
Portrait of
the artist as

a young Apple

GR A P H I C A L L Y

SPEAKING

hv Mark Pelciarski

GRAPHICALLY

SPEAKING

GRAPHICALLY

SPEAKING

Portrait of the artist as a young Apple

h Mark Pelciarski

WU

Copyright 1983 by Mark Pelczarski

All rights reserved. No part of this publication may
be copied, transmitted, or reproduced in any way

including, but not limited to, photocopy,
photography, magnetic, or other recording, without

prior written permission of the publisher, with the
exception of program listings, which may be

entered, stored, and executed in a computer system,
but not reproduced for publication.

Current Printing (last digit)
10 9 8 7 6 5 4 3 2 1

Softalk Books
P.O. Box 60

North Hollywood, CA 91603

Design by Kurt A. Wahlner

Apple and Applesoft are registered trademarks of Apple
Computer Inc., Cupertino, CA.

Some of the machine language routines in this book are copyrighted, 1982 and 1983, by
Penguin Software, Inc., but may be used in commercial products with no charge by
obtaining written permission. Write Penguin Software, Box 311, Geneva, Blinois 60134.

Library of Congress Cataloging in Publication Data

Pelczarski, Mark, 1954-
Graphically speaking.

Includes index.
1. Computer graphics. 2. Apple computer—Programming.

I. Title.
T385.P45 	1983 	001.64'43 	83-20299
ISBN 0-88701-007-5

Program disk is available with this book. It contains
all program listings in machine readable format
(Apple H, H + , or He), plus a nifty logo and an

easy-to-use menu.

To Cheryl, for going along with all the
craziness, and to all the "Penguins" for

contributing to it.

And to all those who share as they
learn and discover

The following products mentioned in the text are registered trademarks of the
companies that follow their names.

Applesoft DOS Toolkit : Apple Computer, Inc.
Merlin : Southwestern Data Systems
The Complete Graphics System : Penguin Software
The Graphics Magician : Penguin Software
Raster Blaster : BudgeCo
Higher Text : Sof/Sys, Inc.
Zoom Grafix : Penguin Software
Mystery House : Sierra On-Line Systems
The Wizard and the Princess : Sierra On-Line Systems
Police Artist : Sir-Tech Software Inc.
Epoch : Sirius Software, Inc.
Hadron : Sirius Software, Inc.
Flight Simulator : SubLogic
Way Out : Sirius Software, Inc.
Choplifter : Broderbund Software, Inc.
Intellivision : Mattel Electronics, Inc.
Koala Pad : Koala Thchnologies
Battlezone : Atari, Inc.
Zaxxon : Sega, Inc.
Star Wars : Lucasfilm, Inc.

GRAPHICALLY

SPEAKING

11116TENTS =11
1 AN INTRODUCTION

	
1

Hi- and Lo-res / A bit of binary / Memory allocation /
Screen Display / A bit of color

2 APPLESOFT GRAPHICS COMMANDS
	

7
Graphics Commands / HGR / HGR2 / HCOLOR / HPLOT /
HPLOT TO / Making Rectangles / POKE text on and off

3 SHAPE TABLES AND SIMPLE ANIMATION 	 15
Defining Shapes by Vectors / Creating a Shape / Using Your Shape
in a Program / Two Paragraphs Later / Simple Animation

4 CONTROLLING ANIMATION 	 23
Controlling the Shape / Can You Draw With It? / More Control /
Using a formula / Enough Math! / Draw at random

5 INTERESTING THINGS TO DO WITH SHAPE TABLES 37
AND SIMPLE ANIMATION
Explosions / Lasers / Bouncing Ball / The effects of entropy

6 LOOKUP TABLES AND BIT-MAPPED GRAPHICS 	43
Tricks of the Trade #1 / A Basic Character Generator /
A Longer Basic Character Generator

7 MACHINE LANGUAGE GRAPHICS ROUTINES 	51
Machine Language Coding / Assembly Language

8 MORE MACHINE LANGUAGE
	

59
Tune for Another Routine / A little multiplication and
division by powers of 2

9 THE WONDERFUL WORLD OF COLOR
	

69
How Many Colors? / Black / White / Colors! /
Alternate Rows of Colors

10 COLOR FILLING 	 75
Fill Routine / Getting Colors

11 FAST ANIMATION 	 79

Pre-Shifted Shapes / Page Filling

12 ANIMATION OF LARGER PRE-SHIFTED SHAPES 	85
First, a Shape / Moving in Twos / Entering the Shape Data /
Putting It All Together

13 PICTURE PACKING
	

97
The Original Recipe / Variations on a Theme /
Dramatic Improvement / The Packing Program

14 PACKING BY SAVING ARTIST'S MOVES
	

109
The Graphics Magician / Drawing lines / Adding brushes /
Pictures on pictures / Surprise animation / Saving picture files

15 3-DIMENSIONAL GRAPHICS 	 115
3-D Perceptions / Size / Rotation and perspective /
Shading and shadowing / Creating 3-D Shapes /
A Few Things You Can Do With Your Coordinates / Move it /
Give it a center / Make it BIGGER or smaller / Rotate it

16 A 3-D GRAPHICS PROGRAM 	 123
A Breakdown of the Program / Variables

17 A HI-RES DRAWING PROGRAM 	 133
Line and Fill / Brushes / Keypress Operations / Joystick Control

APPENDIX A: Making Binary Simple 	 141

APPENDIX B: Applesoft Hi-Res Graphics Commands 	143

APPENDIX C: Machine Language Entry Points for Applesoft

Graphics Routines 	 145

APPENDIX D: ASCII Character Codes 	 147

APPENDIX E: Program Disk Catalog 	 149

APPENDIX F: Listing 10.1 	 151

Index 	 165

0

s5

An Introduction

E

This book is about creating computer graphics. Specifically, it's about
high-resolution (hi-res) graphics on Apple computers, but the principles
involved are similar to those used in most computer graphics. Parts of
the book are about programming in Basic, parts are about machine-
language graphics, and some sections contain ready-to-use programs
that you can type in and run. We'll look at line drawing, vector shapes,
block and character graphics, animation, extra colors and color-filling,
and 3-D graphics. We'll also look at how Apple colors are stored on the
screen, and at ways that you can store your graphics screens very com-
PactlY•

It's recommended that you type in the examples as you read; it makes
it much easier to learn about computers if you can see what they do.
The examples in Basic you can type right in. For the machine-language
examples, although you can enter the numbers directly into the computer,
a good assembler program is recommended, such as the one in Applesoftl
DOS Toolkit, or in Merlin. The assembly listings in this book use Merlin.
Many of the examples are excerpts from the programs The Complete
Graphics System and The Graphics Magician from Penguin Software,
and I'd like to thank David Lubar and Day Holle, co-authors of some
of the routines, for their contributions and neat ideas about graphics. If
you do use any of the routines from this book in your own programs,
we just ask that you acknowledge the authorship of those routines in
your program.

11-y not to ask "why?" too much when looking at some of the more
odd conventions of Apple graphics, it's easy to ask why now, but take
a moment instead to appreciate the foresight used in the development
of the Apple to include them at all. A few years ago, most state of the

2 1 AN INTRODUCTION

art Apple games were done in the 16-color, low-resolution block graphic
mode, and we were impressed. Who would have guessed that hi-res
graphic games such as Raster Blaster were hiding in the Apple, just
waiting to get out, that long ago? Today, various graphic games on the
Apple rival their big brothers in the arcades, and the capabilities for
those were put there several years back. Amazing.

Hi- and Lo-res

There are two types of graphics built into the Apple. There's a low
resolution mode that has 16 colors, with the smallest unit being a block
that's half the height and the same width as a text character. (You, too,
can use computer jargon now, by calling this mode lo-res). In the lo-res
mode, the screen is 40 blocks wide and 48 blocks in height (text mode
has 40 characters across and 24 lines of type down the screen). There
is also a high resolution mode that uses six colors (the books tell you
eight, but they count black and white twice each, for a reason we'll see
later). The hi-res mode lets you access 280 points across the screen and
192 points down (a single text character is made up on a grid seven
points across and eight down). It's the hi-res mode that we'll discuss in
this book, since it provides much more flexibility with individual access
to every point.

There are several commands in Applesoft Basic that give you control
over both hi-res and lo-res graphics, but before we get into things you
can do with these commands, it may be a good idea to talk about how
the graphics work internally and about some of the oddities you will
encounter. It may also be a little backwards, talking about bits and bytes
before using the handy-dandy, ready-to-go Applesoft graphic com-
mands, but it will also answer a lot of questions before they arise, as
well as convince some of the more advanced among you that this isn't
just going to be a book about using HPLOT and shape tables.

The hi-res graphics screen, 280 points by 192 points, corresponds
directly to a portion of memory in the Apple. Every one of these points
corresponds to a certain bit in memory and can be either on or off (lit
or black).

A bit of binary

A bit is the smallest unit of memory in a computer, and it is the result
of an electrical state that is in one of two positions. Mathematicians
gave numbers to those two positions, 0 and 1, and hence computers use

A bit of binary / Memory allocation / Screen Display 1 3

binary arithmetic, which is base 2 (as opposed to our usual base 10).
Eight bits in a group are a byte, and in a byte you can store the numbers
0 (00000000, each bit off) through 255 (11111111, each bit set). Appen-
dix A elaborates a little more on binary arithmetic. If you are unfamiliar
with binary, you should read through it before going on. It does come
in handy when you want to do some tricky graphics, although if you
sensibly stick to Applesoft graphics commands for a while it's not all
necessary.

Memory allocation

Memory consists of about 64,000 bytes (64K bytes) in most Apples.
Each byte has a memory address that lets you refer to it, so you can
store things in that location or look and see what's there. When using
Applesoft Basic, the top 16K of addresses have programs permanently
stored there (the programs that make Applesoft and all the "little" func-
tions, like reading keys and putting letters on the screen work). That
type of memory is known as ROM, or read-only memory. The rest is
RAM, or random access memory, in which you can store things and
read things to your heart's content. That's the area where programs and
data go when they get read from disk.

After subtracting the 16K of ROM for Applesoft, you have 48K of
RAM. The hi-res graphics screen corresponds to 8K of RAM, or 8,192
bytes (although only 7,680 are actually used). There are two areas of
memory that can be used for hi-res graphics, called hi-res page 1 and
hi-res page 2. The addresses for page 1 are 8192 through 16383, and
the addresses for page 2 are 16384 through 24575.

Screen Display

What does this all mean? Not much, except it perhaps convinces you
that there's an actual area in the memory of your computer that has a
one-to-one relation with what you see on the hi-res screen. To illustrate
graphically, here's a program that doesn't do anything particularly useful,
but does show you that there's nothing magical about displaying graph-
ics:

10 	HGR : POKE - 16301,0
20 	FOR L = 8192 TO 16383
30 	POKE L ,1
40 	NEXT L
50 TEXT

4 [AN INTRODUCTION

HGR is an Applesoft command that switches the display to hi-res
page 1 and turns off every bit in page 1 graphics memory, thus clearing
the screen to black. The POKE command makes the bottom four lines
of text disappear, more on that later. The loop defined at lines 20 and
40 says to repeat the statements in between with the variable L starting
at 8192, increasing by 1 each time, until it reaches 16383 (conveniently,
the addresses in graphics page 1 go from 8192 to 16383).

The statement POKE L, 1 says to put the value 1 into the byte with
address L. The result should be to turn on one of the eight bits in that
byte, and hence turn on one point on the screen. The last statement
switches the display back to text, so that you don't think your computer's
disappeared into Never-Never Land. Actually, a good hearty Reset after
things stop happening on the screen would do the same trick.

'fry running the program to see what happens. When you put the
number 1 into all those locations, a bunch of points should light up. 'fry
changing the 1 in the POKE statement to 255. That should set every
point. How do you get colors? Try using the numbers 42, 85, 170, and
213, which are various concoctions of every other bit being set (00101010,
01010101, 10101010, and 11010101, in that order).

0000000 0000000
0000000 0000000
0000000 0000000
0000000 0000000
0000000 0000000

Each partition is a byte
Each dot Is a screen dot
and is stored as a bit.

Figure 1.1 A Portion of the Hi-Res Graphics Screen

A bit of color] 5

A bit of color

The trick is that points themselves are either on or off. Color depends
on two things: position and the leftmost bit. Only seven of the eight bits
in each byte are displayed on the screen. The leftmost bit controls the
color of the other seven. Bits in even columns on the screen are violet
or blue when they're turned on. Bits in odd columns are green or orange
when on. If the leftmost bit (high bit) is off, the colors are violet and
green. If the high bit is set (on), the colors are blue and orange. There
is no actual white. When blue and orange are next to each other, they
appear white; likewise with violet and green. Hence, there are two dif-
ferent whites possible, and similarly, two different blacks (high bit on
and high bit off).

Try different numbers to see what happens. For those who want a
challenge, try to find a way to poke in values that will make the entire
screen orange or blue, and so on. The next chapter will deal with more
conventional graphics commands through Applesoft before we eventu-
ally find our way back to bit graphics.

Applesoft Graphics Commands

Applesoft Basic has some nice built-in commands for using hi-res graph-
ics. Although they're described in the Apple II Applesoft BASIC Pro-
gramming Reference Manual (and the He Manual)1, a little repetition
doesn't hurt.

Each example has a line number, as it would appear in a Basic pro-
gram. The line numbers used are arbitrary, though. All the commands
can also be used without line numbers as direct commands, so you don't
even have to write a program to draw on the screen.

Graphics Commands

HGR

The command HGR sets the display to show whatever is in the hi-res
page 1 memory area (addresses 8192 to 16383). It also clears the screen
(sets all values in that address range to zero) and sets a pointer that tells
all subsequent hi-res commands to draw on page 1. The syntax is:

10 	HGR

1. Apple II Applesoft BASIC Programming Reference Manual (Cupertino: Apple Com-
puter, Inc., 1979, 1981)

Kamins, Scot, Apple Ile Applesoft BASIC Programmer's Reference Manual (Cupertino:
Apple Computer, Inc., 1982)

7

8 [APPLESOFT GRAPHICS COMMANDS

HGR2

Another command, HGR2, sets the display to show what's in hi-res page
2 (16384 to 24575), clears the screen, and sets the draw pointer to page
2. You'd type it:

10 	HGR2

HCOLOR

HCOLOR sets the color of subsequent draws and plots to the hi-ms
screen. Colors are:

High bit off High bit on

No dots set 0 - black 4 - black
Odd dots set 1 - green 5 - orange
Even dots set 2 - violet 6 - blue
All dots set 3 - white 7 - white

Remember that white and black have twice the resolution of the other
colors (280 dots across, as opposed to 140) because "white" is every
dot set, while any of the other colors have only even or odd dots set.
Also, colors from the left column may affect colors in the right column
(and vice versa) when positioned close together horizontally (within the
same byte), since the high bit controls the colors used for the whole
byte. Here's how you set color:

20 	HCOLOR = 5

HPLOT

HPLOT X,Y sets the point X,Y to the current HCOLOR (the last one
specified with an HCOLOR command). X can be from 0 to 279, with
0 being the left edge of the screen and 279 the right edge, and Y can be
from 0 to 191, with 0 the top and 191 the bottom of the screen. Any
arithmetic expression can also be used for X and Y, as long as the
resulting values are in the ranges given. If not, you'll get an error in the
program.

Since HPLOT sets only a single point, though, either of the two
whites will appear as another color. White3 will appear green if X is
odd, and violet if X is even, and white7 will be orange if X is odd, and

Graphics Commands / HPLOT / HPLOT TO 1 9

blue if X is even. Also, if HCOLOR = 5 (orange), for example, the
HPLOT command will only set dots in odd columns (since orange only
appears in odd columns). HPLOTing in an even column will leave that
dot off. Similar results occur with green, violet, and blue.

30 HPLOT 30. 120
40 HPLOT R*2, (T-5)/3

HPLOT X1, Y1 TO X2, Y2 draws a line from point X1, Y1 to point
X2, Y2 in the current HCOLOR. The same restrictions apply to the
range of the X and Y values as in the HPLOT X,Y command. The color
restrictions of the Apple show when lines are vertical or near vertical.
If both X values are the same and the HCOLOR is white, you'll get the
same color results as explained with HPLOTing a single point. If you
try to draw a vertical orange or green line with the X value even, nothing
will happen (since orange and green only appear in odd columns). Like-
wise, if you try to draw a vertical blue or violet line in an odd column,
it won't work. Lines that are near vertical will often appear broken or
in multiple colors for the same reasons.

35 	HPLOT 5 ► 10 TO 260, 180
40 	HPLOT 2*D, 5+F TO 3 -N. L/2

HPLOT TO

HPLOT TO X,Y draws a line from the last point specified in a previous
HPLOT command to X,Y. All the above comments about HPLOT com-
mands apply.

45 	HPLOT TO 45. 50
50 	HPLOT TO A + 19. 8-8

The Applesoft commands just outlined take care of setting the indi-
vidual bytes in the hi-res screen area appropriately. Considering the
examples in Chapter 1, in which we were poking values into various
bytes of the hi-res screen, this is a nice convenience. There are several
hi-res commands dealing with Applesoft shape tables, too, but we'll talk
about those later. In the meantime, here are a few program examples
that use the HPLOT commands.

10 [APPLESOFT GRAPHICS COMMANDS

Making Rectangles

The programs in Listing 2.1 all draw a rectangle on hi-res screen 1 in
white. If you try them, note that the vertical lines will not appear in
white. Try changing white7 to white3 to see the results. Each program
uses a slight variation on the HPLOT command to achieve the same
result. Note that the usage in the third of the examples is legal and works
just fine.

The HPLOT command also lends itself well to use of the READ and
DATA statements in Applesoft. Listing 2.2 first shows a program for
obtaining the same results in Listing 2.1, then shows a program for a
more complex figure. Notice that the variable I is a counter for the
number of line segments used, and that the coordinates and the endpoints
of the lines are put sequentially in the DATA statements.

If you're into mathematics and want to play around a little with the
coordinates, you can even read them into an array and perform some
functions on them before plotting. For a few examples, see Listing 2.3.

Listing 2.1A

10 HGR
20 HCOLOR= 7
30 HPLOT 10,10 TO 250,10
40 HPLOT 250t10 TO 250t150
50 HPLOT 250,150 TO 10,150
60 HPLOT 10,150 TO 10,10

Listing 2.1B

10
20

HGR
HCOLOR= 7

30 HPLOT 10t10
40 HPLOT TO 	250,10
50 HPLOT TO 250,150
60 HPLOT TO 	10,150
70 HPLOT TO 	10t10

Listing 2.1C

10 HGR
20 HCOLOR= 7
30 HPLOT 10,10 TO 250,10 TO 250,150

TO 10,150 TO 10,10

Making Rectangles / POKE text on and off 1 11

A GOSUB was used for plotting the figure so that it wouldn't have to
be repeated for each example. In lines 100 and 140, you may want to
try some other mathematical functions, even things like SIN and COS.
The only restrictions are that the results must be in a range 0 to 279 for
X, and 0 to 191 for Y.

POKE text on and off

There are other handy-dandy commands you can use from Basic to affect
what's happening on the graphics screen. The most common is POKE
- 16302,0 (example: 20 POKE - 16302,0), which clears the text from
the bottom of the screen after you use HGR. To get the text back, use

Listing 2.2A

10 HGR
20 HCOLOR= 7
29 REM READ AND SET STARTING POINT
30 READ X tY
40 HPLOT X Os
50 FOR I = 1 TO 4
60 READ X Of
70 HPLOT TO X tY
80 NEXT I
90 	DATA 10 *10 *250 *10 *250 *150 t10 *150 *10 *10

Listing 2.2B

10 HGR
20 HCOLOR= 7
30 	READ X tY
40 	HPLOT X tY
50 FOR I = 1 TO 37
60 READ X,Y
70 HPLOT TO X,Y
80 NEXT I
90 	DATA 12 ,5 t11 t4 t8 t4 *6 t6 ► 6 t7 t7 ► 8 t4

11 .3 .13 .3 .16 .4 .18 .6 .20 .13 .21 0.21 .5 .22 0
23,9,23 .9 .21 .10 .23 .12 .23
13 .22.12 .21 .10.21 .12.19 .14 .16.
14 .13.13 .10.13.11 .150.12 .5 *Bill
7 .8 .6 .12 .6 .12 .6 t
17 .8 .21 .10 .21 .12 .17.12 .12.8 .11

12 [APPLESOFT GRAPHICS COMMANDS

POKE - 16301,0. This is virtually irrelevant when you use HGR2, since
the four lines of text at the bottom of the screen are associated with page
1 of hi-res graphics. To try it out, use POKE - 16302,0 as line 15 of
any of the sample programs above.

Another command that you may find useful is CALL 62454 (example:
30 CALL 62454). This clears the screen to the most recently HPLOTed
HCOLOR. Since the HGR commands clear the screen to black only,
this is a way to choose a different background color. To try it, use the
following in any of the examples:
18 	HCOLOR = 6: HPLOT 0,0 : CALL 62454

Listing 2.3

10 HGR
20 HCOLOR= 7
30 DIM X(5),Y(5)
39 REM READ THE ENDPOINTS
40 FOR I = 1 TO 5
50 READ X(I),Y(I)
60 NEXT
70 DATA 10,10,25,10,25,15,10,15,10,10
79 REM DRAW IT NORMAL
80 GOSUB 500
89 REM PLAY WITH THE ENDPOINTS AND DRAW IT

AGAIN
90 FOR I = 1 TO 5
100 X(I) = X(I) + 30:Y(I) = Y(I) + 5
110 NEXT
120 GOSUB 500
129 REM PLAY SOME MORE
130 FOR I = 1 TO 5
140 X(I) = X(I) / 2 + 50:Y(I) = Y(I) * 2
150 NEXT I
160 GOSUB 500
170 END
499 REM THIS SUBROUTINE DRAWS THE FOUR LINES

SPECIFIED BY THE CURRENT ENDPOINTS IN THE
ARRAYS

500 HPLOT X(1),Y(1)
510 FOR I = 2 TO 5
520 HPLOT TO X(I),Y(I)
530 NEXT I
540 RETURN

POKE text on and off 1 13

A couple of other pokes affect the hi-res screen, and may be useful
at one time or another. They are listed here only for reference—if they
don't sound useful to you now, just ignore them.

You can use pokes to switch between hi-res graphics and text without
clearing either screen (the hi-res graphics screens and the text screen are
independent and are always updated in memory, even though they may
not be displayed at the time). POKE - 16303,0 switches from graphics
to text mode, and POKE - 16304,0 switches from text to graphics mode.
Neither clears the screen memory. Examples of using these are the graphic
adventures that let you switch between viewing the text descriptions of
a location and the hi-res picture of a location without erasing either
screen.

You can also switch between the two pages of graphics without eras-
ing: POKE - 16299,0 switches from page 1 to page 2, and POKE -
16300,0 switches from page 2 to page 1.

See Appendix B for a full summary of Applesoft and graphics com-
mands. Other good reference material to keep on hand for the various
graphics pokes and calls are the Apple II Applesoft BASIC Programming
Reference Manual (or the Apple IIe Manual)2 and the Apple II (or IIe)
Reference Manual3 , all of which have sections on graphics. You'd have
to be crazy to memorize all the various numbers to peek and poke, so
it's nice to keep some reference within arm's reach. Also, see Appendix
C in this book for machine language information on the Applesoft graph-
ics commands that is not in the Apple manuals.

2. Apple II Apples* BASIC Programming Reference Manual (Cupertino: Apple Com-
puter, Inc., 1979, 1981)

Kamins, Scot, Apple Ile Applesoft BASIC Programmer's Reference Manual (Cupertino:
Apple Computer, Inc., 1982)

3. Kamins, Scot, Apple II Reference Manual (Cupertino: Apple Computer, Inc., 1979,
1981)

Watson, Allen, Apple He Reference Manual (Cupertino: Apple Computer, Inc., 1982)

-

_

Shape Tallies ani Simple AelmatioH

Hi-res graphics are not an inherent part of the Basic language. When
the folks at Apple introduced hi-res graphics to the language, they added
new commands that deal with vector shapes. A vector shape is one
composed of lines or vectors. The vectors define the construction of the
shape. A vector shape definition is something like "plot a line up one
unit, plot a line left one unit, plot a line down one unit, plot a line right
one unit," which gives a square. In Applesoft a group of vector shapes
can be saved in something called a shape table.

Defining Shapes by Vectors

The advantage of defining shapes by vectors is the ability to scale and
rotate the shapes easily. To scale, you just have to multiply the lengths
of the lines by a number. To rotate, you change the directions by an
offset. The disadvantage of this type of shape is that it is generally too
slow for smooth, fast animation. The shapes are also more limited in
color and detail than other types of shapes that we'll discuss later. (Before
anyone jumps all over that one, yes, it's possible to create a very detailed
and multicolored vector shape, but doing so eliminates the advantages
of vector shapes: rotation and scaling. Rotating and scaling destroy any
intricacies of color and detail.)

There is one other advantage to vector shapes, though. Because there
are commands built into Applesoft for dealing with these shapes, they
make a very good learning tool for beginning animation.

15

16 [SHAPE TABLES AND SIMPLE ANIMATION

Creating a Shape

The first step in working with a shape table is to design a shape. If you
look at the section in your Apple II Applesoft BASIC Programming
Reference Manual (or the He Manual)1 about creating shapes, you might
be able to bumble through and define one. Most people, however, see
that section, find binary numbers and arrows mixed with hexadecimal
digits, and their eyes glaze over. After a few more chapters, yours may
too. But for now let's pretend we're all beginners.

The program in Listing 3.1 is a short Basic program that lets you
draw a shape and store it in a single-shape table. (Shape tables can store
multitudes of shape definitions, all accessible by number, but to keep
things simple we'll go with our table of one.) The programming details
will be left to those who like to read the incomprehensible; the program
basically accomplishes what the Applesoft manual tries to explain.

Type in the program, save it to disk (call it Shape Maker or something
like that), then run it. The hi-res screen clears, and several controls are
available to you. Your joystick or paddles control the scale and rotation
of the shape you draw. (If you don't have either paddles or joystick,
change line 30 so that S = 1 and R = 0, instead of the formulas given.)
The I, J, K, and M keys are your direction keys. I is up, M is down, J
is left, and K is right, just as positioned on the keyboard. 'fry using
them; you should see your shape being drawn. If you keep the rotation
set to zero, and the scale to one, you'll see the shape as it will be stored.
Scaling and rotations can be used again later. Other controls are the Z
and X keys, to turn the plotting on and off. Type F when you finish,
name your shape, and it will be saved to disk. It's crude but effective;
besides, it's definitely easier than hexadecimal and cheaper than buying
a package just for drawing simple shapes.

Using Your Shape In a Program

There's a group of commands designed strictly for drawing shapes from
a Basic program. The first is the command that loads the table into
memory so the program can use it:

10 	PRINT CHR$(4); "BLOAD name, A24576"

1. Apple II Applesoft BASIC Programming Reference Manual (Cupertino: Apple Com-
puter, Inc., 1979, 1981)

Kamins, Scot, Apple He Applesoft BASIC Programmer's Reference Manual (Cupertino:
Apple Computer, Inc., 1982)

Using Your Shape In a Program J 17

Listing 3.1
10 L = 24576: POKE L,1: POKE L + 1,0: POKE L +

2,4: POKE L + 3,0:L = L + 4: POKE 232,0:

POKE 233,96

20 P = 4: POKE L,O: POKE L + 1t0:SW = 1: HGR :

HOME : VTAB 21: PRINT "IJKMZXF"

30 S = INT (POL (0) / 256 * 25) + 1: SCALE=

S:R = INT (PDL (1) / 4): ROT= R: VTAB 22:

HTAB 1: PRINT "ROT:"(R;" SCALE:";S;" 	"

40 XDRAW 1 AT 140,80

50 IF PEEK (- 16384) > 127 THEN 100

60 IF R < > INT (PDL (1) / 4) THEN 90

70 IF S < > INT (PDL (0) / 256 * 25) + 1

THEN 90

80 GOTO 50

90 XDRAW 1 AT 140030: GOTO 30

100 GET A$: IF A$ = "F" THEN 300

110 XDRAW 1 AT 140,80

120 IF A$ = "2" THEN P = 4: GOTO 30

130 IF A$ = "X" THEN P = 0: GOTO 30

140 IF A$ = "I" THEN M = 0: GOTO 200

150 IF AS = "M" THEN M = 2: GOTO 200

160 IF A$ = "J" THEN M = 3: GOTO 200

170 IF A$ = "K" THEN M = 1: GOTO 200

180 GOTO 30

200 V = M + P

210 IF SW = 1 THEN SW = 2:V1 = V: POKE L,V:

POKE L + 1,0: GOTO 30

220 IF V + V1 = 0 THEN POKE Lt88:L = L + 1:

POKE L ►0:V1 = 0: GOTO 30
230 IF V = 0 THEN POKE LtV1 + 192:L = L + 1:

POKE Lt0:V1 = 1: GOTO 30

240 V = V * 8 + Vl: POKE L.V:L = L + 1

250 SW = 1: POKE L,0

260 GOTO 30

300 IF SW = 2 THEN POKE L,V1:L = L + 1

310 POKE L,0

320 HOME : VTAB 21: INPUT "SHAPE NAME:";A$:

ONERR GOTO 320

330 PRINT CHR$ (4);"BSAVE ";A$;"tA24576tL";L

- 24575

340 TEXT : PRINT "DONE"

18 [SHAPE TABLES AND SIMPLE ANIMATION

This is a binary load of your shape table, with whatever name you used,
from disk to memory (RAM), starting at RAM address 24576. After
that, you have to poke in two pointers that will tell your program at
which address you loaded the table. For location 24576, used above,
the pokes are:

20 	POKE 232,0: POKE 233,96

If you want to know where those numbers came from, read the next two
paragraphs. If you'd rather come back to it later instead of hitting con-
fusing issues now, skip ahead.

The numbers correspond to the way addresses are usually stored in
the computer. You may remember that in any single byte of memory
you can store the numbers 0 to 255. To fit a larger address, you need
two bytes. One byte holds the number of ones, the other holds the
number of 256s. A simple example would be in base 10. Imagine you've
got two slots that can only hold two digits each. The number 1587 could
be broken up as 15 and 87, with 15 being the number of hundreds and
87 being the number of ones. You get the number for the first slot by
dividing by 100 (lopping off the first two digits of a four-digit number)
and the number for the second slot by taking the remainder. As long as
you remember which is which—so you don't get the number 8715—
you're okay.

With the Apple, instead of dealing with hundreds, you divide the
number by 256s. The address we used to load our shape table at, 24576,
divided by 256 is 96, with a remainder of zero. Therefore, 96 should
be put in the high-order byte, and zero in the low-order byte. The only
other item that may be confusing is that most of the time the addresses
are stored in low/high format. Notice that with the two pokes above, we
put zero (the low byte of the address or the remainder after dividing by
256) into location 232, and 96 into location 233. The first location gets
the low byte, and the second location gets the high byte. Weird, maybe,
but it's pretty consistent.

Two Paragraphs Later

The commands that affect the plotting of shapes are HCOLOR, ROT
(rotation), SCALE, DRAW, and XDRAW. DRAW draws a shape at the
coordinates you specify. Once a shape table is loaded and the address is

Two Paragraphs Later / Simple Animation 1 19

poked into the necessary locations (232 and 233), you can use DRAW
for any shape in the table. For example:

20 DRAW 1 AT 100,150

draws shape 1 in the table at the coordinates 100, 150.
HCOLOR sets the color for all subsequent HPLOTs and DRAWs,

meaning that you can set the color for your shape to any of the six
standard hi-res colors.

ROT controls the rotation that subsequent DRAWs will use. ROT =
0 is normal, ROT = 16 is 90 degrees rotation, ROT = 32 is 180 degrees,
ROT = 48 is 270 degrees, and ROT = 64 is a full 360-degree rotation.
Intermediate values give varying angles between those listed, depending
on the scale used. The higher the scale, the more points of rotation you
have available.

SCALE sets the scale of the subsequent draw commands. SCALE =
1 is normal, SCALE = 2 is double size, SCALE = 3 is triple size, and
so on.

XDRAW looks like a DRAW command but it doesn't use a color. It
reverses everything on the screen where the object is being drawn. If
the background was white, the shape is drawn in black, and vice versa.
XDRAW is nice because a second XDRAW at the same location erases
the shape and restores the background to its original state.

Simple Animation

Moving one object at a time around the screen works all right with shape
tables. The lack of speed really starts to show when you try to move
more than one object. One, though, gives enough speed to start some
simple animation.

Create a shape with the Shape Maker program, then type in the
program in Listing 3.2. That program goes through the basics of ani-
mation. First you need to initialize all your information. From then on,
it's a simple cycle: draw the shape on the screen, update the coordinates,
erase the shape at the old coordinates, and repeat. Draw, update, erase,
draw, update, erase, and so on.

Notice that lines 10-50 initialize everything. Line 10 lets you input
your shape's name, and line 20 BLOADs it at the location you want.
Line 30 sets the hi-res graphics screen, and pokes the necessary pointer
locations with the address of the table. Line 40 sets the rotation and
scale to normal, and line 50 sets the starting X and Y coordinates for

20 [SHAPE TABLES AND SIMPLE ANIMATION

our animation, and sets XC and YC (X change and Y change) to two
each. Each time we go through the loop in this example, we'll use XC
and YC to update the coordinates.

