter is not included in an open printing command,
printing proceeds without user intervention and uses the current
settings for HyperCard stack printing.

300 Chapter Sixteen

• • 11r:. Edit Go Tools Objects

Print Stock... Copies:IIMj
0 Monuol paper feed t OK D

I

i! f <I~ t luse1· fllin1 irl$)

Heoder: ~ eJ 1!11 fi;iit

Concel)

0 No spoce between cords

0 Print one cord per poge
0 Print full size cords
®Print ht'llf size cords
0 Print quorter size cords

® Stondord format
0 Spllt- poge formot

I

Figure 16-4. Standard HyperCard printing dialog

After printing has been opened, your script executes one or
more print commands with this syntax:

p rint [all I <n umber> cards I this card]

The print all cards command is equivalent to doMenu "Print
Stack ..• " except you can bypass the print dialog box with the
first approach. You can also supply a number of cards to be
printed, starting with the current card. Or you can simply in­
struct HyperCard to print this card or, more concisely, print,
which it interprets the same way.

When you have ordered your last print, you must execute a
close printing command. This not only ends the printing pro­
cess and returns control to your stack where it left off, but also
ensures that no unprinted cards end up in computer hyperspace.
If you order the printing of fifteen cards and selected to print
half-size cards so that eight fit on one page, HyperCard stores
each group of cards in a buffer in memory until it has eight cards

)

t

s
s

301 Action-Taking Commands ----------------------

Sumtnary

in a group, then it prints them. If you didn't close printing,
HyperCard would reach the end of the printing operation with
seven cards in a buffer waiting to be printed. They would never
print

In this brief chapter, you learned how to use two of the most
powerful and versatile HyperTalk commands: do and open.
They make flexible scripting possible and facilitate using Hyper­
Card as the centerpiece of your Macintosh environment. You
also saw how to print documents outside HyperCard and cards
inside the program.

In Chapter 17, we learn a range of special characteristics of
HyperCard objects called properties and how to manage them in
scripts.

CHAPTER

Properties and Their
Management

I n this chapter, you will learn about

• HyperCard properties and the important role they play in
scripts

• the 45 properties besides the painting properties previously
discussed that you can manage in your scripts

• the two commands - get and set - that manipulate those
properties

Role of Properties in HyperCard
M1 ! I II T lh 18'11l8811

HyperCard is, as we have said, highly graphic, interactive, and
object-centered. All these facts about the program, combined
with a desire on the part of Bill Atkinson and Dan Winkler to

303

304 Chapter Seventeen

give the script-level user a great deal of flexible control over the
environment, lead to the important role of properties in Hyper­
Talk.

A property is a characteristic of an object. If your previous
programming experience includes Logo or LISP, you understand
properties because they play an important part in those languag­
es. As human beings, we have thousands of properties. Genetic
engineers are learning how many of those properties are deter­
mined and how they can be either predetermined or altered. Hu­
man properties include such diverse things as eye color, height,
propensity to gain weight, many diseases, and nose shape. Other
properties are not part of the genetic process but are shared by all
of us: age, physical condition, abundance or absence of hair,
place of residence, whether our parents are still alive, and so on.

Put together a sufficient combination of properties and
you can identify any individual. The same is true of HyperCard
properties. Every window, stack, background, card, field, and
button has properties. Identifying each is a much simpler task
than identifying a human individual, of course, because each has
an ID number that is guaranteed to be unique (this ID is one of
its properties). But other properties more fully describe the
object.

HyperCard also has global properties that apply to all
objects for which they are relevant. These can be viewed as
analogous to the traits that make us human: our physical
makeup as members of the human race, for example.

How important are properties?

Putting aside for the moment global properties (which we will
discuss separately) and painting properties (which we discussed
in Chapter 13), HyperCard properties by and large describe what
the objects to which they are attached look like, rather than how
they behave. Behavior is dictated by scripts. Even the famous
link capabilities of buttons create script commands. These
scripts actually execute the links we create by mouse clicks.

Properties determine whether an object is visible, its loca­
tion on the card or background, and its appearance to the user. In
a graphic environment like HyperCard, this means properties are

- - - - --- 305 Properties and Their Management

vitally important. Understanding properties and how to manipu­
late them will go a long way toward not only streamlining your
stack creation but also making your stacks intuitive and useful.

Virtually any value you can determine in an object's dialog
box or in the HyperCard Preferences card can also be set from a
HyperTalk script.

General usage

In general, you will find yourself using most of the properties
available to you in HyperCard in similar ways.

Often, you will want to retrieve the value of the property
with the get command and then test that value in a conditional if­
then-else construct (see Chapter 8). Then, based on the value it
now has, you may want to change the value with a set command.
This means much of your property management scripting takes
place within a structure like this:

get some property
if it is what you want it to be

then proceed with processing
else set it and proceed with processing

end if

Terseness versus readability

Perhaps nowhere else does HyperTalk offer as much flexibility
as in naming properties. You can be almost as terse or as ver­
bose as you like. Many of the property names have short and
long forms. For example, rectangle can be spelled out or abbre­
viated rect. Because the use of the is optional with property
names in get and set commands, both of these instructions have
the same effect:

get the rectangle of the Message b o x
get rect of Msg

306 Chapter Seventeen ----------------------

Using the in property names

HyperTalk novices are sometimes bewildered by what appears to
be a willy-nilly use or omission of the definite article the before
property names. If you've examined any scripts, you have prob­
ably noticed this apparent arbitrariness and wondered about it

Well, it turns out not to be so mysterious after all. There
are some basic rules you must follow when deciding when to use
the and when to omit it. Those rules follow.

RULES FOR USING the IN PROPERTY NAMES

1. The word the is never required in a get or set
statement.

2. If the property has parameters, the may be
included or omitted.

3. If the property has no parameters and appears in
any statement other than a get or a set, the is
required.

The easy method is to adopt the convention we use through­
out this book. Use the in the interest of both safety and readabil­
ity. It is never wrong to include it, and it is wrong to omit it of­
ten enough that it causes aggravation when scripting.

Order of discussion of properties

In this chapter, we discuss properties in the following order:

• global properties

• properties common to two or more classes of objects

• unique stack properties

307 Properties and Their Management
--------------------~

• unique field properties

• unique button properties

• unique picture properties

There are no properties that are unique to windows, cards, or
backgrounds.

Table 17-1 summarizes all non-painting properties in
HyperTalk, defining the class or classes to which each belongs
and the possible values it can have. Syntax for those with
arguments is discussed in the text rather than the table.

Global Properties

Global properties, as you can deduce from their name, apply
throughout the HyperCard environment. They can be changed
almost any time from any script or the Message box (or, in some
cases, from the Preferences card in the Home stack), but when
you change them, they stay in their changed state until they are
changed again. Whether you change stacks or even quit Hyper­
Card and return later, these values remain the same until they are
changed. There are fifteen global properties, four of which are
related to Preferences settings.

The userLevel property

One global property you may have encountered in your Hyper­
Talk scripting is the userLevel property. It determines which of
the five levels of access the user has. Each level increase is indi­
cated by an increase of 1 in the value of user Level and represents
a step upward in complexity and power. Table 17-2 depicts the
five values of user Level and how they relate to the Preferences
card settings.

308 Chapter Seventeen

Table 17-1. HyperTalk properties and their values

Property Name

autoHilite
blindTyping
bottom
bot[tom]Right

cantDelete
cantModify
cursor
dragS peed
editBkgnd
frccSize
hi lite
icon
id
language
left
loc[ation]

lock.Messagcs
lockRecent
lockScrecn
lockTcxt
long Version

name
number
numberFormat
power Keys
rcct[angle]

right
screenRect

script

Classes

Bt
G
F,Bt,W
F,Bt,W

S,Bk,C
s
G
G
G
s
Bt
Bt
Bk, C, F, Bt
G
Bt,F,W
F,Bt,W

G
G
G
F
G,S

S,Bk,C,F,Bt
Bk,C,F,Bt
G
G
F,Bt,W

Bt,F, W
G

S,Bk,C,F,Bt

Legal Values

true or false
true or false
numeric
two numbers separated

by a comma
true or false
true or false
numeric or string (see note 1)
numeric
true or false
numeric, read-only
true or false
numeric
numeric, read-only
text (name of language)
numeric
two numbers separated

by a comma
true or false
true or false
true or false
true or false
when applied to HyperCard,

one number; when applied
to stack, same as version
property

string
numeric, read-only
see note 2
true or false
four numbers separated by

commas; read-only for
windows

numeric
four numbers separated by

commas; read only
entire script

309 Properties and Their Management
------------------------~

Ptoperty Name

scroll
show Lines
show Name
showPict
size
style
textArrows
top
top Left

user Level
user Modify
version

visible
wideMargins
widlh

Table 17-1. (continued)

Classes

F
F
Bt
p

s
F,Bt
G
Bt,F,W
Bt,F, W

G
G
G,S

F,Bt, W
F
F,Bt, W

Legal Values

numeric
true or false
true or false
true or false
numeric, read-only
see note 3
true or false
numeric
two numbers separated

by comma
numeric, 1-5
true or false
when applied to a stack,

five numeric values separated
by commas; when applied to
HyperCard, one numeric value.

true or false
true or false
numeric

Key: Under Classes, the following abbreviations are used:
Bt=button, G=global, S=stack, C=eard, F=field,Bk=background, W=window, P=picture.

Notes:
1. Eight pre-defmed cursor names permissible. See Text.
2. The value of number Format is a pattern described in text.
3. The value of style depends on whether the object is a button or a field. See text

Table 17-2. Meanings of userLevel settings

Value Level

1 browsing

2 typing

3 painting

4 authoring

5 scripting

310 Chapter Seventeen ----------------------

The powerKeys property

When users are using the painting power of HyperCard, imply­
ing that they have a userLevel setting of 3 or higher, they can
also enable the use of power keys to accelerate their painting
control. Normally, users check the check box in the Preferences
card to indicate when they want this feature enabled. But you
can use the power Keys property to do so if you wish. This prop­
erty can be either true or false. The default is taken from the
Preferences card in the Home stack.

The blintf1Yping property

You have probably had the experience of starting to type some­
thing into HyperCard with the Message box hidden only to have
HyperCard beep. If you check the check box next to Blind Typ­
ing on the Preferences card of the Home stack, you can get
around this problem. The blindTyping property gives you a way
of accomplishing the same thing in a script. When it is true, you
can type and send messages to HyperCard by typing as if you
were entering text into the Message box.

You must be careful in using this feature, however, because
syntax errors you produce are not easy to detect if the Message
box is hidden. Fortunately, you can always press Command-M
and request HyperCard to display the Message box. When you
do so, the last message entered into the Message box is available
for inspection and editing if necessary.

To set the value of blindTyping, the userLevel must be 5.
The property can be either true or false. The default is taken
from the Preferences card in the Home stack.

The textArrows property

In Version 1.1 of HyperCard, Apple Computer added the
capability of using the arrow keys on the keyboard in one of two
ways. They also added a check box to the Preferences card of the
Home stack opposite the Typing user level label. By checking this
box, the user can decide that the arrow keys on the keyboard will
be used to move the cursor inside fields and script editing

311 Properties and Their Management
--------------------~

windows. By leaving it unchecked, the arrow keys remain as they
were permanently set in earlier versions of the program, namely to
navigate among cards.

The script version of this process uses the textArrows prop­
erty. It can be either true (equivalent to the check box being
checked) or false. If it is set to true, the user can still navigate
with the arrow keys by using them with the Option key. The op­
posite is also true, so that if textArrows is false, the user can
hold down the Option key with an arrow to use it as a cursor
moving key.

Regardless of the setting, holding down the Command key
and the left arrow key moves to the beginning of the stack, and
pressing the Command key and the right arrow key moves to the
end of the stack. The Command-up arrow combination pops a
card, and Command-down arrow pushes the current card.

The cursor property

We move now to global properties that are not equivalent to set­
tings in the Preferences card of the Home stack. The cu rsor
property may only be set ; the get command does not work with
this property. This is also one property that cannot be usefully
set from the Message box; the effects of its modification can
only be seen within a script. This is because HyperCard reverts
to normal cursor settings when the script ends and the system be­
gins to send idle messages (see Chapter 6). This means even
though you could set the cursor from the Message box, it would
be difficult to see the effect because the system would begin
sending idle messages immediately after the Message box mes­
sage was handled.

When you set the cursor, you must use the number or name
of a cursor resource that is available in the current stack or in the
HyperCard file. (See Chapter 21 for a discussion of resources
and HyperCard.)

HyperCard (after Version 1.2) predefines eight cursor
shapes, one of which actually consists of a group of shapes re­
peated in an animated sequence. These eight shapes are called
none, hand, watch, arrow, iBeam, plus, cross, and busy. You
may use the set command to change the cursor to any of these
shapes simply by referring to them by name:

312 Chapter Seventeen ----------------------

set cursor to watch
set cursor to iBeam

Figure 17-1 depicts six of the eight shapes. The cursor
shape called none results in an invisible cursor. This was a re­
quest made by many early users of HyperCard prior to Version
1.2. In earlier versions, it was not possible within HyperTalk to
make the cursor disappear. The cursor busy is an animated se­
quence of several shapes that result in the appearance of a rotat­
ing "beach ball", a shape with which most HyperCard users are
quite familiar.

I +
2 3 4 5 6

Figure 17-1. Six of HyperCard's predefined cursors

You will probably change the cursor very seldom, if at all. When
you do, though, the chances are pretty good that you'll be chang­
ing it to the watch (cursor 4 in HyperCard parlance). As you
know as a Macintosh user, you don't mind waiting for a process
to complete if the watch cursor is showing (for some reasonable
period of time), but even relatively brief delays without the
watch cursor make you nervous. You wonder if something has
gone wrong to hang up the system. So if you're executing some­
thing in a script that takes longer than a second or two, you are
well-advised to change the cursor shape to 4 with a set com­
mand, then execute the function. Design your scripts so that if
you do reset the cursor's shape, the cursor reverts to its normal,
idling shape when the handler ends.

The dragS peed property

We dealt with the dragSpeed property in Chapter 13. It is
included here only for completeness, because it is a global
property, although it is used exclusively by painting operations.

313 Properties and Their Management
--------------------~

The editBkgnd property

If your script undertakes a painting, button, or field modification
that operates on the background rather than the current card, you
must set the value of editBkgnd to true. Otherwise, your chang­
es alter only the current card.

Your script can only access this property if user Level is 3
or higher. The editBkgnd property can be either true or false.
The default setting is false.

The language property

It is unlikely you will have any occasion to use the language
property. Language translators for HyperCard became available
beginning with Version 1.1, but unless you either write scripts
for multiple languages or are translating scripts, you will have no
need for this property.

The language property can take the name of any valid lan­
guage translator as a value. If translators are installed in your
version of HyperCard, they appear on the Preferences card in the
Home stack. If you attempt to set the language to a language for
which your version does not have a translator, an error message
like that shown in Figure 17-2 results.

don't halJe a translator for French

n Cancel))

Figure 17-2. Language translator error message

The lockM essages property

There are occasions in advanced scripting when you want to su­
press the execution of messages designed to trigger when a card
or stack is flrst opened. By setting the value of lock Messages to

314 Chapter Seventeen

true, you effectively intercept and bury all messages that deal
with opening these objects.

This is sometimes necessary, for example, if you want to let
the user navigate through one or more stacks where cards, back­
grounds, or stacks have on open handlers. If lockMessages is
false, these scripts will execute even though the user doesn't
want them to when he or she is just browsing through the stacks.

The value of lock Messages does not affect any other kind
of system or other message.

The lockRecent property

As you navigate in HyperCard, whether in one stack or among
multiple stacks, HyperCard saves the most recent 42 cards
you've visited in a special place it knows by the name recent.
Stored there is a miniature of each of the last 42 cards you've
displayed (see Figure 17-3). By clicking on any of these images,
you can move directly to that card.

Objects

Figure 17-3. The recent display

315 Properties and Their Management
--------------------~

If you want to suppress the user's ability to examine
specific cards in your stack or if you just don't want to clutter up
the user's recent area as you carry out some specialized
processing, you can use the lockRecent property.

This property can be true or false. The default, of course, is
false. If you find it necessary to set this property to true, be sure
it is returned to its normal false state before returning control to
the user.

The lockScreen property

You'll find the lockScreen property one of the most useful in
HyperTalk:'s repertoire of properties. It can take a value of true
or false, with its default being false. When you set it to true, any
activity you undertake in your script that normally updates the
screen becomes invisible to the user.

You can open other cards, read data from them, modify
them, even open new stacks, and none of this activity is evident
to the user. This approach is often useful to avoid confusing the
casual browser. It is also a form of protection from too-easy
delving into your scripts and their actions. (Although it is not a
very strong form of such protection, it prevents the nontechnical
user from being aware anything is happening.)

It may be a good idea to use the lockScreen property in
conjunction with the lockMessages and lockRecent properties. It
is also a good idea to consider setting the cursor to the watch
with a set the cursor to 4 command before you begin processing
complex operations with the screen locked. Otherwise, there is
almost no way for users to know something is happening, and
they may decide the system is "hung" and reset the Macintosh at
an inopportune time.

To keep things in balance, you should make sure that your
script sets lockScreen false for each time it sets it true. In effect,
lockScreen sets up a value which is decreased by one each time
the property is set to false. Only when the value reaches 0 is
lockScreen set to false. This enables handlers that call other
handlers to rely on the status and value of the lockScreen
parameter not changing unless it is specifically modified by the
individual handler.

- --------~~----

316 Chapter Seventeen -----------------------

You can also lock the screen with the lock screen command
in HyperCard Version 1.2 and later. The effects of lock screen
and set the lockScreen to true are identical. Whether you have
used the property or the command, you can use the unlock
screen, optionally with a visual effect, to unlock the screen (see
Chapter 13 for a discussion of the use of the lock screen and
unlock screen commands.)

The numberFormat property

The number Format property controls the degree of precision
with which numbers are stored and consequently displayed in
HyperCard. It also determines the way they are formatted when
they are displayed. Its format is as follows:

set the numberFormat to "<format string>"

In its default mode, HyperCard formats all numbers with up
to six digits to the right of the decimal point and no required dig­
its to the left of the decimal point. You can change this by using
three pattern characters:

• the number 0, which means HyperCard must put a 0 in that
position if it would otherwise be empty

• the decimal point

• the crosshatch, or number sign (#), which is only used to the
right of the decimal point to determine maximum precision
without regard to trailing zeros

You can use the set the numberFormat command to
establish any format that makes sense for the numbers you are
calculating and displaying in a stack. When the script is finished
executing and HyperCard returns to its idle state, the system
resumes the default pattern. This means you must set the
number Format in a script and not from the Message box.

Table 17-3 presents some typical number formatting pat­
terns and shows how the values 11.9752 and 0.85629371 are dis­
played in each.

317 Properties and Their Management

Table 17-3. Typical numeric formatting patterns

Format Pattern 11.9752 0.85629371

"0.00" 11.98 0.86
"0., Iff# il il u li# I#" 11.9752 0:85629371
II 0 • 00000000011 11.975200000 0.856293710
''.###-'' 11.975 0.856

The userModify property

In a locked stack, the user is prevented from making any changes
to field contents or to artwork. But there are times when you want
to offer the user the illusion of being allowed to make changes or
you want to capture information from him for some other purpose
without modifying the stack. When a stack is used as a "front
end" to some other product, for example, it might be useful to al­
low the user to enter data into a HyperCard stack, capture the in­
formation, and place it in another program's storage area. But you
might not want the user to be able to make any modifications to
the appearance of or content in your front-end stack.

To deal with this problem, HyperCard Version 1.2 and later
includes the userModify property. In a locked stack, this proper­
ty is set to false unless your script specifically sets it to true. If it
is set to true, the user can make modifications to cards and fields
in the stack, but those changes are discarded on leaving the card.

Combining the use of the user Modify property and a close­
Field or closeCard message (see Chapter 6), you can capture in­
formation from the user without permitting modification of your
stack. The basic approach would look something like this:

1. The user opens your locked stack. An openStack handler
sets the userModify property to true.

2. The user enters some information in one or more fields.

3. In a closeCard handler or in individual closeField handlers
for each field involved, your script uses a put command to
take the information entered by the user and place it in
another stack or write it into an external file.

318 Chapter Seventeen -------------------------

Here is an example of the salient part of such a script. We
assume that the user can enter information into two fields and that
we are capturing his entries when he indicates that he is done by
pressing a button that appears to take him to the next card in the
stack.

on openStack -- this handler goes at the stack level
set userModify to true
-- perhaps do other processing as well

end openStack

on closeCard -- this handler goes at the card,~
background or stack level

set lockScreen to true
put field "Customer Name" into nameEntered
put field "Amount Due" into dueEntered
push this card
go to stack "Updates"
put nameEntered & return after field "New Names"

put dueEntered & return after field "New Amounts "
set lockScreen to false
- - not required but good form

end closeCard

It is not necessary to clear the fields "Customer Name" and
"Amount Due" on the entry stack (which could be a one-card
stack) because HyperCard automatically discards the user's
changes when he or she leaves the card. Thus, a single stack
could be essentially re-used for hundreds or thousands of data en­
tries, which would then be placed elsewhere for processing later.

The screenReact property

Beginning with Version 1.2 of HyperCard, you can determine the
dimensions of the screen the user has by means of the screenRect
property. This read-only property returns a rectangle as a value,
so it consists of four numbers, separated by commas. The first
two numbers are both zero.

For the Macintosh Plus and SE with the standard Macintosh
nine-inch monochrome monitor, screenRect returns 0,0,512,342.
For a Macintosh II with a standard Apple color monitor, the value

319 Properties and Their Management
--------------------~

is 0,0,640,480. Other screens will return different values, of
course.

The version property

Since the introduction of HyperCard Version 1.2, the differences
between versions of the product have become significant to the
developer. Some functionality peculiar to Version 1.2 and later
will cause difficulties if used in stacks running under HyperCard
1.1 and earlier. Similarly, stacks created under versions earlier
than 1.2 and then run under later versions need compacting under
the new version before they work as expected.

You can determine the version of HyperCard now in use
with the version and long Version properties. Each can take an
optional parameter, of HyperCard. The version property returns
a single decimal value with the actual version number (e.g., 1.2).
The long Version property, on the other hand, returns an eight­
character number. For example,

put the version

places the value "1.2" into the Message box, assuming you are run­
ning HyperCard Version 1.2. With the same version, the command

put the long Version

places the value "01208000" into the Message box. As later ver­
sions are released, this number will increase accordingly.

There is also a stack property called version, which is dis­
cussed later in the chapter. Using its return values and the stack's
version information, you can determine when a forced compact­
ing should take place.

Shared Properties

Eight properties are shared by two or more classes of HyperCard
objects. Rather than duplicating the discussion of each of these

320 Chapter Seventeen ----------------------
properties by dividing the chapter by object type, we present
these common ones before we discuss those that are unique to
each type of object.

The id property

All backgrounds, cards, fields, and buttons have associated with
them a number that is guaranteed to be unique for a particular
object type in a particular domain of a stack. This means no two
backgrounds in a stack are assigned the same ID number. Two
background fields also do not share the same ID number, though
there could be a background field and a card field with the same
ID. This guarantee makes IDs a very safe way to address these
objects.

You can only get an id property of an object. It can never
be set. It is assigned automatically when the object is created and
is never changed. Even if the card or other object is deleted, the
unique ID number is never used again in that stack for another
object of the same type in the same domain.

Don't confuse the ID number of an object with its sequence
number, which determines its relative position within a card or
stack. Sequence numbers can be changed by the Bring Closer
and Send Farther selections in the Objects menu.

The location property

All fields, buttons, and windows have a specific location (also
abbreviated loc) that describes their relative position on the
screen. Recall that HyperCard views the Macintosh's 9-inch
display (built in on all but the Macintosh II) as beginning at the
location 0,0 in the upper-left corner and extending to the location
512,342 in the lower-right corner. The location property uses
this addressing scheme.

If you get the location of any of these objects, HyperCard
returns two numbers separated by a comma, e.g., 100,250. These
numbers give the horizontal and vertical offset, respectively, of
the center of the object. This location can be useful for clicking
and dragging operations. Or you can relocate an object with the
set the location command. For example, Figure 17-4 shows one

)

e
1

n
s

d
e
>f
g
.e
te

321 Propenics and Their Management ----------------------

of our familiar Laboratory stack cards after the set the loc
command shown in the Message box has been executed. The
button, formerly near the center of the card, has shifted 100
pixels to the right.

a File Edit Go Tools Objects

(Do It!)

1111

~
rmi; 0;:;.;""'"1:. "!;':m""'m;:""'·;m""'m:""'~: :::""'::;;""'gm""'~::.:..rl"·; ; l!""'!: ::""': mf""':m""'gg~""'~;;;"""m;:"'"';:- :""':; :~~""':m""'mg""'mf""':: :;:""':m""'n::""'~m=im;""': H::""'.:m""~ng""'~E"'"i!j: _=-::;;""~H~""'::i i=m~;.""':§"""!L:l""':m=·m~""'gg""'gm""'l~""'r;::l""'m:=;:::=~g;=:+:""';n:=-··:=g:~:K:; I f'

I"'
se t the loc of button "Do It!"' to 356,151 l!i

. ~ -...................... ,_,,,,,,_ - ,_, ,_ -.......... -.......... _ - _ -......... -...... ~

Figure 17-4. Moving a button by altering its location property

This method of relocating buttons, fields, and windows is
faster and more efficient than changing the tool and dragging the
object. It does not, however, work with painted objects. They
must be moved as described in Chapter 13.

The name property

You can fmd out or change the name of the current stack, back­
ground, or card or of an identified field or button by examining
and altering its name property.

You define the name of a stack, background, card, field, or
button any time after you create it, and you can always alter it.
HyperCard leaves the names of these items blank unless you sup­
ply a name. It does not insist that these objects even have names.

322 Chapter Seventeen

There are two forms of the name property. One is called
the long name and the other, the short name. If you don't
specify which you want to use, HyperTalk generally (but not
always) assumes you want to see the long name.

Looking at names

Go to any card in the Laboratory stack with a button and a field.
Find out the sequence numbers of each object you want to ex­
periment with so you can address them correctly. In the exam­
ple, we assume you have a button and a field and that each is the
only object of its kind on the card. We also assume the field is
named Test Field and the button is named Do It! Now type the
following lines into the Message box and examine the results.

1. put the name of card field 1
- - Me ssage box displays card field " Test Field"

2. put the short name of card field 1
-- Message box displays Test Field (no quotation
ma rks)

3. put the long name of card field 1
-- Message box displays card field "Test Field"
of card id 6001 of stack " A Hard Place:Hyper
Folder : Laboratory"

4. Repeat the previous steps with the button field.

As you can see, if you ask for the name of an object,
HyperCard returns the entire name, including the type and
domain (card field, background button, etc.). But if you specify
the short name, HyperCard returns only the name as it appears
in the Info dialog box.

t,
.d
:y
rs

323 Properties and Their Management
--------------------~

The number property

To find out the sequence number of a background, card, field, or
button, you can use the get command to return the number of
that item. The sequence number is the one the system assigns in
the order in which objects are created and should not be
confused with the ID number discussed earlier (see "The id
property").

As with the id property, the number property cannot be
changed in a script. Only the Bring Closer and Send Farther op­
tions in the Objects menu alter this value.

The rectangle property

The rectangle property is closely related to the location property
described earlier. The difference is the rectangle property
describes the upper-left and lower-right corners of the rectangle
enclosing a field, button, or window; the location property only
defines the center point of those objects.

You can move an object using the rectangle property just as
you can with the location property. With rectangle, however,
you can also resize the object. If you use the set command to
change the rectangle property of an object and if you modify the
proportional distances between the comers, you will resize and
perhaps reshape the object. You can, of course, do this without
relocating the object. Another use of the rectangle property is
with the drag command using the appropriate tool to resize the
object.

The rectangle property has four numeric values, separated
by commas. The first two define the horizontal and vertical po­
sition, respectively, of the upper-left corner. The last two define
the horizontal and vertical position, respectively, of the lower­
right corner. Both sets of coordinates are essentially offsets be­
cause the upper-left corner of a HyperCard screen is at 0,0.

A very important use of this property involves clicking in a
field. If you use the location property, you will find yourself
clicking in the center of the field, which results in the cursor ap­
pearing either in the center of a line in the center of the field or at
the left margin but centered vertically. If you want to click in the
upper-left corner of the field, use the rectangle property, then

324 Chapter Seventeen -----------------------
use delete to remove items 3 and 4 (or, alternatively, use put to
extract items 1 and 2) of the address group. Then you can use
click at with those two values to place the cursor in the upper­
left comer of the field.

Other location and size properties

Beginning with Version 1.2, HyperTalk added eight new proper­
ties related to the location and size of HyperCard objects. These
properties allow you to access specific portions of the informa­
tion returned by the rectangle property for a given object. These
properties are as follows:

• left

• top

• right

• bottom

• topLeft

• bottomRight (may be abbreviated to botRight)

• width

• height

Each of these properties, as with all other properties related to ob­
jects, is followed with the key word of and then with the identifier
that names the object whose property you wish to set or get. The
next Laboratory exercise makes this clear.

Using size and location properties

For the next experiment, you '11 need a Laboratory stack card
with at least one button and one field. Create a new one or find
one whose script you don't mind overwriting. Then follow these
instructions.

r

j

i
e

325 Properties and Their Management
----------------------~

1. Open the script editing window of a button in one of the
usual ways.

2. Type the following handler into the script editing window.
Click OK when you have proofread the script.

on mouseUp
put t he rectangle of card f i eld 1 into r1
put third item of r1 - 1 into corner
put "," & fourth item of r l - 1 after corner
choose fie l d tool
put "Clic k t he mouse where y ou want the corner ."
wait unti l t h e mo useClick
drag from corner to t he mouse Loc
c hoose browse tool

end mo useUp

3. Return to browse mode.

4. Click on the button. The Message box appears (if it was
invisible) and requests that you click the mouse where you
want the lower-right corner of the field to be located.

5. Click the mouse where the field won't cover up the button.
The corner moves immediately there. Experiment with
different screen positions. If you move the mouse inside
the field and click, the field gets smaller.

6. When you've experimented enough with the rectangle
property, create a card field and name it "Where". Make it
a scrolling field so that if the information we're going to put
into it gets lengthy, you'll be able to see it.

7. Either create a second button or overwrite the script of the
existing button with the following script:

o n mouseUp

put "Left e d ge = " && left of card field 1 ...,
& return int o card field "Where"
put " Top edg e - " & top o f c a rd field 1 ...,
& return a fter card field "Where"

326 Chapter Seventeen -------------------------

put "Right edge = " & right of card field 1 --,
& return after card field "Where"
put "Bottom edge .. " & bottom of card field 1 --,
& return after card field "Where"
put "Top left corner .. " & topLeft of card --,
field 1 & return after card field "Where"
put "Bottom right corner = " & botRight of --,
card field 1 & return after card field "Where"
put "Width = " & width of card field 1 & -,
return after card field "Where"
put "Height = " & height of card field 1 & --,
return after card field "Where"

end mouseUp

8. Compare the results of these printouts with the rectangle of
the field as reported in your last run of the previous handler
to satisfy yourself that the two handlers essentially produce
the same information in different forms.

Notice in the script that we use the rectangle function,
extract the third and fourth items of it (which point to the
lower-right corner), and put them into their own local variable.
This makes later command lines more efficient to write than
spelling out "item 3 of the rectangle of card field 1." (We
subtract 1 from each value to place the drag point inside the
rectangle rather than exactly at the corner. This is necessary
because of the way coordinates relate to the screen position to
which they correspond.) Also notice that we've used the
mouseLoc function rather than the clickLoc function as we
advised you to do in Chapter 7. This was done to accommodate
an apparent anomaly in HyperTalk: it remembers the mouse
click location at the button used to activate the script rather than
the one from the new mouse click executed at the script's request
while the script is executing. Because there are no instructions
between the positioning of the mouseLoc and the drag command
that uses it, this approach works fine and is probably a little
quicker than the more usual method of using clickLoc.

l,

e . ,.

n
e
.e
y
:o
1e
'e
te
5e
m
:st
ns
nd
tle

327 Properties and Their Management
--------------------~

- ~~:; '·

·!!.

a

The script property

One of the most powerful features of HyperTalk is the ability to
use the script property to modify scripts. This self-modification
feature is an advanced idea with origins in symbolic processing
and AI languages like LISP. Used properly, it can lead to highly
personalized HyperCard applications that appear to be quite in­
telligent about their users.

You can both get and set the script of any object capable of
holding a script. You can access individual elements in the
script by placing it into a variable and then treating the script as
an ordinary container of text (which it is). The process (which
you can experiment with in the next Laboratory exercise) in­
volves a framework like this:

put the script of card button 1 into scripter
--use put to modify one or more words or lines
set the script of card button 1 to scripter

You may also simply delete the script by using a command like:

set the script of this card to empty

This might come in handy if you build one or more temporary
scripts during execution of an application and you don't want
them hanging around the next time the application runs.

By the way, the object whose script is being modified can
easily be the object currently being accessed (e.g., a button script
can modify itself).

A self-modifying script

All you really need for this experiment is a card with a single
button. The experiment is more rewarding and easier to follow,
however, if you use one of our now-famous one-button, one­
field card designs in the Laboratory stack. Again, you can use an
existing card or create a new one. After you have such a card,
follow these instructions:

1. Open the script editir.g window of a button in one of the
usual ways.

328 Chapter Seventeen ------------------------
2. Type the following handler into the script editing window.

Click OK when you have proofread the script.

on mouseUp
beep 2
put the script of card button 1 into card field 1
get word 2 of line 2 of card field 1
-- use a variable name if you don't have a field
add 1 to it
put it into word 2 of line 2 of card field 1
set the script of card button 1 to card field 1

end mouseUp

3. Return to browse mode.

4. Click on the button. Notice that the system produces two
short beeps in rapid succession. If you have card field 1
showing, you can see the script appear in the field. But the
number on line 2 will become 3. Click the mouse on the
button again. This time you hear three beeps and the
number in the script changes to 4. This will go on almost
forever if we let it!

The visible property

The visible property is the last shared property we will examine.
You can both set and get it. To check whether an object is
presently visible, you can use a construct like:

get the visible of card field 2

Then, if It is false, you can make the field visible as follows:

set the visible of card field 2 to true

There is little or no penalty in HyperCard for making a visible
field visible or making an invisible one invisible.

There are other commands for making a field visible or
invisible. You can use the hide command to the same effect as

r
s

329 Properties and Their Management
--------------------~

setting an object's visible property to false. Similarly, you can use
the show command rather than setting the visible property to true.

The cantDelete property

Beginning with Version 1.2, HyperCard enables you to protect
stacks, backgrounds, and cards from deletion "on the fly." You
can set the cantDelete property of any object of these types to true
to prohibit deletion and to false to permit it.

Changing the value of this property changes the setting of
the check box in the Info dialog for that property. Therefore, if a
card's "Can't Delete Card" box is checked and you set the cant­
Delete property to false, you can delete the card. If you forget to
change back the value of this property before closing the stack,
the user always is able to delete the card.

Unique Stack Properties

Four HyperCard properties pertain to stacks alone: size, freeSize,
cantModify and version.

The size property

You can determine the size in bytes of a stack by using the get
command with the size property. It cannot be set. You must tell
HyperCard the name of the stack you want to check. If you want
the size of the current stack, you must use the key word this, as in:

get the size of this stack

The free Size property

When cards are deleted from a stack, the space they vacate is left
open rather than "collapsed" so that all cards are stored
contiguously in the file. During stack construction, many events
can also cause holes to appear in the stack. If you have ever

330 Chapter Seventeen -----------------------

opened a Stack Info ... dialog (see Figure 17-5), you have
probably noticed the Free in Stack indicator. This number tells
you how many bytes of space are vacant in the script and thus
occupying unnecessary disk space.

Stock Nome: l!!!~!!!!!~~!!!!!!!!!!!!!!!!!!!!!!!!!J
Where: A H'ord Ploce:Hyper Folder:

Stock contains 14 cards.

Stack contains 1 backgrounds.

Size of stock: 24 K

Free in Stacie: 4 K

(Script ...) n OK ~ (Cancel)

Figure 17-5. Stack Info •.. dialog box showing free space

You can find the value of the free space in a stack with the
freeSize property. You cannot set its value, however. The only
way to modify it is to compact the stack using the Compact
Stack option in the File menu. When compaction is complete,
the stack's freeSize is 0.

Experience shows that when the freeSize of a stack exceeds
about 15% of the stack's total size as given by the size property,
compaction results in more efficient stack usage as well as free­
ing disk space. In your stacks, you might want to check for this
condition in a handler as follows:

on closeStack
if the freeSize of this stack> 0 . 15 * ~
the size of this stack then answer ~
" You should compact this stack!"

end closeStack

You may, of course, choose to put up the watch cursor and per­
form the compaction yourself with this command:

doMenu "Compact Stack"

s

r-

331 Properties and Their Management
--------------------~

The cantModify property

Thls property was added with the release of HyperCard Version
1.2. It can be set to true or false. It has no effect on a locked stack.
But if it is set to true, the user is prohibited from making any
modifications to the stack, including deleting or compacting it.

When the property is true, a padlock symbol appears at the
end of the menu bar and the menu options for compacting and
deleting the stack are dimmed in the File Menu.

The property remains in the state to which it is set when the
stack is closed, so if you intend a change to be temporary in the
value of this property, be sure to reset its value on leaving the
stack.

The version property

You can use the version property to obtain useful information
about the versions associated with a stack's creation and modifi­
cation history. The property is read-only and returns five eight­
character numbers separated by commas. They are, in order of
appearance in a put statement:

• the version of HyperCard used to create the stack;

• the version of HyperCard last used to compact the stack;

• the oldest version of HyperCard used to modify the stack
since its last compaction;

• the version of HyperCard that last changed the stack;

• the most recent modification date and time, in seconds, of
the stack.

If any of the stack values -- i.e., items 1-4 of the list re­
turned by the version property -- is less than 1.2, its value in this
list will be "()()()()()()()(."

The fifth value is only updated when the stack is closed, not
each time a change is made.

332 Chapter Seventeen ----------------------

Unique Field Properties

HyperTalk includes five properties that apply exclusively or
uniquely to fields. Four - scroll, wideMargins, IockText, and
autoTab - apply only to fields. The fifth, style, is corrnnon to both
fields and buttons but has markedly different values for each.

We should point out, too, that fie lds have five text
properties associated with them: textAiign , textFont, textSize,
textStyle, and textHeight. But these are identical in operation to
the same properties as they relate to HyperCard's painting
environment, which is discussed in detail in Chapter 13. We will
not repeat the discussion of those five properties here.

The autoTab property

Beginning with HyperCard Version 1.2, a field may be defined as
having an Auto Tab characteristic (see Chapter 4). This property
can also be set in a script to be either true or false. If it is true, the
Return key acts exactly like the Tab key under some circumstanc­
es. If it is false, the Return key always inserts a carriage return in
the field.

The autoTab property only works with non-scrolling fields.
If this property is true for a particular field and the user presses

the Return key when he is on the last line of this field, Hyper­
Card treats this Return as if it were a Tab. It moves him to the
next field on the card (if there is one) and sends the closeField
message if text has been changed (see Chapter 6).

The lockText property

Two types of text can be displayed in a field: editable text and
locked text. Generally, when you want to make the text in a
field non-editable, you check the Lock Text check box in the
Field Info ... dialog (see Figure 17 -6). But this property can also
be changed from within your scripts by modifying the lockText
property.

j

a
e
0

:t

333 Properties and Their Management
--------------------~

Field Nome:

Cord field number: 1

Cord field 10: 2

181 Lock TeHt

0 Show Lines

0 Wide Margins

(Font...)

(Script ...) n

Style:

0 transpar ent
0 opaque
® rectangle
0 shodow
0 scr olling

OK)J (Conce l)

Figure 17-6. Field Info ... d ialog showing Lock Text

The lockText property can be true or false. When it is true, it
is the same as checking the Lock Text check box in the dialog.
This makes the text in the field uneditable. When the pointer
moves into a field with locked text, it does not change to the text
editing 1-beam cursor but remains the browsing pointer. When
the lockText property is false, the cursor changes to the 1-beam
when the pointer enters the field, and clicking anywhere in the
field makes the text available for editing.

Locked text is used much like painted text, which also can­
not be changed by simple editing. But locked text also cannot be
changed with paint tools. Standard headings can be placed into
locked-text fields. This is particularly useful if part of these
headings' contents changes from card to card but you don't want
the user to be able to edit them.

One of the best uses of locked text we've seen is in a stack
called Xref-Text by Frank Patrick. This shareware stack permits
you to create "sticky buttons" in any field of text, so you can
create hypertext documents dynamically. The text in a field is
locked until the user clicks on a word that he or she wants to use
as a hypertext linking word. Then Patrick's script unlocks the
field, modifies the word to add an asterisk after it (flagging jr as

334 Chapter Seventeen -----------------------

a linked word), re-locks the field, and then continues its process­
ing. (We've made extensive use of Xref-Text and highly recom­
mend it for the creation of first-rate hypertext documents.)

The scroll property

The scroll property is one of the most interesting properties in
HyperCard. Using it in calculations, you can determine how
many lines of text have scrolled off the top of a scrolling text field
and change the number (and thus the visible contents of the field)
in a script. The scroll property's value is the number of pixels that
have scrolled off the top of the field to which it is attached.

By dividing the value obtained from getting the scroll prop­
erty for a field by the textHeight value for that field, you can
find out how many lines are in the scrolling field but no longer
visible:

put the scroll of field 1 I the textHeight of field 1 into invis

You can then use set to change the number of invisible lines to
any value you want by a reverse process:

set the scroll of field 1 to 3 I the textHeight of field 1

-

This command scrolls the text in the field so that the first three
lines are invisible to the browser. The user can still scroll to see
those lines using the arrows and other scroll controls. They are
not gone, just temporarily invisible.

Manipulating the scroll

This two-phase experiment requires that you create a new
Laboratory stack card with a single scrolling text field and a
single button. Make the text field relatively small, though large
enough to permit two or three lines of text to be visible. When
you have things set up, follow these instructions:

1. Open the script editing window of the button in one of the
usual ways.

335 Properties and Their Management
----------------------~

2. Type the following handler into the script editing window.
Click OK when you have proofread the script.

on mouseUp
put the scroll of card field 1 I the ~

textHeight of card field 1 into invis
put invis

end mouseUp

3. Return to browse mode.

4. Type a few lines of text into the scrolling field. Make sure
that at least five or six lines of text are in the field. Then
use the scrolling arrows to position the first three lines of
text so they are hidden at the top of the field.

5. Now click the button. The result should resemble Figure
17-7. The Message box contains a 3 because there are three
invisible lines above the top of the scrolling field.

• File Edit Go Tools Objects

become invisible ~
beceuse 1t cen only
d1soleu three et e '0

(Line finder)

J

r:r.. ""§:""'.~;~"'"~m"";:~;n""rtmri; l~!l';m s:E"'"m;""gm""'n::::m:ui"";nt=~::m~m""g:: :mr:h;mr:;::::rr:; :;l=::::5m~rrm~m:~tm:!!'E,;m5:m""m~=~m::mmrEi~;::'"".::n5n:;:"":m=m~""g='""m:m:m,""~ttt""m~=g;;'"';g:;s:::::"'"pg!!!Cm;~=~ir"'"gm'""gg"""gg"'":ti i=q:EE::-:~'"'nmdf~~1~ 1 ill

Figure 17-7. Scrolling field test, phase one

336 Chapter Seventeen

6. Scroll a few more lines off the top of the field with the
scrolling arrow. Now press the button again and notice that
the value in the Message box changes. Experiment with
different field depths and perhaps even different fonts and
sizes to see how the calculation is affected.

7. Now for the second phase of our experiment. Add a second
button. (We labeled the first one Line Finder and the
second one Line Reset so we could tell them apart. Choose
your own names or use ours, but label them.)

8. Open the script editing window of this button in one of the
usual ways.

9. Type the following handler into the script editing window.
Click OK when you have proofread the script.

on mouseUp
set the scroll of card field 1 to 0

end mouseUp

10. Return to browse mode.

11. Make sure at least one line has scrolled off the top of the
scrolling field and then click this new button. The result
should resemble Figure 17-8. The top line of text is again
visible in the field.

This field contains ~
a few lines of text
but some of them 0

(line Finder)

(Line Reset)

Figure 17-8. Scrolling field test, phase two

337 Properties and Their Management -----------------

The show Lines property

Like the lockText property, the showLines property is normally
set from the Field Info ... dialog. The show Lines property can be
either true or false. If it is true, the lines under each line of text
in the window are displayed. If the show Lines property is false,
which is its default condition, the lines are not shown.

The distance between the lines in the text field when show­
Lines is true is the value of textHeight.

This property has no effect on scrolling fields.

The style property

Buttons and fields share the s tyle property, but the values the
property can have associated with it are different between the
two types of objects. A field's style, like most other property
features we've been discussing, is generally selected from the
Field Info ... dialog, using the set of radio buttons on the right
side of the window. Notice that only one style attribute can be
set at a time.

The choices for the style property in a field are: transparent,
opaque, rectangle, shadow, and scrolling. The first two style val­
ues produce fields with no visible borders. The difference is
whether underlying paint objects can be seen (transparent) or not
(opaque). The next two values, rectangle and shadow, determine
the appearance of a border around the field. The last, scrolling,
defines a field with a border and scroll bars capable of displaying
as much as 32K bytes of information. (Although all HyperCard
fields can hold 32K bytes of data, all but scrolling fields are lim­
ited to displaying as much as will fit into their physical configu­
ration on the card.)