Line 60 begins the animation cycle by DRAWing the shape at location
X,Y. Lines 70-120 save the old coordinates in XL,YL and then update
them. Line 130 erases the shape by XDRAWing again at the old coor-
dinates, XL,YL. Line 140 causes the sequence to be repeated.

Why draw-update-erase and have to save the old coordinates, instead
of draw-erase-update? Because the update part of the cycle is the one
that takes the most time, and during that time you want your shape on
the screen. By erasing before the update, you'd have more time with
your shape off the screen and a lot more flickering would be apparent.

Looking at the update cycle, notice that we use XC and YC to change
the X and Y coordinates. That's just an arbitrary formula; try playing
around with various ways of modifying X and Y. Notice, though, that
in lines 90-120 we check the range of the new X and Y coordinates. If
either is less than zero, or if X is greater than 279 or Y greater than 191,
trying any DRAW, XDRAW, or HPLOT command will result in an error.
Use lines like 90-120 whenever you're not positive that the result of a
computation will be within those bounds.

Listing 3.2

9
10
20
30

REM 	INITIALIZE
INPUT 	"SHAPE NAME 	:"111$: 	ONERR 	GOTO 	10
PRINT 	CHR$ 	(4);"6LOAD 	";A$1"tA24576"
HGR 	: 	POKE 	- 	16302,0: 	POKE 232,0: 	POKE
233,96

40 ROT= 0: 	SCALE= 	1
50 X = 	100:Y 	= 80:XC 	= 2:YC 	= 	2
59 REM 	DRAW SHAPE
60 XDRAW 1 AT X,Y
69 REM 	COMPUTE NEW COORDINATES
70 XL = X:YL = Y
80 X = X + XC:Y = Y + YC
90 IF X > 279 THEN X = 279:XC = - 2
100 IF X < 0 THEN X = 0:XC = 2
110 IF Y 	> 	191 	THEN Y = 	191:YC = - 2
120 IF Y < 	0 THEN Y = 0:YC = 2
129 REM 	ERASE SHAPE
130 XDRAW 1 AT XLtYL
139 REM 	REPEAT
140 GOTO 60

Simple Animation 1 21

The last example is a simple animation program similar to that in
Listing 3.2, spiffed up just a little. Instead of using XC and YC as the
X and Y offset, we'll use the joystick (or paddle) values to determine
which way to move. We'll also add a couple of optional lines that play
with the rotation and scale of the shape. Note that Listing 3.3 varies at
lines 50 and 80 from Listing 3.2, and that lines 90-120 are shortened.
Lines 132 and 134 are optional and can be added or deleted at any time
to demonstrate their effect.

As always, try whatever variations you want. You won't break the
computer trying.

Listing 3.3

9 REM INITIALIZE
10 TEXT : HOME : INPUT "SHAPE NAME :"IA$:

ONERR GOTO 10
20 PRINT CHR$ (4);"BLOAD ";A$;"tA24576"

30 HGR : POKE - 16302,0: POKE 232,0: POKE

233,96

40 ROT= 0: SCALE= 1
50 X = 100:Y = 80:R = 0

59 REM DRAW SHAPE
60 XDRAW 1 AT XtY

69 REM COMPUTE NEW COORDINATES
70 XL = X:YL = Y
80 X = X + INT ((PDL (0) - 128) / 26):Y = Y

+ INT ((PDL (1) - 128) / 26)

90 IF X > 279 THEN X = 279
100 IF X < 0 THEN X = 0
110 IF Y > 191 THEN Y = 191

120 IF Y < 0 THEN Y = 0

129 REM ERASE SHAPE
130 XDRAW 1 AT XLtYL

132 R = R + 8: ROT= R: IF R > 64 THEN R = 0

134 SCALE= 6 - (ABS (X - 140) + ABS (Y
96)) / 50

139 REM REPEAT

140 GOTO 60

r 	 0

Comt[olliq AHimation

Now we have a program that will create Applesoft shapes and have some
clues to how animation works. By plotting a shape, updating the coor-
dinates, erasing it, and then replotting, all in a loop, we can create the
illusion (if not the actuality) of movement. Now, can that illusion be
created using a joystick, or keyboard, or some predetermined function
or path? Probably so.

Listing 4.1 shows the beginning of a program that will load and
initialize a shape made with last chapter's Shape Maker. Alternately,
you can use Listing 4.2, which has the beginning of a program that
pokes in a shape in the form of a little tiny circle and does the same
initialization. Either one of these two listings must be used as the begin-
ning of each of the other listings in this chapter.

Controlling the Shape

Listing 4.3 shows how a shape can be controlled with a joystick. You
may notice some similarities to Listing 3.3. Notice that line 50 simply

Listing 4.1

1 REM EXHIBIT A
9 REM INITIALIZE
10 INPUT "SHAPE NAME:";A$: ONERR GOTO 10
20 PRINT CHR$ (4);"BLOAD ";AW,A24576"
30 HGR : POKE - 16302,0: POKE 232,0: POKE

233,96
40 ROT= 0: SCALE= 1

23

24 [CONTROLLING ANIMATION

sets the starting point for the animation. The animation loop runs from
lines 60 through 100. Line 60 does the draw, line 70 saves the old
coordinates, line 80 does the update, and line 90 erases. The key is line
80, where the update occurs.

The variable S in lines 55 and 80 controls the sensitivity of the
joystick, and its value can range from 1 to 127. The lower the value,
the less sensitive the joystick will be to your movements. The function
in line 80 takes the joystick values, which range from 0 to 255, and
maps them to a range of -1 to 1 (when the sensitivity is increased, the
range of values will eventually increase also). This way, based on the
setting of the joystick, X and Y will either increase or decrease by 1.

Also in line 80 is a GOSUB (go to subroutine) to line 200, which is
the beginning of a sequence of IF-THEN statements that test the values
of X and Y. If either is out of the proper range (0-279 for X; 0-191 for
Y), the subroutine assigns the value for the edge of the screen. Each of
the programs in this chapter contains a similar subroutine that prevents
an out of range error.

Can You Draw With It?

Listing 4.4 contains essentially the same program, with a few lines added
that allow your animation to leave a trail (answering the trick question,
"Can you draw with it?"). Lines 45, 85, 86, and 95 have been added
and allow you to turn HPLOT on and off with the two button inputs.
Line 95 does the HPLOT (when P =1, the routine does the plot; when

Listing 4.2

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581t83:
POKE 24582,32: POKE 24583,100: POKE
24584t45:
POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE
233,96

40 ROT= 0: SCALE= 1

Can You Draw With It? J 25

P = 0, it skips). Lines 85 and 86 read the buttons, and if either is pushed,
change the value of P accordingly. You may want to try changing the
value of S (sensitivity, remember?) in line 55 to a value of 100 or so,
just to see the difference in the handling of the joystick.

But suppose you don't have a joystick. Never fear, much the same
can be done through the keyboard! Enter Listing 4.5. The changes from
the joystick example have all been made between lines 70 and 90. Instead
of updating the position using joystick reads, line 72 checks to see if a
key has been pressed. If one hasn't, the program skips down to line 84
and uses whatever increments were in effect before (XI and YI). If a
key has been pressed, however, line 74 gets the value of the key, and a

Listing 4.3

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581 ,63:
POKE 24582,32: POKE 24583,100: POKE
24584t45:
POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE
233.96

40 ROT= 0: SCALE= 1
50 X = 140:Y = 96
55 S = 50:D = 255 - 2 * S
59 REM BEGINNING OF ANIMATION LOOP
60 XDRAW 1 AT X.Y
70 XL = X:YL = Y
BO X = X + INT ((PDL (0) - S) / D):Y = Y +

INT ((PDL (1) - S) / 0): GOSUB 200
90 XDRAW 1 AT XL.YL
100 GOTO 60
199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 0
210 IF X > 279 THEN X = 279
220 IF Y < 0 THEN Y = 0
230 IF Y > 191 THEN Y = 191
240 RETURN

26 [CONTROLLING ANIMATION

sequence of IF statements determines what is to be done based on the
key that's been pressed. If the letter I has been pressed, for example,
the X increment is set to zero and the Y increment to negative one,
causing the next movement to be upward. M causes a downward move,
and J and K move left and right respectively. A space sets both incre-
ments to zero, which stops movement, and, to keep your imagination
going, W moves several units at a time down and right. Also, the Z and

Listing 4.4

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581,63:
POKE 24582,32: POKE 24583,100: POKE
24584 ,45:
POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE
233,96

40 ROT= 0: SCALE= 1
45 HCOLOR= 7
50 X = 140:Y = 96
55 S = 50:D = 255 - 2 * S
59 REM BEGINNING OF ANIMATION LOOP
60 XDRAW 1 AT. X,Y
70 XL = X:YL = Y
80 X = X + INT ((PDL (0) - S) / D):Y = Y +

INT ((PDL (1) - S) / D): GOSUB 200
85 IF PEEK (- 16287) > 127 THEN P = 1
86 IF PEEK (- 16286) > 127 THEN P = 0
90 XDRAW 1 AT XLtYL
85 IF P THEN HPLOT XL,YL
100 GOTO 60
199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 0
210 IF X > 279 THEN X = 279
220 IF Y < 0 THEN Y = 0
230 IF Y > 191 THEN Y = 191
240 RETURN

Can You Draw With It? I More Control / Using a formula J 27

X keys are set to turn plotting on and off, using the variable P as in the
last example.

More Control

Suppose you want to get the computer to control your animated shape
in some fashion. You have several ways to do this. One is by using a
formula to determine the new coordinates. Another is by predefining a
path for the shape. A third is to let the computer generate a random
path.

Using a formula

The first method, using a formula, is probably the most difficult because
it requires some use of (ugh) mathematics. Listing 4.6 shows how it's
used, but this is not the place to get into heavy discussion of the soci-
ological values of sines, cosines, and absolute values. This particular
part will be short and sweet.

A new subroutine has been added at line 150. It evaluates a func-
tion—being very creative, we tried using SIN (X)—and returns an X,Y
coordinate scaled to fit the screen. How? Okay, first, the initial values

Example 4.4 Joystick Draw

28 [CONTROLLING ANIMATION

Listing 4.5

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581,63:

POKE 24582,32: POKE 24583,100: POKE
24584t45:

POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE
233t96

40 ROT= 0: SCALE= 1
45 HCOLOR= 7
50 X = 140:Y = 96

59 REM BEGINNING OF ANIMATION LOOP
60 XDRAW 1 AT X,Y
70 XL = X:YL = Y
72 IF PEEK (- 16384) < 128 THEN 84
74 GET A$: IF A$ = "I" THEN XI = 0:YI = - 1
75 IF A$ = "M" THEN XI = 0:YI = 1
76 IF A$ = "J" THEN XI = - 1:YI = 0
77 IF A$ = "K" THEN XI = 1:YI = 0
78 IF A$ = " " THEN XI = 0:YI = 0
79 IF A$ = "W" THEN XI = 5:YI = 3
80 IF A$ = "Z" THEN P = 1
81 IF A$ = "X" THEN P = 0
84 X = X + XI:Y = Y + YI: GOSUB 200
90 XDRAW 1 AT XLtYL
95 IF P THEN HPLOT XLtYL
100 GOTO 60

199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 0
210 IF X > 279 THEN X = 279
220 IF Y < 0 THEN Y = 0
230 IF Y > 191 THEN Y = 191
240 RETURN

Using a formula 	29

Listing 4.6

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581,63:
POKE 24582,32: POKE 24583,100: POKE
24584,45:
POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE
233,86

40 ROT= 0: SCALE= 1
45 HCOLOR= 7
50 XC = 0: GOSUB 150
55 P = 1
59 REM BEGINNING OF ANIMATION LOOP
60 FOR XC = .1 TO 28 STEP .1
65 XDRAW 1 AT X,Y
70 XL = X:YL = Y
80 GOSUB 150
90 XDRAW 1 AT XL,YL
95 IF P THEN HPLOT XL,YL
100 NEXT XC
110 END
150 YC = SIN (XC)
160 X = 10 * XC
170 Y = 191 - (YC * 20 + 95)
180 GOSUB 200: RETURN
199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 0
210 IF X > 279 THEN X = X - INT (X / 279) *

279
220 IF Y < 0 THEN Y = 0
230 IF Y > 191 THEN Y = 191
240 RETURN

30 f CONTROLLING ANIMATION

of X and Y are computed and plotted at line 50, using the subroutine,
of course. XC and YC will be the actual coordinates used in the func-
tions. X and Y will be the values that are fitted to the screen. The
animation loop has a FOR-NEXT counter that changes XC from .1 to
28 in increments of .1. Those were chosen because SIN was used for a
function (it cycles through four circles, using radian measure), and it
was easy to adjust to the screen (280 dots—the exact screen width). You
can actually use whatever values you want. Within the loop, the updating
is done by calling the subroutine at line 150.

In the subroutine, YC is first calculated as a function of XC (YC =
SIN XC). The next two lines scale X and Y appropriately. Since XC
goes from 0 to 28 and we want X to go from 0 to 279 (the screen
coordinates), we can multiply whatever XC is by 10 so it fits the screen
exactly. Y is a little more tricky; see line 170. Since SIN gives results
from -1 to 1, we can multiply that by something to get more than a two
dot vertical movement. If we were graphing the exact function, 10 would
be appropriate, since that's what we multiplied X by. To make it a little
more dramatic, though, we used 20. That makes the low end -1*20 or
-20, and the high end 1*20 or 20.

Since the actual screen values for Y are all positive (from 0 to 191),
we then added 95 to center the results vertically on the screen (-
20 + 95 = 75, 20 + 95 =115). The last step, if we are worrying about an

Example 4.5 Plotting a Formula

Using a formula / Enough Math! 	31

accurate result, is to subtract all of the above from 191. That's because
on the hi-res screen the Y values all appear reversed from the way your
experience with normal graphing would lead you to expect. Of course,
if we are just using a function for effect and not for accurate plotting,
this last step can be left out. Note in the program that line 55 sets P so
that the trail will be plotted.

Enough Math!

If none of that made sense, or if it wasn't very interesting, here's another
approach that has some more immediate results. See Listing 4.7.

Similar in a way to what we did with keystrokes, this program sets a
path in advance that determines how the shape will move. First line 55
optionally sets P so that the trail will be plotted. It then sets N, the
number of moves in the path, to 20; but you can choose whatever you
want. Lines 60-100 compose the animation loop again. This time a FOR-
NEXT loop counts from 1 to N, and each time through the loop the next
move, M, is read from a DATA statement (line 150). Line 74 is called
a computed GOTO statement. Program control goes to the line number
in the list that corresponds to the value of M. If M = 3, for example, it
will use the third line number, 77. Each of the eight lines sets the X and

0 4

• • a ! •

•• 	 0:
••• 	• • • • • • 	 .

604.. • •..

• • • •
• • es

I. 11114 • *
• ;

• • • a • • •
Ilt• SS"' ;

• • ••
• • • 	6.!

• ;

• • •• •
0 f 	 • •

••• 	.• •
• •

• • 	 •
• • 	 •
••• .•

.• •
• • 	.••

	

1110 	5". ;

• .
6

•
• IC' • 041
*Of • _

• . • •;

O.
S.
•

Example 4.7 Plotting a Predetermined Path

32 1 CONTROLLING ANIMATION

Y increments so that moves corresponding to 1 through 8 give the direc-
tions shown in Figure 4.1.

Note that the DATA statement in line 150 contains numbers that,
when read by the program, will correspond to these directions. After
the animation loop completes N moves (finishing the list of numbers in
the DATA statement), the RESTORE in line 110 starts the data at the
beginning of the list again and causes the path to be repeated.

Note also that in the subroutine that begins at line 200, the values
have been changed slightly. Now if a shape gets to the edge of the screen,
instead of stopping it there, the program puts it at the opposite edge so
it can continue. Something similar was done in line 210 of Listing 4.6,
where we put a formula that, instead of using X, uses the remainder
after dividing by 279. In Listing 4.6 try changing the number 28 in line
60 to something like 56.

Listing 4.7

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581.63:
POKE 24582,32: POKE 24583,100: POKE
24584.45:
POKE 24585.21

20 POKE 24586.54: POKE 24587.30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232.0: POKE
233.96

40 ROT= 0: SCALE= 1
45 HCOLOR= 7
50 X = 140:Y = 96
55 P = 1:N = 20
59 REM BEGINNING OF ANIMATION LOOP
60 FOR I = 1 TO N
65 XDRAW 1 AT X,Y
70 XL = X:YL = Y
72 READ M
74 ON M GOTO 75.76.77.78.79.80.81,82
75 XI = - 2:YI = - 2: GOT0'84
76 XI = 0:YI = - 2: GOTO 84
77 XI = 2:YI = - 2: GOTO 84

Enough Math! 	33

Listing 4.7 (continued)

78 XI = 2:YI = 0: GOTO 84
79 XI = 2:YI = 2: GOTO 84
80 XI = 0:YI = 2: GOTO 84
81 XI = - 2:YI = 2: GOTO 84
82 XI = - 2:YI = 0
84 X = X + XI:Y = Y + YI: GOSUB 200
90 XDRAW 1 AT XL,YL
95 IF P THEN HPLOT XL,YL
100 NEXT I
110 RESTORE : GOTO 60
150 DATA 3,3,3,3,6,6,6,6,7,7,7,7t

1,1.1,1,2,2t2,2
199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 279
210 IF X > 279 THEN X = 0
220 IF Y < 0 THEN Y = 191
230 IF Y > 191 THEN Y = 0
240 RETURN

8 4

Figure 4.1 Directions of the Shape Paths

34 (CONTROLLING ANIMATION

Listing 4.8

1 REM EXHIBIT A
9 REM INITIALIZE
10 POKE 24576,1: POKE 24577,0: POKE 24578,4:

POKE 24579,0: POKE 24580,18: POKE
24581,63:
POKE 24582,32: POKE 24583,100: POKE
24584,45:
POKE 24585,21

20 POKE 24586,54: POKE 24587,30: POKE
24588,7: POKE 24589,0

30 HGR : POKE - 16302,0: POKE 232,0: POKE 23
POKE 232,0: POKE 233,96

40 ROT = 0: SCALE = 1
45 HCOLOR = 7
50 X = 140:Y = 96
55 P .1
60 XDRAW 1 AT X,Y

70 XL .X:YL .Y72 M = X:YL = Y
72 M = INT (RND (1) * 8) + 1
74 ON M GOTO 7506,77,78,79,80.81,62
75 XI = - 2:YI = - 2: GOTO B4
76 XI = 0:YI = - 2: GOTO 84
77 XI = 2:YI = - 2: GOTO 84
7B XI = 2:YI = 0: GOTO 84
79 XI = 2:YI = 2: GOTO 84
80 XI = 0:YI = 2: GOTO 84
81 XI = - 2:YI = 2: GOTO 84
82 XI = - 2:YI = 0
B4 X = X + XI:Y = Y + YI: GOSUB 200
90 XDRAW 1 AT XL,YL
95 IF P THEN HPLOT XL,YL
100 GOTO 60
199 REM SUBROUTINE TO CHECK RANGE OF X AND Y
200 IF X < 0 THEN X = 279
210 IF X > 279 THEN X = 0
220 IF Y < 0 THEN Y = 191
230 IF Y > 191 THEN Y = 0
240 RETURN

Draw at random J 35

Draw at random
In Listing 4.8 we let the computer do whatever it wants. It's very similar
to Listing 4.7, except instead of putting the moves in DATA statements,
we use the computer's random number generator to pick random moves.
For that we don't need N, the FOR-NEXT loop, or the READ, DATA,
and RESTORE statements. Just replace the READ with an instruction
that chooses a random number from 1 to 8. Call it random computer
scribbling, if you wish.

El I

Interesting 	to CIO With

Shape fables and Simple Animation

Although most graphics are done in machine language for speed, there
are some interesting, off-the-wall effects that can be created easily and
quickly using shape tables and Applesoft graphics commands.

Explosions

Using Applesoft shape tables, you can do fast, decent-looking explo-
sions. First, use the Shape Maker from Chapter 3 to create a somewhat
random shape like Figure 5.1. Make it small, as we will be scaling it
larger. Also, be sure that your starting point is somewhere in the middle
of the shape so that it stays centered when we increase the scale. Name
this file SHAPE (original, huh?).

Now use the routine in Listing 5.1 to create an explosion at location
X,Y. The routine first draws the shape you created in scale 1, erases it,

• • •
•

• • •
• • •

• X
•

• •
• •

x is starting location
	

Ois a plotted point

Figire 5.1 Random Explosion Shape
37

38 [INTERESTING THINGS TO DO

draws it in scale 2, erases it, and so on until it reaches scale 7. Along
the way, it varies the HCOLOR from one to seven, adding color to the
effect. If you use this routine on a background you want to keep, use
XDRAWs instead of DRAWs, and skip the HCOLOR commands—
DRAW will clobber whatever was there. Variations of this can be done
by waiting until all seven scales are drawn, then erasing, or by erasing
in reverse order.

Lasers

The HPLOT command can be used to create a quick laser effect between
any two points. Usually you have a set source for the beam. The two
bottom corners are favorites in several games because they give the
impression that the user is in a spaceship (or something like that). That
is what we use in Listing 5.2. Unfortunately, there is no HPLOT com-
mand in lines with the features of)(DRAW for shapes, so any fancy
background will be hurt by this effect.

Listing 5.1

10 PRINT CHR$ (4);"BLOAD SHAPE,A16384"
20 POKE 232,0: POKE 233,64
30 HGR : POKE - 16302,0
40 REM X,Y IS THE LOCATION OF THE EXPLOSION
50 X = 140:Y = 96
320 FOR I = 1 TO 7
330 SCALE= I: HCOLOR= I
340 DRAW 1 AT XtY
350 HCOLOR= 0
360 DRAW 1 AT XtY
370 NEXT I

Listing 5.2

10 HGR : POKE - 16302,0
20 X = 140:Y = 96: REM TARGET LOCATION
300 HCOLOR= 5: HPLOT 278,190 TO X,Y: HPLOT

1,190 TO X,Y: REM DRAW
310 HCOLOR= 0: HPLOT 278,190 TO X,Y: HPLOT

1,190 TO X,Y: REM ERASE

Lasers / Bouncing Ball J 39

Now, of course, these two effects are just dying to be used together,
which is why we used the odd line numbers. Listing 5.3 is a routine that
incorporates both into a laser blast followed by an explosion sequence.

Bouncing Ball

Last chapter we provided some samples of animation using random
paths, present paths, and joystick paddles and keyboard control. As an
extension of those, Listing 5.4 is a program by friendly Softalk editor,
David Durkee, that simulates the natural movement of a common object:
a bouncing ball. You'll need a new shape for this program, as illustrated
in Figure 5.2. Name your new shape file BALL.

Listing 5.3

10 PRINT CHR$ (4);"BLOAD SHAPEtA16384"
20 POKE 232,0: POKE 233,64
30 HGR : POKE - 16302,0
40 X = 140:Y = 96: REM WHERE IT ALL HAPPENS
300 HCOLOR= 5: HPLOT 278,190 TO X,Y: HPLOT

1,190 TO X,Y
310 HCOLOR= 0: HPLOT 278.190 TO X ► Y: HPLOT

1.190 TO X,Y
320 FOR I = 1 TO 7
330 SCALE= I: HCOLOR= I
340 DRAW 1 AT XtY
350 HCOLOR= 0
360 DRAW 1 AT X,Y
370 NEXT I

• • •

• •

• •
• X •
• •

• •

• • •
xis starting location •is a p otted point

Figure 5.2 Bouncing Ball Shape

40 [INTERESTING THINGS TO DO

Listing 5.4

10
20
30

PRINT 	CHR$ 	(4)1"BLOAD BALLtA16384"
POKE 232,0: 	POKE 233,64
HGR 	: 	POKE 	- 	16302,0

40 SCALE= 	1: 	ROT= 0: 	HCOLOR= 3
50 HPLOT 0,0 TO 279,0 TO 279,191 	TO 0,191 TO

OtO
60 X = 	30:Y 	= 	30:XM = 5:YM 	= 	- 	1
70 XF = 	12:YF = 20:GF = 	.4
100 REM 	MAIN LOOP
110 XDRAW 	1 	AT X,Y:XO 	= X:YO = Y
120 X 	= X + XM:Y 	= Y + YM
130 IF X < 3 THEN X = 3: 	GOTO 200
140 IF X > 276 THEN X = 276: GOTO 200
150 IF Y < 3 THEN Y = 3: 	GOTO 250
160 IF Y 	> 	188 THEN Y = 	188: 	GOTO 250
170 YM = YM + GF
180 XDRAW 1 AT XO,YO
190 GOTO 	110
200 REM 	LEFT OR RIGHT
210 XM = 	- XM
220 XM 	= 	SGN 	(XM) 	* 	(ABS 	(XM) 	- 	ABS (XM) /

XF)
230 GOTO 150
250 REM 	TOP OR BOTTOM
260 YM = 	- YM
270 YM 	= 	SGN 	(YM) 	* 	(ABS 	(YM) 	- 	ABS (YM) /

YF)
280 GOTO 170
300 HCOLOR= 5: 	HPLOT 278,190 TO X,Y: HPLOT

1,190 	TO X,Y
310 HCOLOR= 	0: 	HPLOT 278,190 TO X,Y: HPLOT

1,190 	TO 	X,Y
320 FOR 	I 	= 	1 TO 7
330 SCALE= 	I: 	HCOLOR= 	I
340 DRAW 1 AT XtY
350 HCOLOR= 0
360 DRAW 	1 	AT XtY
370 NEXT I
380 GOTO 300

Bouncing ball / The effects of entropy 1 41

Lines 10 through 70 set things up. The main loop, lines 100 through
190, follows this sequence:

Line 110 draws the shape at X,Y.
Line 120 updates the shape's location by adding the momentum fac-

tors, XM and YM. These are preset in line 60 and updated in various
places throughout to account for gravity and bouncing.

Lines 130 through 160 check to see if the ball has hit a wall. If it
has, the routines from lines 200 through 280 reverse the direction of
movement and simulate the loss of energy that occurs when a ball bounces.

Line 170 is the gravity factor.
Line 180 erases the shape.
Line 190 goes to the beginning of the loop.

The effects of entropy

Take a look at line 220. This is where the object loses some of its
momentum in bouncing. ABS (XM) / XF is the fraction of the energy
that is lost. If you make XF smaller, the object will lose more energy
with each collison. However, if you make it a negative number, it will
gain energy!

The preset values for this variable and others are located in lines 60
and 70. Try changing them and seeing how each affects the physical
laws in the little world on the hi-res screen. The remarks in line 1 through
4 explain what each controls.

Now, the only trouble with this is that it goes on forever unless you
use Control-C to get out of it. This is the reason that we numbered the
important parts of the laser and explosion routine starting at 300. If you
just add those lines 300 through 370 into the Listing 5.4 program, and
then add the following two lines, you get a neat way out by stopping
the program when you press any key. It demonstrates aptly how to use
such a subroutine in a larger program.

185 	IF = PEEK(- 16384) < 127 THEN POKE -
16368,0 : GO TO 300
380 	FOR DL = 1 TO 500: NEXT DL: HOME : TEXT
: END

Lookup Tables and Bit-Mapped Gropl -

To create really fancy graphics as a programmer you have to acquaint
yourself with the actual mapping of the Apple hi-res screen and with
handling graphics on a byte and bit level. It's not very difficult once you
learn a few tricks of the trade. The first is coping with the strange
memory map of the screen.

Figure 6.1 shows a small part of the upper left corner of hi-res page
1. The actual screen is 192 bytes tall and 40 bytes wide. The bytes are
displayed horizontally, with 7 bits (on/offs) in each displayed, so the 40
bytes width gives 280 dots. The actual address (location in memory) of
any byte on the screen can be computed by taking the Y address down
the left side of Figure 6.1 and adding the X value, from 0 to 39. The X
offset is nice and simple, with 0 on the left, 39 on the right, and all the
numbers running normally in between. The locations of the start of each
line, given by the Y value, are quite a different story. At one point there
must have been a good reason for the strange sequencing of addresses,
but it remains an unusual puzzle for most beginning graphics program-
mers. There is a formula for computing the starting address of each line,

Listing 6.1A

5 HOME

10 INPUT "Y VALUE : "Pf

20 Y1 = INT (V / 8):YR = Y - Y1 * B
30 Y2 = INT (Y1 / 8):YS = Y1 - Y2 * 8

40 L = 8192 + Y2 * 40 + YS * 128 + YR * 1024
50 PRINT "STARTING ADDRESS IS ";L

60 GOTO 10

43

44 [LOOKUP TABLES AND BIT-MAPPED GRAPHICS

given the Y value of that line. Listing 6.1 is a short program that contains
that computation. It allows you to input a number for Y (0-191), and
prints the address of the start of that line. There's no need to go into the
actual formula in this context; we'll just say it's there. (Note: to use hi-
res page 2, instead of page 1, change the 8192 in line 40 to 16384.)

Listing 6.2 contains a little more excitement. Using the same com-
putation for the Y location, it allows you to enter values for X and Y.

0
	

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

8192 0

9216 1
10240 2
11264 3
12288 4
13312 5
14336 6
15360 7
8320 8
9344 9
10368 10
11392 11
12416 12

13440 13
14464 14
15488 15
8448 16
9472 17

■■■■■■■ ■■■■■■■ ■■■■■■■ It
■■E■ME■ IIMIIIIM11111MIMMIIIM
■■■■■■■ ■■■■■■■ ■■■■■■■
■■■■■■■ ■■■■■■■ MM.. MI
MENNE= MENEM 111111111111111.11111111
■■■■■■■ ■■■■■■■

M1111111111111111M
=MEM= ■■■■■■■ ■■■■■■E ■
IMMIIIMMEM =EINEM M■■■■■■ ■1
EMMEN 	MEM11111111111
■■■■■■■ ■■■■■■■ MIIMMEMIll

■■■■■■■ ■■■■■■■
■■■■■E■ MIME= M■■■■■■ ■1
EMMEN=
■N■■M■■ =MEM= M111111111111111111111011
■■■■■■M MM.... ■■■M■■■ MI

MEM =EMI
1‘11M M111111111111111111= MINIM -‘ '41410.-

Figure 6.1 Cutaway of Upper Left Corner of Hi-Res Screen

Listing 6.2

10 HGR 	: 	VTAB 23
15 INPUT 	"X 	: 	"iX: 	IF 	X < 	0 OR X >
16 INPUT 	"Y 	: 	";Y: 	IF 	Y < 	0 OR Y >

16
20 Y1 	= 	INT 	(Y 	/ 	8):YR 	= Y 	- Y1 	*
30 Y2 	= 	INT 	(Y1 	/ 	8):YS = 	Y1 - Y2
40 YL = 8192 + Y2 * 40 + YS,* 128 +
50 L = YL + X
60 POKE Lf255
70 GOTO 15

39 THEN 15
191 THEN

8
* 8
YR * 1024

Tricks of the Trade #1 1 45

It computes the Y location (lines 20-40) then adds the X value (line 50)
to give a specific screen address. Then it pokes into that address the
number 255, which sets all seven points in that byte (the number 127
would have the same result).

Tricks of the Trade #1

Doing a three line computation each time you want to find a screen
location takes a lot of time. Even in machine language, the time used
to compute a Y address can make a difference when speed is an important
factor (it usually is). To avoid using computations all the time, a trick
that is often used is pre-computing all the Y locations and storing them
in a table. Then, when an address is needed, instead of computing, you
just look for it in the table. This is usually done in machine language
programs, but for explanation we'll do it in Basic. Next chapter, we'll
convert.

Listing 6.3 has a program similar to that in Listing 6.2, except it
repeats in a pattern around the screen. It uses a trick we've used before,
with initial values of X and Y set in line 15, along with increment values.
In lines 70 and 80, X and Y are updated, and if they reach the edge of
the screen the increments are reversed, giving the illusion of bouncing.
'fry it, and take notice of the speed. The Y value in this example is
computed before each plot.

Listing 6.4 has the same program with a Y-lookup table for the
addresses. The subroutine starting at line 150 creates the table, com-
puting each location for Y, from 0 to 191, and storing them in an array,

Listing 6.3

10 HGR
15 X 	= 0:Y 	= O:XC = 	1:YC 	= 	1
20 Y1 	= 	INT 	(V 	/ 8):YR 	= 	Y 	- Y1 * 8
30 Y2 	= 	INT 	(Y1 / 	8):YS 	= 	Y1 - Y2 * 8
40 YL = 8192 + Y2 * 40 + YS * 128 + YR * 1024
50 L = YL + X
60 POKE L,255
70 X = X + XC: 	IF X < 	1 	OR X 	> 38 THEN XC =

- XC
80 Y 	= 	Y + YC: 	IF Y < 	1 	OR Y 	> 190 THEN YC =

- YC
90 GOTO 20

46 	LOOKUP TABLES AND BIT-MAPPED GRAPHICS

Example 6.3 Plotting Using a Y-Lookup Table

Listing 6.4
10 HGR
12 GOSUB 150
15 X = 0:Y = 0:XC = 1:YC = 1
20 L = YT(Y) + X
60 POKE L,255
70 X = X + XC: IF X < 1 OR X > 38 THEN XC =
- XC

80 Y = Y + YC: IF Y < 1 OR Y > 190 THEN YC =
- YC

90 GOTO 20
140 REM THIS SUBROUTINE CREATES A Y-LOOKUP

TABLE, YT.
150 DIM YT(191)
160 FOR Y = 0 TO 191
200 Y1 = INT (Y / 8):YR = Y - Y1 * 8
210 Y2 = INT (Y1 / 8):YS = Y1 - Y2 * 8
220 YL = 8192 + Y2 * 40 + YS * 128 + YR * 1024
230 YT(Y) = YL
240 NEXT Y
250 RETURN

Tricks of the Trade #1 I A Basic Character Generator J 47

YT. The first thing that is done in the program is the subroutine call
(line 12), which means that for the rest of the program we'll have these
pre-computed addresses sitting in the array YT. The rest of the program
is exactly as before, except the computation from lines 20 to 50 has been
reduced to one short line 20, which takes the computed Y address in
the array YT for whichever Y value you need, then adds the X offset.
Note that it takes several seconds in Basic to create the lookup table
when you run the program, but after the table is computed the graphics
move much faster.

A Basic Character Generator

Once you have an idea of what bit/byte graphics are (poking values into
screen memory), you are ready to start using them to put things on the
hi-res page. What we've used before, shape tables, are known as vector
graphics. Objects are defined by taking a starting point and moving in
lines and plotting from point to point. The move commands can be
translated anywhere on the screen, so your shape can be plotted any-
where. The other type of graphics is called bit-mapped graphics, where
you define a set of dots that are to be on or off, store them as a sequence
of bytes, then put those bytes wherever you want them in the screen
memory area. That's what the programs in Listings 6.2-6.4 do, with the
bit map being the number 255 that we were poking into screen memory.

Listing 6.5 is similar again. It uses the lookup table to find the Y
addresses. But instead of a single POKE command, we've put in lines
20 to 70. Lines 20 to 60 form a loop that repeats eight times, incre-
menting the Y value and poking a number into the screen area each time.
The result is that instead of one byte, it puts eight bytes of information
on the screen or a block of dots seven wide and eight tall. It reads the
values for the eight bytes from the DATA statement in line 70. As it
turns out, those numbers result in the letter H being put on the screen.

To see how those numbers were discovered, see Figure 6.2. Each
row of that grid represents one byte: eight rows, eight bytes. Each
column represents bits within the bytes. Bits 0-6 are used as dots on the
screen. Remember that bit 7 is used as a color flag. The base 10 numbers
associated with each bit are listed above each column. Note that bit 0
is on the left; those of you who've worked with binary or machine
language would expect the opposite. (Many of us have, and kept getting
mirror images of everything on the screen until the solution was dis-
covered.)

To compute a number for each of the eight bytes, after marking each
dot that you want set, go across each row and add the values in each
column marked. In Figure 6.2 those numbers are at the right of each

• •
• •

• •
• • • • •

• •
• •
• •

48 [LOOKUP TABLES AND BIT-MAPPED GRAPHICS

row. Notice that they match the numbers used in the DATA statement
in Listing 6.5. You've now got a hi-res character generator for one
character. In other words, a bit-mapped graphics generator that will put
text and any other graphic designs on the hi-res screen. Ity using dif-
ferent values in the DATA statement; you can create all kinds of inter-
esting little graphics characters.

Listing 6.5

10 HGR
12 GOSUB 150
15 INPUT "X : ";X: IF X < 0 OR X > 39 THEN 15
16 INPUT "Y : ";Y: IF Y < 0 OR Y > 184 THEN

16
20 FOR I = Y TO Y + 7
30 READ El
40 POKE YT(I) + XtB
50 NEXT I
60 RESTORE : GOTO 15
70 DATA 34,34t34t62t34t34,34t0
140 REM THIS SUBROUTINE CREATES A Y-LOOKUP

TABLE* YT.
150 DIM YT(191)
160 FOR Y = 0 TO 191
200 Y1 = INT (Y / 8):YR = Y - Y1 * 8
210 Y2 = INT (Y1 / 8):YS = Y1 - Y2 * 8
220 YL = 8192 + Y2 * 40 + YS * 128 + YR * 1024
230 YT(Y) = YL
240 NEXT Y
250 RETURN

1 2 4 8 16 32 64

Figure 6.2 Hi-Res Character Grid

34

34

34

62

34

34

34

0

A Longer Basic Character Generator 1 49

A Longer Basic Character Generator

Listing 6.6 has a more complete character generator, capable of more
than one character. It doesn't have a complete alphabet defined, but it's
got enough of a start where you can put in the data to do it.

Listing 6.6

10 HGR
12 GOSUB 150: GOSUB 300
15 INPUT "X : "IX: IF X < 0 OR X > 39 THEN 15
16 INPUT "Y : ";Y: IF Y (0 OR Y > 184 THEN

16
18 GET AS:A = ASC (AS) 	65: IF A < 0 OR A >

2 THEN 18
20 FOR I = 0 TO 7
40 POKE YT(Y + I) + X,CT(A.I)
50 NEXT I
60 X = X + 1: IF X > 39 THEN X = 0:Y = Y + 8:

IF Y> 184 THEN Y= 0
70 GOTO 18
140 REM THIS SUBROUTINE CREATES A Y-LOOKUP

TABLE, YT.
150 DIM YT(191)
160 FOR Y = 0 TO 191
200 Y1 = INT (V / 8):YR = Y - Y1 * 8
210 Y2 = INT (Y1 / 8):YS = Y1 - Y2 * 8
220 YL = 8192 + Y2 * 40 + YS * 128 + YR * 1024
230 YT(Y) = YL
240 NEXT Y
250 RETURN
290 REM THIS SUBROUTINE CREATES A CHARACTER

DEFINITION TABLE, CT
300 DIM CT(2t7)
310 FOR I = 0 TO 2
320 FOR J = 0 TO 7
330 READ CT(ItJ)
340 NEXT J: NEXT I: RETURN
350 DATA 8,20t34t34t62t34#34t0
360 DATA 30t34t34t30t34t34t30t0
370 DATA 28t34t2t2t2t34t28t0

50 [LOOKUP TABLES AND BIT-MAPPED GRAPHICS

Another subroutine has been added at line 300, which defines a char-
acter table. Another array is used, CT, and is dimensioned 2,7 for three
characters (0-2) of eight bytes each (0-7). The nested FOR-NEXT loops
read the table from DATA statements, with I counting through the char-
acters, and J counting through eight bytes for each character. The char-
acters used in the DATA statements are A, B, and C from Figure 6.3.

Lines 18 and 60 are the only others of significant change. Line 18
gets a character from the keyboard. As soon as you press a key, that
key's value is put in A$. The ASC function is then used to find the ASCII
value of that character (there is an ASCII table in your Apple II Applesoft
BASIC Programming Reference Manual, and in the He Manual, as well)'.
This particular program will only recognize the keys A, B, and C, which
have ASCII codes 65, 66, and 67, so after subtracting 65 we have a
number that corresponds to our character table. You can do a lot of
fiddling with that and the length of the table. Line 60 increments X after
each character (so the next one is printed one space over to the right),
and if the right edge of the screen is reached, Y is incremented and X
set back to zero. When Y reaches the bottom of the screen, it is set back
to the top.

1. Apple 11 Applesoft BASIC Programming Reference Manual (Cupertino: Apple Com-
puter, Inc., 1979, 1981)

Kamins, Scot, Apple lk Appksoft BASIC Programmer's Reference Manual (Cupertino:
Apple Computer, Inc., 1982)

1 2 4 816 3264

8
20

34
34

62

34

34
0

1 2 4 8 16 32 64
30
34
34

30

34

34

30
0

1 2 4 8 16 32 64
26

34
2
2

2

34

28

0

• • • • • • • •
• • • • • •

• • • • •
• • • • • • •
• • • • • • • •
• • • • • •

• • • • • • • • •

Figure 6.3 Hi-Res Character Grids

Machine language Graphics Routines

The most difficult part about machine language is learning to think in
hexadecimal, or base 16. Base 16 is shorthand for binary, the number
system that your computer actually "understands." The best way to han-
dle it is to not try converting to base 10 and back unless it is really
necessary. Most of the time it isn't. The only time you'll have to convert
is when you are trying to reference your machine language routines or
addresses from Basic.

In base 10 (decimal), you count 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11,....
In base 16 (hexadecimal), you count 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F, 10, 11,.... A is really what we call ten, B is 11, C is 12, and
so on. F is 15, after which comes 10, or 16 (it's base 16, remember?).

To keep things straight, when referencing hexadecimal numbers, we'll
precede the number with a dollar sign (why? because everyone else
does!). So 2000 is the good old number two thousand you all know,
while $2000 does not mean two thousand dollars (drat); it means hex-
adecimal two thousand, which is really 8192. "Slow down!", you say.
Okay. Look at Figure 7.1. It shows numbers in binary, hexadecimal,
and decimal. Notice how conveniently the numbers $0-$F correspond
to all combinations of binary numbers that can fit in four bits. Remember
also how conveniently a byte, the basic storage unit, has eight bits. That
means that two hexadecimal digits can give you all the possible values
for one byte ($00-$FF). That's why base 16 is such a convenient shorthand.

The largest hexadecimal number you'll be dealing with is four digits
long, or $FFFF. That's because the Apple and other similar computers
use two bytes to store addresses ($FF $FF, in this case). The number
$F1414r in decimal is 65535, which gives the 64K that you hear about as
the Apple's maximum memory size. One K is approximately 1000; it's

51

52 [MACHINE LANGUAGE GRAPHICS ROUTINES

actually 1024, or two to the tenth power. To convert hexadecimal num-
bers to decimal, use Figure 7.2 as an example. The rightmost of the
four places is the one's column, the next is the 16's column, the next is
for 16 to the second power, or 256, and the leftmost of the four places
is for 16 to the third, or 4096.

Machine Language Coding

The first thing we'll do with machine language is to take Listing 6.4
from the last chapter and convert the graphics part. Remember that the
program first creates a Y-lookup table (lines 150-250), then cycles through
a loop, putting bytes with all the dots set onto the screen.

Binary 	 Hexadecimal 	Decimal
0000 $0 0
0001 $1 1
0010 $2 2
0011 $3 3
0100 $4 4
0101 $5 5
0110 $6 6
0111 $7 7
1000 $8 8
1001 $9 9
1010 $A 10
1011 $B 11
1100 $C 12
1101 $D 13
1110 $E 14
1111 $F 15
10000 $10 16

Figure 7.1 Binary Hexadecimal Decimal Equivalents

$25C7= $2*16 + $5*16 + $C*16 + $7*16
= $2*4096+ $5*256+ $C*16 + $7*1
= 2*4096 + 5*256 + 12*16 + 7*1
= 8192 + 1280 + 192 + 7
= 9671

• Figure 7.2 Converting Hexadecimal to Decimal

Machine Language Coding 1 53

Our first task will be to create a permanent Y-lookup table for our
machine language routines. There's no need to recompute it all the time;
once we have it we can BLOAD it into any program that needs it. To
make it easy, we'll use a Basic program to do the computations and poke
the values we want into memory. Then we'll save that portion of memory
to disk, and we've got it whenever it's needed.

We'll put the lookup table just above the hi-res page 1 screen memory.
Page 1 is located from addresses 8192 ($2000) to 16383 ($3141414). That
means our table should start at 16384, or $4000. For reasons that will
become apparent later, we'll store the table in two sections: first the high
bytes of all the addresses, then the low bytes. By high and low bytes,
we mean that for an address such as $4F8A, the high byte is the left
half, or $4F, and the low byte is $8A, the right half. Since there are 192
Y-values on the screen, the first part of the table, the high bytes, will
take 192 bytes, from 16384 to 16575 ($4000-$40BF). The second half,
the low bytes of the addresses, will be put in 16576 to 16767 ($4000-
$417F).

The high byte of a value is computed from decimal by dividing by
256 and chopping off the remainder. The low byte is the remainder of
that same division. Listing 7.1 does all the same computations for the
lookup table that we did last chapter, but then splits the address into
high and low bytes and pokes them into memory. Type it in, then run
it.

After you run the program, your lookup table is in memory. Now
you want to save it to disk. Type:

BSAVE LOOKUPtA16384,L384

or, alternately,

BSAVE LOOKUP,A$4000,L$180

Listing 7.1

160 FOR Y = 0 TO 191

200 Y1 	= 	INT 	(Y 	/ 	8):YR = Y - Y1 	* 8
210 Y2 	= 	INT 	(Y1 	/ 	B):YS = Y1 	- Y2 * 8
220 YL = 8192 + Y2 * 40 + YS * 128 + YR * 	1024
230 POKE 16384 + Yt 	INT (YL 	/ 	256)

235 POKE 16576 + YtYL - INT 	(YL / 256) * 256
236 REM 	THE RIGHT HALF OF LINE 235 HAS THE

FORMULA FOR FINDING THE REMAINDER OF THE
DIVISION YL/256

240 NEXT Y

54 [MACHINE LANGUAGE GRAPHICS ROUTINES

The A means starting at which address, and the L means length. BSAVE
means Binary SAVE.

You may want to BSAVE the file the same way on a few disks. We'll
be using this lookup table a lot, and if you wind up doing much pro-
gramming in machine language, you will find it frequently invaluable.

Assembly Language

Now for a short introduction to assembly language. Did I say machine
language before? Well, assembly language is almost the same as machine
language, except machine language is just numbers (hexadecimal, at
that). Assembly language corresponds one-to-one with those machine
language numbers, but its commands are mnemonics instead. In other
words, you use letters that mean something to you instead of the numbers
that the machine understands. To convert your assembly language mne-
monics to machine language numbers, you need an assembler. An
assembler is a program that interprets the assembly language instructions
you write and pokes in the corresponding numbers for the machine. A
couple of assemblers on the market that come recommended are those
included with the Applesoft/DOS Toolkit and with Merlin. Of course you
could just enter the finished numbers in the examples in these articles,
but that's dull and boring and you really wouldn't learn much about
writing in assembly/machine language.

This first little machine language routine takes an X and Y value that
you give it, finds the Y lookup value in the lookup table, then puts the
value $FF (255) at the corresponding byte on the screen. Not much, but
it does illustrate a few of the instructions and addressing methods used
in machine language. Let's go through Listing 7.2 line-by-line:

The first line says that the machine language routine will ORiGinate
at address $6000 (24576). The assembler will start putting our instruc-
tions at that address in memory.

The next four lines are EQUates, or label definitions. The first says
that whenever we use TEMPLO, we'll really mean the number $06. We
could just as easily use the number $06 throughout, but it's not as easy
to remember or to change later. In all cases in this example, the equates
refer to addresses in memory that we'll be using in our program for
storing things. We use them like variables in Basic, except we tell the
computer exactly where in memory these storage locations should be.

TEMPLO and TEMPHI refer to addresses $6 and $7 in your com-
puter. The first 256 bytes (addresses $0000 to $00FF) are referred to as
zero-page, and can be accessed much faster and do some special things
that other memory addresses cannot do. Most of the zero page is used

Assembly Language 	55

by Applesoft and DOS (both of which are machine language programs,
in reality). Addresses $6-$9 are free, however, so we'll use two of those.

LOOKHI and LOOKLO are also EQUated; they are the starting
addresses of the two parts of our lookup table that we created and saved.
Again, we could just use the addresses in our assembly language pro-
gram when needed, but the labels give them a little more meaning.

Next, we define two more bytes of storage (DFB means DeFine Byte).
With these two we don't really care where exactly they go in memory,
we just want them in there. As it is, they are the first two bytes actually
set aside by our assembly language program, so they'll be put at $6000
and $6001 (the ORG told the assembler to start at $6000, and the EQUates
don't take any storage themselves, since they just tell the assembler that
a label means a particular number). We defined the bytes as having values
of zero, although that doesn't matter, because it's in these locations that
we'll poke our X and Y values.

Now the program starts. The first instruction is to LoaD Y with the
number in YVALUE. The Apple has three main registers, which are
single bytes set aside inside the actual 6502 microprocessor. These are
accessed very quickly, and most instructions center around use of these
bytes (and one other). The registers are labeled A, X, and Y. A is the
accumulator, where most everything happens, including all mathematics
and logic operations. X and Y are used mostly as pointers, offsets, and
counters. LDY YVALUE means to load the Y register with the number

Listing 7.2

ORG $6000

TEMPLO EQU $06

TEMPHI EQU $07

LOOKHI EQU $4000

LOOKLO EQU $4000

XVALUE DFB 0

YVALUE DFB 0

START LDY YVALUE

LDA 	LOOKLO ,Y

STA TEMPLO

LDA 	LOOKHI tY

STA TEMPHI

LDA *SFF

LDY XVALUE

STA 	(TEMPLO) tY

RTS

56 [MACHINE LANGUAGE GRAPHICS ROUTINES

in YVALUE in memory. We'll be using this number as an offset, much
as you would in using an array in Basic. In fact, we'll use it as an offset
in our lookup table, just as we did in the Basic examples with arrays.

The next line says to LoaD A with the value in the address LOOKLO,
offset by Y. Given our EQUates, that means that it will load the accu-
mulator with the value in address $4000 + Y. It's exactly like using an
array in Basic!

That is followed by STore A in TEMPLO. This instruction takes the
value that we just loaded into A from the lookup table, and puts it in
address TEMPLO ($06). Note that in assembly/machine language, you
can't really say "take something from here in memory and put it over
there." You have to load it into one of the registers from a memory
location, then store the contents of that register in another memory
location.

The next two instructions duplicate the load and store commands for
the high byte from the table. That was easy!

Next, we load the accumulator (LDA) with the number $FF (255).
Note that the # sign means to use the number following it. If the #
were left off, the instruction would mean LoaD A with whatever is in
address $FF. A frequent error is leaving off the # and staying up late at
night wondering why programs do such strange things. About the time
you convince yourself that your computer is broken, you usually discover
the missing # that changed the entire meaning of the program. Grrrr...
You have to tell it everything!

Now for some tricky maneuvering. We mentioned that page zero
addresses had some special functions that allows them to do things other
addresses can't. One is called indirect addressing. The next two instruc-
tions, LDY XVALUE (put XVALUE in the Y register), and STA (TEM-
PLO),Y put the value $FF from the accumulator onto the screen at the
address we want. The previous loads and stores had put the base address
of the screen line from our lookup table into TEMPLO and TEMPHI.
(Note that the low byte of the address went in the first address.) STA
(TEMPLO),Y says to store the contents of the accumulator in the address
contained in TEMPLO and its following byte (TEMPHI), offset by Y.
In other words, take the address stored in TEMPLO and TEMPHI, add
the value in Y, and store the contents of the accumulator in the resulting
location. In this program, it takes the base address of the line that we
stored in TEMPLO and TEMPHI, adds the X value, and stores the
number $FF in the resulting location.

Confusing, perhaps, but that's also the most tricky that machine lan-
guage addressing gets. If you can handle that, the rest of machine lan-
guage will be relatively easy.

Assembly Language 1 57

The last line is a Rellim from Subroutine, which is the equivalent
of a Basic RETURN statement. It means to go back to the instruction
from whence it was called.

Listing 7.3 shows the same program after it has gone through the
assembly process. After assembling, you are shown the addresses of
each assembled instruction and the actual hexadecimal values to which
those instructions were converted. You can hand enter this short routine
with the commands in Listing 7.4.

Listing 7.3

1 ORG $6000

2 TEMPLO EQU $06

3 TEMPHI EQU $07

4 LOOKHI EQU $4000

5 LOOKLO EQU $4000
6000: 00 6 XVALUE DFB 0

6001: 00 7 YVALUE DFB 0
6002: AC 01 60 8 START LDY YVALUE

6005: BS CO 40 9 LDA LOOKLO,Y

6008: 65 06 10 STA TEMPLO
600A: 159 00 40 11 LDA LOOKHItY

600D: 85 07 12 STA TEMPHI

600F: AS FF 13 LDA •$FF

6011: AC 00 60 14 LDY XVALUE

6014: 91 06 15 STA (TEMPLO)tY

6016: 60 16 RTS

Listing 7.4

Entering the Machine Language Program Directly

Note: The bracket (3) and asterisk (*) charac-

ters at the beginning of each line are

prompts. You type the rest. After each

line. Press Return.

]CALL -151

*6000:00 00 AC 01 60 B9 CO 40

*6008:85 06 BS 00 40 85 07 AS

*6010:FF AC 00 60 91 06 60

*300G

MSAVE PLOTtA24576tL23

58 [MACHINE LANGUAGE GRAPHICS ROUTINES

Finally, Listing 7.5 is a Basic program that BLOADs the lookup table
and machine language program, then loops through, pokes the X and Y
values into locations 24576 ($6000) and 24577 ($6001), and then calls
the subroutine at 24578 ($6002). Notice the similarities to and differ-
ences from Listing 6.4. The new version may not seem much faster than
the old, since most of the work is still being done in Basic, and the
machine language routine itself is very short with no repetition. But as
the tasks become slightly more complex, the speed differences in machine
language are incredible, as you'll soon find for yourself.

Listing 7.5

5 PRINT CHR$ (4);"BLOAD LOOKUP"
6 PRINT CHR$ (4);"13LOAD PLOT"
10 HGR
15 X = 0:Y = 0:XC = 1:YC = 1
20 POKE 24576,X: POKE 24577,Y: CALL 24578
70 X = X + XC: IF X < 1 OR X > 38 THEN XC =
- XC

80 Y = Y + YC: IF Y < 1 OR Y > 190 THEN YC =
- YC

90 GOTO 20

E 	 I 	 G 	 H 	 T

Wore Ill'achirie language

Now we'll continue experimenting with assembly language graphics by
taking the Basic character generator from Chapter 6 and the start of a
machine language routine from Chapter 7, and finish writing a machine
language character graphics generator. This chapter is actually more
about assembly language than graphics itself, but to do fast graphics
you have to know some of the tricks to doing them quickly. Playing with
fast graphics routines also happens to be a nice, visual way to learn some
assembly language.

The routine from the last chapter, when given X and Y screen values,
would find the address of the Y line in memory from a lookup table we
created, then, using what's called indirect indexed addressing, put the
value $FF in the screen location we'd specified. The indirect addressing
happened when we stored the address of the beginning of the screen line
in a pair of locations, TEMPLO and TEMPHI, then loaded the X-offset
on the screen into the Y-register, and used the command:

STA (TEMPLE') ,Y

The parentheses around TEMPLO meant that the computer should find
the address stored in TEMPLO and the following location (which we
named TEMPHI), and add the contents of the Y-register to that to get
the final address in which to store something.

In the process, we also used absolute indexed addressing to get num-
bers out of our lookup table with commands like:

LDA LOOKLO 'V

Without the parentheses, it means to take the address LOOKLO and add
the contents of the Y-register to get the final address.

59

60 [MORE MACHINE LANGUAGE

Note the differences between the two types of indexed addressing we
used. Both give something like an array in Basic, but the absolute indexed
(the one without parentheses) uses the exact value of the address you
specify plus Y. Indirect indexed finds the address in the location you
give, then adds Y.

Why these two types? Because the Y-register is only one byte, and
can contain only the values 0 to 255. So with either addressing mode,
your "array" can contain only 256 numbers. But with the indirect indexed
we can change the base address. Going back to the short routine from
last chapter, we couldn't index 8,192 bytes of a hi-res screen with only
the Y-register. But we could index a single line on the screen, because
it's only 40 bytes long. We wouldn't want 192 labels and 192 different
plot routines, one for each line on the screen. So we compute the base
address of each line (actually using the lookup table) and put that in a
location that we use for indirect indexing from only one routine. The
only restrictions of indirect indexed are that the location where you put
the address must be on page zero ($00-$FF), must start on an even
address (we used $06), and must be in LO,HI format (in a 4-digit address,
such as $12CD, the right digits, $CD, go in the first byte, and the left
digits, $12, go in the second byte).

If it seems terribly confusing to you at first, you're not alone. Addressing
is the most difficult concept to grasp when first learning assembly language.

Tine For Another Routine

Instead of putting only one byte on the screen at a time, we'll take our
Basic character generator and convert it to machine language so that we
can put any of 128 characters on the screen. Each character is eight
bytes; one byte wide (7 dots) and eight bytes tall. Before, we had the
character definitions stored in a Basic array. Now, we'll store them in a
binary table, and load each byte using indirect indexed addressing (128
characters times 8 bytes gives 1024 bytes; too much for using absolute
indexed).

To start, we'll create a character table using the program in Listing
8.1. You may notice that most of it is taken directly from the last program
in Chapter 6, except instead of storing in an array, we're poking into
memory. We'll put the table at $7000, or 28672 decimal. The letters A,
B, and C, which are the three we defined before, have ASCII values 65,
66, 67. (ASCII is the standard character-to-number translation used by
most computers. There's a table of ASCII values for each character in
the Apple II Applesoft BASIC Programming Reference Manual, and in

Time For Another Routine 1 61

the He Manual)1 . Anyway, each character takes 8 bytes, so to find the
first byte of the Nth character, you would look in 28672 + 8*N. That's
where the POKE address in Listing 8.1 comes from.

This program only has three character definitions. Others are left to
you, using the technique from Chapter 6. There are also shortcuts. If
you have the ApplesoftIDOS Toolkit, Higher Text, or The Complete Graphics
System, the small character sets from all of those use the same format.
In Listing 8.3, where we actually use our finished routine from Basic,
you can substitute a BLOAD of any small character set at location $7000
(because some of them do not use the first 32 characters, try BLOADing
at $7100 if the letters don't match up).

After storing a character table on your disk, either with Listing 8.1
or through other means, we're ready to do the assembly language rou-
tine. We'll go through Listing 8.2 step by step. Note that this is an
assembled listing so the numbers corresponding to the commands have
already been generated in the left columns by the assembler program.

Note also that this routine was written with the Merlin assembler.
Some of the conventions differ with other assemblers, and we'll try to
point out some differences. Also, if you are really interested in pursuing
even a small amount of assembly language programming, invest in an
assembler and a 6502 assembly language reference book that has a chart
of the 6502 assembly language commands. Otherwise it's going to seem
like I'm pulling all these commands out of a hat, making them up as I
go. There are 55 commands, but many are seldom used.

1. Apple II Applesoft BASIC Programming Reference Manual (Cupertino: Apple Com-
puter, Inc., 1979, 1981)

Kamins, Scot, Apple lk Applesoft BASIC Programmer's Reference Manual (Cupertino:
Apple Computer, Inc., 1982)

Listing 8.1

290 REM THIS CREATES PART OF A CHARACTER
DEFINITION TABLE, FROM ASCII 65 TO 67

310 FOR I = 65 TO 67
320 FOR J = 0 TO 7
330 READ V: POKE 28672 + 8 * I + J tV
340 NEXT J: NEXT I
345 	PRINT CHR$ (4) ;"BSAVE CHARTABLE tA$7000 .

L$100": END
350 	DATA 8 .20 .34 .34 .62 .34 .34 .0

360 	DATA 30 .34 .34 .30 .34 .34 .30 .0
370 	DATA 28 .34 .2 .2 .2 .34 .28 .0

62 1 MORE MACHINE LANGUAGE

Listing 8.2

1 	 ORG $6000
2 TEMPLO EQU $06
3 TEMPHI EQU $07
4 CTABLO EQU $8
5 CTABHI EQU $9
6 LOOKHI EQU $4000
7 LOOKLO EQU $4000
8 CHRTAB EQU $7000

6000: 00 	9 	CHAR 	DFB 0
6001: 00 	10 	XVALUE 	DFB 0
6002: 00 	11 	YVALUE 	DFB 0
6003: A9 00 	12 	START 	LDA *<CHRTAB

;PUT CTABLE ADDRESS
6005: 85 08 	13 	 STA CTABLO

;IN CTABLO, CTABHI
6007: A9 70 	14 	 LDA •>CHRTAB
6009: 85 09 	15 	 STA CTABHI
6008: AD 00 60 16 	 LDA CHAR

;GET CHARACTER NUMBER
600E: 4A 	17 	 LSR
600F: 4A 	18 	 LSR
6010: 4A 	19 	 LSR
6011: 4A 	20 	 LSR
6012: 4A 	21 	 LSR

;DIVIDE BY 32
6013: 18 	22 	 CLC
6014: 65 09 	23 	 ADC CTABHI

;ADD TO HIGH BYTE OF ADDRESS
6016: 85 09 	24 	 STA CTABHI
6018: AD 00 60 25 	 LDA CHAR
601B: 29 1F 	26 	 AND *$1F

;FIND REMAINDER AFTER DIVIDING BY 32
601D: OA 	27 	 ASL
601E: OA 	28 	 ASL

Time For Another Routine J 63

Listing 8.2 (continued)

601F: OA 	29 	 ASL

;MULTIPLY BY EIGHT

6020: 18 	30 	 CLC

6021: 65 08 	31 	 ADC CTABLO

;ADD TO LOW BYTE OF ADDRESS

6023: 85 08 	32 	 STA CTABLO

6025: A2 00 	33 	 LDX *0

;X REG WILL GO FROM 0 TO 7

6027: AC 02 60 34 	LOOP 	LDY YVALUE

;Y LOCATION INTO Y REGISTER

602A: B9 CO 40 35 	 LDA LOOKLO,Y

;GET ADDRESS OF YTH LINE FROM

602D: 85 06 	36 	 STA TEMPLO

;LOOK-UP TABLE AND PUT IN

602F: B9 00 40 37 	 LDA LOOKHI,Y

;TEMPLO ,TEMPHI

6032: 85 07 	38 	 STA TEMPHI

6034: 8A 	39 	 TXA

;GET THE NEXT BYTE FROM

6035: A8 	40 	 TAY

6036: B1 08 	41 	 LDA (CTABLO)tY

;THE CHARACTER TABLE

6038: AC 01 60 42 	 LDY XVALUE

;STORE THE BYTE ON THE

6038: 91 06 	43 	 STA (TEMPLO)tY

;SCREEN

603D: EE 02 60 44 	 INC YVALUE

;NEXT LINE

6040: E8 	45 	 INX

;HAVE WE DONE 8 LINES?

6041: EO 08 	46 	 CPX *8

6043: DO E2 	47 	 BNE LOOP

;IF NOT, DO IT AGAIN

6045: 60 	48 	 RTS

64 	MORE MACHINE LANGUAGE

The first 11 lines should look familiar from the last chapter. We added
a few extra EQUates and a new DeFine Byte, but the rest is the same.
The routine will ORiGinate at $6000. We'll use two pairs of page zero
addresses for indirect indexing: TEMPLO and TEMPHI for the screen
line addresses taken from the lookup table, and CTABLO and CTABHI
for addressing the character table. LOOKHI and LOOKLO, the pointers
to the lookup table, are the same as before. CHRTAB is the pointer to
the beginning of the character table.

CHAR is where we will put the ASCII value of the character we want
printed. XVALUE and YVALUE are the X,Y location to print on the
screen, as before.

Okay. The beginning of the program loads the address CHRTAB into
the accumulator, half at a time, and stores it in CTABLO and CTABHI.
The symbol #<CHRTAB means the number that is the low byte of the
address CHRTAB. #>CHRTAB is the number which is the high byte
of the address. At the far left, you see the hex numbers that are generated
when the code is assembled. Note that at $6004, you get the values A9
00. A9 is the LDA code, and 00 is the value given #<CHRTAB. Two
lines down, you get A9 70; again the LDA code, and then #>CHRTAB.
In the beginning you EQUated CHRTAB with $7000, which is where
00 and 70 come from. The nice thing is you don't worry much about
the numbers generated; the assembler does that for you.

(Note: The #> and #< format varies with assemblers. If all else
fails, do two EQUates for the address; something like:

CHRTAH EQU $70

CHRTAL EQU $00

and use those in place of #>CHRTAB and #<CHRTAB)

A little multiplication and division by powers of 2

The next part may be tricky. What we're trying to do is get CTABLO
and CTABHI to point to the beginning of the letter we want. Now it
points to the beginning of a 1,024 ($400) byte table. A page of memory
(not related to hi-res pages) is 256 ($100) bytes. The high byte of any
address gives its page number in memory. The character table takes 4
pages ($400 bytes). Each page holds 32 characters (256/8 bytes = 32
characters), so CTABHI should be $70 if the character number is 0 to
31, $71 if the code is 32 to 63, $72 if the code is 64 to 95, or $73 if it's
96 to 127. It's $70 now; what we have to add is the character code
divided by 32.

A little multiplication and division by powers of 2 J 65

Similarly, the low byte should point to where in that 256-byte page
the 8 bytes for the letter start. To do that, we need the remainder after
dividing the character code by 32 (i.e., is it character 0-31 on that page?),
multiplied by 8.

For example, say we want character 36. Character 36 would be on
the second page of the character table, since from $7000 to $70FF are
the characters 0-31. 36 divided by 32 is 1, with a remainder. The page
number that character 36 is on is $70+ 1, or $71. Furthermore, it is
character 4 on that page (characters 32, 33, 34, 35, 36.... , are characters
0 to 4, and so on, on page $71.) Since each character is 8 bytes long,
the definition for character 36 starts at byte 32 of that page (8 times 4).