The wideM argins property

The wideMargins property is yet another property that is normal­
ly set with the Field Info ... dialog. It can have a value of true, in
which case HyperCard adds some extra space at the left and right
margin of each line of text to improve its readability, or false, in
which event the full width of the line is used. Figure 17-9 shows

338 Chapter Seventeen ----------------------

you the same field (from our previous Laboratory exercise) with
wideMargins set to true (on the left side of Figure 17-9) and in
its default state of false (on the right).

This field contains 0
e few lines of text

This field contains ~
e few 1 ines of text

'ri: but some of them v

Figure 17-9. Effect of wide Margins settings

Unique Button Properties

Five HyperCard properties pertain only to buttons: autoHilite,
hilite, icon, showName, and style. In addition, text properties
that apply to painting and fields are also pertinent to the text in­
side buttons.

The autoHilite property

The autoHilite property, which can be either true or false, is nor­
mally set through the Button Info ... dialog (see Figure 17-10) using
the Auto hilite check box. It determines whether the button will be­
come momentarily highlighted, or inverted, when it is pressed The
default for the autoHilite property is false.

Most experienced HyperTalk programmers we know general­
ly change the autoHilite property to true because it is more Mac­
like to have the button highlighted when it is activated.

The hilite property

The hilite property is true if the button is presently highlighted
and false if it is not. You can use both get and set with this prop­
erty, and it can be used from a script or from the Message box.
Figure 17-11 shows what a button looks like when its hilite prop­
erty is set to true from the Message box.

d

·-
)-

339 Properties and Their Management
----------------------~

Button Nome: ~~~~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.I
Cord button number: 1

Cord button I D: 2

181 Show nome

181 Auto hilite

(Icon ...

(linkTo ...)

(Script .••) n

Style:

0 transparent
0 opaque
0 rectangle
0 shadow
®round rect
0 check boH
0 radio button

OK] (Cancel

Figure 17-10. Button Info ... dialog

This field contains 0
c few lines of text
but some of them 0

line Findea

(Line Reset)

set hi11te of button 1 to true

Figure 17-11. Button with hilite set to true

The icon property

Many buttons in HyperCard stacks have an icon associated with
them, though they are not required to do so. Each icon is a
resource (see Chapter 21) with an associated name and number.
HyperCard uses only the number to identify icons in scripts. The
icon property contains the number of the icon assigned to a
button.

Most of the time, you won't use the icon property. But there
is at least one occasion you might want to use set with the icon
property to change an icon associated with a button.

Many Macintosh applications, as you know, have icons that
invert when they are selected. Others change the icon completely
when it is selected. You can achieve these same effects in Hyper­
Card applications by including in an on mouse Up handler a com­
mand to change the icon of the button to indicate activation. There
is no point in using this approach only to cause HyperCard to in­
vert the icon because HyperCard can do that as a matter of design.
But when you want to achieve a dramatic effect by changing the
icon to indicate it is selected, you can do so with a command like:

set the icon of button 3 to 1048

In the last Laboratory exercise, we created a button called
Line Reset. It had a simple one-line script. If you modify that
script and enlarge the button, it looks like Figure 17-12 when it
is selected. Here is the new script:

on mouseUp
set the icon of card button 2 to 27056
set the hilite of card button 2 to true
set the scroll of card field 1 to 0
wait 10 seconds
set the icon of card button 2 to 0
set the hilite of card button 2 to false

end mouseUp

Icon 27056 is supplied with HyperCard as one of the icons you
can select when you click the Icon button in the Button Info ...
dialog.

l

341 Properties and Their Management -----------------------

c File Edit Go Tools Objects

This field cont8ins 1Q
8 few lines of text

~ but some of them

(Line Finder)

~ w
Lm"' F'"';"'t

Figure 17-12. Substituting icon when button selected

The showName property

The showName property is another property that is generally
turned on and off through the Button Info ... dialog. When it is
true, the name chosen for the button in the text edit rectangle at
the top of the dialog is displayed inside the button. If the button
also includes an icon, the name is displayed under the icon in
small type. Otherwise, it is displayed in the text pattern set by a
script, or the system default (12-point Chicago centered).

With sbowName set to false, only the icon or underlying
painted material shows through the button. The icon is always
visible, but paint on the card or background is visible only
through a button whose style is transparent. Button style is dis­
cussed in the next section.

342 Chapter Seventeen

The style property

Like its field-related counterpart, a button's style property is nor­
mally set from the Button Info ... dialog, using the set of radio
buttons on the right side of the window. This property has seven
possible values: transparent, opaque, rectangle, shadow, round
rect, check box, and radio button. The frrst four are identical in
effect to their duplicates in a field's style property.

The round rect style of button is the one that HyperCard
uses if you don't tell it to do something else. Like rectangle and
shadow, it affects only the border around the button.

The check box and radio button style buttons are well
known to anyone who has used a Macintosh even casually. But
if you've programmed the Macintosh in other languages, you
should be aware that HyperTalk does not handle the management
of these button types for you simply because you declare them to
be one of these types. If you define a set of radio buttons, your
script must manage turning one and only one on at a time. If you
use check boxes, you can have more than one in a set selected at
one time. That is the fundamental difference, besides shape, in
the two types of buttons. We have more to say about handling
banks of radio buttons in Chapter 20.

Unique Picture Property

Beginning with Version 1.2 of HyperCard, Apple defined a new
quasi-object called a picture. (See Chapter 13 for a discussion
of pictures and their manipulation.) A single property associated
with these new types of objects is provided so that you can deter­
mine in your script if a particular card or background picture is
visible. This property is the showPict property.

In effect, this property is a card or background property, be­
cause each card and background can have only one piece of art,
which is treated as a single picture.

As you would expect, the value of the showPict property is
true if the picture in question is visible,fa/se if it is not.

Your script may get, put, or set this property. For example,
to find out whether the picture on the current card is visible, you
can use a command like this:

v
n
:1
·-
.S

t,

is

e,
IU

343 Properties and Their Management
--------------------~

Suntmary

if the showPict of this card is true then ...

The important thing to note is that even though the property
applies to a picture, it is addressed as if it were a card or back­
ground property.

In this chapter, you learned about HyperCard properties and how
to manage them. You examined every property that wasn't cov­
ered when we discussed painting in HyperTalk scripts in Chapter
13. You saw how to use get to find out the current value of a
property and how to use set to change the values of those proper­
ties subject to modification.

Chapter 18 examines the connection between HyperCard
and the outside world through telecommunications and telephone
links.

CHAPTER

HyperTalk Dialing and
Communications

I n this brief chapter, you will learn about

• HyperTalk's built-in dial command and how it can be used
in scripts to enable communications with the world outside
HyperCard

• the problems in attempting to program stacks to access the
Macintosh's serial ports directly for external communications

Of HyperCard, Phones, and Modems

When HyperCard first arrived on the Macintosh scene, one of
the first things people noticed about its usefulness was that it in­
cluded the ability to dial telephone numbers from address stacks
and other places in its environment. Visions of easy-to-build and
easy-to-use telecommunications and electronic bulletin board
systems (BBSes) swarmed around Macintosh user groups.

345

346 Chapter Eighteen -----------------------

After some investigation, though, it became clear that
HyperCard, in keeping with its role as an information
management tool and scaled-down development environment,
did not include enough power to access the serial ports of the
Mac directly. In short, you could dial the phone -- and do so
quite adequately -- but you were not likely to use unadorned
HyperCard for sophisticated telecommunications applications.

Still, a programming language that contains the built-in
ability to "reach out and touch" another Mac user is more than a
little intriguing. Many HyperTalk programmers have tackled the
task of finding new and creative ways of using this power.
Maybe you'll be the one who finds the indispensable way of us­
ing it and makes a pile ... er, stack ... of money in the process.

The dial Command

There are two ways to dial a telephone with HyperCard: through a
special device connected to the Macintosh that uses speaker tones
to dial an ordinary telephone or through a modem connected to the
modem port on the Mac.

Using dial without a modem

Several devices on the market connect to the Macintosh's speaker
jack on one end and a telephone line on the other. They use
internally generated dialing tones to place calls. HyperCard can
activate these devices with the dial command in its simplest fmm:

dial "<phone number>"

Although you can supply a telephone number explicitly with
the dial command, you will probably use the standard containers
It or selection, a variable, field name, or a component containing
the telephone number. If you do supply a telephone number rath­
er than the place the number can be found, be sure HyperCard
doesn't think 555-4232 means subtract 4,232 from 555. You can
do this one of two ways. First, you can format the number in the

l

h
rs
g
1-

:d
lll

1e

34 7 HyperTalk Dialing and Communications ----------------------

usual way with the separating hyphen and enclose the entire
phone number in quotation marks. Second, you can supply the
phone number with no internal punctuation, such as 5554232.

Using dial with a modem

If you use the dial command on a telephone line connected to the
Mac serial port through a modem, you must tell HyperCard you
are using a modem for the call. You may also want to send some
parameters to the modem as part of the dialing process. The syn­
tax for the dial command using a modem is as follows:

dial "<phone number>" with (modem] ["<modem parameters>"]

The presence of the key word with tips off HyperCard that
you're using a modem. The word modem is optional, though if
you opt for the usual HyperTalk readability, you will include it.
The modem parameters, also optional, consist of a string enclosed
in quotation marks. HyperCard sends anything contained in this
string to the modem before any attempt is made to dial the phone.

Unless you know what kind of modem the user of your
script has, including explicit modem parameters can be a little
tricky. Sending the wrong parameters to the modem can result in
no connection and can cause the user's blood pressure to rise. If
including parameters is important to your script you can use at
least two strategies. First, you can require a modem compatible
with standards established in the industry by Hayes Microcom­
puter Products Co. and tell your users they can only use your
script without modification if they are using a Hayes-compatible
modem. This includes, by the way, both the Apple Modem 300/
1200 and the Apple Personal Modem. Second, you can supply a
setup card with a script that obtains parameters from the user and
builds the parameter string as a result.

Modem parameters

Although there is some variation among modems as to the kinds of
parameters that can be set with commands, a reasonable amount of
standardization has developed around the Hayes command set.
Even though some modems may use different commands to effect

348 Chapter Eighteen ----------------------
changes, almost all modems permit the user to set with commands
such parameters as type of dialing (pulse or tone), baud rate, mode
(answer or call), how long to wait for a carrier after dialing (used
only in computer-to-computer communications), and loudness of
the modem's built-in speaker.

Because HyperTalk's dial command is intended for use
only with voice calls, most of these parameters do not have much
value in scripts. But you will probably want to set at least three
as part of the modem dialing process.

First, you will want to be sure the modem is set for tone
dialing, not pulse dialing. In a Hayes-compatible modem, this is
accomplished with the DT (for dial tones) parameter.

Second, you will probably want to reduce the amount of
time the modem stays connected to the line after dialing.
Normally, the modem stays connected for about 30 seconds after
the dialing process is complete. During this time, it degrades the
quality of the phone connection and sometimes sends an
annoying, ear-splitting signal as it looks for a computer
connection on the other end. The command S7=1 gives the user
one second after dialing to pick up the phone before the modem
disconnects the line. You can set this to any value; typical values
are between 1 and 30.

Finally, you may want to reduce the volume of the mo­
dem's built-in speaker, if it has one, by the command LO (that's
a zero, not the letter 0). Some modems are quite loud while
dialing, and the noise can be aggravating to others (particularly
in a work environment) besides jarring the user who is next to
the modem.

With a Hayes-compatible modem, all these commands are
set with a single set of parameters enclosed in quotation marks.
They start with the letters AT, which is the way the Mac gets the
modem's attention and informs it that what follows is intended
for use by the modem directly and not by the software running in
the Mac. To dial a number such as 555-1234 with a modem and
the previous settings, place the following dial command in your
script:

dial " 555-1234" with modem "ATDTS7= 1L0"

For the most part, modems are forgiving about spaces and the or·
der in which commands are given.

r
1

s
e
y
0

)f-

349 HyperTaJk Dialing and Communications
----------------------~

HyperCard's Smart Dialing Helps
~8&Slli'J I II il II illl 11 I it

Two facilities in HyperCard assist you in carrying out dial com­
mands more easily in your scripts. First, several built-in buttons
in the Button Ideas stack are shaped like telephones and have
dialing instructions built into them. You can cut and paste these
buttons into your stacks and get instant, programming-free access
to the program's telephone dialing capability. Second, every copy
of HyperCard comes with a Phone stack to select the proper dial­
ing method and other aids to make dialing the phone easy.

Built-in buttons

From the standard Home card, click on the Button Ideas icon.
The screen displays an index card containing, among other
things, an entry for home and business buttons that looks like
Figure 18-1.

Home, Business
Figure 18-1. Button Ideas stack index entry for phone buttons

When you click on this button, you are taken to a card of buttons
that looks like Figure 18-2. Any telephone-shaped button on this
card can be cut using the button tool and then pasted into your
stack. Each of these buttons contains a script like this:

on mouseUp
get the selection
if it is empty then ask "Dial wha t n umbe r ?"
if it is not empty then

push this card
visual effect zoom open
go to stack " Phone"
dial it
pop card

end if
end mouseUp

-

350 Chapter Eighteen ----------------------

a File Edi t Go Tools ts

Home, Business (lndeK) .m

~

m
~

Figure 18-2. Phone buttons in Button Ideas stack

With the exception of the purpose of the Phone stack, which
we di&cuss in the next section, this script is self-explanatory. It
looks in the selection for a phone number to dial. If the selection
contains rtothing, it then asks the user for the number to dial. You
can substitute any other container name for the selection or add
others to search through before asking the user for the number to
dial.

The Phone stack

HyperCard has obligingly built in a stack called Phone, which
can take care of some housekeeping chores related to telephone
dialing that your scripts can use to great benefit. In a sense, this
stack adds some "intelligence" to a phone dialing script's capa­
bilities. You can examine the Phone stack without dialing a
number by going to the stack directly with a go command or a
menu choice. When you open this one-card stack, you see a dis­
play similar to that shown in Figure 18-3.

1

t
'l

ll

i
0

;h
1e
LiS

a-
a
~a

is-

351 HyperTalk Dialing and Communications
----------------------~

9:26PM

Lou1 Area Code:

Enter your local prefixes:

Cliok h•r• to dl~ 1 -
®Speaker (tone dialing)
0 Modem (tone dialing)
0 Modem (puhe dieli ng)

Outside line:
Toll cell:
loncJ dhtence:
I nternetlonel :

Area Code'

Figure 18-3. One-Card Pbone stack

. .Q.U

As you can see, this card provides several types of assis­
tance in the dialing process. These include

• selection of type of dialing

• filter for local area code and prefix

• prefix for obtaining access to an outside line

• prefixes for long-distance and international dialing

• a link button to the Area Codes stack

By clicking one of the radio buttons in the lower-left comer
of the card, the user can change the type of dialing. The default
is tone dialing through a modem.

The local area code filter is quite handy. If your user's Ad­
dress stack has phone numbers stored so that all of them have
area codes, even local calls, the Phone stack will bypass dialing
the local area code if it encounters it as the first three digits in a
number. This is important because in many parts of the country
dialing the local area code results in the call being intercepted by
phone company equipment with a recording.

If users of your script are dialing through a central dialing
system like a PBX or switchboard, they might be required to dial

352 Chapter Eighteen -----------------------

a 9 to access a public line outside the company's internal lines.
HyperCard pre-sets this field to a 9, but you can change it or re­
move it entirely (as we've done) if you aren't using such a phone
system. Similarly, some phone systems require users to dial a 1
for a long-distance call, and others do not. The long-distance pre­
fix field can be used for this 1 or for an access code for a long­
distance service supplier. International calls usually require an
011 prefiX.

Finally, a button on this card lets the user link to the stack
where the area codes for hundreds of American cities are stored.
This is not in itself intelligence that is accessible to your script,
though you could obviously add a link if you want.

Using HyperCard for Telecommunications

Summary

Clearly, HyperCard was not intended to be used to design and
build scripts for computer-to-computer telecommunications. Its
dialing capability does not include many features needed for
such dialing and communication links.

Nonetheless, many early HyperTalk programmers began to
work on the idea of developing full -scale telecommunications
stacks. To do this, however, you have to design and include ex­
ternal commands and functions (discussed in detail in Chapter
23) to handle many of the tasks for which HyperTalk has no
built-in facilities.

In this chapter, you became acquainted with the HyperTalk dial
conunand and how it works for direct phone dialing and modem
dialing. You also learned about HyperCard's built-in buttons
and Phone stack capabilities, which your scripts can use to make
it easy to include useful dialing routines in your stacks.

Chapter 19 is the last chapter that discusses HyperTalk
commands and functions. It focuses on language features
involved with scripts themselves and with the passing of
information in HyperTalk.

;

r

)

s

:r
0

-
al
m
ns
ke

tlk
·es
of

CHAPTER

=~ II u · Ji I lil'iWI'IMII ~nl'l'li lfTIII I

Script-Related Commands
and User-Defined Functions

I n this chapter, you will learn about

• the edit script command and its uses

• the wait command

• using and manipulating parameters in HyperTalk: scripts

• defining your own functions and using them in scripts

Using the edit script Command

If you are designing stacks to be used by technical people,
particularly utilities for other stack developers to use such as
those discussed in Chapter 24, you may find it useful to know
how to use the edit script command. When HyperTalk
encounters this command, it opens the script editing window for

353

354 Chapter Nineteen

the object whose identification is supplied as an argument. Here
is the command's syntax:

edit script of <object>

You should be judicious in your use of this command
because it gives the user complete access to the script. If you
design a stack for a non-technical user but the script occasionally
requires modification or customization, consider using the less
intimidating method of p utting the script into a variable,
modifying the variable, and then setting the script to the contents
of the modified variable. This technique is discussed in detail in
Chapter 17 where scripts are treated as properties of their
associated HyperCard objects.

Although you can enter this command from the Message
box, you will probably never do so because it is easier to hold
down the Shift key and double-click on a field or button to get at
its script. You can use the edit scr ipt command to edit the script
of the present script, card, or background, or some other script,
card, or background. If you want to edit a script for an object
that is not on the screen, this command can be a good shortcut.

The wait Command

We have used the wait command quite a few times in the book
without explaining it. Its action is quite apparent, but it does
have some nuances worth noting.

The command has three forms of syntax:

wait [for] <number> [ticks] I seconds
wait until <true/false>
wait while <true/false>

Using the first form, the minimal command you can issue looks
like this:

wait 20

This results in the script pausing for 20 ticks, where one tick is
1/60 second. So the pause here would be about 1/3 second.

cs

is
td.

355 Script-Related Commands and User-Defined Functions ------------------------

HyperTalk assumes you want to use ticks unless you supply the
word seconds, as in:

wait 3 seconds

If you want to use ticks, you need not supply the label, though
you may want to do so for readability. You can also put the
word for after the wait command for readability; it is a throw­
away word that HyperTalk ignores.

NOTE

Beginning with Version 1.2, HyperCard recognizes
the singular word second. This makes the use of
one-second delays read more naturally. Seconds
may also be abbreviated sees, or singularly as sec.

The second and third forms of the syntax for the wait com­
mand use Boolean expressions to determine how long to wait or,
more accurately, when to stop waiting. The wait until command
continues to hold in a waiting state until the expression in the
Boolean true/false argument becomes true, then the script contin­
ues processing. Conversely, wait while continues to wait only as
long as the Boolean argument is true, resuming script operation
as soon as it becomes false.

An obvious use of the wait until command, and one we've
used a few times in this book, is to give the user control over
when to proceed to the next step in processing. Generally, use
the mouseCiick function to determine when to continue, and let
the user know that clicking the mouse ends the pause:

wait until the mouseClick

Parameters in HyperTalk

Virtually every system message in HyperCard and most messag­
es you design in your scripts include one or more parameters.

356 Chapter Nineteen -----------------------

on openHandler

When you use a go command, for example, you supply one or
more parameters naming the destination card, background, or
stack:

go card " Testing"
go stack "My Contacts"
go first card of stack "My Contacts"

When commands and messages involve parameters, you
can use built-in HyperTalk functions to find out how many
parameters are being sent with the message, place the entire
parameter list into a variable or container, or extract and use a
specific parameter by its position in the parameter string.

How many parameters?

To determine how many parameters are sent with a message, use
the paramCount. Because there is only one actively processing
message or command at any moment, this function ironically re­
quires no parameters. It simply returns an integer indicating how
many parameters were passed with the last message.

You might use this construct, for example, where it is im­
portant to your handler that a certain number of parameters be
passed before it can carry out its task:

if the paramCount <3 then ask "I need three arguments."
end openHandler

Extracting individual parameters

Quite often when a message or command with parameters is sent
to a handler you've designed (as opposed to a system message
handler), you will need to pull the parameters apart and use them
in different ways throughout the script. You can extract any par­
ameter from a string with the param. Its syntax looks like this:

the param of <integer>

e
.g

w

n­
;:>e

;ent
.age
:1em
par­
is:

357 Script-Related Commands and User-Defined Functions ------------------------

To extract the first parameter, you simply code:

the param of 1

Using this method, you can extract any individual parameter or
combination of parameters for later manipulation and analysis in
the handler. For example, if you've defined a handler called
grabWords that receives two parameters, one of which is the
number of the first word to be extracted from line 1 of a field and
the other of which is the number of the last word to be extracted,
you might write something like this (in part):

on grabWords
put the param of 1 into startWord
put the param of 2 into endWord
r e peat with counter - startWord t o endWord

put word count er o f l i ne 1 of f i e l d 1 after holder
e nd repeat
- -put holder s omewhere

e nd grabWords

You can use the param to identify the message being sent
as well. The message name, which is always one word, is num­
bered 0 so that extracting it requires a construct like this:

put t he param of 0 into l astMessageName

Storing the parameter string

The third parameter handling function in HyperTalk lets you
manage the entire string of parameters as one entity, typically
storing it for later use. The function called the params returns a
string containing the entire message, including the message
name. You can then use the usual chunking methods to extract
whatever portions of the string you need. This function does not
require any parameters.

Normally, you will probably use the params function to
store the parameter string for later use in a handler that may be
sending or dealing with other messages as it executes.

358 Chapter Nineteen -----------------------

Remember that all three of these parameter-related func­
tions only deal with the most recent message sent (i.e., the one
that is being executed or processed at the time).

Defining and Using Your Own Functions

As we have mentioned, you are not restricted to the use of
HyperCard's built-in functions and commands. You can define
your own messages and handlers, simply by typing the name of
the message as the parameter to an on construct. (See the
discussion of this issue in Chapter 5.)

Similarly, you can define your own functions in HyperCard.
After. these functions are defined, they can be used similarly to

(though not identically with) built-in HyperCard functions. The
framework for defining a function of your own looks like this:

function <functionName> [parameter[,parameter)J
-- list of commands that make up the function
return <result>

end <functionName>

The key words function , return, and end are required in any
function handler you define. The value following the return key
word is the value returned by the function when it is called.

After you've defined a new function, it is treated identically
with built-in HyperCard system functions. Among other things,
this means if you define a function that can be used in many
stacks, consider placing its definition in your Home stack.
HyperCard searches through the hierarchy for functions exactly
the same way as it does for commands. Another implication of
this treatment of user-defined functions as being identical to
system-defined functions is that if you write a new function with
the same name as a system-defined function, the new function
supersedes the one supplied by HyperCard. This requires some
careful planning and thought, but you can supply customized
versions of built-in HyperCard functions this way.

It is also worth noting that we need not use the same
parameter names in the function handler itself and in the script
line that calls the handler. In our example below, you will see
that we name the parameter theString in the handler but when we

'f
y

ly
S,
lY
k .
.ly
of
to
ith
on
me
~ed

me
ript
see
we

359 Script-Related Commands and User-Defined Functions --------------------------

call the function, we supply the parameter's name as userEntry.
It is the parameter's relative position in the command and not its
name that determines how it will be treated.

Here's an example of a user-defined function that takes a
string as an argument, closes up any spaces in it, and capitalizes
the first letter of each word if they are not already capitalized.
We use this function for creating neatly formatted names for ob­
jects from user-entered strings that don't always follow our rules
for neatness.

function makeNeat theString
put the length of theString into len
put "False" into newWord
repeat with counter ~ 1 to len

put char counter of theString into currChar
if newWord is "true" then

put upperCase(currChar) a fter outString
put "False" into newWord
next repeat

end if
if currChar is not s pace the n

put currChar aft e r outSt ring
else

put "true" into newWord
end if

end repeat
return outString

end makeNeat

To use this function, treat it like any other HyperCard func­
tion. Here is a handler that simply tests the function:

on mouseUp
ask "Enter a string to convert"
put it into userEntry
put makeNeat(userEntry)

end mouseUp

Just to be complete, here is the other function used by
makeNeat, called upperCase. It looks at a character passed to it
as a parameter. If that character is not already uppercase, it con­
verts it to uppercase. Otherwise, it leaves it unchanged.

Summary

function upperCase letter
get the charToNum of letter
if it >= 97 and it <= 122 then

subtract 32 from it
return the numToChar of it

else
return letter

end if
end upperCase

As we said at the beginning of this discussion of user­
defined functions, there is a slight difference between the way
your functions and HyperCard's built-in functions are called.
When you call a HyperCard function, you usually must precede
it with the word the, then you simply supply the name of the
function and its parameters as a string. For example:

return the numToChar of it

But when you call a user-defined function, you must supply
the parameters in parentheses. Furthermore, you must supply the
parentheses even if the function requires no parameters. The pa­
rentheses are HyperTalk's indicator that you are invoking a user­
defined function. (You can also use the parenthesized approach to
call HyperCard functions in certain cases, but we discourage the
practice so that user defined functions are more clearly detectable.)

Note, too, that (as with HyperCard's built-in functions) you can­
not simply type the name of the function and its parameter(s), as in:

makeNeat("This is a test")

You must tell HyperCard what to do with the result of the func­
tion. Generally, this involves using a put command to store or
display the result.

In this chapter, you learned about some useful, though somewhat
miscellaneous, commands that deal with script-level issues. You
saw how to use the edit script command to give technical users

T

•U

~s

361 Script-Related Commands and User-Defined Functions -----------------------

easy and immediate access to scripts they want to change in your
stack. You learned about the various forms of the wait command
and its use in scripts.

You also examined the use of parameter passing operations
and the built-in HyperCard functions for manipulating parameter
lists. Finally, you learned the form for defining your own func­
tions and saw a detailed example of how to do so.

In Chapter 20, you will find a useful potpourri of Hyper­
Talk tips, hints, traps, and techniques assembled from a variety
of sources.

C HAP TER

HyperTalk Tips, Traps,
and Techniques

h is chapter includes some suggestions and techniques to im­
prove your scripts and make you more effective and efficient. It
includes:

• tips, which are "insider" hints about things you can do to
make your stacks snappier and your programming more
efficient

• traps, which are potential bugs and pitfalls in HyperTalk

• techniques, which are several handler ideas for carrying out
tasks that you might have occasional or even frequent need
to do but which may not be entirely self-evident

Wherever possible, we've given the source of information
on these suggestions and ideas. Many of them we created and
others were thought of or suggested by several people or are rel­
atively trivial. The absence of credit does not mean we claim the
idea as original.

363

iiiiJ~

Power Tips

364 Chapter Twenty

This chapter cannot possibly contain all the tips that an ex­
perienced scripter develops over months and years of experience
with HyperTalk. Consider joining a user group, signing up for
an electronic bulletin board system, or contacting Apple Com­
puter about becoming a Certified Developer so that you can keep
abreast of new hints, techniques, and developments in Hyper­
Card.

Let us begin with some tips about using and scripting in Hyper­
Talk.

Pop-up fields

Although HyperCard is a highly graphic and visual environment,
it is often used to present information in text or hypertext form.
With scrolling fields capable of storing 32,000-plus characters of
information, the amount of text content in a card or stack can be­
come overwhelming. The careful HyperCard stack designer
looks for ways to minimize the impact of large amounts of text.
One excellent way is to use pop-up fields on cards.

A pop-up field is one that stays hidden until summoned to
the forefront, generally by some action of the user. The advantage
of such fields is that they stay out of the way until needed and
retreat politely into the ether when they are no longer required.
The disadvantage is that it is all but impossible to guarantee
browsers will ever see them unless they want to do so. As a
result, you should not use pop-up fields for essential information.
Typical uses include help functions and About boxes.

Users generally activate pop-up fields by pressing a button.
Often, the button is associated with an icon like one of those
shown in Figure 20-1. When users click on one of these buttons,
the pop-up field appears. After users have read the field's con­
tents, they generally expect to be able to click on the field to
close it, though you may supply a visible button to close the
field.

.,
l.

,f
:-

:r
t.

. 0

~e

td
d.

a
n.

•0.

se
lS,
•n-
to
he

365 HyperTalk Tips, Traps, and Techniques
----------------------~

a File Edit Go Tools Objects

About» Help» Information

About... Help

D • (1]
1~1 • D (1)

• 0 ~

Figure 20-l. Icons for About and Help buttons

To create a pop-up field and the appropriate management
buttons on a card, follow these steps .

1. Create a new field.

2. Select the type, size, and position of the field. Your choices
depend on how you want the pop-up field to blend or
contrast with surrounding objects on the card. Then use the
browse tool to enter some text into the field at least for
testing.

3. Create two new buttons. Use icons if appropriate.

4. Attach the following script to one of the buttons:

on mouseUp
show card field 1
show button "Close It"

end mous eUp

366 Chapter Twenty

5. Name the second button Close It and attach this script to it:

on mouseUp
hide button "Close It"
hide card field 1

end mouseup

6. Put the following script at the card, background, or stack
level as appropriate (depending on where this action is most
efficiently carried out):

on openCard -- or other system message name as appropriate
hide card field 1
hide button "Close It "

end openCard

7. Open the card so that the field is hidden (see Figure 20-2).

(Show It)

Figure 20-2. Pop-up field bidden on card

367 HyperTalk Tips, Traps, and Techniques
--------------------~

8. Press the flrst button (we've labeled it Show It), and the fleld
and its associated close button appears. See Figure 20-3.

a File Edit Go Tools Objects

(

This is e test pop-up f1eld
with en interne! button to
make it di seppeer when
the reeder is done.
Vou cen elso creete e big
transparent button thet
covers the whole field end
let the user hide the f1eld
that way.

OK)

(Show It)

Figure 20-3. Pop-up field and related button displayed

There is no overhead associated with the card-level script at
step 6; if the field and the button are already hidden, throughput is
slowed negligibly, if at all. Putting it there assures that the user
doesn't push the Show It button, read the field, and then move to
the next card without closing it. Alternatively, you can put are­
verse script to hide the fleld and button on a closeCard condition.

To make the entire field a button on which the user can
click to close the field, create a large transparent button to cover
the fleld, but recognize that the user cannot edit the underlying
text. You can also use a wait until the mouseClick command to
enable the user to click anywhere to hide the fleld.

368 Chapter Twenty

Saving disk space with pictures

Pictures occupy relatively large amounts of disk space. In the in­
terest of keeping your stacks as small as possible, think carefully
about the use of art in your stacks. For example, if you have a
picture that appears on many cards with a particular background
but not on all of them, it may seem that you should just copy and
paste the picture onto each card where it's needed. But it is usu­
ally more efficient to store the picture on the background and
then simply obscure it on the cards where it is not needed.

To do this, just follow these steps:

1. Get into background editing mode by typing Command-B
or choosing Background from the Edit menu.

2. Create the artwork.

3. Return to normal card editing mode by again typing
Command-B or choosing Background from the Edit menu.

4. Get to a card on which you do not want the artwork to
appear.

5. Use one of the selection tools to select the area to be
obscured on this card.

6. Choose Opaque from the Paint menu.

7. Return to browse mode. The area in question is opaque but
still exists on all other cards.

Using this opaquing technique is more efficient than using
the eraser because the eraser places more graphics on the card,
overlaying the background graphic with a region of white.

Speeding up show card operations

The following power-user tip comes from Windoid Issue #1.
(Windoid is a newsletter published by the Apple HyperCard User
Group, or AHUG. Details for obtaining it are in Appendix C.) If

It

g
j,

:1.
;er
If

369 HyperTalk Tips, Traps, and Techniques
--------------------~

Traps to A void

your script calls for the use of the show card command or one of
its variations, you can greatly accelerate execution of these com­
mands by pre-caching the cards. HyperCard, as you know,
keeps track of the last 42 cards seen by the user. It can move
quickly to any card on this list because of the way it manages the
memory that points to these cards.

Put a script like the following into your stack and compare
the results of using show card routines before and after:

o n ope n Stack
s et lockSc r een t o true
s ho w al l c a rds
set l ockScreen to f alse

e nd ope nStac k

The user is aware of only a slight delay here, but later execution
increases noticeably and makes up for this momentary pause.

Here are two obscure traps you should know about.

Watch out for user interruptions

One stack designer we know had a problem with a script that in­
cluded a print this card command in the middle of a handler. If
the user typed Command-period to stop the printing of the card,
HyperTalk stopped executing the script. That's the behavior
you'd expect, but it wasn't what was desired!

There is no way for a script to intercept or disable the Com­
mand-period typed by the user. To avoid having this cause a
problem with printing, make sure any print command is the last
one in a handler. If users think they are interrupting the print and
end up stopping your handler, you will be back where you ex­
pected to be in any event. Printing is one of the few actions users
might try to stop with Command-period, so this simple precau­
tion can reduce troubles with interrupts.

370 Chapter Twenty

Handler names and special characters

You cannot use a special character in a handler name. Hyper­
Talk stops parsing when it encounters the special character­
even if it is not a reserved word - and generally poses an error
message like that shown in Figure 20-4.

Can't understand calc

(Script J n Cancel n

Figure 20-4. Result or using a special character in a handler name

In the example depicted in Figure 20-4, the handler is called
calc+, but notice that HyperTalk indicates it is having trouble
dealing with calc. The plus sign is ignored.

Techniques for Special Needs

The balance of this chapter consists of a dozen useful techniques
for doing things in HyperTalk that may not be self-evident.

Double-clicking a button

HyperCard deviates from the previously accepted Apple Human
Interface Guidelines in a number of ways. One of the most readi­
ly apparent is that it carries out tasks by the single-click of a but­
ton rather than requiring the traditional double-click action. The
designers of HyperCard found in their studies that some people
had trouble double-clicking, so they designed HyperCard to be
easier for more people to use.

But what if you want the user to double-click on a button to
activate something? For example, you might define a transparent
button with an icon so that all the user sees is the icon. This stack

1

.-
e
e
e

:o
lt
:k

371 HyperTalk Tips, Traps, and Techniques

on mouseUp

might be used by someone who is accustomed to double-clicking.
(We should note that it is alright for the user to double-click on a
button even without special handling because HyperCard simply
ignores the second click.)

Here is a script to handle double-clicking on a button. We
found this script originally in Windoid Issue #1:

put the ticks into originalTicks
repeat until the mouseClick
if the ticks - originalTicks > 30 then exit mouseup
end repeat
-- Put here whatever you want the button to do when
-- double-clicked

end mouseUp

This handler is activated when the user releases the mouse
in the object with which the handler is associated. It then stores
the value of ticks into a local variable and waits for another
mouse-button press. If the frr&t and second click occur within 30
ticks (about 1/2 second) of each other, the action called for in the
event of a double-click is executed. You can adjust the time de­
lay between clicks by changing the value in the fourth line of the
handler.

We modified this handler slightly to allow different actions
depending on whether the user single-clicks or double-clicks the
icon:

on mouseup
put the ticks into originalTicks
wait 30 ticks
if the mouseClick then

-- react to a double-click
else
-- react to a single-click
end if

end mouseup

Now you can have one button that works differently depending
on whether the user single-clicks or double-clicks on it.

372 Chapter Twenty

Accumulating card fields into a running total

If your stack involves calculations, you may need to accumulate
the values in a field into a special variable or field. The
following script accomplishes this task nicely and is flexible and
efficient enough for general use. You can use the put statement
in the last line of the handler to do whatever you want with the
accumulated total.

on mouseup
set lockScreen to true
set lockMessages to true
put 0 into total
put the number of cards into loopEnd
repeat with counter = 1 to loopEnd

put the number of lines in field 1 into temp
repeat with newCounter a 1 to temp

add line newCounter of field 1 to total
end repeat
go next

end repeat
set lockScreen to false
set lockMessages to false
put total

end mouseUp

This script works for a stack with any number of cards
containing a field with any number of lines as long as each line
contains a numeric value. You can also add a check to determine
if the line contains a number and branch if it does not.

Tool selection with the keyboard

During the design of a stack, you probably find yourself switch­
ing back and forth among the browse, button, and field tools and
perhaps among one or more painting tools as well. The tear-off

l
f

373 HyperTalk Tips, Traps, and Techniques
--------------------~

Tools menu certainly makes this selection easy, but if you don't
want that windoid around while you design something or if you
prefer not to take your hands off the keyboard, you've probably
wished for keyboard equivalents for the tools.

Wish no longer. Here are two techniques for changing the
tool currently in use to the one you want without using the
mouse.

The ftrst uses a keystroke followed by a carriage return to
select a specific tool in any order. Because Command-Tab al­
ways picks the browse tool, we don't include a handler to choose
it. Put these scripts in the Home stack if you want them always
available. Then, any time you want to use the button tool, just
press b and Return. (Case, as usual, is insignificant.)

NOTE

It is not possible without extending HyperTalk with
an XFCN or XCMD (see Chapter 22) to trap for a
single keypress event. So you'll have to be content
with the two-key sequence described here unless
you're adventuresome enough to generate an external
routine to handle the one-key approach. Frankly, we
haven't felt the savings would be worth the effort.

The pattern for the handlers is the same in all cases:

on letter
choose toolName

end letter

What letters you assign to the tools is up to you. We use mnemonics,
but you may want to use, for example, the numbers on the numeric
keypad in some configuration that's easy to remember.

374 Chapter Twenty

on b
choose button tool

end b
on f

choose field tool
end f
on 1

choose lasso tool
end 1
on e

choose eraser tool
end e
on h

choose brush tool
end h
on t

choose text tool
end t
on s

choose spray can tool
end s
on m

choose select tool -- "m" for "marquee"
end m
on d

choose line tool -- " d " for "drawing"
end d
on x

choose rectangle tool - "x" for "boX"
end x
on o

choose oval tool
end o
on p

choose bucket tool -- "p" for "paint bucket"
end p

With these handlers in place on your Home stack, you can
press t and the Return key any time you wish and immediately be
using the text tool. This can be pretty handy.

an
be

375 HyperTalk Tips, Traps, and Techniques
----------------------~

on openCard

NOTE

For this approach to be useful, you must turn on the
blind typing property on your Preferences card in
the Home stack. Otherwise, the Message box will
have to be visible anytime you want to use this tech­
nique. If it's not, you'll simply be greeted by one of
the Mac's beep sounds (or some other sound if you
have a Mac II). Also, you cannot activate any tool
once you are using one of the paint tools. HyperCard
effectively disables blind typing when a paint tool is
in effect to enable you to use power keys, even if
you have not turned the power keys feature on in the
Preferences card of the Home stack.

To facilitate selection of a smaller number of tools in a
fixed rotation, you can use the Enter key to move from tool to
tool. The following script allows you to rotate among the
browse, button, field, and text tools. It comes in two handlers.
The ftrst sets up the list of tools and initializes the counter to use
the browse tool. The second increments a counter each time the
Enter key is pressed, resets it to 1 if it goes past 4, and chooses
the tool next in the rotation. Put these handlers at the Home card
level and you can use the Enter key technique anywhere during
stack design.

global toolList , enterCount
put "browse" && "button" && "field" && "text" into toolList
put 1 into enterCount

end openCard

on enterKey
global toolList, enterCount
add 1 to enterCount
if enterCount=S then put 1 into enterCount
put word enterCount of toolList into toolChoice
do "choose" && toolChoice && "tool"

end enterKey

o n enterKey

376 Chapter Twenty

You can customize these handlers. You can add or change
the tools that are selectable and the order in which they are se­
lected. If you make the list longer than four tools, change the line
in the on enter Key handler that resets the enterCount variable to
1 so that the variable is reset when the value is one higher than
the number of tools you are including. If you want to be flexible,
you can use put to find out how many tools are currently in the
too/List and then use that variable for the test. In that event, the
on enter Key handler would look similar to this:

global toolList, enterCount
put number of words in toolList into maxTool

add 1 to enterCount
i f enterCount=maxTool + 1 then put 1 into enterCount
put word enterCount of toolList into toolChoice
d o "choose" && toolChoice && "tool"

e nd e n terKey

Incidentally, we could carry out this processing without de­
fining a global variable by testing for the value of the current
tool and changing to the next one in the cycle:

on enterKey
if the tool is "browse tool" then choose button tool
-- and so on for the other tool combinations

end enterKey

Script-modifying scripts

In an advanced stack design - one, for example, that imple­
ments an expert system - it may be necessary for a script to
modify another script before it is executed.

e­
nt

Jle­
t to

377 HyperTalk Tips, Traps, and Techniques
----------------------~

WARNING

It is considered bad programming style to write
programs that modify themselves or other programs.
This is no less true of HyperTalk than it is of, for
example, LISP or Pascal. You should generally try
to find a way other than dynamic script modification
to accomplish your task. The text contains a brief
discussion of such alternatives.

When you have a script that modifies itself, be aware that
the modified script does not execute until the next time its mes­
sage is received. Let's take a simple example:

on enterKey
put script of me into tempScript
put "beep 5" into line 5 of tempScript
set script of me to tempScript
beep 1

end enterKey

It would seem from an examination of this script that the
third line modifies the number of beeps to be sounded before the
beep 1 line is encountered. You might therefore expect to hear
five beeps the first time you execute this handler. But that is not
the case. While HyperCard is executing a script, it puts the script
into a special buffer. When you modify the script, you are modi­
fying the stored copy but the original continues to execute. How­
ever, after you carry out the previous script, you can open the
script and find that line 5 has indeed been changed to beep 5.
The next time you press the Enter key, you'll hear five beeps.

Using put commands, you can carry out major surgery on a
script as a consequence of executing it or another script. You can
add new commands with put before and put after or, as we have
seen in our small example, modify existing lines by replacing
them with put into commands.

Most of the time when script modification seems like the
best or only way to accomplish something, you can find a better,
safer way. Programs and scripts that modify themselves or are

378 Chapter Twenty

modified by other scripts "on the fly" can pose maintenance
nightmares. In this example, you might think you need to change
the script under some circumstances so that it beeps more than
once. But by defining a global variable, you can accomplish the
same thing without script modification. For example, if you want
to modify the number of beeps only if today is Thursday, you
might modify the previous script example as follows:

o n e nterKey
put the date into toda y
convert t oday to d a t e items
if i t e m 7 of today =5 then -- O=Sunday; 5=Thursday

put s cript of me i nto tempScr i p t
put "beep 5 " into line 13 of tempScript
b e e p 5

end if
beep 1

e nd e n terKe y

But it is more straightforward and safer to set up the handler
like this:

on enterKe y
put the date into today
conve rt t o d a y to dateit ems
if i t em 7 of t oday=5 t hen beep 5 else beep 1

e n d e nterKey

Clearly, you would never modify a script dynamically for
something this trivial. But if you examine situations where you
believe you need to carry out such modifications, you will usual­
ly find that you can avoid the seeming necessity by changing a
variable or installing some new logic.

One place script modification is probably defensible is in
set-up routines. Suppose you have a handler that executes only
the first time a user opens your stack, and you don't want it to
execute later. You can simply delete it from the script so that it

e
e
n
e
lt
u

~r

tr
u
l­
a

n
y
0

it

379 HyperTalk Tips, Traps, and Technjques -------------------------

won't appear on all subsequent uses of the stack. This can be a
good way to post a notice about piracy, for example.

Making words in fields active

There are many occasions when we want to let the user click on
a word in a field and then do something depending on which
word is clicked. But there's an apparent dilemma here. The
mouse messages - mouseDown, mouseStillDown, and mouse­
Up-- are only sent to a field if its lockText property is set to
true. But when the field's text is locked, the user can't click on
anything in the field because the cursor never becomes the !­
beam, which lets the user edit the text.

The solution is to fool HyperTalk: into thinking that the
word has been double-clicked after the text has been unlocked,
then resetting the lock on the text. Here's a skeleton of such a
handler:

on mouseDown -- note : not a mouseUp handler !
set lockTe x t of me t o fa l se -- mus t start out locked
c l i ck at t h e clickLoc
c lick at t he c lickLoc
-- process t he s election (see text discussion)
set lockText of me to true

end mous eDown

After the two click lines execute, the word that is at the
clickLoc is highlighted. In HyperCard terms, that means it is
now identified by the special variable the selection. So you can
now do whatever you need to do based on the content of the
selection. In the following example, we've used this technique to
create what amounts to a field used as a menu from which the
user chooses an action. Figure 20-5 shows what the rudimentary
card looks like. The field is used as a list of choices from which
the user makes a selection by clicking once.

380 Chapter Twenty

• File Edit Go Tools Obj ects

Click on the Menu Selection You Want:

-Cholce2
Cho1ce3

Figur e 20-5. Using a field as a menu

First, the field script:

on mouseDown
set lockText of me to false
click at the clickLoc
click at the clickLoc
if the selection is empty then

set lockText of me to true
exit mouseDown

end if
send the selection
set lockText of me to true

end mouseDown

Note that the framework of this script is identical to the handler
outlined earlier. Unless the selection is empty (as would happen
if the user clicks on a blank line in the field), the handler simply
sends the message so that an appropriate handler can deal with
it. Here's the simplified but instructive card script that accompa­
nies the field script:

Uer
)en
ply
lith
.pa-

381 HyperTalk Tips, Traps, and Techniques

on Choicel
play "boing"

end Choicel
on Choice2

play "harpsichord"
end Choice2
on Choice3

beep 3
end Choice3

Obviously, your script will do something more exciting or
useful than play sounds, but the pattern will be the same. It is
also not necessary that any or all of the handlers for the menu
selections be on the same card or background as the field - as
long as they are higher up the HyperTalk hierarchy or you use an
explicit send command to get the message to the right handler.