Now come the three tricky commands. LSR stands for Logical Shift
Right. It takes all the bits in a byte and moves them to the right one
place. The rightmost bit gets thrown away (although you can still find
it, if you need it). The effect of this is dividing by two and throwing
away the remainder! Examples (with 4 bits):

Before LSR After LSR

0010 (2) 0001 (1)
1000 (8) 0100 (4)
1010 (6) 0101 (3)
1101 (13) 0110 (6)

By doing two LSRs in a row, it's like dividing by 4. With 3, it's dividing
by 8. And with 5, it's dividing by 32! That's why the next six lines of
the listing load the character number, then do 5 LSRs.

Similarly, ASL is Arithmetic Shift Left. It does the same thing, but
in the other direction. It's equivalent to multiplying by two. More than
one in sequence allows you to multiply by 2, 4, 8, 16, and so on. A few
lines down, when we need to multiply by 8, you see 3 ASLs.

AND is a logical and operation. If you remember some logic oper-
ations from high school, with AND you get true as a result only if the
two things you are ANDing are true. In binary, trues are ones. To show
you how it works:

10110
AND 00111

00110

Notice that only when both corresponding bits are set will the same bit
in the result be set.

66 [MORE MACHINE LANGUAGE

There is also an OR command and an Exclusive OR command, and
all three of these logic operators are extremely useful with graphics.
Here, though, we're using AND as a short way to find the remainder of
a division by 32. Line 26 in the listing has an AND #$1E $1F is 31
decimal, or 00011111 in binary. ANDing it with any number gives the
remainder of a division by 32. The left 3 bits in the byte would give the
result of the division. 'Thy it with a few numbers.

Back to the program. The five LSRs all affect the accumulator. Most
assemblers accept LSR by itself as meaning that the accumulator is used.
The Applesoft/DOS Toolkit assembler requires the operand A to specify
Accumulator. Depending on the assembler you use, you may have to
insert or omit the A.

After the LSRs is a CLear Carry. There is one bit called the carry
bit that holds the carry for any addition. That allows numbers larger
than 255 to be used in arithmetic. It is also used in other operations,
such as subtraction, and it is where the chopped off bit in LSRs and
ASLs get "thrown away." Since the next step is an addition, we don't
want any junk messing up the addition operation, so CLear Carry sets
the carry bit to zero.

ADC is ADd with Carry. It adds the number pointed to, in this case
CTABHI, plus the carry bit, to the accumulator. Then we store the result
(STA), which is in the accumulator, back in CTABHI. CTABHI now
points to the correct page for the character we want.

The next two lines load the character number again, and then use
AND to find the remainder of a division by 32. Then the 3 ASLs multiply
by 8, and we have the offset on the page for the character we want. So
we use CLC again, and add this offset to CTABLO, storing the result
back in CTABLO. (Note: again, for ASL, the A operator isn't used by
all assemblers. Also, in our example, we started the table on a page
boundary, $7000. We could have omitted this last addition and a couple
other steps because we are just adding to zero. The routine is more
generalized this way, so at some later time you could put your table
anywhere you want in memory, if need be. The only change you'd have
to make is in the EQUate at the beginning.)

Now for a loop. We have 8 bytes to put on the screen, and CTABLO/
CTABHI points to the first of these. For fun, we'll use the X-register as
a counter, from 0 to 7 (stopping when it reaches 8). LDX #0 does what
you probably think: loads the X-register with the number zero.

The first five lines in the loop you should recognize. They are still
here from the short routine last chapter. We take the Y-value, find the
address of the start of that line in our lookup table, and put that address
in TEMPLO/TEMPHI. Next we do something similar to get the first (or

A little multiplication and division by powers of 2 1 67

next) byte of our character. The X-register is our counter. TXA aansfers
X to A. TAY Transfers A to Y. (There is no TXY; too bad.) We trans-
ferred our counter to the Y-register because it's the Y-register that must
be used for indirect indexed addressing. So now we use it to get the byte
for our character in line 41. The next two lines are also from our first
routine last month; they store the accumulator value on the screen at the
proper X-offset.

That being done, we INCrement YVALUE (add one to it) so that the
next byte will go one line down. Simple. Then we INcrement the X-
register with the INX command. Okay. Then ComPare X to the number
8 (CPX #8) and Branch if the comparison was Not Equal (BNE is
Branch if Not Equal) to LOOP and repeat. If the comparison was equal,
continue on the next line, which is a Rahn) from Subroutine.

Done!
Last, there's Listing 8.3, which is a Basic program that BLOADs the

three binary files we need, gets a starting X,Y location, and loops through
getting a key and poking the ASCII value of the character and the X and
Y values into the memory locations of the plot routine and calling the
routine. Compare Listing 8.3 to Listing 6.6. It's the same program, with
the graphics changed to machine language. Remember that unless you
added your own characters, the only letters that will make sense on the
screen are A, B, and C. Adding the others is left to you.

Listing 8.3

10 HGR
12 PRINT CHR$ (4);"BLOAD LOOKUPtA$4000"
13 PRINT CHR$ (4);HBLOAD LISTING 8.2tA$6000"
14 PRINT CHR$ (4);"BLOAD CHARTABLE ► A$7000"
15 INPUT "X : "IX: IF X < 0 OR X > 39 THEN 15
16 INPUT "Y : ";Y: IF Y < 0 OR Y > 184 THEN

16
18 GET A$
20 POKE 24576, ASC (A$): POKE 24577,X: POKE

24578,Y: CALL 24579
60 X = X + 1: IF X > 39 THEN X = 0:Y = Y + 8:

IF Y > 184 THEN Y = 0
70 GOTO 18

Tho

10

ondorful

	

aorld of Color

Now we'll diverge from teaching assembly language and take a look at
hi-res colors on the Apple. If you're interested in learning more assembly
language, now's the time to look into other books and references on the
subject, such as Roger Wagner's Assembly Lines.'

How Many Colors?

So how does it work? Some of these places advertise that they can give
you anywhere from 20 to over a hundred colors. Well, what they (we)
do is combine the existing six colors in various patterns to make it look
like there are more. It's effective. There are hi-res pictures done in
several shades of a single color alone that look really nice; not the same
as a computer that has a few hundred pure colors built in, but definitely
stretching your normal Apple to its limits. To see how it's done, we can
do a couple of experiments. Then, we'll list a machine language fill
routine that uses 108 color combinations (it's the standard fill and color
set used in the Penguin Software graphics products).

Black

First, drag out the machine language plot routine and your hi-res lookup
table from Chapter 7. Now, to fill the screen with black, all we have to
do is to put the number $OO or $80 in every byte of the screen. These
numbers give the two different blacks. In one, all the bits are off. In the

1. Wagner, Roger, Assembly Lines (North Hollywood: Softalk Publishing Inc., 1982)

69

1 1 1 1 1 1

1 0 1 0 1 1

0 1 0 1 011

0 0 0 0 0 0

$00-0

0 0 °TOT

$80 -128

1 1 1 1 1 0

$7F-127

$FF-255

1 0 1 0 1 0

$55-85

0 1 0 1 0 0

$2A=42

$D5=213

70 	THE WONDERFUL WORLD OF COLOR

other, all bits except the high bit (color flag) are off. See Figure 9.1 for
this and other color patterns.

White

Similarly, to fill the screen with white, you need to store $7F or $FF in
every screen byte. Listing 9.1 shows a Basic routine to do any of these
with black or white, using the plot routine and the lookup table. To run
a straight Basic program in parallel, instead of poking values into spe-
cific bytes, see Listing 9.2. For a quick version of these first few exam-
ples (using the "pure" Apple colors), you would more likely want to
use the method in Listing 9.3.

Black HCOLOR 0

Black HCOLOR-4

0 1 2 3 4 5 6 7 	0 1

0 0 0 0 0 0 0 0 0

$00-0

0 0 0 0 0 0 011 0 0

$80-128

White HCOLOR -3 11 1 1 	1 1 	1 1 0 1 	1

$7F=127

White H COLOR-7 1 1 	1 111 1 	1

$FF=255

Green HCOLOR=1 0 	1 0 1 0 	1 0 0 1 0

$2A=42

Violet HCOLOR=2 1 0 1 0 1 	0 1 0 0 1

$55=85

Orange HCOLOR=5 0 	1 0 1 0 1 0 	1 1 0

$AA=170

Blue 	HCOLOR-6 1 0 1 0 1 	0 1 	1 0 1

$D5-213

Even Bytes 	Odd Bytes
2 3 4 5 6 7

$AA-170
Note that the bytes are displayed (and listed here)
with bit 0 at left and bit 6 at right. Bit 7, the color flag,
is not displayed. Since the bits are displayed in re-
verse order, the order must be reversed again to con-
vert to hexadecimal—or you can turn the page up-
side down.

Figure 9.1 Standard Apple Color Patterns

How Many Colors? I Colors! 1 71

Colors!

Now, to get a color other than black or white, you may recall that only
half the dots are used. Blue and violet have only the dots in the even
columns set. Orange and green have only the dots in the odd columns
set. Blue and orange require the high bit (color flag) to be set. Violet
and green require that it be off. Look at Figure 9.1 again to see the
patterns. The catch is that there are only 7 dots shown per byte. That
means that if the leftmost byte on a screen line (byte zero; even) has
only bits 0, 2, 4, and 6 set, it will show as violet (since 0, 2, 4, and 6
will fall on screen columns 0, 2, 4, and 6). But for the next byte, bit 0
corresponds to column 7 on the screen—an odd column. So if the same
pattern (0, 2, 4, 6) is used, that byte will show as green! (Bits 0, 2, 4,
and 6 in that byte correspond to columns 7, 9, 11, and 13.) To continue
with violet across the screen, byte 1 has to have a different pattern: bits

Listing 9.1

5 PRINT CHR$ (4);"BLOAD LOOKUP"
6 PRINT CHR$ (4);"BLOAD PLOT"
10 HGR
20 FOR Y = 0 TO 159
30 FOR X = 0 TO 39
40 C = 255: REM 255 = $FF
49 REM COLORCANBEPOKEDINAT24592($6010)

50 POKE 24576 ► X: POKE 24577,Y:POKE
24592,C: CALL 24578

60 NEXT : NEXT

Listing 9.2

10 HGR
20 FOR Y = 0 TO 159
40 HCOLOR= 7
50 HPLOT OtY TO 279tY
60 NEXT

Listing 9.3

10 HGR
20 HCOLOR= 7: HPLOT 0 tO
30 CALL 62454

72 	THE WONDERFUL WORLD OF COLOR

1, 3, and 5 should be set, with the others off. Continuing, byte 2 would
go back to the original pattern (0, 2, 4, 6), byte 3 would go back to 1,
3, 5, and so on.

Listing 9.4 uses the plot routine to put the correct byte values on the
screen for violet. By changing the even and odd values to correspond
with the other patterns in Figure 9.1, you could also do green, blue, or
orange. Of course, you could still take the Basic shortcuts from Listings
9.2 and 9.3.

Figure 9.1 shows the patterns for the standard colors. You could, of
course, make up your own patterns. Try using different numbers in
Listing 9.4—make up some. The key to a good-looking color is a reg-
ularly repeating pattern. Another hint for good patterns follows with the
next example.

Alternate Rows of Colors

Here's where we play some tricks with your eyes. What we're going to
do is alternate rows of colors. Not much explanation is needed; just
watch what happens. Listing 9.5 does it with the plot routine and the
colors orange and green. You can change the color patterns easily in the
program to try others. Listing 9.6 does the same thing strictly in Basic
and with only the six Apple colors. It's set up in a loop so that it will
cycle through every combination of the six. You may even try playing
with the color intensity control on your monitor or TV. Tweaking it up
more exaggerates the effect considerably.

Listing 9.4

5 PRINT CHR$ (4);"BLOAD LOOKUP"
6 PRINT CHR$ (4);"15LOAD PLOT"
10 HGR
20 FOR Y = 0 TO 159
30 FOR X = 0 TO 39
39 REM CHECK IF X IS EVEN
40 IF X / 2 = INT (X / 2) THEN C = 85: GOTO

50
44 REM X IS ODD
45 C = 42
50 POKE 24576,X: POKE 24577,Y: POKE 24592,C:

CALL 24578
60 NEXT : NEXT

Alternate Rows of Colors J 73

Listing 9.5

5 PRINT CHR$ (4);"BLOAD LOOKUP"

6 PRINT CHR$ (4);"BLOAD PLOT"

10 HGR

20 FOR Y = 0 TO 159

30 FOR X = 0 TO 39

31 REM IF Y IS EVEN USE ONE PAIR, IF ODD,

USE ANOTHER.

32 IF Y / 2 = INT (V / 2) THEN 40
34 IF X / 2 = INT (X / 2) THEN C = 42: GOTO

50
36 C = 85: GOTO 50

39 REM CHECK IF X IS EVEN

40 IF X / 2 = INT (X / 2) THEN C = 170: GOTO

50

44 REM X IS ODD

45 C = 213

50 POKE 24576,X: POKE 24577,Y: POKE 24592,C:

CALL 24578

60 NEXT : NEXT

Listing 9.6

20 FOR Cl = 1 TO 6

30 FOR C2 = Cl TO 6
40 HGR

50 HOME : VTAB 21: PRINT "COLORS ";Cl;" AND

";C2

60 FOR Y = 0 TO 159

70 IF Y / 2 = INT 	/ 2) THEN HCOLOR= C1:

GOTO 90

80 HCOLOR= C2
90 HPLOT OtY TO 279tY

100 NEXT Y

105 PRINT "PRESS ANY KEY": GET A$

110 NEXT C2: NEXT Cl

Color 	filling

In this chapter we'll describe a machine-language color fill routine. It's
a routine that will let you fill any enclosed area on the screen in one of
over a hundred color combinations. Because the routine is written for
speed, some areas need two or three fills to fill entirely. Complete fill
routines are so far much slower, and in many instances (such as the
PICDRAW routine described in Chapter 14) much too slow for an
application.

Fill Routine

The routine in Listing 10.1 uses the following steps to fill an area (the
area must be white, bordered by black lines or the edge of the screen):

1. Given a point at which to start the fill, search directly upward
until a point is found that is off, then step back down one line.

2. Start filling to the left, until a border is found. Remember the end
point, then fill to the right and remember the right end point.

3. Average the left and right endpoints (giving the midpoint of that
segment). Step down one line from that point. If it's not a border,
go back and repeat step 2, else end.

These steps work well for most regular shapes. The only hint on
using them is that the point selected for step 1 should be directly below
the highest point in the area to be filled.

The complete listing of this program appears in Appendix F.

75

76 [COLOR FILLING

Getting Colors

How do we get all the colors? We use patterns that are four bytes wide
and two bytes tall. Vertically, odd lines have one pattern, and even lines
another; just like in Chapter 9. Horizontally, four bytes give 28 dots.
That means we can set a pattern that repeats every four dots. (28 is
evenly divisible by 4. With 1, 2, or 3 bytes, none of the 7, 14, or 21
dots divide evenly by 4.)

Each of the horizontal four-byte patterns is stored. One pattern has
every dot set (all white), one has every dot off (black), and others have
every second or every fourth dot set for various color patterns. Each
color is then stored as a pair of these horizontal patterns: one for even
rows, one for odd rows.

The routine requires the Y-lookup table again, this time loaded at
$6000. The routine itself starts right after the lookup table, at $6180.
To use it, you need four pokes and a call:

POKE 24960. color number
POKE 24961. INT(X/256)

POKE 24962. X-INT(X/256)*256
POKE 10. Y
CALL 24963

Listing 10.2 shows an example of loading and using the fill routine from
a program.

Listing 10.2

10
20
30
40

REM 	LISTING 	10.2
PRINT 	CHR$ 	(4)"BLOAD LOOKUP.A$6000"
PRINT 	CHR$ 	(4)"BLOAD LISTING 	10.1.A$6180"
HGR

45 REM 	CLEAR SCREEN TO WHITE
50 HCOLOR= 7: 	HPLOT 0.0: 	CALL 62454
60 HCOLOR= 4
65 REM 	DRAW A RECTANGLE IN BLACK
70 HPLOT 20.20 TO 180.20 TO 180.80 TO 20.80

TO 20.20
75 C = 43
80 X = 	40:Y 	= 50
85 REM 	FILL THE RECTANGLE
90 POKE 24960.C: 	POKE 24961. 	INT 	(X / 256):

POKE 24962.X 	- 	INT 	(X 	/
256) * 256: POKE 10.Y: CALL 24963

Getting Colors 1 77

For this routine, as for others in this book, we do ask that you
acknowledge copyright and authorship in your own programs.

E 	N

Now we get down to some of the nitty-gritty techniques used for creating
fast animation in arcade games. We covered basic animation ideas using
shape tables, but they are much too slow and cause too much flickering
for really professional-looking results. Here we start creating some real
animation.

Pre-Shifted Shapes

One of the techniques for fast, smooth movement is an invention called
a pre-shifted shape. It should be noted from the outset that the term pre-
shifted shape has a few different definitions, depending on to whom you
talk. It seems that a couple years ago, when everyone's ideas for fast
animation techniques started filtering around, pre-shifted shapes was the
magic phrase, although definitions didn't always accompany the phrase.
So when people happened on techniques that caused fast animation,
many assumed they had discovered the secrets of pre-shifted shapes,
even if it wasn't the original technique. It's just as well, for now we have
that many more approaches to work with.

Page Flipping

Page-flipping was, and is, another magic phrase for smooth animation.
It's simple to understand: use both hi-res graphics screens, show one,
erase and redraw on the other, and flip pages (display the new one). That
way you don't see the flicker caused by the erase and redraw cycle. Page-

E

79

80 [FAST ANIMATION

flipping, to be fast, has to be used along with some form of pre-shifted
shapes or a similarly fast animation method. There are, however, ways
to achieve the smooth results of page-flipping within the structure of
pre-shifted shapes without actually flipping pages.

The first way to think of a pre-shifted shape is in terms of character
graphics. Recalling from a few chapters ago when we did a hi-res text
generator, a character on the screen is nothing more than a set of bytes
with bits on or off that define the shape of the character. By putting
those bytes into screen memory, the shape is displayed. ay typing in
and running the program in Listing 11.1. It uses characters on the text
screen for doing animation like we did earlier with shape tables. The
same results could be achieved on the hi-res screen using the hi-res
character generator we wrote earlier.

Analyzing the animation, it is fast, but also very jumpy. The move-
ment of the character is by large steps rather than small ones, sort of
like watching someone's movements under a strobe light instead of under
normal lighting. There are reasons for both the speed and the jumpiness.
A very simple example explains it.

Suppose our shape is one dot. Throwing away the high bit in each
byte, since it is only a color flag, we have seven bits with which to

Listing 11.1

1
2

REM 	CLEAR SCREEN
HOME

4 REM 	KC 	IS X-CHANGE, YC 	IS Y-CHANGE
5 XC 	= 	1:YC 	= 	1
9 REM 	XO 	IS OLD X. YO 	IS OLD Y
10 X 	= 	1:Y 	= 	1:0X 	= 	1:0Y 	= 	1
19 REM 	ERASE
20 HTAB OX: 	VTAB OY: 	PRINT 	" ";
24 REM 	PLOT
25 HTAB X: 	VTAB Y: 	PRINT 	"0";
29 REM 	SAVE OLD COORDINATES
30 OX 	= 	X:OY 	= 	Y
34 REM 	FIND NEW COORDINATES
35 X = X + XC:Y = Y + YC
40 IF X 	> 39 THEN X = 39:XC = - 	1
50 IF 	X 	< 	1 	THEN 	X 	= 	1:XC 	= 	1
GO IF Y 	> 24 THEN Y 	= 	24:YC 	= - 	1
70 IF 	Y 	< 	1 	THEN 	Y 	= 	1:YC 	= 	1
80 GOTO 20

Bit 0 1 2 3 4 5 6

1 0 0 0 0 0 0
Byte Value

1

Page Flipping j 81

work, and our one dot shape might be stored as the byte in Figure 11.1.
Now, to move it across the screen, it can be in any of the positions
shown in Figure 11.2. (Figure 11.2 shows the bit that's set to 1 as a dot,
and those not set as blank, which is what happens when they are dis-
played on the screen.) Note that when the byte is moved horizontally,
our dot shape moves seven pixels at a time, rather than a more smooth
one or two. (Aha! Pixel, a word we haven't yet used. Pixel is short for
picture element, which is a fancy way of saying dot. Dot doesn't sound
very scientific.) (Neither do I, since I usually use dot instead of pixel.)
Note that vertical movement wouldn't have the same problem, since the
bytes are only one dot tall when stacked on the screen. In other words,
you could take Figure 11.2 and duplicate it immediately below itself and
find the dot-shapes directly above and below each other. Our hi-res text
generator would work better than the text screen animation in Listing
11.1 for vertical movement because of that.

How do you get smooth horizontal movement? Two ways. First, you
could use the machine language ROL and ROR commands (rotate bits
left and rotate bits right similar to ASL and LSR) to shift the shape into
the correct column before putting the byte(s) on the screen. But that gets
messy, since any shape wider than one pixel can overflow across two
bytes, depending on exact screen position, and then you still have to
worry about the high bit when you are ROLling and RORring things
around. And worse yet, all that takes time, which you don't want to
waste when animating. That's why the character animation was fast:
minimal computation involved; just find the byte and put it on the screen.

Solution? Pre-shifted shapes. In other words, do the ROLling and
RORring first, either by hand or by letting the computer help you. We'll
do it by hand so you can follow along. Take that one-dot shape, for

Value 1
	

4 8 16 32 64

Figure 11.1 Byte for One-Dot Shape

Byte 0
	

Byte 1
	

Byte 2
	

Byte 3

• 	 • 	 • 	 •

Figure 11.2 Movement of One-Dot Shape

82 1 FAST ANIMATION

example. We want that dot to be able to appear in any of seven positions
in any byte. Hence, we store seven shapes—pre-shifted shapes. Take a
look at Figure 11.3 to see how to get them. Notice that for any dot that
you want set in Figure 11.2, you can find one of the pre-shifted shapes
and store that byte's value in screen memory to set the dot.

Before going on, we'll do a crude pre-shifted shape plotter in Basic.
Note that the program in Listing 11.2 has a byte counter (X) and bit
counter (XB) for the X-value. That's because we are not only interested
in putting a byte on the screen, we also want to be able to find the byte-
value with the proper bit set. We'll store our table of seven pre-shifted,

Bit

Value
Bit

Value
Bit

Value
Bit

Value
Bit

Value
Bit

Value
Bit

Value

0 	2 	3 	4 	5
Shift 0
Value 1

Shift 1
Value 2

Shift 2
Value 4

Shift 3
Value 8

Shift 4
Value 16

Shift 5
Value 32

Shift 6
Value 64

1 0 0 0 0 0 0
1 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6
0 1 0 0 0 0

1 . 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6
0 0 1 0 0 0 0
1 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6
0 0 0 1 0 0 0

1 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6

0 0 0 0 1 0 0

1 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6
0 0 0 0 0 1 0
1 	2 	4 	8 	16 	32 	64
0 	1 	2 	3 	4 	5 	6

0 0 0 0 0 0 1

1 	2 	8 	16 	32 	64

Figure 11.3 Seven Pre-Shifted Shapes

Page Flipping 1 83

one-dot shapes in the array S%, so that S%(XB) will have the proper
value for having the correct bit set. The program uses the machine
language plot routine and the lookup table from Chapter 7. Note that
we did not put an erase routine into the program, so our dot shape leaves
a trail... most of the time. In the next chapter we'll do larger, animated
shapes and a machine language routine to put them on the screen, and
we'll look at a tricky technique for eliminating the erase cycle. The
really clever ones among you might find the secret to that trick in the
way Listing 11.2's program works; perhaps Listing 11.3, which is a
variation on Listing 11.2, will give you a clue.

Listing 11.2

1 GOSUB 1000
4 REM XC IS X-CHANGEt YC IS 	Y-CHANGE
5 XC = 1:YC = 1
10 X = 0:XB = 0:Y = 0
19 REM PLOT
20 POKE 24576,X: POKE 24577,Y: POKE 24592,S%

(X8): CALL 24578
34 REM FIND NEW COORDINATES
35 XB = X8 + XC:Y = Y + YC
40 IF X5 > 6 THEN XB = 0:X = X + XC
45 IF XB < 0 THEN XB = 6:X = X + XC
55 IF X > 39 THEN X = 39:X8 = 6:XC = - 1
60 IF X < 0 THEN X = 0:X8 = 0:XC = 1
65 IF Y > 191 THEN Y = 191:YC = - 1
70 IF Y < 0 THEN Y = 0:YC = 1
80 GOTO 20
999 REM INITIALIZE
1000 PRINT CHR$ (4);"BLOAD PLOT"
1010 PRINT CHR$ (4);"BLOAD LOOKUP"
1020 HGR : POKE - 16302,0
1029 REM READ PRESHIFTED SHAPE DEFINITIONS,

AS IN FIGURE 3
1030 DIM SZ(6): FOR I = 0 TO 6: READ S%(I):

NEXT : DATA 1,2,4,8,16,32,64
1040 RETURN

84 [FAST ANIMATION

Listing 11.3

1 GOSUB 1000
5 XC = 1
10 X = 19:X6 = 0:Y = 95
19 REM PLOT
20 POKE 24578tX: POKE 24577tY: POKE 24592,S%

(X6): CALL 24578
34 REM FIND NEW COORDINATES
35 XB = XB + XC
40 IF X6 > 6 THEN X8 = 5:XC = - 1
45 IF XB < 0 THEN X6 = 1:XC = 1
80 GOTO 20
999 REM INITIALIZE
1000 PRINT CHR$ (4);"BLOAD PLOT"
1010 PRINT CHR$ (4);"6LOAD LOOKUP"
1020 HGR : POKE - 16302,0
1029 REM READ PRESHIFTED SHAPES AS IN FIGURE

3
1030 DIM SUB): FOR I = 0 TO 6: READ S%(I):

NEXT : DATA 1t2t4t8,18t32t64
1040 RETURN

E~ u E

Animation of larger Pie-Shifted Shapes

Plotting pre-shifted shapes from Basic, as in last chapter, sort of defeats
the purpose. Pre-shifted shapes are for speed. Basic isn't; at least not
when it comes to graphics. So this chapter we'll look at building larger
pre-shifted shapes (larger than the hi-res dot, last chapter) and voyage
back into the world of machine language for some of the coding.

First, a Shape

We'll use a fairly easy one so that the actual number codes that we
generate don't wreak havoc on the proofreaders and the poor typists.
This is your chance to shine with creativity, however. Almost all the
shapes in all the arcade games you play are created in this way, so make
up the shape you want, plot it out, and watch it animate at the end of
this chapter.

Last chapter we dropped the hint that there is a technique for creating
and animating a shape that allows you to omit the erase cycle of the
usual draw-update-erase animation. There is, and it speeds up your
animation considerably. Since we're just putting bytes onto the screen,
we can cause a shape to erase its old image at the time the new image
is being plotted if we know the maximum single movement of the shape.
That is, if we know that in any single move a shape will go no more
than two dots in any direction, for example, we can create a 2-dot border
the color of the background around the shape. Technically, the 2-dot
border is part of the shape. Visibly, it looks like the background.

Figure 12.1 shows a box shape pre-shifted across 3 bytes. Note that
although the box is less than two bytes wide, when the border is included

85

86 	ANIMATION OF LARGER PRE-SHIFTED SHAPES

3 Bytes

Bits
2 3 4 5 6 0

Bits Hexadecimal

6 	Values

00 00 00
00 00 00
7C 1F 00
7C 1F 00
04 10 00
04 10 00
04 10 00
04 10 00
04 10 00
7C 1F 00
00 00 00
00 00 00

00 00 00,
00 00 00
70 7F 00
10 40 00
70 7F 10
10 40 00
10 40 00
10 40 00
10 40 00
70 7F 00
00 00 00
00 00 00

00 00 00
00 00 00
40 7F 03
40 00 02
40 00 02
40 7F 03
40 00 02
40 00 02
40 00 02
40 7F 03
00 00 00
00 00 00

00 00 00
00 00 00
00 7E OF
00 02 08
00 02 08
00 02 08
00 7E OF
00 02 08
00 02 08
00 7E OF
00 00 00
00 00 00

Bits
0 1 1 2 3 4 5 6 01 2 3 4 5

• • • • • • • • • •
• • • • • • • • • •
• •

Shift
1

• •
• •
• •
• •
• • • • • • • • • •

1 2 4 81632641 2 4 81632641 2 4 8163264

• • • • • • • • •
• •
• • • • • • • • • Shift

3 • •
• •
• •
• •

• • • • • • • • •

1 2 4 81632641 2 4 8163264 1 2 4 8163264

• • • • • • • • • •
• •
• • Shift

5 • • • • • • • • • •
• •
• •
• •
• • • • • • • • • •

1 2 4 8 163264 1 2 4 8163264 1 2 4 8163264

• •
•
•
•

• • • • • • • •
•
•
•

Shift
7 • • • • • • • • • •

• •
• •

• • • • • • • • • •

1 2 4 8163264 1 2 4 81632641 2 4 8163264

Figure 12.1 A Pre-Shifted Box Shape

• • 0000• 1100
• •
• •
• •
• •
• • • • • • • • • •
• •
• • • • 00• • • •

00 00 00
00 00 00
78 3F 00
08 20 00
08 20 00
08 20 00
08 20 00
78 3F 00
08 20 00
78 3F 00
00 00 00
00 00 00

Shift
2

• • 0000• • • •
• •

• •

• •
• •
• •
• • • • • • • • • •
• • • • • • • • • •

00 00 00
00 00 00
60 7F 01
20 00 01
20 00 01
20 00 01
20 00 01
20 00 01
60 7F 01
60 7F 01
00 00 00
00 00 00

Shift
4

00 00 00
00 00 00
00 7F 07
00 01 04
00 01 04
00 01 04
00 01 04
00 01 04
00 01 04
00 7F 07
00 00 00
00 00 00

Shift
6

• • • • • • • • • •
• •

• •
• •

• •
• •
• •
• • • • • • • • • •

First, a Shape 1 87

1 2 4 8 16 3264 1 2 4 8 163264 1 2 4 8 163264

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264

1 2 4 8 16 3264 1 2 4 8 163264 1 2 4 8 16 3264

88 	ANIMATION OF LARGER PRE-SHIFTED SHAPES

and it is shifted through its seven possible positions relative to the byte
boundaries, we need the third byte in width as part of the definition.

In defining the seven pre-shifted boxes, you'll notice that we also
played some games with horizontal lines cutting through the middle of
each box. Remember that when using pre-shifted shapes, the actual
shape used depends on the horizontal position on the screen. We can
take advantage of the actual shape definition displayed being swapped
through the seven pre-shifts and modify each pre-shift slightly to cause
the object to animate as it moves! A man walking can have his legs
moving as he moves across the screen, helicopter blades can swirl, lights
and radar on a spaceship can blink and turn, and on and on. In a way,
it's double animation, with the shape you want moving around the screen
smoothly, and meanwhile the shape itself animates within.

Moving in Twos

Okay, but that doesn't explain why those lines in the boxes seem oddly
out of sequence. The intention is for the line to scroll vertically inside
the box while the box moves. Shouldn't the line move in smaller incre-
ments between frame one and frame two, and so on? Well, it does.
We're going to animate the box in 2-dot moves. Besides moving faster
around the screen, there's a very good reason for moves in multiples of
two. Odd number movements (along the horizontal) mess up any colors
you might have. Bits that were in even columns (blue or violet) get put
in odd columns (orange or green), and vice versa. It is possible for your
shape definition to contain every Apple color, including blended colors
like we used in the fill routines. So although our box is white, it's usually
favorable to move in 2s for color presentation. The result is that instead
of the shapes animating in a 1, 2, 3, 4, 5, 6, 7 sequence, they animate
in a 1, 3, 5, 7, 2, 4, 6 sequence. If you look at the shapes in Figure
12.1 again, you'll see that in this order the little line inside the box
moves in much shorter steps.

The hexadecimal numbers defined by the shape are shown alongside
the shape itself. For our routine, we also need the width and height of
the shape in bytes (3 by 12), and for speed, we'll also store offsets that
point to the start of each individual shape in the table of seven that we'll
produce. Here's the format of the table:

First 14 bytes (Starting address + 0 through starting address + 13):
two-byte offsets for each of the 7 shapes, telling what to add to the
starting address of the table to find the address of each individual
shape.

Moving in Twos 1 89

Bytes 14 and 15: height and width of the shape, in bytes.
Starting at byte 16 (starting address + 16): Row by row byte values
for each of the seven shapes.

The first 16 bytes of the table generated by our shape are shown in
Figure 12.2. Note that the offset to the first shape (the first two bytes)
is always 16 (since the first shape always starts at starting address +
16). 16 is 00 10 in two-byte hexadecimal. Since the width and height
are 3 bytes and 12 bytes, 3 times 12 gives the length of each individual
shape in bytes, and we can find the other offsets by adding this length
to each previous offset. The second offset is 16 + 36, or 52, or 00 34
in hexadecimal. The third is 52 + 36, or 88, and so on. If hexadecimal
makes your stomach queasy, the short program in Listing 12.1 will
compute and poke in the first 16 values for any shape you make.

First offset 00 10
Second offset 00 34
Third offset 00 58
Fourth offset 00 7C
Fifth offset 00 AO
Sixth offset 00 C4
Seventh offset 00 E8
Width, height 03 OC

Figure 12.2 A Table Index

Listing 12.1

10
20
30

HOME 	: 	INPUT 	"WIDTH 	: 	"iW
INPUT 	"HEIGHT 	: 	";H

L = W * H
40 F = 	16
50 FOR 	I 	= 0 TO 	12 STEP 2
59 REM 	QUOTIENT OF DIV. 	BY 256
60 POKE 32768 + 	I, 	INT 	(F / 	256)
69 REM 	REMAINDER OF DIV. 	BY 256
70 POKE 32769 + 	I,F 	- 	INT 	(F 	/ 256) * 256
80 F = F + L
90 NEXT 	I

100 POKE 32782,W: 	POKE 32783,H

90 [ANIMATION OF LARGER PRE-SHIFTED SHAPES

Entering the Shape Data

After the first 16 bytes, you have to enter the shape data itself. Following
the steps in Figure 12.3, you can enter the data directly into memory.
Press Return after each line; the first character in each line (] and *) is
a prompt which you don't type. Note by the address that we started the
table at address $8000 hex, or 32768. The last step is to BSAVE your
shape with the command:

BSAVE BOX tA$8000 ti-2613

The length is computed by taking the shape length, times 7 for the pre-
shifts, then adding 16 (for the first 16 bytes). Or, just given the width
and height of the shape (in bytes):

Width * Height * 7 + 16

All of this, by the way, is much more easily done through editors that
do all the calculations and set-up of shapes. Diehards still may enter a
lot of the values directly in hexadecimal, but there are utilities on the
market that to do a lot of this work for you.

The machine language shape-plotting routine is given in Listing 12.2.
It is similar in function to the one in Basic last chapter, except it allows
shapes that are more than one byte long. It is set up so that you tell it
the X and Y coordinates at which you want to plot the shape by poking
those values into locations 4 and 2, respectively. The first thing the
routine does (lines 14-25) is a quick "division" by 7 to determine the
X-bit and X-byte that the X location you used corresponds to. The
division just uses subtraction until the result is smaller than seven. The
number of subtractions (counted in the Y-register) is the quotient, giving
the X-byte, and the number left over (in the accumulator) is the remain-
der, or the X-bit. From there the routine pulls the height and width out
of the table, then using two times the X-bit value, finds the location of
the offset values for the desired shape. The offset is added to the starting
address of the table, giving the actual location of the start of the shape
definition being used. That address is then inserted into the machine
code (at BLOCK1 + 1 and BLOCK1 + 2). This is called self modifying
code, where the program actually rewrites part of itself; in this case an
address. The advantage gained here is in speed. Sometimes the technique
is also used to save programming code. The rest of the routine is a pair
of loops that put each row of bytes onto the screen while counting down
the screen vertically. We use the good old Y-lookup table for finding the
starting address of each screen line.

91

]CALL-151

Entering the Shape Data 	1

*8000:00 10 00 34 00 58 00 7C
*8008:00 AO 00 C4 00 E8 03 OC

*8010:00 00 00 00 00 00 7C IF
*8018:00 7C IF 00 04 10 00 04
*8020:10 00 04 10 00 04 10 00
*8028:04 10 00 7C IF 00 00 00
*8030:00 00 00 00 00 00 00 00
*8038:00 00 78 3F 00 08 20 00
*8040:08 20 00 08 20 00 08 20
*8048:00 78 3F 00 08 20 00 78
*8050:3F 00 00 00 00 00 00 00

*8058:00 00 00 00 00 00 70 7F
*8060:00 10 40 00 70 7F 00 10
*806B:40 00 10 40 00 10 40 00
*8070:10 40 00 70 7F 00 00 00
*8078:00 00 00 00 00 00 00 00
*8080:00 00 60 7F 01 20 00 01
*8088:20 00 01 20 00 01 20 00
*8090:01 20 00 01 60 7F 01 60
*8098:7F 01 00 00 00 00 00 00

*80110:00 00 00 00 00 00 40 7F
*8048:03 40 00 02 40 00 02 40
*8050:7F 03 40 00 02 40 00 02
*8058:40 00 02 40 7F 03 00 00
*8000:00 00 00 00 00 00 00 00
*8008:00 00 00 7F 07 00 01 04
*8000:00 01 04 00 01 04 00 01
*8008:04 00 01 04 00 01 04 00
*80E0:7F 07 00 00 00 00 00 00

*80E8:00 00 00 00 00 00 00 7E
*80FO:OF 00 02 08 00 02 08 00
*80F8:02 08 00 7E OF 00 02 08
*8100:00 02 08 00 7E OF 00 00
*8108:00 00 00 00

]3DOG

Figure 12.3 Entering the Shape Table

92 [ANIMATION OF LARGER PRE-SHIFTED SHAPES

Listing 12.2

1 	 ORG $6000
2 XBYTE EQU 0
3 XBIT 	EQU 1
4 YLOC 	EQU 2
5 XCOUNT EQU 3
6 SCX 	EQU $4

;SCREEN X
7 SLO 	EQU $06

;SCREEN LINE ADDRESS
8 SHI 	EQU $07
9 WIDTH EQU $08
10 HEIGHT EQU $09
11 THI 	EQU $7000

;Y LOOKUP TABLE
12 TLO 	EQU $7000
13 SHAPE EQU $8000

;SHAPE LOCATION
6000: AO 00 	14 	START 	LDY *0
6002: A5 04 	15 	 LDA SCX
6004: 18 	16 	 CLC
6005: C9 07 	17 	DLOOP 	CMP *7

;THIS IS A CHEAP DIVISION
6007: 90 08 	18 	 BCC DDONE

;THAT CAN BE AVOIDED
6009: 38 	19 	 SEC
600A: E9 07 	20 	 SBC *7
600C: C8 	21 	 INY
600D: 18 	22 	 CLC
600E: 4C 05 60 23 	 JMP DLOOP
6011: 85 01 	24 	DDONE 	STA XBIT

;DIVISION DONE
6013: 84 00 	25 	 STY XBYTE
6015: AO OE 	26 	 LDY *$OE

;GET HEIGHT AND WIDTH
6017: B9 00 80 27 	 LDA SHAPELY
601A: 85 08 	28 	 STA WIDTH
601C: C8 	29 	 INY
601D: B9 00 80 30 	 LDA SHAPE*Y
6020: 85 09 	31 	 STA HEIGHT

93 Entering the Shape Data 	1

Listing 12.2 (continued)

6022: 	A5 01 	32 	 LDA 	XBIT
;GET 	INDIVIDUAL SHAPE

6024: 	OA 	33 	 ASL
;OFFSET AND ADD TO START

6025: A8 	34 	 TAY
;OF SHAPE"S TABLE

6026: B9 00 80 	35 	 LDA SHAPE,Y
6029: AA 	36 	 TAX
602A: CB 	37 	 INY
6028: B9 00 80 	38 	 LDA SHAPE,Y
602E: 18 	39 	 CLC
602F: 69 00 	40 	 ADC *<SHAPE
6031: 8D 5B 60 	41 	 STA BLOCK1+1

;MODIFY CODE FOR SPEED
6034: 8A 	42 	 TXA
6035: 69 80 	43 	 ADC *>SHAPE
6037: 80 5C 60 	44 	 STA BLOCK1+2
603A: AZ 00 	45 	 LDX *0

;TO START SHAPE
603C: A5 08 	46 	LOOP1 	LDA WIDTH

;* OF HOR. 	BYTES
603E: 85 03 	47 	 STA XCOUNT
6040: A4 02 	48 	 LDY YLOC
6042: CO CO 	49 	 CPY *$CO

;CHECK 	IF OFF SCREEN
6044: 90 04 	50 	 BCC YTABLE
6046: AO 29 	51 	 LDY *$29

;OFF SCREEN, END LINE
6048: BO OC 	52 	 BCS LOOP2
604A: B9 CO 70 	53 	YTABLE 	LDA TLOtY
604D: 85 06 	54 	 STA SLO
604F: B9 00 70 	55 	 LDA THItY
6052: 85 07 	56 	 STA SHI
6054: A4 00 	57 	 LDY XBYTE
6056: CO 28 	58 	LOOP2 	CPY *$28

;CHECK 	IF OFF SCREEN
6058: BO 05 	59 	 BCS CONT
605A: BD 00 80 	60 	BLOCK1 	LDA SHAPEtX

;THIS CODE GETS MODIFIED

94 J ANIMATION OF LARGER PRE-SHIFTED SHAPES

Listing 12.2 (continued)

605D:

605F:

6060:

91 06

;PUT
E8

;NEXT

C8

;NEXT

61

IT ON SCREEN
62 	CONT

SHAPE BYTE

63

SCREEN LOCATION

STA

INX

INY

(SLO)tY

6061: C6 03 64 DEC XCOUNT
;KEEP TRACK OF WIDTH

6063: DO Fl 65 BNE LOOP2
6065: E6 02 66 INC YLOC

;NEXT Y
6067: C6 09 67 DEC HEIGHT

;KEEP TRACK OF HEIGHT
6069: DO DI 68 BNE LOOP1
606B: GO 69 RTS

Putting It All Together

The last listing puts all of the above together. Listing 12.3 is a Basic
program that loads the Shape Plot routine, the Y-lookup table (at $7000),
and the box shape we created (or any other that you design). Line 50
pokes in the X and Y coordinates and calls the routine. 60 reads the
paddles, and 70 and 80 compute the new X and Y values. Note that the
weird expressions in the latter two lines use an interesting little fact: an
expression such as (XP<80) generates a value of 1 if true, or 0 if false.

Listing 12.3

10 PRINT CHR$ (4);"BLOAD LISTING 12.2"

20 PRINT CHR$ (4);"BLOAD LOOKUPtA$7000"

30 PRINT CHR$ (4);"BLOAD BOX"

40 X = 128:Y = 128: HGR : POKE - 16302,0

50 POKE 2,Y: POKE 4,X: CALL 24576
60 XP = PDL (0):YP = PDL (1)

70 X = X - 2 * (XP < 80) + 2 * (XP > 160)
80 Y = Y - 2 * (VP < 80) + 2 * (YP > 160)

90 GOTO 50

Putting It All Together [95

You can use that 0 or 1 in a computation! In line 70, for example, it
evaluates as follows:

if XP<80, (joystick to the left):

X - 2*1 + 2*0 ► which is X-2

if XP is between 80 and 160, (joystick in middle):

X - 2*0 + 2*0, which is X

and if XP>160, (joystick to the right):

X - 2*0 + 2*1 ► which is X+2

Neat, huh?
One last note: the Basic routine is written to accept values between

0 and 255 for X and Y. That means that if you let the shape go too far
to the right, or up to the top of the screen, you'll get an error—the
program just stops. Once again, Basic becomes cumbersome. The rea-
son is that poke statements accept values only from 0 to 255 (the values
that fit in a byte). IF statements and value checks have been left out to
give an idea of how fast you can get the animation going from Basic.
Unfortunately, the more Basic statements you add, the more you slow
down the animation. An alternative is to perform the movement cal-
culations in machine language, or to have the movements pre-generated
in a path table. Either way you can easily increase the speed enough to
be driven from Basic, although you always have to be careful about how
much code you put into an animation loop.

Picture Packing

When dealing with graphics on the Apple, or any other computer for
that matter, one of the limiting factors is the great amount of storage
that graphic information requires. On the Apple, a high resolution pic-
ture in RAM takes almost one-fourth of the available programming memory
(8K of approximately 36K, after DOS and other scratch areas are sub-
tracted). On an Apple disk, you can typically fit only 12 hi-res screen
pictures. Although there's not much to do about the amount of display
RAM required, there are ways to scrunch more pictures onto disks.

The Original Recipe

As far as I know, Dave Lubar wrote the first picture packing routines
for the Apple a few years ago. Since then several others have been
written, mostly spinoffs and modifications of Lubar's original routines.
What's a picture packer? It's a program that takes a standard picture,
stored in its full, glorious 8,192 bytes of memory, and looks for patterns
that allow condensing of the information. (The implication is that one
also needs a picture unpacker that will take the packed picture and put
it back the way it was.) Simple? Ah, but how does one look for the
patterns? Which patterns pack the most efficiently?

One of the best packing routines to date is one written by Day Holle
(you may recognize the name as that of the author of Zoom Grafix, co-
author in charge of graphics and various and sundry other details in
Sherwood Forest, and for the very astute, the Pie Man cartoonist). As
Holle puts it, his routines, as well as most others, are basically variations
on Lubar's original. Simply evolution at work.

97

98 	PICTURE PACKING

Variations on a Theme

The easiest way to explain reasons some packing routines are more
efficient than others is to trace the development and look at why certain
techniques improved on others. In Dave Lubar's development of the
original packer (method #1), the basic idea was to look for any repeated
values in the hi-res screen and clump them together, so that screen values
like 80 80 80 80 80, in sequence, would generate the packed code 05
80, meaning 80 repeated 5 times. Since the screen takes the memory
addresses from 8192 to 16383 ($2000-3FFF in hexadecimal), we can
pack the pictures sequentially in RAM rather than worrying about where
on the screen the values are displayed. We do know that sequential bytes
are displayed next to each other horizontally on the screen, so, for exam-
ple, if the top third of the screen was black, each of the horizontal lines
in that area would pack nicely.

Problem #1 arises from the fact that colors other than black or white
don't create a byte pattern that repeats every byte. As we discovered in
Chapter 9, the colors that have every other bit set require one value in
even bytes and a different value in odd bytes. See Figure 13.1 for a
refresher on the type of pattern for these colors. The result is that colors
other than black or white wouldn't pack at all using method #1. Solution
#1 is to have the program try packing twice, once checking every byte
sequentially, and the second time trying every other byte for patterns
and zipping through the screen twice, once for all even bytes, and again
for all odd bytes. The two trials could then be compared to see which
was more efficient.

That works better, but all the single, unique bytes still cause a prob-
lem. Since we're using pairs of bytes, one to tell how many repetitions
and another to tell what repeats, patterns such as 55 55 55 55 55 00 00
00 42 42 42 42 pack nicely into 05 55 03 00 04 42. Unfortunately,
patterns such as 55 00 46 93 FF A8 become 01 55 01 00 01 46 00 93
00 FF 00 A8. Not much savings there.

A close representation of Lubar's final form (close because a few
minor changes have been omitted here for clarity's sake) is to have the

Even Byte

•

1 2 4 8 16 32 64
85
$55

Figure 13.1 Pattern for Violet

Odd Byte

• • •

1 2 4 8 16 32 64
42
$2A

Variations on a Theme I Dramatic Improvement 1 99

first byte in the pair count up to 127 repetitions (call this number N).
127 can be represented in 7 bits. The eighth bit tells whether the follow-
ing are N unique bytes, or one byte repeated N times. Using this tech-
nique, a pattern such as 85 79 A2 55 55 55 55 00 00 34 21 would be
packed as (83) 85 79 A2 (04) 55 (02) 00 (82) 34 21. The bytes that give
the repetitions are in parentheses. Note that the 8 in the first position
tells you that the high bit is set, so in the example we have 3 unique
bytes first, then 4 repetitions of 55 followed by 2 repetitions of 00, and
then 2 more unique bytes.

Dramatic Improvement

Well, this was really exciting because suddenly we were able to get 25
to 40 pictures on a disk, sometimes even more. Pictures that used to
take 34 sectors of disk storage now took somewhere between 7 and 25
sectors, in most cases. But alas, there are always better ways. Analyzing
a sample hi-res screen will show what the next step was, as stumbled
upon by a few observers. In Figure 13.2, note how someone in the art
department at Softalk has tried to faithfully reproduce a quick sketch of
the hi-res screen. (After all the fun little pre-shifted shape illustrations
last chapter with dots and tiny little numbers all over the place, they

•• •

•••

Figure 13.2 A Hypothetical Hi-Res Picture

100 	PICTURE PACKING

must really like me. Fortunately, I'm 2,000 miles away. Back in the old
days they used to chase me out of the art department with their T-squares
sharpened, baring their teeth and screaming when I came in with all
these goofy computer diagrams—at the last minute, of course.) Anyway,
in the figure, notice that the little lines which are supposed to divide up
the picture into bytes, approximately, are very close as you move down
the screen and not so close moving across the screen. Bytes, when
displayed, are one dot tall and seven dots wide. Okay, big deal. Well,
look at the illustration and figure out approximately what percent of the
lines across the screen go the full 40 bytes uninterrupted by the writing.
Then scan the area vertically and figure approximately what percent of
the area can be covered by patches of repetition one byte wide and at
least the height of the lettering (which proportionately would be about
44) bytes tall on the hi-res screen). The answer is that you are more likely
to find more repetitions of a pattern when scanning vertically instead of
horizontally. When scanning horizontally, you have to go uninterrupted
all the way across the screen to get only 40 repeating bytes. Scanning
vertically, you are more likely to find repeating bytes because they are
all in the same general area of the picture. In fact, as this picture is
drawn, you would have over 400 bytes repeating on the left side before
you ran into the letter A, and even then, the space between the words
(and even letters such as H) would contain a good amount of repetition.

So the trick is that scanning according to the screen instead of in
memory sequence does make a difference, and it's on this concept that
Day Holle based his packing routine. Holle did make a few other mod-
ifications to improve efficiency. The first is similar to modification #1
to Lubar's routine. As we found in experimenting with color combina-
tions, every color routine that creates more than the six Apple colors
used a two-line pattern. Remember when we made the odd horizontal
lines orange and the even ones green and came out with a simulated
yellow? That yellow, and every other blended color, would easily defeat
the above idea for vertical packing unless it was done in two passes.
The first pass does the odd lines and the second pass does the even lines.

Holle's second modification was to eliminate the necessity for repeat
factors before unique values. To do so, he used a little trickery. For each
repeated section he uses three bytes: a 00 to signal repeated values, then
a number 1-255 to tell how many repetitions, and then the repeated
value. Unique bytes are just put directly into the table. When the unpacker
finds a zero, it knows that something following will repeat. What about
screen values of 0? Holle just changed them to 80. 00 is black with the
high bit off, and 80 is black with the high bit on, but they both look the
same on the screen. Actually, it turns out that the major savings in this

Dramatic Improvement I The Packing Program 	101

approach is that you can have repetitions up to 255 times instead of
Lubar's 127, and as often as that occurs, it probably doesn't matter much.
Technically, it does eliminate one possibility in Lubar's: in his, it is
actually possible for the packed picture to take more space than the
original. This occurs if few or none of the values repeat; since there are
flags every 128 bytes that say that the following N bytes are unique,
those extra bytes would make the picture longer. Practically, I've yet to
see that happen, and Holle's 3 bytes for repetitions equally balance
Lubar's 1 for non-repeating values.

The Packing Program

So what we have following is Day Holle's variation on Dave Lubar's
original packing ideas, slightly modified by Mark Pelczarski (had to get
my two cents worth in somewhere). The routine as listed is assembled
at $6000, decimal 24576, just above hi-res page 2. It is 248 bytes long,
and contains both the packer and unpacker. There are three locations to
set before calling either routine.

Poke the starting address of your packed picture table in locations 0
and 1. This is the address where you want the packer to put the packed
information, or the address where you BLOADed a packed picture file.
The address is stored in low/high format, which means that if your
address is A, you'd use the following pokes (in line 10 we give A a

Listing 13.1

5 HGR

10 PRINT CHR$ (4);"BLOAD PICTURE.PIC"

20 POKE 0,0: POKE 1,87: POKE 230,32
25 REM The pokes in 0 and 1 give the

address 24832 in shorter form.

30 CALL 24700

40 L = PEEK (0) + PEEK (1) * 256 - 24831

45 REM L is the length of the resulting
Packed picture.

50 PRINT L

60 PRINT CHR$ (4);"BSAVE PICTURE.PAC,A";
24831; ",L";L

102 [PICTURE PACKING

value of 24832, which is as good a location as any, since it's right above
the pack/unpack routines):

10 	A = 24832
20 	POKE 0. A - INT (A / 256) * 256
30 	POKE I. INT(A / 256)

In location 230 ($E6), poke the value corresponding to the hi-res
screen you want packed, or onto which you want the packed picture
unpacked. POKE 230,32 for page 1, and POKE 230,64 for page 2. Note
that this location in most operations also tells the computer which hi-
res screen should be drawn upon, which gives you a nifty trick for
displaying one page while drawing on the invisible one.

After the above pokes, CALL 24576 if you want to unpack a picture,
or CALL 24700 if you want a picture packed. After return from the
routine, locations 0 and 1 hold the last address in the packed table.
Listings 13.2 and 13.3 are examples of using the packer and unpacker,
respectively.

Note in the program listings that we used .PIC at the end of the name
to denote a picture in standard format, and .PAC to denote a packed
picture file. When playing with graphics you tend to get a lot of different
types of binary files on your disks. Using something in the name to
designate what type of file it is helps determine if something called
FROG is a picture, a packed picture, a pre-shifted shape, an Applesoft
shape, or that new machine language routine you developed.

Also, for those of you who want to tinker in machine language and
need to relocate the packing routine, there are only six places that need
changes, all referring to location $605A or $60EF.

Listing 13.2

5 HGR
10 PRINT CHR$ (4);"BLOAD PICTURE.PAC"
20 POKE 0.0: POKE 1.87: POKE 230.32
30 CALL 24576

Listing 13.3

10 D$ = CHR$ (4):PACK = 24700:UNPACK = 24576:
LOC = 24831

20 PRINT DWBLOAD LISTING 13.4"
30 HOME : HTAB 10: PRINT "PACKER/UNPACKER

UTILITY"
40 PRINT : PRINT "PACK OR UNPACK (P/U),";

The Packing Program 1 103

Listing 13.3 (continued)

50 GET P$: IF P$ < > "P" AND P$ < > "U"
THEN 50

60 PRINT P$
70 PRINT : PRINT "HI-RES SCREEN (1/2)?";
BO GET 6$: IF S$ < > "1" AND S$ < > "2"

THEN BO
SO PRINT S$
100 PRINT : INPUT "FILENAME: ";F$
110 PRINT : PRINT : PRINT "OKAY (Y/N), ";
120 GET A$: IF A$ < > "Y" AND A$ < > "N"

THEN 120
130 IF A$ = "N" THEN 30
140 POKE - 16304,0: POKE - 16297,0: POKE

16302.0: POKE 230,32
150 IF S$ = "2" THEN POKE - 16299,0: POKE

230t64
160 IF P$ = "P" THEN 200
170 GOTO 300
200 REM Pack and Save
210 POKE OtLOC - (INT (LOC / 256) * 256):

POKE 1, INT (LOC / 256)
220 CALL PACK
230 LN = PEEK (0) + PEEK (1) * 256 - LOC:

REM Length
240 PRINT : PRINT DWBSAVE";FW.PACtA";LOC;

"tL";LN
250 GOTO 400
300 REM Load and Unpack
310 POKE OtLOC - (INT (LOC / 256) * 256):

POKE 1 ► INT (LOC / 256)
320 PRINT : PRINT DWBLOAD ";F$1".PACtA";LOC
330 CALL UNPACK
400 REM Done, what's next?
410 POKE - 16368,0: GET A$
420 TEXT : HOME : VTAB 10: PRINT "QUIT

OR CONTINUE (Q/C)/";
430 GET C$: IF C$ < > "Q" AND C$ < > "C"

THEN 430
440 IF C$ 	"C" THEN 30
450 HOME : END

104 [PICTURE PACKING

Listing 13.4

POINTS TO PACKED DATA
1 	 ORG
2 	LINES 	EQU
;160 OR 	192 LINES
3 	TBL 	EQU
;POINTS TO PACKED

$6000
192

0
DATA

4 	XCOORD 	EQU 2
5 	YCOORD 	EQU 3
6 	OFFSET 	EQU 4
7 	GRAS 	EQU 5
B 	PREV 	EQU 7
;PREVIOUS DATA
9 	REPEAT 	EQU 8
;REPEAT COUNT

6000: A5 ES 10 	UNPACK 	LDA $E6
6002: 09 04 11 	 ORA #$04
6004: 85 08 12 	 STA GBAS+1

;$2400 	(X=0tY=1)
6006: A2 01 13 	 LDX #1
6008: 86 04 14 	 STX OFFSET
600A: AO 00 15 	 LDY #0
600C: 84 02 16 	 STY XCOORD
600E: 84 05 17 	 STY GRAS
6010: 84 08 18 	 STY REPEAT
6012: 81 00 19 	PROC 	LDA (TBL) ,Y

;GET DATA
6014: DO 18 20 	 BNE STORE

;SIMPLE DATA
6016: E6 00 21 	 INC TBL
6018: DO 02 22 	 BNE GETREP
601A: ES 01 23 	 INC TBL+1
601C: B1 00 24 	GETREP 	LDA (TBL)tY

;GET COUNT
601E: 85 08 25 	 STA REPEAT
6020: E6 00 26 	 INC TBL
6022: DO 02 27 	 BNE GETPREV
6024: ES 01 28 	 INC TBL+1
6026: B1 00 29 	GETPREV 	LDA (TBL)tY

;GET DATA
6028: 85 07 30 	 STA PREV

Listing 13.4 (continued)

The Packing Program 	1 	105

602A: A5 07 31 	DOREP LDA PREV

602C: C6 08 32 DEC REPEAT

602E: A4 02 33 	STORE LDY XCOORD

6030: 91 	05 34 STA (GBAS),Y

6032: E8 35 INX
6033: E8 36 INX

6034: EO CO 37 CPX #LINES

;OFF BOTTOM?

6036: 90 	12 38 BCC YOK

; 	NO

6038: ES 02 39 INC XCOORD

603A: A4 02 40 LDY XCOORD

603C: CO 28 41 CPY #40

;END OF PASS?

603E: 90 08 42 BCC XOK

; 	NO

6040: C6 04 43 DEC OFFSET
;MORE PASSES?

6042: 30 	15 44 BMI DONE

NO

6044: AO 00 45 LDY #0

6046: 84 02 46 STY XCOORD

6048: A6 04 47 	XOK LDX OFFSET

604A: 20 5A 60 48 	YOK JSR BASEC

604D: A4 08 49 LDY REPEAT

;REPEATING?

604F: DO D9 50 BNE DOREP

YES

6051: E6 00 51 INC TBL

6053: DO BD 52 BNE PROC

6055: E6 01 53 INC TBL+1

6057: DO 59 54 BNE PROC

;ALWAYS

6059: 60 55 	DONE RTS

605A: 8A 56 	BASEC TXA

;CALC BASE ADDR

605B: 29 CO 57 AND #$C0

605D: 85 05 58 STA GRAS

605F: 4A 59 LSR

6060: 4A 60 LSR

106 [PICTURE PACKING

Listing 13.4 (continued)

6061: 05 05 61 ORA GBAS
6063: 85 05 62 STA GBAS
6065: 8A 63 TXA
6066: 85 06 64 STA GBAS+1
6068: OA 65 ASL
6069: OA 66 ASL
606A: OA 67 ASL
606B: 26 06 68 ROL GBAS+1
606D: OA 69 ASL
606E: 26 06 70 ROL GBAS+1
6070: OA 71 ASL
6071: 66 05 72 ROR GBAS
6073: A5 06 73 LDA GBAS+1
6075: 29 IF 74 AND #$1F
6077: 05 ES 75 ORA $E6
6079: 85 06 76 STA GBAS+1
607B: 60 77 RTS
607C: AO 01 78 	PACK LDY #1
607E: 84 04 79 STY OFFSET
6080: 84 03 80 STY YCOORD
6082: 88 81 DEY
6083: 84 02 82 STY XCOORD
6085: A5 E6 83 LDA $E6
6087: 09 04 84 ORA #4
6089: 85 06 85 STA GBAS+1
6088: 84 05 86 STY GBAS
6080: B1 05 87 LDA (GBAS),Y
608F: DO 02 BB BNE MORE
6091: 09 80 89 ORA #$80
6093: A2 01 90 	MORE LDX #1
6095: 86 08 91 STX REPEAT

;COUNT=1
6097: 85 07 92 STA PREV
6099: A4 02 93 	TRAVEL LDY XCOORD
6095: A6 03 94 LDX YCOORD
609D: E8 95 INX
609E: E8 96 INX
609F: EO CO 97 CPX #LINES

;OFF BOTTOM?

Listing 13.4 (continued)

The Packing Program 	1 	107

60A1: 90 0 98 	 BCC 	YOL
; 	NO

6043: C8 99 	 INY
;BUMP XCOORD

60A4: CO 28 100 	 CPY 	#40
;OFF RIGHT?

60A6: 90 06 101 	 BCC 	XOL
NO

6048: C6 04 102 	 DEC 	OFFSET
;DONE?

6044: 30 18 103 	 BMI 	NOTEQ
YES, FINISH UP

BOAC: AO 00 104 	 LDY 	#0
60AE: 84 02 105 	XOL 	STY 	XCOORD
6080: A6 04 106 	 LDX 	OFFSET
6082: 86 03 107 	YOL 	STX 	YCOORD
6084: 20 5A 60 108 	 JSR

BASEC
6087: BI 05 109 	 LDA 	(GBAS),Y

;GET FROM SCREEN
6089: DO 02 110 	 BNE 	PROC2
6088: 09 80 111 	 ORA 	#$80

;$00 --> $80
60BD: C5 07 112 	PROC2 	CMP 	PREY

;SAME?
608F: DO 06 113 	 BNE 	NOTEQ

NOPE
60C1: E6 08 114 	 INC 	REPEAT
60C3: DO D4 115 	 BNE 	TRAVEL
6005: C6 08 116 	 DEC 	REPEAT

117

6007: 48 118 	NOTEQ 	PHA
;SAVE NEW DATA

6008: AO 00 119 	 LDY 	#0
60CA: AG 08 120 	 LOX 	REPEAT
60CC: FO OE 121 	 BEQ 	BIC
60CE: EO 04 122 	 CPX 	#4

;BIG ENUF TO USE CODE?

108 [PICTURE PACKING

Listing 13.4 (continued)

BODO; BO OA 123 BGE BIG
6002: A5 07 124 LDA PREV
6004: 20 EF 60 125 	LITTLE JSR OUT
60D7: CA 126 DEX
6008: DO FA 127 BNE LITTLE
60DA: FO OD 128 BEQ FRESH

129

60DC: 98 130 	BIG TYA
;REPEAT CODE=O

SODD: 20 EF 60 131 JSR
OUT

60E0: 8A 132 TXA
;REPEAT COUNT

60E1: 20 EF 60 133 JSR
OUT

60E4: A5 07 134 LDA PREV
;REPEAT DATA

60E6: 20 EF 60 135 JSR OUT
136

60E9: 68 137 	FRESH PLA
;GET NEW DATA

60EA: 24 04 138 BIT OFFSET
;DONE?

60EC: 10 A5 139 BPL MORE
; 	NO

60EE: 60 140 RTS
141

60EF: 91 00 142 	OUT STA (TBL)tY
;STORE 	IN TABLE

60F1: E6 00 143 INC TBL
60F3: DO 02 144 BNE DONE2
60F5: E6 01 145 INC TBL+1
60F7: 60 146 	DONE2 RTS

Packing I]y Souiog Artist's Moves

While the method of packing described in Chapter 13 can easily quad-
ruple the number of pictures you can fit on a disk, it is not the solution
for applications that require more than, say, 50 pictures per disk. The
type of program that immediately comes to mind is the adventure game,
where you want to be able to display views of dozens to hundreds of
locations easily. Any kind of program that requires a large amount of
graphic information, though, requires even better packing techniques.
(On the other hand, Sherwood Forest, an adventure game for which Day
Holle did the graphics, does use the packing routine presented last time).
When Ken and Roberta Williams wrote the first graphic adventure,
Mystery House (with line drawings), and followed with Wizard and the
Princess (adding color), they used an interesting technique: they didn't
store the pictures at all, just the information needed to reassemble them.
Why store the pictures if you can tell the computer how to draw them,
especially if telling the computer how to draw them requires much less
information (in bytes)? Okay, so we tell the computer how to draw the
picture. Maybe that saves some space.

The Graphics Magician

Using a product that's a little close to home, because there's no other
utility that does exactly this, we'll look at part of The Graphics Magi-
cian. In The Graphics Magician there is a picture-drawing utility, which
in many ways is similar to others around. With it you can use paddles,
joystick, or a graphics tablet to draw lines, fill areas with color, or draw
with a set of "paintbrushes." The difference is, it doesn't just show what

109

110 [PACKING BY SAVING ARTIST'S MOVES

you've drawn on the screen, it saves what you do: the artist's moves. It
takes these moves and, unbeknownst to the artist, puts them into a little
program. The program is saved into a binary file, and to reconstruct the
drawing a special interpreter called PICDRAW is used. PICDRAW reads
through the binary program and recreates the artist's moves at the speed
of the computer, reassembling the picture right before your eyes, just as
the artist had originally drawn it.

Drawing lines

How's it done? We'll take a simplified example of creating a picture
with just lines and a fill routine (omitting some of the options in Magician
for easier explanation). Start with the artist's four possible actions: (1)
set the starting point of a line, (2) draw a line from the starting point to
a given endpoint, (3) choose a color for filling, and (4) fill an area with
color. Give each of those actions an operation code (or opcode, as it's
called in computerese). We'll actually add one more operation, end of
picture, for our use.