Making navigation buttons zoom

Here's a quick technique we've found useful. You can make any
navigation button double as a zoom button by adding a handler
similar to the following to its existing script:

on rnouseStillDown
wait 30
go next

end rnouseStillDown

Now if users click on a button to move forward through
your stack (a right arrow), they move one card. But if they hold
down the button, they move swiftly through the stack a card at a
time. You can use a go previous in place of line 3 of this sample
script on a left-pointing arrow and get the same effect. By exper­
imenting with the delay in line 2, you can make the movement
very fast or quite slow.

Note that this script works only if the navigation button is a
background button, but such buttons are usually on the back­
ground.

382 Chapter Twenty

Highlighting text when selected

One problem with having the user select text in a field is there is
no feedback to indicate that text has been selected. If you are us­
ing the selection to indicate the word the user has clicked on, the
highlighting of the selected text gives that feedback. But you are
limited to actions in fields with locked text, and then only one
word at a time.

Another problem is that inverting text - i.e., making text
white on a black background - is sometimes distracting and not
aesthetic. When you want to provide visual feedback on text
being selected, you can use the technique described in this
section. It highlights the text with a rectangle when the mouse
button is pressed on top of the text and removes it when the
button is released. This unobtrusive form of highlighting works
well for fields where the text is locked.

The key to this technique is changing the style property of
the field surrounding the text by means of a button script like
this:

on mouseUp
set style of card field 1 to transparent

end mouseUp
on mouseDown

set style of card field 1 to rectangle
end mouseDown

This button overlays the text to be highlighted, and the text in
turn is all contained in one field. You can use adjacent fields to
permit the user to select any of several words or phrases. Each
field then has its own button.

Finding text by first letter of field

If you have a stack sorted alphabetically on the contents of a
field, you may want to be able to move directly to the cards
whose sorted field starts with a specific letter. But using Hyper­
Card's find feature won't do the trick because it stops on every
card that has the designated character anywhere in the field.

in
to

LCh

::>f a
ards
per­
very

383 HyperTalk Tips, Traps, and Techniques
----------------------~

This script stops only on cards that have the desired letter in
the first position of background field 1:

on locate letter
set lockScreen to true
repeat with counter = 1 to number of cards
find letter in field 1
if first character of field 1 is letter

then
-- process accordingly

end if
go next

end repeat
set lockScreen to false

end locate

Send the message locate "h" to this handler and it locates
each card in which h or H is the fJISt letter of background field 1.

Check box selection

Macintosh users are accustomed to seeing check boxes on lots of
screens. Unlike radio buttons (discussed next), check boxes are not
mutually exclusive. Of any given set of such button shapes, any
number from zero to all of them can be selected. Also unlike radio
buttons, a check box should de-select itself if it is selected when
the user presses on it and select itself if it isn't already selected.
There is a very efficient way of dealing with this requirement:

on mouseup
set the hilite of me to not the hilite of me

end mouseUp

The not turns the hilite property of the button into the opposite of
what it was before the button was pressed.

Radio button management

Radio buttons are very much a part of the Macintosh interface.
Many dialog boxes include one or more sets of these buttons,
and users have become accustomed to using them to select an

384 Chapter Twenty

option. Radio buttons are generally grouped into sets of two or
more mutually exclusive alternatives in such a way that selecting
one and "turning it on" results in all the others in the same group
being de-selected, or turned off. They get their name from there­
semblance between them and car-radio station-selection buttons,
where pushing any one of them selects a specific station and de­
selects the previously selected station.

The management of radio buttons is one aspect of Mac pro­
gramming that HyperTalk does not automate. You have to
handle it yourself. You define a set of buttons as a group simply
by the way you treat the user's interaction with them. Your script
has to turn off a selected button when another, incompatible one
is selected by the user.

In HyperTalk, there is one additional issue. If you put radio
buttons in the background of a stack but you want those buttons
to have card-specific values, you need to override HyperTalk's
normal processing, which is to have a background button appear
the same on all cards.

Grouping and selecting radio buttons. Let's look at a small
example of a card containing two sets of radio buttons, each set
having two buttons. This is small enough to be manageable, and it
demonstrates all the principles and techniques in dealing with
radio buttons in HyperTalk. The card we will work with is shown
in Figure 20-6. The two-button set on the left controls sound
effects. (This could be done with one button, with on meaning
sound effects are on and off meaning sound effects are off, but this
configuration serves our learning purposes better.) The right
group lets the browser decide to send information to a disk file or
the printer.

When we click on Sound Effects On, we expect the Sound
Effects Off button to be turned off. The opposite is also true.
Here are the portions of the scripts that handle this processing,
with the Sound Effects On button's script listed first:

on mouseUp
set hilite of me to true
set hilite of button "Sound Effects Off" to true

end mouseUp

r

p

;,

)­

~0

ty
pt
:le

.io
ns
;:'s
!ar

1all
set
d it
tith
tWO

Jnd
ting
this
ight
eor

mnd
:rue.
;ing,

e

385 HyperTalk Tips, Traps, and Techniques
----------------------~

on mouseUp
set hilite of me to true
set hilite of button "Sound Effects On" to fa l se

end mouseup

a file Edit Go Tools Objects

0 Sound Effects On 0 Send to Disk

0 Sound Effects Off 0 Send to Printer

Figure 20·6. Radio button demonstration card

Ill

Iii

Ill

"' ~
f.t
ill

~ ...
;
•
~

!I

Similar scripts would manage the other group of buttons. Notice
that even if the alternate button is already off or the selected one
is already on, the handler sends appropriate bilite messages.
There is little or no overhead to doing so, and this is more effi­
cient than checking the status of a button before deciding whether
it needs to have a message sent to it.

Where you have groups of several buttons, you will proba­
bly fmd it more efficient to design a repeat loop to turn off the
other buttons. In this case, using the buttons' numbers, rather
than their names, is appropriate. For example, suppose you have
four buttons numbered 5-8. You want buttons 5, 7, and 8 to turn
off when 6 is selected. Button 6's script could look something
like this:

386 Chapter Twenty

on mouseUp
turnOn 6

end mouseUp

The handler that deals with the turn On message, then, would be
at the card level or higher and could look like this:

on turnon buttonNo
repeat with counter = 5 to 8
if buttonNo=counter then set hilite of button counter to true

else set hilite of button counter to false

en.O.. 1:.e'j?ea'l:..
end tux:nOn

This approach can be generalized to account for any button
group as long as the buttons have consecutive layer numbers.
You might pass two parameters with the turnOn message, the
first parameter is the selected button's number and the second
identifies its group:

on mouseUp
turnOn 6,radioGroupl

end mouseUp

Now the turnOn handler needs to set the range of button numbers
in each group. Otherwise it is identical to our previous handler:

on turnOn buttonNo, groupiD
if groupiD = "radioGroupl " then

put 1 into start
put 5 into endButton

else
put 6 into start
put 11 into endButton

end if
repeat with counter - start to endButton
if buttonNo=counter then ~
set hilite of button counter to true else ~
set hilite of button counter to false

end repeat
end turnOn

387 HyperTallc Tips, Traps, and Techniques
--------------------~

Setting card-specific values. If you have a series of cards
with a common background and the background contains a set of
radio buttons, you almost certainly want to be able to vary the
contents of those buttons from card to card. But if you simply set
up the stack and scripts as described previously, you won't
achieve this objective. Each time you change the value of a radio
button on one card, it changes on all cards. This is not the way
HyperCard handles background buttons, so some scripting is re­
quired to get your stack to do what you want.

Basically, the strategy is simple. You store the values of all
the buttons on a card in an invisible background field when the
card is closed and restore the buttons' values based on those set­
tings when the card is opened. One way to do this that is easy to
understand and keep track of requires a hidden field where each
line contains the word true or false and corresponds to the button
number on that card (i.e., line 1 of the field has the value of but­
ton 1, line 2 that of button 2, and so forth).

Here is a sample of the handler that sets up the buttons cor­
rectly when the card is opened:

on openCard
repeat with counter = 3 to 5

set hilite of background button counter to ~
Line counter of field "Button Values "

end repeat
end openCard

In this example, the radio button group consists of buttons 3-5 on
the background. We leave the first two lines of the field blank (or
put false in them because they're used for the two navigation ar­
rows in this case) and then put true or false into the lines. You
have to set up each field's initial values when you create the invis­
ible field to contain the button values.

Now here's the handler that stores the buttons' values into
the field Button Values when the card is closed:

on closeCard
repeat with counter = 3 to 5

put hilite of background button counter into ~
Line counter of field "Button Values"

end repeat
end closeCard

Sumtnary
am

388 Chapter Twenty

Make the Button Values field invisible on each card and the
user will not be distracted by its appearance and changing values.

In this chapter, you have picked up a few hints about dealing
with scripting problems and their solution. Chapter 21 turns our
attention to making HyperCard more powerful by adding to and
supplementing the resources associated with it.

CHAPTER

=~
Extending HyperTalk
with Resources

In this chapter, you will learn

• what resources are and how they figure in stacks

• where to find and how to create resources

• two techniques for moving resources into stacks

• how to use resources after they are in your stack

Resources and HyperTalk

The idea of a resource is central to any Macintosh programming.
If you were developing applications on the Mac without the
benefit of HyperTalk, you'd be spending a good deal of time
defming, setting up, and managing resources. As it is, HyperTalk
does all required resource management for you. But adding

389

390 Chapter Twenty-One

things like special sound effects, icons, and cursors to your
stacks can make your stacks more interesting and effective.

What's a resource?

"Everything is a resource." That statement is only a slight
simplification of the crucial role played by resources in Macintosh
programming. All icons, cursors, windows, dialog boxes,
controls, menus, and other visible elements of a Mac program are
or can be resources. In addition, program code itself is a resource
(we'll have more to say about code resources in Chapter 22).

In some ways, resources resemble HyperCard fields and
buttons. They have a type, a name, an ID, and a position relative
to their surroundings.

Where are resources stored?

But just saying "everything is a resource" and enumerating
things that are resources hardly defines the term in any helpful
way. You can think of resources in another way that might help
you understand them better. But to understand this discussion,
we need a slight diversion into the world of Macintosh files.

Every Macintosh file, without exception, has two forks: a
data fork and a resource fork (see Figure 21-1). The data fork is
managed by the program without any built-in or automatic assis­
tance from Macintosh system software. The resource fork, on the
other hand, is managed and accessed by means of the system's
Resource Manager, a part of the powerful and extensive User In­
terface Toolbox that exists primarily in ROM on a Mac.

Quite often, a Macintosh program has an empty data fork.
We don't know of any applications that have empty resource
forks, though documents often do, particularly if they contain
only text.

The non-empty resource fork of any Macintosh file has a
structure like that shown in Figure 21-2. Each resource in a fork
has two entries: a resource map entry that tells the system the
type, number, name, and attributes of the resource, along with a
pointer to the resource data itself and a resource data entry that
completely describes the resource. Each type of resource - and

g
Jl
.p
n,

a
is
.s­
he
l'S
[n-

rk.
rce
ain

.sa
·ork
the
th a
that
and

391 Extending HyperTalk with Resources ---------------------------

there are several dozen identifiable types, some application­
defmed - has its own resource data format.

Information
peculiar to
the program,
managed by
application

Menus, windows, dialogs,
fonts, Icons, cursors, sounds,
and program code, managed
with help of Mac's Resource
Manager.

Figure 21-1. Two forks in a Mac file

Map to Cursor 4

Map to Dialog 2043

Map to Cursor 112

Figure 21-2. Structure or the resource fork

When you add resources to a stack, you are simply bringing
in a new resource data entry describing that resource, and the Re­
source Manager builds an entry in the resource map to access
that resource. Then, when you want to use the resource, all you
do is tell the Resource Manager, in effect, "Go get me cursor 4,"
and it knows where to find it and what to do with it.

392 Chapter Twenty-One

The role of resources in HyperCard

When you define a new button and click on the Icon button in
the Button Definition dialog, you may notice that the buttons to
which HyperCard takes you have numbers associated with them
(see Figure 21-3). Each number is a resource identifier. In
Figure 21-3, the icon has ID number 7012. Cursors and sound
effects are also stored as resources in HyperCard.

Icon ID: 7012 •steele Ideas•

~~mm~~(1)!Ll

[2]·~·~·0
oo~ (il@~-

~liD~D~~
~,&~[%]

None) n OK J) (Concel

Figure 21-3. An icon has a resource number

Where Do Resources Come From?

Now that you have an idea about what resources are, you might
be interested in adding some nifty new resource to the prize­
winning stack you're constructing. But where do you find re­
sources? There are at least four sources of resources:

• HyperCard itself includes quite a number of resources.

Jght
~ize-

1 re-

393 Extending HyperTalk with Resources -----------------------

• Other people's stacks often contain useful resources you
can copy using one of the techniques described later in this
chapter. Even non-HyperCard applications have usable
resources you can obtain. (Remember the caveat we
mentioned earlier about copyrighted material; some
resources are copyrighted.)

• Some special stacks contain only resources that you can use
in your stacks. (Again, be sure about ownership before you
use these in a commercial product.)

• You can create your own resources using specialized tools,
including some designed specifically for use with
HyperCard.

If you use a stack or another Macintosh application that has
an icon or a cursor you particularly admire or find suitable for
your stack, and assuming the owner of the resource permits its
use, you can use one of the techniques defined in the next section
to copy that resource directly into your stack.

Special stacks for resource use

From the early days of HyperCard, many people began to build
stacks with the express purpose of offering resources you could
use in your own stacks as well as some excellent facilities for
moving these resources into your stacks. Three that are particu­
larly noteworthy because of their elegance and wide availability
help you change the cursor, dabble with sophisticated-sounding
music, and add simulated speech to your stacks.

A stack called, directly enough, Cursor Stuff has found its
way onto many bulletin boards and into many user group public
domain libraries. This nifty little stack contains 63 different
cursor shapes (see Figure 21-4). Each cursor's resource ID
number is shown in the only card in the stack. Using ResCopier
or ResEdit, you can move any or all of these cursor shapes into
your own stack and then use them as you wish.

394 Chapter Twenty-One -----------------------

The stock, "3 been soled" hos the following cursors ottoched 0 to it. Use resedit ond the CURS resource to ottoch desired cursors
to your own stock.

(Moulng Cursor Demo) /1 Set Cursor to 64 (would chonge cursor to ~) ~

~ ~
1000 1001

0 e
310 40

0 +

707 103

....
100

~ Q ~ ~ e ~ ~ ~ y> p 0 • 0 0
1002 1003 1004 1005 1006 1007 1009 65 64 63 62 61 32 31

~
21

~ ~ ~ ~ 6 ') ? ~ " t> ~ <:7 c::> 0
500 30 305 989 71 25 263 702 704 700 706 701 70S 703

0 + + + + + + * • ... Jl:. " l ~

20 12 331 321 322 323 324 260 10 329 H 330 328 101

~ t • t ' " ~ ~ ~ I X
262 300 73 304 303 302 301 72 307 308 306 102 400

Figure 21-4. Cursor Stuff stack's 63 cursor shapes

Another stack we grew to love early in our HyperTalk
scripting days is called Sound Advice and is the product of the
fertile mind of Paul T. Pashibin. The stack includes a number of
delightful sounds that you can add to your stacks simply by
copying the appropriate button (see Figure 21-5). This approach
to resource relocation in HyperCard seems to be catching on;
look for many more stacks to offer such facility.

Finally, Dennis C. DeMars has created a product called Hy­
perMacintalk that lets you add speech to your stacks. This is a so­
phisticated, yet easy-to-use stack that translates human-language
text into phonemes that you can then edit to refine pronunciation.
Figure 21-6 shows the main card in this stack, and Figures 21-7
and 21-8 display the vowel and consonant sounds and their pho­
nemes. You can see that it is possible to refme the pronunciation
of words quite nicely with this program. The stack consists of a
collection of external commands (XCMDs, the primary topic of
Chapter 22) that you can add to your stacks so that they, too, can
talk.

k
e
,f
y
h

y­
J-

~e
n.
-7
o­
Jn
:a
of
an

395 Extending HyperTalk with Resources

Sound AdviceTM @@]
Version 1. Number 1 - 9/7/67 •

(Mnchlne) (MeepMeep) (north Under)

(Deod) (Hi) (Song)

(SOK) (Rpplouse) (Harpsichord)

Figure 21-5. Sounds in Sound Advice stack

Phonetic

Figure 21-6. HyperMacintalk action card

396 Chapter Twenty-One -------------------------

I
MACINTALIC PHONEME TABLE

!1 made - EY
· bat - AE

I about -AX
talk - AO

I

beet - IY
bet - EH
better - ER

VOWELS

hide
bit
bird
solid

-AY
- IH
- ER
-IX

low -OW use
hot - AA under
power - A W urban
look - UH
soon - UW
border - OH
toy - OY

-UW
-AH
- ER

I

1
1. AXL

AXM

VOWEL CONTRACTIONS

l AXN

can be written as UL
can be written as UM
can be wri~n as UN

IXL
IXM
IXN

can be written as I L
can be written as IM
can be written as IN

I
I QX can be used to represent a silent vowel. I Show Consonants I

Figure 21-7. Vowel phonemes in HyperMacintalk

I MAC INT ALIC PHONEME TABLE

I CONSONANTS SPECIAL SYMBOLS

I but -B - s pity (tongue flap) - DX I soup I
I dog -D table -T kilLen (glottal stop) -Q I

I fed -F very -V call -LX
I guest -G wax -W car - RX

I hole -/H a.xe -KS
I judge - J yak -Y 1 - 9 are stress marks
I k.itchen -K zipper -Z sentence terminator

I lot -L check -CH ? sentence terminator

I must -M loch - /C clause delimiter
new -N rush - SH phrase delimiter

I push -P pleasure - ZH () noun phrase
quit -KW thin -TH

I rat -R then -DH

!I Show Vowels

Figure 21-8. Consonant phonemes in HyperMacintalk

397 Extending HyperTalk with Resources

NOTE

You may be tempted to copy these resources into
your Home stack where they will always be accessi­
ble to all your stacks. That is an acceptable strategy
provided you remember that when you sell or copy
the stack to someone else, you move the needed re­
sources out of your Home stack and into the new
stack. Otherwise, the user is going to have trouble
running your stack.

Creating your own resources

Several commercially available and public domain or shareware
programs enable you to create resources. Apple Computer
distributes a program called RMaker through the Apple
Programmers and Developers Association (see Appendix C for
information on how to contact APDA). It is part of the
Apple-developed Macintosh Programmers Workshop (MPW)
product line.

Other programs range from the easy-to-use Icon Maker by
Steve Fine to the powerful and relatively sophisticated Icon
Hacker by Joe Mastroianni. Both of these products are share­
ware and are widely distributed on bulletin board systems.

Creating sound effects is a little more difficult, as you can
imagine, but there are some commercial products to assist you.
One of the most versatile and affordable approaches is Farrallon
Computing's MacRecorder. This product consists of a sound
digitizer with a built-in condenser microphone and a jack for
connecting it to external sound sources such as stereos. It comes
with two major pieces of software to facilitate both the editing
and customizing of recorded sounds and their conversion to ap­
propriate formats for HyperCard use. Many HyperCard design­
ers have adopted MacRecorder as their sound digitizer of choice.

In Chapter 24, we look at a stack called Menus for Hyper­
Card! from Nine to Five Software. It is not, strictly speaking, a
resource creator, but because menus are generally viewed as re­
sources in Mac applications, we felt it deserved a mention here.

398 Chapter Twenty-One -----------------------

Moving Resources

A number of programs on the market enable you to move
resources such as icons, sound effects, and cursors between
Macintosh files. The most widely used is probably Apple
Computer's own ResEdit (for Resource Editor). Figure 21-9
shows a typical ResEdit screen with an icon selected and ready
to be copied to another application. ResEdit can be obtained
through your Apple dealer or APDA (Apple Programmer's and
Developer's Association; see Appendix C). It is relatively easy to
use, though you will occasionally need some technical
knowledge to understand what is going on.

A Hard Place I
Cl Telecom I
D ~ I con Hocker U 1.0 I D D DL =o= Icons from Icon Hacker Ul. Cl ~ Dto: ~ ffi) ffi) FR a 0 ~ IC
0 D IC
0 D JD
0 D ME
0 ~
[r5 PI

a ST 0 ...__
--

Figure 21-9. Typical ResEdit icon selection session

After you have located the icon or other resource you want
to move with ResEdit, simply use the Edit menu commands to
Copy it, then open the file in which you want to include it, and
Paste it into the right resource type. (This is something of a sim­
plification; you must be concerned about conflicting resource
numbers as well, but a complete discussion of the detailed use of
ResEdit is not our objective here. If you want to use the program,
read the documentation and only work on copies of flles that you
don't mind damaging if you encounter some difficulty.)

mt
to
nd
m­
~ce

of
Lffi,

rou

399 Extending HyperTalk with Resources ----------------------

If the resource you want to move is not located in another
HyperCard stack, you have to use ResEdit or a program like it.
(MiniServant, an application available on the HyperCard Goodies
1 disk through user groups and bulletin boards, has facilities for
such tasks as well. And there are dozens of programs to make the re­
location of icons, in particular, easier. Check with knowledgeable
Mac programmers in your area for advice and assistance.)

But if you want to shift a resource from one HyperCard stack
to another, you may prefer a superb stack called ResCopier writ­
ten by Steve Maller. Maller is a well-known Mac guru, author,
and trainer who works for Apple Computer outside the Hyper­
Card area. The stacks and products he wrote that we discuss here
and elsewhere in this book are not officially supported Apple
products, but rather his own work. Like most of the other prod­
ucts we mention in this book, ResCopier can usually be found on
your local bulletin board, on one of the national BBSes, or at a
user group meeting. This stack operates much like Apple's useful
Font/DA Mover and is well-documented on-line. Figure 21-10
shows the process of moving a sound resource from one Hyper­
Card stack to another. The process is as simple as clicking the
mouse a few times.

This discussion of resource movement in HyperCard has
not been exhaustive. Additionally, the world of HyperCard pro­
gramming tools is increasing quite fast, so by the time you read
this there may be a dozen slick new ways of moving resources.
With the assistance of tools like those discussed here, you can do
a lot to make your stacks more effective and efficient without
having to do a great deal of heavy-duty Macintosh programming.
Consider this a starting point, not the final word.

Using Resources

After a resource has been added to a stack, you can use it like
any other resource that was there when you obtained HyperCard
or a specific stack. HyperCard cannot tell the difference be­
tween "original equipment" and "added accessories" when it
comes to resource files.

400 Chapter Twenty-One
- ---

"ResCopy" XCMD

ResCopiJ ts ~n ~ttempt ~t ~ friendlier ~nd nfw Ruource copying
tool. Click "Help With RtsCopiJ" below for more inform~tl~;, ,
Pass this on to lilly one who c~n use it .
YOU MAY JIOLCHARGE MONEY FOR THIS.

<I> 1987 Apple Computw
All Rights Reserved

Send comments ¥1d/or bugs to :
Steve M~ller
Apple Computer
AppleLtnk : MALLER I ~:})liD
MCI M~il : SMALLER
Cornpuserve : 70436,1745
Delphi : STEVEHALLER
~clntosh Tribunt BBS (415) 923-1235

Figure 21.10. Using ResCopier to move resources between stacks

Thus, if you add a new icon to the repertoire of those available
in HyperCard, you can use it like any standard icon. For example:

set i con of button 4 t o " Smiling Face"

The same is true of new cursors:

set c u rsor to 603
Any valid cursor resource number can be used.

Sounds are treated the same way as built-in sounds, called
into effect with the play command:

play " Applause"

and can even use the tempo and note-value arguments that are
normally associated with "music." Some startlingly good sound
effects are available in sources such as those outlined earlier in
this chapter.

i
n

40 1 Extending HyperTalk with Resources -----------------------

Summary

Extending the look, feel, sound, and utility of your stacks with
resources you create or with resources borrowed from others can
be fairly easy and quite effective. In this chapter, you learned
what resources are, how they are used in HyperCard, and how to
move them from other applications and other stacks into your
own stacks. You also saw that, from HyperCard's perspective,
there is no difference between these added resources and the
ones it originally had, so they are used the same way.

In Chapter 22, we delve into the extension of HyperTalk by
the special kind of resource called a code resource through the
use of mysterious-sounding XCMDs and XFCNs.

CHAPTER

Extending HyperCard
with XCMDs and XFCNs

H yperTalk is a plainly powerful· and obviously elegant pro­
gramming language. HyperCard is a powerful, and forgiving
development environment. So why would you want to extend its
capabilities? In this chapter, we will answer that question and
address such other issues as

• how XCMDs and XFCNs differ from full-blown Macintosh
applications and desk accessories

• the basic principles of design in XCMDs and XFCNs

• the nature of the tools furnished by Apple through APDA
for the design and implementation of external routines and
their incorporation into HyperTalk

• using the HyperCard Developer's Toolkit from APDA and
the Apple-supplied routines it contains to build XCMDs and
XFCNs in Pascal and C

• compiling and linking external routines under MPW

403

404 Chapter Twenty-Two -----------------------

• traps and pitfalls to avoid in building external routines for
inclusion in your stacks and those of others

A caveat before we begin: the material in this chapter
involves programming in more conventional programming
languages such as C and Pascal. It is more technical than the rest
of the book. If you don't understand C or Pascal or if you do not
see a need to extend the language capabilities of HyperTalk, you
can safely skip this chapter. Nothing that follows this chapter
assumes you have read and understood it.

Incidentally, at this writing there are no files available to al­
low you to create external routines for HyperCard in BASIC,
LISP, Prolog, Logo, or other popular languages. But a number
of software publishers have discussed with us their plans to
create such files. If your favorite language isn't listed here, con­
tact the manufacturer of your software. The chances are good
that they will be publishing the necessary routines.

What Are XCMDs and XFCNs?

An XCMD is a command added to HyperTalk's vocabulary by a
program written outside HyperCard, typically in C or Pascal but
also in assembly language, and incorporated, or "glued," into
HyperCard. An XFCN is the same as an XCMD except it is a
function that returns a value rather than a command that is not
expected to return a result.

These external routines are similar to Macintosh programs
in that they are written in traditional high-level languages and
perform some function. They differ from applications because
they have no header bytes. They differ from desk accessories in
much the same way, though they more closely resemble desk ac­
cessories than they do full-blown Mac programs. (Actually these
external routines can include header bytes as long as the first
byte they contain is executable code. The same is true of desk
accessories, but in practice this turns out to be a fine point most
programmers ignore.)

XCMDs in particular, but also XFCNs, typically rely
heavily on HyperCard to furnish a hospitable and manageable
environment in which they can reside. Most routines use the user

l

1

e
;t
k
5t

.y
le
er

405 Extending HyperCard with XCMDs and XFCNs ----------------------

interface built into HyperCard rather than make calls to the
Macintosh's ROM Toolbox routines themselves. This means
they differ markedly from full-scale applications, which manage
the entire user interface. Generally, Mac applications are much
larger and more complex than XCMDs and XFCNs.

This is not to say, however, that XCMDs and XFCNs are
trivial. On the contrary, we have seen several XCMDs that were
more than 1000 lines long. Such XCMDs can carry out sophisti­
cated processing that is beyond the scope of what HyperCard and
HyperTalk were designed to do.

Why design external routines?

HyperCard creates a specialized environment for itself. In doing
so, it isolates the programmer from the myriad details contained
in more than 900 ROM toolbox calls that facilitate and define the
Mac's distinctive user interface. On one hand, this isolation is
good; it frees the programmer to concentrate more on solving the
problem and less on presenting the solution to the user.

On the other hand, if you need to accomplish something in a
script that is outside the range of HyperTalk's built-in com­
mands, you could be quite frustrated were it not for the ability to
extend the language through XCMDs and XFCNs. For example,
there is no way in HyperTalk to find a file outside HyperCard by
name with the usual file-opening dialog. As we will see later in
this chapter, a perceived need for such a facility led to the devel­
opment of an XCMD set to handle files in a more comfortable,
Mac-like way.

Specialized math routines, management of color and color
QuickDraw (on the Macintosh II), and the like are all candidates
for XCMDs and XFCNs. If you are scripting along and find a
need for a command that isn't built into HyperTalk, you might
consider tackling the design and construction of an XCMD or
XFCN.

Using external routines

After an external routine - XCMD or XFCN - has been "glued"
into a stack, the commands it contains or the functions it defmes

406 Chapter Twenty-Two ----------------------

can be used as if they were HyperTalk built-ins. As we saw in
Chapter 19 when we described the process of defining your own
functions, these additions become, for most practical purposes,
part of the HyperTalk fabric.

Thus, as we will see, if an XCMD called fileName has been
defined and glued to the stack and requires that the name of a file
be supplied as an argument, we can easily code right in Hyper­
Talk:

fileName{<arguments>)

and expect that the XCMD will perform some specified file
function. In the case of the example later in the chapter, the
fileName XCMD is used to gain access to files in a way that is
identical to the way you access files outside HyperTalk.

Designing External Routines

The process of designing external routines for HyperTalk is not
difficult or obtuse. You simply approach it as you would any
other programming problem.

You can write XCMDs and XFCNs without knowing much
about programming the Macintosh in detail, particularly if you use
sets of libraries of functions that will undoubtedly become
available. If, on the other hand, you're writing an XCMD that
demands the use of a number of Mac interface routines, you may
have to delve deeply into the inner workings of the machine. In
that event, you will need more help than this chapter provides. You
should pick up copies of Stephen Chernicoff's comprehensive
Macintosh Revealed and Scott Knaster's highly readable and
practical How to Write Macintosh Software. Both are available
through Howard W. Sams & Co. The ultimate authority on
Macintosh programming is Apple's own Inside Macintosh library.
If you are a Certified Developer (see Appendix C for details), you
can also receive frequent Technical Notes from Apple Computer
to keep you abreast of changes, bugs, and other important
information.

In most ways, designing an external routine for HyperCard's
use is not much different from designing any other Macintosh
program. The key difference is that an XCMD or XFCN must be

l

r
t

s
n
e

407 Extending HyperCard with XCMDs and XFCNs ------------------------

a standalone module that can be brought into HyperCard as a
code resource and has no header bytes. In many ways, XCMDs
and XFCNs are similar to the popular Macintosh FKEYs, which
began appearing in the past year or so. HyperCard requires that
these externally generated commands begin with executable code
at the first byte of their location.

Connecting these code resources into HyperCard then
requires the use of a resource relocating program such as Apple's
ResEdit or Steve Maller's ResCopier. (See Chapter 21 for a brief
discussion of resources on the Mac.) You can, of course, supply
a button in a stack that automates the movement of resources.

Tools for Adding External Commands
I I 11!1111 1!!!!1 ;; ll!llllll!!l!fiiiiii!I!JJJI!I!I!I!!!I !!!!111111!! I I IIIIII!!!J!!!!JIIII!II!!I!III!!!!JIII!!IIIJ!!JI!II!ISJ

In designing HyperTalk, Dan Winkler created an interface that
accommodates interaction between HyperCard and the outside
world represented by code resources. The APDA-distributed
HyperCard Technical Reference has three components, one of
which is a disk of examples and some brief documentation on
how to design and connect external commands. With interface
routines supplied in the APDA package, you can send
HyperCard a message, perform other useful conversions, and
retrieve or change field values. (As with other product-specific
information, this description is of course subject to change as the
documentation and toolkit evolve.)

Two key files make up the interface between your external
program code and HyperTalk:

• HyperXcmd.p (or HyperXcmd.h for C programmers),
which contains the definitions for the interface routines
between HyperTalk and Pascal (or C)

• XCmdGlue.inc (in Pascal or C), which defines those
interface routines

A total of 29 interface routines are in these files. A discus­
sion of the entire set of interface procedures is beyond the scope of
this book; if you are interested in the subject, buy the HyperCard
Technical Reference from APDA. We will look at four of the most
frequently used routines. An examination of how they work can

408 Chapter Twenty-Two ----------------------

be directly applied to the other XCMD and XFCN interface rou­
tines in the APDA manual. The four we will discuss are

• SendCardMessage

• EvaiExpr

• PasToZero

• ZeroToPas

SendCardMessage

The SendCardMessage routine takes a single argument, a zero­
terminated C-type string, and sends it to the currently active card
in HyperCard. The string can be any valid message, including
parameters, that you could send to the card if you were in the
HyperCard Message window or running a HyperTalk script. For
example, if your XCMD needs to create a new card in Hyper­
Card, it can execute an instruction like this one:

SendCard.Message(' doMenu "New Card" ');

There is no need for you to define these messages. Because
you are effectively in HyperCard when the message is sent,
HyperTalk handles the message as if it had come from any
HyperCard object.

EvalExpr

The EvaiExpr command is a very powerful interface command.
It allows you to evaluate HyperCard functions and expressions
within your external routine. A simple example of its use is
checking the HyperCard variable the result to see if a find or go
to operation has succeeded:

thingsOK := EvalExpr('the result');

This command causes HyperCard to look at the result and put its
value into a memory location from which your XCMD can

y

d.
ns
is
go

its
:an

409 Extending HyperCard with XCMDs and XFCNs ------------------------

retrieve it. (Because this memory location is established by the
interface routines, your program need not be concerned with it.)

PasToZero and ZeroToPas

The last two interface routines translate Pascal-type strings to
and from C strings. The maximum length of a Pascal string is
only 255 characters. Strings in HyperCard, on the other hand,
can be arbitrarily long. So the interface routines between Hyper­
Card and the outside world require the conversion of strings that
do not comply to the standard definition of a C string (i.e., those
that are not null-terminated). Similarly, if you are working in
Pascal, you need to convert returned strings from HyperCard into
strings with which Pascal can work.

If you are sending information to HyperCard, use PasToZero.
It converts the string supplied as an argument into a null­
terminated string and returns a handle to the converted string. If
you are dealing with a string returned by HyperCard to your pro­
gram, use ZeroToPas to convert the null-terminated string into
one with which Pascal can deal.

A Template for XCMDs and XFCNs

Here is a blank-form template for the creation of XCMDs and
XFCNs, written in Pascal syntax, though adapting it to C would
not be difficult. Items of particular interest or items peculiar to
the HyperCard interface process are discussed in comments to
the code.

I$S Segment-Name} (* The segment name must be the name you intend
users to use when they call the command. *)

UNIT WhoCaresWhat Name (*Required for form, but name is immaterial *)

PROCEDURE ENTRYPOINT (paramPtr: XCmdPtr) ;
(* Lets HyperCard know where to call you back. *)

410 Chapter Twenty-Two

IMPLEMENTATION

TYPE Str31 ,.. String[31);
(* Required by XCrndGlue. inc - do not omit!*)
(* other implementation TYPE declarations you need *)

PROCEDURE Segment-Name(paramPtr: XCmdPtr);
FORWARD; (* must declare your procedure as FORWARD; see next

instruction*)

(* The following code must appear substantially as shown, though you
must substitute the name of your procedure in the Segment-Name
slot. This makes your XCMD re-entrant as required for interaction
with HyperCard.*)

PROCEDURE ENTRYPOINT(paramPtr: XCmdPtr);
BEGIN

Segment-Name(paramPtr) ;
END;

PROCEDURE Segment-Name(paramptr: XCmdPtr);
VAR

(* declare your local variables *)
($I XCmdGlue.inc} (* must appear after your VAR declarations and

must not be omitted *)
BEGIN

(* your procedure goes here *)
END;

END.

Nature of External Commands

XCMDs and XFCNs, because of their unique nature and unique
interaction with HyperCard, have some intriguing and important
character traits you need to understand if you are planning to write
external routines. Steve Maller, author of the sample XCMD we'll
discuss later in this chapter and several other programs involving
the extensive use of XCMDs, says, "XCMDs and XFCNs are
strangers in a strange land. They are only moderately welcome
visitors there, and it is essential that they not only abide by the
rules but keep in mind their status."

Je
nt
ite
'11
ng
lie
ne
:he

411 Extending HyperCard with XCMDs and XFCNs -----------------------

For example, an external routine cannot define new global
variables that are recognized by HyperCard. Consequently, your
external routines must not assume that they are still known entities
after they have executed once and are about to be re-invoked. Un­
less you have a script with your XCMD - in which case you can
do a lot more but are more subject to user modifications -- you
just cannot be sure what the state of the Mac environment is as
your XCMD begins to run. In fact, you can't even be sure where
your code was called, especially if your XCMD relocates stacks
and cards as part of its processing.

Memory allocation is critical to the proper design and use of
external routines in HyperCard as well. You should allocate and
deallocate memory as you need it and dispose of any handles
your code either directly generates or requests from HyperCard.

Finally, notice that XCMDs are modal. This poses some
special problems. For example, if your XCMD doesn't run in a
window or dialog, you must be certain that the program is and
remains in the front window, especially with the advent of Multi­
Finder and the different ways it causes Mac programmers to treat
software design.

An Example XCMD

{ $S fileName }

One of the first things requested by early HyperCard users and
HyperTalk designers was the ability to open Macintosh files
within HyperCard without having to know their names. Steve
Maller, among other people, responded to that need. He agreed to
permit us to publish the Pascal source code for his XCMD called
fileName (with his sometimes-whimsical comments left intact).

UNIT Snoopy_Vs_TheRedBaron; {*obviously this is irrelevant*)
INTERFACE

USES
{$LOAD HD:Hyper:XCMDs:PasSyrnDump}
MemTypes, QuickDraw, OSintf, Toolintf, Packintf,

HyperXCmd;

412 Chapter Twenty-Two

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

IMPLEMENTATION

TYPE
Str31 = String[31];

PROCEDURE FileName(paramPtr: XCmdPtr);
FORWARD;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

BEGIN
FileName(paramPtr);

END;

PROCEDURE FileName(paramPtr: XCmdPtr);

VAR
myWDPB : WDPBPtr;
myCPB: CinfoPBPtr;
myPB: HParmBlkPtr;
fullPathName: Str255;
numTypes: Integer;
reply: SFReply;
typeList: SFTypeList;

{$I XCmdGlue.inc }

FUNCTION TheyChoseAFile: Boolean;

VAR
pt: Point;

BEGIN
TheyChoseAFile := FALSE;
pt . v : = 60;
pt.h := 82;
SFGetFile(pt, '' , NIL, numTypes, typeList, NIL, re­
ply);

(* have ' em pick a file *)
IF reply.good THEN

(* if they didn ' t choose Cancel *)
BEGIN

TheyChoseAFile ·= TRUE;

413 Extending HyperCard with XCMDs and XFCNs

fullPathName := reply.fName;
(* start the ball rolling *)

END;
END;

PROCEDURE BuildThePathName;

VAR
name: Str255;
err: Integer;

BEGIN
name := '' ;

(* start with an empty name *)
myPBA.ioNamePtr := @name;

(* we want the Volume name *)
myPBA.ioCompletion := pointer(O);
myPBA.ioVRefNum : = reply . vRefNum;

(* returned from SFGetFile *)
myPBA.ioVolindex := 0;

(* use the vRefNum and name *)
err := PBHGetVInfo(myPB, FALSE);

(* fill in the Volume info *)
IF err <> noErr THEN

Exit (FileName) ;

(*Now we need the Working Directory (WD) information because we're
going to step backwards from the file through all of the folders
until we reach the root directory *)

myWDPBA.ioVRefNum : = reply.vRefNum;
(* this got set to 0 above *)

myWDPBA.ioWDProciD := 0;
(* use the vRefNum *)

myWDPBA.ioWDindex : = 0;
(* we want ALL directories *)

err : = PBGetWDinfo(myWDPB, FALSE);
(* do it *)

IF err <> noErr THEN
Exit(FileName);

myCPBA.ioFDirindex := - 1;
(* use the ioDiriD field only *)

myCPBA.ioDrDiriD := myWDPBA.ioWDDiriD;
(* info returned above *)

414 Chapter Twenty-Two ---------------------------

err := PBGetCatinfo(myCPB, FALSE);
(* do it *)

IF err <> noErr THEN
Exit(FileName);

(* Here starts the real work - start to climb the tree by
continually looking in the ioDrParid field for the next directory
above until we fail ... *)

myCPBA.ioDrDiriD := myCPBA.ioDrParid;
(* the first folder*)

fullPathName : = Concat(myCPBA.ioNamePtrA,
reply.fName);

REPEAT
myCPBA.ioDrDiriD := myCPBA. ioDrParid;
err : = PBGetCatinfo(myCPB, FALSE);

(* the next level *)

' .' . ,

(* Be careful of an error returned here - it means the user chose a
file on the desktop level of this volume. If this is the case, just
stop here and return "VolumeName:FileName"; otherwise loop until
failure *)

IF err = noErr THEN
fullPathName := Concat(myCPBA.ioNamePtrA,

fullPathName);

UNTIL err <> noErr;

END; (* PROCEDURE BuildThePathName *)

BEGIN (* PROCEDURE FileName *)

' .' . ,

(* First we allocate some memory in the heap for the parameter
block. This could in theory work on the stack, but in reality it
makes no difference as we ' re entirely modal (ugh) here ... *)

fullPathName : = ' ' ;

myCPB := CinfoPBPtr(NewPtr(SizeOf(HParamBlockRec)));
IF ord4(myCPB) <= 0 THEN

Exit (FileName) ;
(* Rats! Not enough room*)

myWDPB := WDPBPtr(myCPB);
(* icky Pascal type coercions follow *)

myPB := HParmBlkPtr(myCPB);

415 Extending HyperCard with XCMDs and XFCNs --------------------------

END.

numTypes := 1; (* for SFGetFile *)
WITH paramPtrA DO

BEGIN
IF paramCount = 0 THEN

numTypes := - 1
(* FileName() -get all files *)

ELSE
BlockMove(params[1]A, @typeList[O], 4);

(* FileName("TYPE") *)

IF TheyChoseAFile THEN
BuildThePathName;
returnValue := PasToZero(fullPathName);

END; (* WITH paramPtrA DO *)

DisposPtr(pointer(myCPB)); (*Clean Up Your Heap! *)

END; (* PROCEDURE FileName *)

This program was written in MPW Pascal. To use it after
it's included in a stack, simply type its command name followed
by an optional file type:

fileName("fileType")

For example, if you want to look only at HyperCard stacks, code
a command like this:

fileNarne("STAK")

To look at all files, regardless of type, use:

fileName()

Maller provides the following example of the use of this
command in a script:

on mouseUp
put fileName("TEXT") into theFile
if theFile is not empty then

open file theFile
read from file theFile for 2000

4 16 Chapter Twenty-Two ------------------------

put it into bkgnd field 1
close file theFile

end if
end mouseUp

When the mouse Up script encounters the XCMD fileName,
it opens a standard dialog (called, in Mac parlance, an SFOpen
box because the Mac uses that command to open a standard file
open window and the SF stands for standard file). The user
selects a file name and processing continues.

NOTE

The Mac only supports Pascal strings for full path
names, so they must be limited to 255 characters.

An Example XFCN

{$R-}

UNIT DummyUnit;

One of our favorite add-on programs for HyperCard is Menus for
HyperCard! from Michael Long and Nine to Five Software. The
program's operation is described in some detail in Chapter 24,
but reproduced here is the Pascal source code for one of the
XFCNs it contains. This function implements a newMenu
command. The comments are sufficiently liberal that you can
probably figure out what's going on from reading them.

(* This XFCN implements a NewMenu function for HyperCard. It re­
turns 0 if it was unable to create a menu, or a reference number so
the menu can be accessed again by other menu commands.