Opcode Action Information Bytes
needed needed needed

0 Picture's finished None 1
1 Start a line X,Y location to

start at
3

2 Draw a line X,Y location to
draw to

3

3 Choose fill color Color number 2
4 Fill an area X,Y location of

point in area
3

If you're starting to get the idea, what we're doing is writing our own
computer language. In a way it's much like Basic, except instead of
writing programs by editing lines of code, you draw using a joystick or
paddles and the picture editor saves the appropriate opcodes and data.

Here's a sample "program," with the actual information on the left
and description on the right:

01 10 20 Start 	line 	at
10,20

02 20 20 Draw 	line 	to
20,20

The Graphics Magician / Drawing lines I Adding Brushes 	1 	111

02 20 30 Draw 	line 	to
20,30

02 10 30 Draw 	line 	to
10,30

02 10 20 Draw 	line 	to
10,20

03 05 Set fill color to 5
04 15 25 Fill at 15,25
00 End of Picture

The first five instructions draw a square on the screen. Then the next
two instructions fill the square with color #5 (for conversation, let's say
color 5 is orange). The result is an orange square on the screen. If that's
all we want in the picture, we've now compacted a hi-res screen from
8192 bytes to 21! Of course, the more you draw, the more space it takes,
but it's not unreasonable to get nice, detailed pictures in hundreds of
bytes, not thousands.

The "program" above is what the computer would see. You, I, or
the artist would just see the results. To create the "program," the artist
moves the joystick so that a cursor is at the desired position on the
screen, pushes a button, and command #1 is automatically generated
internally. Move the cursor to another position on the screen, push another
button, a line appears, and command #2 is generated inside the com-
puter, and so on.

Adding brushes

The PICDRAW routine in The Graphics Magician takes several other
commands, most notably brushes. What are brushes on the computer?
They're a neat little way to use character graphics. Remember the char-
acter generator we did? Well, suppose we have a character generator that
will plot the characters in any X, Y position on the screen, not just in
the regular text columns. Suppose also that we can do this in any color
we want. Now let's redefine the character patterns so that instead of As,
Bs, and Cs, we've got big dots, little dots, feathered dots, and whatever
else looks neat. Use the character generator to plot these wherever we
want on the screen in any color we desire, and we have paintbrushes!
How useful are they? Well, instead of coloring-book pictures with out-
lined figures filled with certain colors, now the images can be shaded,
boundary lines disappear, extra detail can be added—in other words, a
lot more sophistication can be added to the pictures created.

112 f PACKING BY SAVING ARTIST'S MOVES

Pictures on pictures

There are other tricks and benefits to using pictures created this way.
One was designed, another discovered by accident after several months
of use. The picture interpreter, PICDRAW, gives two options. It can
clear the screen before drawing the next picture, or it can draw the next
picture over what's already there. Advantage: as with adventure games,
where objects can be moved from one room to another, object pictures
can be drawn after the room picture, right on top of it, giving the illusion
of being part of that same picture. Thus you can save innumerable extra
pictures by assembling a few components in different ways. Of course,
adventure games use this technique a lot. Another example is in a game
called Police Artist. In it, numerous variations of facial parts are stored
and then put together in different combinations to create thousands of
different faces (I think they say millions, and they're probably right).

Surprise animation

The other neat trick, unbeknownst to us when Magician was written, is
that you can animate using pictures created this way! The first person
who discovered it told me that he was drawing a man, finished the
drawing, then decided that the eyes weren't exactly right. Instead of
going back and deleting the moves that made the eyes in the first place,
he just redrew over the eyes to get them right. When the picture was
redrawn with PICDRAW, though, the man in the picture blinked!
Recreating the artist's moves, the eyes were drawn one way, then, a split
second later, redrawn another way. After this discovery, we've now seen
complete choreographed animations done by creating a picture and draw-
ing back over it dozens of times, with all the moves saved in the little
binary picture program file. Neat stuff!

Saving picture files

For those of you who are interested in exactly how the picture files are
saved in The Graphics Magician, below is a breakdown of the currently
used commands and their structure. Note that there is room for extra
commands, and they'll be used for optional results and on other com-
puters so that the picture programs can be transferred back and forth
from an Apple to an Atari or Commodore or IBM, and so forth, with a
minimum of fooling around required. The PICDRAW routine itself con-
sists of a line subroutine, a fill subroutine, a brush and character sub-
routine, and an interpreter that reads and interprets the instructions and
calls the appropriate subroutines to correctly redraw the picture.

Instructions

Hex Opcode

The Graphics Magician / Saving picture files 	1 	113

(4 bits) Bytes Meaning

0 1 Picture end
1 3 Set text cursor
2 1 Set line color
3 2 Plot reverse text

character
4 1 Set brush number
4 2 Plot color text character
6 2 Set brush/fill color
8 3 Start line
A 3 Draw line
C 3 Plot brush
E 3 Fill

In the first byte of the instruction, the left 4 bits (4 bits = 1 nybble) are
used for the opcode. The right 4 bits are used for data. For example,
the 3-byte commands all need X and Y values, with X requiring more
than one byte of storage. The high end of the X value is stored in the
right nybble of the 1st byte. The low end of the X is stored in the second
byte, and Y is stored in the third byte. In the line color and brush number
commands, the right nybble is used to store that data. Since there are
over 100 fill colors used, the set fill color command needs a second byte
to store the appropriate number.

3-11imusiorral Graphics

There are a few ways to make figures on your computer appear to have
3-dimensional qualities. Obviously, they all require some tricks, since
you start with a 2-dimensional screen.

3-D Perceptions

Each technique involves using the perceptions that make you think some-
thing is truly 3-dimensional. The most obvious of these perceptions is
that an object that appears large when close becomes very tiny when it
is at a distance. Drawing a small object on the computer screen, then
successively drawing it larger and larger, can give the appearance of it
coming at you from a distance. The second quality is rotational: turn a
3-dimensional object, and you should be able to see its sides and back.
The third quality gives us vanishing points. Stand in middle of a set of
railroad tracks and look down them at a distance. Even though the tracks
are parallel, they look like they meet way off in the distance. (This
perception, if you think about it, is somewhat related to the first: size.
The distance between the rails remains the same, but appears smaller at
a distance.) A fourth perception, which isn't used often on small com-
puters, is that of coloring, shading, and shadowing.

The perceptions listed are given generally in order of easiest to most
difficult to simulate on the computer. Each of these techniques can be
effective on its own, but the illusion can be even more striking when
they are combined. Let's look at some examples of using each.

115

116 [3-DIMENSIONAL GRAPHICS

Size

A couple of games that use strictly size for 3-D appearances are Larry
Miller's Epoch and Hadron. Both are space-type games that use the 3-
D size perception very well. Because the other techniques aren't used,
Miller accomplished two very nice things graphically: color and speed.
His shapes each have their own colored detail, and they move fast enough
to make the game play succeed.

Rotation and perspective

Dining an object to see its sides and back requires something more than
scaling a shape. The problems of vanishing-point appearances require
similar solutions. The programmer's choices are to store one shape and
do a series of calculations to determine its appearance at various angles
(generally slow and not allowing much detail), or to store a different
shape for each of many points of rotation of the object (very, very space-
consuming). The first option, calculation, is the one most often used.
Examples are games like Battlezone in the arcades, and Bill Budge's 3-
D games and utilities. To minimize calculations and complexity, the
shapes are usually line drawings only, and usually vanishing point cal-
culations are omitted for speed's sake (Flight Simulator is an example
of one that does use vanishing point computations, also). Another game,
Way Out, uses an interesting approach with line graphics. By not erasing
the old lines as you move through a 3-D maze, the colored trail of the
old lines give the walls a solid color, looking like full-color 3-D.

The helicopter in Dan Gorlin's Choplifter is an example of storing
different shapes for rotation points. As you turn the helicopter, the pro-
gram changes the shapes that are drawn to the screen, and you visibly
turn. Look for more programs using this technique more fully in the
future. While we're on examples, though, an example of using only
vanishing points to give a 3-D effect is the titling in the Star Wars
movies—one can almost imagine it rolling down the railroad tracks.

Shading and shadowing

The fourth quality, that of shading and shadowing, is perhaps the least
used because of complexity. Only in very sophisticated graphics machines,
like those used in making the movie Tron, do you see it used well. You
could conceivably use shadowing if you are storing different shapes for
rotations of an object, and you'll probably see that used to some extent
soon. An interesting, neat (and relatively easy) application of shadowing

3-D Perceptions 1 Shading and shadowing 1 Creating 3-D Shapes 1 117

is used in the arcade game Zaxxon to give a stronger 3-D image. The
shadow of the plane you control is seen on the ground below you, giving
a nice illusion of height. Anyone who's seen Mattel's newer baseball
game for the Intellivision will recognize the same technique in use.

Creating 3-D Shapes

As you can see, the most promising avenue for animation and game-
play is to create multiple shapes and use a lot of tricks to fool one's
perceptions. Oddly enough, in using these it is the programmer, not the
computer, doing all the work by pre-designing all the shapes. Here,
we'll pursue ways to get the computer to do the work. We'll try designing
a 3-D shape and let the computer show us what it will look like from
different views (actually, a lot of programmers who do the 3-D effects
by hand start with a computer-design program to generate the views,
then select the views that they want to save and use in their animations).
To do this, we'll limit ourselves to line drawings, the so-called wire-
frame 3-D graphics.

Simulating 3-D line graphics is not too difficult if you know a few
formulas and understand a couple of underlying basic concepts. (Know
may be too strong; let's say use. Know implies some understanding of
exactly why they work, which may take a while.)

First, how do we take a 3-D object and put it on a 2-dimensional
screen? There are a few ways to approach it, but let's take the idea of a
window placed between you and an actual 3-D object—the house across
the street, for example. Figure 15.1 shows how, in tracing the house

Intersections of Sight Lines With
Window Give Tracing of House

140m 1/111111
000 1Pra10111161.....n—.441.11111

Window Actual 3-D House

Figure 15.1 A Three-Dimensional Image

118 1 3-DIMENSIONAL GRAPHICS

onto your window as you view it, you actually create a 3-D projection.
Very important is that only the endpoints of lines need be projected. A
projected line will always connect its projected endpoints. What that
means for us is that in a program, we'll only have to worry about
endpoints of lines. The fewer things we have to rotate and manipulate,
the better!

Next, we need a way to describe the points that we'll have floating
around in space. 3-D coordinates in the form (X,Y,Z) are typically used,
so that's what we'll use. Figure 15.2 shows how we'll use these coor-
dinates to describe points. For convenience, we'll put the X and Y axes
on the screen, and use Z to describe depth. The point (0,0,0) will be in
the middle of the screen, on the screen. X will increase to the right, Y
will increase as you move up, and Z will increase as an object moves
away from you (into your monitor, out the back, through the wall, and
doing a lot of damage in the process if it's of any size).

We still have to get that 3-dimensional coordinate projected onto our
2-dimensional screen. Actually, the projection formula is pretty simple,
using proportions. The only additional number you need is some hypo-
thetical distance that your eye is from the screen (or, at what Z-coordinate
is your eye located?). Since we have no idea what units we're measuring,
any number will do (and it will also affect the results in ways that you
can play with later). We'll call that number ID (for eye distance?—Oh,
well). Take a look at Figure 15.3 for a sketch of how we get the pro-
portions, in this case for Y. Y is the 3-D point's Y-coordinate, Z is the
3-D point's Z-coordinate, and PY is the projected Y-coordinate. The
projected Z-value is zero, since it's on the screen. The same sketch could
be used for the projected X-coordinate. The formula is the same when
X is plugged in instead of Y.

Figure 15.2 Orientation of Three-Dimensional Axes

Point to Project 	c
(X, Y, Z)

Projected Location
(PX, PY, 0)

Screen

Eye

ID

Creating 3-D Shapes 1 119

Anyway, looking at the sketch, there are two similar triangles, whose
sides must be proportional. (Okay, geometry students, why are the tri-
angles similar? Did you say because each of the corresponding angles
are congruent? Right!) The proportions you get are:

Y PY
ID +Z ID

With a little manipulation, that's equivalent to:

Y*ID
PY —

ID + Z

With the same approach, you also get:

X*ID
PX —

ID + Z

And that's how you get your projected coordinates (PX,PY) out of any
old 3-D coordinate set.

So what happens is you take the coordinates of all the endpoints in a
figure, store them in some kind of array in the computer, remember
(better yet, tell the computer) which coordinates get connected by lines
(sort of like connect-the-dots), project all the coordinates onto the screen,
and then finally connect all the projected coordinates with lines.

(0.0.0) A ABD "PA ACE

Figure 15.3 Computing Proportions for a Projected Point

120 [3-DIMENSIONAL GRAPHICS

The neat part now is that once you have all these coordinates in an
array, you can do things to them, such as turning them upside down,
sideways, inside out, or whatever you please.

A Few Things You Can Do With Your
Coordinates

First, let's put the coordinates somewhere it's convenient to talk about
them. Use three arrays, X(?), Y(?), and Z(?). If you have 10 endpoints,
X will go from X(1) to X(10), and so on. The first point will have
coordinate (X(1),Y(1),Z(1). Got the general idea?

Move it

You can move your object in any direction by just adding some number
to any set of coordinates. Add 5 to all the X values, for example, and
the object will move to the right 5 units. Add 100 to all the Z values,
and the object should move back 100 units (through the monitor, the
wall, the garage...), and should appear much smaller when next displayed.

Give it a center

Before anything else, pick a point in the center of the object and remem-
ber it. When you scale or rotate an object, you'll need a center as a
reference point.

Why it's a good idea to give it a center. What happens if the center isn't
very close to the object? Let's use a rotation for an example. Say the
center we choose is somewhere near the sun. Rotate the object 45 degrees
around the center. Where's its display point? Is it anywhere near your
monitor screen? N0000000. Riding around on the Earth, your monitor
would catch up to it in about 46 days, over 1.5 billion miles away in
space. Better to rotate your object in place; that is, around a center in
its center.

Make it BIGGER or smaller

You can easily scale your object so that its actual size (not perceived
size, as controlled by distance away) changes. Say you want to double
the size; your multiplier is two. First, subtract the coordinate of the
center from each of your points. Then multiply each coordinate by your
multiplier, in this case, 2. Last, add the center coordinate back onto

A Few Things You Can Do I Make it BIGGER or smaller I Rotate it 1 121

each of the now-scaled coordinates. The deal with the center is similar
to what happens with rotating. If you don't do it, your figure can be
zapped way out into space. This way, it's scaled in place. Hmmin. For
some real fun, try scaling only one dimension, your X-coordinates, for
example. It's great fun mushing your objects, then stretching them back
out again. The multiplier can be any number (except zero; zero is bad).
Numbers like 0.5 will scale an object so that it's smaller.

Rotate it

Here's where you need some old formulas from trigonometry. Suppose
you want to rotate d degrees. First find the sine and cosine of d, using
S = SIN(d), C = COS(d).

If you want to rotate clockwise or counterclockwise, note that the Z-
coordinate won't change. Each depth value remains the same. If
(NX,NY,NZ) are the new coordinates, here's the rotation formula:

NX = C*X-S*Y
NY = C*Y + S*X
NZ = Z

To rotate left or right (around the Y-axis, sort of like a merry-go-round):

NX = C*X-S*Z
NY = Y
NZ = C*Z + S*X

And to rotate around the X-axis (up or down, like looking at the back
of a paddlewheel on a steamboat):

NX = X
NY = C*Y-S*Z
NZ = C*2 + S*Y

So much for that. In the next chapter there's a listing of a Basic program
that does all of the above.

A 3-01G1dpiliCS NOM

The 3-D progran 	chapter (Listing 16.1) allows you to enter the
coordinates for a .5-1) line drawing, enter the dot-to-dot information for
the lines, then lets you view your object, rotate it 3-dimensionally, move
and scale it, stretch and compress it, and save and retrieve it to and from
disk. The program is in Basic, so don't expect animation speed in the
movement. It does, however, give a good introduction to how 3-D fig-
ures can be handled in a computer.

The program uses exactly the same calculations we discussed last
chapter. The calculation for projecting a 3-D coordinate onto the 2-
dimensional screen can be found in lines 840-860 (note that since the
values used are coordinates, not distances as in our formula, ID - Z(I)
is actually the distance between ID and Z, since one of the actual values
is negative and the other positive). The calculations for moving the figure
in each direction are in lines 1290-1310. The scaling calculations are in
lines 780-810, and the rotation calculations are in lines 740-760. The
rest of the program is essentially window dressing, allowing you to enter,
edit, save, and load your figures, and to make your choices.

The only section to note mathematically is that from 970-1080.
Although it looks complex, it's actually just broken down into cases.
Those instructions perform the calculations necessary for clipping. When
a line is ready to be drawn, what happens if one of the endpoints is off
the physical screen? The easy options are to just not draw it at all (even
though half or most of it might actually be in the visible range) or to
have the endpoints wrap around (creating a real mess, but it's fast). The
nice way, albeit slower, is to figure out at which point the line would
have gone off the screen, and then use that as the endpoint for drawing
the line. The calculations use the slope of the line to figure the point at

(text continued on page 130)

123

124 	A 3-D GRAPHICS PROGRAM

Listing 16.1
10 LOMEM: 16384: HGR
20 DIM XR(1),YR(1),X(500),Y(500),Z(500),L%

(749,1),PX(500),PY(500)
30 NL = 0:NP = 0:ID = - 100:VS = 3
40 HOME : VTAB 21: PRINT "I-CREATE FIGURE, 2-

EDIT FIGURE": PRINT "3-VIEW, 4-
START OVER":
PRINT "5-SAVE ON DISK, 6-
GET FROM DISK": PRINT
"7-SAVE 2 DIMENSIONAL IMAGE, 8-QUIT";

50 INPUT C: IF C < 1 OR C > 8 THEN 40
SO IF NOT NF AND C > 1 AND C < 6 THEN PRINT

: PRINT "THERE IS NO FIGURE IN MEMORY.":
PRINT
"<PRESS ANY KEY>";: GET AS: GOTO 40

70 ON C GOTO 510,100,580,30,250,350,460,80
80 TEXT : END
90 REM EDIT FIGURE
100 TEXT : HOME
110 PRINT "1-POINTS,2-LINES,3-CHANGE,4-DONE

EDITING";: INPUT C: IF C < 1 OR C > 4
THEN 110

120 ON C GOTO 130,160,190,40
130 PRINT "#,X,Y,Z:":S1 = 0:SW = 0: FOR I = 1

TO NP
140 PRINT 	HTAB 8: PRINT LEFTS (STR$

(X(I)),S);: HTAB 16: PRINT LEFTS
STR$(Y(1))
,6);: HTAB 24: PRINT LEFT$ (STR$
(Z(I)),S):
S1 = SI + 1: IF Si = 20 THEN PRINT
"<PRESS A
KEY>";: GET A$:S1 = 0: PRINT

150 NEXT : GOTO 110
160 PRINT "#,FROM,TO":SW = 1:S1 = 0: FOR I

1 TO NL
170 PRINT ItLVI,0)#LUI,1):51 = Si + 1: IF

Si
= 20 THEN PRINT "<PRESS A KEY>"i: GET
A$:S1 =
0: PRINT

The 3-D Graphics Program .1 125

Listing 16.1 (continued)
180 NEXT : GOTO 110

190 IF SW THEN 220
200 INPUT "POINT *";I: IF I < 1 OR I

> NP THEN 110
210 INPUT "X:";X(I): INPUT "Y:";Y(I): INPUT

"Z:";Z(I): GOTO 110

220 INPUT "LINE *";I: IF I < 1 OR I > NL THEN
110

230 INPUT "FROM *";L%(It0): INPUT "TO *";L%
(It1): GOTO 110

240 REM SAVE 3-D FILE
250 ONERR GOTO 440
260 INPUT "NAME : ";A$
270 PRINT CHR$(4);"OPEN";A$
280 PRINT CHR$(4);"WRITE";A$
290 PRINT NP: PRINT NL
300 FOR I = 1 TO NP: PRINT X(I): PRINT Y(I):

PRINT Z(I): NEXT
310 FOR I = 1 TO NL: PRINT LUIt0): PRINT L%

(It1): NEXT
320 PRINT CHR$(4);"CLOSE"
330 POKE 216,0: GOTO 40
340 REM READ 3-D FILE
350 ONERR GOTO 440
360 INPUT "NAME : ";A$
370 PRINT : PRINT CHR$(4);"OPEN";A$
380 PRINT CHR$(4);"READ";A$
390 INPUT NP: INPUT NL
400 FOR I = 1 TO NP: INPUT X(I)tY(I),Z(I):

NEXT
410 FOR I = 1 TO NL: INPUT L%(It0): INPUT L%

(It1): NEXT
420 PRINT CHR$(4)"CLOSE"
430 PDKE 216,0:NF = 1: GOTO 40
440 PRINT "DISK ERROR"; PEEK (222): PRINT

"<PRESS ANY KEY>";: GET A$: POKE 216,0:
GOTO 40

450 REM SAVE PICTURE
460 ONERR GOTO 440
470 INPUT "NAME : ";A$
480 PRINT CHR$(4)"BSAVE";AW,A8192,L8192"

126 [A 3-D GRAPHICS PROGRAM

Listing 16.1 (continued)

490 POKE 216,0: GOTO 40
500 REM CREATE FIGURE

510 NF = 1: HOME : TEXT : PRINT "TYPE "D" OR

"DONE" WHEN NO MORE POINTS.": ONERR GOTO
520

520 PRINT "POINT *";NP + 1: INPUT "X:";A$: IF
LEFT$ (A$,1) = "0" THEN 540

530 I = VAL (A$):NP = NP + 1:X(NP) = I: INPUT

"Y:";Y(NP): INPUT "Z:";Z(NP): GOTO 520

540 PRINT "TYPE "D" OR "DONE" WHEN NO MORE

LINES.": ONERR GOTO 550
550 PRINT "LINE •";NL + 1: INPUT "FROM POINT

*";A$: IF LEFTS (A$,1) = "D" THEN POKE
216,0:
GOTO 40

560 I = VAL (A$):NL = NL + 1:LX(NL,0) = I:
INPUT "TO POINT *";LX(NL,1): GOTO 550

570 REM FIND APPROXIMATE CENTER

580 XH = - 999:YH = - 999:ZH = - 999:XL =
999:YL = 999:ZL = 999

590 FOR I = 1 TO NP

600 IF X(I) < XL THEN XL = X(I)

610 IF X(I) > XH THEN XH = X(I)
620 IF Y(I) < YL THEN YL = Y(I)

630 IF Y(I) > YH THEN YH = Y(I)
640 IF Z(I) < ZL THEN ZL = Z(I)

650 IF Z(I) > ZH THEN ZH = Z(I)
660 NEXT

670 XC = (XL + XH) / 2:YC = (YL + YH) / 2:ZC =
(ZL + ZH) / 2

680 C = 4

690 REM COMPUTE NEW POINT COORDINATES

700 FOR I = 1 TO NP
710 IF C = 4 THEN 840

720 X(I) = X(I) - XC:Y(I) = Y(I) - YC:Z(I) =
Z(I) - ZC:XT = X(I):YT = Y(I):ZT = Z(I)

730 ON C GOTO 740,750,760,840,770

The 3-D Graphics Program 1 127

Listing 16.1 (continued)

740 YT = Cl * Y(I) + Si * Z(I):ZT = Cl * Z(I)
- Si * Y(I): GOTO 820

750 XT = Cl * X(I) - SI * Z(I):ZT = Cl * Z(I)
+ S1 * X(I): GOTO 820

760 XT = CI * X(I) - Si * Y(I):YT = Cl * Y(I)
+ Si * X(I): GOTO 820

770 ON Si GOTO 790.800,810
780 XT = M * X(I):YT = M * Y(I):ZT = M * Z(I):

GOTO 820
790 XT = M * X(I): GOTO 820
800 YT = M * Y(I): GOTO 820
810 ZT = M * Z(I)
820 X(I) = XT + XC:Y(I) = YT + YC:Z(I) = ZT

+ ZC
830 REM TRANSLATE TO 2-D
840 IF ID - Z(I) > - .001 THEN K = 10000:

GOTO 860
850 K = ID / (ID - Z(I))
860 PX(I) = K * X(I):PY(I) = K * Y(I)
870 NEXT
880 REM DRAW FIGURE ON SCREEN
890 HGR : HCOLOR= 7
900 FOR I = 1 TO NL
910 SW = 0
920 FOR II = 0 TO 1
930 XR(I1) = PX(LX(I,II)) * VS:YR(I1) = PY(LX

(I ► I1)) * VS
940 NEXT
950 FOR Ii = 0 TO 1
960 IF SW THEN 1090
970 IF ABS (XR(I1)) < = 139 THEN 1040
980 IF ABS (YR(I1)) < = 95 THEN 1010
990 IF YR(0) = YR(1) THEN 1070
1000 YP = SGN (YR(II)) * 95:XP = (VP - YR(1))

* (XR(0) - XR(1)) / (YR(0) -
YR(1)) + XR(1): IF
ABS (XP) < = 139 THEN 1080

128 	A 3-D GRAPHICS PROGRAM

Listing 16.1 (continued)

1010 IF XR(0) = XR(1) THEN 1070

1020 XP = SGN (XR(I1)) * 139:YP = (XP -
XR(1))
* (YR(0) - YR(1)) / (XR(0) -

XR(1)) + YR(1): IF
ABS (YP) < = 95 THEN 1080

1030 GOTO 1070
1040 IF ABS (YR(I1)) < = 95 THEN 1090
1050 IF YR(0) = YR(1) THEN 1070

1060 YP = SGN (YR(I1)) * 95:XP = (YP - YR(1))
* (XR(0) - XR(1)) / (YR(0) -
YR(1)) + XR(1): IF

ABS (XP) < = 139 THEN 1080
1070 SW = 1: GOTO 1090

1080 XR(I1) = XP:YR(I1) = YP

1090 NEXT

1100 IF NOT SW THEN HPLOT 140 + XR(0),96

YR(0) TO 140 + XR(1),96 - YR(1)

1110 NEXT
1120 REM GET NEXT OPERATION
1130 HOME : VTAB 21: PRINT "1-ROTATE. 2-

SHIFT.

3-SCALE OBJECT,": PRINT "4-DISTORT, 5-

NEW

CENTER, 6-SCALE VIEW": PRINT "7-
EDIT. SAVE. OR

QUIT, 8-FULL SCREEN";
1140 INPUT C: ON C GOTO 1210,1260,1180,1170,

1340.1390,40,1370

1150 GOTO 1130
1160 REM SCALE FIGURE

1170 PRINT : INPUT "1-WIDTH. 2-HEIGHT, OR

3-DEPTH7";51: IF S1 < 1 OR S1
> 3 THEN 1170

1180 IF C = 3 THEN Si = 0

1190 INPUT "MULTIPLY BY? ";M:C = 5: GOTO 700
1200 REM ROTATE

The 3-D Graphics Program 1 129

Listing 16.1 (continued)

1210 HOME : VTAB 21: PRINT "ROTATE 1-UPt
2-DOWN, 3-LEFT, 4-RIGHTt": PRINT "5-
CLOCKWISE,
6-COUNTERCLOCKWISE ";: INPUT C: IF C
< 1 OR C > 6 THEN 1210

1220 INPUT "ANGLE (0 - 180) ? ";AN: IF AN < 0
OR AN > 180 THEN 1220

1230 AN = 3.14 * AN / 180: IF INT (C / 2) * 2
< > C THEN AN = - AN

1240 SI = SIN (AN):C1 = COS (AN):C = INT
((C + 1) / 2): GOTO 700

1250 REM SHIFT
1260 HOME : VTAB 21: PRINT "SHIFT 1-LEFT,

2-RIGHT, 3-DOWN, 4-UPt": PRINT "5-
CLOSER. 6-
FARTHER "t: INPUT C: IF C < 1 OR C
> 6 THEN 1260

1270 INPUT "HOW MANY UNITS? ";AN:
IF INT (C / 2) * 2 < 	> C
THEN AN = - AN

1280 ON INT ((C + 1) / 2) GOTO 1290.1300,
1310

1290 XC = XC + AN: FOR I = 1 TO NP:X(I) = X(I)
+ AN: NEXT : GOTO 1320

1300 YC = YC + AN: FOR I = 1 TO NP:Y(I) = Y(I)
+ AN: NEXT : GOTO 1320

1310 ZC = ZC + AN: FOR I = 1 TO NP:Z(I) = Z(I)
+ AN: NEXT

1320 C = 4: GOTO 700
1330 REM NEW CENTER
1340 PRINT "POINT $ (1-";NP;") ";: INPUT C:

IF C < 1 OR C > NP THEN 1340
1350 XC = X(C):YC = Y(C):ZC = Z(C): GOTO 1130
1360 REM FULL SCREEN
1370 POKE - 16302,0: GET AS: POKE -

16301,0:
GOTO 1130

1380 REM SCALE VIEW
1390 INPUT "MULTIPLY BY? ";M:VS = VS * M:C =

4: GOTO 700

130 [A 3-D GRAPHICS PROGRAM

which the line should end. Note also that since we're using a coordinate
system that has the point (0,0) in the middle of the screen, with X and
Y increasing to the right and up, respectively, when the line is actually
drawn in 1100, it recomputes the coordinates to fit Apple's (0,0) in the
upper left, with Y increasing downward.

A Breakdown of the Program

Lines 10-30 initialize the arrays and variables.
Lines 40-80 give and act on the main editing choices.
Lines 90-230 allow you to list the coordinates and lines in your figure

and edit them.
Lines 240-440 let you save or read a 3-D file from disk.
Lines 450-490 let you save the screen image from your projected

object as a picture file.
Lines 500-560 allow you to enter the points and lines for a new figure.
Lines 570-680 compute a center for the figure by finding the largest

and smallest X, Y, and Z coordinates, then averaging each pair.
Lines 690-820 contain the rotation and scaling formulas for move-

ment. C is set for the type of movement, down in lines 1180-1240.
Lines 830-870 project the 3-D coordinates into the 2-dimensional

plane of the monitor screen.
Lines 880-1110 take the projected points, scale them to viewing size,

then draw the lines of the figure on the screen.
Lines 1120-1390 get the operation that you want to perform and the

parameters of the operation, if necessary, and usually jump back up to
line 700 to redraw.

Variables

A$: a general input string
AN : numeric quantity, used for angle of rotation and for number of

units to shift an object
C : numeric input choice
Cl : cosine of angle of rotation
I : generally a loop counter

: another loop counter
ID : "eye distance," as discussed last chapter
K : intermediate multiplier used in finding projected points
L%(*,*) : integer array of line endpoints. Up to 749 lines can be

used. Note that the zero element of the second dimension
is used, so line 5's endpoints are stored in L%(5,0) and
L%(5,1).

Variables 1 131

M : multiplier for scaling
NF : number of figures, 0 or 1
NL : number of lines
NP : number of points
PX(*) : projected X-values
PY(*) : projected Y-values
S1 : sine of angle of rotation
SW : a switch variable, used in 130-190 to tell if lines or points are

being edited, and in 910-1100 to tell if a line is entirely off the
screen or not.

VS : viewing scale
X(*),Y(*),Z(*) : X,Y,Z coordinates of your figure
XC,YC,ZC : X,Y,Z coordinates of center
XH,YH,ZH : largest each of X,Y,Z coordinates
XL,YL,ZL : smallest each of X,Y,Z coordinates
XP,YP : interim computational values used for clipping
XR(*),YR(*) : scaled X,Y projected coordinates, used in preparing

for line display
XT,YT,ZT : temporary X,Y,Z coordinate with center subtracted off,
used in rotation and scaling computations.

A Hi-Res Draung

We've talked about the various Applesoft commands available for draw-
ing on the hi-res screen, but so far we've used them mostly for animation
and computed pictures. Here's a program that makes use of all the Apple-
soft graphics commands for freehand drawing with paddles or a joystick.
It gives you two types of line-drawing modes, color control (using the
standard six Apple colors), and a paintbrush mode using a shape table.
It also lets you save and load your pictures to and from disk.

The program uses a few interesting programming tricks. A couple
deal with refining joystick control for drawing, and one shows a quick
way to poke in some hexadecimal machine-language code from Basic.
It's also fairly short, and has room for adding things like the packing
and fill routines from earlier in the series. Doing so is a not-too-com-
plicated task in Basic.

Line and Fill

The two line-drawing modes are called line and fill. The latter may be
somewhat of a misnomer, but it does allow a manual fill. The regular
line mode puts two round cursors on the screen. One is a start point and
the other the end point for your line. The start point is stationary. The
end point moves under joystick control. When you push button 0 on the
joystick, a line is drawn between the start point and end point, and the
end point becomes the new start point. This way it is possible to draw
successive lines, such as around a box, without moving the start point
manually each time. Pressing button 1 at any time moves the current
start point to the end point position without drawing a line.