Written by:
Michael Long of Nine To Five Software on September 1, 1987*)

I

' l ..

or
he
~4,

he
!lll

:an

30

417 Extending HyperCard with XCMDs and XFCNs ---------------------------

INTERFACE

USES
{$LOAD Hyper.LOAD }

MemTypes, QuickDraw, OSintf, Toolintf, Packintf,
HyperXCmd;

PROCEDURE ENTRYPOINT(paramPtr: XCmdPtr);

IMPLEMENTATION

CONST
MaxMenus
MenuStart

TYPE

16;

7777;

MD Handle
MDPtr
MyDataRecord

:: "MDPtr;
=- "MyDataRecord;

RECORD

kind : OSType; {used to identify our data}
next : MDHandle; {next mdh handle in list}
handles : Array(l .. MaxMenus) of handle;

END;
PROCEDURE AddMenu(paramPtr: XCmdPtr);
FORWARD;

PROCEDURE ENTRYPOINT(paramPtr: XCmdPtr);
BEGIN

AddMenu(paramPtr);
END;

FUNCTION GetDataHandle(which:OSType) : MDHandle;
CONST

VAR

windowList
messageWindow

wPeekPtr
wPeek
mdh
i

=: $9D6;
=: 5;

"WindowPeek;
WindowPeek;
MDHandle;
integer;

BEGIN

wPeekPtr ·=-pointer(windowList); {find window of handle}
wPeek := wPeekPtr";
WHILE wPeek".refcon <> messageWindow DO

wPeek := wPeek".nextWindow;

418 Chapter Twenty-Two ---------------------------

mdh := MDHandle(wPeekA.dataHandle); {get handle to list}
WHILE (mdh <> NIL) & {find old data if exists)

(mdhAA.kind <> which) DO mdh := mdhAA.next;
IF mdh = NIL THEN BEGIN {if doesn ' t exist then create it}

mdh := MDHandle(NewHandle(SizeOf(MyDataRecord)));
IF mdh <> NIL THEN WITH mdhAA DO BEGIN

kind := which; {save our type and put it into list}
next := MDHandle(wPeekA.dataHandle);
wPeekA.dataHandle :=handle(mdh);

FOR i:=l TO MaxMenus DO {initialize private data}
handles[i] := NIL;

END; {if not nil}
END; {if nil}

GetDataHandle : = mdh;
END;

PROCEDURE AddMenu(paramPtr :XCmdPtr);
VAR

mdh {our mdh handle)
menu Index
zsp

MDHandle;
integer;
ptr;
str255;
integer;
menuHandle;
integer;
integer;

{index into menu array}
{pointer to a zero-delimited string}
{pascal string} str

menuiD
mh
i
count

{id of new menu}
{menu handle for new menu}
{for loop index}
{number of parameters passed}

PROCEDURE DoJsr(addr: ProcPtr); INLINE $205F,$4E90;

FUNCTION PasToZero(str: Str255): Handle;
BEGIN

WITH paramPtrA DO

END;

BEGIN
inArgs[l] : = ORD(@str);
request := xreqPasToZero;
DoJsr(entryPoint);
PasToZero := Handle(outArgs[l));

END;

PROCEDURE ZeroToPas(zeroStr: Ptr; VAR pasStr : Str255);
BEGIN

WITH paramPtrA DO
BEGIN

419 Extending HyperCard with XCMDs and XFCNs ---------------------------

inArgs[l] := ORD(zeroStr);
inArgs[2] := ORD(@pasStr);
request := xreqZeroToPas;
DoJsr(entryPoint);

END;
END;

PROCEDURE Error(err :boolean);
BEGIN

IF err THEN BEGIN
paramPtrA.returnValue : = PasToZero(' O');
Exit(AddMenu)
END;

END;

BEGIN
paramPtrA.passFlag :=FALSE; {we handle this}
count := paramPtrA.paramCount; {get count}
Error(count<l); {exit if not enough parameters}
mdh := GetDataHandle('MENU '); {get data handle}
Error(mdh=NIL); {exit if GetDataHandle failed}
menuindex := 1; {find first free handle}
REPEAT

IF mdhAA . handles[menuindex]=NIL THEN LEAVE;
menuindex:=rnenuindex+l;

UNTIL menuindex>MaxMenus;
Error(menuindex>MaxMenus); {exit if none free}
menuiD := MenuStart; {get a menu id that isn ' t being used}
REPEAT

menuiD := menuiD+l;
rnh := GetMHandle(menuiD);

UNTIL rnh=NIL;
zsp : - paramPtrA.params[l]A; {get and convert menu name}
ZeroToPas(zsp, str);
rnh :- NewMenu(menuiD, str); {make a new menu record}
mdhAA.handles[menuindex) := handle(rnh); {save it for later}
FOR i : = 2 TO count DO BEGIN

{get, convert , and install menu items}
zsp := pararnPtrA.params[i)A;
ZeroToPas(zsp, str);
AppendMenu(rnh, str);
END; {for}

InsertMenu(rnh, 0); {insert the menu into the list}
DrawMenuBar; {draw the new menu bar}
NurnToString(menuindex, str); {return reference to this menu}

420 ChapterTwenty-Two

paramPtrA.returnValue ·= PasToZero(str);
END; {addmenu}

END.
This routine also illustrates how to reserve permanent

memory in HyperCard. An example of the command is:

put NewMenu("MyMenuName","Menulteml","Menuitem2") into myMenu

Compiling and Linking XCMDs and XFCNs
<!IIIIi IM!J® 182811 I I ~ l!al!lllllllf!l!llflil!fff!!!l!!f il!li!l II I I I I 1!111!1!11!11111111@@1!'

The process of compiling and linking external routines for inclu­
sion in HyperCard varies with the compiler. This discussion
uses MPW Pascal. We assume you understand how to compile
and link Pascal code and provide no explanation of the process
or the command set, which is fairly straightforward.

To compile Maller's fileName stack, type these commands:

pascal fileName.p
link -m ENTRYPOINT -rt XFCN=913 -sn MAIN=fileName d

-t STAK -c WILD a
fileName.p.o a
mpw:libraries:Interface.o a
mpw:libraries:Paslib.o a
-o "hd20:hyper:stacks:TestXFCN"

NOTE

The special character appearing at the end of all but
the last line of the previous command list is created
with an Option-D key combination. It tells MPW that
the command continues on the next line. It thus facili­
tates making such command lines more readable.

:lt

Lu­
on
ile
!SS

is:

421 Extending HyperCard with XCMDs and XFCNs -----------------------

The number assigned to the XFCN is arbitrary. The last
three lines may be associated with fuller directory path names
and will vary depending on how you have set up your files.

Insights, Tips, and Techniques

This concluding section discusses insider tips and special
techniques, as well as some traps and pitfalls, in designing and
writing XCMDs and XFCNs.

Checking the system

The Mac System File, in its most recent incarnations, includes a
special Toolbox command called SysEnvirons from which you
can obtain information about the operating situation in which
your XCMDs and HyperCard are running. Such data as the type
of CPU, whether there is a math coprocessor, the version of the
System File, and whether color QuickDraw is in effect can be
gathered by a call to this command.

By using this command, you can easily adapt your stacks to the
specific operating environment -- Mac Plus, MAC SE, or
Macintosh ll with color or monochrome display -- in which they
are implemented. Like all Toolbox commands, SysEnvirons can
only be called from an XCMD or XFCN, not from HyperCard itself.

Making sure the screen re-draws

All XCMDs and XFCNs operate as modal applications, which
means they don't allow the user to leave until he or she does
something. Most external routines run in a window of their own
because they can't run directly in HyperCard cards. When the
user quits your external process or it terminates by some other
means, HyperCard does not know about the window's disappear­
ance. As a result, it doesn't re-draw the underlying bit image.
Users are left with a large white space in the middle of their
card.

422 Chapter Twenty-Two -----------------------

You can avoid this problem by including three lines in your
XCMD, just after its window closes and before it returns control
to HyperCard:

sendHCMessage('set lockScreen to true ') ;
sendCardMessage(' go to this card');
sendHCMessage('set lockScreen to false');

The simple act of going to the card redraws it on the display. With
lockScreen set to true, the user won't see any of this activity.

Memory checking on a large external routine

If your external routine is particularly large, you may run out of
memory, perhaps even before the routine is loaded into RAM.
HyperCard is a notorious user of memory resources. To make
matters worse, HyperCard makes a copy of external routines
before it executes them. If you have a 20K-byte routine, for
example, you need 40K bytes just to load and begin to execute it

A good strategy for large routines is to segment the com­
mand or function into two or more code blocks. Make the first
one fairly small and design it so that it checks available memory
when it is loaded into memory. If there is not enough memory to
handle the entire command, display an alert dialog and graceful­
ly exit, leaving the user's original activities intact. If memory is
adequate, your first segment can load the second.

Besides checking for enough memory on a large routine,
you should also consider being sure you have a minimum of 64K
bytes available (for a small external routine) before you try to
execute your command or function. HyperCard does some
memory management "behind your back," as it were, and it is
safe to bet that if you are closer than 64K to the point of being
out of allocatable memory, you may want to stop processing and
give the user a safe exit.

Allocating and deallocating memory

Your external routines should allocate all the memory they need
and deallocate it when they are finished running. Disposing of
handles created by your program or in response to a HyperCard

r

,-
;t

y
to
Ll­
is

1e,
~K
to

me
tis
.ing
and

need
1g of
Card

423 Extending HyperCard with XCMDs and XFCNs ------------------------

command your program invokes is the task of your program.
Failure to "clean up" after yourself when your routine ends can
be a source of great difficulty in HyperCard's memory-intensive
environment

Accessing It from an external routine

Because your external commands and functions cannot use
HyperCard's global variable space, they cannot access directly
the value of the ubiquitous variable It. So you have to do some
neat side-stepping. For example, if you want to send an answer
message and retrieve the response, you have the problem of
getting at It. Your XCMD would send the message:

sendCard.Message("answer 'Are you ready?' with 'Yes' or 'No'");

But HyperCard puts the user's reply to the answer command into
It, which is not directly accessible from your XCMD. So you
have to send two more commands to HyperCard to retrieve this
value:

sendCard.Message('put It');
sendCardMessage('get the message');

Now It is returned as a normal value from HyperCard, and your
external routine can use it as needed.

Using quotation marks in messages

Because of the way HyperCard scans strings, you cannot use
double quotation marks inside strings. HyperCard stops
searching for the end of the string the instant it encounters a
second quotation mark. That creates a probable syntax error
because HyperCard does not receive part of the command. The
problem is that HyperCard just displays a syntax error message
and ends execution of your XCMD or XFCN. This makes
debugging such errors extremely difficult

Experienced Pascal programmers use a simple routine that
puts a string into a packed array of characters and scans for quo­
tation marks, replacing any it finds with single quotation marks.

424 Chapter Twenty-Two

Duplicate resource numbers

In a Macintosh resource fork, you can have two resources of the
same type with the same name, as long as the two have different
identification numbers (or resource IDs). Thus it is not uncommon
to have two menus with the same name that perform slightly
different tasks and are swapped as needed by the program that
accesses them.

But because the resource name of an XCMD or XFCN is
also that command or function's name as used within HyperCard,
duplicate names will pose a problem. HyperCard only executes
the first such command it encounters in the resource fork, and
there is no direct way to force it to do otherwise. So it is impor­
tant that you do not allow duplicate resource names with XCMDs
andXFCNs.

The best way to avoid such conflicts is to use a resource
moving program like ResEdit or ResCopier (see Chapter 21) to
move the code resource into the stack. Those routines check for
duplicate names and flag them for you as they relocate resources.

Don't hide HyperCard

The entire time your XCMD is executing, HyperCard is still run­
ning. Users of your command have a right to know that and in
fact may need to know it. To be sure they don't get confused on
this point, make sure any dialogs or windows you create don't
cover the entire screen area. Leave enough showing under your
application so that HyperCard is still visible.

Not all events are for you

In a normal Macintosh application setting, your application traps
for events that go on in the system and handles those that pertain
to it. If your application is the top window on the stack and a
window-related event is detected, you are expecting it to be for
your application. In HyperCard, that isn't always the case. You
need to be sure the message you are handling is intended for
your routine and not for HyperCard.

1

:1

t
If

ps
1in
L a
for
·ou
for

425 Extending HyperCard with XCMDs and XFCNs ----------------------

Summary

No single chapter in a book about HyperTalk could make you an
expert in designing and constructing XCMDs and XFCNs, which
are really mini-applications on the Macintosh. But in this chapter,
you saw the general process involved, were given a Pascal
template to follow in creating your own, saw an example of a
working XCMD and how it was written, linked, and compiled,
and were given some practical advice about designing and
implementing external routines.

CHAPTER

Designing Stacks

I n this chapter, you will be given a number of tips related to the
design of HyperCard stacks. These tips include such topics as

• how the nature of the data your stack will contain relates to
its design

• the trade-offs between multiple stacks and multiple­
background stacks

• consistency in card and background layout and in stack
design

• user-oriented button design

• communicating with the user

427

428 Chapter Twenty-Three -----------------------

Two Caveats

There are two general ideas to keep in mind as you read thls
chapter. First, suggestions in this chapter are just that -
suggestions. They are neither rules nor official guidelines. They
are just ideas that grew out of examining hundreds of stacks,
creating a dozen or so of our own, and talking to lots of other
HyperTalk scripters. They also grow out of our several years'
experience using and writing about the Macintosh.

Second, Apple Computer will undoubtedly publish official
stack design guidelines. Ar.ple has pioneered the issuance of for­
mal guidelines through its Human Interface Group. When those
guidelines are published, you should get them, read them, and
take them to heart. If what they say conflicts with what's in thls
chapter, Apple is probably right.

Before You Begin Stack Construction

Designing a stack is not totally dissimilar from other program­
ming tasks you may have undertaken. At the beginning of any
task involving information management, it's a good idea to ask
yourself two basic questions:

• Who is the ultimate end user of this program and what does
he or she know?

• What approach to the organization and management of this
information will best enable the user to find and use it?

In this case, the user's identity is reasonably well known.
Your stack's users will almost certainly be people who have used
the Macintosh previously. There's also a good chance they will
have at least a passing acquaintance with HyperCard. It is possi­
ble that your stack will be used by someone to whom both the
Mac and HyperCard are new. Helping such users get started in
the use of your stack may take a fair amount of effort and per­
haps some written documentation or an orientation stack.

Less predictable than the likely end user of your stack is the
nature of the data that the stack contains. With HyperCard, you

1

e
u

429 Designing Stacks ----------------------

can store data in a single stack or in a group of connected stacks
that are closely related, loosely related, or virtually unrelated. If
the information is related, you may connect it in any of several
ways, including:

• linearly (sequentially)

• hierarchically (tree structured)

• non-linearly (quasi-randomly)

• combination of these

Each type of informational relationship can influence the
way you organize your stacks. For example, if the data in your
stack is linear -- i.e., if the user is likely to want to view it in se­
quence most or all of the time -- you will use straightforward
navigation approaches to movement. This means not much exot­
ic linking is involved and probably very little programming is
needed to accomplish navigation-related tasks. Figure 23-1 is a
schematic of a sequentially organized stack.

Card A

Figure 23-1. Linear stack organization

Hierarchically structured data, on the other hand, implies
that the browser has multiple options at many points in the
navigation process. Figure 23-2 depicts this type of data

430 Chapter Twenty-Three --------------------------

organization. Quite often one or more of these multi-path cards
calls for a different background to differentiate it and to make it
operate as expected. In addition, navigation not only requires
forward and backward buttons but also links to other points in
the stack or in related stacks.

Card 1
Background A

T
l T l l

Card 2 Card 3 Card 4 Card 5
Background B Background C Background 0 Background E

/~ l ~
Card 6 Card 7 Card 8 Card 9

Background B Background B Background 0 Background E

/~ T
Card 10 Card 11 Card 12

Background 0 Background 0 Background E

T
Card 13

Background E

!
Card 14 Card 15 Card 16

Background 0 Background 0 Background E

Figure 23-2. Hierarchical stack organization

When data chunks-- typically stored as cards in Hyper­
Card - have multiple entry and exit connecting points, the· data
is organized non-linearly, as shown in Figure 23-3. In this kind
of stack, navigation is ad hoc, and each card probably has no but­
tons to move to the next card or a previous card, but may have
many linking buttons. This kind of information requires a
sophisticated level of thinking and planning.

i

i
.-
e
a

431 Designing Stacks ------------------------

Figure 23-3. Non-linear stack organization

Much of the data we work with in everyday life, whether it
is stored in HyperCard or on 3x5 index cards, is organized by a
combination of linear and non-linear means. Such a structure can
be conceptualized as looking like Figure 23-4. The horizontal
portion of the structure has a linear organization in the illustra­
tion, and the vertical portion is somewhat tree-structured, though
also quite linear. Yet the overall structure is neither tree­
structured nor linear.

If the data you are working with requires a mixed organiza­
tion, navigation controls require both back and previous buttons
as well as linking buttons. The impact of the type of data organi­
zation is not confined to navigational issues, but these are the
ones that are most obviously and directly affected as a rule.

432 Chapter Twenty-Three -----------------------

D

Figure 23-4. Mixed stack organization

Add Stacks or Backgrounds?
Cilli I

When you have data of more than one type in a stack, you
typically must decide how to treat the different types of
information so that the user understands it and the amount of
programming, disk space, and execution time is minimized.
There are two approaches:

• create separate stacks and link them at appropriate points in
the navigation or execution process

• stay with one stack and create separate backgrounds for
different types of data

Neither approach is inherently better than the other, and
sometimes you may want to mix the two approaches, using
separate stacks with stacks that have cards of two or more
backgrounds. How will you make these decisions? There are no
hard-and-fast rules, but here are some principles you can use in
deciding on the best approach for your stack.

I

1

f
f

[l

If

d
_g
:-e
tO

in

433 Designing Stacks ----------------------

STACK VERSUS BACKGROUND PRINCIPLES

1. A single stack with multiple backgrounds
increases retrieval speed, reduces scripting and
makes copying and downloading easier than
when multiple stacks are used.

2. Multiple stacks make the best sense when data
can be subdivided and some or all users might
not want or need to access certain parts of the
data.

3. The minimum overhead for a stack is about 8K
of disk space, so using multiple stacks can
become costly in terms of disk storage.

4. The standard HyperCard find command will not
work across stack boundaries, so if this is the
primary or sole means for your user to navigate
through your application, a single stack is
dictated. (You can write a handler to extend
HyperCard's find command to cross stack
boundaries.)

5. The same is true of the print command. If the
user needs a report containing information of
more than one type, you have to use a single
stack with multiple backgrounds, modify the
print command with your own handler (a
difficult task at best), or use one of the reporting
routines discussed in Chapter 24.

Consistency in Layout and Design

You should strive for consistency in your stack designs so that
users are comfortable with how your stacks work and focus on
their content and substance rather than their form. Consider this

434 Chapter Twenty-Three -----------------------

consistency issue in relation to background layouts, navigation
techniques, restoring the system to its original state, and the user
interface.

Background layouts

Basic stack design begins with the background. Most stacks have
only one background, though easy but clever approaches can
make them appear to have more than a single background.

An easy mistake to make in designing stacks, particularly
when you first begin to explore the power of HyperCard, is to
over-design the backgrounds. If you have too many varieties of
backgrounds or backgrounds that are simply too intricately
designed and cluttered, you will confuse the user. When you
analyze the data the stack will present, you can generally find
ways of dividing the information conceptually into a small
number of subclasses. Use backgrounding or separate stacks for
those divisions and leave the rest of the stack as a unified,
consistent-looking whole.

Navigation techniques

As users navigate through the stack, they should be comfortable
with each card as new information of the same kind is presented.
The only time the stack or card design should cause the user to
stop simply flowing along with the presentation of information is
when the nature of the information changes. For example, when
you move from the annual calendar to the weekly calendar to the
daily appointment list or notes, the background should be
different. The user needs to be aware that the rules may have
changed; navigation is different now and the information is
different as well. On the other hand, if you have different
backgrounds for June's calendar and December's, you ought to
have a very good reason for that and the reason ought to be one
your user can understand.

1

{

)

f
y
u
d
11
)f

:l,

•le
~d.

to
. is
en
:he
be
LYe

is
ent
t to
)ne

435 Designing Stacks -----------------------

Leaving things as they were

Another aspect of consistency has to do with a fundamental
principle of HyperTalk design: leave things as they were. If the
Message box was visible when the user started using your stack,
make sure it's still there when the user quits your stack. If the
user's access level was set to authoring (i.e., 4) before the user
opened your stack, be sure to return it to that level at the end of
your stack.

If you do anything to alter the environment during your
stack's execution, do yourself and your user a favor. Store the
original state of things, and return to that original state as part of
an on closeStack handler. Be sure to include in this original state
the tool that was in use. This will almost always be the browse
tool, but be certain that users don't find themselves unable to do
something just because you've changed the tool and failed to re­
turn it to its original state.

Usage management

During usage of your stack, be sure that things the user notices
and uses are consistent from card to card and background to
background. This usually requires moving handlers higher up
the hierarchy than might at first seem necessary.

For example, if a field on a card is always the one users
want to enter information into first, make sure the insertion point
always appears in that field when users change cards or add a
card. This usually means that the handler that puts the insertion
point in the right place belongs at the background or stack level
and not at the card level where it could be inadvertently modified
during development or later maintenance. With the object-like
nature of HyperTalk, later modifications are much easier if you
keep these handlers high enough in the hierarchy rather than dis­
tribute them throughout the cards.

A tip: protect the form

It is important that you design your stack so that the casual
browser cannot inadvertently change something that makes the

436 Chapter Twenty-Three ----------------------

stack work consistently and predictably. Lock elements of the
design that you don't want users to modify. If there will be an
occasional need for users to modify the design, give them the
means - probably with a password check - to do so.

You can lock text fields, cards, or backgrounds using the
appropriate Info... option from the Objects menu. Stack
protection was discussed in Chapter 9.

User-Oriented Button Design

Virtually all of the user's interaction with your stack- at least
in terms of directing its activities and processing - comes
through pressing buttons on cards and backgrounds. It is there­
fore important that the design and use of buttons be well
thought-out as part of your script design. Consider the issues of
consistent use of standard HyperCard buttons, feedback when
the user pushes a button, and standard implementation of famil­
iar Macintosh button types.

Using HyperCard buttons consistently

The HyperCard buttons that most stacks include are

• arrow buttons (forward, backward, beginning of stack, end
of stack, and return to where the user came from last)

• the Home button

Many other buttons are arguably HyperCard "standard" buttons,
but they are used far less frequently than these.

Good stack design dictates that you use arrow buttons as us­
ers expect in each stack. An arrow pointing to the right ought to
result in users feeling that they have turned a page or moved one
step farther into the stack (see Chapter 13 for a discussion of ac­
companying visual effects). Similarly, a left arrow should move
users toward the top of the stack and give the impression of flip­
ping the pages of the book back toward the front cover.

This is not to say you can't be creative with button design
for navigation. But if you decide to do so, be sure your creative

437 Designing Stacks ----------------------

choices are intuitive to the user and you don't use a standard but­
ton in a way that is non-intuitive.

The Home button is not furnished in all stacks but probably
ought to be. Users can always get to the Home stack with a Com­
mand-H key sequence, but why not make life easier and more
HyperCard-like for them? Don't have a house icon on the stack
mean anything other than "go to the Home stack," either. We've
seen one stack that uses the Home button to take you back to the
beginning of the stack. That approach is bad HyperCard design.

Feedback to the user

All buttons that are not transparent- and some that are -
should probably highlight when the user presses them.
Unfortunately, HyperTalk is designed in such a way that
automatic highlighting is turned off for buttons, so you almost
always have to turn it on.

In addition to highlighting buttons when they are pressed,
consider whether a sound effect accompanying a button's push
might have value. The user of your stack feels more comfortable
when, having pushed a button, something happens fairly soon.
This is especially important in view of HyperCard's very delib­
erate (and good) design decision to have most actions require
only a single click when most users are accustomed to double­
clicking. If the user doesn't get some feedback on a single click,
you may find your stacks not working properly because the user
continues to click and ends up activating something accidentally
by pushing a button on the next card.

Consistency with Mac interface

Anyone who uses a Macintosh for any length of time becomes
closely acquainted with check boxes and radio buttons. It is
therefore important that your stack's use of these buttons is con­
sistent with the "normal" Macintosh approach users expect.

Don't use radio buttons or check boxes for navigation or to
pass commands. These buttons are primarily useful for setting
up parameters and properties. The difference between the two
types is that only one radio button in a collection of such buttons

438 Chapter Twenty-Three

can be selected, or "on," at one time, but in any group of check
boxes, as many as the user wants can be checked at the same
time.

Another aspect of consistency with the Macintosh interface
involves the use of Cancel in ask commands and in other places
where the user is providing some information to your script. This
is particularly important in HyperCard since the program auto­
matically saves changes while it runs. The user needs a way to
say, "I didn't mean that!"

Communicating with the user

It is generally not a good idea to use the Message box to commu­
nicate information to the user. Too often the information you
want to convey is overtyped the instant the user presses a key. At
the very least, it is impossible to prevent the user from typing in­
formation into the Message box, so it is bound to happen at inop­
portune times.

Use ask and answer dialogs (see Chapter 11) to get
information from the user when you really need it. On the whole,
however, interrupt the user to obtain information only when
there is no smooth way to let the user supply data without
interruption.

Other Design Considerations

This chapter has scratched the surface of design issues in build­
ing HyperCard stacks. We hope it has supplied some insights
that may not have occurred to you before.

Keep an eye on other people's stacks. When you find your­
self working with a stack intuitively and smoothly, with the sub­
stance dominating the form, analyze the reasons for it and then
try to emulate some of those design approaches in your own
stacks.

439 Designing Stacks -----------------------

Summary

In this chapter, you learned about the basic ideas in HyperCard
stack design. You saw that the design of a stack is quite often
related to the nature of the data and how it is best organized. You
also looked at some of the trade-offs in deciding whether to add
backgrounds or stacks when data becomes complex.

You learned how to make your stacks consistent internally
and consistent with the user's expectations. Finally, you learned
some principles of good user-oriented button design and how to
use dialogs to communicate with the user from your script.

Chapter 24 focuses on some readily available HyperTalk
programming tools.

CHAPTER

Programming Tools

I n the first few months that HyperCard appeared on the market,
it attracted an unusually large number of programming tools,
many of which were quite useful and nicely designed. In this
chapter, we will look at a sampling of those programs, including:

• several that assist you in working with scripts

• three that "spruce up" scripts with added facilities

• one that enables you to import text files and create
database-like cards directly from the input

This discussion cannot encompass all programming tools. If
it even tried to do that, it would be obsolete as soon as the book
was printed. Join APDA and a local user group and sign up for
one of the national bulletin board services (see Appendix C) if
you are serious about developing stacks.

In addition, Chapter 26 contains a programming tool that
we designed for this book and that we trust you will find a useful
addition to your scripting arsenal.

441

442 Chapter Twenty-Four ----------------------

Script-Working Programs

We've seen three programs that are particularly useful in
developing substantial stacks with more than a handful of scripts.
Two are quite similar and are discussed together first. The third
is radically different.

Stack listers

If you've done much scripting, you've probably encountered a
situation where you wanted a listing of all scripts in your stack
so that you could read the scripts like a more traditional program
listing. Finding places where messages are sent incorrectly is
greatly simplified by such a process. Debugging stacks when
scripts are scattered among a few or even a few dozen objects
can be a tasking chore.

If you're particularly enterprising, you might have realized
that you could simply open each script, select it all, copy it, open
a new card or even a text-only document with a desk accessory
or as a separate application under MultiFinder, and build your
own collection of scripts in one document. If you're really into
scripting, you may even have found a way to write a script for
this purpose.

Both Script Report and scriptView are low-cost shareware
products that automatically retrieve, format and display, print, or
save all scripts in a stack. They are quite similar and can be ob­
tained from national and local bulletin boards and user groups.

Script Report was written by Eric Alderman and is available
for a suggested shareware contribution of $10. Eldon Benz asks
for a $5 contribution for his script View stack.

Figure 24-1 shows you the opening screen of Script Report.
To use it, you just click on the big button in the lower center part
of the screen, tell the stack which file you want to examine, and
then sit back and wait. After a few minutes and a fair amount of
screen activity, a single window with all the scripts in it appears.
You can then choose to print this listing or save it on disk.

443 Programming Tools
--------------------~

Script Report 1. 1
by Eric Alderman 0

Script Report will examine any stack
and produce a formatted report

(on screen, paper, or disk)
of all scripts in the stack.

Figure 24-1. Script Report opening screen

Figure 24-2 shows the opening screen of scriptView. It
works similarly to Script Report. Press on the Begin button and
tell scriptView which stack you want to look at. In a few min­
utes, your script appears in a window, ready to be printed or
saved (see Figure 24-3).

You can't go wrong with either of these programs, and we
don't see how you can do successful scripting of any complexity
without one of them or something similar. The slight differences
between these two stacks are trivial. Neither is faster nor better
than the other in any important respect we've been able to detect

Stack Detective

A different kind of scripting help can be obtained by the use of
Stack Detective by Peter Olson. This is not a stack but rather an
external program that must be run outside HyperCard (it can be
launched from inside HyperCard as well with the open com­
mand). It can be obtained for a $10 shareware donation through

444 Chapter Twenty-Four

local and national bulletin boards and user groups and from
Heizer Software.

script View DJ:t.t
by Eldon Benz; •

Figure 24-2. script View opening screen

I~O< I I'TS FRCJr1 STACK: ~--rz··-----­
..... STACK SCRIPT
on openStoc:k

g lobal e~~pto,Fiog
set vis ible of fie ld teocherPoss to false
set vis ible of card field "Hew Quiz" to false
s•t vls lbl• of fie ld "Info" to fals•
If field teacherPass Is e~~ptv then

ask Password "Please S\.IPPIV a teac:n....•s pasSIOOI"d"
put It Into field teacherPass

end If
put "Fa lse" Into .-pto,Fiog

end openStock

on dofllght
global polntsPosslble, polntsAight, soundEff•ct, grQPhEH•c:t,~
troc:kScor• ;p.J
If soundEffeet Is "True• then doSound right
If graphEH•ct Is "True• then fl osh 3
put "You Got I til"
If troekSeor• Is "Tru•• then

add lin• 2 of fie ld "Po ints• to po lntsPosslbl•

+ (Ulew Scripts) ~ ~~~ -> re1 (File Scripts) m
Figure 24-3. Typical script View listing

445 Programming Tools ----------------------

Stack Detective probes every nook and cranny of your stack
and its scripts and produces a generally voluminous report that
tells you a great deal about how the stack is structured internally.
Each time Olson releases a new version of the program, he's
found out more about the internal and undocumented structures
of HyperCard files.

One of the most convenient aspects of Stack Detective is that
it permits you to choose from a range of options to determine what
kinds of objects the program will look at and attempt to translate,
what kinds of files to open, what to do with the resulting output,
and many other powerful choices. Figure 24-4 shows the basic
options set-up screen for Stack Detective. Figure 24-5 displays
one of several detailed screens for choosing various settings.

Input selection:
@Prompt for Input files ~ file type f ilter
0 Prompt for input directories
filename suffiH (normally blank):

Output selection:
0 Only one output file
® Rn output file for each input file

D Rpply 11make" logic
filename suffiH (normally .dmp):

(.rormat Settings)

(Saue Settings J (Load Settings J

(Cancel)

G)

Figure 24-4. Initial options for Stack Detective

When Stack Detective has finished analyzing your stack, it
produces an output file that is almost always larger than the stack
itself and quite often substantially larger. The beginning of the
file looks something like Figure 24-6. A more detailed look at a
specific object is provided by such information as shown in
Figure 24-7.

446 Chapter Twenty-Four

Format of the output:

Object select ion:

181 STAK
0 LI ST
0BMAP
181 CARD

O MAST
0 PAGE
0FREE
181 BKGD

0 Plain HeH 0 HeH Objects
@ Interpreted Objects

0 Show headers only
0 Skip headers omitted obj

0 TAIL 181 Other

181 Basi c info
181 Fields

~ Scripts
181 Buttons

181 Field ualues

I Show Scripts. (Concel)

G)

Figure 24-5. Settings screen in Stack Detective

Although Stack Detective will let you analyze and read the
scripts of protected stacks, it does not affect the protected nature
of the stack or the password.

Stack Enhancers

We talked in Chapter 21 about HyperMacintalk, the shareware
program that lets you add speech to your stacks. Here, we focus on
two other products from a single company that let you enhance your
stacks with menus and add value to your stacks with powerful and
attractive reports. Both of these products were developed by
Nine-to-Five Software of Greenwood, Indiana The first, Menus for
HyperCard!, is freeware and can be obtained from local and
national bulletin boards and user groups. The second, called
Reports for HyperCard, can be ordered through your Macintosh
software dealer.

e
:e

are
on
our
and
. by
; for
and
tlled
.tosh

44 7 Programming Tools --------------------------

• _o
File Edit Seorch Formot Font Document Window Wor lc

HyperQulz'".dmp

HyperCard stack file l ast a odified 1987 Nov 16 (Hon) 12 :22:43
File nam.e "HyperOuiz"
Total stack length 40960 (OOOOAOOO)

Interpreted display of objects follows:

Displayinq object types STAK CARD BXGD uncl assified .
Headers only of undisplayed objects will be shown.
Showinq fixed fields of objects .
Shovinq Field definitions .
Shovinq Button definitions .
Shovinq Scripts.
Showinq Field Values.

Object type STAX ID - 1 (FFFFFFFF) lenqth 4096 (00001000) locn
00000000
Header checksua is FB47D29F .
Total free bytes 11616 (00002060) in 7 free objects .
The maxiaua user level is Scriptinq .
The offset to the Haster References object is 00001000 .
The nuaber of backgrounds is 6 .
The nuaber of cards is 6. ,. '"'"'"'"'"''""'

JNormol

Figure 24-6. Basic stack analysis output

Menus for HyperCard!

The Menus for HyperCard! program (see Figure 24-8) is actually
a collection of external commands (XCMDs, as discussed in
Chapter 22) that enable you to modify the HyperCard menu bar
and menu options in your stacks. The program adds menu options
to the menu bar but does not alter or replace any of HyperCard's
built-in menus. You can then use these commands in any script
exactly as if they were built-in HyperCard commands. This can
give your stackware a real Macintosh look and feel.

After this program is installed, you can use any of the fol­
lowing commands:

• New Menu, to add and display menus and menu items to the
menu bar

448 Chapter Twenty-Four

• File Edit Search Format Font Document Window Work
_o HyperQulz'" .dmp

Button num 2 ID 2 length 344 name "Change Test"
Transparent size (85,69) at (2 02,262)
Auto-hilite
Text: System Font 12 Height 16 Align center
Script

on mouseUp
global quizLevel,soundEffect,graphEffect,trackScore
ask password "What is the password?"
if it is empty then pass mouseUp
if it is field teacherPass then
put 1 into quizLevel
put "False" into soundE!fect
put "False· into graphE!fect
put "False· into trackScore
go next
end if illlll
end mouseUp

Button num 3 ID 3 length 556 name "Take Test" 0
P n IJ •~ I IN o rm ol 10 I Jhii!il!H!i!Hl!!liiHHi!HiiH!ti!lthii!!l!iiiil!Wi!i!!!i!i!i!lliii!!!i!!!!!!!li!Hl!i!ilhiliiiillliHHHHiilJl!iiiiiiiHHillO ~

Figure 24-7. Detailed object analysis output

• ShowMenu, to display menus and items you add after
HyperCard has redrawn its own menu bar (e.g., when the
user selects a paint tool)

• ChangeMenu, to change the name of an item on a menu
you've added

• DeleteMenu, to remove a menu you've created

• EnableMenu, to turn individual menu items on and off

• Check Menu, to add and remove check marks next to menu
items

These XCMDs can be added to any stack you design with the
simple click of a button on the Menus for HyperCard! opening
screen.

r

u

nu

the
ing

449 Programming Tools
----------------------~

for
HyperCerdl

Written by
Mlcheel long

POB 9\S • Green'Wood • IN • 46142 • 317-887-2154

Figure 24-8. Menus for HyperCard! opening screen

Although the HyperCard interface is undoubtedly strong,
and in some ways even an improvement over the popular Mac in­
terface standard, there is no doubt that some users will expect to
be able to use pull-down menus. This program lets you add such
menus to your stacks and give your users that Macintosh"feel."

Reports for HyperCard

HyperCard was not intended to be a database development envi­
ronment. Apple Computer specifically positioned it as system
software and downplayed its data management capabilities.
There were a number of good reasons for this. But even the best
of reasons didn't prevent a great many people from comparing
HyperCard with popular Macintosh database programs and using
HyperCard for data management tasks.

When those applications began to appear, one glaring
shortcoming in HyperCard became painfully evident. Its reporting
capabilities are somewhat primitive. Although the standard

450 Chapter Twenty-Four -----------------------

HyperCard report dialog (see Figure 24-9) gives you a great deal
of flexibility in producing reports within its parameters, its
parameters are somewhat restrictive. For example, you cannot
include graphics, change fonts, calculate totals and subtotals, or
perform conditional page-breaks.

Edit 6o Tools Ob ects

Print report... Copies:IIMI
D Mftnual paper feed

r-····--~~--~
1,.--.. ····-·······1 t-······-·······-4

II I r····-· -............... 1 r , ... , .. _ _..1

1·····-········--········Ji········-·-······-·i
t·- ·-··-- -1!

f.

···-···- ···- ········i ~-·-····-········-·i

·····-···· .. ···-··-······! ~-··· · ········-········-·t
' I !
1·---·····- ··-11--····· ;
I ! l l
1.....-- . Jl l

Header: ~ el ~ "

Arrange fields in:
0 Labels
0Columns
®Rows: EE3

n OK

(Concel

Dll ill[I]
liD ill[!]

Print teHt fields from oil cords:
0 In the entire stack
®With the current bockground

Which fields:
D Card fields

Selected boc

Print the nomes of:
D Cords D Fields

Figure 24-9. Standard HyperCard report dialog

Michael Long saw this "hole" as an opportunity and created
Reports for HyperCard. It has quickly become one of the most
popular and successful HyperCard add-ons. Reports for Hyper­
Card is available at most computer dealers. It is a commercial
HyperCard stack from Imaginetics (formerly Activision). Its
suggested retail price at this writing is $99.95. Developers can
obtain run-time licenses to include Reports functionality in their
stacks without requiring their users to buy the program.

With Reports for HyperCard, you can easily build reports
from multiple stacks, define subtotals on fields, and lay out the
report to print fields anywhere you like on the form. The basic
Reports for HyperCard window in which report design takes
place is shown in Figure 24-10. You may have seen other

-- -- - ~=--...::::;;;......;;;;.......---iiiiiii.ii--~~--

:i
;t
--
tl
:s
.n
ir

ts
1e
ic
es
er

451 Programming Tools

Macintosh programs that work with database design and permit
you to develop reports in a similar fashion.

File t:di1 Report Layout Field Font Style Lines

I
.tti ,,,_,, .. _,,,_,,,,,,,,,,_,,_,,,,,_,,, ,_ ,,,,, ___ ,, ... --.. - _ ,,,,_. _________________ JI

mm

:ill lill ili l~ili 'll il! llllii •~•'Jrrrll
Figure 24-10. Reports for HyperCard design window

There is additional functionality built into Reports for Hy­
perCard. For example, you can build in detailed custom pro­
gramming via the program's built-in script editor. Before the
program prints any section of the report, it calls a handler named
after that part of the printout. You can modify this handler, ena­
bling you to customize the report process completely.

Figures 24-11 a and b show portions of several reports pro­
duced using the Reports for HyperCard program. As you can see,
you can achieve a great deal of flexibility in report design. Look
for more programs that add power to HyperCard to become
available in coming months.

452 Chapter Twenty-Four ----------------------

Dally Ca ll Back Prospect Re portil:i
Prepared for E. R. Haas

A• ot Aug ual 4. 1tl 7

"-go,

lama lanall was entered 15 1U~ ago l171Z22·2222

527 w o.aao• Work Pt\ona 3171433 3314

lnd1•nap0111 tN 46142 Oa tea Money
En .. r.c:t: 05101187 Can 11'\\iatt $ 18,$00 00

Moc:St Shown Jayco Last CaUed: 051()1/87 C.n O.pot11 $ 1,8$0 00
Nelli Clll: 06/05 /87 PriCe Ovo!«< $ 17,400 00

lduDalla£t Sold : 06119/87

I Delivery tc::h~uled lor \0118 STATUS: WltM

2
3

~~m~b:lll .ID:bo w·u entered 96 days ago 3 1712 1 3 · 8 7 1 5

1025 E Ro1d Work Phont ·3 t71203 4085

l r~c:h•napoht, I

MOdel ShOwn Mic~as1 IJ)e ll'lk StUJdlc.
~ Accounts Receivables For Ju ly

I . Gttll1"19 money t
2 L()OI(r19 fo1 ape
3 Aocounts Receivable Slack As Of 07127187

Sorted by Invoice Date, Last Name, InvoiCe t Page I

...... lnvo1ce Invoice Customer Days

142$~(Card Oate Number Phone Number Total 1nvo1oe Balance Due Old

lndoonopolio, I
23 03104187 4 105 Epperson, Hugh 2t2 50 162.50 145 --- 462·1040

~ 4 1 04112i87 4106 Epperson, HUgh 18560 185.00 '06
462·1040

I ~~.:':.!: 41 04125187 4 107 Epperson, Hugh 212 50 2 1 2 .50 106
2 462·1040
3 41 04126/87 4115 McKenzoe, Spud 405.00 405 .00 99

317·283·8978
e Huah

718 w Boyd T 01aiS IOi '04' 802 .50 80250
lrd pol ... " Average 267 50 26750 104

Modo! Sllown 56 05102i87 411 6 Jones. Janet 234 00 234 .00 90

~
394·321 4

34 05126187 4175 McKenzoe. Spud 405.00 405.00 98
31 7· 283·8978

Totals lor '65· 639 00 639.00
Average 319.50 3 19.50 94

F~nal Totals 639.66 639.00
Average 3 19.50 3 19 50 101

Figure 24-11 a. Sample reports produced with Repor ts for HyperCard

453 Programming Tools ---------------------------·

S«ond Noot»r.,. um., 30 days.
Thl!d No/ICH •rs >¥>/ at 60 cloy ..
Final No""• "" s~t at 90 dayl

Michael Dark Studiosla
Accounts Recehflble 11 of 07/27187

.... ,_ ... 'Y O.M .I

Ac:OunlS ~ Sonod by Month ot ,....,..,. Date Last Name. &nd ,......,. t

t<loOial tN QlrTQI,ERS -· "''"" ""-"""'
OAT£ """"' 'HVOIC£ Cl<.E

Page • 1

0)#04117 (PI»f101'1, Hugh 317111· 1234 • 212 50 J 1~50 141 Wllp.ayFt 41f

0 4112117 4101 ~ 311 111 - 1234
0 4 1U 11 7 "01

_....,. J11 111 ·1 234
0 4 11 4 11 7 • t tl ~"-"'•-ScM.d 311 2U·U71

Toteol For Month 04
Aw•t~• For Month 04

0$•02117 l2U Blowf'l, Oav•d 311 ·111 ·1S11
05130117 4 101 EPI)er.GI'I, Hugl'l 3 17· 11 1 ·123 4
051 12117 U12 H.&rG¥ Fl<lfe«e 317 ... 4731
OSIQI /1 7 ,_ ...] 17 71) 1121

OSI' 3 11 3)4 7 $'I ... c.~ 27t•US2
05 121111 22tl W.ob, JU'M'I .. S$1-4$00
05/ 30111 2015 w,.,,. 8• Ck• Y 317· • U U U
0510 1111 34:36 -- 3'7 t61·e241

Tolal For Month OS
Awr•o• fot Month 05

08103117 40tl --"""' 3 \ 1 411-JSSI
Cl ;27 17 ,,_ " 7 111 1523
01 10)117 3341 Dr•. Wayn. 136·5720
Oat¢ 3117 4\0• Elro<l NOI',an J11 211 ·0023
0$1 1 Sl l7 • •OO Ent~i,ii'ICI, Riehl. •f2·SJ'S
0$t0t l t1 • tot E~H· 3 17 tll , ,, ..

C:l· 02ft7 • n o EPP1"W".H.)17111 · 113 ..
Q$ 10 \/t1 •101 Faul Ken J17 213 ·3129
041231t7 4103 "'-"''"~·John ;u• 23•1

• IISOO I ISOO
21150 21250 •co oo

10250 10250 .. , .. 2t7SO

157 so 157 so
217 50 217.SO
1 UOO • ~oo
.. ooo •oooo
240 00 2•o oo
56000 • sao.oo
9000 • 9000

s 2~000 1 2305 00

• >22 50 • 288 , ,

•
• lt2!10 112.50

2• 0 00 18000
217 so 2t7 so
n>oo 23SOO
2'12' 50 2''2$0
lUSO 21250
412 so t 12 $0
II$ 00 ItS 00

11 • w• '*' FnNt
'' -~ , . , F'nd.ly

t o 4 W•ll Pay S•Moar

...
86 W!ll Pay Tue.oay
5I Wdl Pay F•car
16 W -" Pay rtu..oay
12 ¥t4 ,.., l\AleG&p
1$ W1ll Pay Mond•t
e1 Woll Pay Sa:u1e1• r
$1 WIII Pay~IY

' ' v..a Pw,~

72

JO
S.. W!ll P•y F"diV
M W1ll P•y l~scl.ay
42 w• Payr~,
$t N I! ... _, F~c,ar

5$ W Ill Pay FI'IOIY
.sa Woll Pay Mond•y
)<4 Woll P IY Ttvt<I•Y

Figure 24·11 b. Sample reports produced with Reports for HyperCard

Importing Text Intelligently
llilmil ;J ii:iiii "lli'ililiii i U I I ; I II

One of the first things many early HyperCard users wanted to do
was move information they had stored in another program's data
file into this impressive new environment. Many public domain
and shareware programs were constructed specifically to assist
with this task, and more are being developed all the time.

Although a discussion of text importing programs may
seem out of place in a chapter on programming tools, we have
found that many stack developers need such a capability early in
their experience as scripters. Given HyperTalk's ability to deal
with text in many different forms, it is not a difficult task to write
your own script to deal with these needs. On the other hand, if

454 Chapter Twenty-Four ----------------------
someone else has done the work, and done it well and flexibly
enough to accommodate your needs, why reinvent the wheel?

We have experimented with several of those programs, and
many of them work quite well. As an example of how such
programs can work and help you, we've chosen to discuss
Importer 1.1, a $10 shareware program written by Stephen
Michel of Albany, California. It is one of the easiest to use and
most intelligent of the import programs we've seen. Its early
version was limited to importing tab-delimited files, but the
author is at work on accessing files with other well-documented
formats. Check your local or national BBS or user group for
information on the latest version and what file types it handles.

Using Importer 1.1 is a real joy. The author automates virtu­
ally the entire process. You click on a button and answer two
questions - dealing with the names of the output and input files­
and then the stack looks at your file and reports back. It tells you
how many fields there are and gets ready to import the contents.
This is where the program gets smart and helpful.

If the first line of your text-only, tab-delimited file contains the
names of the fields you want to use in your stack, Importer 1.11ets
you use those names with a click of the mouse (see Figure 24-12).
Or you can change them, as you would want to do, for example, if
the first line of the file contains real data rather than column labels or
if you just don't like the labels someone has put into the file.

After you've given the field a name or accepted the one
suggested by the first line of your file, you are asked to indicate
where on the card layout you want to put this field. Simply click
at the upper-left corner of where you want the field located.
Importer 1.1 then creates the field and positions it where you
indicated. You can later re-size the field, make it into a scrolling
field, change the border, or make other modifications.

Aside from the inability to import files that are not tab­
delimited, the only major design drawback to Importer 1.1 that
we've experienced is that you cannot import text to an existing
stack. Given the relative difficulty of merging two stacks, this is
a potential problem. But if you have a lot of data to move, you
are probably creating a new stack with the data. So import the
text fields, then build the card around the data.

f
:r

e
e
k
t
•U

.g

J­

at
lg
is
)U

he

455 Programming Tools

a File Edit Go Tools Ob ects

Please type o nome fo..- field 1

OK Cancel

Click h•r• to crut•
~ button for this st~ok

Ther e 8r e 3 fie lds in the file ·--- ---- - ----.... -···-·----..

Figure 24-12. Using file's first line as field labels in Importer 1.1

Developer Stack

One of the most innovative and useful programming tools we
encountered as we were going to press is "Developer Stack"
from ART Incorporated and Steve Drazga. This stack is
available via CompuServe and other BBSes. It incorporates
many of the external commands and functions described in
Chapter 22 into a single, easy-to-use environment. You can link
the Developer Stack to the stack on which you are working so
that you can move back and forth between them with a single
button-click.

In addition to XCMDs and XFCNs, the Developer Stack also
includes a number of handy HyperTalk handlers. There is even a
single-button method for incorporating Importer 1.1 directly into
a stack. All scripts are accessible and therefore modifiable to meet
your specific needs. This stack is nearly 150K bytes large so
downloading time can be lengthy but it's freeware and well worth
the download cost if you're developing serious stacks.

456 Chaptec Twenty-Four

Figure 24-13 shows the opening screen of Developer Stack,
with the lower left corner displaying the names of some of the
XFCNs, XCMDs and HyperTalk functions available for one-step
integration into your stacks.

Developer Stack
D Issue Number 1.0 0,.

Issue Date 1 2/ 1 5/67~

~ I Link thi s stock ... J

..__~rt This stack is frtt 1 and ma~ be re-distributed

To go to the btgiMing of ~ sptcif'JC section
(XFCNs 1 Scripts, etc.) hold down tht
comm~nd kt~ Whfil clicking on th~ button .

'When ~ou see an item In a f'~tld followed biJ
an uterlsk *,holding the option key ~nd
clicking on th~t word will tither give \IOU
mort information, or t~kt ~ou to a

I" in its origin~! form with ~11 origin~ I mus~ts.

Summary

It mav not t>. sold comrnerci~l),j. It Is
intended for tduci~tional & training purposts

Figure 24-13. Opening screen from Developer Stack
with XCMD, XFCN, and function lists

In this chapter, you looked at some of the most useful program­
ming tools available for HyperTalk. As you can tell, we are
great believers in supporting user groups and having access to
national bulletin board services. In a field as dynamic as Hyper­
Card, this kind of real-time support is invaluable.

n­
re
to
~r-

Two Users

CHAPTER

An Educational Script

~is chapter contains the cards and scripts for a HyperCard
stack we created for this book. It's called HyperQuiz and is of­
fered as a free program here and on CompuServe, GEnie, and
other bulletin boards around the country.

The script includes numerous comments and the cards are
labeled so that you can see what buttons activate what scripts
and which fields are involved. Rather than present all the same
information again in the text, we will provide an overview of
how the script works and then step aside and let you roll up your
sleeves and start scripting.

There are two potential types of users for HyperQuiz: teachers,
who build quizzes, and students, who take them. When teachers
use the system they see Cards 1-5 as they set up the parameters
for the quiz and enter the questions. When students use it, they

457

458 Chapter Twenty-Five

see the questions on cards like Cards 3-5 and at the conclusion of
the quiz they see Card 6 where their performance is assessed.

Teacher use

The first time a teacher uses the stack, he or she must enter a
password to protect against students being able to alter the quiz
or to create new ones. Thereafter, any time the Create a New
Test button or the Change This Test button is pressed, the user
will have to enter a password to match the one entered by the in­
structor or access will be denied.

Once in the stack, the instructor selects the type of question
to be entered from the three buttons in the middle of Card 2:
True/False, Multiple Choice and Fill-In. Then HyperQuiz takes
the teacher to a blank card of the appropriate background. After
entering the question and, in the case of the multiple choice
question, 2-4 alternatives for the student to choose from, the
teacher presses the Done button. HyperQuiz then goes through
some wrap-up questions involving the addition of a note or help
to the question (more later), supplying the correct answer and
asssigning the point value for the question.

The teacher can also turn sound effects, graphics effects,
and scoring on or off for a given quiz. We have supplied
rudimentary sound and graphics and indicated where in the script
these can be enhanced if you are interested in more elaborate
feedback.

Student use

A student can only access the stack via the Take This Test
button. The student is then taken to the true-false question if
there are any, then to the multiple-choice questions, then to the
fill-in questions, and finally to the scoring screen. At each
screen, the student either provides an answer or presses the
question-mark button. In the latter case, a new field appears
containing either a note or hint provided by the teacher or the
message "Sorry, but no hints are available for this question!"

l

;t
if
.e
h
1e
rs
1e

459 An Educational Script ----------------------

The Cards

There are six cards and six backgrounds in the stack. Cards 3-5,
which are the question cards, appear differently for the teacher
and for the student. The global variable quizLevel determines
which view the user sees.

Card 1 has one information field, Field 2, which occupies so
much of the card that we have shown it as a separate figure.
Cards 3-5 have a "Notes" field that you can put wherever you
like; it will inevitably cover some of the material on the card so
we have omitted it from the figures.

Figures 25-1 through 25-10 reproduce the screens, with all
fields and buttons labeled to make reading the script easier. You
can, of course, design these cards any way you like as long as
you preserve object names.

HyperQuizTM
HyperQuiz ...

written by Dan Shafer
® 1987. Dt.n Shafer t.nd

Howard W. Saas t Co .

Tt.ken froa the book
"HyperTt.lk Prograaaer's Guide"

Freeware
(Version i . 0)

D~<~h!ll
Mlw ld:;t 3563811186

0 0
a Background Button 4
b Background Field 2
c Background Button 1

(.711111._~
771is Te:;t

d Background Field 1
e Background Button 2
f Background Button 3

Figure 25-1. Opening screen except Field 2

460 Chapter Twenty-Five ------------------------

To create a new test with Hype!Ouiz'IK., this script will create
a ropy ofitselfan.d store that ropy under whatever name
~type when JOU are asked to do so. Once that is done,
you will be rehun.ed to this card. At that point choose •
Open Sta.ck •.• from the File Menu and select the qu.iz stack

~have just created.

Then d.iclc. on the middJe button. ·Chan~ This Test• to
begin creating the questions for the new test.

Oick the mouse anywhere to create the new quiz.

Figure 25-2. Field 2 from opening screen

et file Edit Go Tools Objects

HyperQuiz111 Teacher's Card

Subject: [0~....,;;;a;.. ______________ __,

Tnm/Q
False \V

0 Sound Effects

0
a Background F1eld 1
b Background Button 1
c Background Button 2
d Background Button 3

Multiple f::\
Oloice \SI

0 Graphics Effects

CD
e Card Button 1
I Card Button 2
g Card Button 3

Figure 25-3. Teacher's card

Fill-in@

0 Keep Score

G)

461 An Educational Script ---------------------------

• rue Edit Go Tools Objects

(oone(i)
..;;,.. HyperQuizTM

~[Br-------------------~

'PJ.-um - -·-----=-B -=.-=-.-..:=:..--________ --_---1

-·-·-·----~-- -- -·-·-·-.. · .. -·--·-·-·----·

T F ? I Right Answer I I Points I

a Background Button 4
b Background Field 1
c Background Field 2

0 0
d Background Field 3
e Background Field 4

Figure 25-4. True/False card, teacher's view

• File Edit Go Tools Objec ts

HyperQuizTM

S~ect~--------------------------------~

T

0
a Background Button 1
b Background Button 2
c Background Button 3
d Background Button 5

F ?

® 0

Figure 25-5. True/False card, student's view

462 Chapter Twenty-Five

• Go Tool s Objects

HyperQuizTM

a Background Button 5
b Background Field 7
c Background Field 8
d Background Field 1
e Background Field 2
I Background Button 1
g Background Field 3

h Background Button 2
I Background Field 4
I Background Button 3
k Background Field 5
I Background Button 4
m Background Field 6