(text continued on page 137)

133

134 1 A HI-RES DRAWING PROGRAM

Listing 17.1

10 D$ = CHR$ (4)
20 GOSUB 1000

30 POKE 232,0: POKE 233,3
40 NS = 1:GS = 0:PS = 0:BS = 0:CB = 0:CD = 7:

SW = 0:ZR = 10:XS = 0
50 HCOLOR. 7: ROT= 0: SCALE. 1
100 HGR
105 POKE - 16303,0: HOME
108 PRINT "DRAWING PAGE OPTIONS:"
109 PRINT

110 PRINT "L : LINE MODE"
120 PRINT "F : FILL MODE"
121 PRINT "1t2tOR 3 : BRUSH NUMBER/

BRUSH MODE"
122 PRINT

130 PRINT "C : NEW DRAWING COLOR (0-7)"
140 PRINT "B : NEW BACKGROUND COLOR (0-7)"
141 	PRINT
150 PRINT "G : GET A PREVIOUS DRAWING"
160 PRINT "S : SAVE DRAWING"
161 PRINT

162 PRINT "<ESC> : FULL SCREEN/TEXT SWITCH"
163 PRINT "Z : ZERO-IN CURSOR SWITCH"
164 PRINT
165 PRINT "H : HELP; RETURNS TO THIS PAGE"
167 PRINT
170 PRINT "PRESS ANY KEY TO GO TO DRAWING

PAGE": GET A$
190 POKE - 16304,0

195 HOME : VTAB 22: HTAB 1
196 PRINT " 	TYPE "H" FOR HELP"
199 IF PS = 0 THEN 202
200 IF BS = 0 THEN PRINT "PAINT MODE, BRUSH

UP": GOTO 205
201 PRINT "PAINT MODE, BRUSH DOWN": GOTO 205
202 IF SW = 1 THEN PRINT "FILL MODE": GOTO

205
203 PRINT "LINE MODE"
205 PRINT "COLOR: ";CD;" 	BACKGROUND: ";CB;

Line and Fill 1 135

Listing 17.1 (continued)

210 X = PDL (0):Y = PDL (1): IF NOT ZC THEN
220

215 X = ZX + INT (X / 128 * ZR) - ZR:Y = ZY +
INT (Y / 128 * ZR) - ZR: GOTO 225

220 IF X > 245 THEN XS = 30
221 IF X < 10 THEN XS = - 5
222 X = X + XS:Y = INT (V / 256 * 202) - 5
225 IF X < 0 THEN X = 0
226 IF Y < 0 THEN Y = 0
227 IF X > 279 THEN X = 279
228 IF Y > 191 THEN Y = 191
230 XDRAW NS AT XtY
232 IF NOT PS THEN XDRAW NS AT XltY1
233 IF PS AND BS THEN DRAW NS AT X,Y
235 IF PEEK (- 16384) < 128 THEN 290
240 GET A$: POKE - 16384,0
245 IF NOT PS THEN XDRAW NS AT XltY1
246 IF NOT PS OR NOT BS THEN XDRAW NS AT

XtY
247 IF A$ 	"H" THEN 105
250 IF A$ = "C" THEN 400
260 IF A$ = "B" THEN 500
261 IF A$ = "S" THEN 950
262 IF A$ = "G" THEN 900
265 IF A$ = "Z" THEN ZX = X:ZY = Y:ZC = NOT

ZC: GOTO 195
266 IF A$ = "1" OR A$ = "2" OR A$ = "3" THEN

NS = VAL (A$): POKE 233,64:BS = 0:PS =
1: GOTO 195

268 IF ASC (A$) = 27 THEN POKE - 16302 +
GStO:GS = NOT GS: GOTO 195

270 IF A$ = "F" THEN SW = 1: GOTO 850
280 IF A$ = "L" THEN SW = 0: GOTO 850
285 GOTO 210
290 IF NOT PS OR NOT BS THEN XDRAW NS AT

XtY
291 IF NOT PS THEN XDRAW NS AT XltYl
292 IF PEEK (- 16286) < 128 THEN 310
296 IF PS THEN BS = 0: GOTO 195

136 [A HI-RES DRAWING PROGRAM

Listing 17.1 (continued)
300 X1 = X:Y1 = Y
310 IF PEEK (- 16287) < 128 THEN 210
316 IF PS THEN BS = 1: GOTO 195
320 HPLOT X1tY1 TO X,Y: IF NOT SW THEN X1 =

X:Y1 = Y
330 GOTO 210
400 HOME : VTAB 22: PRINT "0-7?";
404 GET A$: IF ASC (A$) > 47 AND ASC (A$) <

56 THEN CD = VAL (A$): HCOLOR= CD: GOTO
195

406 GOTO 504
500 HOME : VTAB 22: PRINT "0-7?";: GET A$
502 IF ASC (A$) > 47 AND ASC (A$) < 56 THEN

CB = VAL (AS): HCOLOR= CB: HPLOT 0,0:
CALL 62454: HCOLOR= CD: GOTO 195

504 PRINT "INVALID COLOR; COMMAND CANCELLED."
: FOR I = 1 TO 2000: NEXT I: GOTO 195

750 PRINT "THAT FILE ISN"T ON DISK.": FOR I =
1 TO 2000: NEXT : GOTO 195

850 POKE 233t3:NS = 1: IF PS THEN XDRAW 1 AT
X1,Y1:PS = 0

855 GOTO 195
900 HOME : VTAB 22: INPUT "UNDER WHAT NAME IS

IT SAVED? ";A$
905 ONERR GOTO 750
910 PRINT DWBLOAD "A$;"At$2000
920 POKE 216,0: GOTO 195
950 HOME : VTAB 22: INPUT "UNDER WHAT NAME?

";A$
955 ONERR GOTO 750
960 PRINT OWBSAVE ";A$;"tA8192,L8192"
970 POKE 216,0: GOTO 195
1000 L = 768: GOSUB 1100
1010 L = 16384: FOR I = 1 TO 4: GOSUB 1100:

NEXT
1020 RETURN
1100 READ A$: FOR X = 1 TO LEN (A$) STEP 2
1120 Y = ASC (MID$ (A$tXt1)) - 48: IF Y > 9

THEN Y = Y - 7
1130 Z = ASC (MID$ (A$tX + 1,1)) - 48: IF Z

> 9 THEN Z = Z - 7

Line and Fill / Brushes 1 Keypress Operations / Joystick Control 1 137

Listing 17.1 (continued)
1140 POKE L tY * 16 + Z
1150 L = L + 1: NEXT : RETURN
1200 DATA "01000400123F20642015361E0700"
1210 DATA "0300080006001E00"
1220 DATA "353700"
1230 DATA "OD0911161F13090931161617090911161F

1300 II

1240 DATA "292D153F3F372D2D353F3F372D2D35363F
1700"

The fill version of line mode works the same way, except the start
point doesn't change when you draw a line. The result is that until you
change the start point yourself (by pressing button 1), all lines originate
from the same point. By holding down button 0 as you move the joystick,
you can manually fill an area, albeit slowly.

Brushes

There is a shape table of three brush shapes numbered 1, 2, and 3.
Number 1 is a small solid brush, number 3 is a larger solid brush, and
number 2 is an airbrush, made up of random dots in a small area.
Brushes were discussed earlier when we talked about the PICDRAW
routine from The Graphics Magician that used a character generator
which allowed use of all the blended colors. The same technique can be
used with a shape table, as in this program, except you become limited
to the standard six colors.

Keypress Operations

A help page lists all the keypress options for the program and what they
do. Among other options are the GET and SAVE commands for loading
and saving pictures to disk (L, for load, was already used for line mode),
and the Escape key, which toggles between full-screen graphics and
mixed text and graphics. C and B control the drawing and background
colors, the latter clearing the screen when it sets the new background.

Joystick Control

Z is one of the joystick commands. It zeroes-in your joystick to the area
immediately around the cursor. Pressing it again toggles back- to full-
screen control.

138 [A HI-RES DRAWING PROGRAM

Another feature added to joystick control is that you are given the
full range of X, from 0 to 279, even though the joystick only returns
values from 0-255. It's done with an offset, XS, which is added to the
joystick value each time. If you are working on the left 9/10ths of the
screen, this offset is -5. This is negative, instead of zero, to compensate
for joysticks that are slightly worn and don't go all the way down to
zero. (Also for products such as the Koala Pad, which, although it's an
interesting new graphics input device, has even less resolution than a
joystick.) When you are working on the right 9/10ths of the screen, the
offset 30 is added to the joystick value, giving it a maximum value of
285. All values are then put in actual range (0-279) before drawing.
Note that you don't notice this change in offsets unless you move your
cursor from one extreme edge to the other.

Here are the variable names used in the program:

A$: a general input string
BS : brush switch, tells whether the brush is up (0) or down (1)
CB : color of the background
CD : color used for drawing
D$: a Control-D, for disk commands
GS : full-screen graphics switch; 0 for mixed text and graphics, 1 for

full-screen graphics
I : loop counter
L : location, or address, for poking in shape table data
NS : the number shape that is being drawn
PS : paintbrush mode switch; 0 for not brush mode, 1 for brush mode
SW : line mode switch; 0 for normal line mode, 1 for fell line modeX,Y
: movable cursor X,Y position
X1,Y1 : start point position
XS : X offset for joystick adjustment
Z : intermediate variable used in poke subroutine
ZC : zero switch; 0 for full screen cursor, 1 for zeroed-in cursor
ZX,ZY : coordinate around which zeroed cursor is

And here's a breakdown of the sections of the program:
Lines 10-100 initialize everything.
Lines 105-190 display the help screen.
Lines 195-205 print the current status (mode, colors) at the bottom

of the drawing screen.
Lines 210-228 read the paddle controls, zero-in if in zero mode,

adjust X with XS, and check the coordinates for proper range.

Joystick Control 1 139

Lines 230 and 232 flash the cursors, the start point only if needed.
Note that in line 232, the statement IF NOT PS means to us "if not in
paintbrush mode." To the computer, IF NOT PS is equivalent to saying
IF PS = 0. IF PS is the same as the statement IF PS<>0, or "if PS is
not equal to zero," or, in our case, "if PS is 1." This logic syntax is used
in several places in the program, and does save a lot of bytes in long
programs.

Line 233 draws the brush if in paintbrush mode and the brush is
down.

Lines 235-285 check for a keypress and process the keypress, after
erasing the flashing cursors.

Lines 290-330 erase the flashing cursors, check for a button press,
and process any button press.

Lines 400-504 let the user input a new drawing or background color.
Line 750 is a disk error message.
Lines 850-855 turn off the paintbrush switches, if necessary, if one

of the line modes is selected. Note that two shape tables are used, one
for the flashing round cursor, the other for the brushes. Line 850 pokes
the location of the round cursor into the shape table pointer (the second
byte is zero for both tables, so it need not be changed). Line 266 has a
similar poke for setting the brush shape table.

Lines 900-970 let you save or load a picture.
Lines 1000-1020 load the shape table data by setting the starting

locations, L, and calling the subroutine at 1100.
Lines 1100-1150 contain a routine that will read a string of character

data and interpret that string as hexadecimal numbers (by using the
ASCII code of each character). Once each number is interpreted, it is
poked into memory, starting at location L.

Lines 1200-1240 contain the hex data for our shape tables. Line 1200
is the cursor shape table, and lines 1210-1240 contain the three brushes.
How'd we get the data? Brute force—sorry. It seemed the simplest way
to do it in an Applesoft program without having to mess with BLOADing
binary files. The original BLOADed shapes were made with the Shape
Maker program, but if we printed that data here it would not make for
very meaningful typing.

APP E NDIX A

Making Hillary Simple

Binary isn't really very difficult; it's just awkward to use. In a way, it
works very much like the standard base 10 system (decimal), in which
each place stands for a power of 10. In decimal, the number 3,286 means
three thousands (3 times 10 to the third), two hundreds (2 times 10
squared), eight tens (8 times 10 to the first), and six ones.

Decimal - Breakdown of the number 3286

103 102 101 10°

1000's 100's 10's l's

3 	2 	8 	6

In binary, each place designates a power of two. The rightmost place
is 2 to the zero power, or 1. The next place is 2 to the first, or 2. The
next is 2 squared, or 4. The next is 2 to the third, or 8, and so on. The
binary number 1101 is equivalent to the base 10 number 13, since it
means that there is one 8, one 4, no 2s, and one 1.

Binary - Anatomy of the number 1101

Power of 2 23 22 21 2°

Decimal Values 8 4 2 1

Binary Number 1 1 0 1

Decimal Equivalent 8 + 4 + 0 + 1 = 13

141

142 [GRAPHICALLY SPEAKING

Another example, you say? How about 1011011?

26 2 24 23 22 21 2°

64 32 16 8 4 2 1

1 0 1 1 0 1 1

64 + 0 +16 + 8 + 0 + 2 + 1 =91

So 1011011 in binary is the same as 91 decimal.
In one byte you have eight bits (Binary digITS), and the largest

number possible is every bit set (= 1)

27 26 2 24 23 22 21 2°

128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

128 + 64 +32 +16 +8 +4 +2 + 1 = 255

And that's the easy way to convert unsightly binary numbers to the
nice, familiar decimal variety.

APP 	ND 	X

Applosoft Hi-Hos Graphics Commands

HGR: clears page 1 of graphics to black and sets the display to page 1
with four text lines at the bottom; 280 dots by 160 dots.

HGR2: clears page 2 of graphics to black and sets the display to full-
screen page 2; 280 dots by 192 dots.

HCOLOR = C: sets the current hi-res plotting color to C, where C has
a value of 0-7.

HPLOT X,Y: plots a dot at point X,Y in the current HCOLOR.

HPLOT X1,Y1 TO X2,Y2: plots a line in the current HCOLOR from
X1,Y1 to X2,Y2. You can add extra TO Xn,Yn clauses. If X1,Y1 is
omitted, the line starts at the point last plotted.

POKE 233,INT(L/256) : POKE 232,L - PEEK(233) *256: pokes in
the starting address, L, of a shape table.

DRAW S AT X,Y: draws shape number S from a shape table at location
X,Y in the current HCOLOR.

XDRAW S AT X,Y: draws shape number S at location X,Y in reverse
of whatever's on the screen.

ROT = R: sets the current shape rotation to R. 0 is normal, 16 is 90
degrees clockwise, 32 is 180 degrees, 48 is 270 degrees, and 64 is
normal again. Intermediate values give other rotations, depending on
the SCALE of the shape.

143

144 1 GRAPHICALLY SPEAKING

SCALE = S: sets the shape scale to S. 1 is normal, and S must be an
integer from 1 to 255.

CALL 62450: clears current hi-res screen to black.

CALL 62454: clears current hi-res screen to the HCOLOR most recently
HPLOTted. You must do an HCOLOR = and an HPLOT X,Y first.

Soft Switches

The following POKEs affect which graphics screen is displayed without
clearing the screen, and let you switch from full-screen graphics to mixed
text and graphics, and back.

POKE -16304,0: Full-screen text to current graphics mode (lo-res or
hi-res).

POKE -16303,0: Graphics mode to text mode; usually only works if
you are viewing page 1 graphics.

POKE -16302,0: Mixed text and graphics to full-screen graphics.

POKE -16301,0: Full-screen graphics to mixed text and graphics. Usu-
ally only works on page 1.

POKE -16300,0: Switches from page 2 to page 1.

POKE -16299,0: Switches from page 1 to page 2.

POKE -16298,0: Switches from hi-res graphics to lo-res graphics.

POKE -16297,0: Switches from lo-res graphics to hi-res graphics.

APPENDIX
Ac5.3,

Machine language [um Points
for Applesoft Graphics Routines

For those of you who tinker in machine language and who want to try
out some machine-language graphics, here are the access points for the
Applesoft graphics routines. The hi-res line routine comes in handy
when you don't want to write your own—or when you don't have the
space for one.

Command 	 Equivalent JSR

HGR 	 JSR $F3E2
HGR2 	 JSR $F3D8
HPLOT 	 JSR $F457

needs Y value in accumulator, X-low in X register, X-hi in Y register.

HPOSITION 	 JSR $F411

sets the starting point for a line, as does HPLOT, without actually plot-
ting a point. HPLOT or HPOSITION must be used to start drawing with
a new HCOLOR, and should be used before the first HPLOT TO. Y-
value goes in the accumulator, X-low goes in the X register, and X-hi
goes in the Y register.

HPLOT TO 	 JSR $F53A

takes Y value in Y register, X-low in accumulator, X-hi in X register.

Hi-res Clear 	 JSR $F3F2

145

146 [GRAPHICALLY SPEAKING

clears the hi-res screen to black.

Background Set 	 JSR $F3F4

clears the hi-res screen to the color in the accumulator. Instead of 0-7,
use 00, 2A, 55, 7F, 80, AA, D5, and FE These are the hex values that
correspond to the various bit masks used for the colors. You can actually
use any value and get different (and strange) color results.

A couple of locations that are of interest are $E4, which holds the
current HCOLOR value, as above, and $E6, which tells us which hi-
res page to draw on. The latter is useful for changing the page on which
drawing is done without actually displaying it. Changes can be made on
the hi-ms screen that's not displayed; then you can use the switch to
show that page while drawing on the other (the hex values for those
switches, given in decimal as -16300 and -16299 earlier, are $C054 and
$C055). $E6 contains $20 if hi-res page 1 is being drawn on, or $40 if
hi-res page 2 is in use. hi Basic, you can use POKE 230,32 and POKE
230,64 for the same results.

tr"

ASCII Character Codes

AP

NOIX

Number What to Type

0 Control-@ 26 Control-Z

1 Control-A 27 Escape

2 Control-B 28 n/a

3 Control-C 29 Control-shift-M

4 Control-D 30 Control-rub-on

5 Control-E 31 n/a

6 Control-F
7 Control-G (bell) 32 space

8 Control-H or left arrow 33 !

9 Control-I or TAB 34

10 Control-J or down arrow 35 #

11 Control-K or up arrow 36 $

12 Control-L 37 %

13 Control-M or Return 38 &

14 Control-N 39

15 Control-0 40 (

16 Control-P 41

17 Control-Q 42
18 Control-R 43 +

19 Control-S 44

20 Control-T 45
21 Control-U or right arrow 46

22 Control-V 47 /

23 Control-W 48 0

24 Control-X 49 1

25 Control-Y 50 2

147

148 	[GRAPHICALLY SPEAKING

51 3 90 Z
52 4 91 [
53 5 92 Y(reverse slash)
54 6 93 1
55 7 94 hyphen
56 8 95
57 9
58 96 `(reverse apostrophe)
59 ; 97 a
60 < 98 b
61 = 99 c
62 > 100 d
63 ? 101 e

102 f
64 @ 103 g
65 A 104 h
66 B 105 i
67 C 106 j
68 D 107 k

69 E 108 1
70 F 109 m
71 G 110 n

72 H 111 0
73 I 112 P
74 J 113 cl
75 K 114 r

76 L 115 s

77 M 116 t

78 N 117 U

79 0 118 v
80 P 119 w

81 Q 120 x

82 R 121 Y
83 S 122 z

84 T 123 {
85 U 124 I
86 V 125 }

87 W 126
88 X 127 inverse blank or DELETE

89 Y

RPPENDIX 00,
1,1

Program Disk Catalog

Listing 1.1 : Hi-Res Display

Listing 2.1 : Drawing Simple Rectangles
Listing 2.2A : Drawing More Rectangles
Listing 2.2B : Drawing Complex Shape
Listing 2.3 : Using Coordinates in Arrays

Listing 3.1 : Drawing and Storing a Single-Shape Table
Listing 3.2 : Simple Animation With Shape Maker
Listing 3.3 : Joystick-controlled Shape Maker Animation

Listing 4.1 : Loading and Initializing With Shape Maker
Listing 4.2 : Poking and Initializing Circle Shapes
Listing 4.3 : Joystick-controlled Shape
Listing 4.4 : Joystick-controlled Shape Draw
Listing 4.5 : Keyboard-controlled Shape Draw
Listing 4.6 : Formula-controlled Animation
Listing 4.7 : Pre-defined Path for Shape
Listing 4.8 : Random Computer Scribbling

Listing 5.1 : Explosion
Listing 5.2 : Laser Blast
Listing 5.3 : Laser Blast With Explosion
Listing 5.4 : Bouncing Ball

Listing 6.1 : Computing Starting Addresses
Listing 6.2 : Entering X & Y Coordinate Values
Listing 6.3 : Repetitive Onscreen Pattern for X & Y Coordinate Values

149

150 [GRAPHICALLY SPEAKING

Listing 6.4 : Y-Lookup Table for Addresses
Listing 6.5 : H Character Generator
Listing 6.6 : ABC Character Generator

Listing 7.1 : Machine Language Y-Lookup Table
Listing 7.2 : Machine Language X,Y Plotting
Listing 7.3 : Assembled X,Y Plotting
Listing 7.4 : Entering the Machine Language Program Directly
Listing 7.5 : BLOADing Lookup Table, Poking X and Y Values, and

Calling Subroutine

Listing 8.1 : Creating ABC Plotting Character Table
Listing 8.2 : Assembly Language ABC Plotting Routine
Listing 8.3 : Character Generator Using Binary Files
Listing 9.1 : Filling Screen With Black or White
Listing 9.2 : Filling Screen With Black or White Without Poking
Listing 9.3 : Quick Version of Listing 9.2.
Listing 9.4 : Onscreen Byte Values For Violet
Listing 9.5 : Alternate Rows of Orange and Green
Listing 9.6 : Alternate Rows in Basic With 6 Apple Colors

Listing 10.1: Assembly Language Fill Routine
Listing 10.2 : Loading and Using Fill Routine

Listing 11.1: Animating With Character Shapes
Listing 11.2 : Pre-Shifted Shape Plotter in Basic
Listing 11.3 : Variation of Listing 11.2

Listing 12.1: Computing and Poking First 16 Values For Any Shape
Listing 12.2 : Machine Language Shape-Plotting Routine
Listing 12.3 : Loading Shape-Plotting Routine, Y-Lookup Table, and

Shape
Listing 13.1: BLOADing Picture.PIC
Listing 13.2 : BLOADing Picture.PAC
Listing 13.3 : Picture Packing/Unpacking Routine

Listing 16.1: 3-D Drawing and Manipulation

Listing 17.1: Hi-Res Drawing Program

A
P

P
E

N
D

IX
 f

L
is

ti
n

g
 1

0.
1

1
O
R
G

$
6
1
8
0

2

C
O
L
O
R
E

E
Q
U

$
0
2

3

C
O
L
O
R
O

E
Q
U

$
0
3

4

M
A
S
K

E
Q
U

$
0
4

5

B
Y
T
E
L

E
Q
U

$
0
5

6

P
Z
2

E
Q
U

$
0
8
 	
1
2

B
Y
T
E

S
C
R
A
T
C
H

7

Y
P
O
S

E
Q
U

$
0
A

8

B
Y
T
E
N

E
Q
U

$
0
6

9

B
I
T
N

E
Q
U

$
0
C

1
0

V
A
L
U
E

E
Q
U

$
F
C

11

L
S

E
Q
U

$
F
D

1
2

R
S

E
Q
U

$
F
E

1
3

C
O
L
O
R
P

E
Q
U

$
F
F

1
4

L
K
H
I

E
Q
U

$
6
0
0
0

1
5

L
K
L
O

E
Q
U

$
6
0
0
0

6
1
8
0
:

0
0

1
6

C
N
O

D
F
B

0
0
 	
;
F
I
L
L

C
O
L
O
R

►
U
S
E
D

B
Y

B
A
S
I
C

6
1
8
1
:

0
0

1
7

X
H
I

D
F
B

0

6
1
8
2
:

0
0

1
8

X
L
O

D
F
B

0

6
1
8
3
:

4
C

4
D

6
2

1
9

J
M
P

F
I
L
L

6
1
8
6
:

4
3

4
F

5
0

2
0

C
O
P
Y
R
T

A
S
C

"
C
O
P
Y
R
I
G
H
T
 	
1
9
8
3

►
M
A
R
K
 	
P
E
L
C
Z
A
R
S
K
I
"

6
1
8
9
:

5
9

5
2

4
9

4
7

4
8

5
4

2
0

3
1

6
1
9
1
:

3
9

3
8

3
3

2
C

2
0

4
D

4
1

5
2

L
is

ti
ng

 1
0.

1
(c

on
ti

nu
ed

)

6
1
9
9
:

6
1
A
1
:

4
6

5
2

2
0

5
3

5
0

4
B

4
5

4
C

4
9

2
1

2
2

2
3

4
3

5
A

4
1

*
F
I
N
D

Y

B
A
S
E

A
D
D
R
E
S
S
.

G
I
V
E
N

Y
P
O
S

*
U
S
I
N
G

Y
-
L
O
O
K
U
P

T
A
B
L
E

*
A
L
S
O

S
E
T

C
O
L
O
R
P

T
O

C
O
L
O
R
E

O
R

2
4

*
C
O
L
O
R
O
,

D
E
P
E
N
D
I
N
G

O
N

E
V
E
N

O
R

2
5

*
O
D
D

Y
-
R
O
W
.

6
1
A
5
:

A
4

O
A

2
6

B
A
S
E
R
 	

L
O
Y

Y
P
O
S

6
1
A
7
:

B
9

0
0
 6
0

2
7

L
D
A

L
K
H
I
.
Y

6
1
A
A
:

8
5

0
9

2
8

S
T
A

P
2
2
+
1

6
1
A
C
:

B
9

C
O

6
0

2
9

L
D
A

L
K
L
O
.
Y

6
1
A
F
:

8
5

0
8

3
0

S
T
A

P
Z
2

6
1
5
1
:

A
5

O
A

3
1

L
D
A

Y
P
O
S

6
1
6
3
:

4
A

3
2

L
S
R

6
1
E
1
4
:

B
O

0
5

3
3

B
C
S

O
D
R
O
W

6
1
5
6
:

A
5

0
2

3
4

L
D
A

C
O
L
O
R
E

6
1
5
8
:

4
C

B
D

6
1

3
5

J
M
P

S
T
C
O
L

6
1
B
B
:

A
5

0
3

3
6

O
D
R
O
W
 	

L
D
A

C
O
L
O
R
O

6
1
6
D
:

O
A

3
7

S
T
C
O
L
 	

A
S
L

DAIDIV3cIS A77101HdYND I Z57

G
I
B
E
:

O
A

3
8

A
S
L

6
1
B
F
:

8
5

F
F

3
9

S
T
A
 	

C
O
L
O
R
P

6
1
C
1
:

6
0

4
0

R
T
S

4
1

*
F
I
N
D

X
B
I
T
/
B
Y
T
E
,

G
I
V
E
N

X
H
I
/
L
O

6
1
C
2
:

A
O

F
F

4
2

S
E
T
X

L
D
Y
 	

*
$
F
F

6
1
C
4
:

A
D

8
2
 6
1

4
3

L
D
A
 	

X
L
O

6
1
C
7
:

8
5

0
8

4
4

S
T
A
 	

P
Z
2

6
1
C
9
:

A
D

8
1

6
1

4
5

L
D
A
 	

X
H
I

6
1
C
C
:

8
5

0
9

4
6

S
T
A
 	

P
Z
2
+
1

6
1
0
E
:

A
5

0
8

4
7

L
D
A
 	

P
Z
2

6
1
D
O
:

3
8

4
8

S
E
C

6
1
0
1
:

E
9

0
7

4
9

S
L
O
O
P

S
B
C
 	
*
7

6
1
D
3
:

C
8

5
0

I
N
Y

6
1
0
4
:

B
O

F
B

5
1

B
C
S
 	

S
L
O
O
P

6
1
D
6
:

3
8

5
2

S
E
C

6
1
0
7
:

C
6

0
9

5
3

D
E
C
 	

P
Z
2
+
1

6
1
D
9
:

1
0

F
6

5
4

B
P
L
 	

S
L
O
O
P

6
1
D
B
:

8
4

O
B

5
5

S
T
Y
 	

B
Y
T
E
N

6
1
D
D
:

1
8

5
6

C
L
C

rti

G
I
D
E
:

6
9

0
7

5
7

A
D
C
 	
*
7

,....
.:/

6
1
E
0
:

8
5

O
C

5
8

S
T
A
 	

B
I
T
N

k

*II

6
1
E
2
:

6
0

5
9

R
T
S

6
1
E
3
:

0
3
 0
3
 0
6

6
0

D
O
T
S

D
F
B
 	

3
1
3
#
6
,
1
2
,
2
4
,
4
8
,
9
6

6
1
E
6
:

O
C

1
8

3
0

6
0

w

L
is

ti
ng

 1
0.

1
(c

on
tin

ue
d)

 6
1

6
2

6
3

*
C
H
E
C
K

A

D
O
T

*
B
A
S
E
R
 	
I
N

P
2
2
,

B
Y
T
E
 	
I
N

B
Y
T
E
N
,
 	
B
I
T
 	
I
N
 	
B
I
T
N

*
R
E
S
U
L
T

R
E
T
U
R
N
E
D
 	
I
N

Z

B
I
T
,

0
=
C
O
N
T
I
N
U
E

6
4

*
B
O
T
H

D
O
T
S

S
E
T
,

<
>
0

M
E
A
N
S

6
5

A
T

L
E
A
S
T

O
N
E

O
F
F
,

*
U
S
E
S
 	
"
D
O
T
S
"
 	
T
A
B
L
E

A
B
O
V
E

F
O
R

C
O
M
P
A
R
I
S
O
N
.

S
I
E
A
:

A
6

O
C

6
6

C
H
E
C
K
 	

L
D
X
 	

B
I
T
N

G
1
E
C
:

B
D

E
3

6
1

6
7

L
D
A
 	

D
O
T
S
t
X

6
1
E
F
:

A
4

O
B

6
8

L
D
Y
 	

B
Y
T
E
N

6
1
F
1
:

3
1

0
8

6
9

A
N
D
 	

(
15
2
2
)
,
Y

6
1
F
3
:

D
D

E
3

6
1

7
0

C
M
P
 	

D
O
T
S
t
X

6
1
F
6
:

6
0

7
1

R
T
S

7
2

*
S
E
T

C
O
L
O
R
 	
I
N

B
Y
T
E
,
 	
M
A
S
K

I
N

A
C
C

6
1
F
7
:

8
5

0
4

7
3

S
E
T
C
 	

S
T
A
 	

M
A
S
K

6
1
F
9
:

4
5

F
C

7
4

F
O
R
 	

V
A
L
U
E

6
1
F
B
:

2
9

7
F

7
5

A
N
D
 	

*
$
7
F

6
1
F
D
:

8
5

F
C

7
6

S
T
A
 	

V
A
L
U
E

6
1
F
F
:

9
8

7
7

T
Y
A

6
2
0
0
:

2
9

0
3

7
8

A
N
D
 	
*
3

DNIX6gdS A77V31HdWID

6
2
0
2
:

0
5

F
F

7
9

O
R
A
 	

C
O
L
O
R
P

6
2
0
4
:

A
A

8
0

T
A
X

6
2
0
5
:

B
D

F
8

6
3

8
1

L
D
A
 	

B
A
S
E
C
B
t
X

6
2
0
8
:

2
5

0
4

8
2

A
N
D
 	

M
A
S
K

6
2
0
A
:

0
5

F
C

8
3

O
R
A
 	

V
A
L
U
E

6
2
0
C
:

9
1

0
8

8
4

S
T
A
 	

(
P
2
2
)
t
Y

6
2
0
E
:

G
O

8
5

R
T
S

8
6

*
S
E
T

C
O
L
O
R

R
E
G
I
S
T
E
R
S
t

G
I
V
E
N

C
N
O

6
2
0
F
:

A
D

8
0

6
1

8
7

S
E
T
C
R
 	

L
D
A
 	

C
N
O

6
2
1
2
:

O
A

8
8

A
S
L

6
2
1
3
:

A
8

8
9

T
A
Y

6
2
1
4
:

B
9

2
0

6
3

9
0

L
D
A
 	

B
A
S
E
C
t
Y

6
2
1
7
:

8
5

0
2

9
1

S
T
A
 	

C
O
L
O
R
E

6
2
1
9
:

C
8

9
2

I
N
Y

6
2
1
A
:

B
9

2
0

6
3

9
3

L
D
A
 	

B
A
S
E
C
t
Y

6
2
1
D
:

8
5
 0
3

9
4

S
T
A
 	

C
O
L
O
R
O

6
2
1
F
:

6
0

9
5

R
T
S

9
6

*
S
E
A
R
C
H

L
E
F
T

F
O
R

0

B
I
T

6
2
2
0
:

2
9

7
F

9
7

L
B
I
T
S
 	

A
N
D
 	

*
$
7
F

6
2
2
2
:

C
9

7
F

9
8

C
M
P
 	

*
$
7
F

6
2
2
4
:

D
O

0
4

9
9

B
N
E
 	

L
O
O
K
L

6
2
2
6
:

A
9

F
F

1
0
0

L
D
A
 	

*
$
F
F

6
2
2
8
:

3
0

O
C

1
0
1

B
M
I
 	

S
L
M
A
S
K

6
2
2
A
:

A
2

0
7

1
0
2

L
O
O
K
L
 	

L
O
X
 	
*
7

ssr l g xiaNgadv

ONIXV3dS A77V31HciVHD I 9SI

L
is

ti
ng

 1
0.