Figure 25-6. Multiple choice card, teacher's view

* File Edit Go Tools Objects

HyperQuizTM
Subject ~~~~~~~~~

~~~~~_ ... _______ -~~~-=---------~------~ 
/A.nswer IDa 

? llia 

0 
~ 

d.!.. 

a Background Button 4 
b Background Button 7 

Figure 25-7. Multiple choice card, student's view 

I 



463 An Educational Script ----------------------

* file Edit Go Tools Objects 

Oone([) HyperQuizTM 

S~ect~--------------------------------~ 

IR1ghl Answer 

a Background Button 1 
b Background Field 4 
c Background Field 5 

Figure 25-8. Fill-in card, teacher's view 

• file Edit Go Tools Objects 

Subjectr0 
HyperQuizTM 

@uation ® 

~nswer IW I 

I 

? ( NeHt Question) 

0 
a Background Field 1 d Background Button 3 0 
b Background Field 2 e Background Button 2 
c Background Field 3 

Figure 25-9. Fill-in card, student's view 



464 Chapter Twenty-Five 
--------------------------

a File Edit Go Tools Objects 

HyperQuizTM 
S~oct r(8) :=J 

Student !illl.lo_ ... bioo'-____________ ___.1 DatllliThQ.Novt9.t987 (c)l 

Points Earned Points Possible 

0 

a Background Field 1 
b Background Field 2 
c Background Field 3 
d Background Field 4 
e Background Field 5 

(e) 
Letter Grade 

I Background Field 6 
g Background Field 7 
h Background Button 1 
I Background Button 2 

Figure 25-10. Final scoring card 

CD 

The Scripts 
mt - z · BZ'Sifii.- ' 

The scripts are reproduced here. Comments are preceded by the 
double-hyphen ( --) marker. (The original listing of these scripts 
was produced using Eric Alderman's Script Report, discussed in 
Chapter 24.) 

SCRIPTS FOR STACK: HyperQuiz 
===~-~--~--~~~~~~===================================== 

** STACK SCRIPT ************************************ 
on openStack 

global emptyFlag 
set visible of field teacherPass to false 
set visible of card field " New Quiz" to false 
set visible of field "Info" to false 
if field teacherPass is empty then 

if you get a copy with a non-empty teacherPass field, 
--try " cj0420, " the password we used in the original version! 



465 An Educational Scripl ---------------------------

ask Password "Please supply a teacher's password" 
put it into field teacherPass 

end if 
put "False" into emptyFlag 

end openStack 

-- Handler to use when student gets question right 
on doRight 

global pointsPossible, pointsRight, soundEffect, graphEffect,. 
trackScore 
if soundEffect is " True" then doSound right 
if graphEffect is " True" then flash 3 

improve on the above g raphic effect with your own design , 
either by adding s e v e ral l i nes in the if . . . then construct 
or by defining a new handler called, e.g ., " doGraphic" 
We don't furnish a g raphics effect for wrong answers. 

put "You Got It ! ! " - -can eliminate this and the " wait" below 
-- for faster student use if you like 

if trackScore is " True" then 
add line 2 of field "Points" to pointsPossible 
add line 2 of field "Points" to pointsRight 

end if 
wait until the mouseClick -- can be eliminated; see above 
hide the message box - - eliminate if you do away with the box 

end doRight 

-- Handler to use if student answer is wrong 
on doWrong 

global pointsPossible , pointsRight, soundEffect, graphEffect,. 
trackScore 
if soundEffect is " True" then doSound wrong 
put " Sorry, but that ' s not right. " 
if trackScore is " True" then add line 2 of field "Points " -., 
to pointsPossible 
wait until the mouseCl i c k 
hide the message box 

end doWrong 

Very rudimentary sound effects. Use resources and 'snd ' files 
as described in Chapter 21 to make this far more interesting . 

on doSound response 
if response is " right " then play harpsichord " c e" 
if response is " wrong" then play boing " e c" 
wait until the sound is " done" 

end doSound 



466 Chapter Twenty-Five 
----------------------------

Most of the processing of the student ' s interaction with the 
program takes place in this handler. 

on nextQuestion 
global emptyFlag 
if emptyFlag is "False" then checkAnswer 
set lockScreen to true 
set lockMessages to true 
put "False" into emptyFlag 
go next 
send openCard to this card 

above line is here because of an anomaly in HyperCard that 
sometimes prevents the "openCard" message from being sent 
when we move from the last card of one background to the 
first card of another background . Subsequent versions may 
fix this but it is known to exist in 1.1. 

if the short name of this card is "Final Card" then 
testOver 
exit nextQuestion 

end if 
if field "Question" is empty then 

put "True" into emptyFlag 
nextQuestion 

else 
put "False" into emptyFlag 
set lockScreen to false 
set lockMessages to false 

end if 
end nextQuestion 

on testOver 
global pointsPossible ,pointsRight 
set numberFormat to "0#" 
put pointsPossible into field "Possible" 
put pointsRight into field " Right" 
put pointsRight/pointsPossible * 100 into field "Pet. " 

We use the traditional 10-pct. divisions . It would be trivial 
-- for you to change these if your grading system is different. 
if field "Pet." >= 90 then 

put " A" into field "Grade" 
cleanExit 

end if 
if field " Pet ." >= 80 then 

put " B" into field " Grade" 
cleanExit 



467 An Educational Script ---------------------------

end if 
if field "Pet. " >= 70 then 

put "C" into field " Grade" 
cleanExit 

end if 
if field "Pet. " >= 60 then 

put " D" into field " Grade" 
cleanExit 

end if 
if field "Pet. " <=59 then 

put " F" into field " Grade" 
cleanExit 

end if 
end testOver 

on checkAnswer 
global answer,emptyFlag 
put "False" into emptyFlag 
if answer is line 2 of field " Right Answer" then doRight ..., 
else doWrong 
wait until the sound is " done" 

end checkAnswer 

-- Used wherever we are exiting mid-handler 
on cleanExit 

set lockScreen to false 
set lockMessages to false 
exit to HyperCard 

end cleanExit 

** BKGND 41, BUTTON 41: Create Test 
************************** **** ****** 
on mouseUp 

ask password "What is the password?" 
if it is empty then pass mo useUp 
-- May have to enter one yet 
if it is field teacherPass then 

set visible of card field " New Quiz " to true 
displays contents of Field 2, which explains that to create 
a new quiz, we copy this stack to a stack of the teacher ' s 
named choice. Then we return to Home and the teacher selects 
the newly named stack and selects " Change This Test " from the 
first card. Could use Steve Maller ' s " fileName " XCMD to 
keep track of the file and go there automatically but this 



468 Chapter Twenty-Five ----------------------

is easy enough and takes up less space! 
wait until the mouseClick 
set visible of card field "New Quiz" to false 
doMenu "Save a Copy .. . " 
go " Home" 

else 
answer "Sorry, you ' re not authorized! " with " Shucks! " 

end if 
end mouseUp 

** BKGND #1, BUTTON #2: Change Test 
****************************** ** **** 
on mouseUp 

global quizLevel,soundEff ect, graphEffect , trackScore 
ask password " What is t he password? " 
if it is empty then pass mouseUp 
if it is field teacherPass then -- initialize parameters 

put 1 into quizLevel 
put "False" into soundEffect 
put "False" into graphEffect 
put " False" into trackScore 
go next 

end if 
end mouseUp 

** BKGND f1, BUTTON f3: Take Test 
***************************** ******* 
on mouseUp 

global studentName,quizLevel,pointsPossible,pointsRight 
Even if this is a teacher , during quiz-taking we want students 
to leave it set so that the persons using it can walk through 
the questions, and not f i nd themselves in question-entry/edit 
mode. 

put 0 into quizLevel 
-- Initialize the scorin g v a riab les 
put 0 into pointsPossible 
put 0 into pointsRight 
ask " What's your name? " 
put it into studentName 
set lockScreen to true 
go to second card of background " True/False" 

First card of background is blank, so we start questions with 
the second one. If result comes up non-empty, it means there is 
no true/false question , so we move to the next type of 
question . This allows creation of quizzes that don ' t have all 



469 An Educational Script -----------------------------

-- three types of questions in them. 

if the result is not empty then go to second card of background~ 
"Multiple Choice" 

if the result is not empty then go to second card of background~ 
" Fill-In" 

if the result is not empty then 
beep 

put " Sorry, but this test seems to be empty! " 
end if 

end mouseup 

** BKGND #1, BUTTON #4: Info Button 
******************** ************** ** 
on mouseUp 

set visible of field " Info " to true 
wait until the mouseClick 
set visible of field "Info" to false 

end mouseup 

** BKGND #2 , BUTTON #1: TF Select 
************** ****** **************** 
on mouseup 

global subject 
set lockScreen to true 
put field " Subject" into subject 
go first card of background " True/False" 
doMenu " Copy Card" 
doMenu "Paste Card" 

put subject into field "cardSubject" 
set lockScreen to false 

type tab & tab -- put teacher into the question field and await 
input 
end mouseUp 

** BKGND #2 , BUTTON #2: MC Select 
***************** ** ***************** 
on mouseUp 

global subject 
set lockScreen to true 
put field "Subject " into subject 
go first card of background "Multiple Choice" 
doMenu " Copy Card" 
doMenu " Paste Card" 
put subject into field "cardSubject" 
set lockScreen to false 



470 Chapter Twenty-Five 
---------------------------

type tab & tab 
end mouseUp 

** BKGND #2, BUTTON #3: Fill-in Select 
************************************ 
on mouseUp 

global subject 
set lockScreen to true 
put field "Subject " into subject 
go first card of background "Fill-In" 
doMenu " Copy Card" 
doMenu "Paste Card" 
put subject into field " cardSubject" 
set lockScreen to false 
type tab & tab 

end mouseUp 

** BACKGROUND f3: True/False ************************************ 
on openCard 

global quizLevel 
All of the question-entry backgrounds are nearly the same. 
We set up the fields and buttons so the ones the teacher needs 
are visible and the ones the student needs are invisible if 
quizLevel=1 (i.e., quiz entry is in process ) and vice versa if 
quizLevel=O (i.e., student is taking quiz). 

hide the message box 
set visible of field " Notes " to false 
set lockScreen to true 
if quizLevel is 1 then 

set visible of field " Right Answer" to true 
set visible of field "Points" to true 
set lockText of field 1 to false 
set lockText of field " Notes" to false 
set visible of background button " Done " to true 
set visible of background button " Next Question" to false 

else 
set visible of field "Right Answer" to false 
set visible of field "Points" to false 
set lockText of field 1 to true 
set lockText of field " Notes " to true 
set visible of background button " Done" to false 
set visible of background button " Next Question" to true 

end if 
set lockScreen to false 

end openCard 



471 An Educational Script ---------------------------

** BKGND 13, FIELD f5: Notes ************************************ 
on closeField 

set visible of me to false 
end closeField 

** BKGND f3, BUTTON fl: True ************************************ 
on mouseUp 

global answer 
put "True" into answer 

end mouseUp 

** BKGND f3, BUTTON f2: False ************************************ 
on mouseUp 

global answer 
put "False" into answer 

end mouseup 

** BKGND f3, BUTTON f3: ? ************************************ 
on mouseup 

global quizLevel 
show field " Notes " -- Displays any hint and waits for a mouseClick 
wait until the mouseClick 
hide field "Notes" 

end mouseUp 

** BKGND f3, BUTTON f4: Done ************************************ 
on mouseup 

if field "Question" is empty then -- Maybe changed mind? 
beep 
answer "Cancel this entry?" with Yes or No 
if it is "Yes " then 

set lockScreen to true 
doMenu "Delete Card" 
go to card "Teacher Card" 
set lockScreen to false 

else 
exit mouseUp 

end if 
else 

if field "Notes " is empty then -- It ' s OK, but check to be sure . 
answer " Do you want to leave a hint or help?" with "Yes" or "No " 
if it is "Yes" then 

show field "Notes" 
click at the loc of field "Notes" 
exit mouseUp 



472 Chapter Twenty-Five ----------------------

else 
put " Sorry, but no hints are available for this question!"-. 
into field " Notes" 

end if 
end if 
answer "What's the right answer? " with " True" or "False" 
put it into line 2 of field " Right Answer" 
ask "How many points is this question worth?" with "1" 
put it into line 2 of field "Points" 
go to card "Teacher Card" 

end if 
end mouseUp 

** BKGND #3, BUTTON #5: Next Question 
************************************ 
on mouseUp 

nextQuestion 
end mouseUp 

** BACKGROUND #4: Multiple Choice 
************************************ 
on openCard 

global quizLevel 
-- see comments under "True/False", Background #3 
hide the message box 
set visible of field " Notes" to false 
set lockScreen to true 
if quizLevel is 1 then 

set visible of background button "Done" to true 
set visible of field "Right Answer" to true 
set visible of field "Points" to true 
set lockText of field 1 to false 
set lockText of field "Notes" to false 
set visible of background button "Next Question" to false 

else 
set visible of background button " Done" to false 
set visible of field " Right Answer" to false 
set visible of field "Points" to false 
set lockText of field 1 to true 
set lockText of field "Notes" to true 
set visible of background button "Next Question" to true 

end if 
set lockScreen to false 

end openCard 
** BKGND #4, FIELD #9: Notes ************************************ 



4 73 An Educational Script ---------------------------

on closeField 
set visible of me to false 

end closeField 

** BKGND #4, BUTTON fl: Answer a 
***************************** ******* 
on mouseup 

global answer 
put "a" into answer 

end mouseUp 

** BKGND #4, BUTTON #2 : Answer b 
************************* *********** 
on mouseUp 

global answer 
put " b " into answer 

end mouseup 

** BKGND #4, BUTTON #3: Answer c 
************************************ 
on mouseUp 

global answer 
put "c" into answer 

end mouseUp 

** BKGND f4, BUTTON #4: ? ************************************ 
on mouseUp 

global quizLevel 
show field " Notes" 
wait until the mouseClick 
hide field "Notes " 

end mouseUp 

** BKGND #4, BUTTON # 5 : Done ************************************ 
on mouseUp 

if there ' s no question and not at least two answers, 
you don ' t really have a multiple-choice question 

if field "Question" is empty or field " Answer a"-. 
is empty or field " Answer b " is empty 
then 

beep 
answer "Cancel this entry? " with "Yes " or "No" 
if it is " Yes " then 

set lockScreen to true 
doMenu "Delete Card" 



474 Chapter Twenty-Five 
-------------------------------

go to card "Teacher Card" 
set lockScreen to false 

else 
exit mouseUp 

end if 
else 

if field "Notes" is empty then 
answer "Do you want to l eave a hint or help'? " with " Yes" or "No" 
if it is " Yes " then 

show field " Notes " 
click at the loc of field " Notes " 
exit mouseUp 

else 
put " Sorry, but no hint s are available for this question !"-. 
into field "Notes" 

end if 
end if 
ask " What ' s the right answer'? " with " a " 
put it into line 2 of field " Right Answer" 
ask "How many points is this question worth'?" with "1" 
put it into line 2 of field "Points" 
go to card " Teacher Card" 

end if 
end mouseup 

** BKGND #4, BUTTON 16: Answer d 
************************************ 
on mouseup 

global answer 
put " d " into answer 

end mouseUp 

** BKGND f4 , BUTTON #7: Next Quest ion 
********************** ********** **** 
on mouseUp 

nextQuestion 
end mouseup 

** BACKGROUND #5: Fill-In ************************************ 
on openCard 

global quizLevel 
-- For comments, see "True/False" , Background #3 
hide the message box 
set visible of field "Notes" to false 
put empty into field " Answer" 



4 75 An Educational Script ---------------------------

set lockScreen to true 
if quizLevel is 1 then 

set visible of field " Right Answer" to true 
set visible of field "Points" to true 
set visible of background button "Done" to true 
set lockText of field 1 to false 
set lockText of field 3 to true 
set lockText of field " Notes " to false 
set visible of background button " Next Question" to false 

else 
set visible of field " Right Answer" to false 
set visible of field "Points" to false 
set visible of backgroun d button " Done" to false 
set lockText of field 1 to true 
set lockText of field 3 to false 
set lockText of field "Notes" to true 
set visible of background button " Next Question" to true 

end if 
set lockScreen to false 

end openCard 
** BKGND #5, FIELD #6: Notes ************************************ 
on closeField 

set visible of me to false 
end closeField 

** BKGND #5, BUTTON #1: Done ************************************ 
on mouseup 

if field " Question" is empty then 
beep 
answer "Cancel this entry?" with "Yes " or " No" 
if it is " Yes" then 

set lockScreen to true 
doMenu " Delete Card" 
go to card "Teacher Card" 
set lockScreen to false 

else 
exit mouseup 

end if 
else 

if field "Notes " is empty then 
answer "Do you want to leave a hint or help?" with "Yes" or "No" 
if it is " Yes" then 

show field " Notes" 
click at the loc of field "Notes" 
exit mouseUp 



476 Chapter Twenty-Five 
---------------------------

else 
put " Sorry, but no hints are available for this question!"-. 

into field " Notes" 
end if 

end if 
ask " What ' s the right answer?" 
put it into line 2 of field " Right Answer" 
ask " How many points is this question worth?" with "1" 
put it into line 2 of field "Points" 
go to card " Teacher Card" 

end if 
end mouseUp 

** BKGND #5 , BUTTON #2: Next Question 
******************************* * **** 
on mouseUp 

global answer 
put line 1 of field " Answer" into answer 
nextQuestion 

end mouseUp 

** BKGND 45, BUTTON f3: ? ************************************ 

on mouseUp 
global quizLevel 
show field " Notes" 
if quizLevel is 1 then set lockText of field " Notes" to false 

else 
set lockText of field " Notes" to true 

end if 
wait until the mouseClick 
hide field " Notes" 

end mouseUp 

** BKGND #6, BUTTON #1 : Print Score 
*************************** **** * **** 
on mouseUp 

print this card 
end mouseUp 

~* BKGND 46, BUTTON #2: Return * *********************************** 

on mouseUp 
go to first card 

end mouseUp 

** CARD t2: Teacher Card************************************ 



4 77 An Educational Script ---------------------------

on openCard 
tabKey 

end openCard 
** CARD t2, BUTTON fl: Sound Effects 
************************************ 
on mouseUp 

global soundEffect 
set hilite of me to not hilite of me 
-- if the button is on, turn it off; if it ' s off , turn it on 
put not soundEffect into soundEffect 

end mouseUp 

** CARD #2, BUTTON #2: Graphics Effects 
************************************ 
on mouseUp 

global graphEffect 
set hilite of me to not hilite of me 
put not graphEffect into graphEffect 

end mouseUp 

** CARD f2, BUTTON f3: Keep Score 
************************************ 
on mouseUp 

global trackScore 
set hilite of me to not hilite of me 
put not trackScore into trackScore 

end mouseUp 

** CARD #6: Final Card ************************************ 
on openCard 

global studentName,subject 
put subject into field "cardSubject" 
put studentName into field "Name" 
put the abbrev date into field "Date" 
set lockScreen to false 

end openCard 

Changes and Additions 
-~~w~.w@aa=~m=mm~~~~mm~.mmm~r~~··~~~~~====-=~e~:~w~~~~~nmwwm-M®W&® 

As it stands, we hope you' ll find HyperQuiz to be a helpful and 
useful program. It is not, however, a commercially finished 
product, nor is it intended to be. Its real purpose here is to illustrate 



4 78 Chapter Twenty-Five ----------------------

scripting techniques involving multi-background stacks. But you 
could do a number of things to "spruce it up." Here are some ideas. 
(If you do improve on our program, we'd appreciate you sending 
us a copy. We are constantly amazed by the quality of feedback we 
get from readers and users and we enjoy the dialog!) 

Time limit 

You could add a time limit check box to Card 2 and then keep 
track of the time it takes the student to answer the questions in 
the quiz. The teacher would be asked for a time limit in minutes 
and then just use HyperTalk's powerful time-management com­
mands to deal with tracking the elapsed time. 

Teacher help 

As it now stands, the student can get hints and help during 
quiz-taking if the instructor provides it. But the teacher is pretty 
much on his or her own. Arguably, the process of entering the 
questions is sufficiently self-evident that help is not needed. But 
adding a teacher's help button would be a relatively easy task. 
We omitted it primarily because the fields would have resulted in 
more script length than we felt you'd want to type into 
HyperCard. 

Better graphics 

We point out in the script where you can improve the graphics 
effect of a right answer. You might also add visual effects as you 
move from card to card, particularly as you change backgrounds. 



4 79 An Educational Script ----------------------

Summary 

Skipping questions 

It might be helpful to add a new button to the student versions of 
the question cards to permit them to skip a question and come 
back to it later. The logic for handling this would require you to 
put the card IDs of the skipped questions into an invisible field 
so you could track through them again when the last question is 
reached. 

Bugs 

We don't claim to write bug-free code, even in HyperTalk, 
which is more forgiving of many kinds of programming errors 
than other languages. If you find bugs and fix them, please let us 
know. The Preface tells you how to reach us. 

This chapter has presented a finished, non-commercial educa­
tional application including its cards and scripts. We trust you 
have learned something and enjoyed the process. 



C HAP TER 

, ............. [~~] 
Semi-Automatic 
Programming 

i iii iii !it! Dli88111S81 I J Mli'rilllll 

h e script in this chapter enables you to program a substantial 
portion of your HyperTalk scripts simply by pushing buttons. It 
takes a lot of the possibility of syntax errors out of the process of 
scripting while making the generation of scripts much faster by 
providing you one- or two-click access to major commands and 
properties. 

The idea for this script originated in our experience with 
Omnis3+, an eminently powerful database management system 
for the Macintosh from Blyth Software. It incorporates a power­
ful programming language and the only way to build programs 
with it is to use push-button methods. As you press one button, a 
new screen, containing only those commands and parameters 
that are syntactically compatible with the command you chose, is 
displayed. You select another level of the command and continue 
this until you've built a valid command line. 

481 



482 Chapter Twenty-Six 
-----------------------

Using the Stack 

The Cards 

This stack, which is a kernel of a commercial program we've de­
veloped called ScriptExpert consists of one main card and six re­
lated cards, all with one background. At the opening card, you 
must indicate to the system whether you are defining a handler 
or a function. You must then give it a name. It fills in the on 
and the name of the handler or function in the scrolling field at 
the top of the card and you can begin programming. 

As you press buttons on the various cards you '11 answer 
questions posed in dialog boxes, you will find your script 
building in the window. Most often, the program fills in a 
structure and you can then edit in your own parameters, but some 
functions and commands are self-contained or obtain enough 
information from you that they are complete as they appear in 
the editing window. 

When you finish your script, press the Done button and tell 
the program where to store the text file containing your script. 
From there, you can copy it and paste it into the script-editing 
window of the object to which you want it attached. Press the tab 
key and you can see if it's properly formatted and completed. 

Figures 26-1 through 26-7 show the cards in the stack, with la­
bels to identify which buttons are which. We've only labeled 
those buttons whose names are different from those shown on 
the cards. If you see a button with no label, its name is the same 
as that on the card. 



Semi-Automatic Programming ---------------------------483 

• rile Edit Go Tools Objects 

0 ~ ~80 
_ ( Done@) 

lldd delete repe11t ... PIISS set 

11nswer diuide find Pllly show 

liSle do get pop c11rd sort 

beep do Menu glob !II push c11rd subtr11ct 

choose tool end go put type 

cliclc eHit hide return UISUIII effect 

conuert If ... multiply send Wlllt 

Paint Commands 

~ open re11d 

dr11g reset p11lnt 
filo Comm•nds close write 

a Background Field 1 
b Card Button 46 
c Card Button 36 

d Card Button 37 
e Card Button 38 

Figure 26-1. Main Card of stack 

4i File Edit Go Tools Objects 

0C Repeat H times) 

@C Repeat Foreuer) 

( Repeat Until )0 
( Repeat While )@ 

( Repeat With )(!) 
a Card Button 1 
b Card Button 2 
c Card Button 3 

d Card Button 4 
e Card Button 5 

; : 
0 

Figure 26-2. Card for repeal constructs 



484 Chapter Twenty-Six 
---------------------------

a File Edit Go Tools Objects 

GlOOal Properties 

8rrowKeys loclcMess8ges 

blindTyping loclcRecent 

cursor loclcScreen 

dr8gSpeed numberform8t 

editBicgnd powerKeys 

l8ngu8ge userlevel 

Figure 26-3. Card for set command, globals only implemented 

• File Edit Go Tools Obj ect s 

How to Use • Programming Template>" 

This stack is designed for people who want to prognm scripts 
in HyperTalkTMbut who don't particularly enjoy typing or 
who prefer to program with mouse·clicks. On the main card, 
simply click on the name of the command you want to use. 
The command, along with any syntax, will appear In the upper 
field unless the command is one with more options. In that 
case, you '11 be presented with another screen similar to the 
first but with only the options that pertain to the command you 
have chosen. Again, click on the one you want to use. You 
can keep prognmming with mouse-clicks until you finally 
have to supply a name that's peculiar to your stack or script. 

a Card Button 1 

Figure 26-4. Card explaining how to use the stack 



485 Semi-Automatic Programming -----------------------

• File Edit Go Tools Objects 

Hide What? 

( menuBar ) 

( tool window ) 

(pattern window) 

( message boH ) 

( button ) 

( field ) 

Figure 26-5. Card for hide command 

• File Edit Go Tools Objects 

Show What? 
( cards ) 
( menuBar ) 
( tool window ) 
(pattern window) 

( message boH ) 

( button ) 
( field ) 

Figure 26-6. Card for show command 



486 Chapter Twenty-Six 
----------------------------

c File Edit Go Tools Objects 

dissolue wipe 
uery slowly 

slowly 
scroll zoom 

uery fast 

born door uenetion blinds 
fast 

iris checkerboard 

plain 

a Card Button 22 

Figure 26-7. Card for visual effect command 

The Scripts us : tEl~ 

The scripts for this relatively simple but useful portion of the 
stack follow. Comments are inserted where necessary, but be­
cause the subject of this script is largely explained in the rest of 
this book, extensive commentary is superfluous. 

SCRIPTS FOR STACK: Program Templates 
=====D=a==•=~~=-============================~=•====c== 

** STACK SCRIPT ************************************ 

on openStack 
global scriptName ,type 
hide the message box 
put empty into field "Script-it" of card "Main Card" 
answer ''Build a handler or a function?" with "Function" or "Han-

dler" 
put it into type 
ask "What is the message name?" 
put it into scriptName 
put " on " & scriptName & return into field " Script-it" 

end openStack 



487 Semi-Automatic Programming ---------------------------

** CARD f1, BUTTON 11 : add ***** ******** *********************** 
on mouseup 

put " add to " & retur n after field " Script-it" 
end mouseUp 

** CARD fl, BUTTON 12 : a nswer ************************************ 
on mouseUp 

ask " Type your question :" 
put it into query 

put "answer" && quote & que ry & quote & "with " into holder 
put holder & return a fter field "Script-it " 

end mouseUp 

** CARD #1 , BUTTON #3 : a sk *** * *** *** *** *** ******** ************ 
on mouseUp 

ask " What question do y o u want to ask? " 
put it into query 

put "ask" && quote & query & quote & return into holder 
put holder after field " Script - It " of card "Main Card" 

end mouseUp 

**CARD 11, BUTTON #4: beep ** ******** ***** ********************* 
on mouseup 

ask " How many times should I beep?" with " 1 " 
put "beep" && it & return after field " Script-It" of card "Main Card" 

end mouseUp 

** CARD 11, BUTTON #5: choose tool 
************************* *** **** **** 
on mouseUp 

put "choose tool" & return a fte r field " Script-It " -, 
of card " Main Card" 

end mouseup 

** CARD #1 , BUTTON # 6: c lick ******* ** * *** ******* **************** 
on mouseUp 

put "click at with key" & retu rn after -, 
field " Script-It " of card "Ma i n Card" 

end mouseup 

** CARD 11, BUTTON 17 : convert ** * ********************************* 
on mouseUp 

put " convert to 
field " Script-It " 

end mouseUp 

" & return after -, 
of card "Main Card" 



488 Chapter Twenty-Six 
---------------------------

** CARD #1 , BUTTON #8: delete ** ** ******************************** 

on mouseUp 
put " delete " & return after ....., 
field "Script-It" of card "Main Card" 

end mouseUp 

**CARD tl, BUTTON 19: repeat ... 
************************************ 

on mouseUp 
global holder 
put " repeat" into holder 
push thi s card 
visual effect wipe right 
go to card " Loops" 

end mouseUp 

**CARD fl, BUTTON flO: pass * ********************************** * 

on mouseUp 
put " pass " & return into holder 
put holder after field " Script- It" of card "Main Card" 

end mouseUp 

** CARD #1 , BUTTON #11: set *** ********************************* 

on mouseUp 
global holder 
put "set " into holder 
push this card 
visual effect wipe right 
go to card "Properties" 

end mouseUp 

** CARD #1 , BUTTON #12 ****** * ***************************** 

on mouseUp 
put "divide by " & return after ....., 
field " Script-It" of card "Main Card" 

e nd mouseUp 

** CARD #1, BUTTON f13: do ******************************* *** ** 

o n mouseUp 
put "do " &quote && quote & return after ....., 
field "Script-It" of card "Main Card" 

end mouseUp 

** CARD #1, BUTTON #14: doMe nu ************************************ 



489 Semi-Automatic Programming ---------------------------

on mouseUp 

put "doMenu " & quote && quote & return after -, 
field "Script-It " of card "Main Card" 

end mouseUp 

** CARD 11, BUTTON 115: end ************************************ 
on mouseup 

put "end " & return after -, 
field "Script-It" of card " Main Card" 

end mouseUp 

** CARD fl, BUTTON fl6: exit ************************************ 
on mouseUp 

put "exit " & return aft er -, 
field " Script-It " of card "Main Card" 

end mouseUp 

**CARD f1, BUTTON #17: if . . . ************************************ 
on mouseup 

answer "What kind of 'if' construct?" with "Simple" or "If-Then" or--, 
" With Else " 
put it into ifKind 
if ifKind is " Simple" then 

put " if " & return after -, 
field " Script-It" of card "Main Card" 
exit mouseUp 

end if 
if ifKind is "If-Then" then 

put " if " & return & return & " then" & return & return -, 
& "end if" & return after field " Script-It " of card "Main Card" 
exit mouseUp 

end if 

put " if " & return & return & " then" & return & return -... 
& "else" & return & return & "end if" & return after -, 
field " Script-It " of card "Main Card" 

end mouseup 

** CARD #1, BUTTON #18: find ************************************ 
on mouseup 

put " find " into holder 
answer "Find string, word or characters?" with -... 
" word" or " chars " or " String" 
if it is "String" then 

put quote && quote & return after holder 
put holder after field " Script-It" of card "Main Card" 



m 

490 Chapter Twenty-Six 
--------------------------

else 
put it && quote && quote & return after holder 
put holder after field "Script-It" of card "Main Card" 

end if 
end mouseUp 

** CARD tl, BUTTON f19: get ************************************ 

on mouseUp 
put "get " & return into holder 
put holder after field "Script-It" of card "Main Card" 

end mouseUp 

** CARD #1, BUTTON #20: global **************************** ******** 

on mouseUp 
put "global " & return after holder 
put holder after field " Script-It" of card "Main Card" 

end mouseUp 

** CARD tl, BUTTON t21: go **** ******************************** 

on mouseUp 
put " go card of " & return into holder 
put holder after field " Script-It" of card "Main Card" 

end mouseUp 

** CARD #1, BUTTON #22 ************ ************************ 
on mouseUp 

global holder 
put " hide " into holder 
visual effect wipe right 
push this card 
go to card " Hide Items" 

end mouseUp 

** CARD #1, BUTTON #23: multiply 
******* ***************************** 
on mouseUp 

put "multiply by " & return into holder 
put holder after field " Script-It" of card "Main Card" 

end mouseUp 

** CARD #1, BUTTON #24: play ****************************** ****** 

on mouseUp 
put "play " into field " Script-It " 

e nd mouseUp 



491 Semi-Automatic Programming -------------------------------

** CARD #1, BUTTON #25: show ************************************ 
on mouseup 

global holder 
put " show " into holder 
visual effect wipe right 
push this card 
go to card " Show Items" 

end mouseUp 

** CARD fl , BUTTON #2 6: pop card 
********************* ***** ********** 
on mouseup 

answer " Pop into container? " with " Yes " or "No" 
if it is " Yes " the n put "pop card into " & return into holder -, 
else put " pop card" & r etur n into holder 
put holder after fie l d " Script- It " of card "Main Card" 

end mouseUp 

** CARD fl , BUTTON #27: push card 
**************** ** *** ***** **** ****** 
on mouseUp 

answer " Which card to push? " with " recent" or "this one" 
if it is " recent " then put " push recent card" & return after -, 
field " Script-It " else put "push card" & return after -, 
field " Script-It" 

end mouseUp 

** CARD #1, BUTTON #28 : put ************************************ 
on mouseUp 

put " put " & return after field " Script-It " 
end mouseUp 

** CARD #1 , BUTTON #2 9 : r eturn ************************************ 
on mouseUp 

global type 

if type is not " function " then 
beep 

answer "Sorry, but this can only be used in a function. " 
else 

put " return " & return after field "Script - It" 
end if 

end mouseUp 

** CARD #1, BUTTON #30 : send ************************************ 
on mouseUp 



492 Chapter Twenty-Six ---------------------------

put " send to " & return after field " Script-It" 
end mouseup 

** CARD 11, BUTTON 131: sort ************************************ 
on mouseup 

answer " Sort in what order? " with "ascending" or "descending" 
put " sort " && it & " " into holder 
answer " Usual text sort? " with " Yes " or " No" 
if it is " Yes " then 

put "by " & return afte r ho lde r 
else 

answer "What type of sort? " wit h "numeric" or " dateTime" or -, 
" international" 
put it && " by" && retur n afte r h o lde r 

end if 
put holder after field "Script-It" 

end mouseup 

** CARD 11 , BUTTON 1 32: subtract 
******************************* ***** 
on mouseUp 

put " subtract from " & ret u r n after field " Script-It " 
end mouseup 

** CARD 11 , BUTTON 133: type **** *** **** *** ********************** 
on mouseUp 

put "type " && quote && quote a f ter field " Script-It" 
end mouseUp 

** CARD 11 , BUTTON 1 34 : visual effect 
********************** ***** **** ***** 
on mouseUp 

global holder 
put "visual effect " into holde r 
visual effect dissolve 
push this card 
go to card " Visuals" 

end mouseUp 

** CARD 11 , BUTTON 135: wait ************************************ 
on mouseUp 

answer " What kind of wait command? " with " for time" or -, 
"until" or "while" 
put " wait " && it into holde r 
put empty into third wo r d of holder 



493 Semi-Automatic Programming -------------------------------

put holder & return after field " Script-It" 
end mouseUp 

** CARD #1, BUTTON f36: use help 
**************************** ******** 
on mouseup 

visual effect iris open 
push this card 
go to card " Use Help" 

end mouseup 

** CARD #1, BUTTON #37: Done * *********************************** 
on mouseup 

global scriptName 

put "end " & scriptName & return after field "Script-it" 
ask " Name a file to put the script into: " 
put it into fileName 
open file fileName 
write field " Script-It " to file fileName 
close file fileName 
answer " Ready for you to cut and paste " 
visual effect dissolve 
go "Home" 

end mouseUp 

** CARD fl, BUTTON #38 : About ************************************ 
on mouseUp 

show card field " Info" 
wait until the mouseClick 
hide card field "Info" 

end mouseup 

** CARD #1, BUTTON #39: Fil e Commands 
************************ ** *** ******* 
on mouseup 
end mouseUp 

**CARD #1, BUTTON #40: drag ************************************ 
on mouseUp 

put "drag from to " & return after field "Script-It" 
end mouseUp 

** CARD fl, BUTTON f41: reset paint 
************************************ 
on mouseup 



494 Chapter Twenty-Six ---------------------------

put " reset paint" & return after field " Script-It" 
end mouseUp 

** CARD #1, BUTTON #42: open ************************************ 
on mouseUp 

put " open file " && quote && quote & return after -, 
field " Script-It " 

end mouseUp 

** CARD #1, BUTTON #43: close ***************** ******************* 
on mouseup 

put "close file " && quote && quote & return after -, 
field " Script-It " 

end mouseUp 

** CARD #1, BUTTON #44: write ************************************ 
on mouseup 

answer "What kind of wait command?" with " for time" or -, 
"until" or "while" 
put "wait" && it into holder 
put empty into third word of holder 
put holder & return after field " Script-It" 

end mouseUp 

** CARD #1, BUTTON #45: read ************************* *********** 
on mouseUp 

put " read from file " && quote && quote into holder 
answer " How should the read end?" with "A Character" or -, 
" No. Chars" 
if it is "A Character" then put " until " after holder -, 
else put " for " after holder 
put holder & return after field "Script-It" 

end mouseUp 

** CARD #1, BUTTON #46: Go Home! 
************************************ 
on mouseUp 

if field " Script-It" is empty then 
go " Home" 
exit mouseup 

else 
answer "Are you sure you want to abandon the script? " with -, 
" No" or "Yes" 
if it is "Yes" then 

go " Home " 



495 Semi-Automatic Programming -------------------------------

exit mouseup 
end if 

end if 
end mouseup 

** CARD 12, BUTTON 11: Repeat x times 
************************************ 
on mouseup 

global holder 

put " times " & return & return & "end repeat " after holder 
put holder & return after field " Script-It " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseup 

** CARD 12, BUTTON #2: Repeat Forever 
******************************** **** 
on mouseup 

global holder 

put return & return & "end repeat " & return after holder 
put holder after field "Script- It " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD 12, BUTTON f3: Repeat Until 
************************************ 
on mouseup 

global holder 

put " until " & return & return & "end repeat " & return after 
holder 

put holder after field "Script-It " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

**CARD #2, BUTTON f4: Repeat Whi le 
************************************ 
on mouseup 

global holder 

put " while " & return & return & "end repeat" & return after 
holder 

put holder after field " Script- It " of card "Main Card" 
visual effect wipe left 
pop card 



496 Chapter Twenty-Six 
---------------------------

end mouseUp 

** CARD f2, BUTTON 15: Repeat With 
************************* *********** 
on mouseUp 

put "with counter = to " & return & return & "end repeat" ---, 
& return after holder 
put holder after field "Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD #3: Properties ************************************ 
on TorF 

global holder,propName 
answer " Set " & propName & " to what? " with False or True 
put space & it & return after holder 
put holder after field "Script-it" of card "Main Card" 
visual effect wipe left 
pop card 

end TorF 

** CARD f3, BUTTON fl: arrowKeys 
************************************ 
on mouseUp 

global holder, propName 
put "arrowKeys" into propName 
put " arrowKeys to " after holder 
TorF 

end mouseUp 

**CARD #3, BUTTON #2: lockMessages 
*********************** ************* 
on mouseUp 

global holder, propName 
put " lockMessages" into propName 
put " lockMessages to " after holder 
TorF 

end mouseUp 

** CARD 13, BUTTON 13: blindTyping 
***************************** ******* 
on mouseUp 

global holder, propName 
put "blindTyping" into propName 



497 Semi-Automatic Programming -------------------------------

put " blindTyping to " after holder 
TorF 

end mouseUp 

** CARD #3, BUTTON #4: cursor ************************************ 
on mouseUp 

global holder 
put " cursor to " after holder 
ask "What cursor number? " 
put it after holder 

put holder & return after field "Script-it " of card "Main Card" 
pop card 

end mouseup 

** CARD #3, BUTTON #5: dragSpeed 
************************************ 
on mouseUp 

global holder 
put " dragSpeed to " after holder 
ask "What speed (pixels per second) " 
put it & return after holder 

put holder after field "Script-it" of card "Main Card" 
pop card 

end mouseup 

** CARD #3, BUTTON #6 : editBkgnd 
************************************ 
on mouseUp 

global holder, propName 
put "editBkgnd" into propName 
put " editBkgnd to " after holder 
TorF 

end mouseup 

** CARD #3, BUTTON #7: language ************************************ 
on mouseup 

global holder 

ask " What language? " with "English" 
put " language to " & it & return after holder 
put holder after field "Script-it" of card "Main Card" 
pop card 

end mouseUp 

**CARD #3, BUTTON 18: lockRecent 
************************************ 



498 Chapter Twenty-Six ---------------------------

on mouseup 
global holder, propName 
put "lockRecent" into propName 
put " lockRecent to " after holder 
TorF 

end mouseUp 

** CARD #3, BUTTON #9: lockScreen 
************************************ 
on mouseup 

global holder, propName 
put " lockScreen" into propName 
put " lockScreen to " after holder 
TorF 

end mouseUp 

** CARD #3, BUTTON #10: numberFormat 
************************************ 
on mouseup 

global holder 
put " numberFormat to " after holder 
ask " How many digits of precision?" with "2" 
put it into precision 
answer " Display a zero before the decimal?" with Yes or No 
put it into displayZero 
if displayZero = "Yes" then put "0" into format 
put " . " after format 
repeat with counter = 1 to precision 

put "#" after format 
end repeat 
put quote & format & quote & return after holder 
put holder after field "Script-it" of card "Main Card" 
pop card 

end mouseUp 

** CARD #3, BUTTON #11: powerKeys 
************************************ 
on mouseup 

global holder, propName 
put "powerKeys" into propName 
put " powerKeys to " after holder 
TorF 

end mouseUp 

** CARD t3, BUTTON #12: userLevel 



499 Semi-Automatic Programming -------------------------------

************************************ 
on mouseup 

global holder 

put "userLevel to " after holder 
ask " What level of use?" with "5" 
put it after holder 

put holder & return after field " Script-It" of card "Main Card" 
end mouseUp 

** CARD #4, BUTTON #1: Go Back ************************************ on mouseUp 
visual effect iris close 
pop card 

end mouseup 

** CARD #5, BUTTON #1: menuBar ************************************ on mouseup 
global holder 

put "menuBar" & return after holder 

put holder after field "Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseup 

** CARD #5, BUTTON #2: tool window 
************************************ 
on mouseup 

global holder 

put "tool window" & return after holder 
put holder after field "Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseup 

** CARD #5, BUTTON #3: pattern window 
**************************** ******** 
on mouseUp 

global holder 

put "pattern window" & return after holder 
put holder after field "Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

**CARD f5, BUTTON #4: message box 



500 Chapter Twenty-Six 
---------------------------

************************************ 
on mouseUp 

global holder 
put "message box" & return after holder 
put holder after field " Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD 15, BUTTON f5: button ***************************** ******* 
on mouseUp 

global holder 
answer "What kind of button?" with " background" or " card" 
put it && "button" & return after holder 
put holder after field " Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD fS, BUTTON f6: field ************************************ 
on mouseup 

global holder 
answer "What kind of field? " with " background" or " card" 
put it && "field" & return after holder 
put holder after field " Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD f6, BUTTON fl: menuBar ************************************ 
on mouseUp 

global holder 
put "menuBar" & return after holder 
put holder after field "Script-It " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD f6, BUTTON #2: tool window 
******************************* ** *** 
on mouseUp 

global holder 
put " tool window" & return after holder 
put holder after field " Script-It" of card "Main Card" 
visual effect wipe left 



501 Semi-Automatic Programming ---------------------------

pop card 
end mouseUp 

** CARD f6, BUTTON #3: pattern window 
*************************** **** ***** 
on mouseup 

global holder 
put "pattern window" & return after holder 
put holder after field "Script-I t " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD #6, BUTTON #4: message box 
*k******************** ** ******** **** 
on mouseUp 

global holder 
put "message box" & return after holder 
put holder after field "Script-It " of card " Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD f6, BUTTON fS: button ************************************ 
on mouseUp 

global holder 
answer "What kind of button? " with "background" or " card" 
put it && " button" & return after holder 
put holder after field "Script-It" of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD #6 , BUTTON #6: field ************************************ 
on mouseup 

global holder 
answer "What kind of field?" with "background" or "card" 
put it && " field" & return after holder 
put holder after field "Script- It " of card "Main Card" 
visual effect wipe left 
pop card 

end mouseUp 

** CARD #6, BUTTON f7: cards ************************************ 
on mouseUp 



502 Chapter Twenty-Six ---------------------------

global holder 
ask " How man y cards (or all )?" wi th " all" 
put it && "cards" & return after holder 
put holder after field "Script-It " of card " Main Card" 
visual effect wipe left 
pop card 

end mouseup 

**CARD #7 : Visuals ******************** **************** 
This card shows some effective use of hiding and showing butto ns, 
g iving the appearance of a nimat i on as it unveils new buttons that 
are appropriate to the first selection. Thus if the user picks 
" scroll," the buttons called " up," " down," " left ," and " right " 
appear. This is a technique you might find quite useful in your 
stacks. 

on openCard 
repeat with counter = 10 to 17 

hide button counter 
end repeat 

end openCard 

** CARD #7, BUTTON #1 : dissolve ************************************ 
on mouseup 

global holder 
put " d i ssol ve " after holder 
repeat with counter = 18 to 21 

show button counte r 
end repeat 

end mouseUp 

** CARD #7 , BUTTON #2: scroll *********************** * ****** ****** 
on mouseup 

global holder 
put " scroll " a fter holder 
repeat with counter = 10 to 13 

show button counter 
end repeat 

end mouseUp 

** CARD f7 , BUTTON #3 : barn door 
******* * ****** ** ************** **** ** 
on mouseUp 

g l obal holder 
put " barn door " after holder 
repeat with counter = 14 to 15 



503 Semi-Automatic Programming -------------------------------

show button counter 
end repeat 

end mouseUp 

** CARD #7, BUTTON #4: iris ************************************ 
on mouseup 

global holder 
put " iris " after holder 
repeat with counter = 14 to 15 

show button counter 
end repeat 

end mouseup 

** CARD #7, BUTTON #5: wipe ********* *************************** 
on mouseUp 

global holder 
put "wipe " after holder 
repeat with counter = 10 to 13 

show button counter 
end repeat 

end mouseUp 

** CARD 17, BUTTON 16: venetian blinds 
************************************ 
on mouseUp 

global holder 
put " venetian blinds " after holder 

end mouseUp 

** CARD #7, BUTTON #7: zoom ************************************ 
on mouseup 

global holder 
put " zoom " after holder 
repeat with counter= 14 to 17 

show button counter 
end repeat 

end mouseUp 

** CARD 17, BUTTON #8: checkerboard 
*********************** *** ******* *** 
on mouseUp 

global holder 
put "checkerboard " after holder 

end mouseUp 



504 Chapter Twenty-Six 
---------------------------

** CARD J7, BUTTON 19: plain ************************************ 

on mouseUp 
global holder 
put "plain " after holder 

end mouseUp 

** CARD f7, BUTTON flO: up ************************************ 

on mouseUp 
global holder 
put "up " after holder 

end mouseUp 

** CARD #7, BUTTON fll: down ******* **** ************************* 

on mouseUp 
global holder 
put " down " after holder 

end mouseUp 

** CARD f7, BUTTON f12 : left ************** * **** **k************** 

on mouseUp 
g l obal holder 
put " left " after holder 

end mouseUp 

**CARD t7, BUTTON #13: right ************************************ 

on mouseUp 
global holder 
put " right " after holder 

end mouseUp 

** CARD #7, BUTTON #14: open ************************************ 

on mouseUp 
global holder 
put " open " after holder 

end mouseUp 

** CARD f7, BUTTON flS : close ***************** ******************* 

on mouseUp 
global holder 
put " close " after holder 

end mouseUp 

** CARD #7 , BUTTON 116: in ************************************ 

on mouseUp 
global holder 



505 Semi-Automatic Programming ---------------------------

put " in " after holder 
end mouseUp 

** CARD f7 , BUTTON fl7: out ************************************ 
on mouseUp 

global holder 
put "out " after holder 

end mouseup 

** CARD #7, BUTTON #18: very slowly 
************************************ 
on mouseUp 

global holder 
put "very slowly" after holder 

end mouseUp 

** CARD #7, BUTTON #19: slowly ************************************ 
on mouseUp 

global holder 
put "slowly" after holder 

end mouseUp 

** CARD #7, BUTTON f20: very fast 
************************************ 
on mouseUp 

global holder 
put "very fast " after holder 

end mouseUp 

** CARD f7, BUTTON #21: fast ************************************ 
on mouseup 

global holder 
put " fast " after holder 

end mouseUp 

** CARD #7, BUTTON #22: Go Back ************************************ 
on mouseUp 

global holder 

put holder & return after field " Script-It " of card " Main Card" 
visual effect dissolve to inverse 
pop card 

end mouseUp 



506 Chapter Twenty-Six ----------------------

Changes and Additions 

Summary 

The commercial version of this script contains many 
enhancements and occupies far more space than would be 
possible or practical to print here. You can obtain the 
commercial version through Hyperpress Publishing (see 
Appendix C) or your Macintosh software dealer. But you might 
want to consider adding such features as the following to make 
the script even more usable: 

• paint, card, field, and button properties to the Properties 
card or to their own cards 

• built-in HyperTalk functions programmed the same way as 
the commands that are already included 

• more automatic movement of the finished script to the 
user's object 

As with the stack in Chapter 25, if you make changes we'd 
love to see them. Contact us as explained in the Preface. 

This concludes our study of HyperTalk. You've learned all the 
major commands, operators, functions, and properties, a 
considerable number of programming strategies, and some design 
techniques. You should now be ready to tackle the production of 
stacks for sale or sharing. 

Let us know what you're doing! 



APPENDIX 

'""""'"~ II I! i! II! Ill iii I I . ~~ wow::~ 

HyperTalk Vocabulary 

h is appendix lists in alphabetical order all the commands, func­
tions, operators, key words, and identifiers used in HyperTalk. The 
type of word or phrase, its syntax, and notes about its use and effect 
are also supplied. For page references, see the index. 

Because this appendix is different in nature from the rest of 
the book, I have introduced some new uses for italics, brackets, 
braces, and other special typographic techniques. The appendix 
differs in these respects from the rest of the text in the book. 

Italics in this appendix act as cross-references to words and 
phrases used elsewhere in the appendix. We have italicized only 
those words that are explained in some depth here and that are 
particularly relevant to the command or phrase under discussion. 
Brackets continue to indicate optional material, as in the text. 
Curly braces, on the other hand, mean that one of the options they 
contain must be chosen. 

507 



508 Appendix A 

Word/Phrase Type Syntax Notes 

& OperaiOr string-value & string- Concatenates the two string-values together 
value with no intervening space added. See &&. 

&& Operator string-value && string-
value 

Concatenates a space, then the second 
string-value onto the end of the frrst string-
value. 

• Operator number * number Returns the product of the two numbers. 

+ Operator number+ number Returns the sum of the two numbers. 

Operator number - number Returns the difference between the two 
numbers. 

I Operator number I number Returns the first number divided by the 
second number. 

< Operator value <value Compares two values and returns true if the 
first number is smaller than the second, 
false if the second number is smaller. 

<= Operator value <=value Compares two values and returns true if the 
value $ value frrst value is smaller than or equal to the 

second, false otherwise. The second form 
of the opcraiOr is created with Option-
comma. 

> Operator value > value Compares two values and returns true if the 
frrst is the larger of the two.[alse if the 
second is larger. 

>= Operator value>= value Compares the two values and returns true if 
value~ value the ftrst is larger than or equal to the 

second, false if the second is larger. The 
second form is created with Option-period. 

II Operator number II number Returns the first number raised to the 
power indicated by the second number. 

abbreviated Format abbr[ev[iated]] date Used with convert to reformat a date field 
or value. Also used with functions. An 
abbreviated date formats as Fri. Nov 6, 
1987. 

abs Function the abs of number Returns the absolute value of a number 
abs(number) (i.e., its value with a positive sign 

regardless of its original sign). 

add Command add number to container Container must have a number in it or an 
error occurs. Result of addition replaces 
former value of container. 



HyperTalk Vocabulary -----------------------------509 

Word/Phrase Type Syn tax Notes 
afLCT Preposition None 

Used with )UI to insert material behind 
(following current contents of destination 
container or variable. 

all Adjective all cards Used with shew and print primarily. Any 
place a number could be used with cards, 
all can appear. 

and Operator expression and expression Returns true if both expressions are true, 
false if either is false. 

annuity Function annuity( rate, periods) Highly accurate way of calculating the 
annuity function. Arguments must be 
numeric. Used to calculate present and 
future value. Sec compound. 

answer Command answer "prompt-string" Displays a dialog with a default OK but10n 
[with option [or option [or if all"with" parameters are omitted. 
option]JJ Otherwise, fills the dialog box button row 

from right to left with parameters. User 
presses button and result of the button 
press is stored in It. See ask. 

any Selector any cbunkExpression Used in commands to identify, select, or 
test a random element or chtmlc. 

arrow Identifier set cursor to arrow One of 8 prc-dcfmed cursor shapes in 
Version 1.2 and later. 

arrow Key System arrowKey left I right I up I A system message sent to a card when the Message down indicated arrow key has been pressed. 
ask Command ask "prompt-string" [with Displays a dialog displaying the message in 

answer] "prompt-string" and allows user to enter 
ask password "promr- text in response. Places string into It. If 
string" [with answer password form is used, password is 

encrypted before being returned. 
a tan Function the atan of angle Returns the nrc tangent of the angle, which atan(angle) must be expressed in radians. 
autoHilite Property None Tells whether a button will highlight when 

~ssed. Values arc true and false. 
ad/write. 

auto Tab Property None Tells how a Return key will be treated 
when pressed in the last line of a non-
scrolling field. Values are true and false. 
If true, then HyperCard treats such a return 
as a Tab. If false, it inserts a carriage 
return. Read/Write. Added in Version 1.2. 



510 Appendix A 

Word/Phrase Type Syntax Notes 

average Function average(nwnber-list) Returns the average value in the list of 
nwnbers supplied as an argument 

back Identifier None Points to card immediately before the 
current card in the Recent list Equivalent 
to recefll card. 

bam door Visual Effect barn door (open I close} No default value. 

beep Command beep [nwnbcr] Causes the system to beep nwnber of 
times. If nwnber omitted, beeps once. 

before Preposition None Used with put to insert material ahead of 
current contents of destination container or 
variable. 

bg(s] Abbreviation None Can be used wherever the term 
"background[s]" would be allowed. 

bkgd Abbreviation None Can be used wherever the term 
"background" would be allowed. 

black Adjective visual effect to black Alters the way visual effects work. Creates 
a black screen as an intermediate point for 
the visual effect before going to the 
destination card. 

blinciTyping Property None Global property that indicates whether blind 
typing is available to the user. Read/write. 

bot[tom]Right Function the bot[tom]Right of Rerums two integers separated by a 
Object comma, indicating the point that defines the 
bot[tom)Right(Objcct) lower right comer of the rectangle of the 

Object. Version 1.2 and later only. 

bot[ tom] Function the bot[ tom] of Object Returns an integer indicating the righttnost 
bot[tom](Object) point of the rectangle of the Object. 

Version 1.2 and later only. 

browse Tool Name None None 

brush Tool Name brush tool None 

brush Painting None Holds a value of 1-32, defming the shape 
Property of the brush to be used in paint operations. 

Read/write. 

btn[s) Abbreviation None Can be used wherever the term 
"button[s]" would be allowed. 

bucket Tool Name None None 



511 HyperTalk Vocabulary 

Word/Phrase Type Syntax Notes 

= 
busy 

Identifier set cursor to 
One of 8 pre..<fef med cursor shapes in busy 
Version 1.2 and later. (Referred to as the 
"beach ball".) button 

Tool Name button tool 
None bin tool 

cantDclete Property None 
Stack. card or background property that 
determines whether a user can delete the 
object to which it is related. True/false. 
Read/write. cantModify Property None 
Stack property that determines whether a 
user can compact, delete, or change the 
contents of the stack. If the stack is not 
physically locked, this property is 
read/write. True/false. card 

Multiple None 
Used in chunk expressions, in go 
commands, with show. Also used with 
visWJl effect, where it is default mode. cd[s] 

Abbreviation None 
Can be used wherever the term "card[s] " 
would be allowed. centered Painting None 
When true, draws shapes from their centers Property 

out rather than from their top-left corners. 
When false, uses standard top-left comer 
anchor for shape drawing. Read/write. char 

Identifier char[ actcr] 
A character or a group of characters can be 
selected using one of the chunking 
techniques. See word, line, and item. chatroNum 

Function the charToNum of 
Returns the ASCll value of the character. character 

charToNum( character) 
checkerboard 

Visual Effect None 
None choose tool 

Command choose tool-name tool 
Selects the named tool exactly as if chosen 
from the Tools menu. The user Level must 
be set to appropriate value to allow access 
to the named tool. click 

Command click at point[with 
Simulates the user clicking the mouse at the key List] 
screen address given inpoinJ. Modifier 
keys may be added in combination. 
separated by commas. click.H 

Function theclickH 
Returns the address of the horizontal point 
on the screen where the mouse was most 
recently clicked. See clickLoc and clickV. 



------------------------------~._,.. 

512 Appendix A 
---------------------------

Word/Phrase Type Syntax No tes 

clickLoc Function the clickLoc Returns the address of the point on the 
screen where the mouse was most recently 
clicked. Point is in format (h,v). 

clickV Function theclickV Returns the address of the vertical point on 
the screen where the mouse was most 
recently clicked. See clickLoc and clickH. 

close printing Command close printing Terminates printing and flushes the print 
buffer to ensure all cards are printed. 

closeBackground System None Sent to card when movement causes the 
Message background to change. Can occur on any 

go command or on a Quit. 

closeCard System None Sent to a card when it is closed. 
Message 

closeField System None Sent to a field when the user tabs or clicks 
Message out of it and its contents have been 

changed. 

closeS tack System None Sent to a card when the stack is about to be 
Message closed by the user opening another stack. 

command Key Function cmdKey Returns status of Command Key as up or 
down. 

compound Function compound( rate, periods) Returns the compound interest factor at rate 
over the number of periods indicated. 
Used in calculating present and future 
values of annuities. See annuity. 

contains OperaJ.or container contains value Returns true if the text on the left side of the 
operator is found in the string or container 
on the right, false if it is not. The conJoins 
operator and the is in operator are 
synonymous except that the order of 
arguments is reversed. 

controlKey System 
Message 

oontrolKey key-number A system message sent to a card, indicating 
that the Control Key has been pressed. 
Always accompanied by an argument that 
indicates which key was held down along 
with the Control Key. The argument is the 
ASCII value of the accompanying key. 

convert Command convert container to Changes format of date/time information in 
format container to format specified: seconds, 

dateltems. long date, short date, 
abbrev[iatcd] date, long time, or short time. 



513 HyperTalk Vocabulary 
------------------------~ 

Word/Phrase Type Syntax Notes 

cos Function the cos of angle Returns the cosine of the an~le supplied as 
cos( angle) an argument and expressed m radians. 

cross Identifier set cursor to One of 8 pre-def med cursor shapes in 
cross Version 1.2 and later. 

cursor Property None A string or number identifying a cursor 
resource in the current environmenL Write 
only. 

curve Tool Name None None 

date Function the [short I long I 
abbrev[iated]] date 

Returns a string representing the current 
date in your Mac, using one of the formats 
shown if il is supplied and defaulting to the 
short formaL See short, long, and 
obbrev[iaJed]. 

dateltems Format None Used with convert to cause HyperCard to 
put a date/lime field into a comma-delimited 
string for extraction and calculation 
purposes. Returns year, month, day, hour, 
minute, second, and day of week (Sunday 
= 1). 

date Time Sort Type None Used with sort to sort stack by treating a 
chunk expression as a date/time value. 

delete Command delete chunk [of card] Deletes text described by chunk expression 
from current card unless of card parameter 
is supplied and identifies a different card. 

deleteBackground System 
Message 

None Documented but not functional in any 
version of HyperCard. 

deletcButton System None Sent to a buUon indicating it is about to be 
Message deleted. 

deleteCard System None Sent to a card indicating it is about to be 
Message deleted. 

deleteField System None Sent to a field indicating it is about to be 
Message deleted. 

deleteS tack System None Sent to a card indicating its stack is about to 
Message be deleted. 

dial Command dial number Attempts to dial the telephone using built-in 
dial number with modem speaker tones if modem omitted or with a 
dial number with modem modem if included in command. 
modem-string Optionally, may supply modem-

initiali7.ation commands as modem-string. 



514 Appendix A 

Word/Phrase Type Syntax Notes 

diskS pace Function the diskSpace Returns the number of bytes left on the 
currently logged disk drive. 

dissolve Visual Effect None None 

div Operator number div number Returns truncated quotient of fll'St number 
divided by second number. 

divide Command divide container by The conlainer must have a number in it or 
number an error occurs. Contents of container 

replaced by quotient. 

do Command do "text string" Gets whatever is in text string or source of 
text string and interprets it as a HyperTalk 
command. 

do Menu Command doMenu "menultem" Simulates user selection of indicated menu 
item. menu/tem must correspond exactly to 
the name of a selection of a currently active 
and available menu. The user Level must be 
set to permit access to the menu containing 
the item. 

done Predefined None The value returned by the sound function if 
Value no sound is playing. 

down Constant None One of the possible values of the mouse 
button and many keys whose status can be 
checked with functions. See up. 

drag Command drag from point to point Simulates dragging with the tool currently 
[with key List] in usc. Dragging occurs from first point to 

second. Optional key List can contain 
modifier keys, separated by commas. See 
choose tool. 

dragS peed Property None Global numeric property that determines the 
rate at which dragging will occur, in pixels 
per second. Read/write. On idl£, reset to 0. 

edit script Command edit seript of object Opens seript of object for editing by user. 
The userLcvel must be set to 5 (scripting) 
or nothing happens. 

editBkgnd Property None Global property that determines whether 
operations arc currently being performed on 
the background of the current card. 
Read/write. 

eight Constant None Use in place of number 8. 

eighth Selector eighth chunkExpression Used in commands to identify, select or 
test the eighth element or chunk. 



515 

Word/Phrase Type Syntax 
Notes 

empty Predefined None 
Equals the null string, "". Used most often Value 
with put and with conditional tests on 
variables, containers, and fields. end Identifier end handler-name 
Required at the end of all event and 
function handlers. See on,Junction. enter InField System enterlnField 
A system message sent to a field whenever Message 
the user presses the Enter key with the 
pointer positioned in that field. (Version 1.2 
and later.) 

enter Key System enter Key 
A system message sent to a card indicating Message 
the Enter key is pressed. 

eraser Tool Name None 
None 

exit Command exit handler-name 
Leaves a handler before the end is reached. exit repeat Control exit repeat 
Used to exit a repeat loop before the Structure 
condition arises that would normally 
lerminatc it. 

exit to HyperCard Command exit to HyperCard 
Quits all levels of handlers immediately and 
stops HypcrTalk completely. exp 

Function the exp of number 
Returns the constant e raised to the power exp(number) 
represented by number. expl Function the expl of number 
Returns the value one less than the exp of eJtpl(number) 
the number. 

eJtp2 Function the eJtp2 of number 
Returns the value of 2 raised to the power eJtp2(numbcr) 
specified by the number. false Constant None 
One of the two Boolean values returned 
with true/false tests. Sec true. fast Adjective None 
Used with visual to cause the next visual 
effect to execute quickly. field 

Tool Name None 
None 

fJ.fth Selector fifth chunkExpression 
Used in commands to identify, select, or 
test the fifth clement or chunk. filled Painting None 
When true, any shapes drawn are filled Property 
with the currently selected pattern as they 
are drawn. 



516 Appendix A 

Word/Phrase Typ e Syn tax Notes 

fmd Command find target [in field fiekl- The target is a text string. Field-name, if 

name] present, must be the name, nwnber, or ID 

fmd char[acter)s target [in of a field. Without qualifiers, find locates 

field field-name) target at the beginning of words. With 

find word target [in field chars, it fmds string anywhere in word. 

field-name) With word, it fmds only whole words that 

find whole target [in field match the tar~et string. With wlwle, added 

field-name] 
in Version 1. , it finds only exact matches, 

fmd string target [in field including spaces, with word order 

field-name) significant, and requires that the target be 
found entirely within one field. With string 
and arguments with spaces, performance 
improvement is obtained in Version 1.2 and 
above. 

first Selector first chunkExpression Used in commands to identify, select, or 
test the first clement or chunk. 

five Constant None Use in place of number 5. 

fld[s] Abbreviation None 
Can be used wherever the term "field[s]" 
would be allowed. 

formFecd Constant None 
Can be put or concatenated into a string 
with & to cause the printer to eject a page 
when this command is encountered. See 
lineFeed. 

forth Identifier None 
Points to the next card in the Recent lisL If 
the current card is the last card in the Recent 
list, returns to Home stack. 

foundChunk Function the foundChunk Returns a chunking expression that 
identifies the location of the last text found 
with a find command. (Version 1.2 and 
later) 

foundField Function the foundField Returns the identification of the field in 
which the last text was found with a find 
command. (Version 1.2 and later) 

foundLine Function the foundLine Returns the field number and line number 
on which the last text was found with a find 
command. (V'--rsion 1.2 and later) 

foundText Function the foundText Returns the last text found with a find 
command. (Version 1.2 and later) 

four Constant None Use in place of number 4. 

fourth Selector fourth chunkExpression Used in commands to identify, select, or 
test the fourth clement or chunk. 



--
517 HypcrTalk Vocabulary 

------------------------~ 

Word/Phrase Type Syntax Notes 

frceSi.ze Property None Global property indicating how much free 
space is in the current stack. Read-only. 

functionKey System functionKey number A system message sent to a card indicating 
Message that the function key whose number is 

indicated has been pressed. 

get Command get source-expression Puts the value of any literal, constant, 
function, or container into It. See put, 
which is more useful. geJ is not used often 
and is left over from earlier versions of 
HyperTal.k for compatibility. 

global Command global name-list Identifies one or more variables as global in 
nature, i.e., known and accessible outside 
the cmrcnt handler. Command must appear 
before variable it names is used. 

go Command go (to] card-name 
go (to] stack stack-name 
go (to] card-name of 

Changes the display to show the designated 
card in the current or designated stack with 
the current or designated background. 

stack-name 
go [to] card-name of 
background-name[of 
stack-name] 

gray Adjective visual effect to gray Alters the way visual effects work. Creates 
a gray screen as an intermediate point for 
the visual effect before going to the 
destination card. (Alternate spelling, grey, 
is allowed after Version 1.2.) 

grid Painting 
Property 

None When true, constrains some painting 
operations to a grid with lines at eight-pixel 
intervals, forcing everything to line up on 
those grid lines (visible or invisible). 
Read/write. 

hand Identifier set cursor to hand One of 8 pre-defmed cursor shapes in 
Version 1.2 and later. 

heapS pace Function the heapSpace Returns the amount of space currently 
available on the application heap. 

height Function the height of Object 
height(Objcct) 

Returns an integer indicating the distance in 
pixels between the top and bottom of the 
rectangle of the Object.. Version 1.2 and 
later only. 

help Command help Takes user to HyperCard's built-in Help 
stack. 



518 Appendix A 

Word/Phrase Type Syntax Notes 

help System None Sent to a card to indicate that Help has been 

Message selected from the Go menu. 

hide Command hide menuBar Removes the designated window or object 
hide window from view. Sec show. The window may 
hide object be tool window or pattern window or any 

valid address for the Message box. 

hilitc Property None Indicates whether a button is highlighted or 
not Read/write. 

home Identifier None Points to flrst card in Home stack. (There 
must be a stack called Home for HyperCard 
to operate.) 

iBearn Identifier set cursor to iBearn One of 8 pre-defined cursor shapes in 
Version 1.2 and later. 

icon Property None Number of icon resource associated with a 
button. Read/write. 

id Property None Numeric ID of a background, card, field, 
or button. Read-only. 

idle System None Sent to a card when no other message is 

Message being sent and no other action is taking 
place. Alternates with mouseWithin if the 
mouse is over a button or a field. 

if Control if true/false then If only one statement in either or both 

Strucwre statement-list statement-lists, no need for end if. else is 
(else optional. then is required. 
statement-list 

end if} 

international Sort Type None Used with sort to sort a stack by treating a 
chunk expression as text but using 
international sort-sequence standards rather 
than ASCII. Sec text, numeric, and 
dateTime. 

into Preposition None Used with put to replace current contents of 
destination container or variable with value 
supplied in command. 

inverse Adjective visual effect to inverse Alters the way visual effects work. Creates 
a screen that is the inverse of the destination 
card as an intermediate point for the visual 
effect before going to the destination card. 

iris Visual Effect iris {open I close} No default value. 



519 HyperTalk Vocabulary 

Word/Phrase Type Syntax Notes 
is in Operator text is in rontainer Returns true if text is found in container, 

false if not. The is in operator is 
synonymous with contains except the order 
of arguments is reversed. 

is not in Operator text is not in rontainer The logical opposite of is in. May also use 
11()1 (text is in container) to accomplish this 
goal. 

it Identifier None Default container used by several relrieval 
and chunking rommands. Can also be 
used explicitly. See put and get. 

items Identifier None An item is defmcd as any arbitrary text 
separated by a romma from other text in a 
field, line, rontainer, or variable. 

language Property None 
Global property rontaining the language in 
which activities take place. Read-write. 
Must be a language interpreter for the 
chosen language or an error results. 
Read/write. 

lasso Tool Name None None 
last Selector last chunkExpression Used in commands to identify, select, or 

test the last element or chunk. 
left Function the left of Object Returns the leftmost position of the object's left( Object) rectangle as an integer. 
length Function the length of text Returns the number of characters in the 

length( text) string of text supplied as an argument 
line Tool Name None None 
line Identifier None 

A line is a block of text in a field that ends 
with a carriage return. 

lineFecd Constant None 
Can be used with put or concatenated with 
& to cause the printer to skip a line when it 
is encountered. SeeformFeed. 

lincSizc Painting None 
Dcfmes thickness in pixels of a line drawn Property 
in ~aiming as one of the following values: 
1, , 3, 4, 6, or 8. Read/write. 

In Function the In of number Returns the natural (base-e) logarithm of In( number) nwnber. 
lnl Function the lnl of number 

Returns the natural (base-e) logarithm of 1 lnl(numbcr) +number. 



520 Appendix A 

Word/Phrase Type Syntax Notes 

location Property [the] loc[ation] A set of two screen coordinates that define 
the center of a field or window, or the 
upper center of a button's outline. 
Read/write. 

lock Command lock screen Equivalent to setting the lockScreen 
property to tru~. 

lockMessages Property None Indicates whether open and close messages 
will be sent to the card. True/false. 
Read/write. On idle, reset to false. 

lockRecent Property None Global property that determines whether the 
Recent stack, which shows the most recent 
cards navigated up to a depth of 42 cards, 
will be updated or not. True/false. 
Read/write. On idle, resets to false. 

lockScreen Property None Global property that determines whether the 
screen will renect navigation and other on-
screen activities that alter the appearance of 
the screen. True/false. Read/write. On 
idle, resets to false with no levels of lock 
and unlock pending. (See lock command). 

lockText Property None Field property that detennines whether the 
user can enter information into the field or 
not. True/false. Read/write. 

log2 Function the log2 of number Returns the base-2logarithm of the 
log2(number) number. 

long Format long {date I time} Used with convert to reformat a date or 
time field or value. Also used with 
functions. Lon~ dates format as Friday, 
November 6, 1 87. Long times format as 
9:50:10 PM or 21:50:10. 

max Function max( number-list) Returns the highest value in number-list, 
which must be a list of two or more 
numbers separated by commas. 

me Identifier None Points to object to which the script is 
attached. In Version 1.2 and later, is also a 
container into which information can be 
placed and that can be used to access the 
contents of the object when that object is a 
field. 

Message box Object [the] message [box I A windoid that stays on top of the display 
window] at all times. 
[the] rnsg [box lwindow] 



521 HyperTalk Vocabulary 
------------------------~ 

Word/Phrnse Type Syntax Notes 

middle Selector mid[dle) chunkExpression Used in commands to identify, select, or 
test center or middle element or chunk. 
Always rounds up if chunkExpression has 
even number of elements. 

min Function min(number-list) Returns the smallest value in number-list, 
which must be a list of two or more 
numbers separated by commas. 

mod Operator number mod number Returns only the decimal remainder of the 
division of the first number by the second. 

mouse Function the mouse Returns current status of the mouse button 
as up or down. See mouse Up and 
mouseD own. 

mouscCiick Function the mouseClick Returns lrue if the mouse button has been 
clicked since this handler began executing, 
false otherwise. 

mouse Down System None Sent to an object indicating mouse button is 
Message down and located within its boundaries. 

mouseEntcr System None Sent to a button or field when the mouse 
Message enters its boundaries. See mouseLeave. 

mouseH Function themouseH Returns current location of the mouse 
pointer in pixels from the left side of the 
card window. Sec mouseY and 
mouseLoc. 

mouseLeave System 
Message 

None Sent to a button or field indicating the 
mouse has left its boundaries. Sec 
mouseEnler. 

mouseLoc Function the mouseLoc Returns the horizontal and vertical 
coordinates of the point in the card window 
where the mouse is currently located. The 
horizontal position is given first in a two-
number list, separated by commas. See 
mouse// and mouseY. 

mouseS till Down System None Sent to an object indicating that the mouse 
Message button has remained down and within its 

boundaries since the last time it was 
checked. 

mouse Up System None Sent to an object indicating that the mouse 
Message button has been released within its 

boundaries after having been pressed there. 
See mouseDown. 



522 Appendix A 

Word/Phrase Type Syntax Notes 

mouseY Function the mouseY Returns the current location of the mouse 
pointer in pixels from the top of the card 
window. See mouseH and mouseLoc. 

mouse Within System None Sent to a button or field indicating that the 
Message mouse pointer has moved within its 

boundaries. 

multiple Painting 
Property 

None When true, creates multiple images of a 
shape as the cursor is dragged after user 
selects a shape tool. Read/write. 

multiply Command multiply container by The container must hold a number or an 
number error results. Product of multiplication 

replaces contents of container. 

multiSpace Painting None Determines the number of pixels (1-9) 
Property between multiple images drawn when 

multiple is true. Read/write. 

name Property None String identifying a stack. backgromd, 
card, field, or button by the name assigned 
by the developer or the user, or the default 
value if none is assigned. Read/write. 

new Background System 
Message 

None Sent to a card indicating that a new 
background is about to be created. 

new Button System None Sent to a button as soon as it has been 
Message created. To be of practical usc, must be in 

a script at card level or higher. 

newCard System None Sent to a card as soon as it is created To 
Message be of practical value, must be at the 

background level or higher. 

newField System None Sent to a field as soon as it is created. To 
Message be of practical value, must be at the card 

level or higher. 

new Stack System 
Message 

None Sent to a card indicating a new stack is 
being created. To be of practical value, 
must be at the Home stack level or higher. 

next Identifier None Points to next card in current stack. 

next repeat Control next repeat Used to cause part of a repeat control 
Structure structure not to execute and the control 

value to increment if one is in use. See 
repeal. 

nine Constant None Use in place of number 9. 



HyperTalk Vocabulary 
------------------------~ 

523 



524 Appendix A 

Word/Phr ase Type Syntax Notes 

open printing Command open printing [with Initiates a print job, prints cards that appear 
dialog] in prinl statements before the close prinling 

print card-name statement Optionally opens print dialog 
close printing for user's input. 

openBackground System 
Message 

None Sent to a card when it is opened and its 
background is different from that of the 
immediately previously shown card. See 
c/.oseBackground. 

open Card System 
Message 

None Sent to a card when it is opened by going to 
it. 

openField System None Sent to an unlocked field when it has been 
Message clicked in or tabbed into. 

openS tack ~stem None Sent to a card when its stack is opened. To 
essage be of practical value, usually placed at the 

stack level or higher. 

optionKey Function the optionKey Returns status of Option key as up or 
down. 

or Operator expression or expression Returns true if either expression is true, 
false only if both are false. 

oval Tool Name None None 

param Function the param of number Returns the parameter in the number 
param(nwnber) position of the parameter string passed to 

the currently executing handler. The 
message name is numbered 0. 

paramCount Function the pararnCount Returns the number of parameters passed to 
the current1y executing handler. 

params Function theparams Returns the entire parameter list, including 
the name, of the message passed to the 
current1y executing handler. 

pass Command pass handler-name Sends the handler-name message or 
command to the next level up the hierarchy. 

pattern Painting None Sets the current number to a value from 1-
Property 40 corresponding to the palette patterns. 

Read/write. 

pattern window Identifier None Used to get and set properties of the pattern 
window used during graphics operations. 

pencil Tool Name None None 

pi Constant None Value of pi = 3.14159265358979323846 



525 HyperTalk: Vocabulary 
--------------------~ 

Word/Phrase Type Syntax Notes 

pict Abbreviation None Can be used wherever the term "picture" 
would be allowed. 

picture Identifier None One of HyperCard's object types. Can be a 
background picture or a card picture. 

plain Visual Effect None None 

play Command play "sound name" Uses voice identified in sound name to 
[tempo )["note-list"] play sounds through the Macintosh built-in 
play stop speaker or external speaker port. Any 

sound resource can be used as the sound 
name. Sound plays until done unless play 
stop is encountered and stops the music 
immediately. )f note-list is empty, middle 
C is played. See sound function. 

plus Identifier set cursor to plus One of 8 prc-dcfmed cursor shapes in 
Version 1.2 and later. 

polygon Tool Name poly[gon] tool See regular polygon. 

polyS ides Painting None Determines how many sides the regular 
Property polygon tool will draw. Must be between 3 

and 50. Read/write. 

pop Command pop card ((into I before I Retrieves a card previously pushed. If a 
aftez) destination] destination is furnished, card's contents are 

placed there; otherwise a go to the popped 
card is implied. See push. 

powerKeys Property None Global propeny that determines whether a 
user with painting level or higher access 
can use one-key powez keys during paint 
operations. True/false. Read/write. 

previous Identifier prev[ious] Points to previous card in current stack. 

print card Command print card Part of open prinJing construct. Orders 
print (number I all) cards HyperCard lO print the current card, some 
print card-name number of cards in the stack. all cards in 

the stack, or a specific card whose name, 
number, or ID is supplied. See open 
prinJing, close prinJing. 

push card Command push card Saves current card's ID information in 
memory for later retrieval with pop card. 



526 Appendix A 

Word/Phrase Type Syntax Notes 

put Command put [expression] [{into I With only an expression, replaces contents 
before I after) destination) of Message box with expression value. 

With destinalion, places expression 
contents in place of, preceding, or 
following contents of destinLllion. If 
expression contains an arithmetic 
expression, it is evaluated first. 

quit System 
Message 

None Sent to a card when Quit HyperCard is 
selected from the File menu. To be of 
practical value, must be at the Home stack 
level. 

quote Constant None Used primarily in concatenation with &: and 
&:&: to place a quotation mark in a string. 

random Function the random of number Returns a random integer value between 1 
random( number) and number. 

read from file Command read from file flle-name Reads from a text-only ASCII me 
{until character I for previously opened with open, placing 
number} results into It. Reading continues until a 

specified character is reached or until a 
specific number of characters have been 
read, depending on form used. 

recent card Identifier recent card Points to the card immediately before the 
current card in the Recent list Identical to 
bac/c.. 

rectangle Tool Name rect[angle) tool None 

rectangle Property reel{ angle] Holds the upro:r-left and lower-right corner 
coordinates or a field, button, or window 
as four digits separated by commas. 
Read/write. 

regular polygon Tool Name reg[ular] poly[gon) tool See polygon. 

repeat Control repeat [for) [number) Used alone, means "repeat forever." 
Structure [times) Minimum form is repeat number. See end 

repeat with variable= start repeal, exit repeal, next repeal for ways of 
to end ending control structure looping. 
repeat with variable = start 
downToend 
repeat while true/false 
repeat until truelfalse 

reset paint Command reset paint Returns painting parameters to their original 
default conditions. 



HyperTalk Vocabulary 
------------------------~ 

527 

Word/Phrase Type Syntax Notes 

result Function the result Returns a string explaining any error 
caused by the previous command. If no 
error occurred, the value of the result is 
empty. 

resume System None Sent to a card to indicate that HypeiCard 
Message has resumed operations after being 

suspended. 

return Command return result Used in function handlers (see function) to 
identify the value to be sent to the calling 
handler routine. 

return Constant None Used primarily in concatenation with & and 
&& to place a carriage return in a string. 

rctumlnFicld System retumlnField A system message sent to a field whenever 
Message the user presses the Return key with the 

pointer positioned in that field. (Version 
1.2 and later.) 

retumKey System retumKey A system message sent to a card indicating 
Message that the Return key has been pressed 

right Function the right of Object Returns an integer indicating the rightmost 
right(Object) position that defines the rectangle of the 

Object Version 1.2 and later only. 

round Function the round of number Returns number rounded to the nearest 
round( number) integer. 

round rectangle Tool Name round rect{angle] tool None 

screcnRect Function the screenRect Returns four integers separated by commas 
indicating the top left and bottom right 
comers of the screen. Version 1.2 and later 
only. 

script Property None Enables the retrieval and modification of the 
script of any object: stack, background, 
card, field, or button. Read/write, but must 
use a container for modification. 

scroll Visual Effect scroll {left I right I up I No default value. 
down] 

scroll Property None Field property that determines the number 
of pixels of text that have scrolled above the 
top of the field's visible area. Read/write. 

second Selector second chunkExpression Used in commands to identify, select, or 
test the second element or chunk. 

j 



528 Appendix A 

Word/Phrase Type Syntax Notes 

seconds Format None Used with convert command to cause 
HyperCard to change a date/time field to 
total number of el~ed seconds since 
12:00:00 a.m. on anuary 1, 1904. Used 
for calculations. 

second[s] Function the second[s] Returns an integer containing the number of 
the sec[s] seconds between the Macintosh start date of 

midnight, January 1, 1904, and the date 
currently set in your system. 

select Tool Name None None 

select Command select object First form selects the appropriate tool (field 
select [before I after] or button), then the designated object. 
location of field Second form uses location as a chunking 
select [before I after] text expression to position the cursor in a field, 
of field selecting the text designated by position if 

before and after are omitted or inserting a 
blinking cursor before or after the 
chunk:ing exPI:ession. TIUrd form selects 
all text in a fteld or positions the cursor at 
the beginning (before) or end (after) of the 
field. 

selectcdChunk Function the selectedChunk Returns a chunking expression that 
identifies the location of the currently 
selected text, if any. Returns empty if no 
text is selected. (Version 1.2 and later) 

selectcdField Function the selectedField Returns the identifier of the field in which 
the currently selected text is located. 
Returns empty if no text is selected 
(Version 1.2 and later) 

selectcdLine Function the selectedLine Returns the line and field numbers of the 
current selected text, if any. Returns 
empty i no text is selected. (Version 1.2 
and later) 

selectcdText Function the selectcdfext Returns the currently selected text, if any. 
Returns empty if no text is selected. 
(Version 1.2 and later) 

selection Container None Contains the text currently highlighted 
(selected) on the card. 

send Command send message-name Directs a message-name at a particular 
[parameters] to object object in the hierarchy, overriding normal 

passage of control. Messaie-name must be 
one word with no spaces. t must not end 
with a special character. 



HyperTalk Vocabulary 
------------------------~ 

529 

Word/Phrase Type Syntax Notes 

set Command set property of object to 
value 

Alters condition of property associated with 
object so that it equals value. If no change 
is needed, none is made. 

seven Constant None Use in place of number 7. 

seventh Selector seventh chunkExpression Used in commands to identify, select, or 
test the seventh element or chunk. 

shiftKey Function the shiftK.ey Returns status of Shift key as up or down. 

short FormaL short {time I date} Used with convert to reformat a date or 
time field or value. Also used with 
fimctions. Short dates format as 
rnm/dd/yy. Short times format as 9:50 PM 
or 21:50 . 

show Command show menuBar Displays a specified object or window at an 
show window [at point] optionally specified location on the screen. 
show object [at point] Displays a specified number of cards or all 
show card window [at cards in the current stack. If card window 
point] is shown, poin t is in global coordinates, 
show {number I all} cards with upper-left corner of screen 0,0 and 

point giving offset of upper-left corner of 
card. 

show Lines Property None Field property that determines whether the 
lines within a field will be visible or 
invisible. Has no effect on a scrolling 
field. True/false. ReacVwrite. 

show Name Property None Button property that determines whether the 
button's name will be shown as part of the 
button display. True/false. ReacVwrite. 

showPict Property None Card or background property that 
determines whether the corresponding 
picture is visible or invisible. True/false. 
ReacVwrite. 

sin Function the sin o f angle 
sin( angle) 

Returns the trigonometric sine of the angle, 
which must be expressed in radians. 

six Constant None Use in place of number 6. 

sixth Selector sixth chunkExpression Used in commands to identify, select, or 
test the sixth element or chunk. 

size Property None Stack variable holding the size of the stack 
in kilobytes. Read-only. 

slowly Adverb slow[Jy] Used with visual to cause the next visual 
effect to execute slowly. 



530 Appendix A 

Word/Phrase Type Syntax Notes 

sort Command son [ascending I Soru all cards in a stack. Asswnes 
descending) [sortType] by ascending order. sorffype may be text, 
son Value numeric, inlunatiolllll, or dmeTime, and if 

omiu.ed defaults to text. The sort Value can 
be any field identifier or chunk expression 
or a source of such an identifier or 
expression. 

sound Function the sound Returns the name of the currently playing 
sound or done if none is playing. 

space Constant None Used primarily in concatenation with & and 
&& to place a blank space in a string. 

spray Tool Name spray [can] tool None 

sqrt Function the sqrt of nwnber 
sqrt(number) 

Returns the square root of number. 

stackS pace Function the stackSpace Returns the amount of memory currently 
available in your system's stack. 

startUp System None Sent to the flfSt card shown when 
Message HyperCard is started. Normally, this is the 

toP. card in the stack called Home, but it 
wtll be passed if no handler for it is present 
in this card. 

string Identifier find "string" Used only with thefmd command to gain a 
performance improvement when searching 
for combinations of characters including 
spaces. 

style Property None For buttons, determines whether button is 
tr~ent, opaque, rectangle, shadow, or 
scrol · g. For fields, determines whether 
the field is opaque, rectangle, round reeL, 
check box, radio button, or scrolling. 
Read/write. 

subtract Command subtract number from The conlainer must hold a number or an 
container error condition results. The result of the 

subtraction replaces the contents of 
conlainer. 

suspend System 
Message 

None Sent to a card when HyperCard is about to 
be suspended by operation of the open 
command that launches another application. 

tab Constant None Used primarily in concatenation with & and 
&& to place a tab in a string. 



HyperTalk Vocabulary ---------------------------531 

Word/Phrase Type Syntax Notes 

tab Key System None A ~tern message sent to a card indicating 
Message the ab key has been pressed. 

tan Function the tan of angle Returns the trigonometric tangent of the 
tan( angle) angle, which must be expressed in radians. 

target Function [the] target Returns a string identifying the original 
recipient of the current message. In the 
case of card, background, field, or button. 
returns a string like "card field id 2578" but 
may also return "this stack." H message 
has been passed up hierarchy, use this 
function to identify the original recipient. 
The use of the is required in versions earlier 
than 1.2. After Version 1.2,target 
accesses the contents of the target, which 
continues to refer to the object itself and not 
its contents. 

ten Constant None Use in place of number 10. 

tenth Selector tenth chunkExpression Used in commands to identify, select, or 
test the tenth element or chunk. 

text Sort Type None Default type of sort. Sorts stack by ASCII 
sort sequence. See numeric, inJernaJional, 
and doJeTime. 

text Tool Name text tool None 

tcxtAlign Property textAlign [of object] Sets alignment of text in an object to left, 
right, or center. If no object is specified, it 
is a painting property. Read/write. 

texlArrows Property None Global property implemented in Version 
1.1 that determ.ines if arrow keys will be 
used as cursor-moving keys in text editing 
mode or only for navigational purposes. 
True/false. Read/write. 

textFont Property textFont [of object] Sets the font to the resource font name to be 
used. If no object is specified, this is a 
painting property. Read/write. 

textHcight Property textHeight [of object] Determines the line height (leading) 
between baselines of text. H no object is 
supplied, this is a painting property. 
Read/write. 

textSize Property textSize [of object] Determines the font size of text With no 
object specified, this is a painting property. 
Read/write. 



532 Appendix A 

Word/Phrase Type Syntax Notes 

textStyle Property t.extStyle [of object] Sets the style of text to any combination of 
bold, italic, underline, outline, shadow, 
condense, extended, or plain. If the object 
is omiued, this is a painting property. 
Read/write. 

then Control 
Structure 

None - part of structure Sec if. 

third Selector third chunkExpression Used in commands to identify, select, or 
test the third element or chunk. 

this Identifier None Points to current card 

three Constant None Use in place of number 3. 

tick[s] Function, the tick[s] With the, returns number of ticks (1 tick = 
Identifier 1/60 second) since the Macintosh was 

turned on or re-booted. Without the, 
designates the number of 60ths of a second 
to perform some action. Second variation 
of~ used with repeal. 

time Function the [short I long] time Returns the current time as a text string. 
See short and long for those formalS. 

tool Function the tool Returns the name of the currently selected 
tool. See choose. 

tool window Operator None Used to get and set properties of the Tool 
Window used during graphics operations. 

top Function the top of Object 
top(Object) 

Returns an integer indicating the topmost 
location that defmes the rectangle of the 
Object. Version 1.2 and later only. 

top Left Function the top Left of Object 
topLcft(Object) 

RetlDlls two integers separated by a comma 
indicating the point that defmes the upper 
left corner of the rectangle of the Object. 
Version 1.2 and later only. 

true Constant None One of the two Boolean values returned 
with true/false tests. See false. 

trunc Function the trunc of number Returns integer portion of number without 
trunc(number) rounding. See round. 

two Constant None Use in place of number 2. 

type Command type text [with key-list] Simulates character-by-character typing of 
text as if from the keyboard, using one or 
more optional modifier keys in a comma-
separated list. 



533 HyperTalk Vocabulary ---------------------------

Word/Phrase Type Syntax Notes 

unlock Command unlock screen [with Unlocks the screen after a lock screen or set 
[visual effect] visual lockScreen to true command has been 
effect] issued. Alternatively, may include a visual 

effect to be displayed as the screen is 

up Constant None 

unlocked. In latter case, the key words 
visual effect are optional. 
One of the possible values of the mouse 
button and many keys whose status can be 
checked with functions. See down. 

user Level Property None Global property containing a number 
between 1 and 5 and determining the user's 
level of access to HyperCard. Read/write. 

uscrModify Property None Global property that can be set to true to 
allow the user to make temporary changes 
to a locked stack. Changes made by the 
user will not be retained. Ignored in an 
unlocked stack. Reset to false when user 
leaves a stack. True/false. Read/write. 

'-
value Function the value of string 

value(string) 
Evaluates string as a numerical expression 
and returns the result. 

venetian blinds Visual Effect None None 

version Function the version Returns the version number of HyperCard 
the version of (stack) or the current stack in use. When used 
the long Version with a stack name or identifier, returns five 
the long Version [of 
HyperCard] 

numbers separated by commas indicating 
the HypelCard version that created the 
stack. the version last used to compact the 
stack, the oldest version of HyperCard; 
used to change the stack since its last 
compaction, the version that last changed 
the stack, and the date of the most recent 
modification in seconds. 

very fast Adverb None Used with visual to cause the next visual 
effect to execute more quickly than when 
the adjective fast is used. Difference 
probably only noticeable on a Macintosh ll. 

very slowly Adverb very slow[Jy] Used with visual to cause the next visual 
effect to execute more slowly than when 
slowly is used. 

visible Property None Determines whether a field, button, or 
window is visible or invisible to the user. 
Read/write. 



534 Appendix A 

Word/Phrase Type Syn tax Notes 

visual Command visual [effect] effect-name Defmes visual effect to take place on next 
[speed] [to image] card switch. The effect-name must be a 

valid effect The speed parameter can be 
very slow[ly}, slow[ly],fast, or very fast . 
lbe image parameter can be white, gray, 
black, card, or inverse. Effects can be 
accumulated and stay in effect until replaced 
in another handler. 

wait Command wait [for] number Pauses script execution either for a specific 
[seconds] amount of time or based on Boolean 
wait until trueFalse expression value. If seconds is not added, 
wait while IIUeFalse ticlcs (1 tick= 1/60 second) are assumed. 

With unlil, waits for truePalse to become 
1rue; with while, waits for truePalse to 
become false. 

watch Identifier set cursor to One of 8 pre-defined cursor shapes in 
watch Version 1.2 and later. 

white Adjective visual effect to white Alters the way visual effectts work. 
Creates a white screen as an intermediate 
point for the visual effect before going to 
the destination card. 

whole Identifier find whole Used only with find to force HyperCard to 
locate target string only where it appears 
exactly as provided in argument, in same 
word order, in same field. 

wideMargins Property None Field property that determines whether text 
abuts both the left and ri~ margin or is 
indented slightly. True/ alse. Read/write. 

width Function the width of Object Returns an integer indicating the distance in 
width(Object) pixels between the left and right of the 

rectangle of the Object Version 1.2 and 
later only. 

wipe Visual Effect wipe {left I right I up I 
down} 

None 

word Identifier None A word is defmed as any string beginning 
and ending with a space. 

write to rue Command write text to file file-name Writes text on a previous_»; opened file. 
See open file, read from 1le, and close file . 

zero Constant None Use in place of number 0. 

zoom Visual Effect zoom {open I out I close I 
in} 

No default value. 



APPENDIX 

Macintosh ASCII Chart 

Decimal Character Decimal Character 

0 None 13 None (Return) 

1 None 14 None 

2 None 15 None 

3 None (ETX) 16 None 

4 None 17 None 

5 None 18 None 

6 None 19 None 

7 None 20 None 

8 None (Backspace) 21 None 

9 None (Tab) 22 None 

10 None (Line Feed) 23 None 

11 None 24 None 

12 None (Form Feed) 25 None 

535 



536 Appendix B 

Decimal Character Decimal Character 

26 None 54 6 
27 None (Escape) 55 7 
28 None 56 8 
29 None 57 9 
30 None 58 
31 None 59 
32 Space 60 < 
33 61 = 
34 II 62 > 
35 # 63 ? 

36 $ 64 @ 

37 % 65 A 

38 & 66 B 

39 67 c 
40 ( 68 D 

41 ) 69 E 
42 * 70 F 

43 + 71 G 
44 "' \ 72 H 
45 -(Hyphen) 73 I 

46 74 J 

47 I 75 K 

48 0 (Zero) 76 L 

49 1 77 M 

50 2 78 N 
51 3 79 0 
52 4 80 p 

53 5 81 Q 



537 Macintosh ASCII Chart 

Decimal Character Decimal Cha racter 

82 R 110 n 

83 s 111 0 

84 T 112 p 

85 u 113 q 

86 v 114 r 

87 w 115 s 
88 X 116 t 

89 y 117 u 

90 z 118 v 

91 [ 119 w 

92 \ 120 X 

93 ] 121 y 

94 1\ 122 z 
95 _ (Underscore) 123 
96 124 I (Vertical bar) 

97 a 125 ) 

98 b 126 

\ 99 c 127 None 
I 

A ) 100 d 128 
101 129 A e 

102 f 130 c 
103 g 131 E 
104 h 132 N 
105 i 133 0 
106 J 134 D 
107 k 135 a 
108 1 136 a 
109 m 137 a 



538 Appendix B 

Decimal Character Decimal Character 

138 a 166 ~ 
139 a 167 J3 
140 A 168 ® 
141 9 169 © 
142 e 170 'I'M 

143 e 171 
144 e 172 
145 e 173 :1: 

146 f 174 }E 

147 i 175 0 
148 i 176 00 

149 i' 177 ± 
150 ii 178 ~ 

151 6 179 ~ 

152 0 180 ¥ 

153 0 181 Jl 
154 0 182 a 
155 0 183 L 
156 u 184 n 
157 u 185 1t 

158 fi 186 J 
159 ti 187 A 

160 t 188 2 

161 0 189 n 
162 ¢ 190 re 

163 £ 191 ~ 

164 § 192 
" 165 • 193 



539 Macintosh ASCII Chart 

Decimal Character Decimal Character 

194 -, 206 CE 

195 v 207 re 

196 f 208 
197 = 209 
198 L1 210 " 

199 « 211 " 

200 » 212 
201 213 
202 (Non-break space) 214 + 

203 A 215 0 

204 A 216 y 
205 6 



- ---

APPENDIX 

._.·. ~ =~~==~~=~~=~=~==~=~~=~~=~=~~=~~========~~~=~=========·"':l!!::1:. :~~=:w:~ 
Other Sources of 
HyperCard Information 

his appendix contains listings for several organizations where 
you can obtain additional information about HyperCard. Also 
listed are the national electronic bulletin board systems (BBSes) 
where software mentioned in the book can be downloaded. The 
list of sources of HyperCard information is growing all the time; 
use the BBSes as a way of staying informed of new companies 
and organizations entering the market. 

Apple Computer 

If you are serious about developing stacks and scripts, you '11 
want to join the Apple Programmers and Developers Association 
(APDA). It's the only sure way to get "plugged into" the latest 
news and software you '11 need to stay successful. Membership is 
just $25 in the U.S., $35 elsewhere, and includes a whole list of 
benefits. Contact APDA at: 

541 



Magazines 

542 Appendix C 

APDA 
290 SW 43rd Street 
Renton, W A 98055 
(206) 251-6548 

You might also want to become an Apple certified 
developer. For more information about this program, write to: 

Apple Developer Services 
Apple Computer 
20525 Mariani A venue 
Mail Stop 27/W 
Cupertino, CA 95014 
(408) 973-4897. 

At the time this book was published, two full-color, nationally 
distributed magazines devoted to HyperCard and related hyper­
text and hypermedia topics had already appeared. By the time 
you read this, there may be several more. 

The flrst magazine we became aware of was HyperLink. It 
is published six times a year by Publishers Guild Inc. For sub­
scription information: 

HyperLink Magazine 
POBox 7723 
Eugene, OR 97401 
(800) 544-0339 (credit card orders) 

Dave Brader is the editor of this magazine and I am its regular 
HyperTalk columnist. 

The other magazine is HyperAge, a monthly publication that 
made its debut about the same time as HyperLink. For subscrip­
tion information: 

Hyper Age 
5793 Tyndall Ave. 
Riverdale, NY 10471 
(212) 601-2832 



543 Other Sources of HyperCard Information ----------------------

Electronic Bulletin Board Systems 

CompuServe has a special HyperCard Forum called APPHYPER 
where stacks and discussions are provided. Most of the stacks 
and programming tools described in this book can be obtained 
from CompuServe. Many knowledgeable stack designers are 
frequent contributors. 

CompuServe 
5000 Arlington Centre Blvd 
P0Box20212 
Columbus, OH 43220 

Like CompuServe, GEnie has a special area of interest to 
Macintosh owners and users. On GEnie, this area is reached by 
menu choices. A special area for HyperCard files, discussions, 
and question-and-answer sessions has been set up on this service 
as well. Sponsored by General Electric USA, Inc. 

GEnie 
Voice contact: (800) 638-9636 
Call (800) 638-8369 for sign-on or on-line information 

At prompt, type HHH 
At next prompt (U#), type GENIE and press Return 

Note: Use half-duplex for GEnie connection 

You may then sign up for service or request information. 

The BIX (Byte Information Exchange) bulletin board, 
sponsored by Byte Magazine, is one of the more technical BBSes 
in the country. Frequent discussions are held on programming 
aspects of HyperCard and the HyperTalk language. 

Customer service for information (voice): (800) 227-2983 



544 Appendix C 

Newsletters and User Groups 

Many local, regional, and national Macintosh User Groups have 
special interest groups (SIGs) concerning HyperCard and 
HyperTalk. Contact Apple Computer's User Group office for 
information about groups in your area. Following are some specific 
activities. 

The Apple HyperCard User's Group is not officially spon­
sored by Apple Computer, but it involves a fair number of Apple 
HyperCard and HyperTalk support and engineering people in its 
ranks. You can get more information about this group from: 

AHUG 
c/o Dave Leffler 
Apple Computer, Inc. 
Mail Stop 27 AQ 
10500 N. DeAnza Blvd. 
Cupertino, CA 95014 

If you are an Apple developer and have an AppleLink 
account, you can reach the AHUG folks at address HYPERBUG$. 

This group also publishes a monthly newsletter called 
Windoid that is free to anyone who requests a copy at the 
previous address and sends along a self-addressed, stamped 
envelope with 25 cents postage. 

The Walking Shadow Press publishes a newsletter called 
The Open Stack and also publishes both stacks and documenta­
tion about HyperCard and HyperTalk. The newsletter, as well as 
a special developer's program that offers solutions to HyperTalk 
questions and problems, is free. They can be reached at: 

Walking Shadow Press 
POBox2092 
Saratoga, CA 95071 

Hyperpress Publishing publishes stacks and a helpful Pock­
et Reference Card. They are also interested in publishing stacks, 
particularly programming tools and artificial intelligence prod­
ucts. Write to the company at: 



545 Other Sources of HyperCard Information ----------------------

Books 

Hyperpress Publishing 
P. 0. Box 8243 
Foster City, CA 94404 
(415) 345-4620 

HyperNews is a stackware newsletter published electroni­
cally and distributed on CompuServe and elsewhere by Harry 
Jones and Beccy Callaghan. It is free and includes a catalog of 
stacks and utilities marketed by the company. Each monthly is­
sue also has interviews, product reviews, editorials, stacks, and a 
number of other features. 

The original source of information about HyperCard is The 
Complete HyperCard Handbook by Danny Goodman, published 
simultaneously with the release of the product and available at 
most computer and book stores. 

The Walking Shadow Press, mentioned earlier, publishes a 
book called HyperCard Scripting by Jeff Stoddard, which is 
available directly from the publisher for $16.95 at the previously 
listed address. 

At the time this is being written, several other books are in 
preparation. 



-

Index 

& operator, 508 
See also concatenation; space; 

tab && operator, 508 
See also concatenation; space; 

tab 
* operator, 508 
" operator, 508 
) operator, 508 
) = operator, 508 
( operator, 508 
( = operator, 508 
- operator, 508 
+ operator, 508 

Abs function, for absolute value, 
281, 508 

Absolute value, of a number, 281 
Access level 

design issues for, 37 
and doMenu , 227 
and user preference card, 

27-28 
Access, user, 26, 29, 37 

authoring level, 26-28, 33-37 
browsing level, 26, 28-33 
design issues for, 37 

547 

Access-com 
modification of, 28-29 
painting level, 28 
scripting level, 28 
typing level, 26, 28 

Action-taking commands, 
290- 301 

Active element 
definition of, 41 
functions, 43 
handlers, 42-43 
messages, 42 
naming of, 40 
scripts, 43 

Add command, 275- 276, 508 
Adding cards, 34 
Addition, 275-276 
Address 

nesting of, 76 
ordinal numbers in, 80 

Addressing 
with characters, 78- 79 
with it, 80 
with message box, 80 
with ordinal numbers, 80 
screen, scheme for, 109 

Addressing-coot 
with the selection, 80 
with words, 78-79 

After preposition, 509 
AHUG (Apple HyperCard User's 

Group), 544 
Alert dialog, 209, 215 
Aliases, for message box, 74-75 
All adjective, 509 
Altering fields and buttons, 

36-37 
Ancester (OOP), and inheritance, 

16-17 
And operator, 509 
Animation, 254- 256 

with dragging, 254-256 
example of, 255-256 
with selecting, 254- 256 
selecting items for, 254-255 
setting dragspeed for, 255 

Annuity function, 509 
in financial mathematics, 

286- 287 
Answer , 509 

command, 211-215 
dialog, 212-215 



Answer-coot 
dialog 

548 

text in, 214 
two-answer type, 213 

Any 
as an ordinal number, 80 
selector, 509 

APDA (Apple Programmers and 
Developers Association), 
541-542 

Apple Developer Services, 542 
Apple HyperCard User's Group 

(AHUG), 544 
Apple Programmers and 

Developers Association 
(APDA), 541-542 

Arithmetic operations, 275-281 
Array 

and fields, 191 - 195 
setting up an, 192-193 

Arrow identifier, 509 
ArrowKey system message, 509 
Ask command, 211, 509 

and dialogs, 215-217 
Ask password command, 

216-217. 509 
Atan function, 509 

See also Trigonometric 
fu nctions 

Atkinson, Bill, and buying 
stacks, 2 

Authoring level access, 26-28, 
33-37 

AutoHilite property, 338, 509 
AutoTab property, 332, 509 
Average function, 280, 510 

Back identifier, 510 
Background, 21, 48-49 

layouts, 434 
managing pictures on, 

256-258 
Barn door visual effect, 510 
BASIC programming language, 

7. 69, 279, 404 
Beep command, 259-260, 510 

Index 

Before preposition, 510 
Bg[s), abbreviation for 

"background", 510 
BIX (Byte Information 

Exchange), bulletin 
board, 543 

Bkgd, abbreviation for 
"background", 510 

Black adjective, 510 
BlindTyping property, 310, 510 
Doing built-in sound, 265 
border, drawing with, 252-254 
Bottom property, 324-326 
Bot[tom] function, 324, 510 
BottomRJght function, 324- 326 
Bot(tom]RJght function, 324, 510 
Browse tool, 35 
Browse, tool name, 510 

returning to, 229 
Browsing level access, 26, 28-34 
Brush, painting, 252-254 
Brush , painting property, 510 
Brush , tool name, 510 
Btn(s], abbreviation for 

"button", 510 
Bucket, tool name, 510 
Busy identifier, 511 
Button, 4, 21-22, 51-52 

altering, 36-37 
built-in, for communications, 

349-350 
creating, 36-37 
design 

and feedback to user, 
437-438 

user-oriented, 436-437 
double-clicking, 370-371 
icons, typical for, 10 
keyboard equivalents, 94-96 
naming of, 40 
navigation, zooming of, 381 
properties, unique, 338-342 
radio, management of, 

383-388 
Button tool, 35 
Button, tool name, 511 

C programming language, 66, 
404 

CantDelete property, 329, 511 
CantModifyproperty, 331, 511 
Card, 22, 50 

addition of, 34 
addition of with doMeou, 226 
deletion of, 34 
deletion of with doMeou , 226 
fields, accumulating for 

running total, 372 
management 

and find command, 
154-159 

and go command, 150-159 
navigation, 149-165 
of pictures, 256-258 
and pop command, 159-164 
and push command, 

159- 164 
multiple types, 511 
and print command, 165-166 
printing from scripts, 299-301 
and show command, 165-166 

CD-ROM, and H yperCard, 
37-38 

Cd[s], abbreviation for 
"card(s)", 511 

Centered painting property, 511 
Char identifier, 511 
Character keyword, 78-79 
CharToNum function, 511 
Checkerboard visual effect, 511 
Choose tool command, 511 

with containers, 229-230 
with tools, 227-230 

"Chunking", 46 
expressions, 172 
and fields, 76 

Class (OOP), 15-16, 21-22 
and instances, 16 

Click command, 511 
ClickH function, 511 
ClickLock function, 512 
ClickV fu nction, 512 
Close printing command, 512 



549 HyperTalk Programming 
------------------------~ 

CloseBackground system 
message, 512 

CloseCard system message, 512 
CloseField system message, 512 
CloseStack system message, 512 
Code, reusability o f, 19 
Command, action-taking, 

290-301 
CommandKey fu nction, 512 
Comment, in scripts, 61 
Communications, 345- 352 

buttons, built-in, 349-350 

See also dial command; 
Dialing helps; dialing 
tones 

built-in sounds; Modem; Phone 
Compact Disk-Read Only 

Memory (CD-ROM), 
37-38 

Complete HyperCard Handbook, 
The (Goodman), 545 

Compound function, 512 
in financial mathematics, 287 

CompuServe bulletin board, 543 
Concatenation 

fields, changing, 188-190 

special constants for, 190 
See also &; && 

Container, 71-76 
and choose tool command, 

229-230 
definition of, 72 
and fields, 75-76 
me as a, 72-73 
and message box, 74-75 
and the selection, 73-74 
and tbe target, 72-73 
and variables, 71 

Contains operator, 512 
Control structure, 46 

and comparison operators, 
129 

and equality conditions, 
127-129 

and if-then processing, 
123-125 

Control structure-coot 
and if-then-else statements, 

124-126 
and inclusion, 129- 130 
and logical connectors and or, 

132-134 
and loop control concepts, 

134-135 
loops and conditions with, 122 
and nesting if statements, 

125-127 
and object counting in repeat 

conditions, 136-137 
and repeat conditions, 136-147 
and repeat for conditions, 

137- 138 
and repeat forever command, 

143- 144 
within repeatloops, 144-147 
and status properties, 131 
and testing for true or false, 

127 
ControlKey system message, 512 
Convert command, 512 

dates, reformatting with, 
201-203 

Coordinates, screen, 4, 107-110, 
248-249 

Copying, 23 
buttons, fields, and objects, 

37 
Cos fu nction, 513 

See also trigonometric 
functions 

Creating 
buttons, 36 
fields, 36 

Cross identifier, 513 
Cursor property, 311-312, 513 
Curve, tool name, 513 
Cut Card menu option, 34 

Data management 
limitations with HyperCard, 

168 
reports, 449-453 

Data management-coot 
with find command, 180 
with select command, 180 

Date function, 198-200, 513 
date, reformatting with convert 

command, 201-203 
date and time, 198-203 
Datellems format, 513 
DateTime sort type, 513 
Debugging, and HyperCard, 9 
DeleteBackground system 

message, 513 
DeleteButtoo system message, 513 
DeleteCard system me~sage, 513 
Delete Card menu option, 34 
Delete command, 185-187, 513 
DeleteField system message, 513 
DeleteStack system message, 513 
Deletion, of cards, 34 
Developer stack, for XCMDs, 

XFCNs, and handlers, 
455-456 

Dial command, 346-348, 513 
with modem, 347 
without modem, 346- 347 
modem parameters, 347- 348 

Dialing helps, 349-352 
Dialing tones built-in sound, 265 
Dialog 

and ask password command, 
216-217 

and HyperCard, 207- 217 
types of, 209-210 
use of, 211-212 

Dialog box 
alert type, 209-210 
modal type, 210-211 

and answer command, 2ll 
and ask command, 211 

modeless type, 210 
DiskSpace function, 514 
Dissolve visual effect, 241, 514 
Div operator, 514 

and divide operations, 
278-279 

Divide command, 278- 279, 514 
Division, 278-280 



550 

Do command, 514 
limitations of, 290-291 
rules for, 290 
use of, 291-292 

Documenting, and HyperTalk, 
9-10 

Document, non-HyperCard, 
printing of, 298-299 

DoMenu command, 220-228, 514 
adding a card with, 226 
deleting a card with, 226 
protecting a stack with, 

224-225 
and scripts, 222-226 
and stack compaction, 223 
and tool selection, 228 
and user access level, 227 

Done predefined value, 514 
Down constant, 514 
Drag command, 514 

animation with, 254-256 
effects with, 251-252 
and objects, moving with, 255 

DragSpeed property, 248, 312, 514 
Draw, with border, 252-254 

Edit menu, and New Card 
option, 22-23 

Edit menus, 34 
Edit script command, 353-354, 

514 
EditBkgnd property, 313, 514 
Eight constant, 514 
Eighth selector, 514 
Empty predefined value, 515 
End identifier, 515 
Enter key, trapping of, 203-205 
EnterlnField system message, 

203-205, 515 
EnterKey system message, 515 
Eraser, tool name, 515 
Errors 

and alert dialogs, 209 
in editing window, 58 
syntax, handling of, 60-61 

Exit command, 515 

Index 

Exit repeat contro l structure, 515 
Exit to HyperCard command, 515 
Exp function, 284-285, 515 
Expl function, 284-285, 515 
Exp2 function, 284-285, 515 
Exponential functions, 284-285 
External routine 

accessing it from, 423 
compiling, 420-421 
design of, 406-410 
and duplicate resource 

numbers, 424 
and HyperCard environment, 

424 
linking, 420-421 
memory allocation and 

deallocation, 422-423 
and memory checking, 422 
nature of XCMDs, 410-411 
and screen re-drawing, 

421-422 
tools for adding, 407-410 
uses of, 405-406 
XCMD example, 411-416 
XFCN example, 416-420 

Externals, and stacks, 66 

False constant, 515 
Fast adjective, 50-51 
Field, 50-51 

active word in, 379-381 
addressing, 76-80 

and get command, 77 
and put command, 77 
with character keyword, 

78-79 
with to keyword, 79 
with word keyword, 78-79 
components (example), 79 

and after preposition, 76 
altering, 36-37 
and arrays, 191-195 
and before preposition, 75 
and "chunking", 76 
and containers, 75-76 
creating, 36-37 

Field-cont 
and editable text, 75 
in HyperTalk, 22 
and into preposition, 75 
and item components, 77 
items in, 76 
lines in, 76-77 
and locked text, 75 
modifying 

by concatenation, 188-190 
contents of, 183-190 

pop-up, 364-367 
subfields in, 77 
and tables, 191 - 19S 

Field tool name, 35, SIS 
Fifth selector, S15 
File 

opening, 116- 117 
and path names, 117-118 
reading from, 118-119 
text operations, 116-120 
writing to, 119-120 

Filled painting property, 515 
Financial mathematics, 286-287 
Find command, 31-33, 516 

and browsing user, 31-32 
in card management, 154-159 
and field contents, 176-177 
limitations with, 158 
and specifying the search, 

156-158 
and substrings, 180-181 
and type of match, IS4-158 

Find whole function, 32 
First selector, 516 
Five constant, 516 
Fld[s), abbreviation, 516 
FormFeed constant, 516 
Forth identifier, 51 
FoundChunk function, 516 
FoundField function, 516 
FoundLine function, 516 
FoundText function, 516 
Four constant, 516 
Fourth selector, 516 
FreeSize property, 329-330, 517 
Function 



_,.. 
I 
I 

551 HyperTalk Programming 
------------------------~ 

Function-com 
as active element, 43 
built-in, 43 
defining, 358-360 
user-defined, 43 

Function tester, for mathematical 
functions, 274-275 

FunctionKey system message, 517 

GEnie bulletin board, 543 
Get command, 517 

and reading data fields, 
168- 172 

Global command, 517 
Go command, 517 

and addressing a destination, 
150- 153 

in card management, 150-153 
with non-existent cards, 153 
with special addresses, 151-153 

Go menu, 30-31 
Goldberg, Dr. Adele, 

"Programmer as 
Reader", 9-10 

Gray adjective, 517 
Grey adjective, 517 
Grid painting property, 517 

Hand identifier, 517 
Handler, 20, 23 

as active element, 42-43 
and end keyword, 61 
event type, 21, 42-43 
function type, 42-43 

example, 62-63 
limitations, 42 

and function keyword, 61-62 
within handlers, 63 
message type, 62 
with mouse-button, 89-90 
and mouse-location, 90-92 
names for, 370 
and on keyword, 61 
and return statement, 62 

Harpsichord built-in sound, 265 

HeapSpace function, 517 
Height function, 517 
Height property, 324-326 
Help command, 517 
Help function, inclusion of, 10 
Help system message, 518 
Hide command, 518 
HiLite property, 338-339, 518 
Home identifier, 518 
Home Desk stack (Russel A. 

Lyon), 294 
Home stack. See Stack, home 
Hyper Age magazine, 542 
HyperCard 

advantages of, 3-5 
and backgrounds, 7, 9 
and "borrowing in the design 

process", 7-8 
and buttons, 4 
and CD-ROM, 37-38 
coordinates in, 4 
and data management 

limitations, 168 
and debugging in the design 

process, 9 
designing and implementing, 8 
and dialogs, 207-217 
extensibility of, 3 
limitations of, 3-5 
and OOP, 11-12 
painting with, 4 
and spreadsheets, 4 
testing in the design process, 9 
and windows, 3-4 
and wordprocessing, 4 

HyperCard Scripting (Stoddard), 
545 

HyperCard versions, differences 
in, 32, 38, 56, 72, 74, 155, 
168, 176, 203, 224, 229, 
233, 319, 331, 332, 335 

See also Appendix A 
HyperLink magazine, 542 
HyperNews newsletter, 545 
HyperQuiz educational script, 

457-479 
card description, 459 

HyperQuiz educational script­
coot 

changes and additions, 
477-479 

disclaimer for, 479 
fill-in card 

student's view, 463 
teacher's view, 463 

final scoring card, 464 
graphics improvement, 478 
multiple choice card 

student's view, 462 
teacher's view, 462 

scripts, 464-477 
and skipping questions, 

478-479 
teacher, help for, 478 
time limit for, 478 
true/false card 

student's view, 461 
teacher's view, 461 

use of 
by student, 458 
by teacher, 458 

HyperTalk 
advantages of, 3-5 
and backgrounds, 21 
classes in, 21-22 
and control structures, 5 
copying in, 23 
and documenting, 9- 10 
and errors, 5 
event handlers in, 21 
function handlers in, 21 
handlers in, 20-21 
inheritance in, 22-23 
limitations, 3-5 
main event loop in, 20 
and mathematics, 273- 274 
and methods, 21 
naming conventions, 39-41 
and objects, 20 
and OOP, 11-12 

parallels and differences, 
19-24 

readability of programs in, 
9- 10 



HyperTalk-cont 
scripts in, 20 
stacks in, 20 

HyperTalk tips. See Tips 

IBeam identifier, 518 

552 

Icon property, 340-341, 518 
Icon, buttons, typical for, 10 
Id property, 320, 518 
Idle system message, 518 
If control structure, 518 
Importer 1.1, text importing 

program, 453-455 
Inheritance, 22- 23, 48- 49 
Inheritance (OOP), 16-17 
Instance (OOP), and classes, 16 
International sort type, 518 
Interruptions, user, 369- 370 
Into preposition, 518 
Inverse adjective, 518 
Inversion 

example, 13- 14 
OOP method versus 

procedural approach, 15 
Iris visual effect, 242, 518 
Is in operator, 519 
Is not in operator, 519 
It identifier, 67- 68, 70, 519 

and address ing data fields, 80 
entering values into, 70 
use of, 68- 70,72 

Item 
in a field, 76 
as field component, 76- 77 

Uems identifier, 519 

Key 
down, determination of, 113 
keypressing results, 114- 115 
saving condition of, 115- 116 
two-key combinations, 115 

Language, procedural versus 
declarative, 18 

Index 

Language property, 313, 519 
Laser disk, 38 
Lasso tool name, 519 
Last, as ordinal number, 80 
Las t selector, 519 
Layer, concept of, 48-49 
Left function, 519 
Left property, 324-326 
Length function, 519 

and characters in a field, 
175- 176 

Line identifier, 519 
Line, tool name, 519 
Linefeed constant, 519 
LineSize painting property, 519 
Links 

and HyperCard design 
process, 8 

navigating with, 29-31 
LISP, 304, 377,404 
Ln function, 519 
Lnl function, 519 
Location property, 320-321, 520 
Lock command, 520 
Locked media, 38 
LockMessages property, 313-314, 

520 
LockRecent property, 314- 315, 

520 
LockScreen property, 315-316, 

520 
LockText property, 332- 334, 520 
Logarithms, 285 
Logo programming language, 

304,404 
Log2 function, 520 
Long format, 520 
Long lines, handling of in script 

window, 59 
Loop, and number of function, 

192-194 

Macintosh HyperCard User's 
Guide (Apple Computer), 
252 

Main event loop 

Main event loop-cont 
in HyperTalk, 20 
and stacks, 20 

MakeNeat function, 359-360 
Mass-storage media, 37-38 

laser disk, 38 
Mathematics 

absolute value function, 281 
addition, 275- 276 
annuity function, 286- 287 
arithmetic operations, 275-281 
averages, 280 
compound function, 287 
division, 278- 280 
exponentiation functions, 

284- 285 
financial operations, 286-287 
function testor, building a, 

274- 275 
functions and operators, 

269- 287 
and HyperTalk, 273-274 
logarithms, 285 
maximums and minimums, 

280- 281 
multiplication, 277-278 
number manipulation, 

281- 282 
number representation, 

270- 271 
precedence of operations, 

271 - 273 
random numbers, generation 

of, 282 
rounding numbers, 281-282 
square root function, 283- 284 
subtraction, 276-277 
trigonometric functions, 

285- 286 
truncating numbers, 281-282 

Mathephobia, 269- 270 
Max function, 520 
Maximum, 280- 281 
Me identifier, 520 

as a container, 72-73 
Menu 

edit, 34 



553 HyperTallc Programming 
----------------------------~ 

Menu-com 
go, 30-31 
running of, from scripts, 

219-227 
tools, 35 
toolstear-off, 227-228 

Menus, HyperCard! stack 
enhancement program, 
446- 449 

Message, 62 
action-taking, 86, 97-101 
as active element, 42 
and application status, 

100- 101 
destinations, 64-65, 83-84 

default, 65, 84 
doMenu, 101 -103 
enterlnField, 203-205 
handlers, 62-65 

example, 65 
help , 101 
hierarchy of, 63-66 
houskeeping, 87 
in HyperTalk, 20, 22 
idle, 87, 103-104 
keyboard, 86, 93-96 
menu, 86-87 
mouse, 85-90 

handling of, 64-66 
mouse-button, 87-90 
mouse-location, 90 

and OOP programming, 13, 
15-16 

object-related action, 97-99 
and pass command, 65 
passing of, 64-65 
and procedural programming, 

15 
returnlnField, 203-205 
sources of, 62-66 
system, 85- 87 
types of, 64 
See also Message box; Aliases 

Message box, 31-32 
and addressing data fields, 80 
aliases for, 74-75 
and container, 74-75 

Message box-cont 
as object, 520 
visibility of, 75 

Method 
in HyperTalk, 21 
in OOP, 15, 17 

Microsoft Word, 208 
Middle, as ordinal number, 80 
Middle selector, 521 
Minimum, 280-281 
Mod operator, 278-279, 521 
Modem 

parameters, 347-348 
and phones, 345-346 

Mouse 
clicking electronically, 111-112 
monitoring the, 105- 106 
tracking, 108 

Mouse function, 521 
MouseClick function, 521 
MouseDown system message, 521 
MouseEnter system message, 521 
MouseH function , 521 
MouseLeave system message, 521 
MouseLock function, 521 
MooseStiiiDown system message, 

521 
MouseUp system message, 521 
MouseY function, 522 
MouseWithin system message, 

522 
Moving, buttons, 37 
Msg. See Message box; Aliases 
Msg box. See Message box; 

Aliases 
MultiFinder, and HyperCard, 297 
Multiple painting property, 522 
Multiplication, 277-278 
Multiply command, 277-278, 522 
MultiSpace painting property, 

247, 522 

Name property, 321-322, 522 
Naming conventions, 39-41 

first character, importance of, 
41 

Naming conventions-com 
length limitations, 40 
with several words in one, 40 

Navigation functions, 29-31 
New Card, 22-23,34 
NewBackground system message, 

522 
NewButton system message, 522 
NewCard system message, 

99-100, 522 
NewField system message, 522 
NewStack system message, 522 
Next identifier, 522 
Next repeat contron structure, 

522 
Nine constant, 522 
Ninth selector, 522 
Non-HyperCard documents, 

printing, 298-299 
None identifier, 523 
Not operator, 523 
Number 

function, 523 
property, 323, 523 

Number 
manipulation, 281-282 
ordinal, 80 
random, generating, 282 
representation, 270-271 

Number of function, 192-194 
looping for data retrieval, 

194-195 
NumberFormat property, 316-317, 

523 
Numeric sort type, 523 
NumToChar function, 523 

Object, 20, 47-53 
Object-Oriented Programming 

(OOP), 10 
classes in, 15- 16 
and ease of maintenance, 19 
fundamentals, 12- 17 
and H yperCard, 11 -12 
and HyperTalk, 11 -12 



554 

Object-Oriented Programming 
(OOP)-cont 

and HyperTalk 
parallels and differences, 

19- 24 
inversion with (example), 

13-14 
and messages, 15 
method in, 15 
naturalness of, 18 
and procedural programming 

(example), 13- 14 
and reusability of code, 19 
summary of, 17- 19 

Object-Oriented Programming 
on the Macintosh 
(Schmucker), 12 

Offset function, 181, 523 
for field decomposition, 182 

Omnis3+ data base management 
system, 481 

On identifier, 523 
One constant, 523 
OOP. See Object-Oriented 

Programming 
Open command 

for applications, 294-298 
and documents, 297- 298 
and finding files, 298 
variations with, 298 

Open file command, 523 
Open printing command, 524 
Open Stack, The newsletter, 544 
OpenBackground system 

message, 524 
OpenCard system message, 524 
OpenFicld system message, 524 
OpenKey function, 524 
OpenStack system message, 524 
Or operator, 524 
Ordinal number 

and addressing schemes, 80 
and any, 80 
and last, 80 
and middle, 80 

Oval, tool name, 524 

Index 

Paint 
with brush, 252-254 
and dragSpeed property, 248 
and dumping, 249 
and multiSpace property, 247 
and pattern property, 247 
and potySides property, 247 
properties of, 244-248 
and textStyle property, 247 

Painting 
from scripts, 243-254 
level access, 28 

Param function, 524 
ParamCouot fu nction, 356, 524 
Parameter 

extracting, 356-357 
storing a string, 357-358 
in HyperTalk, 355-358 

Pascal, 8, 9, 13, 66, 69,279, 377, 
404,416 

Pass command, 524 
Passive elements 

and chunks, 46 
and control structures, 46 
and names, 40 
and variables, 44- 45 

Pattern painting property, 247, 
524 

Pattern window identifier, 524 
Pencil, tool name, 524 
Phone stack, 350-352 
Phones, and modems, 345-346 
Pi constant, 524 
Pict abbreviation, 525 
Picture identifier, 53, 525 

managing on cards and 
backgrounds, 256- 258 

saving disk space with, 368 
unique property, 342-343 

Pixel, 522 
Plain visual effect, 525 
Play command, 260-265, 525 

and familiar tunes, 264-265 
and notes, 261-263 
tempo parameter with, 261 

Play stop command, 265 
Plus identifier, 525 

Polygon, tool name, 525 
PolySide property, 247 
PolySides painting property, 525 
Pop command, 525 

in card management, 159-165 
PowerKeys property, 310, 525 
Precedence, of mathematical 

functions, 271 - 273 
Preference card, 307 
Previous identifier, 525 
Print command, 165-166 
Print (HyperTalk), and print 

cord command in 
HyperCard, 60 

Print cord command, 60, 525 
Printing 

cards from scripts, 299-300 
non-HyperCard documents, 

298- 299 
"Programmer as Reader" 

(Goldberg), 9-10 
Programming 

declarative, 18 
object-oriented versus 

procedural, 13- 14 
procedural and messages in, 

15 
procedural versus object­

oriented, 13- 14 
Prolog, 18, 404 
Property, 45- 46 

autoHilite, 338 
autoTab, 332 
blindTyping, 310 
bottom , 324- 326 
bottomRight, 324-326 
cantOelete, 329 
cantModify, 331 
cursor, 311-312 
dragSpeed , 312 
editBkgnd, 313 
freeSize, 329-330 
general usage, 305 
global, 307-319 
height , 324- 326 
hiLite, 338- 339 
icon, 340-341 



555 HyperTalk Programming 
------------------------~ 

Property- cont 
id, 320 
language, 313 
left , 324- 326 
location, 320-321 
lockMessages, 313- 314 
lockRecent , 314-315 
lockScreen, 315-316 
lockText, 332-334 
name, 321 - 322 
number, 323 
numberFormat , 316-317 
picture, unique, 342-343 
power Key, 310 
rectangle, 323-324 
right, 324- 326 
role in HyperCard, 303- 307 
screenReact, 318- 319 
script , 327- 328 
scroll, 334- 336 
shared, 319-329 
showLines, 337 
showName, 341 
sbowPict , 342-343 
size, 329 
style, 337, 342 
text Arrows, 310- 31 I 
top, 324- 326 
topLeft, 324-326 
use of abbreviations for 

names, 305- 306 
use of the in names, 305- 306 
user level, 307, 309 
userModify, 317- 318 
version, 319, 331 
visible, 328-329 
wideMargins, 337- 338 
width , 324- 326 

Push command, 159- 165 
Push card command, 525 
Put command, 526 

and reading data fileds, 
172- 175 

Quit system message, 526 
Quote constant, 526 

Random function, 282, 526 
Random number, generation of, 

282 
Read command, 526 
Recent card identifier, 526 
Rectangle property, 323- 324, 526 
Rectangle, tool name, 526 
Regular polygon , tool name, 526 
Repeat control structure, 526 
Reports, data management, for 

HyperCard, 449- 453 
Reset paint command, 526 
Resizing, buttons, 37 
Resource 

creating, 397 
description of, 389-392 
moving, 398- 399 
sources of, 392- 397 
stacks for, 393 
storing of, 390 
using, 389-392, 399-400 

Result function, 527 
Resume system message, 527 
Return command, 527 
Return constant, 527 
Return key, trapping of, 203-205 
ReturnlnField system message, 

203- 205, 527 
ReturnKey system message, 527 
Right fun ction, 527 
Right property, 324-326 
"Ripple effect", 14, 19 

and HyperTalk, 5 
ROM, and HyperCard, 4 
Round function, 281- 282, 527 
Round rectangle, tool name, 527 
Rounding, of numbers, 28 1-282 

Schmucker, K. J., Object­
Oriented Programming 
on the Macintosh , 12 

Screen re-draw, and external 
routines, 421-422 

ScreenReact function, 318-319, 
527 

Script, 5 

Script-coot 
as active element, 43 
closing, 57 
comments, 61 
editing, 57-58 
educational example, 457- 479 
entering, 56- 58 
find capabilities in, 59-60 
in H yperTalk , 20 
listing 

with Script Report, 
442- 443 

with scriptView, 442- 444 
long line, handling of, 59 
mechanics, 56-61 
painting from a, 243- 254 
print capabilities for, 60 
printing cards in, 299- 301 
programming visual effects in, 

232- 240 
running menus from, 219- 227 
script-modifying scripts, 

376- 379 
self-modifying, 327- 328 
using doMenu in, 222-226 
writing for HyperCard, 8- 9 

Script property, 327-328 
Scripting level access, 28 
ScriptView, listing program, 

442- 444 
Scroll property, 241, 334-336, 527 
Scroll visual effect, 527 
Second selector, 527 
Seconds format, 528 
Seconds function, 200, 528 
Select command, 178- 179, 528 

for animation, 254- 256 
choosing a tool with, 229 
with find command, 178 
to position cursor, 179 
to select everything, 179 
to select nothing, 179 

Select, tool name, 528 
SelectedChunk function, 528 
SelectedField function, 528 
SelectedLine function, 528 
SelectedText function, 528 



556 

Selection container, 528 
Semi-automatic programming 

card, explaining use of stack, 
484 

card for hide command, 485 
card for repeat constructs, 483 
card for set command, 484 
card for show command, 485 
changes and additions, 506 
description of, 481 
main card in stack, 483 
script for, 481 -506 
use of stack for, 482 

Send command, 528 
Set command, 529 
Seven constant, 529 
ShiftKey function, 529 
Short format, 529 
Show command, 529 

in card management, 165- 166 
Show Lines property, 337, 529 
ShowName property, 341, 529 
ShowPict property, 342-343, 529 
Silence built-in sound, 265-266 
Sin function, 529 
Six constant, 529 
Sixth selector, 529 
Size property, 329, 529 
Slowly adverb, 529 

Smalltalk, 9 
Sort command, 196-198, 530 
Sound built-in function, 265-266, 

530 
Sound resources, 265-268 
Space constant, 530 
Spray, tool name, 530 
Sqrt function, 283-284, 530 
Stack, 21, 47-48 

analysis with Stack Detective, 
443- 446 

background layouts, 434 
building versus buying, 2- 3 
compaction with doMenu, 223 
design and layout, 433-435 
externals with, 66 
hierarchical organization with, 

429- 430 

Index 

Stack-cont 
home, 22, 27-29 
informational relationships in, 

428-432 
layout and design consistency, 

433-434 
and main event loop, 20 
navigation techniques, 434 
phone, 350-352 
protecting, 224- 225, 435-436 
sorting, 196- 198 

StackSpace function, 530 
StartUp system message, 530 
String identifier, 530 
Style property, 337, 342, 530 
Subfield, and addressing, 77 
Subtract command, 276-277, 530 
Suspend system message, 530 
Syntax errors, 58, 60-61 
SysEnvirons command, 421 

Tab constant, 530 
TabKey system message, 531 
Tan function, 531 
Target function, 531 
Ten constant, 531 
Tenth selector, 531 
Text, importing with Importer 

1.1, 453-455 
Text file operations 

open file, 116- 117 
and path names, 117-118 
reading, 118-119 
writing, 119- 120 

TextAiign property, 531 
TextArrows property, 310-311, 

531 
TextFont property, 531 
TextHeigbt property, 531 
TextSize property, 531 
TextStyle property, 247, 531 
The, use of in names, 305-306 
Then control structure, 532 
Third selector, 532 
This identifier, 532 
Tbree constant, 532 

Throw-away words, 42 
Tick(s) function, 200-201, 532 
Time function, 200, 532 
Tips 

check box selection, 383 
double-clicking a button, 

370-371 
finding text by first letter of 

field, 382-383 
handler names, 370 
highlighting text, 382 
keyboard tool selection, 

372- 376 
making words in a field active, 

379- 381 
pictures, saving disk space 

with, 368 
pop-up files, 364-367 
radio button management, 

383-388 
running total of card fields, 

372 
script-modifying scripts, 

376-379 
show card operations, 368-369 
user interruptions, 369-370 
zooming navigation buttons, 

381 
Tool 

browsing, 35 
button,35 
with choose command, 

227-230 
dragging, effect of, 251-252 
keyboard selection, 372-376 
painting, 244 
reusable, 19 
selection with doMenu, 228 

Tool function, 532 
Tools 

menu, 35 
tear-off menu, 227-228 

Top function, 532 
Top property, 324-326 
TopLeft function, 324-326, 532 
Trapping, keys, 203-205 
Trigonometric functions, 285-286 



557 HyperTalk Programming 
------------------------~ 

True constant, 532 
Trone function, 281-282, 532 
Two constant, 532 
Type command, 184, 532 
Typing access level, 26, 28 

Unlock command, 533 
Up constant, 533 
UpperCase function, 359-360 
User Level property, 307, 309, 533 
UserModify property, 317-318, 

533 
UseTool variable, 229-230 

Value function, 533 
Variable 

assigning values to, 69-70 
global, 45, 70-71 
local, 45 

Variable-cont 
naming of, 66-67 
types, 45, 66 

Venetian blinds visual effect, 533 
Version function, 533 
Very fast adverb, 533 
Very slowly adverb, 533 
Visible property, 328-329, 533 
Visual effect command, 534 

chaining effects, 234-236 
dissolves, 241 
irises, 242 
with objects, 239-240 
scrolls, 241 
and TV analogy, 234 
wipes, 241 
zooms, 242 

Wait command, 292-293, 
354-355, 534 

Watch identifier, 534 
White adjective, 534 
Whole identifier, 534 
WideMargins property, 337-338, 

534 
Width function, 534 
Wipe visual effect, 241, 534 
Word identifier, 534 
Word keyword, 78-79 

XCMO 
definition, 404-405 
and developer stack, 455-456 

XFCN 
definition, 404-405 
and developer stack, 455-456 

Zero constant, 534 
Zoom visual effect, 242, 534 



Macintosh® Revealed, 
Volume One: Unlocking the 

Toolbox, Second Edition 
Stephen Chernicolf 

Macintosh Revealed, Volume One 
is the most successful Macintosh 
te<:hnical programming book com­
mercially published. Now, in addi· 
tion to covering the 128K and 
512K Macintosh, the second edition 
concentrates on the Macintosh Plus 
and its expanded memory manage­
ment, 1/0 routines, graphics and 
text handling, and serial communi­
cations. 
This edition has been completely 
updated with all the latest Mac fea­
tures including the new keyboard 
layouts, character codes for expand­
ed LaserWriter,n>~ font families and 
access, ROM resources, and graphic 
resources. Together with Volume 
Two, the nearly 500 ROM routines 
that make up the Macintosh Tool­
box are described. 
Topics covered include: 
• All the Tools You Need 
• Putting the Tools to Work 
• Thanks for the Memory 
• Any Port in a Storm 
• Quick on the Draw 
• Summoning Your Resources 
• Getting Loaded 
• Upstanding Characters 
• Appendices: Toolbox 

Summary, Resource Formats, 
Macintosh Memory Layouts, Key 
Codes and Character Codes, Er· 
ror Codes, Summaries of 
Assembly-Language Variables, 
and Trap Macros and Trap 
Words. 

590 Pages, 7 3/• x 9 v., Softbound 
ISBN: 0-672-48400-5 
No. 48400, $26.95 

Maclntosb® Revealed, Volume 
Two: Programming with 

the Toolbox, Second Edition 
Stephen Chernico/f 

Providing an advanced look at the 
higher-level parts of the Toolbox 
that implemented the revolutionary 
Macintosh user interface, this se­
cond edition focuses on the Macin­
tosh Plus as well as the 128K and 
512K Macintosh. 
This new edition of Volume Two 
includes HFS, 800K double-sided 
disks, the new Standard File and 
Disk Initialization Package, window 
zooming, zoom boxes, scrollable 
menus, function key routines, and 
automatic text scrolling. 
Software featured in the book is 
available on disk from the author. 
Topics covered include: 
• All the Tools You Need 
• Keeping Up with Events 
• Windows on the World 
• What's on the Menu? 
• Scissors and Paste 
• At the Controls 
• Meaningful Dialogs 
• Files at Your Fingertips 
• Appendices: Toolbox Summary, 

Resource Formats, Memory Lay­
outs, Key Codes and Character 
Codes, Error Codes, Assembly­
Language Variables, Trap 
Macros and Trap Words, and 
MiniEdit Source Listing 

696 Pages, 7¥. x 9 Y• , Softbound 
ISBN: 0-672-48401-3 
No. 48401 , $26.95 

Maclntosh® Revealed, 
Volume Three: Mastering the 

Toolbox 
Stephen Chernicolf 

A continuation of the "Macintosh 
Revealed" series, this third volume 
focuses on the User Interface Tool­
box and how these unique routines 
can enhance programming. 
This Toolbox provides programmers 
with a uniform set of procedures 
for manipulating graphic images, 
text, overlapping windows, pull­
down menus, and many other 
Macintosh features. Through fully 
worked program examples, the 
book explores secrets of the Tool­
box in great detail and includes 
such topics as printing and sound 
generation, the List Manager, the 
customized Toolbox, desk accesso­
ries and Switcher. 
Topics covered include: 
• Unlocking the Secrets 
• Rolling Your Own 
• In the Driver's Seat 
• Looking Good on Paper 
• Sound and Fury 
• Accessories after the Fact 
• Making a List, Checking It 

Twice 
• Odds and Ends 
• Appendices: Toolbox Summary, 

Resource Formats, Error Codes, 
Trap Macros and Trap Words, 
Assembly Language Variables, 
Program Listings 

600 Pages, 1'1• x 9 v. , Softbound 
ISBN: 0-672-48402-1 
No. 48402, $26.95 

Macintosh Revealed, 
Volume Four: Programming 

Mac II 
Stephen Chernico/f 

Volume Four of the popular and 
highly successful Macintosh Rev­
ealed series is for intermediate to 
advanced Mac programmers. A bas­
ic understanding of Pascal or as­
sembly language is necessary as 
the book introduces the new Too~ 
box routines that support the 
Macintosh SE and Mac II. 
The new "open Mac" features of 
color and expansion slots empha­
sized and new hardware features 
are covered. TextEdit, an enhance­
ment that provides programmers 
with the information they need to 
incorporate the power and elegance 
of the Mac SE and Mac ll into 
their programs is explained along 
with other enhanced features using 
numerous example programs and 
illustrations. 
Topics covered include: 
• New and Expanded Tools 
• Macintoshes by Popular Demand 
• Over the Rainbow 
• Color Coding 
• Getting Off to a Good Start 
• What's New on the Menu 
• Editing Up a Storm 
• Staying Compatible 
• Odds and Ends 
• Appendices: Toolbox Summary, 

Resource Formats, Error Codes, 
Summary of Trap Macros and 
Trap Words, Summary of Assembly­
Language Variables 

(Available in /989.) 
600 Pages, 73/• x 9V• , Softbound 
ISBN: 0-672-48413-7 
No. 48413, $26.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



bly· 

How to Write Macintosh* 
Software, Second Edition 

Scott Knoster 

Written for professional developers 
and serious hobbyists, this is the 
best source of information on the 
intricacies of the Macintosh operat­
ing system, and in particular the 
Memory Manager. 
This new edition explains how ap· 
plications programs on the Macin· 
tosh work, how to create and 
debug professionai'Juality programs, 
and how to use C to program the 
Macintosh. Many new topics, in· 
eluding Macintosh II, Macintosh SE, 
MultiFinder, Macintosh Program· 
mer's Workshop, and the 68020 
and 68030 microprocessors, are in· 
eluded as well as revised and up· 
dated information on all its 
previous topics. Its in-<lepth discus­
sion of high'Juality debugging 
makes it the preferred reference for 
programmers and software applica· 
tions developers. 
Topics covered include: 
• Getting Started 
• Adding Features 
• Writing a Program 
• Using C 
• Loops 
• Functions, Subroutines, and 

Subprograms 
• Using Macintosh Features 
600 Pages, 7 3f4 x 9¥4 , Softbound 
ISBN: 0·672-48429-3 
No. 48429, $27.95 

MacAccess: Information 
In Motion 

Dtr:m Gell81t and Ster;en Smtih 

This book examines the software 
and hardware required for success· 
ful data transfer and offers a step­
by-step discussion of a sample 
telecommunications session, clearly 
explaining how to send and receive 
text files. During detailed presenta­
tion of the telecommunications ses­
sion, the focus is set on solutions 
to common communications 
problems. 
It includes in-<lepth discussions on 
connecting the Macintosh® to 
other computers, sharing and trans­
ferring data between machines, pro­
tocols, cabling, and conversion 
procedures. 
With this book, you can easily and 
efficiently share data between your 
Macintosh and other computers and 
keep your vital information flowing 
to where it will do you the most 
good. 
Topics covered include: 
• Information in Motion 
• Executives Backgrounder 
• Telecommunications 
• A SofTour of MicroPhone 
• Communication Command 

Languages 
• Links and Hints 
• Telephone Management 
• Advanced Topics by Section 
• Appendices: Mac ASCII Chart, 

File to Pile Import/Export 
Charts, Sources Directory, Fami· 
lies, Bibliography for Further 
Reference, and Feedback and 
CTG Newsletter Sheet 

304 Pages, 7 '¥4 x 9 V4 • Softbound 
ISBN: 0-672-46567-1 
No. 46567, $21.95 

MPW and Assembly Language 
Programming for the 

Macintosh® 
Scott Kronick 

This introduction to MPW for 
programmers is the first to teach 
Macintosh assembly language! 
Macintosh Programmer's Workshop 
(MPW) is the new programming de­
velopment system for the Macin­
tosh and one of the most 
sophisticated microcomputer 
programming development systems 
in existence. 

Topics covered include: 
The Macintosh Programmer's 
Workshop 
• A Sample Program in 

Assembly Language 
• Fundamental Pile Commands 
• StartUp and Files 
• Command Language 
• Make and Structured 

Commands 
The Assembly Tutorial 
• Slots 
• First Lines of Assembly Code 
• The ABC's of Blocks of Code 
• QuickDraw Inside the Window 
• Structured Programming with 

Blocks 
• The Keyboard 
• Menus 
The MPW and Assembly 
Dictionaries 
• The MPW Shell Command 

Language 
• The 68000 Instruction Set 

with Directives and Toolbox 
Traps 

352 Pages, 7'14 x 9V4, Softbound 
ISBN: 0-672-48409.0 
No. 48409, $24.95 

The Macintosh® Advisor 
C,nth10 Harriman and Benaon Caltro 

Newly updated to include MultiFin­
deim, this book provides advice on 
shortcutting some of the Macin­
tosh's elementary procedures to use 
it more productively. 
MultiFinder is the first multitasking 
operating system for the Mac which 
allows users to work with multiple 
applications at the same time. 
Learn how to increase the perform· 
ance and speed of computing tasks 
by gaining a better understanding 
of the Finder, RAM disks, memory 
management, and other features. 
The book also examines powerful 
hardware options such as hard 
disks, RAM upgrades, and the 
LaserWriter111 and includes 
troubleshooting procedures for 
quickly isolating and solving com­
puter problems. 
Topics covered include: 
• The Pinder: Macintosh's 

Operating System 
• Speeding Applications 
• Desk Accessories and FKeys 
• Customizing Applications 
• Disk Management Utilities 
• RAM Upgrades and Hard Disk 

Drives 
• Options for Better Input and 

Output 
• IBM to Mac: Transferring Data 
• Troubleshooting 
• Appendices: Shopping Lists, 

Sources, Technical References 
320 Pages, 73/~ x 9 v •. Softbound 
ISBN: 0-8104-6569-8 
No. 46569, $19.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



Object-Oriented 
Programming for the 

Macintosh® 
Kurt J Schmucker 

With this book, gain insight into 
the fundamental object-oriented ron· 
cepts of objects, classes, instances, 
message passing and method calls, 
and into advanced topics like meta· 
classes and multiple inheritance. 
Learn to customize MacApp and 
avoid programming resizable win· 
dows, dialog boxes, and scroll bars 
from scratch. Investigate QuadWorld 
and the major Macintosh object· 
oriented languages. 
Topics covered include; 
• Why Object-Oriented 

Programming? 
• The Basics of Object-Oriented 

Programming 
• Object Pascal 
• Introduction to MacApp 
• Mini-QuadWorld-A Small 

MacApp Application 
• The Most Frequently Asked 

Questions about MacApp 
• The Flow of Events in 

MacApp 
• QuadWorld-A Full MacApp 

Application 
• Advanced MacApp Features 
• Advanced Concepts in Object· 

Oriented Programming 
• Smalltalk 
• Lisa Clascal and the Lisa 

Toolkit 
• An Overview of Other Object· 

Oriented Languages on 
Macintosh 

624 Pages, 7'JI4 x 9 ~, Softbound 
ISBN: ().81 04-6565-5 
No. 46565, $34.95 

Programming the 68000 
Rosenzweig and Harrison 

This prime resource for program­
mers fully examines the power of 
the Motorola 68000 micro­
processor. It details the assembly 
language processes of coding, edit· 
ing, compiling, linking, and 
resource compiling, with thorough 
explanations of the 68000 instruc­
tion set and addressing modes. 
Topics covered include: 
• Introduction to Assembly 

Language 
• The Addressing Modes of the 

68000 
• The 68000 Instruction Set 
• Sample Programs 
• A Programmer's Overview of 

the 68000 Hardware 
• Macintosh Tools 
• The Macintosh ROM Calls 
• SimpleCalc-A Sample 

Application 
• Some Advanced Subroutines 

Not in SimpleCalc 
• Appendices: The 

Binary and Hexadecimal Num­
bering Systems, Instruction For­
mat & Cycle Timing, Condition 
Codes, Error Messages, Using 
the Lisa Workshop, Samples of 
Trap Calls into the ROM, Sim· 
pleCalc Program Code 

416 Pages, 7¥4 x 9 V4 , Softbound 
ISBN: 0-8104-6310-5 
No. 46310, $24.95 

Artificial lnteUigenee 
Programming on the 

Macintosh® 
Dan Shafer. The Waite Group 

This author presents the funda­
mentals of artificial intelligence (AI) 
programming theory and techniques 
through a step-by-step introduction 
to the next frontier in computer 
usage. The programming student 
and hobbyist will be fascinated by 
the possibilities of music genera­
tion, robotics, and problem solv-
ing ... all available through AI on 
today's microcomputers. 
Containing ten exciting programs, 
the book is written in easy-to-learn 
Logo for use on the Macintosh, but 
is also generalized for use on other 
computers. The book describes the 
basics of AI programming tech· 
niques and concepts. 
Topics covered include: 
• Artificial Intelligence 

Programming Techniques 
• Micro Logician 
• The Digital Poet 
• Artificial Intelligence Data 

Bases 
• A Prolog Interpreter 
• Artificial Intelligence 

Languages 
• Logo and LISP 
• Prolog Tutorial 
• Appendices : LISP 

Listings of Selected Programs, 
Converting Between Mac Logos, 
and Suggestions for Further 
Reading 

304 Pages, 71fl x 93/4, Softbound 
ISBN: 0-672-22447-X 
No. 22447, $24.95 

Understanding HyperTalklll 
Dan Shafer 

Understanding HyperTalk brings 
the power and fascination of 
programming in HyperTalk to those 
Macintosh® owners who want to 
customize their environment with 
Apple® 's HyperCard1M. 

Written by the author of the best· 
selling HyperTalk Programming, 
this book will be most useful to 
people who are deciding whether 
to buy HyperCard and to people 
who want to teach themselves or 
others HyperCard programming and 
stacks. 
Topics covered include: 
• Programming Basics 
• Object-Oriented Programming 

Ideas 
• HyperCard Refresher 
• HyperTalk Building Blocks 
• System Messages 
• Input/Output 
• Loops and Conditional 

Processing 
• Navigational Commands 
• Data Management Commands 
• User Interface Commands 
• Graphics and Visual Effects 
• Sound and Music 
• Math Functions and Operators 
• Action-Taking Commands 
• Property 
• Interface to the Outside World 
• Stack Design Considerations 
300 Pages, 7 x 9, Softbound 
ISBN: 0-672-27283.0 
No. 27283, $17.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



-

IBM® PC and Macintosh® 
Networking Featuring: 

TOPS"lll and AppleSbare111 

Stephen 1. Michel 

IBM PC and Macintosh owners and 
users who want to combine the 
power of their machines will 
welcome this complete resource for 
networking the IBM PC and the 
Macintosh using TOPS and 
AppleShare. 
This book details the specifics of 
using the Macintosh and the IBM 
PC on the same network, including 
transferring files, sharing printers, 
transporting data from IBM sofiware 
to Mac and vice versa, and mixing 
word processing and spreadsheet 
programs. 
Full of networking details, this 
thorough coverage of TOPS son­
ware (one of PC Magazine's "The 
Best of 1986" products) details how 
to create useful files and share 
printers and external disk drives. 
Topics covered include: 
• How the Macintosh and PC 

Really Differ 
• TOPS 
• AppleShare 
• Coexistence 
• Managing the Network 
• Appendices: Glossary, ASCII 

Character Sets, Using PostScript 
Printers 

328 Pages, 731. x 9 Y4 , Sofibound 
ISBN: 0-67248405-6 
No. 48405, $21.95 

Macintosh® Hard Disk 
Management 

Charles A Rubin and BenciOfl J Co/ica 

This is the ideal companion book 
for all Macintosh owners who have 
a hard disk or are considering the 
purchase of one. 
Readers will discover how the disk 
works, as well as pick up impor­
tant information on how to recover 
files, rebuild the desktop, replace 
files, and install fonts and desk ac­
cessories. 
Topics covered include: 
• Hardware 
• The System Folder Files 
• The Finder 
• Fonts, DAs, and the Font/DA 

Mover 
• Organizing Hard Disk Files 
• Sharing Files with a Hard Disk 
• Using File or Disk Copying 

Programs 
• Printing from a Hard Disk 
• Backing Up a Hard Disk 
• Disk Optimizing Utilities 
• Font and Disk Accessory 

Extenders 
• f'keys, lnits, and Chooser 

Resources 
• Finder Alternatives 
• Preventive Measures 
• Troubleshooting and Repairs 
• Appendices: Glossary of Terms. 

List of Products 
300 Pages, 7 3f• x 9 v. , Softbound 
ISBN: 0-67248403-X 
No. 48403, $19.95 

HyperTaJkTM Tips and 
Techniques 

Dan Shafer 

Written for programmers and de­
velopers, this book is a collection 
of more than I 00 helpful pieces of 
information about HyperTalk, the 
programming language built into 
Apple® 's HyperCardTN. It offers 
readers with some experience in 
HyperTalk programming a chance 
to learn the ins and outs of 
programming from one of the best· 
known and widely recognized 
HyperTalk scripting experts. 
Solutions to dozens of bugs, deli· 
ciencies, and pitfalls lying in wait 
for the unsuspecting HyperTalk 
programmer are documented as are 
suggestions for handling some of 
the most often needed HyperTalk 
tasks. The book provides special 
shortcuts, speed-ups, and enhance­
ments and a weallh of additional 
information that isn 't available 
from any other source. 
Topics covered include: 
• Creating an Invisible Cursor 
• Building an Index of Stack 

Contents Automatically 
• Checking a Field's Content for 

Data Type 
• Multiword and Multifield Signs 
• Protecting a Slack and Script 

from Misuse 
• How to Construct HyperText 

Applications in HyperCard 
• Dealing with HyperCard's Limits 

and Performance Issues 
300 Pages, 7V4 x 9 Y• , Softbound 
ISBN: 0-67248427-7 
No. 48427, $21.95 

The Waite Group's 
HyperTalkTM 2.0 Bible 

MilcheU Wolle. Stephen Pro/0, Ttd Jones 

An entry-level tutorial for people 
wanting to learn scripting, this 
book explains Apple's new 
programming language in an easy­
t<rread style that includes en~f­
chapter quizzes and exercises. 
The reference section includes an 
alphabetical listing of all HyperTalk 
commands, functions, operators, 
properties, messages, and reserved 
names. Each command is explained 
in terms of its syntax, shown in 
several typical usages, and followed 
by a set of graduated examples that 
show various ways to use the 
command. 
Topics covered include: 
• HyperCard Refresher 
• Card Navigation 
• Objects and Simple Properties 
• Handlers and Messages 
• Simple Visual and Audio 
• Values, Simple Math, Messages 
• Mouse, Keyboard and User 

Interface 
• Decisions and Logic, Loops, 

Strings 
• Advanced Math, Date and Time 
• User and Advanced Functions 
• Sound 
• Global and Window Properties 
• Simulation and Object Properties 
• Graphics and Paint Properties 
• File Input and Output, Printing 
• X Commands and X Functions 
• Advanced HyperTalk 
600 Pages, 7111 x 93ft, Softbound 
ISBN: 0-672-48430-7 
No. 48430, $24.95 

Visit your local book retailer, use the order form provided, or call 800-428-SAMS. 



If You Use HyperCard, You Need Reports 

l 
Reports for HyperCard, the complete report generator for 

Report~ for H)pcrCard, turns your HyperCard data into useful information. 
HyperCard CM! it to organize, anaJyzc, and print what you want, where you want. 
~~..:~.,:-: ... ~ You select the information from any card or stack, and design 
f y the ccport wHh an easy-to-usc layout editor. Reporls ji , . 
..f -/1- HJperCard docs the rest. 

I' d Once created, your report!) can be printed at any time from any 
~~~~ HyperCard application. Reports .for 1 M>erCard will create caJculated 