1
(c

on
ti

nu
ed

)

6
2
2
C
:

6
2
2
D
:

6
2
2
E
:

O
A

C
A

O
A

1
0
3

1
0
4

1
0
5

A
S
L

L
O
O
P
L
 	

D
E
X

A
S
L

6
2
2
F
:

B
O

F
C

1
0
6

B
C
S

L
O
O
P
L

6
2
3
1
:

8
6

F
D

1
0
7

S
T
X

L
S

6
2
3
3
:

B
D

1
9

6
3

1
0
8

L
D
A

L
M
A
S
K
,
X

6
2
3
6
:

6
0

1
0
9

S
L
M
A
S
K
 	

R
T
S

1
1
0

*
S
E
A
R
C
H

R
I
G
H
T

F
O
R

0

B
I
T

6
2
3
7
:

2
9

7
F

1
1
1

R
B
I
T
S
 	

A
N
D

*
$
7
F

6
2
3
9
:

C
9

7
F

1
1
2

C
M
P

*
$
7
F

6
2
3
8
:

D
O

0
4

1
1
3

B
N
E

L
O
O
K
R

6
2
3
D
:

A
9

F
F

1
1
4

L
D
A

*
$
F
F

6
2
3
F
:

3
0

O
B

1
1
5

B
M
I

S
R
M
A
S
K

6
2
4
1
:

A
2

F
F

1
1
6

L
O
O
K
R
 	

L
D
X

*
$
F
F

6
2
4
3
:

E
8

1
1
7

L
O
O
P
R
 	

I
N
K

6
2
4
4
:

4
A

1
1
8

L
S
R

G
2
4
5
:

B
O

F
C

1
1
9

B
C
S

L
O
O
P
R

6
2
4
7
:

8
6

F
E

1
2
0

S
T
X

R
S

6
2
4
9
:

B
D

1
2

6
3

1
2
1

L
D
A

R
M
A
S
K
t
X

6
2
4
C
:

6
0

1
2
2

S
R
M
A
S
K
 	

R
T
S

1
2
3

*
F
I
L
L

R
O
U
T
I
N
E

6
2
4
D
:

2
0

O
F

6
2

1
2
4

F
I
L
L
 	

J
S
R

S
E
T
C
R
 	
;
S
E
T

C
O
L
O
R

R
E
G
I
S
T
E
R
S

6
2
5
0
:

2
0

C
2

6
1

1
2
5

J
S
R

S
E
T
X
 	
;
F
I
N
D
 	
X
B
Y
T
E
/
X
B
I
T

6
2
5
3
:

2
0

A
5

6
1

1
2
6

T
L
O
O
P

J
S
R

B
A
S
E
R
 	
;
S
T
A
R
T
 	
L
O
O
P
,
 	
F
I
N
D

Y
 	
L
O
C
.

6
2
5
6
:

2
0

E
A

G
I

1
2
7

J
S
R

C
H
E
C
K
 	
;
C
H
E
C
K
 	
I
F

D
O
T
S

S
E
T

6
2
5
9
:

D
O

0
9

1
2
8

B
N
E

S
T
F
I
L
L
 	
;
I
F
 	
O
F
F
,
 	
S
T
A
R
T
 	
F
I
L
L

6
2
5
6
:

A
5

O
A

1
2
9

L
D
A

Y
P
O
S

6
2
5
D
:

F
O

O
A

1
3
0

B
E
Q

S
T
F
I
L
L
1
 	
;
I
F
 	
T
O
P
,
 	
S
T
A
R
T
 	
F
I
L
L

6
2
5
F
:

C
6

O
A

1
3
1

D
E
C

Y
P
O
S
 	
;
M
O
V
E

U
P

O
N
E

M
O
R
E

L
I
N
E

6
2
6
1
:

4
C

5
3

6
2

1
3
2

J
M
P

T
L
O
O
P

G
2
6
4
:

E
6

O
A

1
3
3

S
T
F
I
L
L

I
N
C

Y
P
O
S

6
2
8
6
:

2
0

A
5

6
1

1
3
4

J
S
R

B
A
S
E
R

6
2
6
9
:

A
4

O
B

1
3
5

S
T
F
I
L
L
1

L
D
Y

B
Y
T
E
N

6
2
6
8
:

A
9

F
F

1
3
6

M
I
D
D
L
E

L
D
A

*
$
F
F
 	
;
F
I
L
L

T
H
E

M
I
D
D
L
E

B
Y
T
E

6
2
6
D
:

8
5

F
D

1
3
7

S
T
A

L
S

6
2
6
F
:

A
S

0
7

1
3
8

L
D
A

*
7

6
2
7
1
:

8
5

F
E

1
3
9

S
T
A

R
S

6
2
7
3
:

B
1

0
8

1
4
0

L
D
A

(I
:1
2
2
)
,
Y

6
2
7
5
:

8
5

F
C

1
4
1

S
T
A

V
A
L
U
E

6
2
7
7
:

A
6

O
C

1
4
2

L
D
X

B
I
T
N

6
2
7
9
:

1
0

1
9

6
3

1
4
3

O
R
A

L
M
A
S
K
,
X

6
2
7
C
:

2
0

2
0

6
2

1
4
4

J
S
R

L
B
I
T
S

6
2
7
F
:

8
5

0
4

1
4
5

S
T
A

M
A
S
K

6
2
8
1
:

A
G

O
C

1
4
6

L
D
X

B
I
T
N

6
2
8
3
:

B
D

1
2

6
3

1
4
7

L
D
A

R
M
A
S
K
t
X

6
2
8
6
:

0
5

F
C

1
4
8

O
R
A

V
A
L
U
E

d XICINgddd

L
is

ti
ng

 1
0.

1
(c

on
tin

ue
d)

6
2
8
8
:

2
0

3
7

6
2

1
4
9

J
S
R

R
B
I
T
S

6
2
8
8
:

2
5

0
4

1
5
0

A
N
D

M
A
S
K

6
2
8
0
:

2
0

F
7

6
1

1
5
1

J
S
R

S
E
T
C

6
2
9
0
:

A
5

F
D

1
5
2

L
E
F
T

L
D
A

L
S

;
N
O
W

M
O
V
E

T
O

T
H
E

L
E
F
T

6
2
9
2
:

C
9

F
F

1
5
3

C
M
P

*
$
F
F

G
2
9
4
:

D
O

1
3

1
5
4

B
N
E

R
I
G
H
T

6
2
9
6
:

8
8

1
5
5

D
E
Y

6
2
9
7
:

3
0

O
D

1
5
6

B
M
I

R
I
G
H
T
1

6
2
9
9
:

B
1

0
8

1
5
7

L
D
A

(1
52
2
)
,
Y

6
2
9
8
:

8
5

F
C

1
5
8

S
T
A

V
A
L
U
E

6
2
9
D
:

2
0

2
0

6
2

1
5
9

J
S
R

L
B
I
T
S

6
2
A
0
:

2
0

F
7
 6
1

1
6
0

J
S
R

S
E
T
C

6
2
A
3
:

4
C

9
0

6
2

1
6
1

J
M
P

L
E
F
T

6
2
A
G
:

C
8

1
6
2

R
I
G
H
T
1

I
N
Y

6
2
A
7
:

8
4

F
D

1
6
3

S
T
Y

L
S

6
2
A
9
:

8
4

0
5

1
6
4

R
I
G
H
T

S
T
Y

B
Y
T
E
L

6
2
A
B
:

A
4

O
B

1
6
5

L
D
Y

B
Y
T
E
N

6
2
A
D
:

A
5

F
E

1
6
6

R
L
O
O
P

L
D
A

R
S
 	
;
N
O
W

F
I
L
L

T
O

T
H
E

R
I
G
H
T

6
2
A
F
;

C
9
 0
7

1
6
7

C
M
P

*
7

6
2
6
1
:

D
O

1
5

1
6
8

B
N
E

D
O
W
N

6
2
8
3
:

C
8

1
6
9

I
N
Y

6
2
6
4
:

C
O

2
8

1
7
0

C
P
Y

*
$
2
8

6
2
8
6
:

F
O

O
D

1
7
1

B
E
Q

D
O
W
N
1

ONDIVWS A7710IMMID 1 851

6
2
5
8
:

5
1

0
8

1
7
2

L
D
A

(
P
Z
2
)
,
Y

8
2
B
A
:

8
5

F
C

1
7
3

S
T
A

V
A
L
U
E

G
2
B
C
:

2
0

3
7

6
2

1
7
4

J
S
R

R
B
I
T
S

G
2
B
F
:

2
0

F
7

G
1

1
7
5

J
S
R

S
E
T
C

6
2
C
2
:

4
C

A
D

6
2

1
7
6

J
M
P

R
L
O
O
P

6
2
C
5
:

8
8

1
7
7

D
O
W
N
I

D
E
Y

6
2
C
G
:

C
6

F
E

1
7
8

D
E
C

R
S

G
2
C
8
:

9
8

1
7
9

D
O
W
N

T
Y
A

;
A
V
E
R
A
G
E

E
N
D
P
O
I
N
T
S

A
N
D

6
2
0
9
:

1
8

1
8
0

C
L
C

;
M
O
V
E

D
O
W
N

G
2
C
A
:

6
5

0
5

1
8
1

A
D
C

B
Y
T
E
L

G
2
C
C
:

8
5

0
5

1
8
2

S
T
A

B
Y
T
E
L

6
2
C
E
:

A
O

0
0

1
8
3

L
D
Y

#
0

G
2
D
0
:

8
0

8
1

G
I

1
8
4

S
T
Y

X
H
I

6
2
D
3
:

O
A

1
8
5

A
S
L

6
2
D
4
:

O
A

1
8
6

A
S
L

G
2
D
5
:

2
E

8
1

6
1

1
8
7

R
O
L

X
H
I

6
2
0
8
:

O
A

1
8
8

A
S
L

G
2
D
9
:

2
E

8
1

6
1

1
8
9

R
O
L

X
H
I

6
2
D
C
:

3
8

1
9
0

S
E
C

G
2
D
D
:

E
5

0
5

1
9
1

S
B
C

B
Y
T
E
L

G
2
D
F
:

B
O

0
3

1
9
2

B
C
S

S
K
I
P
D

6
2
E
1
:

C
E

8
1

6
1

1
9
3

D
E
C

X
H
I
 	
;
*
7

6
2
E
4
:

1
8

1
9
4

S
K
I
P
D

C
L
C

6
2
E
5
:

6
5

F
E

1
9
5

A
D
C

R
S

657 I 4 XIGN3dc1V

L
is

ti
n

g
 1

0.
1

(c
on

ti
nu

ed
)

6
2
E

7
:

9
0

0
4

1
9
6

B
C
C

S
K
I
P
I

6
2
E
9
:

E
E

8
1

6
1

1
9
7

I
N
C

X
H
I

G
2
E
C
:

1
8

1
9
8

C
L
C

;
+
R
S
+
L
S

6
2
E
D
:
 6
5

F
D

1
9
9

S
K
I
P
I

A
D
C

L
S

6
2
E
F
:

9
0
 0
3

2
0
0

B
C
C

S
K
I
P
I
2

6
2
F
1
:

E
E

8
1

6
1

2
0
1

I
N
C

X
H
I

6
2
F
4
:

4
E

8
1

6
1

2
0
2

S
K
I
P
I
2

L
S
R

X
H
I
 	
;
/
2

6
2
F
7
:

S
A

2
0
3

R
O
R

6
2
F
8
:

8
D

8
2
 6
1

2
0
4

S
T
A

X
L
0

6
2
F
B
:

2
0

C
2
 6
1

2
0
5

J
S
R

S
E
T
X

6
2
F
E
:

E
6

O
A

2
0
6

I
N
C

Y
P
O
S

6
3
0
0
:

A
5

O
A

2
0
7

L
D
A

Y
P
O
S

6
3
0
2
:

C
9

C
O

2
0
8

C
M
P

*
$
C
O

6
3
0
4
:

F
O

O
B

2
0
9

B
E
Q

F
D
O
N
E

6
3
0
6
:

2
0

A
5
 6
1

2
1
0

J
S
R

B
A
S
E
R

6
3
0
9
:

2
0

E
A

6
1

2
1
1

J
S
R

C
H
E
C
K

6
3
0
C
:

D
O

0
3

2
1
2

B
N
E

F
D
O
N
E
 	
;
I
F

D
O
T

O
F
F
,

D
O
N
E

6
3
0
E
:

4
C

6
B

6
2

2
1
3

J
M
P

M
I
D
D
L
E
 	
;
E
L
S
E

R
E
P
E
A
T

F
I
L
L

L
O
O
P

6
3
1
1
:
 6
0

2
1
4

F
D
O
N
E

R
T
S

6
3
1
2
:
 8
0
 8
1

8
3

2
1
5

R
M
A
S
K

H
E
X

8
0
8
1
8
3
8
7
8
F
9
F
5
F

6
3
1
5
:
 8
7
 8
F

S
F

B
F

6
3
1
9
:

F
E

F
C

F
8

2
1
6

L
M
A
S
K

H
E
X

F
E
F
C
F
8
F
0
E
0
C
0
8
0

6
3
1
C
:

F
O

E
0

C
O

B
O

ONDIVWS A7710111,111219 1

6
3
2
0
:

6
3
2
3
:

6
3
2
5
:

0
3

0
7

ID

0
7

1A

1
C

1
6

1
7

2
1
7

2
1
8

B
A
S
E
C

H
E
X

H
E
X

0
3
0
7
1
6
0
7
1
A

1
D
I
C
1
7
0
8
0
6
0
0
1
6
0
0
0
4
0
3
1
8
0
3
0
6
1
A
0
6

6
3
2
8
:

0
8

0
6

0
0

1
6

0
0

0
4

0
3

1
6

6
3
3
0
:

0
3

0
6

1A

0
6

6
3
3
4
:

0
0

0
6

0
0

2
1
9

H
E
X

0
0
0
6
0
0
1
1
0
2
0
6
1
C
1
3
1
0
1
3
1
0
0
7
0
2
1
6
0
2

6
3
3
7
:

11

0
2
 0
6

1
C
 	
1
3

1
0
 	
1
3

1
0

6
3
3
F
:

0
7
 0
2

1
B

0
2

6
3
4
3
:

0
7
 0
2

1
7

2
2
0

H
E
X

0
7
0
2
1
7
0
2
0
9
1
A
0
4
1
0
0
4
0
2
0
5
1
2
1
7
1
A
0
7

6
3
4
6
:

0
2
 0
9

I
A

0
4
 	
1
0

0
4

0
2

0
5

6
3
4
E
:

1
2

1
7

1A

0
7

6
3
5
2
:

0
3

1
7

1
6

2
2
1

H
E
X

0
3
1
7
1
6
1
9
0
3
0
5
0
3
0
D
1
A
0
D
1
A
0
5
1
0
0
5
0
0

6
3
5
5
:

1
9

0
3

0
5

0
3

O
D

1
A

O
D

1A

6
3
5
D
:

0
5

1
0

0
5

0
0

6
3
6
1
:

O
D

0
0

1
7

2
2
2

H
E
X

0
0
0
0
1
7
0
8
0
5
1
6
0
5
0
1
0
5
1
6
0
6
0
1
0
7
0
1
1
7

6
3
6
4
:

0
8

0
5

1
6

0
5

0
1

0
5
 	
1
6

0
6

6
3
6
C
:

0
1

0
7
 0
1

1
7

6
3
7
0
:

0
1

0
9
 0
1

2
2
3

H
E
X

0
1
0
9
0
1
0
4
1
6
0
4
0
C
0
F
0
1
1
6
0
1
1
1
0
C
1
7
0
C

6
3
7
3
:

0
4

1
6

0
4

O
C

O
F

0
1
 	
1
6

0
1

6
3
7
8
:

11

O
C

1
7

O
C

6
3
7
F
:

0
4

1
6

1
3

2
2
4

H
E
X

0
4
1
6
1
3
0
1
0
6
1
6
0
6
0
C
1
1
0
7
0
7
0
4
0
4
0
7
1
5

"21

6
3
8
2
:

0
1

0
6

1
6

0
6

O
C

11
 	
0
7
 0
7

6
3
8
A
:

0
4

0
4

0
7

1
6

6
3
8
E
:

1
6

1
0

0
7

2
2
5

H
E
X

1
6
1
0
0
7
1
1
0
6
0
7
1
7
0
6
0
6
1
6
0
6
0
6
0
4
0
6
1
1

(In

L
is

ti
ng

 1
0.

1
(c

on
tin

ue
d)

6
3
9
1
:

11

0
6

0
7

1
7

0
6

0
6

1
5

0
6

6
3
9
9
:

0
6

0
4

0
6

11

6
3
9
D
:

1
3

0
4

11

2
2
6

H
E
X

1
3
0
4
1
1
1
7
0
7
1
7
0
5
1
7
1
9
0
5
0
7
1
7
0
5
0
7
0
D

6
3
A
0
:

1
7

0
7

1
7

O
B
 	
1
7

1
9

0
5

0
7

6
3
A
8
:

1
7

0
5

0
7

O
D

6
3
A
C
:

0
5

0
5

0
5

2
2
7

H
E
X

0
5
0
5
0
5
0
D
0
D
0
F
0
4
0
D
1
7
0
4
0
5
1
5
0
5
0
6
0
3

6
3
A
F
:

O
D

O
D

O
F

0
4

O
D

1
7

0
4

0
5

6
3
5
7
:

1
6

0
5

0
6

0
3

6
3
B
B
:

0
3

1
6

0
3

2
2
8

H
E
X

0
3
1
6
0
3
0
3
0
C
0
0
0
0
0
8
1
A
0
2
1
6
1
A
1
C
0
3
1
0

6
3
B
E
:

0
3

O
C

0
0

0
0

0
8

1A

0
2

1
6

6
3
C
6
:

1
A

1
C

0
3

1
0

6
3
C
A
:

0
2
 0
3

0
2

2
2
9

H
E
X

0
2
0
3
0
2
1
A
0
2
0
2
1
2
1
C
0
0
1
A
1
2
1
A
1
0
1
2
0
0

6
3
C
D
:

1
A

0
2
 0
2

1
2
 	
1
C

0
0

1A

1
2

6
3
0
5
:

1
A

1
0

1
2

0
0

6
3
0
9
:

1
0

0
3

1A

2
3
0

H
E
X

1
0
0
3
1
A
1
6
1
A
1
6
1
2
0
1
0
2
1
6
1
8
0
1
0
3
0
1
1
A
0
1

6
3
D
C
:

1
6

1A

1
6

1
2
 	
0
1

0
2

1
6

1
8

6
3
E
4
:

0
1

0
3

0
1

1A
 	
0
1

G
3
E
9
:

1
G

0
1

0
1

2
3
1

H
E
X

1
6
0
1
0
1
0
1
0
0
1
6
0
0
1
6
0
C
1
6
0
E
0
C
0
E
0
0
0
C

6
3
E
C
:

0
1

0
0

1
6

0
0
 	
1
6

O
C

1
6

O
E

6
3
F
4
:

O
C

O
E

0
0

O
C

6
3
F
8
:

0
0

2
3
2

B
A
S
E
C
B

H
E
X

0
0

6
3
F
9
:

0
0

0
0

0
0

2
3
3

H
E
X

0
0
0
0
0
0
5
5
2
A
5
5
2
A
2
A
5
5
2
A
5
5
7
F
7
F
7
F
7
F
8
0

G
3
F
C
:

5
5

2
A

5
5

2
A

2
A

5
5

2
A

5
5

162 1 GRAPHICALLY SPEAKING

6
4
0
4
:

7
F

7
F

7
F

7
F

8
0

G
4
0
9
:

8
0

8
0

8
0

2
3
4

H
E
X

B
0
8
0
8
0
0
5
A
A
D
5
A
A
A
A
D
5
A
A
D
5
F
F
F
F
F
F
F
F
3
3

6
4
0
C
:

D
5

A
A

D
5

A
A

A
A

D
5

A
A

D
5

6
4
1
4
:

F
F

F
F

F
F

F
F

3
3

6
4
1
9
:

6
6

4
C

1
9

2
3
5

H
E
X

6
6
4
C
1
9
8
3
E
6
0
C
9
9
4
C
1
9
3
3
6
6
C
C
9
9
8
3
E
6
1
1

G
4
1
C
:

8
3

E
6

C
C

9
9

4
C

1
9

3
3
 8
6

6
4
2
4
:

C
C

9
9

8
3

E
6
 	
1
1

G
4
2
9
:

2
2

4
4

0
8

2
3
G

H
E
X

2
2
4
4
0
8
9
1
A
2
C
4
8
8
4
4
0
8
1
1
2
2
C
4
8
8
9
1
A
2
2
2

6
4
2
C
:

9
1

A
2

C
4

8
8

4
4

0
8

1
1

2
2

6
4
3
4
:

C
4

8
8

9
1

A
2

2
2

6
4
3
9
:

4
4

0
8

1
1

2
3
7

H
E
X

4
4
0
8
1
1
A
2
C
4
8
8
9
1
0
8
1
1
2
2
4
4
8
8
9
1
A
2
C
4
C
9

6
4
3
C
:

A
2

C
4

8
8

9
1
 	
0
8

1
1

2
2

4
4

6
4
4
4
:

8
8

9
1

A
2

C
4

C
9

6
4
4
9
:

A
4

9
2

8
9

2
3
8

H
E
X

A
4
9
2
8
9
2
4
1
2
4
9
2
4
7
7
6
E
5
0
3
8
F
7
E
E
0
0
5
5
5
D

6
4
4
C
:

2
4

1
2

4
9

2
4

7
7

G
E

5
D

3
8

6
4
5
4
:

F
7

E
E

D
D

8
8

5
D

6
4
5
9
:

3
B

7
7

G
E

2
3
9

H
E
X

3
8
7
7
6
E
D
D
B
B
F
7
E
E
G
E
5
D
3
8
7
7
E
E
D
D
B
B
F
7
3
8

6
4
5
C
:

D
D

B
B

F
7

E
E

6
E

5
D

3
B

7
7

6
4
6
4
:

E
E

D
D

B
B

F
7

3
B

6
4
6
9
:

7
7

G
E

5
D

2
4
0

H
E
X

7
7
6
E
5
D
B
B
F
7
E
E
D
D

6
4
6
C
:

B
B

F
7

E
E

D
D

£'91 I 4 XICIN3ddli

D

A

accumulator, 55
ADC, 66
address, 3, 18, 53, 54, 56, 59, 60

absolute indexed address, 59
base address, 60
indirect address, 56
indirect indexed address, 59
starting address, 43

AND, 65
animation, 19, 23, 27, 31, 35, 37-

39, 41, 79, 81, 85
border, 85
bouncing ball, 39
draw-update-erase, 20, 85
entropy, 41
explosions, 37
formula, 27
lasers, 38
page-flipping, 79
pre-shifted shape, 79, 81, 85
random, 35
set a path, 31
speeding up, 85, 91
trail, 24
vertical, horizontal, 81

Apple H Applesoft BASIC
Programming Reference Manual
(and the He Manual),
7,13,16,50,60

Apple II (or He) Reference Manual,
13,50,60

Applesoft/DOS Toolkit, 1, 61
ASCII value, 50, 60
ASL, 65
assembly language, 54

assembler, 54
array, 45

B

BASIC, 2, 16
Battlezone, 116
binary, 2, 18, 60, 142

binary load, 18
binary table, 60
convert to decimal, 142

bit, 2, 43, 82
bit counter, 82

bit-mapped graphics, 47

165

166 [GRAPHICALLY SPEAKING

borders, 85
BLOAD, 16
BNE, 67
brushes, 111
BSAVE, 53
byte, 2, 43, 51, 82

byte counter, 82

CALL 24576, 102
CALL 24700, 102
CALL 62454, 12, 143
character, 60
character generator, 47-49, 111

brushes, 111
bit-mapped, 48
hi-res, 48

CHAR, 64
Choplifter, 116
CHR$(4), 16
CHRTAB, 64
CLC, 66
clear the screen, 7, 8
clear the text, 11
color, 5, 69, 72, 76

horizontal,vertical, 76
patterns, 72, 76

color fill, 75
Commands, 3, 7, 8, 9, 11, 13, 16,

19, 24, 27, 30, 31, 41, 53, 54-
56, 64-67, 81, 102, 137

ADC, 66
AND, 65
ASL, 65
BLOAD, 16
BNE, 67
BSAVE, 53
CALL 24576, 102
CALL 24700, 102
CALL 62454, 12
Control-C, 41
CLC, 66
CHR$(4), 16
CHAR, 64

CHRTAB, 64
COS, 11
DATA, 10
DFB, 55
DRAW, 19
EQU, 54
Exclusive OR, 66
FOR-NEXT, 30
GET, 137
GOTO, 31
GOSUB, 11
HGR, 3, 7,
HGR2, 8
HCOLOR, 8, 19
HPLOT, 8, 38
HPLOT TO, 9
IF-THEN, 24
INC, 67
INX, 67
LDA, 56
LDY, 55
LOOP, 67
LPX, 67
LSR, 65
OR, 66
ORG, 64
POKE, 3
POKE L, 3
POKE-16302, 0, 11
POKE-16303, 0, 13
POKE-16304, 0, 13
POKE-16299, 0, 13
POKE-16300, 0, 13
POKE-230, 32, 102
POKE-230, 64, 102
POKE -233, 143
PRINT, 16
READ, 10
RESTORE, 34
ROL, 81
ROR, 81
ROT, 19, 143
SAVE, 137
SCALE, 19
SIN(X), 11, 27
STA, 56

IF-THEN, 24
I-J-K-M (keyboard diamond), 16, 26

INDEX] 167

TAY, 67
TXA, 67
XDRAW, 19

Control-C, 41
Complete Graphics System, The, 1,

61
COS, 11

DATA, 10
DFB, 55
direct commands, 7

see also, Commands
decimal, 51, 142
dollar sign ($), 51
dot, 80, 81

dot shape, 81
DRAW, 19, 143
drawing, with joysticks and paddles,

110-113, 133

E

end point, 132
Epoch, 116
EQU, 54
error, 94
Escape key, 137
Exclusive OR, 66

FOR-NEXT, 30
Flight Simulator, 116
freehand drawing, 133, 137

line and fill, 133
brushes, 137

GOTO, 31
GOSUB, 11
Graphics, 2, 7-13, 43, 47, 51, 69,

75, 97, 109, 115, 123, 133
bit-mapped graphics, 43, 47
commands, 7-13

see also, Commands
color, 69
color fill, 75
hi-res, 2
hi-res drawing program, 133
lo-res, 2
machine language routines, 51, 59
picture packing, 97
saving artist's moves, 109
3-dimensional, 115
3-D program, 133

see also, animation, shape
tables

Graphics Magician, The, 1, 109,
111, 112, 137

H

Hadron, 116
hexadecimal, 51

dollar sign ($), 51
HCOLOR, 8, 19, 143
HGR, 3, 7, 143
HGR2, 8, 143
high byte, 53
Higher Text, 61
Hi-res graphics, 2, 133, 137, 139

drawing program, 133
hi-res graphic screen, 2
joystick control, 137
variables, 139

HPLOT, 8, 38, 143
HPLOT TO, 9

GET, 137

168 [GRAPHICALLY SPEAKING

INC, 67
INX, 67

joystick, 16, 21, 23, 25, 137
drawing with, 110-113, 133
zeroing in, 137

K

keyboard, 16, 25

label definitions, 54
LDA, 56
LDY, 55
Listings

1.1, 3
2.1, 10
2.2, 11
2.3, 12
3.1, 17
3.2, 20
3.3, 21
4.1, 23
4.2, 24
4.3, 25
4.4, 26
4.5, 28
4.6, 29
4.7, 32
4.8, 34
5.1, 38
5.2, 38
5.3, 39
5.4, 40
6.1, 43
6.2, 44

6.3, 45
6.4, 46
6.5, 48
6.6, 49
7.1, 53
7.2, 55
7.3, 57
7.4, 57
7.5, 58
8.1, 61
8.2, 62-63
8.3, 67
9.1, 71
9.2, 71
9.3, 71
9.4, 72
9.5, 73
9.6, 73
10.1, 151-164
10.2, 76
11.1, 80
11.2, 83
12.1, 89
12.2, 91-93
12.3, 94
13.1, 101
13.2, 102
13.3, 102-103
13.4, 104-108
16.1, 124 —129
17.1, 134-136

lookup tables, 43, 45, 53
LOOP, 67
LPX, 67
LSR, 65

M
machine language graphics routines,

51, 52, 59
machine language shape-plotting

routine, 91

INDEX 1 169

Memory, 2, 3, 7, 8, 18, 43, 51,
54

address, 3, 18, 53, 54
hi-res page, 1, 3, 7, 53
hi-res page, 2, 2, 3, 8
low/high format, 18, 53
RAM, 3, 18
ROM, 3
starting address, 43, 51

memory map, 43
Merlin assembler, 61

N

numbers, 35, 51, 64
binary, 51
decimal, 51,142
hexadecimal, 51
multiplication and division by

powers of 2, 64
random, 35

number sign (#), 56
#>, #<, 64
nybble, 113

0

53, PICDRAW, 110, 112
picture intrepreter, 112
redraw with, 112

picture packing, 97, 101
picture program file, 112
pixel, 81
POKE, 3
POKE,L, 3
POKE -16302,0, 11
POKE -16303,0, 13
POKE -16304,0, 13
POKE -16299,0, 13
POKE -16300,0, 13
POKE -23032, 102
POKE -230, 64, 102
PRINT, 16
program listings, see Listings

R

RAM, 18
random number generator, 35
READ, 10
registers, 55
RESTORE, 34
Return, 57
ROL, 81
ROM, 3
ROR, 81
ROT, 19

S

offsets, 88
opcode, 110
OR, 66
ORG, 64

.PAC, 102
paddles, 16

drawing with, 110-113, 133
page-flipping, 79
parentheses (), 59
PIC, 102

SAVE, 137
saving artist's moves, 109, 110, 113

end of picture, 110
saving picture files, 110
set fill color, 113

SCALE, 19, 143
screen display, 3
shape tables, 15,37

170 (GRAPHICALLY SPEAKING

shapes, 16, 19,
draw, 16
load, 16
rotate, 19
scale, 19

SIN(X), 11,27
STA, 56
start point, 133
starting address, 43

TAY, 67
3-dimensional graphics, 115-118,

123, 130
BASIC program, 123
clipping, 123
variables, 130
color, 116
projection formula, 118
rotation, 116
shading, 116
shadow, 116
size, 116

vanishing points, 116
wire-framing, 117

TXA, 67

V

vector shapes, 15

IN

Way Out, 116

X

XDRAW, 19

1

Zaxxon, 117
Zero page, 54

wire-framing, 117

Mark PeIciars
This book is a compilation of the Graphically Speaking tutorial columns that originally
appeared in Softalk magazine. Using the programs in this book you will be able to
create art, do animation for games, and have a bunch of fun on your Apple H, II +, or
He.

Founder and President of Penguin Software, the company that brings you the best
in computer graphics, Pelczarski has created such classic software as The Graphics
Magician, The Complete Graphics System, and Special Effects.

After earning degrees in Computers and Education, he taught mathematics, computer
programming, and computer science at both the high school and university levels.

He now continues to produce new software and update programs for his company,
while working and consulting with other major software developers and publishers on
graphics and graphics routines in their products.

Once you learn the fundamentals of creating hi-res, 3-D, and animation with
Graphically Speaking, you will be limited only by your imagination.

	Graphically Speaking by Mark Pelczarski
	Title Page
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Applesoft Graphics Commands
	HGR
	HGR2
	HPLOT
	HPLOT TO
	Making Rectangles

	Chapter 3: Shape Tables & Simple Animation
	Defining Shapes by Vectors
	Creating a Shape
	Using Your Shape in a Program
	Simple Animation

	Chapter 4: Controlling Animation
	Controlling the Shape
	More Control - Using a Formula
	Draw at Random

	Chapter 5: Interesting Things to Do with Shape Tables & Simple Animation
	Explosions
	Lasers
	Bouncing Ball
	The Effects of Entropy

	Chapter 6: Lookup Tables & Bit-Mapped Graphics
	Tricks of the Trade #1
	A Basic Character Generator
	A Longer Basic Character Generator

	Chapter 7: Machine Language Graphics Routines
	Machine Language Coding
	Assembly Language

	Chapter 8: More Machine Language
	Chapter 9: The Wonderful World of Color
	Black
	White
	Colors!
	Alternate Rows of Colors

	Chapter 10: Color Filling
	Fill Routine
	Getting Colors

	Chapter 11: Fast Animation
	Pre-Shifted Shapes
	Page Flipping

	Chapter 12: Animation of Larger Pre-Shifted Shapes
	First, a Shape
	Moving in Twos
	Entering the Shape Data
	Putting it All Together

	Chapter 13: Picture Packing
	The Original Recipe
	Variations on a Theme
	Dramatic Improvement
	The Packing Program

	Chapter 14: Packing by Saving Artist's Moves
	The Graphics Magician
	Drawing Lines
	Adding Brushes
	Pictures on Pictures
	Surprise Animation
	Saving Picture Files

	Chapter 15: 3-Dimensional Graphicsw
	3-D Perceptions
	Size
	Rotation & Perspective
	Shading & Shadowing
	Creating 3-D Shapes
	A Few Things You Can Do With Your Coordinates
	Move it
	Give it a Center
	Make it Bigger or Smaller
	Rotate It

	Chapter 16: A 3-D Graphics Program
	Breakdown of the Program
	Variables

	Chapter 17: A Hi-Res Drawing Program
	Line & Fill
	Brushes
	Keypress Operations
	Joystick Control

	Appendix A: Making Binary Simple
	Appendix B: Applesoft Hi-Res Graphics Commands
	Soft Switches

	Appendix C: Machine Language Entry Points for Appleosft Graphics Routines
	Appendix D: ASCII Character Codes
	Appendix E: Program Disk Catalog
	Appendix F: Listing 10.1
	Index
	Back Cover