fields, totals and subtotals, avemges, and counts - even update your
stacks - while printing.

Reports for HyperCard features include-

Graphics-oriented layout editor for ea!)y cuMom report design - you can even
design reporL<; for pre-printed forms like invoices and checks. ·

Up to 5 levels of sorts and breaks in any report for precise grouping of information.
Unlimited card selection criteria, including =, =f., > ,>=.<.<= , Contains,
Excludes, Is in, and Is not in.
Flexible print formatting for complete control of every report's appearance.
Plus graphics in your reports. Pa!,te in graphics from H)perCard stacks or
other applications. Use the built-in drJWing tools to create lines and boxes.
Hypetfalk "shorthand" lets you simply pull down menus ~md select conunands ­
Reports automatically \vrites the corresponding script segments for you.

Put the power of HyperCard in print. With Reports for I M>erCtm l, the complete
report designer and generator for H}'PerCard. 599.95 suggested retail price.
To order direct, call800-345-2888, Opemtor 300, or return the coupon below
with your check or money order.
/..'4f"N'i'_/fll' lfl-p...,'(jn ·,/ n·qtun.."\an Appk• M.llmtcM"" Plu, , 'I . nr II wi1h nurumum l Mb RA.\1 t\\" d1,. tln"e'. arxJ ll~fk:r< ... utl"' ···oftwan.. II .ant dn\'t"
l"t'C.lK1lnlcnded

:__){] HYPERWARE~ FROM
LJ~ M E D I A G E ~ I C

To order by phone, Call800-345-2888, Operator 300.

r:----------------------.
Name --------------------------- , I

I Address I
I City State Zip I
1 MAIL TO: MEDIAGENIC, Inc. 1
I

P.O. Box T, Gilroy, CA 95021-2249 1
Canadian orders, add $

I Na COD orders. I
METHOD OF PAYMENT Allow 4·6 weeks far del

I 0 Check or M oney O rder enclosed (poyoble to MEDIAGENIC, Inc.) I
I 0 MASTERCARD 0 VISA 0 AMERICAN EXPRESS I
I I I I I I I I I I I I I I I I I I Exp~ration Date: I I I I I Credit Card Number Month Year I

PHONE (1----------
L Signature (required far a ll credit card orders) .J ----------------------

DISK OF PROGRAMS AVAILABLE

If you prefer to have the scripts in Chapters 25 and 26 on a Macintosh
diskette rather than typing them into your Mac, you can order a disk
from Apricot Press. The disk will, as a free bonus, include all of the
freeware and shareware programs mentioned elsewhere in the book,
which will save you the cost of downloading these programs from a
BBS. There is no charge for these programs but please honor the
shareware fee requests made by the authors of the programs if you
use them.

If you wish to order the disk, send a check or money order for $20 to:

~pricot [press
277 Hillview Avenue
Redwood City, CA 94062

For orders outside the continental United States we require $26.00 in
U. S. Funds, drawn on aU. S. Bank, or $24.00 U. S. Currency. For
orders shipped to CA, add 6.5% sales tax. Please allow two to four
weeks for delivery.

Please send me the disk to accompany HyperTalk Programming Revised
Edition, by Dan Shafer. I am enclosing a check or money order in the
amount of to cover costs, postage, tax, if applicable and
handling.

NAME: ______________________________________ __

COMPANY: _________________________________ __

ADDRESS: ___________________________________ __

CITY:------------------ STATE: __ ZIP: - -------

- -

. -~ /
HAl DL\ ROOK.~ ~~<;'>_,;::.'- tAi.-f'---- ItA~< RI SJ-.\1 II I R

~

HyperTal!<·
Programmmg

The first edition of Dan Shafer's HyperTalk Programming
was an instam beSI seller. Tens of lhousands of people have
used it to learn to program in H~perCard's built-in HyperTalk
language.

Now Apple has greally expanded Hypeffalk \liilh !he release
of HyperCard Version 1.2, and once again Shafer has produced
a timely, comprehensive guidebook to the changes and
enhancements of !his powerful language.

HyperTalk Programming, Revised Edition, covers every
command, function, property, and operator of HyperTalk,
along with basic concepts, detailed instructions, and easy­
to-follow examples.

Highlights include lhe crea·
tioo and incorporation of Jan.
guage extensioos using XC.\ID
and XFCN; details on using
external commands in Pascal
and C; complete explanations
of sound, graphics, and com­
munications; plus tips, traps,
and techniques galhered from

About the Author
Dan Shafer , a professional
technology \\Titer and consul­
tant, has established a repu­
tation as one of the leading
HyperTalk designers and programmers in the nation.
He is the author of Understanding HyperTal~ available
from HowMd W. Sams & Company. He is also a regular
columnist on HyperTalk to Hyperlink and APDALog
magazines and a frequently q~ed obseNer of the HyperCard

#f
HAYDEN BOOKS
A Dlvlsloll of Howard W Sams f... Comp.'m}'

4300 ~t'Sl 62nd Stf'('Ct

IndianapoliS. Indiana 46268 LISA

S24.95 US/48439

dozens of "stackheads" who began scripting in Hypeffalk
almOSt before lhe software was a kn<mn quantity.

Whether you're an experienced programmer or merely
acquainted with basic programming concepts, this workbook
lets you begin progr.tmming your own HyperCard stacks
right away.

You'll move quickly through the rarious aspects of
HyperTalk- data types, objects, messages, contrOl struaures,
and commands - turning to your Macintosh to veri~ your
progress at frequent checkpoints. When you encounter an
unfamiliar concept, simp~ flip to lhe appropriate appendix

for a detailed explanation.
The book even includes two

complete scripts for ready­
made applications.

With HyperTalk Program­
ming as your guide, you'llleam
to access information your own
way. At last, your Macintosh
will become the "people's
machine" it was meant
to be.

and ~perTalk scenes.
As a designer, he produced

the j)q)Ular Dan Sbajer'sscripi.-
ExpertT•, based on Chapter 26

of this book, as well as HyperCard stacks for Oracle
Corporation, Intuit, Regis McKenna, Inc., and many other
companies. He frequently lectures and gives seminars on
HyperCard and HyperTalk and is a sought afier speaker
at Macintosh user groups.

ISBN 0- 672-48439- 0

I
9 780672 484391

90000

	hypertalk_001
	hypertalk_002
	hypertalk_003
	hypertalk_004
	hypertalk_005
	hypertalk_006
	hypertalk_007
	hypertalk_008
	hypertalk_009
	hypertalk_010
	hypertalk_011
	hypertalk_012
	hypertalk_013
	hypertalk_014
	hypertalk_015
	hypertalk_016
	hypertalk_017
	hypertalk_018
	hypertalk_019
	hypertalk_020
	hypertalk_021
	hypertalk_022
	hypertalk_023
	hypertalk_024
	hypertalk_025
	hypertalk_026
	hypertalk_027
	hypertalk_028
	hypertalk_029
	hypertalk_030
	hypertalk_031
	hypertalk_032
	hypertalk_033
	hypertalk_034
	hypertalk_035
	hypertalk_036
	hypertalk_037
	hypertalk_038
	hypertalk_039
	hypertalk_040
	hypertalk_041
	hypertalk_042
	hypertalk_043
	hypertalk_044
	hypertalk_045
	hypertalk_046
	hypertalk_047
	hypertalk_048
	hypertalk_049
	hypertalk_050
	hypertalk_051
	hypertalk_052
	hypertalk_053
	hypertalk_054
	hypertalk_055
	hypertalk_056
	hypertalk_057
	hypertalk_058
	hypertalk_059
	hypertalk_060
	hypertalk_061
	hypertalk_062
	hypertalk_063
	hypertalk_064
	hypertalk_065
	hypertalk_066
	hypertalk_067
	hypertalk_068
	hypertalk_069
	hypertalk_070
	hypertalk_071
	hypertalk_072
	hypertalk_073
	hypertalk_074
	hypertalk_075
	hypertalk_076
	hypertalk_077
	hypertalk_078
	hypertalk_079
	hypertalk_080
	hypertalk_081
	hypertalk_082
	hypertalk_083
	hypertalk_084
	hypertalk_085
	hypertalk_086
	hypertalk_087
	hypertalk_088
	hypertalk_089
	hypertalk_090
	hypertalk_091
	hypertalk_092
	hypertalk_093
	hypertalk_094
	hypertalk_095
	hypertalk_096
	hypertalk_097
	hypertalk_098
	hypertalk_099
	hypertalk_100
	hypertalk_101
	hypertalk_102
	hypertalk_103
	hypertalk_104
	hypertalk_105
	hypertalk_106
	hypertalk_107
	hypertalk_108
	hypertalk_109
	hypertalk_110
	hypertalk_111
	hypertalk_112
	hypertalk_113
	hypertalk_114
	hypertalk_115
	hypertalk_116
	hypertalk_117
	hypertalk_118
	hypertalk_119
	hypertalk_120
	hypertalk_121
	hypertalk_122
	hypertalk_123
	hypertalk_124
	hypertalk_125
	hypertalk_126
	hypertalk_127
	hypertalk_128
	hypertalk_129
	hypertalk_130
	hypertalk_131
	hypertalk_132
	hypertalk_133
	hypertalk_134
	hypertalk_135
	hypertalk_136
	hypertalk_137
	hypertalk_138
	hypertalk_139
	hypertalk_140
	hypertalk_141
	hypertalk_142
	hypertalk_143
	hypertalk_144
	hypertalk_145
	hypertalk_146
	hypertalk_147
	hypertalk_148
	hypertalk_149
	hypertalk_150
	hypertalk_151
	hypertalk_152
	hypertalk_153
	hypertalk_154
	hypertalk_155
	hypertalk_156
	hypertalk_157
	hypertalk_158
	hypertalk_159
	hypertalk_160
	hypertalk_161
	hypertalk_162
	hypertalk_163
	hypertalk_164
	hypertalk_165
	hypertalk_166
	hypertalk_167
	hypertalk_168
	hypertalk_169
	hypertalk_170
	hypertalk_171
	hypertalk_172
	hypertalk_173
	hypertalk_174
	hypertalk_175
	hypertalk_176
	hypertalk_177
	hypertalk_178
	hypertalk_179
	hypertalk_180
	hypertalk_181
	hypertalk_182
	hypertalk_183
	hypertalk_184
	hypertalk_185
	hypertalk_186
	hypertalk_187
	hypertalk_188
	hypertalk_189
	hypertalk_190
	hypertalk_191
	hypertalk_192
	hypertalk_193
	hypertalk_194
	hypertalk_195
	hypertalk_196
	hypertalk_197
	hypertalk_198
	hypertalk_199
	hypertalk_200
	hypertalk_201
	hypertalk_202
	hypertalk_203
	hypertalk_204
	hypertalk_205
	hypertalk_206
	hypertalk_207
	hypertalk_208
	hypertalk_209
	hypertalk_210
	hypertalk_211
	hypertalk_212
	hypertalk_213
	hypertalk_214
	hypertalk_215
	hypertalk_216
	hypertalk_217
	hypertalk_218
	hypertalk_219
	hypertalk_220
	hypertalk_221
	hypertalk_222
	hypertalk_223
	hypertalk_224
	hypertalk_225
	hypertalk_226
	hypertalk_227
	hypertalk_228
	hypertalk_229
	hypertalk_230
	hypertalk_231
	hypertalk_232
	hypertalk_233
	hypertalk_234
	hypertalk_235
	hypertalk_236
	hypertalk_237
	hypertalk_238
	hypertalk_239
	hypertalk_240
	hypertalk_241
	hypertalk_242
	hypertalk_243
	hypertalk_244
	hypertalk_245
	hypertalk_246
	hypertalk_247
	hypertalk_248
	hypertalk_249
	hypertalk_250
	hypertalk_251
	hypertalk_252
	hypertalk_253
	hypertalk_254
	hypertalk_255
	hypertalk_256
	hypertalk_257
	hypertalk_258
	hypertalk_259
	hypertalk_260
	hypertalk_261
	hypertalk_262
	hypertalk_263
	hypertalk_264
	hypertalk_265
	hypertalk_266
	hypertalk_267
	hypertalk_268
	hypertalk_269
	hypertalk_270
	hypertalk_271
	hypertalk_272
	hypertalk_273
	hypertalk_274
	hypertalk_275
	hypertalk_276
	hypertalk_277
	hypertalk_278
	hypertalk_279
	hypertalk_280
	hypertalk_281
	hypertalk_282
	hypertalk_283
	hypertalk_284
	hypertalk_285
	hypertalk_286
	hypertalk_287
	hypertalk_288
	hypertalk_289
	hypertalk_290
	hypertalk_291
	hypertalk_292
	hypertalk_293
	hypertalk_294
	hypertalk_295
	hypertalk_296
	hypertalk_297
	hypertalk_298
	hypertalk_299
	hypertalk_300
	hypertalk_301
	hypertalk_302
	hypertalk_303
	hypertalk_304
	hypertalk_305
	hypertalk_306
	hypertalk_307
	hypertalk_308
	hypertalk_309
	hypertalk_310
	hypertalk_311
	hypertalk_312
	hypertalk_313
	hypertalk_314
	hypertalk_315
	hypertalk_316
	hypertalk_317
	hypertalk_318
	hypertalk_319
	hypertalk_320
	hypertalk_321
	hypertalk_322
	hypertalk_323
	hypertalk_324
	hypertalk_325
	hypertalk_326
	hypertalk_327
	hypertalk_328
	hypertalk_329
	hypertalk_330
	hypertalk_331
	hypertalk_332
	hypertalk_333
	hypertalk_334
	hypertalk_335
	hypertalk_336
	hypertalk_337
	hypertalk_338
	hypertalk_339
	hypertalk_340
	hypertalk_341
	hypertalk_342
	hypertalk_343
	hypertalk_344
	hypertalk_345
	hypertalk_346
	hypertalk_347
	hypertalk_348
	hypertalk_349
	hypertalk_350
	hypertalk_351
	hypertalk_352
	hypertalk_353
	hypertalk_354
	hypertalk_355
	hypertalk_356
	hypertalk_357
	hypertalk_358
	hypertalk_359
	hypertalk_360
	hypertalk_361
	hypertalk_362
	hypertalk_363
	hypertalk_364
	hypertalk_365
	hypertalk_366
	hypertalk_367
	hypertalk_368
	hypertalk_369
	hypertalk_370
	hypertalk_371
	hypertalk_372
	hypertalk_373
	hypertalk_374
	hypertalk_375
	hypertalk_376
	hypertalk_377
	hypertalk_378
	hypertalk_379
	hypertalk_380
	hypertalk_381
	hypertalk_382
	hypertalk_383
	hypertalk_384
	hypertalk_385
	hypertalk_386
	hypertalk_387
	hypertalk_388
	hypertalk_389
	hypertalk_390
	hypertalk_391
	hypertalk_392
	hypertalk_393
	hypertalk_394
	hypertalk_395
	hypertalk_396
	hypertalk_397
	hypertalk_398
	hypertalk_399
	hypertalk_400
	hypertalk_401
	hypertalk_402
	hypertalk_403
	hypertalk_404
	hypertalk_405
	hypertalk_406
	hypertalk_407
	hypertalk_408
	hypertalk_409
	hypertalk_410
	hypertalk_411
	hypertalk_412
	hypertalk_413
	hypertalk_414
	hypertalk_415
	hypertalk_416
	hypertalk_417
	hypertalk_418
	hypertalk_419
	hypertalk_420
	hypertalk_421
	hypertalk_422
	hypertalk_423
	hypertalk_424
	hypertalk_425
	hypertalk_426
	hypertalk_427
	hypertalk_428
	hypertalk_429
	hypertalk_430
	hypertalk_431
	hypertalk_432
	hypertalk_433
	hypertalk_434
	hypertalk_435
	hypertalk_436
	hypertalk_437
	hypertalk_438
	hypertalk_439
	hypertalk_440
	hypertalk_441
	hypertalk_442
	hypertalk_443
	hypertalk_444
	hypertalk_445
	hypertalk_446
	hypertalk_447
	hypertalk_448
	hypertalk_449
	hypertalk_450
	hypertalk_451
	hypertalk_452
	hypertalk_453
	hypertalk_454
	hypertalk_455
	hypertalk_456
	hypertalk_457
	hypertalk_458
	hypertalk_459
	hypertalk_460
	hypertalk_461
	hypertalk_462
	hypertalk_463
	hypertalk_464
	hypertalk_465
	hypertalk_466
	hypertalk_467
	hypertalk_468
	hypertalk_469
	hypertalk_470
	hypertalk_471
	hypertalk_472
	hypertalk_473
	hypertalk_474
	hypertalk_475
	hypertalk_476
	hypertalk_477
	hypertalk_478
	hypertalk_479
	hypertalk_480
	hypertalk_481
	hypertalk_482
	hypertalk_483
	hypertalk_484
	hypertalk_485
	hypertalk_486
	hypertalk_487
	hypertalk_488
	hypertalk_489
	hypertalk_490
	hypertalk_491
	hypertalk_492
	hypertalk_493
	hypertalk_494
	hypertalk_495
	hypertalk_496
	hypertalk_497
	hypertalk_498
	hypertalk_499
	hypertalk_500
	hypertalk_501
	hypertalk_502
	hypertalk_503
	hypertalk_504
	hypertalk_505
	hypertalk_506
	hypertalk_507
	hypertalk_508
	hypertalk_509
	hypertalk_510
	hypertalk_511
	hypertalk_512
	hypertalk_513
	hypertalk_514
	hypertalk_515
	hypertalk_516
	hypertalk_517
	hypertalk_518
	hypertalk_519
	hypertalk_520
	hypertalk_521
	hypertalk_522
	hypertalk_523
	hypertalk_524
	hypertalk_525
	hypertalk_526
	hypertalk_527
	hypertalk_528
	hypertalk_529
	hypertalk_530
	hypertalk_531
	hypertalk_532
	hypertalk_533
	hypertalk_534
	hypertalk_535
	hypertalk_536
	hypertalk_537
	hypertalk_538
	hypertalk_539
	hypertalk_540
	hypertalk_541
	hypertalk_542
	hypertalk_543
	hypertalk_544
	hypertalk_545
	hypertalk_546
	hypertalk_547
	hypertalk_548
	hypertalk_549
	hypertalk_550
	hypertalk_551
	hypertalk_552
	hypertalk_553
	hypertalk_554
	hypertalk_555
	hypertalk_556
	hypertalk_557
	hypertalk_558
	hypertalk_559
	hypertalk_560
	hypertalk_561
	hypertalk_562
	hypertalk_563
	hypertalk_564
	hypertalk_565
	hypertalk_566
	hypertalk_567
	hypertalk_568
	hypertalk_569
	hypertalk_570
	hypertalk_571
	hypertalk_572
	hypertalk_573
	hypertalk_574
	hypertalk_575

